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Abstract

One of the most suitable approaches for first-principles electronic structure
calculations of metallic alloys with complex chemical and magnetic structure is
a Green’s-function based method as implemented within the exact muffin-tin
orbital formalism. This method, in combination with the coherent potential
approximation is very efficient in modeling multicomponent alloys. In this thesis,
we address two issues related to the computational efficiency and accuracy of
some parts of this methodology.

The first problem is a formalism for calculating the energy-dependent struc-
ture constant matrix using a Taylor expansion. Replacing this approach with
a more accurate and efficient method is necessary not only to solve existing
problems appearing for some systems in the current implementation, but also
to make the calculations numerically efficient in view of future developments.
To this end, we have developed a new formalism which calculates the structure
constants matrices for each energy directly. However, the implementation has
led to unphysical irregularities related to finite size of real-space clusters. The
numerical results show that it is impossible to eliminate them using the current
procedure. We conclude with a discussion whether the method can be applied as
a reliable replacement of the Taylor expansion method.

The second issue is related to unreliable values of elastic constants for low
symmetry crystals, which is due to some computational inaccuracies within the
current implementation, leading to numerical problems in the total energy as a
function of strain. Here, we have introduced a number of new improvements which
enhance numerical accuracy of the total energy–strain curves and lead to reliable
values of elastic constants for such systems. These improvements have been ap-
plied to calculate elastic properties of the shape memory alloy NiTi(1−x)Hfx. Our
results show a good agreement with other computational data and experimental
observations.
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Zusammenfassung

Einer der geeignetsten Ansätze für ab-initio Berechnungen der elektronis-
chen Struktur von metallischen Legierungen mit komplexen chemischen und mag-
netischen Aufbau ist eine auf den Greenschen Funktionen basierende Methode,
wobei die Formulierung ähnlich wie im exakten muffin-tin-orbital Formalismus
auf der Vielfachstreuungstheorie basiert. In Verbindung mit der kohärenten Po-
tentialnäherung ist das sehr effizient zum Modellieren von komplexen Materi-
alien. In dieser Dissertation werden zwei Aspekte behandelt, die Effizienz und
Genauigkeit der Methode betreffen.

Als erster Aspekt dieser Dissertation wird ein Formalismus zur Berechnung
der energieabhängigen Strukturkonstantenmatrix mittels der Taylorentwicklung
behandelt. Das Ersetzen dieses Formalismus mit einer genaueren Methode ist
notwendig um existierenden Probleme zu lösen, aber auch um die Rechnungen
effizienter zu machen für zukünftige Entwicklungen. Dazu wurde die Strukturkon-
stantenmatrix für jede Energie direkt berechnet. Jedoch zeigt dieser neue For-
malismus auf, das die numerische Berechnung von Strukturkonstanten wegen der
endlichen Größe von Clustern im Realraum zu Singularitäten führt. Wir zeigen,
dass es nicht möglich ist, diese Singularitäten im jetzigen Formalismus zu ver-
hindern. Daher wird diskutiert, ob der neue Formalismus ein verlässlicher Ersatz
für die Taylorentwicklung ist.

Zweitens betrachten wir elastische Konstanten für Systeme mit niedriger
Symmetrie, welche wegen Ungenauigkeiten der aktuellen Implementation unzu-
verlässig sind. Diese Ungenauigkeiten führen zu großem Rauschen für totale
Energie vs. Dehnung Kurven. Mittels Verbesserungen, die Energie-Dehnungs-
Kurve glätten, werden verlässliche Werte für elastische Konstanten erhalten.
Als Beispiel werden die elastischen Eigenschaften der Formgedächtnislegierung
NiTi(1−x)Hfx berechnet. Die Resultate stimmen gut mit anderen Berechnungen
und experimentellen Beobachtungen überein.
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Chapter 1

Introduction

Owing to the ever growing availability of computational resources, first-
principles quantum mechanical description of solids is becoming an increasingly
attractive method in solid state physics and material science. Thus, accurate
electronic structure calculations are entering the materials design process, par-
ticularly for systems which are difficult to characterize by means of experimental
methods. Density functional theory (DFT) [1, 2] has been among the most pop-
ular and versatile theoretical tools providing such an ab initio description. By
means of DFT calculations, ground state material properties, such as lattice pa-
rameters, elastic properties, or phase stability are being routinely evaluated. The
results of such calculations for many systems are typically in excellent agreement
with experimental observations. However, there are also classes of materials
which challenge existing first-principles methodologies. Among those are steels,
undoubtedly one of the most important technological materials, which can be
characterized as metallic alloys having a complex chemical and magnetic struc-
ture with a complicated temperature behavior. The main difficulty of studying
such systems is to model the randomness of the atomic positions in the substitu-
tional alloys or magnetic moments in the paramagnetic state, keeping a method-
ological framework based on the translational symmetry of the underlying crystal
lattice.

During the past decades, many attempts have been made to develop accurate
and, at the same time, efficient methods for solving the Kohn-Sham equations in
applications of DFT for condensed matter. The majority of these methods are
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Chapter 1. Introduction

based on diagonalization of the Kohn-Sham Hamiltonian [2]. Many formalisms
of this type have been developed in the framework of either an all-electron full-
potential technique [3–5], which fulfills the accuracy requirement, or pseudo-
potential approximation [6, 7] which guarantees efficiency and accuracy at the
same time on an acceptable level. Due to considerable progresses in this area,
many codes have been developed based on these methods such as WIEN2k1 [8]
and VASP2 [9–11], considered today as standard choices for performing calcu-
lations. However, they are not well-suited to describe properties of disordered
alloys, since they become too cumbersome for modeling randomness in solids.

On the other hand, there is another group of methods based on the Green’s-
function technique which, in contrast to the diagonalization methods, are well-
suited for modeling the effects of random disorder in crystalline materials. It is
in the pioneering works of Korringa [12] and Kohn and Rostocker [13] that for
the first time multiple scattering theory (MST) was used to solve the Kohn-Sham
equation and applied on band structure calculation of solids. Hence, they are also
known as KKR methods. These methods, in combination with approximations
such as coherent potential approximation (CPA) [14, 15] and disordered local
moment (DLM) [16, 17] have made the electronic structure calculation of substi-
tutional random alloys and modeling finite temperature magnetism possible.

The most well-adapted basis set for a Green’s function based method are
muffin-tin orbitals. In the original KKR method non-overlapping muffin-tin
spheres were used as an approximation to the geometry of a crystal. Soon it
became clear that an overlapping muffin-tin sphere formalism can approximate
the crystal potential more accurately, however, it also brings many technical diffi-
culties in developing the method and its applications. Various solutions were pro-
posed to overcome these difficulties, among which the most systematic is known
as exact muffin-tin orbital (EMTO) theory [18] introduced by O. K. Andersen in
late 1990’s. Subsequently, a KKR formalism using the EMTO basis set in combi-
nation with the CPA was developed [19–21] which is called hereafter EMTO-CPA
method.

Compared to methods such as WIEN2k and VASP, the current formalism
of EMTO-CPA is not accurate enough for calculating energetics of structural
relaxations. For instance, it typically overestimates the elastic constants of high
symmetry crystals compared to other more accurate computational methods.
Moreover, it yields unreliable elastic constants for low symmetry solids. The
main source of errors in such calculations arises from the use of the spherical cell
approximation (SCA) [22]. In this approximation, the one-electron potential is
assumed to be spherically symmetric within an atomic sphere. This approxima-

1http://www.wien2k.at/
2https://www.vasp.at/
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tion is usually too drastic to model the full one-electron potential, thus providing
insufficiently accurate energetics of structural relaxations. Moreover, elastic con-
stant calculations involve deformations that lower the symmetry of the system
and thus have a strong dependence on non-spherical parts of the potential which
are not considered in the SCA.

To improve the accuracy of the total energy, the full charge density (FCD)
technique [23, 24] is used in the current EMTO-based implementations. In this
technique, the total energy is calculated from the full charge density obtained
from a converged self-consistent EMTO-SCA calculation. This means that the
FCD step is done only once at the end of the calculation after the convergence
of EMTO-SCA calculation has been achieved. A promising idea to improve the
accuracy of the method is to introduce the FCD technique into the self-consistent
cycle. Thereby, total energies are expected to reach accuracy comparable to full-
potential codes. But before making such a modification of the computational
scheme, there are other technical issues of the implementation which must be
solved (improved) in advance.

The first issue we address in this thesis is the problem of calculating energy-
dependent structure constants. Structure constants are the coefficients appearing
in the so-called ”one-center expansion” for the wave function in the interstitial
region. This matrix and its first energy derivative, which are needed for each
energy during the self-consistent cycle, are calculated using a Taylor expansion
with respect to some reference energy. The structure constants matrix and its
first several energy derivatives for the reference energy are calculated for a finite-
size cluster of lattice vectors in real space by means of a Dyson equation. Then,
they are transformed into the reciprocal space and are used to solve the KKR
equation at each energy during the self-consistent cycle. This approach leads to
inaccuracy in some cases. Moreover, the problem of the efficiency will deteriorate
if the FCD technique is introduced to the self-consistent cycle. Therefore, it is
necessary to replace it with an accurate and more efficient formalism. In this
thesis, we introduce our new implementation and present its results in which the
structure constants and its first energy derivative are calculated directly at any
arbitrary energy by the Dyson equation.

Another source of errors in calculations of elastic constants of low symmetry
crystals is an irregular behavior of the total energy as a function of strain which
leads to unreliable values for elastic constants. In this thesis, we present our
results for the elastic properties of the shape memory alloy NiTiHf in both B2 and
B19′ phases. In order to improve the accuracy of the results, we have analyzed
the origin of the errors and introduced necessary modifications, which lead to
reliable elastic constants by improving the smoothness of energy-strain graphs.
The most important modifications are, the integration of EMTO-CPA code with

3



Chapter 1. Introduction

ElaStic [25] software, which facilitate elastic constants calculations, and the Voro-
shape package, which improves the accuracy of the total energy in case of low
symmetry crystals.

This thesis is organized as follows. In Chapter 2 a summary of the basic con-
cepts of the DFT is presented followed by Chapter 3 which deals with the basics
of the Green’s function methods including formal development of MST and its
application to non-overlapping muffin-tin potentials, resulting in the KKR equa-
tion. Chapter 4 contains the details of the EMTO-CPA formalism such as the
EMTO basis set, SCA potential, FCD technique and CPA concept. In Chapter
5 the current formalism for calculating the structure constants is described, and
details and numerical results of our new implementation for direct calculation of
these matrices are discussed. Finally, Chapter 6 deals with our result for elastic
properties of shape memory alloys NiTi(1-x)Hfx with x = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
In this Chapter, first we review shortly the main concepts of the elasticity the-
ory. Then, we give a brief review on properties of NiTiHf shape memory alloys.
Finally, we present the details of our new developments for elastic constants cal-
culation, as well as the results for NiTi(1-x)Hfx alloys.
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Chapter 2

Density Functional Theory

DFT is the primary tool for electronic structure calculations in condensed
matter. With the help of this theory, the original many-body problem is simplified
to an effective one-electron one, thereby making possible an accurate ab initio
consideration of relatively large and complex systems. The main concept of DFT
originates from the Hohenberg-Kohn theorems [1]. Its modern formulation, which
is used in present-day methods for treating electrons in condensed matter, is based
on the Kohn-Sham approach [2]. But before reviewing these topics, let us begin
with some preliminaries.

2.1 Born-Oppenheimer Approximation

Most of the problems in the electronic structure of matter are covered by the
time-independent Schrödinger equation: Ĥψ = Eψ, where the Hamiltonian Ĥ of
a system consisting of nuclei and electrons (in Gaussian units) is:

Ĥ = −
∑
I

~2

2MI

∇2
I −

~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −RI |
.

(2.1)
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Chapter 2. Density Functional Theory

Here, ~ = h/2π and h is the Planck’s constant, MI are the masses of the nuclei,
me is the electron mass, ZI the nuclei charge, and e the electron charge. The
first two terms are the kinetic energy of the electrons and nuclei, respectively;
the third, fourth and fifth terms are the electron-electron, nucleus-nucleus and
electron-nucleus interaction energies.

Nuclei are much heavier than electrons, and thus they are moving much
slower, so that the full Schrödinger equation can be decoupled assuming that at
any instant position of the nuclei, the electrons are fast enough to remain in their
corresponding ground state. This is the Born-Oppenheimer approximation [26].
In this adiabatic approximation, the solution for the coupled system of nuclei and
electrons is given by:

Ψ = ψ(ri; {R})χ(R), (2.2)

where the curly brackets indicate set of all R and semicolon is to emphasize
that {R} are parameters, not coordinates. ψ(ri; {R}) satisfies the Schrödinger
equation for the electrons in the potential of the now fixed nuclei at positions RI :(

− ~2

2mi

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
−
∑
i,I

ZIe
2

|ri −RI |

)
ψ(ri; {RI})

= Ee(RI)ψ(ri; {RI}),

(2.3)

where the electron eigenvalues Ee depend on the RI . If we now apply the Hamil-
tonian, Eq. (2.1), to the wave function, Eq. (2.2), we get:

ĤΨ = −
∑
I

~2

2MI

∇2
IΨ +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
Ψ + Ee(R)Ψ

= Ee(R)Ψ + ψ(ri, {R})

(
−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

)
χ(R)

−
∑
I

~2

2MI

(
2∇Iχ(R)∇Iψ(ri; {R}) + χ(R)∇2

Iψ(ri; {R})
)
.

(2.4)

The two terms in the last line are called non-adiabatic terms, and they are ne-
glected in the Born-Oppenheimer approximation (see Ref. [27] for more details).
In this case, χ(R) satisfies a Schrödinger-like equation:(

−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
+ Ee(R)

)
χ(R) = Eχ(R). (2.5)

Thus, in the Born-Oppenheimer approximation, the problem is reduced to
solving Eqs. (2.3) and (2.5) for electrons and nuclei, respectively. Eq. (2.5) is
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2.2. The Hohenberg-Kohn Theorems

what would be the Schrödinger equation for the nuclei alone and is the basis
of the perturbation methods for the description of lattice vibrations of systems.
Eq. (2.3) is the starting point for all methods which have been developed for
investigating electronic structure of solids.

2.2 The Hohenberg-Kohn Theorems

Because of an exponential scaling with system size, it is too complicated to solve
the original N -electron Schrödinger equation, Eq. (2.3), practically for many-
electron systems. Hence, there is a long history of methods which are trying to
get around this problem. Among them, the most important worth mentioning
one, is the method of Thomas [28] and Fermi [29] proposed in 1927. Although
this method is not accurate enough for today’s electronic structure calculations,
the idea of replacing the complicated N -electron wave function description by
a much simpler one based on the one-electron density had a great impact upon
the development of DFT. Both Thomas and Fermi neglected exchange and cor-
relation effects; however, their theory was extended by Dirac [30] in 1930, who
formulated the local density approximation for exchange energy still in use today.
Nevertheless, the Thomas-Fermi-Dirac theory remains rather inaccurate for most
applications. The largest source of error is in the representation of the kinetic
energy, followed by the errors in the exchange energy, and due to the complete
neglect of electron correlation.

Inspired by Thomas-Fermi-Dirac theory, P. Hohenberg and W. Kohn laid
the foundation of DFT by proving the following theorems [1]:

Theorem I: For any system of interacting particles in an external potential,
Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by
the ground state particle density n0(r).

Theorem II: A universal functional for the energy E[n] in terms of the density
n0(r) can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground state energy of the system is the global minimum value
of this functional, and the density n(r) that minimizes the functional is the exact
ground state density n0(r).

The consequence of the first theorem is that all ground-state properties of a
system are completely determined by its ground state electron density n0(r). In
the original Hohenberg-Kohn paper, this theorem is proved for densities with non-
degenerate ground states. The proof is elementary, and by contradiction. Suppose
there are two potentials V1 and V2 differing by more than a constant, yielding

7



Chapter 2. Density Functional Theory

the same density. These would have two different ground-state wave-functions,
ψ1 and ψ2. Then, unless, V1− V2 = const. , ψ1 is different from ψ2 since they are
solutions of the same Schrödinger equation. So, if the Hamiltonians and energies
associated with ψ1 and ψ2 are denoted by Ĥ1, Ĥ2 and E1, E2, respectively, we
have:

E1 = 〈ψ1|Ĥ1|ψ1〉 < 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2 + V̂1 − V̂2|ψ2〉

⇒ E1 < E2 +

∫ (
V1(r)− V2(r)

)
n(r)dr.

(2.6)

Changing the indices of quantities leads to:

E2 < E1 +

∫ (
V2(r)− V1(r)

)
n(r)dr. (2.7)

By adding Eq. (2.6) and Eq. (2.7), we get E1 +E2 < E2 +E1, which is obviously
false. Therefore, the total energies, E1 and E2, must be equal, which implies
that ψ1 and ψ2 are the same wave-functions by the variational principle and the
assumption of non-degeneracy. An elegant constructive proof was found later by
Levy [31, 32], which automatically includes degenerate states.

In order to prove the second theorem consider the energy functional of n(r)
defined as:

EV0 [n] = minψ→n

〈
ψ[n]

∣∣∣T̂ + Ŵ + V̂0

∣∣∣ψ[n]
〉
, (2.8)

where V̂0 is the external potential of a system with ground state density n0(r), T̂
is the kinetic energy operator, and Ŵ is the electron-electron interaction operator.
Now, we can use the Rayleigh-Ritz variational principle [33] and show that

E0 < EV0 [n], (2.9)

where E0 is the ground state energy and n 6= n0 and, of course

E0 = EV0 [n0]. (2.10)

So, the exact ground state density can be found by minimizing the functional
EV0 [n] over all n. But we can write EV0 [n] as

EV0 [n] = FHK [n] +

∫
V0(r)n(r)dr, (2.11)

where
FHK [n] = minψ→n

〈
ψ[n]

∣∣∣T̂ + Ŵ
∣∣∣ψ[n]

〉
(2.12)

is called the Hohenberg-Kohn universal functional. FHK is said to be univer-
sal, because it does not depend on the external potential and thus is the same
functional for all atoms, molecules, and solids.

8



2.2. The Hohenberg-Kohn Theorems

2.2.1 v-representability and the Levy Constrained Search
Formalism

When proving the Hohenberg-Kohn theorem above, we assumed that the density
is v-representable, which means that it is a density associated with the anti-
symmetric ground state wave function and some external potential V0(r). The
reason for such an assumption is that we want to use the variational character
of the energy functional in Eq. (2.9). If our trial density that we put in this
functional turns out to be non-v-representable, the variational principle is no
longer valid.

The Levy constrained-search formulation [31, 32] provides a way around the
problem of v-representability and in the same way presents a constructive proof
of the Hohenberg-Kohn theorem. According to Eq. (2.8) the minimization of
EV0 [n] can be written as:〈

ψ0

∣∣∣T̂ + Ŵ
∣∣∣ψ0

〉
+

∫
V0(r)n(r)dr ≤

〈
ψn0

∣∣∣T̂ + Ŵ
∣∣∣ψn0

〉
+∫

V0(r)n(r)dr ⇒
〈
ψ0

∣∣∣T̂ + Ŵ
∣∣∣ψ0

〉
=
〈
ψn0

∣∣∣T̂ + Ŵ
∣∣∣ψn0

〉
.

(2.13)

Here ψ0 is the ground state wave function and ψn0 is any other wave function
yielding the same density. We recognize this as the Hohenberg-Kohn functional,
FHK . It turns out that the ground state wave function of density n(r) can be
defined as the wave function which yields n(r) and minimizes the Hohenberg-
Kohn functional.

The Levy constrained-search formulation of the Hohenberg-Kohn theorem
proposes a two-step minimization procedure for the ground state energy. First,
we minimize Ev0 [n] over all wave functions giving a certain density, and then over
all densities:

E0 = minψ

〈
ψ
∣∣∣T̂ + Ŵ + V̂

∣∣∣ψ〉
= minn

(
minψ→n

〈
ψ
∣∣∣T̂ + Ŵ + V̂

∣∣∣ψ〉)
= minn

(
minψ→n

〈
ψ
∣∣∣T̂ + Ŵ

∣∣∣ψ〉+

∫
V (r)n(r)dr

)
.

(2.14)

Here, the minimization is over all n which are N -representable, which means n
can be obtained from an anti-symmetric wave function with the following three
conditions: It should be positive, it should integrate to N , and it should be
finite. This is obviously a much weaker condition than v-representability, and any

9



Chapter 2. Density Functional Theory

reasonable density fulfills it. The word ”constrained” in Levy constrained search
method comes from the fact that the ψ that we search among, are constrained
to give the density n.

2.3 The Kohn-Sham Scheme

The year after Hohenberg and Kohn published their article, Kohn and Sham
published another one [2] in which they presented an effective computational
scheme to find the ground state electron density. They proposed to consider a
system of non-interacting electrons with the same density as the physical sys-
tem. The main achievement of this approach is that the complicated N -electron
Schrödinger equation is replaced by a set of one-electron equations, known as
Kohn-sham equations, which are much easier to solve.

Let us consider such an auxiliary system of non-interacting electrons. For
a system with N independent electrons, the ground state has one electron with
spin σ in each of the Nσ orbitals φσi (r) and therefore the density is given by

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|φσi (r)|2 , (2.15)

where N = N↑ + N↓. The kinetic energy of this system in Hartree atomic units
(~ = me = e = 1/(4πε0) = 1) is

Ts = −1

2

∑
σ

Nσ∑
i=1

〈
φσi
∣∣∇2
∣∣φσi 〉 =

1

2

∑
σ

Nσ∑
i=1

|∇φσi |
2 . (2.16)

The Kohn-Sham approach for the full interacting many-electron system starts
by rewriting the total energy in the following form:

EKS = Ts[n] +

∫
Vext(r)n(r)dr + EHartree[n] + Exc[n] + EII , (2.17)

where Vext(r) is the external potential due to the nuclei and EHartree(r) is the
Coulomb energy of the electron density n(r), which is

EHartree =
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ (2.18)

and EII is the Coulomb energy of the nuclei. Comparing Eq. (2.17) and Eq.
(2.11), one can find the following expression for Exc which is called exchange-
correlation energy,

Exc[n] = T [n]− Ts[n] + Eint[n]− EHartree[n], (2.19)

10



2.4. The Exchange and Correlation Energy

where Eint[n] is the internal interaction energies of the true interacting many-
body system including classical and non-classical terms. One can see that Exc[n]
must be a functional of the density, since the right-hand sides of the equations
are also functionals of the density.

The solution of the Kohn-Sham auxiliary system for the ground state can be
viewed as the problem of minimization with respect to the density. Since Ts in
Eq. (2.16) is explicitly expressed as a functional of orbitals but all other terms
are considered to be functional of the density, one can use the chain rule and vary
Eq. (2.17) by Rayleigh-Ritz principle to derive the variational equation,

∂EKS
∂φσ∗i

=
∂Ts
∂φσ∗i

+

[
∂Eext
∂n(r, σ)

+
∂EHartree
∂n(r, σ)

+
∂Exc

∂n(r, σ)

]
∂n(r, σ)

∂φσ∗i
= 0, (2.20)

subject to the orthonormalization constraint

〈φσi |φσ
′

i 〉 = δi,jδσσ′ . (2.21)

Using Eqs. (2.15) and (2.16), and the method of Lagrange multipliers one can
find the single-electron Kohn-Sham equations set[

−1

2
∇2 + Vext(r) +

∫
n(r′)

|r − r′|
+ vσxc(r)

]
φσi = εiφ

σ
i , (2.22)

where vxc(r) = ∂Exc/∂n(r) is the exchange-correlation potential. Since the
potential depends on the density, these equations should be solved in a self-
consistent way. Usually one starts with an initial guess for n(r), then calculates
the corresponding potential and solves the Kohn-Sham equations for the φσi .
From these one calculates a new density and starts again. This procedure is then
repeated until convergence is reached. After convergence, using the solution n(r)
the total energy of real system can be found from the following expression,

E[n] =
∑
i

εi − EHartree[n] + Exc[n]−
∫
vxc(r)n(r)dr + EII . (2.23)

The only principle problem with the above equations is that the exact form
of functional for exchange-correlation energy is unknown, and therefore it must be
approximated. Fortunately, it turns out to be relatively easy to find reasonably
good local approximations for it.

2.4 The Exchange and Correlation Energy

The accuracy of density functional theory calculations is, in principle, limited only
by the employed approximate functionals describing the exchange and correlation

11



Chapter 2. Density Functional Theory

energy. Basically, Exc[n] is the sum of the distinct exchange and correlation terms,

Exc[n] = Ex[n] + Ec[n]. (2.24)

Even though the exact functional Exc[n] is presumably quite complex, great
progress in practical applications could be made with remarkably simple approx-
imations. We shall now take a look at the two most well-known and widely-used
approximations for Exc[n].

2.4.1 The Local Density Approximation

Kohn and Sham pointed out in their paper [2] that solids with slowly varying
density can be considered as close to the limit of a homogeneous electron gas. In
that limit, a system with non-uniform electron density, can be treated as a col-
lection of infinitesimally-small uniform electron gases of density n and therefore,
the total exchange-correlation energy can be obtained by summing the individual
contributions over all space. This is the local density approximation (LDA) for
which Exc[n] has the following form

Exc[n(r)] =

∫
n(r)Ehomx (n(r)) r +

∫
n(r)Ehomc (n)dr. (2.25)

Here Ehomx and Ehomc represent the exchange and correlation energies per electron
of a homogeneous electron gas, respectively.

Ehomx (n) can be calculated analytically [30]. For a homogeneous electron gas
the eigenfunctions are plane waves. Integrating over all states is equal to the
number of electrons in the system N . Therefore, it is easy to show that

N = V
k3
F

3π2
⇒ n =

k3
F

3π2
=

3

4πr3
s

, (2.26)

where V is the volume, kF is the Fermi wave vector and the Seitz radius, rs,
is introduced as the radius of a sphere which on average contains one electron.
The exchange energy per electron for a homogeneous electron gas, is obtained by
calculating the Fock integral [27]:

Ehomx (kF ) = −3kF
4π

. (2.27)

This leads to the following term for LDA exchange energy

ELDA
x [n(r)] = −3

4

(
3

π

)1/3 ∫
n4/3(r)dr. (2.28)
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2.4. The Exchange and Correlation Energy

Accurate analytic expressions for Ehomc are known only in extreme limits.
The high-density (rs → 0) limit is also the weak-coupling limit [34], in which

Ehomc (rs) = c0 ln(rs)− c1 + rs (c2 ln(rs)− c3)) + · · · , (2.29)

and the low-density (rs →∞) is also the strong coupling limit [35], in which

Ehomc (rs) = −d0

rs
+

d1

r
3/2
s

+ · · · . (2.30)

An analytical expression for Ehomc was proposed by Perdew and Wang [36] which
encompasses these two limits. Subsequently, Ceperly and Alder found the co-
efficients of this expression by fitting to accurate quantum Monte-Carlo data
[37]. Some other well-known, and regularly used, parameterizations have been
made by Hedin and Lundqvist [38], von Barth and Hedin [39], Gunnarsson and
Lundqvist [40], Vosko, Wilk, and Nusair [41], and Perdew and Zunger [42]. A
detailed description of the above equations are found in [43].

The local density approximation was the standard approach for all density
functional calculations until the early 1990s and is still used to a very large extent
for solid state calculations. However, it typically overestimates crystal cohesive
and molecular binding energies and it is not well suited for strongly correlated
systems.

2.4.2 Generalized Gradient Approximation

The first step beyond the LDA is a functional of the magnitude of the gradient of
the density |∇nσ| as well as the value n(r) at each point. This approximation is
referred to as generalized gradient approximation (GGA). A first attempt at doing
this was the so-called gradient expansion approximation (GEA), first suggested
in the original paper of Kohn and Sham and carried out by Herman et al. [44].
However, it does not lead to a consistent improvement over the LDA. It violates
the sum rules and other relevant conditions [44] and, indeed, often leads to worse
results.

A GGA functional, on the other hand, can be defined in its most general
form as [45]:

EGGA
xc [n(r)] =

∫
Exc (n(r), |∇n(r)|)n(r)dr

=

∫
Ehomx (n)Fxc(n, |∇n|)n(r)dr,

(2.31)
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Chapter 2. Density Functional Theory

where Fxc(n, |∇n|) ≡ Fxc(rs(r), s(r)) is called the enhancement factor. Here,
s(r) is the dimensionless density gradient defined by:

s =
|∇n(r)|
2kFn(r)

. (2.32)

Considering Eq. (2.26), the explicit expression for the gradient can be written as

s =
3

2

(
4

9π

)1/3

|∇rs|. (2.33)

For the exchange energy Fx has been calculated analytically in case of slowly
varying densities (s� 1) [45, 46]

Fx = 1 + µs2. (2.34)

with µ as the effective gradient coefficient. In the spin-polarized case, it is
straightforward to show that there is a ”spin-scaling relation” [43]

Ex[n
↑, n↓] =

1

2
Ex[2n

↑] +
1

2
Ex[2n

↓], (2.35)

where Ex[n] is the exchange energy for an unpolarized system of the density. Thus
we need only the spin-unpolarized Fx[n, |∇n|]. Numerous forms for Fx(n, s), have
been proposed. These can be illustrated by the three widely used forms of Becke
(B88) [47], Perdew and Wang (PW91) [36], and Perdew, Burke and Enzerhof
(PBE) [48].

For correlation, the quantitative form of Fc is extrapolated between low-
density and high-density limits. The lowest order gradient expansion at high
density (rs → 0) has been determined by Ma and Breuckner [49] to be

Fc =
ELDAc

ELDAx

(
1− 0.219s2

)
. (2.36)

For instance, in GGA-PBE the form for correlation is expressed as the local
correlation plus an additive term both of which depend upon the gradients and
the spin polarization [48].

2.5 Methods for Solving the Kohn-Sham Equa-

tions

Here we start with a quote from the book of David J. Singh and Lars Nordström
[50]: ”The methods for solving Kohn-Sham equations are classified according to
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the representations that are used for the density, potential and, most importantly,
the Kohn-Sham orbitals. The choice of representation is made to minimize the
computational and human (e.g. programming) costs of calculations, while main-
taining sufficient accuracy.” These competing material and application depen-
dent have led to the development and use of a wide variety of techniques. These
techniques can be categorized based on the formalisms used to approximate the
potential. The most noteworthy classes of such a categorization are as follow.

The all-electron full-potential methods have been designed to fulfill the re-
quirement of accuracy and provide the exact local density or gradient level de-
scription of solid materials [3–5, 51–56]. Regardless of basis set choice in these
methods, the Kohn-Sham equation is solved for all electrons (valence and core
electrons) considering exact Coulomb terms and exchange-correlation approxi-
mation. These methods have been applied to calculate the physical properties
of ordered compounds, as well as to study defects in these systems. Though, in
principle, these techniques give highly accurate results in most cases, they gen-
erally demand high computational costs which almost make their application for
complicated systems such as random alloys very cumbersome and often inefficient.

Pseudo-potential methods [6, 7, 57, 58] have been introduced to reduce the
costs of the calculations, but simultaneously to keep the accuracy of the results
compared to all-electron full-potential methods. In this approach, the electrons
are divided in two groups of core and valence electrons, based on the fact that
the electrons in inner shells (core electrons) are strongly bound and do not play
a significant role in the chemical bonding of atoms. Thus, they are considered
together with the nucleus as ion core, thereby reducing the atom to an ionic core
that interacts with the valence electrons. A pseudo-potential, that approximates
the potential felt by the valence electrons, is built in a way that the wave functions
of valence electrons, called pseudo wave function, are identical to the true wave
functions outside a chosen core cut-off radius, while they should be nodeless and
have the same norm as the true wave functions inside that region. In practice,
one often finds that the physical and chemical properties calculated using pseudo-
potential methods are almost identical to those obtained using all-electron full-
potential methods [59]. The higher computational speed in combination with the
accurate results in pseudo-potential calculations, compared to the all-electron
full-potential ones, have made this method the first choice for doing ab initio
calculations for most structures.

”Another important class of Kohn-Sham methods is built around the muffin-
tin approximation to the effective potential and electron density. The basis of this
approximation lies in the fact that the crystal potential is assumed to be spher-
ically symmetric within the muffin-tin region and constant in the interstitial”
[20]. Many full-potential electronic structure methods mentioned above employ
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this approximation, but there are also methods such as LMTO-ASA [60–62] which
are not full-potential. The latter is based on the atomic sphere approximation
(ASA) which considers only the spherically symmetric part of the potential inside
the spheres.

The majority of the above-mentioned methods use the Hamiltonian formal-
ism. This means that the electronic spectrum and wave functions are calculated
as eigenvalues and eigenvectors, respectively, of the corresponding Hamiltonian
operator using a diagonalization technique. An equivalent way of solving the
Kohn-Sham equation is to calculate the Green’s function, which contains all the
information about the electronic spectrum of the system. The Green’s function
formalism which is originally based on the MST, was first applied to describe
the electronic structure of solids within the KKR method [12, 13]. The most
important feature of this formalism is that it is suitable for studying disordered
systems such as impurities in crystals and random alloys. This is due to the
fact that the Green’s function of a system has a self-averaging property, which
means the statistical average of the Green’s functions of a statistical ensemble can
be used to calculate the average physical properties of the system. In contrary,
the ensemble average of the wave function cannot easily be related to physical
observables. This is a very important distinction that makes Green’s function
methods so fundamental and versatile compared to Hamiltonian based methods
for description of electronic structure of random alloys. In the next chapter we
shall review the basic concepts of this method.
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Chapter 3

Basics of Green’s Function
Methods

The mathematical formalism behind Green’s function based methods is the
multiple scattering theory which was first formulated by Lord Rayleigh in 1892
[63] for the propagation of heat or electricity through inhomogeneous media.
Since then, it has been applied for different problems in physics ranging from
scattering of electromagnetic waves in optics to the electronic structure calcula-
tions in condensed matter physics. Within the latter, MST was first used for the
calculation of stationary electronic states by Korringa [12]. Kohn and Rostoker
extended MST to solve the eigenvalue problem for periodic lattices [13]. Since
then, the theory has come to be known as the KKR method for the calculation
of electronic structure and has been used as the basis for a number of related
Green’s function based methods. In this chapter we give a brief introduction to
MST and KKR method. This chapter is mainly based on the book by A. Gonis
and W. H. Buttler [64]

3.1 Green’s Function and Scattering

We begin with the time-dependent form of the single-particle Schrödinger equa-
tion in Rydberg atomic units (~ = 2me = e2/2 = 1),

i
∂

∂t
ψ(t) = Hψ(t), (3.1)
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which describes the wave function for a single particle moving in a perturbing
potential, V (r, t). The Hamiltonian operator can be written as

H = H0 + V (r, t) = −∇2 + V (r, t). (3.2)

In the absence of a perturbing potential V (r, t), the Hamiltonian is simply
H0 = −∇2 and the Schrödinger equation can be solved exactly in terms of the
free particle propagators, or Green’s functions G±0 (r, t; r′, t′),(

i
∂

∂t
−H0

)
G±0 (r, t; r′, t′) = δ(r − r′)δ(t− t′), (3.3)

The Green’s function G0(r, t; r′, t′) connects the values of a wave function at the
space-time point (r′, t′) to its value at time (r, t). It can be shown that in the
coordinate representation, G±0 take the following forms:

G+
0 (r, t; r′, t′) = −i

[
1

4πi(t− t′)3/2

]
exp

(
i|r − r′|2

4|t− t′|

)
Θ(t− t′), (3.4)

and

G−0 (r, t; r′, t′) = +i

[
1

4πi(t− t′)3/2

]
exp

(
i|r − r′|2

4|t− t′|

)
Θ(t′ − t), (3.5)

where

Θ(τ) =

{
1 τ > 0,

0 τ < 0.
(3.6)

Therefore, G+
0 vanishes for the past time, t < t′, and it is called retarded prop-

agator, whereas G−0 vanishes in the future, and it is called advanced propagator.
Hence, for determining the wave function at time t from its value at time t = 0
we must use G+

0 ,

φ(r, t) =

∫
dr′G+

0 (r − r′, t)φ(r′, 0). (3.7)

This shows that every point in space where the wave function is non-zero at time
t = 0, acts as a source for producing the wave function at time t.

Now considering the system influenced by perturbing potential V (r, t), the
solution of Eq. (3.1) can be written in the form

ψ(r, t) = φ(r, t) +

∫
G0(r, t; r′, t′)V (r′, t′)ψ(r′, t′)dr′dt′. (3.8)

This is referred as the Lippmann-Schwinger equation and is made the formal
basis of the MST.
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3.2 Energy-dependent Green’s Function

Developing the time-independent formalism would be more convenient for time-
independent potentials, such as those commonly appearing in the determination
of electronic structure of materials. In this case, the energy-dependent Green’s
function is the Fourier transform of the time-dependent Green’s function,

G(E) =

∫
G(t)ei(E+iε)tdt (3.9)

that results in the following formal solution:

G(E) = (E + iε−H)−1 . (3.10)

Here, ε is an infinitesimal positive real number, which ensures convergence of
the integral in Eq. (3.8) for t → ∞. More generally, one may define the
above time-independent Green’s function as the resolvent of the time-independent
Schrödinger equation, via the operator equation

G(z) = (z −H)−1 (3.11)

for an arbitrary complex energy z = E + iε (as long as [z −H] can be inverted).
The poles ofG(z) determine the eigenvalue spectrum. The spectral representation
in real space for a system with the complete set of eigenfunctions, |ψk〉, and
eigenvalues εk, is

G(r, r′; z) =
∑
k

ψk(r)ψ∗k(r
′)

z − εk
(3.12)

Using the Dirac identity,

∞∫
−∞

f(x)

x− x0 ± iε
dx = P

 ∞∫
−∞

f(x)

x− x0

dx

∓ iπf(x0), (3.13)

where P stands for the Cauchy principal part of the integral, in the limit of
Im(z) = ε→ 0+, the one electron density is readily obtained as follows:

n(r) = − 1

π
Im

 EF∫
G(r, r; z)dz

 (3.14)

where the upper integration limit is the Fermi energy, EF . The density of states
n(E) can be calculated analogously,

n(E) = − 1

π
Im

 EF∫
G(r, r; z)dr

 = − 1

π
Im [Tr(G(z))] (3.15)

19



Chapter 3. Basics of Green’s Function Methods

from which the one-electron energy is easily calculated,

Eone−el =

EF∫
n(E)EdE = EFN(EF )− 1

π

EF∫
N(E)dE, (3.16)

with N(E) being the number of states. The Fermi level EF is obtained from the
nonlinear equation,

N(EF ) =

EF∫
n(E)dE = Ne, (3.17)

where Ne is the number of electrons in the system. Therefore, the Green’s func-
tion contains all information which is given by the eigenfunctions.

3.3 Single-potential Scattering and the

t-matrix

Suppose the free-particle Green’s function operator, G0 and the full Green’s func-
tion operator, G, defined in the following way,

G(z) = (z −H)−1 , G0(z) = (z −H0)−1, (3.18)

which are associated with the Hamiltonian H0 and H = H0 + V , respectively.
They are related by the Dyson equation,

G = G0 +G0V G. (3.19)

The Lippmann-Schwinger equation can be rewritten in the following equivalent
forms,

|ψ±α 〉 = |φα〉+G±0 (E)V |ψ±α 〉
= |φα〉+G±(E)V |φα〉
= |φα〉+G±0 (E)T±|φα〉.

(3.20)

Here, the t-matrix operator, T±, which is short for ”transition matrix”, is defined
by the following relations

T+
αα′ = 〈φα(Eα)|T+|φα′(Eα′)〉 = 〈φα(Eα)|V |ψ+

α′(Eα′)〉,
T−αα′ = 〈φα(Eα)|T−|φα′(Eα′)〉 = 〈ψ−α (Eα)|V |φα′(Eα′)〉.

(3.21)

When Eα = Eα′ = E, the t-matrix is called on-the-energy-shell t-matrix, and
we have Tαα′(E) = T+

αα′ = T−αα′ . From a simple iteration of the first line of Eq.
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(3.20) and comparison with the third line, we find that T is given formally by
the following expression known as Born series,

T = V + V G0V + V G0V G0V + · · · . (3.22)

If this series converges, T satisfies the Dyson equation,

T = V + V G0T (3.23)

which has the formal solution,

T = (1− V G0)−1 V

=
(
V −1 −G0

)−1
.

(3.24)

Therefore, having the t-matrix available, the solution of perturbed system is
simplified. From Eq. (3.19), the Green’s function of perturbed system can also
be obtained as

G = G0 (1−G0V )−1

=
(
G−1

0 − V
)−1

=
(
G−1

0 −
(
T−1 +G0

)−1
)−1

=
((
T−1 +G0

)−1
T−1G−1

0

)−1

= G0T
(
T−1 +G0

)
= G0 +G0TG0.

(3.25)

3.4 Formal Development of MST

If two perturbing potentials, V1 and V2, act simultaneously on the system, it can
be shown that the t-matrix can be obtained from the following series,

T (V1 + V2) =T (V1) + T (V2) + T (V1)G0T (V2) + T (V2)G0T (V1)+

T (V1)G0T (V2)G0T (V1) + · · · ,
(3.26)

where T (Vi) is the t-matrix corresponding to the potential Vi acting alone. In this
expression, there is no term like T (V1)G0T (V1), which means no two successive
scattering events corresponding to the same potential can happen.
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For a case in which multiple perturbing potentials, Vi, are acting simultane-
ously, Eq. (3.26) takes the following form,

T ≡ T

(∑
i

Vi

)
=

[∑
i

T (Vi)

]
+

[∑
i

T (Vi)

]
G0

[∑
j

T (Vj)

]
+ · · ·

=
∑
i

ti +
∑
i

∑
j 6=i

tiG0t
j + · · · ,

(3.27)

where ti ≡ t(Vi) is the t-matrix of potential Vi acting alone. Equivalent to Eq.
(3.24), one can obtain

T =
∑
i,j

T ij ≡

(∑
i

Vi

)−1

−G0

 (3.28)

where T i,j is the sum of the all terms in Eq. (3.27) that start with ti and end
with tj, and satisfy the equation of motion,

T ij = tiδi,j + tiG0

∑
k 6=i

T kj. (3.29)

Eq. (3.28) shows a fundamental property that the total t-matrix, T , correspond-
ing to an assembly of scattering potential cells depends on the total potential,∑
i

Vi, but is entirely independent of the shape, extent or overlap of individual

cells. In the case of non-overlapping potentials Eq. (3.29) can be rewritten as

T ij = tiδi,j + ti
∑
k 6=i

Gik
0 T

kj. (3.30)

where Gik
0 is that part of G0 which connects ti to tk in Eq. (3.27). Thus, T ij can

be obtained as the inverse of a matrix M with matrix elements,

M ij = miδi,j +Gij
0 (1− δi,j) , (3.31)

where mi ≡ (ti)
−1

is the inverse of the t-matrix associated with potential Vi.

In order to interpret the equations of MST in terms of wave functions, we
can start from the following equation,

V |ψ〉 = T |φ〉, (3.32)

which is a result of Equations (3.20) and (3.23) for the single-potential scattering
case. For an assembly of scattering cells, we introduce |ψin,i〉 which describes
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the wave incident on cell i, in the presence of all other scatterers. Therefore, in
analogy to Eq. (3.32) one can write

Vi|ψ〉 = ti|ψin,i〉, (3.33)

where |ψ〉 denotes the solution of the Lippmann-Schwinger equation for the entire
system. From Eq. (3.32) we have the relation(∑

i

Vi

)
|ψ〉 =

∑
i,j

T ij|φ〉

=
∑
i

T i|φ〉,
(3.34)

where T i describes all multiple scattering events coming from cell i, and is defined
by

T i =
∑
j 6=i

T ij. (3.35)

From Eq. (3.30) one can find

T i = ti

[
1 +G0

∑
k 6=i

T k

]
. (3.36)

Thus, from Eq. (3.34) we have

Vi|ψ〉 = T i|φ〉

= ti

[
1 +G0

∑
k 6=i

T k

]
|φ〉

= ti|ψin,i〉,

(3.37)

which leads to the equation,

|ψin,i〉 =

[
1 +G0

∑
k 6=i

T k

]
|φ〉,

= |φ〉+G0

∑
k 6=i

tk|ψin,k〉,
(3.38)

describing the incoming wave at cell i as the sum of an incident wave |φ〉 and
incoming waves at all other sites that are scattered there and then propagated
to site i via G0. Finally, the wave function of the entire system can be obtained
from the following equation,

|ψ〉 = |φ〉+G0T |φ〉

= |φ〉+G0

∑
i

ti|ψin,i〉, (3.39)
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Chapter 3. Basics of Green’s Function Methods

which is a multi-center expansion of the wave function in terms of the incoming
waves of the system. It can also be expressed as a single-center expansion

|ψ〉 = |ψin,i〉+ |ψout,i〉, (3.40)

by defining
|ψout,i〉 = G0t

i|ψin,i〉. (3.41)

Eq. (3.39) can be used to obtain bound states of the system, i.e, the states that
have non-zero amplitude even in the absence of an overall incident wave, |φ〉.
Rewriting it in the form∑

j

[
δi,j −G0t

j (1− δij)
]
|ψin,j〉 = |φ〉, (3.42)

shows that nontrivial solutions for these states exist only if the following condition
is satisfied:

det
∣∣[δi,j −G0t

j (1− δij)
]∣∣ = 0. (3.43)

In a particular representation, the left-hand side of this equation becomes a deter-
minant that has to be solved to find the bound states of the system, for instance,
the Bloch states of a periodic solid. In this case, providing that det[ti] 6= 0
(assuming that mi = [ti]−1 exists), Eq. (3.43) can be rewritten in following form

det[M ] = det
[
mi −G0 (1− δij)

]
= 0, (3.44)

where the matrix M has been defined in Eq. (3.31).

3.5 MST for Muffin-tin Potentials

In a non-overlapping muffin-tin approximation, space is divided into non-overlapping
spherical cells centered at different sites, and the potential is approximated to be
spherically symmetric inside the cells and constant in the interstitial region. In
this case, the intra-cell vectors, ri = r −Ri, which are confined inside spheres,
together with the inter-cell vectors, Rij = Rj −Ri, satisfy the conditions,

|Rij| > |ri|, |Rij| > |rj|, |Rij| > |ri − rj|
|Rij − rj| > |ri|, |Rij − ri| > |rj|.

(3.45)

In coordinate representation on can find the t-matrix using the following
equations. First, using integral form of Eq. (3.12), one can find the following
form for the free-particle propagator corresponding to the outgoing wave [64]

G0(r, r′) ≡ G0(r − r′) = − 1

4π

eik|r−r
′|

|r − r′|
, (3.46)
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3.5. MST for Muffin-tin Potentials

and then T (r, r′) =
∑
i,j

T ij(r, r′), where the T ij elements can be obtained from

T ij(r, r′) = ti(r, r′)δij +
∑
k 6=i

∫
Ωi

d3r1

∫
Ωk

d3r2t
i(r, r1)Gik

0 (r1, r2)T kj(r2, r
′)

= ti(r, r′)δij + (1− δij)
∫
Ωi

d3r1

∫
Ωk

d3r2t
i(r, r1)Gij

0 (r1, r2)tj(r2, r
′)

+
∑
k 6=i

∫
Ωi

d3r1

∫
Ωk

d3r2

∫
Ωk

d3r3

∫
Ωj

d3r4

× ti(r, r1)Gik
0 (r1, r2)tk(r2, r3)Gkj

0 (r3, r4)tj(r4, r
′) + · · · ,

(3.47)

which is equivalent to Eq. (3.30) and Eq. (3.27) in coordinate representation.
Here, Gik

0 (r1, r2) is a cell-off-diagonal element of G0 corresponds to the vectors r
and r′ confined to cells i and k, respectively. These integral equations are very
difficult to handle computationally, and therefore the coordinate representation
is not interesting for real applications. Instead, the angular momentum represen-
tation has been found to be better suited for carrying out practical calculations.

Using the well-known expansion of the plane wave in terms of Bessel func-
tions and spherical harmonics (Bauer’s identity),

eik·r = 4π
∑
l,m

iljl(kr)Yl,m(r̂)Y ∗l,m(k̂)

= 4π
∑
L

ilJL(r)Y ∗L (k̂),
(3.48)

Figure 3.1: Intra-cell and inter-cell vectors in muffin-tin spheres
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Chapter 3. Basics of Green’s Function Methods

where L ≡ {l,m} and JL(r) = jl(kr)YL(r̂), one can find

G0(r − r′) = G0(r1 −R12 − r2) = −ik
∑
L,L′

JL(r1)GLL′(R12)JL′(r2). (3.49)

The expansion coefficients, GLL′(R12), are the real space representative of the
well-known KKR structure constants [12, 13] which are defined as

GLL′(R) = 4π
∑
L3

il1−l2−l3C(L1, L2, L3)HL3(R), (3.50)

in which, HL(R) = hl(kR)YL(R̂), with hl denoting the Hankel function and
C(L1, L2, L3) are the Gaunt numbers defined as

C(L1, L2, L3) =

∫
YL1(Ω)YL2(Ω)Y ∗L3

(Ω)dΩ. (3.51)

Now, Using Eq. (3.49) and the generalized form of Eq. (3.25) for multiple
scattering cells, which is

G = G0 +G0

∑
α

tαG0 +G0

∑
α

tαG0

∑
β 6=α

tβG0 + · · · , (3.52)

we obtain the following expression for r and r′ in the interstitial region near cells
m and n, respectively,

G(r, r′) = G0(r, r′) +
∑
m,n

∑
L1,L2

(−ik)2HL1(r −Rm)

τmnL1L2
(E)HL2(r

′ −Rn).

(3.53)

τmnLL′(E) is called the scattering path matrix and denote the matrix elements of
the on-the-energy shell part of the scattering matrix, T . It satisfies the following
expansion

τmnLL′ = tmLL′δmn + (1− δmn)
∑
L1L2

tmLL1
G̃L1L2(Rmn)tnl2L′ + · · · , (3.54)

where G̃L1L2 = −ikGL1L2 . This quantity is more often called the scattering path
operator, but it is not technically an operator, since it is defined only on the
energy shell. It satisfies the equation of motion, Eq(3.29), in the following form,

τmnLL′ = tmLL′δmn +
∑
k 6=m

∑
L1L2

tmLL1
G̃L1L2(Rmk)τ

kn
L2L′ , (3.55)

or in angular momentum representation,

τmn = tm

[
δmn +

∑
k 6=m

G̃(Rmk)τ
kn

]
. (3.56)
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3.5. MST for Muffin-tin Potentials

where the underline notation denotes the quantity in L space. Comparing with
Eq. (3.31), it can be seen that

τmn =
[
M−1

]mn
, (3.57)

where the matrix M is the angular momentum representation of M in Eq. (3.31)
which is

M ij = miδij − G̃(Rij)(1− δij). (3.58)

Eq. (3.57) forms the basis for electronic structure calculations of a transla-
tionally invariant material. Consider a simple case in which N identical muffin-tin
scatterers are arranged on the sites of a simple Bravais lattice, so that ti = t for
all i. Then the Fourier transform of τ and G̃ is obtained from following relations,

τ(k) =
1

N

∑
m,n

eik·(Rm−Rn)τmn, (3.59)

τmn =
1

N

∑
k

e−ik·(Rm−Rn)τ(k)

=
1

ΩBZ

∫
BZ

d3ke−ik·(Rm−Rn)τ(k),
(3.60)

and

G̃(k) =
1

N

∑
m,n

eik·(Rm−Rn)G̃(Rmn). (3.61)

From Eq. (3.58) we obtain

τ(k) =
[
m− G̃(k)

]−1

. (3.62)

Here m = t−1 depends on the energy and potential of a cell, whereas G̃, the
KKR structure constants, depend on the energy and structure of the lattice. The
eigenvalues, E(k), can be obtained from the solution of the so-called secular
equation,

det|τ(k)| = det
∣∣∣m− G̃(k)

∣∣∣ = 0. (3.63)

In this equation, the matrix dimension labeled by angular momentum index,
L ≡ {l,m}, is in principle infinite. However, in real applications, l is truncated
at some reasonably small number.

In the next chapter, we will review how MST is used in exact muffin-tin
orbital theory.
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Chapter 4

Exact Muffin-tin Orbital Theory

Originally, Kohn and Rostoker formulated a general variational principle in
terms of a Green’s function of a system [13]. However, to make practical calcu-
lations with it they had to use a simplified muffin-tin potential, which resulted
in the same set of equations as the one proposed independently by Korringa
[12]. A muffin-tin potential approximates a realistic (full) potential by a set of
non-overlapping spherically symmetric wells centered at atomic sites separated
by a constant interstitial potential. This approximation has been the foundation
for various practical implementations of the KKR formalism. In particular, O.
K. Andersen has introduced the notion of screened muffin-tin orbitals (MTO).
These are functions that form a complete basis for a muffin-tin potential. They
are also short-ranged, which results in short-ranged structure constants, making
real-space KKR calculations possible. With an additional constraint of energy-
independent structure constants this basis set was used to implement the atomic-
sphere approximation (ASA) of KKR equations [60, 61].

Despite the success of the muffin-tin KKR methods it is clear that the non-
overlapping atomic spheres give only a crude description of a realistic potential.
Therefore, various generalizations have been put forward. Among them is an
improved version of MTOs proposed by O. K. Andersen [18]. He pointed out
that a much better approximation of a realistic potential can be achieved by
overlapping spherical potentials. As a suitable basis he introduced a set of short-
ranged functions referred to as exact muffin-tin orbitals (EMTO) (sometimes
called ”third-generation MTOs” [62]) that can be utilized for solving both the
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4.1. EMTO Basis Set

Kohn-Sham as well as the Poisson equations. A Green’s function method based
on this basis set was implemented in the EMTO-CPA (coherent-potential approx-
imation) code [19–21] suitable for modeling disordered systems. In this chapter
we shall review the basic concepts of this theory as well as some computational
techniques implemented in this code.

4.1 EMTO Basis Set

Although the EMTO-CPA code is based on the Green’s function method, it is
more convenient to present the formalism in terms of matching of scattering waves
at atomic spheres. Here, the basic concepts of the formalism are reviewed. For
more details, we refer to the book by L. Vitos [20].

Using Rydberg atomic units, Eq. (2.22) can be rewritten in the following
form: [

−∇2 + v(r)
]

Φi(r) = εiΦi(r). (4.1)

The potential is approximated as follows:

v(r) ≈ vmt(r) = v0 +
∑
R

[vR(rR)− v0] , (4.2)

where vR(rR) are overlapping spherical symmetric potentials centered on lattice
sites R with radii sR and rR = |r −R|, and v0 is the so-called muffin-tin zero
potential, constant potential in the interstitial region. vR and v0 are determined
by minimizing the mean of the squared deviation between vmt(r) and v(r) which
is obtained by

Fv [{vR}, v0] =

∫ {
v(r)− v0 −

∑
R

[vR(rR)− v0]

}2

dr. (4.3)

Minimizing Fv will lead to the following conditions,∫
δvR(r)

δFv [{vR}, v0]

δvR(r)
dr = 0 for any R, (4.4)

and
∂Fv [{vR}, v0]

∂v0

= 0. (4.5)

The optimal values for v0 and vR(rR), which are the solution of Eq. (4.4) and
Eq. (4.5), form the so-called optimized overlapping muffin-tin potential.
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Chapter 4. Exact Muffin-tin Orbital Theory

In order to solve Eq. (4.1), the Kohn-Sham orbitals, Φi(r), are expanded
in terms of a complete basis set, called exact muffin-tin orbitals, Ψ̄a

RL(εi, rR) , as
follows

Φi(r) =
∑
RL

Ψ̄a
RL(εi, rR)uaRL,i, (4.6)

where L ≡ {l,m} and uaRL,i are the expansion coefficients. In practice, the
summation on l is truncated at a maximum value called lmax. In most cases,
lmax = 3, i.e, a spdf basis set, is sufficient to have proper results.

The basis functions which are used for constructing Ψ̄a
RL(εi, rR) are referred

to as screened spherical waves (SSW) for the interstitial region, and partial waves
for the region inside the muffin-tin spheres. We shall now take a look at these
functions.

4.1.1 Screened Spherical Waves

The potential inside the interstitial region, which is the space between the hard
spheres, is v0. For this region, Eq. (4.1) can be rewritten as:[

∇2 + κ2
]
ψaRL(κ2, rR) = 0, (4.7)

where κ2 = ε−v0. The solutions for above equation are well known, but a proper
choice for ψaRL(κ2, rR) should follow two considerations. Firstly, every single
ψaRL(κ2, rR) must be attached to a corresponding partial wave, and secondly,
they must be well-localized for energies of interest, so that they can be easily
calculated in real space. Since the potential spheres overlap, in order to specify
these conditions, at each site R, a screening sphere (or a-sphere) with radius aR
is centered. These spheres are defined to be non-overlapping and the following
boundary condition is imposed at them,

ψaR′L(κ2, rR = aR′) = YL(r̂R) if R′ = R

ψaR′L(κ2, rR = aR′) = 0 if R′ 6= R.
(4.8)

This means that every SSW should vanish on all screening spheres except for the
one at its own site R on which it equals the real harmonic YL(r̂R)1. Now, it is
possible to expand the SSW related to the interstitial region of site R in terms

1For the convention used for the real harmonics and Bessel and Neumann functions see
Appendix B of Ref. [20]
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of real harmonics around any site R′ as:

ψaRL(κ2, rR) = faRl(κ
2, rR)YL(r̂R)δRR′δLL′

+
∑
L′

gaR′l′(κ
2, rR′)YL′(r̂R′)SaR′L′RL(κ2), (4.9)

where the expansion coefficients SaR′L′RL(κ2) are the elements of a screened struc-
ture constant matrix. It is also known as slope matrix within EMTO theory and
will be discussed in the next chapter. Furthermore, faRl and gaRl are called the
value (or head) and the slope (or tail) functions, respectively. They are defined
in terms of spherical Bessel, jl, and Neumann, nl, functions1, as follows:

faRl(κ
2, rR) = t1Rl(κ

2)nl(κ
2, r) + t2Rl(κ

2)jl(κ
2, r),

gaRl(κ
2, rR) = −t3Rl(κ2)nl(κ

2, r)− t4Rl(κ2)jl(κ
2, r),

(4.10)

where the coefficients t1,...,4Rl are called screening parameters. In addition, from
the boundary conditions in Eq. (4.8), we have

faRl(aR) = 1 , gaRl(aR) = 0. (4.11)

Finally in order to completely specify t1, ..., t4, we make the following choices for
their radial slope on the a-spheres,

∂faRL(κ2, rR)

∂rR

∣∣∣∣
aR

= 0 ,
∂gaRL(κ2, rR)

∂rR

∣∣∣∣
aR

=
1

aR
. (4.12)

Using conditions (4.11) and (4.12) we can find t1, ..., t4 at all sites and for all l,{
t1Rl(κ

2) t2Rl(κ
2)

t3Rl(κ
2) t4Rl(κ

2)

}
= 2

a2
R

w


∂jl(κ

2, aR)

∂rR
− ∂nl(κ

2, aR)

∂rR
1
aR
jl(κ

2, aR) − 1
aR
nl(κ

2, aR)

 (4.13)

where w is the Wigner-Seitz radius.

In Eq. (4.9), l ≤ lmax and the l′ summation is infinite. In practice the
SSWs are not enforced to vanish exactly on each screening sphere. Rather it is
required that the tail function at a-spheres vanish up to l′ = lmax. Therefore,
in order to have the slope matrices finite-sized, the l′ summation is truncated
at lhmax ≈ 8 − 12, and for l′ ≥ lmax, the tail function reduces to the Bessel
function, i.e, gaR′l′(κ

2, rR′) = −jl(κ2, rR′). This means that the SSWs are allowed
to penetrate the a-spheres for l′ ≥ lmax.

4.1.2 Partial Waves

The potential inside the muffin-tin spheres, vR(r), is spherically symmetric and
the corresponding solution of the Schrödinger equation, referred to as partial
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waves, can be written as

φaRL(ε, rR) = Na
Rl(ε)φRl(ε, rR)YL(r̂R), (4.14)

where Na
Rl(ε) are the normalization functions and will be determined from the

matching condition. The functions φRl(ε, rR) are the regular solutions of the
radial Schrödinger equation,

∂2 [rRφRl(ε, rR)]

∂2rR
=

[
l(l + 1)

r2
R

+ vR(rR)− ε
]
rRφRl(ε, rR). (4.15)

In practice, instead of the non-relativistic Schrödinger equation above, the Dirac
equation is solved numerically within the scalar relativistic approximation. For
more details, see Ref. [62].

The partial waves are defined for rR ≤ sR. Since a SSW behaves like real
harmonics only on its own screening sphere, the matching condition should be
arranged at this sphere. As a result, it is natural to conclude that the screening
spheres should be equal to the potential spheres, aR = sR . But this would bring
problems such as difficulties in boundary conditions of SSWs or poor localization
of the resulting SSWs [62]. On the other hand, making the potential spheres
smaller will result in a poor muffin-tin approximation for the potential. This
dilemma is solved by introducing a new additional free-electron wave that joins
continuously and differentiable to the partial waves at sR and continuously to the
SSW at aR. It is called a backward extrapolated free-electron solution with the
following form,

ϕaRl(ε, rR) = faRl(κ
2, rR) + gaRl(κ

2, rR)Da
Rl(ε), (4.16)

where Da
Rl ≡ D {ϕaRl(ε, aR)} is the logarithmic derivative of ϕaRl(ε, rR) at rR = aR.

By definition, the logarithmic derivative of a function f(rR) at r0
R is

D
{
f(r0

R)
}

=
r0
R

f(r0
R)

∂f(rR)

∂rR

∣∣∣∣
rR=r0R

. (4.17)

The matching condition at the potential spheres leads to

Na
Rl(ε)φRL(ε, sR) = ϕaRL(ε, sR), (4.18)

and

Na
Rl(ε)

∂φRL(ε, rR)

∂rR

∣∣∣∣
rR=sR

=
∂ϕaRL(ε, rR)

∂rR

∣∣∣∣
rR=sR

. (4.19)

Rearranging these two equations leads to the following equations for the normal-
ization functions and logarithmic derivative, respectively,

Na
Rl(ε) =

[
φRL(ε, sR)

faRl(κ
2, sR)

Dφ −Dg
Df −Dg

]−1

, (4.20)
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and

Da
Rl(ε) = −f

a
Rl(κ

2, sR)

gaRl(κ
2, sR)

Dφ −Df
Dφ −Dg

, (4.21)

where we have used the abbreviations Dφ = D {φRl(ε, sR)}, Df = D {faRl(ε, sR)}
and Dg = D {gaRl(ε, sR)} for simplicity.

Now that the basis set is complete, one can build the exact muffin-tin orbitals
as

Ψ̄a
RL(ε, rR) = ψaRL(κ2, rR) +Na

Rl(ε)φRl(ε, rR)YL(r̂R)

− ϕaRl(ε, rR)YL(r̂R).
(4.22)

The radial part of the second terms is truncated outside the potential spheres. In
the same way, since ϕaRl(ε, rR) is defined only for aR ≤ rR ≤ sR, the radial part
of the third term is truncated outside this region.

4.2 Kink Cancellation Equation and the Path

Operator

The exact muffin-tin orbital, Ψ̄a
RL(ε, rR), is continuous everywhere in space, but

has a kink (i.e, a discontinuous slope) at every a-sphere. It is customary to define
the kink matrix, Ka, such that Ka

R′L′RL = a2
R×(kink at R′ in the L′ projection of

Ψ̄a
RL). One can see from the above equations that

Ka
R′L′RL = −aRSaR′L′RL(κ2) for R′ 6= R,L′ 6= L, l′ ≤ lmax,

Ka
R′L′RL = aRD

a
Rl(ε)− aRSaRLRL(κ2) for R′ = R,L′ = L, l′ ≤ lmax.

(4.23)

Therefore, the kink matrix can be expressed as follows,

Ka
R′L′RL(εi) ≡ aR′SaR′L′RL(κ2

i )− δR′RδL′LaRD
a
Rl(εi) (4.24)

The exact muffin-tin orbital would be an eigenfunction of the Schrödinger equa-
tion for the whole muffin-tin potential if the kinks disappear. This means that
the Kohn-Sham orbitals, Φi(r), can be written as a superposition of Ψ̄a

Rl(εi, rR)
in Eq. (4.6), as long as the kinks of all individual Ψ̄a

Rl(εi, rR) cancel each other.
This can be written in following form,∑

RL

Ka
R′L′RL(εi)u

a
RL,i = 0, (4.25)

which is known as kink cancellation equation and its solutions are the Kohn-Sham
energies and wave functions.
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The kink cancellation equation can be considered equivalent to the secular
equation in the KKR method, which was discussed in previous chapter. Although
it is solved in a Hamiltonian based formalism in LMTO method, a Green’s func-
tion based technique is used in EMTO theory to find the solutions, which makes
it possible to apply this method to disordered systems. The kink cancellation
equation can be solved using the path operator, gaR′L′RL(z,k). It is defined in k
space for a complex energy z as follows:∑

R′′L′′

Ka
R′L′R′′L′′(z,k)gaR′′L′′RL(z,k) = δRR′δLL′ . (4.26)

Each pole of the path operator corresponds to a single state. Therefore,
since ga(z) is analytical for complex z, one can use the residue theorem to find
the total number of states. It is, thus, important that the path operator is
properly normalized with the overlap of the basis functions. Using the equations
in the previous section together with Green’s second theorem, one can show that
the overlap is given by [20]∫

Ψ̄a*
RL(ε, rR)Ψ̄a

RL(ε, rR)drR = aRṠ
a
R′L′RL(κ2)− aRḊa

Rl(ε)

= K̇a
R′L′RL(ε)

(4.27)

where the dots represent derivatives with respect to energy. Consequently, the
total number of states below the Fermi level can be obtained from the following
expression:

N(εF ) =
1

2πi

∮
εF

G(z)dz, (4.28)

where

G(z) =
∑

R′L′RL

gaR′L′RL(z)K̇a
R′L′RL(z)

−
∑
RL

Ḋa
Rl(z)

Da
Rl(z)

−
∑
εDRl

1

[z − εDRl]

 ,

(4.29)

is the Green’s function of the system with l, l′ ≤ lmax. It is worth noting that
the first term in the second summation is needed to remove the unphysical poles
of K̇ and the second term acts to restore the poles of Ḋ(z)/D(z) which are due
to the zeros of the logarithmic derivative function and denoted here by εDRl. It is
clear that if Ḋa(z) has no poles in the energy range of interest, these terms have
no contribution to density of state.

Applying Eqs. (4.28) and (4.29), one can calculate N(ε∗F ) for a series of ε∗F
and then obtain the correct εF from Eq. (3.17), ensuring that the total number
of states N(εF ) is equal to the number of electrons Ne.
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4.3 Electron Density

For calculating the electron density within the EMTO theory, the total density
n(r) is obtained from

n(r) =
∑
R

nR(rR), (4.30)

where n(rR) is the electron density defined inside the Wigner-Seitz cell around
site R. These density components can be expanded in terms of real harmonics
as follows

nR(rR) =
∑
L

nRL(rR)YL(r̂R). (4.31)

It can be shown that the partial components nRL(rR) can be obtained using the
residue [20],

nRL(rR) =
1

2πi

∮
εF

lmax∑
L′′L′

CLL′L′′Za
Rl′′(z, rR)g̃aRL′′RL′(z)Za

Rl′(z, rR)dz, (4.32)

where CLL′L′′ are the real gaunt numbers introduced in previous chapter. Za
Rl(z, rR)

and g̃aRL′L(z), which is called the generalized path operator, are calculated from
the following equations,

Za
Rl(z, rR) =


Na
Rl(z)φRl(z, rR) l ≤ lmax, rR ≤ sR,

ϕaRl(z, rR) l ≤ lmax, rR > sR,

−jl(κrR) l > lmax, for all rR,

(4.33)

and

g̃aRL′RL =



gaRL′RL +
δL′L

aRḊa
Rl

(
Ḋa
Rl

Da
Rl

−
∑
εDRl

1

z − εDRl

)
l, l′ ≤ lmax,∑

R′′L′′
gaRL′R′′L′′aR′′SaR′′L′′RL l′ ≤ lmax, l > lmax,∑

R”L”

gaRL′R′′L′′SaR′′L′′RL l′ > lmax, l ≤ lmax,∑
R′′L′′R′′′L′′′

SaRL′R′′L′′gaR′′L′′R′′′L′′′aR′′′SaR′′′L′′′RL l′, l > lmax.

(4.34)

where the energy dependence has been suppressed for simplicity. The first line
of Eq. (4.34) is the low-l block, the next two are off-diagonal blocks and the
last one is the high-l block of the generalized path operator matrix. It is worth
noting that since the partial components in Eq. (4.31) for l > lhmax are very small,
the summation over l is truncated at lhmax. This means that the low-l and off-
diagonal blocks of the slope matrix and their first energy derivatives are needed
to be calculated. This will be discussed in the next chapter.
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4.4 Single-electron Potential

The final task to complete the self-consistent cycle of solving Kohn-Sham equa-
tions is to create the single-electron potential for the next iteration. To this end,
one can calculate the full potential from the calculated charge density, as de-
scribed in previous section, and then build the optimized overlapping muffin-tin
wells using Eqs. (4.4) and (4.5). Instead of using relevant equations including in-
tegrals over real space, the Poisson equation can be solved approximately within
the spherical cell approximation (SCA) [22].

The SCA involves two approximations. First, in Eq. (4.3) the Wigner-Seitz
cell around each lattice site is replaced by a spherical cell with the volume equal
to the volume of the real cell and second, vR(rR) is approximated by the spherical
average of the full-potential,

vR(rR) =
1

4π

∫
rR≤sR

v(r)dr̂. (4.35)

The muffin-tin constant v0 is fixed to the average of the full potential in the
interstitial. It can be shown that within the SCA, v0 can be obtained from the
following equation [22]

v0 =

∑
R

wR∫
sR

r2
R

[∫
v(r)dr̂

]
drR∑

R

[4π (w3
R − s3

R) /3]
(4.36)

where wR is the radius of the spherical cell for site R. Therefore, the main
consequence of the SCA is that both vR(rR) and v0 are obtained by the spherically
symmetric part of the full potential.

For calculating vR(rR), the potential is divided into different parts as follows

v(r) = vC(r) + vxc ([n]; r) , (4.37)

where vxc is the exchange-correlation energy and vC(r) is the electrostatic part
of the potential satisfying the Poisson equation,

∇2vC(r) = −8π

[
n(r) +

∑
R

ZRδ(rR)

]
(4.38)

for the electronic and nuclear charge densities. The spherical symmetric part of
vxc is found by

vxcR (rR) =
1

4π

∫
vxc([nR]; rR)dr̂R, (4.39)
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and the spherically symmetric part of vC is found from the solution of the Poisson
equation and can be divided into contributions from the inside and outside of
potential sphere. Here, we only introduce the final equations. More details can
be found in the book by J. D. Jackson [65].

The intra-cell part of the electrostatic potential can be written as

vIR(rR) = −2ZR
rR

+ 2

∫
ΩR

nR(r′
R)

|rR − r′
R|
dr′

R (4.40)

It can be shown that the spherical symmetric part of the above equation can be
written as

vIR(rR) =
1

4π

∫
vIR(rR)dr̂R

=
8π

rR

rR∫
0

r′
2
RnRL0(r

′
R)dr′R + 8π

sR∫
rR

r′RnRL0(r
′
R)dr′R −

2ZR
rR

,
(4.41)

where nRL0 = nRL={0,0}. The inter-cell contribution gives the Madelung potential,

vMR (rR) = −
∑
R 6=R′

2ZR′

|rR′ + R′|
+
∑
R 6=R′

2

∫
ΩR′

nR′(rR′)

|rR − rR′ + R−R′|
drR′ , (4.42)

and the final equation is given by

vMR (rR) =
1

4π

∫
vMR (rR)dr̂R =

1

w

∑
R′ 6=R,L′

MRL0R′L′QSCA
R′L′ . (4.43)

Here,

MRLR′L′ = 8π(−1)l
′∑
L′′

CLL′L′′
(2l′′ − 1)!!

(2l − 1)!!(2l′ − 1)!!
δl′′,l′+l

× (
w

|R′ − r|
)l

′′+1YL′′(R̂′ −R)

(4.44)

are the elements of the Madelung matrix and w is the average Wigner-Seitz
radius. The multipole moments, QSCA

R′L′ , are calculated within the SCA as

QSCA
R′L′ =

√
4π

2l + 1

wR∫
0

(rR
w

)l
nRL(rR)r2

RdrR − ZRδL,L0 + δSCAδL,L0 , (4.45)

where δSCA is a site independent constant which is added to the above equation
to have charge neutrality in the unit cell. This is necessary because the charge
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density described in the previous section is normalized within the unit cell, but
since the integral in above equation is done over the spherical cell, the charge
density has to be renormalized within the spherical cell. Thus, the δSCA is deter-
mined by

∑
R

QSCA
RL0

= 0. As a consequence of the SCA, the number of electrons

inside the s-sphere

Q(sR) =

√
4π

2l + 1

sR∫
0

nRL(rR)r2
RdrR, (4.46)

is different from the number of electrons inside the unit cell, QSCA
RL0

+ ZR. The
contribution of this missing charge to the potential is taken into account using
equal redistribution of this charge over the NNN nearest-neighbor cells, which
can be expressed as

∆vSCAR ≈ 0.55

w
∆QRNN , (4.47)

where ∆QRNN = 1
NNN

[
QSCA
RL0

+ ZR −Q(sR)
]

and RNN are the nearest-neighbor
sites. With this, the total potential within the potential sphere is obtained as

vR(rR) = vIR(rR) + vMR (rR) + ∆vSCAR + vxcR (rR). (4.48)

4.5 Full Charge Density Technique

The simplifications of the full one-electron potential made within the SCA is
usually too drastic to provide accurate results compared to the full-potential
methods. For instance, such an inaccuracy is notable for properties related to
energetics of structural relaxations, such as elastic constants. The required de-
formations necessary for calculating such properties decrease the symmetry of
the system and therefore, the results are strongly dependent on the non-spherical
symmetric part of the potential which is missing in the SCA approximation.

In order to improve the accuracy, the full charge density (FCD) technique is
used in EMTO-based methods [23, 24, 66]. In this technique, the total energy is
calculated from relevant equations involving integrals of the total charge density
over the Wigner-Seitz cell. The total charge density is taken from a converged self-
consistent SCA-EMTO calculation. The technique used for volume integration
over the Wigner-Seitz cell is called the shape function technique [66, 67]. First,
we will shortly review this integration technique and then will come back to the
FCD technique.
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4.5. Full Charge Density Technique

4.5.1 Shape Function Technique

The shape function technique is a numerical method for performing volume inte-
grals over any arbitrary polyhedra. Using this technique, any integral over a cell
is transformed into an integral over a sphere circumscribing the cell. The shape
function is a 3-D step-function defined as

σR(rR) =

{
1 if rR ∈ ΩR,

0 otherwise,
(4.49)

where ΩR is the Wigner-Seitz cell at R. The shape function can be expanded in
terms of real harmonics as

σR(rR) =
∑
L

σRL(rR)YL(r̂R), (4.50)

where

σRL(rR) =

∫
σR(rR)YL(r̂R)dr̂R (4.51)

are the partial components of the shape function. Once they are evaluated for
the Wigner-Seitz cell, the integral over any arbitrary functional of the electron
density, K([n]; r), over the ΩR can be transformed into an integral over the
smallest circumscribed sphere with radius scR centered on lattice site R. This can
be expressed as∫

ΩR

n(rR)K([n]; rR)drR =

∫
scR

σR(rR)nR(rR)K([n]; rR)drR, (4.52)

where the functions σR(rR)nR(rR) can be expanded in terms of real harmonics,
viz.

σR(rR)nR(rR) =
∑
L

ñRL(rR)YL(rR). (4.53)

The radial function ñRL(rR) can be expressed in terms of partial components
σRL(rR) as follows,

ñRL(rR) =
∑
L′,L′′

CLL′L′′nRL′(rR)σRL′′(rR), (4.54)

where CLL′L′′ are the real Gaunt coefficients. Finally, Eq. (4.52) can be rewritten
as ∫

ΩR

n(rR)K([n]; rR)drR =
∑
L

scR∫
0

ñRL(rR)KL(rR)r2
RdrR, (4.55)

39



Chapter 4. Exact Muffin-tin Orbital Theory

where KL(rR) is the YL(r̂R) projection of K([n], rR) on the spherical surface with
radius rR, obtained by

KL(rR) =

∫
K([n], rR)YL(r̂R)dr̂R. (4.56)

To calculate the partial components, σRL(rR), Eq. (4.51) can be rewritten
as

σRL(rR) =

∫
SR(rR)

YL(r̂R)dr̂R, (4.57)

where SR(rR) represents that part of the spherical surface of radius rR which lies
inside the Wigner-Seitz cell. It is easy to show that

σRL(rR) =

{√
4π δl0 rR ≤ siR,

0 rR > scR,
(4.58)

where siR denotes the inscribed sphere centered at site R.

For siR < rR ≤ scR the Wigner-Seitz cell is divided into tetrahedra. Generally,
the Wigner-Seitz cell is a convex polyhedron bounded by Nf polygons and it can
be partitioned by taking every polygon as the base of a pyramid with its apex
set on the lattice site R. Assuming Ne(p) as the number sides of pyramid p,
each pyramid can be subdivided into Ne(p) tetrahedra, using a line drawn from
the apex normal to the base. Considering the intersection of this line and the
base together with the apex as two common vertices of all tetrahedra, the other
vertices of every tetrahedra are two vertices of the base. Therefore, there are∑Nf

p=1Ne(p) tetrahedra, but usually most of them are equivalent. Denoting the
number of non-equivalent tetrahedra by Nn and the number of tetrahedra of type
t by Ne(t), the total shape function is obtained as

σRL(rR) =
Nn∑
t=1

Ne(t)∑
i=1

{∑
m′

Dl
mm′(αi, βi, γi)σ

t
Rlm′(rR)

}
, (4.59)

where Dl
mm′ are the matrix elements of finite rotations defined in Appendix B of

Ref. [20]. The partial shape functions for the tetrahedron t are obtained by

σtRlm =

ϕtmax∫
ϕtmin


θtmax(ϕ)∫
θtmin(ϕ)

Ylm(θ, ϕ) sin θdθ

 dϕ. (4.60)

The last point we mention here is that the l-summation in Eq. (4.50) has to be
truncated at a reasonable value which is usually chosen to be lsmax ≈ 30− 40.
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4.5.2 FCD Total Energy

The full charge density technique evaluates the total energy functional in terms
of the charge density obtained from Eq. (4.31) for every lattice site after a
converged self-consistent cycle of a SCA-EMTO calculation. To achieve this, the
total energy is divided into different parts as follows,

Etot = Ts[n] +
∑
R

(
Eintra
R [nR] + Exc

R [nR]
)

+ Einter[n], (4.61)

where Eintra
R [nR] is due to the charges inside a Wigner-Seitz cell and together

with Exc
R [nR] depends only on the charge density within the actual cell, and

Einter[n] is the interaction between different cells, which is usually referred to as
the Madelung energy.

As we know from Chapter 2, the kinetic energy functional, Ts[n], does not
have an explicit form and instead it is calculated using the following expression,

Ts[n] =
∑
εi≤εF

εi −
∫
v([n]; r)n(r)dr, (4.62)

which in the EMTO formalism leads to

Ts[n] =
1

2πi

∮
εF

zG(z)dz −
∑
R

∫
ΩR

vmt(rR)n(rR)drR, (4.63)

where G(z) is expressed in Eq. (4.29) and vmt(rR) is the muffin-tin potential. The
first term is a sum of the eigenvalues and is calculated by the residue theorem.
Using Eq. (4.55), the second term in right-hand side of the above equation can
be rewritten as

−
∑
R

√
4π

scR∫
0

vmt(rR)ñRL0(rR)r2
RdrR, (4.64)

where ñRL0(rR) are defined in Eq. (4.54). Note that the radial integral in the
above equation is divided into two sections, 0 ≤ rR ≤ siR and siR ≤ rR ≤ scR.

The exchange-correlation energy is calculated by a three dimensional direct
integral over the Wigner-Seitz cell, i.e,

Exc
R [nR] =

∫
ΩR

n(rR)εxc ([n]; rR) drR

=

2π∫
0

π∫
0

scR∫
0

n(rR)εxc ([n]; rR)

lsmax∑
L

σRL(rR)YL(r̂R)r2
RdrR sin θdθdϕ

(4.65)

41



Chapter 4. Exact Muffin-tin Orbital Theory

where εxc ([n]; rR) could be one of the approximations discussed in Section 2.4.

The intra-cell energy part is defined by the following equation,

Eintra
R [nR] =

∫
ΩR

∫
ΩR

nR(r′R)nR(rR)

|r − r′|
drRdr

′
R −

∫
ΩR

2ZR
rR

nR(rR)drR. (4.66)

Using the shape function and expansion of
1

|r − r′|
in terms of real harmonics

[24], one can obtain

Eintra
R [nR] =

√
4π

w

∑
L

scR∫
0

ñRL(rR)

[(rR
w

)l
PRL(rR)+

(rR
w

)−l−1

QRL(rR)− 2ZR
w

rR
δLL0

]
r2
RdrR

(4.67)

with

PRL(rR) =

√
4π

2l + 1

scR∫
rR

ñRL(r′R)

(
r′R
w

)−l−1

(r′R)2dr′R (4.68)

and

QRL(rR) =

√
4π

2l + 1

rR∫
0

ñRL(r′R)

(
r′R
w

)l
(r′R)2dr′R. (4.69)

The inter-cell energy is the electrostatic energy between different cells and
can be expressed by following equation,

Einter[n] =
∑
R

∑
R′ 6=R

{∫
ΩR

∫
ΩR′

nR′(rR′)nR(rR)

|rR − r′R + R−R′|
dr′RdrR

−
∫

ΩR

2ZR′nR(rR)

|rR + R−R′|
drR +

ZRZR′

|R−R′|

}
.

(4.70)

For non-overlapping spheres, the inter-cell energy is obtained by

Einter
no [n] =

1

2w

∑
R,R′

R′ 6=R

∑
L,L′

QRLMRLR′L′QR′L′ , (4.71)

where MRLR′L′ are the Madelung matrix elements defined in Eq. (4.44) and QRL

are the multiple moments calculated using the shape function as

QRL =

√
4π

2l + 1

scR∫
0

(rR
w

)l
ñRL(rR)r2

RdrR − ZRδLL0 . (4.72)
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Eq. (4.70) should not be applied for inter-cell energy of overlapping spheres
because it causes divergence with increasing l [68, 69]. To treat this problem the
so-called displacement vector, bRR′ , is introduced [68]. The final expression is

Einter
ov [n] =

1

2w

∑
R,R′

R′ 6=R

{∑
L

1

2L+ 1

(
bRR′

w

)l
YL(b̂RR′)

×
∑
L′,L′′

QRL′
4π(2l′′ − 1)!!

(2l − 1)!!(2l′ − 1)!!
CLL′L′′δl′′,l+l′

×
∑
L′′′

MRL′′R̃′L′′′QR′L′′′

}
,

(4.73)

where R̃′ = R′ + bRR′ , and the displacement vector bRR′ has to satisfy the
following inequality,

|R−R′|+ bRR′ > scR + scR′ . (4.74)

In order to ensure convergence for increasing l, the displacement vector is obtained
from the following equation [69],

|R−R′|+ bRR′ =

(
1 +

1

2α

)
(scR + scR′) (4.75)

where the coefficient α is fixed for all neighbors and determined by a condition
that ensures the convergence of Eq. (4.73) [69].

4.6 EMTO-CPA method

In order to calculate the electronic structure of random alloys, a Green’s function
method can be combined with techniques which are developed for this purpose.
In particular, the coherent potential approximation [14, 15] and the locally self-
consistent Green’s function (LSGF) approach [70, 71] have been implemented
within the EMTO method. Here, we only focus on the EMTO-CPA method
which is the basis for the code utilized in this thesis.

The problem of calculating the electronic structure of a random substitu-
tional alloy is a classical problem in solid state physics. The CPA is often de-
scribed as the best single-site solution to this problem, wherein the scattering
from a particular site is assumed to be independent of scattering from other
sites. It is a mean-field approximation and the main idea is that the random al-
loy may be replaced by an ordered effective medium such that its parameters are
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determined self-consistently. Thus, the translational symmetry of the underlying
lattice is kept.

Consider a substitutional alloy with one atom per unit cell and two alloy
components, i.e AcB(1−c), where c is the concentration of atom A. This system
is described by the path operator g and the potential m. Figure (3.1) shows the
main idea of CPA for such a system. Within the CPA this system is replaced by a
mono-atomic configuration described by the site-independent coherent potential
m̃ and the coherent path operator g̃. Effects of the local environment are neglected
in the CPA, which means that the local potentials, here mA and mB, around a
certain alloy component are the same, independent of its position.

Using an electronic structure formalism such as the KKR method, the rela-
tion between g̃ and m̃ is given by

g̃ = [S − m̃]−1 , (4.76)

where S denotes the structure constant matrix. The path operator of alloy com-
ponents can be obtained from a single-site Dyson equation:

gi = g̃ + g̃ (mi − m̃) gi i = A,B. (4.77)

According to the CPA, one can obtain the coherent path operator from path
operators of alloy components [19, 20] using

g̃ = cgA + (1− c)gB. (4.78)

Equations (4.76)-(4.78) are solved iteratively. The extension of these equations
to more components is relatively simple.

In the EMTO-CPA method [19], the coherent potential is introduced via the

Figure 4.1: Demonstration of the CPA for a substitutional alloy with two alloy com-
ponents A and B.
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coherent potential function D̃RLRL′(z) which can be obtained by∑
R′′,L′′

aR′

[
SR′L′R′′L′′(κ2,k)− δR′′R′D̃R′L′R′L′′(z)

]
g̃R′′L′′RL(z,k)

= δRR′δLL′ .

(4.79)

Then one can get the path operator of alloy components from the Dyson equation,

giRLRL′(z) = g̃RLRL′(z)+
∑
L′′,L′′′

g̃RLRL′′(z)

×
[
Di
Rl′′(z)δL′′L′′′ − D̃RL′′RL′′′(z)

]
giRL′′′RL′(z),

(4.80)

where the Di
Rl(z) is the potential function for the ith alloy component and

g̃RLRL′(z) is obtained by integrating g̃RLRL′(z,k) over the k space,

g̃RLRL′(z) =

∫
BZ

g̃RLRL′(z,k)dk. (4.81)

Finally, the coherent path operator is obtained from

g̃RLRL′(z) =
∑
i

ciRg
i
RLRL′(z), (4.82)

where ciR is the concentration of the ith alloy component at R. These equations
are solved self-consistently for D̃(z), g̃(z,k) and gi(z). The average Green’s
function of the system is obtained from

< G(z) >=

∫
BZ

∑
R′L′RL

g̃R′L′RL(z,k)aRṠRLR′L′(κ2,k)dk

−
∑
R,i

ciR
∑
L

[
giRLRL(z)aRḊ

i
Rl(z) +

(
Ḋi
Rl(z)

Di
Rl(z)

− 1

z − εiRl

)]
.

(4.83)

For ordered systems, the above equations reduce to the corresponding equations
introduced in Section 4.2. The equations discussed in previous sections for gen-
erating the charge density, potential and FCD total energy for ordered systems
can be extended to the EMTO-CPA method. The potential within the potential
sphere of the ith alloy component on site R is obtained by

viR(rR) = vI,iR (rR) + vMR + ∆vSCAR + vscr,iR + vxc,iR (rR), (4.84)

where vI,iR , vMR , ∆vSCAR and vxc,iR (rR) are obtained from Eqs. (4.41), (4.43), (4.47)
and (4.39) respectively using partial components of the charge density of the ith
alloy component on site R.
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The expression vScr,iR denotes an additional modification which is taken into
account using the screened Coulomb interactions model [72, 73]. This correction
deals with the charge transfer problem. In the KKR-CPA formalism embedding
a single atom into the effective medium may violate the condition of charge
neutrality. This happens because an arbitrary choice of atomic spheres may
result in a net charge transfer different from the alloy average value. Therefore,
the system of effective medium plus single atom will have extra charges which
must be compensated in some way to keep the system neutral. According to this
model, an additional shift of

vscr,iR (rR) = −2αscr
w

(Qi,s
R −Q

s
R), (4.85)

is added to the spherical part of the potential of the ith alloy component at site
R, where Qi,s

R is the net charge inside the potential sphere of ith alloy component
at site R and Qs

R =
∑
i

ciRQ
i,s
R . The αscr is called the on-site screening constant

and is different for different alloy components.

Applying this model for the total energy calculation using the FCD tech-
nique, the following contribution must be considered:

Escr = −
∑
R,i

ciR
αscr
w

β
(
Qi,s
R −Q

s
R

)2
. (4.86)

Here, β is the average on-site screening constant, which accounts for the electro-
static multipole moment energy contribution due to inhomogeneous local envi-
ronments of different sites in a random alloy [73]. Finally, the FCD total energy
is obtained from the following expression,

Etot = Ts[n] +
∑
R,i

ciR
(
Eintra,i
R [niR] + Exc,i

R [niR]
)

+ Einter[n] + Escr (4.87)

The CPA can be used to describe many physical properties of disordered
alloys. It is nonetheless important to note that there are some effects which are
not properly taken into account, and as a result CPA fails in some applications.
For instance, because of the single-site approximation, it cannot account for com-
position fluctuations in the local environment of a site. Such fluctuations may
strongly influence equilibrium or magnetic properties of the system [74]. In ad-
dition, short-range order effects can only be taken into account accurately and
convincingly within the context of a multisite theory like LSGF [70, 71]. Also lo-
cal atomic relaxation missing within CPA entirely, can only be taken into account
by supercell calculations [75].
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4.7 EMTO-CPA code

The EMTO-CPA method has been implemented within the EMTO-CPA code.
Here in this thesis, I use the Lyngby version of this code maintained by Prof.
A. V. Ruban2. This code consists of four packages that one needs to run in a
proper order for calculating the FCD total energy of a system. The first package
hereafter referred to as kstr allows one to calculate slope matrix and its energy
derivatives for a real energy parameter ω ≡ (κw)2 on a real space cluster for a
given structure. It also computes the Madelung matrix of the system. The slope
matrix calculation will be discussed in the next chapter. The second package
is shape that calculates the shape function of the structure. The third package
is referred to as kgrn and it solves the Kohn-Sham equation using EMTO-CPA
formalism in a self-consistent cycle, and the final package is kfcd responsible for
computing the total energy of the system by FCD technique.

2Department of Materials Science and Engineering, KTH Royal Institute of Technology,
SE-100 44 Stockholm, Sweden and Materials Center Leoben Forschung GmbH, A-8700 Leoben,
Austria
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Slope Matrix

The elements of the slope matrix SaR′L′RL are the expansion coefficients of the
screened spherical waves centered at lattice site R around site R′. Determining
these matrices is one of the most challenging parts of the calculation. As it has
been shown in the previous chapter, during the self-consistent calculation we
need to know the slope matrix and its first energy derivative for a set of complex
energies on the energy contour enclosing the valence states. In every iteration,
the Fermi energy is updated with Eq. (4.28) and thus the energy points on the
complex contour change. As a result, the slope matrix and its energy derivative
need to be recalculated after every iteration for the new set of energy points.

The slope matrix can be calculated using the inhomogeneous Dyson equation
[18] on a real space cluster of finite size including a number of nearest lattice sites.
Then the slope matrix in k-space is computed from a Bloch sum,

SaR′L′RL(κ2,k) =
∑
T

eik·TSaR′L′(R+T )L(κ2), (5.1)

where T is a translation vector. In the current implementation of EMTO-CPA,
instead of calculating the slope matrix and its first energy derivative for a set of
complex energy points directly from this method, a Taylor expansion is used. To
this end, first the slope matrix and the first several energy derivatives (usually
up to the 6th order) are calculated using the inhomogeneous Dyson equation only
for one certain value of real energy parameter κ2. Then the k-dependent forms
of these matrices are obtained from a Bloch sum. Eventually, these matrices are
applied to calculate the k-dependent slope matrix and its first energy derivative
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5.1. Inhomogeneous Dyson equation

for any complex energy points on the contour using this Taylor expansion. Al-
though it is clear that this procedure speeds up the self-consistent calculation,
there are some problems such as accuracy and efficiency which show the necessity
for a more accurate and efficient method to replace the Taylor expansion.

In this chapter, I will first review the basics of the current formalism which
is used for calculating these matrices and then show the results of the new de-
velopment which allows one to calculate the slope matrix and the first energy
derivative for all energy points directly from the inhomogeneous Dyson equation.

5.1 Inhomogeneous Dyson equation

The inhomogeneous Dyson equation connects the elements of the slope matrix
or the screened structure constants matrix with the elements of the bare struc-
ture constants matrix. The bare structure constants matrix, S0

R′L′RL(κ2), is de-
fined within the KKR formalism [5, 60] as the expansion coefficients of the bare
spherical waves nL(κ2, rR) ≡ nl(κ

2, rR)YL(r̂R) centered on site R, in terms of
jL(κ2, rR′) ≡ jl(κ

2, rR′)YL(r̂R′) centered on site R′,

nL(κ2, rR) = −
∑
L′

jL′(κ2, rR′)S0
R′L′RL(κ2). (5.2)

They can be calculated explicitly from the following equation,

S0
R′L′RL(κ2) = −8π

∑
L′′

(−1)lCLL′L′′ (−κw)(l+l′−l′′)

(2l′′ − 1)!!

(2l′ − 1)!!(2l − 1)!!
nL′′(κ2,R−R′).

(5.3)

The bare structure constants matrix is Hermitian and since the Gaunt numbers
vanish unless l + l′ + l′′ is even, all elements of this matrix are real for a real κ2.

In order to derive the inhomogeneous Dyson equation, one can start from
Eq. (4.9). Using this equation, a screened spherical wave in the entire space can
be expressed by the multi-center expansion

ψaRL(κ2, r) =
∑
R′L′

[
faRl(κ

2, rR)YL(r̂R)δRR′δLL′

+ gaR′l′(κ
2, rR′)YL′(r̂R′)SaR′L′RL(κ2)

]
.

(5.4)

Using the head and tail functions in Eq. (4.10), the above equation can be
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rewritten as

ψaRL(κ2, r) =
∑
R′L′

nl′(rR′)YL′(r̂R′)
[
t1RlδRR′δLL′ − t3R′l′S

a
R′L′RL

]
−
∑
R′L′

jl′(rR′)YL′(r̂R′)
[
−t2RlδRR′δLL′ + t4R′l′S

a
R′L′RL

]
,

(5.5)

where the κ2 dependency has been dropped for simplicity. We can also expand
the screened spherical wave in the entire space in terms of the bare spherical
waves. This leads to

ψaRL(κ2, r) =
∑
R′L′

[
nl′(rR′)YL′(r̂R′)Ma

R′L′RL

−
∑
R′′L′′

jl′′(rR′′)YL′′(r̂R′′)S0
R′′L′′R′L′Ma

R′L′RL

]
,

(5.6)

where Ma
R′L′RL is a yet unknown transformation matrix. Comparing Eqs. (5.6)

and (5.4), one can find

Ma
R′L′RL = r1

RlδRR′δLL′ − t3R′l′S
a
R′L′RL, (5.7)

and ∑
R′′L′′

S0
R′L′R′′L′′Ma

R′′L′′RL = −t2RlδRR′δLL′ + t4R′l′S
a
R′L′RL. (5.8)

Substituting Ma
R′′L′′RL in Eq. (5.8) with the right hand side of Eq. (5.7) results

in

−t2RlδRR′δLL′ + t4R′l′S
a
R′L′RL =∑

R′′L′′

S0
R′L′R′′L′′

[
t1RlδR′′R′δL′′L′ − t3R′′l′′S

a
R′′L′′RL

]
. (5.9)

Finally, rearranging for Sa, the inhomogeneous Dyson equation will be obtained,

SaR′L′RL =
t1Rl
t3Rl
δRR′δLL′ +

1

t3R′l′

[
−S0 − t4Rl

t3Rl

]−1

R′L′RL

daRl
t3Rl

, (5.10)

where daRl is the determinant of the screening matrix defined in Eq. (4.13) and it
can be shown that

daRl = t1t4 − t2t3 = −2
aR
w
. (5.11)

5.1.1 Blowing-up Technique

Eq. (5.10) together with Eq. (5.3) can be used to calculate the slope matrix
for an arbitrary complex energy. As it is clear from Eq. (4.34), in addition
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to the low-l block (l, l′ ≤ lmax), we also need to know the off-diagonal blocks
(l ≤ lmax , lmax < l′ ≤ lhmax and l′ ≤ lmax , lmax < l ≤ lhmax) of the slope
matrix. Calculating the full slope matrix up to lhmax using the above equations
is a relatively time-consuming task, especially keeping in mind that we need to
compute the slope matrix and its first energy derivative for a reasonable number
of nearest lattice sites within the real space cluster and then apply Eq. (5.1)
to calculate them in k-space. The most time-consuming part of the calculation
is the matrix inversion in Eq. (5.10). Although applying optimized routines
for matrix-matrix operations, such as matrix-matrix multiplication or matrix
inversion, implemented within the standard programming libraries can speed up
the calculation and reduce computational expenses significantly, there is a much
simpler method, known as the blowing-up technique [76], which makes it possible
to calculate instantly the off-diagonal elements from low-l block.

Rearranging Eq. (5.9), one can find the following equation,

t4R′l′S
a
R′L′RL = t2RlδRR′δLL′ + S0

R′L′RLt
1
Rl

−
∑
R′′L′′

S0
R′L′R′′L′′t3R′′l′′S

a
R′′L′′RL.

(5.12)

Let us consider the above equation for l′ > lmax and l ≤ lmax. As it was mentioned
in Subsection 4.1.1 the tail function must reduce to the Bessel function when
l′ > lmax. This brings us to t3Rl = 0 and t4Rl = 1 for high l orbitals. Therefore,
Eq. (5.11) can be rewritten as

SaR′HRL = S0
R′HRLt

1
Rl −

lmax∑
R′′L′′

S0
R′HR′′L′′t3R′′l′′S

a
R′′L′′RL, (5.13)

where H ≡ (l′m′) with l′ > lmax and the HL block of bare structure constants
matrix is obtained from Eq. (5.3). With this equation, the HL block of the slope
matrix is obtained from the low-l block. The LH block is found by the following
expression

SaR′HRL = aRS
a
RLR′H , (5.14)

which is valid because Sa is a Hermitian matrix.

5.1.2 Energy Derivatives of the Slope Matrix

In order to express the energy derivatives of the slope matrix, a dimensionless
energy parameter ω ≡ (κw)2 is introduced. Rearranging Eq. (5.9), we have∑

R′′L′′

BR′L′R′′L′′(ω)AR′′L′′RL(ω) = −2
aR
w
δR′RδL′L, (5.15)
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where

AR′L′RL(ω) =
t1Rl(ω)

t3Rl(ω)
δR′RδL′L − SaR′L′RL(ω), (5.16)

and

BR′L′RL(ω) = t3R′l′(ω)
[
t4Rl(ω)δR′RδL′L + S0

R′L′RLt
3
Rl

]
. (5.17)

Then, using above expressions and applying the product rule for matrices 1, the
nth order energy derivative of the slope matrix is obtained as

dnSa(ω)

dωn
=B(ω)−1

[
n−1∑
i=0

n!

i!(n− i)!
dn−iB(ω)

dωn−i
diA(ω)

dωi
+ 2

a

w
δn,0

]

+
dn

dωn
t1(ω)

t3(ω)
,

(5.18)

where RL subscripts have been dropped.

5.2 Details of Real Space-Cluster Calculations

In order to make use of the above formulae to calculate the slope matrix and
its energy derivative, for each site R a finite cluster of first few nearest-neighbor
lattice sites in real space is set up. The low-l block of the slope matrix and its
energy derivative for every RR′ pair are computed by Eq. (5.10) and Eq. (5.18).
Then using Eq. (5.18) the off-diagonal elements are calculated. To make this
procedure complete, it is necessary to determine appropriate values for several
parameters.

The first important parameter is the hard sphere radius. This parameter can
affect to some extent the degree of localization of screened spherical waves. The
boundary conditions in Eqs. (4.11) and (4.12) make the head and tail functions
energy independent on the hard sphere. Therefore the slope matrix is expected
to show a smooth behavior and weak energy dependence. Moreover, since the
tail function vanishes on hard spheres, the slope matrix and its derivative should
decrease rapidly with the distance |R′ −R|. Detailed calculations for a bcc struc-
ture for ω = 0 show that the slope matrix and its energy derivatives have short
range when the hard sphere radius is within an interval of 0.50w < aR < 0.75w
[20]. It was also found that this condition holds for other lattice types and usually
the best behavior is obtained for aR ≈ 0.7w [18].

1The nth order derivative of a matrix product, like AB, is obtained by (AB)(n) =
n∑

i=0

n!

i!(n− i)!
A(n−i)B(i), where the superscripts in parenthesis is the derivative order.
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Another important parameter is the size of the cluster. An optimized value
for this parameter can be obtained by observing the convergence of diagonal el-
ements of the slope matrix, particularly the ss element which has the longest
range, in terms of coordination shell numbers [18, 20]. For instance, the cal-
culations for a bcc structure for ω = 0 show that for 9 coordination shells or
equivalently 137 nearest neighbor atoms in the cluster, the absolute value of ss
element of the slope matrix and its first energy derivative almost drops from 2 to
10−5 and from 0.15 to 10−6, respectively [20]. In most cases, considering around
100 atoms in the cluster will be enough to reproduce the slope matrix and its
energy derivatives with an acceptable accuracy.

The last parameter is the number of Watson orbitals. For positive energies
the screened spherical waves for a finite cluster exhibit surface resonances. To
overcome this problem, a concave hard sphere, so-called Watson sphere, enclosing
the cluster of hard spheres is considered. The radius of this sphere is chosen to be
larger than the radius of the real space cluster plus the largest aR. Elements of the
matrix which must be inverted in Eqs. (5.10) and (5.18), will be calculated for this
sphere and attached to the real matrix increasing the matrix dimension. After
inversion, these elements are dropped. This technique is expected to remove the
surface resonances or to push them towards the higher energies. The maximum
orbital quantum number on the Watson sphere is lwmax . Usually, lwmax = 6− 8 is
sufficient for positive energies ω ≤ 5 [20].

5.3 Taylor Expansion

For a self-consistent calculation, the slope matrix and its energy derivative need
to be calculated within an energy window from the bottom of the valence band
εb up to ∼ 0.2 Ry above the Fermi level, i.e εb ≤ Re(z) . εF + 0.2 Ry, where
z ≡ κ2 + v0. Energies above the Fermi level are used during the search for the
Fermi level for the next iteration.

The presently implemented method for calculating the slope matrix and
its first energy derivative for a set of complex energy points is to use a Taylor
expansion around a reference energy parameter ω0 as follows

Sa(ω,k) = Sa(ω0,k) +
nmax∑
n=1

1

n!

dnSa(ω,k)

dωn

∣∣∣∣
ω=ω0

(ω − ω0)n, (5.19)

and

Ṡa(ω,k) = Ṡa(ω0,k) +
nmax∑
n=2

1

(n− 1)!

dnSa(ω,k)

dωn

∣∣∣∣
ω=ω0

(ω − ω0)(n−1), (5.20)
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where, nmax is the Taylor expansion order. Here, we have dropped the RL sub-
scripts for simplicity. The slope matrix for a real number ω0 is calculated from
Eqs. (5.10), (5.13) and (5.14), and then the energy derivatives are computed us-
ing Eq. (5.18). All these calculations are performed in real space. Then, during
the self-consistent cycle, the Bloch transform of these matrices for every k-point
are calculated. Finally, they are used to calculate Sa(ω,k) and Ṡa(ω,k) for any
complex ω on the energy contour using equations (5.19) and (5.20).

Although this procedure speeds up the self-consistent cycle, it imposes accu-
racy and system-size limitations. The first problem of this method is the consider-
able computer memory needed to store the slope matrix and all energy derivatives
of every lattice site for reference energy parameter ω0. Usually, a 6th-order Taylor
expansion is taken into account to produce acceptable results. The dimension of
the slope matrix or each energy derivative needed to be stored for each lattice site
is
{[

(2lhmax + 1)2
]
× [(2lmax + 1)2 ×N ]

}
where N is the size of real space cluster.

The more sites in the unit cell exist, the more memory is needed. Therefore, for
large systems with many atoms in the unit cell, this method imposes a too strong
memory demand.

For systems with deep-lying core states and narrow valence bands, the Taylor
expansion gives usually acceptable results, since the interval needed for finding
eigenstates and Fermi energy is not that wide. In such cases the required interval
of ω for calculating the slope matrix and its first energy derivative is around
−8 ≤ Re(ω) ≤ +8. Accuracy tests for an fcc structure show that a 6th-order
Taylor expansion with ω0 = 0 yields Sa(ω,k) and Ṡa(ω,k) for |ω| ≤ 5 with an
accuracy around ∼ 1% and ∼ 5%, respectively [77]. With increasing |ω| the
relative error increases, particularly for Ṡa(ω,k), for which it increases to ∼ 30%
for |ω| = 10.

The systems in which a wide energy window is required during the self-
consistent cycle can be divided into two groups. First, if εF − v0 ∼ 0.8 Ry or
larger, the Taylor expansion diverges for energies near and above εF . Second,
when εb � v0, the Taylor expansion breaks down for energies near the bottom of
the valence band. Both of these cases become more problematic for solids with a
large Wigner-Seitz radius. In order to improve the convergence of the expansion
for a large energy window, a two-center Taylor expansion formalism was suggested
[77]. It was shown that it can improve the accuracy of the expansion for energies
near εb, but it cannot modify the expansion results for energies around εF . In
addition, such a procedure increases the memory demand even further. Therefore,
from the point of view of the accuracy, the main problem is around εF .
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5.4 Direct Calculation of the Slope Matrix

The most robust way of calculating the slope matrix and its first energy derivative
is a direct method in which Sa(ω) and Ṡa(ω) matrices are computed for all
selected complex energy points on the contour at every iteration of the self-
consistent cycle directly from the real space cluster method described earlier in
this chapter. Although this might seem to involve heavy and time-consuming
calculations, it could be practical for systems in which the Taylor expansion is
neither possible due to memory demands nor accurate when applied for systems
with a large characteristic bandwidth.

Another important reason which motivates developing a more accurate and
efficient method for the slope matrix calculation is the idea of introducing the
FCD technique into the self-consistent cycle of SCA-EMTO calculation, which
has been a main objective for new modifications of EMTO based codes. The point
is that even with the SCA for the potential a self-consistent FCD approach may
result in the accuracy of the total energy comparable to full-potential methods.
However, the FCD method in itself is quite computationally expensive, which
puts an additional constraint on the size of the crystal structure for which the
derivatives of the slope matrix can be stored when the Taylor expansion is used.

The direct slope-matrix calculation has been developed within the EMTO-
CPA code. To this end, the package kstr designed for complex ω has been
rewritten using updated libraries from the linear algebra package (LAPACK). In
particular, routines for matrix factorization, inversion and matrix-matrix multi-
plication have been used. Then, routines for the slope-matrix calculation have
been incorporated into kgrn package as an option along with the Taylor expan-
sion, allowing the user to choose either a direct calculation of Sa(ω,k) or Ṡa(ω,k)
or a Taylor expansion. Finally, the new part of the code was parallelized using
the Message Passing Interface (MPI) library in a manner consistent with the
original parallelization of the code.

When the slope matrix is calculated on the real energy axis, the Bessel and
Neumann functions are used as basis functions for positive ω and Bessel and
Hankel functions for negative ω. In this case the slope matrix will be real on the
real energy axis. For a general complex ω, it is more consistent to use Bessel and
Neumann functions everywhere. In this case, the slope matrix is complex for all
complex values of ω and is real for all real values of ω. This has been illustrated in
Figure 5.1, which shows the real and imaginary part of ss component of the slope
matrix, Sass ≡ Sa00(ω,k = (0, 0, 0)), in terms of ω for a bcc lattice. The reason for
showing only the ss components is that it is the largest and the most delocalized
one in real space. The zeros in index of Sa00 denotes SaLL with L = l(l + 1) + m.
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Figure 5.1: (a) Real and (b) imaginary parts of ss element of Sa(ω,k) of a bcc lattice
for k = (0, 0, 0) as a function of complex ω. The mesh step for ω in complex plane is
0.5 on both real and imaginary axes.

For this calculation, 9 coordination shells or equivalently 137 nearest neighbors
in the real-space cluster have been considered. Other parameters are lmax = 3,
hard sphere radius aR = 0.7w and the maximum of orbital quantum number
on the Watson sphere lwmax = 8. As can be seen from the graph, the imaginary
part of Im(Sass) is zero only when ω is real. Here we concentrate on the negative
imaginary part of ω, since Re[Sa(ω)] = Re[Sa(ω∗)] and Im[Sa(ω)] = −Im[Sa(ω∗)].

Figure 5.2 shows the absolute difference between the direct calculation and a
6th-order Taylor expansion of Sass and Ṡass, namely as |∆Sass| and

∣∣∆Ṡass∣∣, respec-
tively. According to expectation, these graphs show that the values of both |∆Sass|
and |∆Ṡass| increase as the distance from the expansion center ω0 = 0 increases.
It is also clear that the accuracy of the Taylor expansion when Re(ω) > 0 is worse
than when Re(ω) < 0. It also can be seen that in the regions where the real part
of |∆Sass| or |∆Ṡass| increases, the imaginary part decreases and vice versa. Thus,
the accuracy of the Taylor expansion for real and imaginary parts show opposite
trends.

A better way to express the accuracy of the Taylor expansion might be
computing relative error defined as [77]:

δSa =

{
[Re(SaDirect − SaTaylor)]

2 + [Im(SaDirect − SaTaylor)]
2
}1/2

{[Re(SaDirect)]
2 + [Im(SaDirect)]

2}1/2
× 100. (5.21)

Figure 5.3 shows the computed relative error of Sass and Ṡass for bcc lattice. For
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Figure 5.2: The difference between the direct calculation and a 6th-order Taylor
expansion of Sass(ω,k), panel (a) and (b), and Ṡass(ω,k), panel (c) and (d), for a bcc
lattice as a function of complex ω. The z axes in these graphs are real and imaginary

of |∆Sass| =
∣∣∣Sa,Directss − Sa,Taylorss

∣∣∣ and
∣∣∆Ṡass∣∣ =

∣∣∣Ṡa,Directss − Ṡa,Taylorss

∣∣∣. The expansion

center is ω0 = 0.

more clarity, in this figure a logarithmic scale for z-axis has been used. These
graphs show that the values of δSass and δṠass within the region |ω| ≤ 6 are less than
0.5% and 1%, respectively. The most important regions in these graphs are the
ones close to the real axis on both negative and positive sides with |ω| ≥ 6, since
they correspond to the previously mentioned cases of Taylor expansion failures.
These graphs show a similar trend as the ones calculated for the fcc lattice in
Ref [77]. In that paper, it was shown that a two-center Taylor expansion can
improve the accuracy of determining Sa and Ṡa for the negative side of the real
axis, but it does not affect the accuracy for points on the positive side of the real
axis. The contour used during the self-consistent cycle is usually a semi-circle or
a semi-ellipse in the complex plane with the diameter along the real axis from εb
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Figure 5.3: Relative error of Sass and Ṡass as a function of ω in a logarithmic scale for
bcc lattice corresponding to the graphs in Figure 5.2. The point ω = 0 with δSass = 0%
have been excluded for clarity.

to εF+ ∼ 0.2. The points chosen on this contour are dense around the Fermi level
since they are used, together with an additional horizontal contour containing a
few points very close to the real axis, to determine the Fermi level. The graphs in
Figure 5.3 show that close to the real axis the relative error of Sass and Ṡass within
the interval 6 < Re(ω) < 10 increases from ∼ 0.5% up to ∼ 4%, and from ∼ 1%
up to ∼ 13%, respectively. Therefore, for systems in which this interval is used
for searching the Fermi level, considerable errors in the Taylor expansion of Sa

and Ṡa can be expected, which affects all energies within this interval including
the Fermi level and all properties derived from it.

5.4.1 Application of Directly Calculating Sa and Ṡa

To see how the direct calculation performs versus the Taylor expansion in actual
application, tungsten exhibiting a bcc lattice was chosen as a test system. The
electronic configuration of tungsten is [Xe]4f 145d46s2. Here, 5d46s2 orbitals have
been considered as valence states. Considering the experimental lattice constant
a = 3.165 Å [78], earlier Taylor expansion calculations for bcc-W have shown
that εF − v0 ' 0.8 and εb − v0 ' −0.1. Therefore, the proper energy window
for such a system is equivalent to the corresponding interval −1 . Re(ω) . 9
required for calculating Sa and Ṡa. But we have already seen that there are
considerable errors in calculating Sa and Ṡa for complex ω close to real axis
and Re[ω] ≤ 6. Therefore, bcc-W is an ideal test case for studying the effect of
accurate calculation of Sa and Ṡa around its Fermi level.
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Table 5.1: Lattice parameter a0 (Å), bulk modulus B, shear moduli C ′ and C44 (all
moduli in (GPa)) of bcc-W using different exchange-correlation functional and a 6th-
order Taylor expansion compared with other computational results and experimental
data.

EMTO VASP[79] ESPRESSO[79] Exp[78]
LDA PBE PBE-sol PBE PBE

a0 3.142 3.196 3.167 3.189 3.187 3.165

B 324 301 318 303 300 316

C ′ 197 191 190 159 160 165

C44 195 196 191 146 149 164

Table 5.1 shows the computed equilibrium lattice parameter, Bulk modulus
and elastic constants of bcc-W using the Taylor expansion method compared to
the results of other computational methods and experimental data. For this
calculation, a 6th-order Taylor expansion has been applied with the expansion
center ω0 = 0. The slope matrix calculation in real space cluster for ω0 = 0
has been done considering 137 nearest neighbor vectors in cluster and lwmax =
8. The lattice parameter and bulk modulus have been obtained using a Birch-
Murnaghan equation of state fitting. For calculating the elastic constant C44 and
shear moduli C ′ volume-conserving strains applied [80]. These type of strains
have the advantage that the energy is an even function in terms of strain, and
therefore we need to perform calculations only for distorted structures of positive
(or negative) strains. For this calculation 11 distorted structures with positive
strains from 0 to 0.05 have been considered. From the data in this table, one

Figure 5.4: Graphs of the volume optimization and shear moduli calculations data of
W-bcc using both Taylor expansion and direct calculation methods.
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can see the lattice parameter and bulk modulus calculated by EMTO in a good
agreement with the results of other codes, while for elastic constants a noticeable
difference can be seen.

The first test calculation on bcc-W using the new implementation, showed
the calculation converges with a reasonable trend and finishes with a few milli-
Rydberg difference in total energy and Fermi energy compared to the Taylor
expansion method. However, applying it for calculating equilibrium properties
or elastic constants leads to unphysical discontinuities in total energy curves
leading to an unpredictable total energy trend. For instance, in Figure 5.4, such
energy trends are shown for volume optimization and shear moduli calculations in
comparison to the regular smooth graphs obtained by Taylor expansion method.
The calculated data related to the C44 calculation which has not been shown

Figure 5.5: Real (panel (a), (c)) and imaginary (panel (b), (d)) parts of elements
Sass and Ṡass, respectively, calculated directly for W-bcc as a function of complex ω for
horizontal meshes parallel to the real axis in the complex plane.
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here, shows an even worse trend than that for C ′.

In order to find the reason for such an unsatisfying result, we study the
behavior of the slope matrix and its energy derivative using the direct calculation
method in more detail. Therefore, the slope matrix and its energy derivative of
bcc-W have been computed using the direct method for a series of dense horizontal
meshes parallel to the real axis. Inspecting the ss elements of Sa(ω,k = (0, 0, 0))
and Ṡa(ω,k = (0, 0, 0)) revealed the presence of the sharp peaks for −0.1 .
Im(ω) ≤ 0 and Re(ω) ≥ 5. These are caused by the surface resonance effect
mentioned earlier which appear due to the finite size of real space cluster and are
visible in Figure (5.5). As one can see from these graphs, the peak height are
decreased with increasing distance from the real axis and almost disappear for
Im(ω) . −0.1. Further analysis on ss elements shows that it behaves smoothly
as the distance from real axis increases.

Figure 5.6: Real and imaginary parts of some different diagonal elements of Sa(ω,k)
and Ṡa(ω,k) matrices for bcc-W at k = 0, 0, 0 as a function of Re(ω) on a horizontal
mesh with fixed Im(ω) u −0.01. The y axes scales are different and not shown here for
simplicity.
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Figure 5.7: Real (left panel) and imaginary (right panel) parts of 2nd diagonal ele-
ments (pp elements) of Ṡass for bcc-W in terms of horizontal meshes of ω parallel to the
real axis in complex plane.

Investigating some other selected diagonal elements of matrices which have
sizable values, also confirms the presence of similar peaks. For the elements with
higher L the number of these peaks is usually more than ss element. For instance,
Figure 5.6 presents the real and imaginary parts of some other diagonal elements
of Sa and Ṡa for a dense horizontal mesh very close to the real axis. Although
the peaks of the real part of SaLL are not very distinct due to the large range
of variation, one can identify them from the peaks of Ṡa, because any abrupt
change in Re(Sa) will result in a peak for Re(Ṡa). Furthermore, by going far
from the real axis, first the peaks start to fade away, but then new peaks start
to appear for different values of ω. For instance, Figure 5.7 shows the second
diagonal element of Ṡa for a set of horizontal meshes with −1 ≤ Re(ω) ≤ 10 and
−4.4 . Im(ω) . −0.4. As is shown, close to the real axis for Im(ω) ≈ −0.4
and -0.8, the graphs still fluctuate for Re(ω) > 5. Then the peaks disappear, but
appear again for Im(ω) ≤ −3.2 even when Re(ω) < 5. Such a behavior was also
observed for other diagonal elements with l = 2 or 3.

In order to determine how the details of the current implementation for cal-
culating Sa and Ṡa can help to avoid these fluctuations, the effect of the input
parameters, such as cluster size, hard sphere radii and the number of Watson
orbitals, on the direct calculation of Sa and Ṡa were studied. First, our investiga-
tions show that increasing the cluster size will decrease the height of the peaks,
but produce smaller peaks on different locations in the complex plane. Neverthe-
less, this is not always valid, since for some elements an increasing cluster size
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Figure 5.8: The effect of cluster size on some selected diagonal elements of Ṡa(ω,k =
(0, 0, 0)) in bcc-W for a horizontal mesh with Im(ω) ≈ −0.01.

will boost the resonances. For instance, Figure 5.8 shows the magnitude of some
diagonal elements of Ṡa(ω,k = (0, 0, 0)) as a function of Re(ω) using a horizontal
mesh very close to the real axis for different values of cluster size. As one can see,
the peaks for Ṡa0,0 element have reduced considerably by increasing the cluster

size, while for Ṡa1,1 the reduction is not significant. For Ṡa6,6 an increasing cluster

size makes the peaks larger, while for Ṡa11,11 first the peaks get larger when clus-
ter size is 137, but then they reduce considerably fo a cluster size equal to 181.
Performing the same investigation for meshes chosen to be far from the real axis
shows that with increasing cluster size, the overall trend of fluctuations is de-
creasing. This confirms once more that the surface resonance effect is a problem
originating from the finite size cluster.

Repeating calculations of the volume optimization and elastic constants of
W-bcc with increasing cluster size shows that besides having a higher computa-
tional effort, there is usually a poor convergence trend for the self-consistency
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cycle. Apart from this issue, the results do not show considerable improvement
of energy trends. The investigation on distorted structures also shows that their
slope matrix usually behaves more fluctuating compared to the undistorted lat-
tice. Since distorting the bcc lattice will reduce its symmetry, one may suspect
that the fluctuations will increase for lower symmetry crystals.

Investigating the effect of the Watson sphere orbital number lwmax, shows that
this technique can remove the fluctuations successfully for points close to the real
axis however only for Re(ω) ≤ 5, which is obviously not sufficient. This can be
seen in upper graphs of Figure 5.9, which show two selected diagonal elements of
calculated Ṡa(ω,k = (0, 0, 0)) for bcc-W using the Watson sphere technique with
lwmax = 8 and without it, lwmax = 0 as a function of Re(ω). One can clearly see that
for lwmax = 8 the fluctuations vanish for Re(ω) ≤ 5. One can also see this effect
from Figures 5.5, 5.6 and 5.8 in which lwmax = 8. This is in agreement with results
of calculating slope matrix for real ω in Ref. [20]. Further calculations with larger

Figure 5.9: The effect of the number of Watson sphere orbitals on some selected
diagonal elements of Ṡa(ω,k = (0, 0, 0)) in bcc-W for a horizontal mesh with Im(ω) ≈
−0.01.
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lwmax show no considerable effect on the peaks within the region Re(ω) ≥ 5. For
points far from the real axis, the Watson sphere technique does not have the
desired effect, since the fluctuations start to reappear again for Re(ω) ≤ 5. This
has been shown in lower graphs of Figure 5.9 and also can be seen from the Figure
5.7.

In all of the above calculations, the hard sphere radii have been chosen to be
a = 0.7w. The calculations show that for smaller values of the hard sphere radii
the screening becomes worse and the slope matrix will get less localized, while
for larger values usually it becomes more localized. This has been illustrated in
Figure 5.10. As one can see from the upper panels in this figure, for a horizontal
mesh close to the real axis, the real and imaginary parts of Sa00 for a = 0.6w
diverge as Re(ω) increases, while for a = 0.8w they are more localized than
a = 0.7w. Nevertheless, as is clear from the lower panels, increasing the hard
sphere radii will boost the fluctuations. Analysis of some other diagonal elements
of the matrices shows that changing the hard sphere radii cannot make the peaks

Figure 5.10: The effect of hard sphere radii on ss elements of Ṡa(ω,k = (0, 0, 0)) in
bcc-W for a horizontal mesh with Im(ω) ≈ −0.01.
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vanish.

5.5 Conclusion

To conclude this chapter, we have explained that the current formalism for cal-
culating the slope matrix and its first energy derivative during the self-consistent
cycle of EMTO-SCA calculations using a Taylor expansion is not sufficiently ac-
curate and efficient. As a promising replacement, we have implemented a scheme
in which these matrices are calculated directly from Dyson equation for all energy
points on the contour during the self-consistent cycle. However, applying this ap-
proach for calculating equilibrium properties or elastic constants of bcc-W leads
to unphysical discontinuities in total energy curves leading to an unpredictable
total energy trends. Further investigations revealed that the structure constants
calculated using this approach show unphysical irregularities which can be seen as
the sharp peaks in the graphs of the structure constants as a function of energy.

In order to determine how the new implementation can help to avoid such
fluctuations, the effect of the input parameters such as cluster size, hard sphere
radii and the number of Watson orbitals on the behavior of the peaks for some
selected elements of the slope matrix and its first energy derivative were studied.
These test calculations confirm that this effect is related to the finite size of the
real-space clusters. They also show that the new implementation cannot make
the fluctuations disappear from the interval energy of interest and consequently,
it does not ensure to provide reliable results. Thus, it is not suitable for using
within the self-consistent cycle.

Although, the most promising idea of modifications for this code has been
the introduction of the FCD technique into self-consistent cycle, one must in ad-
vance devise an accurate and efficient method for calculating energy dependent
slope matrix. Such a method, in the first place, must be able to overcome the
deficiencies of the Taylor expansion method such as inaccuracy and inefficiency.
In the second place, it must ensure that the calculated slope matrix within the
interval energy of interest has no surface resonance effects and behaves smoothly.
One promising solution is to calculate the slope matrix and its first energy deriva-
tive directly in the reciprocal space using techniques such as Ewald’s method [81].
This approach has been implemented within some KKR-based methods [82, 83]
whose potential treatment is either by the non-overlapping muffin-tin or atomic
sphere approximation. Since the problem of surface resonance is related to the
finite size of the real-space clusters, one can expect to calculate smooth structure
constants with no fluctuations using this approach. To this end, a consider-
able part of kgrn must be rewritten. This method imposes heavier calculations,
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because Sa and Ṡa need to be calculated for every k-point as well as each com-
plex energy. However, this approach is not applicable for LSGF method, because
within this method the real space slope matrix is needed. In this case, a thorough
investigation of slope matrix in real-space cluster is suggested with the aim of
finding the origin of the fluctuations or understanding their behavior completely.
Such a knowledge can be applied to choose a suitable approach for calculating
the slope matrix in the real space.
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Chapter 6

Calculating Elastic Constants of
NiTi(1-x)Hfx Alloys

It is known that current versions of the Green’s function EMTO based meth-
ods such as the EMTO-CPA or EMTO-LSGF codes do not yield accurate results
for elastic constants of many solids. In fact, comparing EMTO-CPA results with
more accurate full-potential methods, one can see a notable difference in many
cases [20, 84, 85]. On the other hand, for random alloys, as it has been discussed
in Chapters 3 and 4, EMTO-based methods are well-suited and are advantageous
over Hamiltonian-based computational schemes.

To date, the EMTO-CPA method has mainly been applied to high symmetry
structures, while little is known how well it performs for low symmetry structures.
The goal of this chapter is first to show the problems occurring for such systems
and second to introduce the new developments within the EMTO-CPA code. One
part of these new developments should facilitate elastic property calculations
for low symmetry structures, the other parts should increase the efficiency of
the calculation as well as the accuracy of the results. The new developments
have been applied to calculate elastic properties of the shape memory alloys
NiTi(1-x)Hfx with x = {0, 0.1, 0.2, 0.3, 0.4, 0.5} in the cubic B2 and the monoclinic
B19′ structures.

This chapter is organized as follows. First I will briefly review the principles
of elasticity theory as well as the main properties of the shape memory alloys
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NiTiHf. Then, the new developments are introduced in detail. Finally, I present
the calculated elastic properties of NiTiHf alloys for different concentrations.

6.1 Ab-initio Calculation of Elastic Constants

The contents of this section follows Chapter 8 of Ref. [86]. Elasticity is the
property of a solid material to regain its original shape after being deformed
under the application of an external force. In such conditions, each part of the
body exerts internal forces on neighboring parts. If the forces are proportional
to the area of the surface of the given part, the force per unit area is called the
stress. Here we only consider homogeneous stresses which means the forces acting
on the surface are independent of the position of the particles in the body. In
general, stress depends in the direction on the body and, therefore, is expressed
as a second-rank tensor as follows,

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (6.1)

Here the underline notation is used to indicate a second-rank tensor. Note that
σij is the force component in direction +xi which is transmitted from the face
that is perpendicular to +xj.

The deformations are caused by an exerted strain which is described by the
strain tensor. If ui is the displacement of a point along xi in a deformed solid,
the strain tensor is then defined as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (6.2)

ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (6.3)

The diagonal components are called tensile strains, whereas the non-diagonal
components are denoted as shear strains. In absence of body torques both strain
and stress tensors are symmetric.

The most general relationship connecting stress with strain is provided by the
generalized version of Hooke’s law. It states that for a sufficiently small stress,
the amount of strain is linearly proportional to the magnitude of the applied
stress,

σ = C ε . (6.4)
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In this equation, since stress and strain are second-rank tensors, C must be a
fourth-rank tensor constant (indicated by a double-underline notation). It is
known as elastic stiffness tensor and its elements are called the elastic constants.
One can write Eq. (6.4) also in the following form,

ε = s σ , (6.5)

where s = C−1 is called elastic compliance tensor. The explicit form of Eq. (6.4)
is as follows

σij =
3∑

k,l=1

Cijklεkl . (6.6)

The elastic constants are fundamental materials parameters providing a detailed
information on the mechanical properties of materials. The knowledge of these
data enables prediction of mechanical behavior in many different situations. Since
the strain and stress tensors are symmetric, the tensor C fulfills the following
symmetry conditions,

Cijkl = Cijlk, Cijkl = Cjikl, (6.7)

which reduces the number of independent elastic constants from 81 to 36. Addi-
tionally, using Eq. (6.6) and the following equation [86]

σij =
∂W
∂εij

, (6.8)

in which W is the free energy of the system, one can find Cijkl as follows

Cijkl =
∂

∂εkl

∂

∂εij
W . (6.9)

The order of derivatives can be changed. Hence,

Cijkl = Cklij , (6.10)

which reduces the number of independent elastic constants to 21.

Using Voigt ’s notation [86] one can represent the fourth-rank tensor of elastic
constants in matrix form. Voigt’s notation is introduced in the following way:

xx→ 1, yy → 2, zz → 3, yz → 4, xz → 5, xy → 6, (6.11)

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

⇒

σ1

σ2

σ3

σ4

σ5

σ6

 , (6.12)
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ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =

 ε1 1
2
ε6

1
2
ε5

1
2
ε6 ε2

1
2
ε4

1
2
ε5

1
2
ε4 ε3

⇒

ε1
ε2
ε3
ε4
ε5
ε6

 . (6.13)

Thus, Hooke’s law can be written in matrix form as:
σ1

σ2

σ3

σ4

σ5

σ6

 =


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66




ε1
ε2
ε3
ε4
ε5
ε6

 . (6.14)

Due to the lattice symmetry of the crystal, the number of independent elastic
constants may reduce even further. For instance, in case of triclinic lattice which
has the lowest symmetry there are 21 independent elastic constants, while for a
cubic lattice which has the highest symmetry there are only three independent
elastic constants. In the following, the form of the matrix for both cubic and
monoclinic (with γ 6= 90◦) lattices, which are the two phases of NiTiHf studied
in this chapter, are shown.

ccubic =


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

C44 0 0
C44 0

C44

 , (6.15)

cmonoclinic =


C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

C66

 . (6.16)

In principle, there are two ways of calculating elastic constants of a single
crystal using ab initio methods: the energy-strain approach and the stress-strain
approach. In this chapter, the energy-strain approach has been applied for cal-
culating elastic constants of NiTiHf alloys. This approach is based on computed
total energies of properly selected deformed states of the crystal. From Eq. (6.8),
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one can see that the work done by the stress component σi on a distorted struc-
ture, which is subjected to a small homogeneous strain with component εi, is
obtained by

W =
1

2

∑
ij

Cijεiεj . (6.17)

For each strain type, several magnitudes of strains are applied and the correspond-
ing total energies are computed with an ab initio approach. The elastic constant
is then derived from the curvature of the energy-strain relation by means of a
least-squares fit making use of Eq. (6.17). Some of the applied strains may be
related to a single elastic constant while others are described by a linear com-
bination of elastic constants, from which the elastic constant tensor is finally
constructed. The number of necessary distortions is given by the number of
independent elastic constants.

6.1.1 Polycrystalline Elastic Constants

In a polycrystalline material, the single crystalline grains are randomly oriented.
On a large scale, such materials can be considered to be isotropic in a statistical
sense. An isotropic system is completely described by the bulk modulus B and
the shear modulus G [20]. Young’s modulus and the Poisson ratio can be obtained
from B and G as follows,

E =
9BG

3B +G
, (6.18)

ν =
3B − 2G

2(3B +G)
. (6.19)

In order to calculate the polycrystalline elastic moduli, there are different methods
that calculate these moduli by averaging the single crystal elastic constants cij.
The three most widely used are the Voigt [87], the Reuss [88] and the Hill [89, 90]
averaging methods. In the Voigt averaging method a uniform strain is assumed,
while in the Reuss method a uniform stress is considered. Within the Voigt
approach, the general expressions for the bulk and shear moduli are [20]

BV =
(C11 + C22 + C33) + 2(C12 + C13 + C23)

9
, (6.20)

GV =
(C11 + C22 + C33)− (C12 + C13 + C23) + 3(C44 + C55 + C66)

15
. (6.21)

For the Reuss method the corresponding equations are

BR =
1

(s11 + s22 + s33) + 2(s12 + s13 + s23)
, (6.22)
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GR =
15

4(s11 + s22 + s33)− 4(s12 + s13 + s23) + 3(s44 + s55 + s66)
. (6.23)

Hill has shown that the Voigt and Reuss elastic moduli are the strict upper and
lower bound, respectively. Thus, the Hill-averaged bulk and shear moduli can be
determined from these upper and lower limits as

BH =
1

2
(BV +BR), (6.24)

GH =
1

2
(GV +GR). (6.25)

There are also two anisotropy ratios which will be reported in this chapter. The
first one is the Zener anisotropy ratio, A, which for cubic materials is defined by
the following equation

A =
2C44

C11 − C12

=
C44

C ′
. (6.26)

Another anisotropy is defined by shear moduli for any type of symmetry as follows

AV R =
GV −GR

GV +GR

. (6.27)

Both of these ratios conceptually state to what extent the material is isotropic.
For completely isotropic materials A is equal to 1, while AV R equals to 0. For
most metals, except some exceptions, AV R ≤ 20% [20].

6.2 NiTiHf: A High Temperature Shape

Memory Alloy

Shape memory alloys (SMAs) are a unique category of smart materials with
the ability of a shape memory effect (SME) and superelasticity (SE). The SME
is described as the ability of the material to recover any deformation by heating
and return to its original shape, while SE is the ability of recovery from unusually
large strains. These unique behaviors are due to reversible phase transformations
which occur under application of stress or heat.

In SMAs, there are usually two main phases, the high-temperature phase,
austenite, and the low-temperature phase, martensite. The phase transformation
occurring between these two phases is called martensitic phase transformation,
which is a diffusionless transformation type. Such a phase transformation occurs
by shear lattice deformation, instead of diffusion of atoms. When the tempera-
ture is decreased in absence of stress, the crystal structure changes from austenite
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to martensite, which is called the forward transformation. By heating the mate-
rial, the crystal structure transforms back to austenite, which is called reversed
transformation. The temperature at which the forward transformation starts is
called martensitic start temperature (Ms) and the temperature of finishing the
forward transformation is called martensitic finish temperature (Mf ). The same
temperatures are defined for the reverse transformation as austenitic start tem-
perature (As) and austenitic finish temperature. There are two forms of marten-
sitic phases in SMAs: twinned martensite, which is formed by a combination of
different martensitic single crystals called variants, and detwinned or reoriented
martensite, which is deformed by a specific dominant variant. In case of forward
and reverse transformation, which are only due to the changes of temperature,
the transformations are in between austenite and twinned martensite phases. The
detwinned phases may also form during these phase transformations.

Under application of an external stress on the twinned martensite phase, the
SMA transforms to a detwinned martensite phase. By heating up the deformed
material, the detwinned martensite will transform to austenite, and therefore
it regains its original shape. The transformation is also possible by applying
a very large mechanical stress to the austenite phase above Af , leading to the
transformation to the martensite phase. By removing the external forces the
SMA will return to its original shape by a reverse phase transformation. This
effect is called superelasticity or pseudo-elastic effect.

Among the various SMAs system, NiTi is highly interesting due to a number
of unique characteristics such as its operating temperature which is near room
temperature, high ductility and low elastic anisotropy. These properties together
with low costs have created interests in industrial applications such as automotive,
aerospace, and biomedical industries. One important aim in NiTi alloys is to
raise the martensitic transformation temperature in order to be applicable for
high temperature applications of the shape memory effect. This usually is done
by adding Pt, Pd, Zr or Hf to NiTi [91]. Among them, NiTiHf alloys are most
attractive, due to the good thermal stability and low cost, and therefore it seems
to be the most encouraging alloy for a wide range of applications in the critical
100 − 300◦C temperature range [92]. Among the possible compositions, the Ni-
rich alloys in which Hf is added at the expense of Ti, are most promising. For a
Hf content lower than 10 at-% the transformation temperatures do not increase
much, but from 10 at-%Hf they tend to increase linearly up to 525◦C for 30 at-%
Hf. In contrast for Ni-lean alloys they do not change notably until 50 at-%Hf
in which the transformation temperatures drop steeply [93]. In comparison with
pure NiTi, the ductility is decreased for NiTiHf alloys, but for Ni-rich alloys
this reduction is less pronounced than for other compositions. This property
together with lower hysteresis presents another advantage of Ni-rich alloys over
other possible compositions [93].
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The investigation of elastic constants is a way to obtain important insights
into mechanical properties of these alloys. Due to the impossibility of growing
single crystals of these alloys in different phases, only little experimental data
for pure NiTi phases has been available in the past decades. This makes the
investigation of the elastic constants of NiTiHf alloys by ab initio methods highly
desirable. Apart from this technological aspect, another goal of this study is to
make EMTO-CPA code able to produce reliable results for lower symmetry crys-
tals like monoclinic B19′ and then to calculate the elastic properties of NiTi1-xHfx
alloys as a function of concentration x.

6.3 NiTi Structures and Details of Calculations

The parent phase of all NiTi-based alloys, austenite, has a cubic B2 (ordered body
centered cubic) structure with space group Pm3̄m [94]. The crystal structure of
the martensite phase is monoclinic with space group P21/m which is called B19′1.
It has been confirmed by experiment and theory as the low-temperature phase of
NiTi [95–98]. There are also intermediate phases observed experimentally during
the martensitic transformation [99], but they are not investigated here. Table 6.1
shows the crystallographic data of two phases B2 and B19′. Note that in some
literature, a larger tetragonal four-atom cell is used for representing B2 phase
for a better comparison with B19′ phase, but here we use the conventional cubic
unit cell with two atoms.

The equilibrium lattice parameter and elastic properties of NiTi(1-x)Hfx (x=0,
0.1, 0.2, 0.3, 0.4, 0.5) have been calculated in both B2 and B19′ phases by means
of the EMTO-CPA code. Since this code is not equipped for atomic coordinate
relaxations, we have taken these data for B19′ structure from Ref. [101] obtained
by the WIEN2k code. These are (0.6708, 0.0655, 0.25) and (0.2150, 0.3842, 0.25)
for Ni and Ti, respectively, which are in a good agreement with experimental data
in Table 6.1. Note that these data has been used for all values of Hf concentration
x because, as it was mentioned in Section 4.6, CPA can not account for calculating
local atomic relaxations.

For the k-space integration, for B2 structure a 34 × 34 × 34 mesh and for
B19′ structure a 12× 14× 22 mesh has been used. In all calculations, the 3d8 4s2

states of Ni, the 3d2 4s2 states of Ti and 4f 14 5d2 6s2 states of Hf were treated
as valence electrons. The relative ratio of the atomic spheres radii has been

1There are two different choices of axes in a monoclinic crystal system. In the first setting,
the unique axis is parallel to c and the monoclinic angle is γ. In the second one, the unique
axis is parallel to b and β is the monoclinic angle. In this thesis, we use the first setting to
represent the B19′ structure.
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Table 6.1: Experimental crystallographic data of the two phases B2 and B19′ of NiTi.

Phase Lattice parameters atomic parameters

(Space group) and monoclinic angle atom x y z

B2(Pm3̄m)a a=3.013 (Å) Ni 0 0 0

Ti 0.5 0.5 0.5

B19′(P21/m)b a=4.646 (Å) Ni 0.6752 0.0372 0.25

b=2.898 (Å) Ti 0.2164 0.4176 0.25

c=4.108 (Å)

γ=97.78◦

a Ref. [100]
b Ref. [96]

chosen equal to r(Ti,Hf)/rNi = 1.125. On the one hand, this value was chosen
to approximate the potential more realistically and on the other hand to treat
the charge transfer effect properly. Note that this ratio has been kept fixed
for all values of Hf concentration x. For calculating the energy dependent slope
matrix and its first energy derivative during the self-consistent calculations, a 6th-
order Taylor expansion with expansion center ω0 = 0 was used. The exchange-
correlation potential was treated by the PBE functional [48].

The on-site screening constants αscr and β (described in Section 4.6) are
determined using the LSGF calculations as described in Refs. [72, 73]. The
values αT iScr = αHfScr = 0.650 and β = 1.000 calculated by A. V. Ruban have been
applied in all EMTO-CPA calculations. It should be noted that these constants
vary very little with alloy compositions and lattice constants [72, 73]. Thus, these
values have been used for all values of x > 0 in both B2 and B19′ structures.

The equilibrium properties of B2 structure have been obtained by volume
optimization using a Birch-Murnaghan equation of state fitting. The procedure
used for calculating the equilibrium lattice parameters a0, b0 and c0 and the
monoclinic angle γ0 of the B19′ structure is as follows. In the first step, the
equilibrium volume V0 has been calculated with fixed values for b/a, c/a and γ
using a Birch-Murnaghan equation of state fitting. The initial values for b/a, c/a
and γ were taken from the available experimental data. Then the optimum values
for b/a, c/a and γ have been obtained by varying each parameter independently
and calculating the minimum of the graph of the total energy as a function of
that parameter using a polynomial fitting. All the calculations performed for
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optimizing these three parameters are volume-conserving with fixing the volume
at V0. First, b/a has been optimized with fixed initial values for c/a and γ, then
c/a with fixed calculated value of the equilibrium b/a and initial value of γ, and
finally γ with fixed calculated values of equilibrium b/a and c/a.

6.4 Details of the New Developments

In order to improve the efficiency and accuracy of the calculations, specifically
elastic constants calculations, a number of new implementations and modifica-
tions have been developed within the EMTO-CPA code. One part of these have
been done to facilitate preparation of the required input files and automatize post-
processing calculations using the output files, and the other parts concern the
improvement of accuracy of the results by improving the smoothness of energy-
strain graphs. In the following, I will describe these developments.

The first modifications have been done within the kstr package. Here, the
routine responsible for generating spherical harmonics which is used for comput-
ing Madelung matrices has been changed to an updated version which in contrast
to the old routine yields reliable results also for high ls. Next, the routines re-
sponsible for the slope matrix calculations have been updated using the linear
algebra package (LAPACK). To this end, the math kernel library (MKL) has
been used with option of shared memory parallelization (OpenMP) of routines
such as matrix factorization, inversion and matrix-matrix multiplication. This
can decrease the run time of this program significantly. For instance, for the B19′

structure, the new version is at least 10 times faster than the old version.

6.4.1 Application of the ElaStic Package

The ElaStic software2 [25] is an open-source code developed at the Materials
Center Leoben (MCL) Forschung GmbH, which allows one to obtain second-order
elastic compliance tensors for all crystal lattice types from ab initio calculations.
It is utilizing codes such as Wien2k, VASP, exciting, Quantum Espresso and re-
cently EMTO-CPA code. This interface for EMTO-CPA code developed by T.
Dengg3 has been applied for calculating elastic properties of NiTi1-xHfx alloys. It
generates the required input files including the one containing basis vectors and
atomic positions of deformed structures for different types of strains. After all

2https://www.mcl.at/en/software/elastic/
3Materials Center Leoben Forschung GmbH, A-8700 Leoben, Austria
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calculations are performed, ElaStic will calculate the elastic constants and poly-
crystalline elastic moduli from the total energies output files using the method
discussed in Section 6.1. For this part, ElaStic enables to calculate and plot
the cross-validation score and second derivatives of total energy as a function
of strain, which can be applied to check quality of fitting, energy trends and
convergence of calculations.

For calculating the elastic constants of NiTi1-xHfx for each concentration
x, we have calculated 41 deformed structures for every strain type within the
interval |ε| ≤ 0.05. As it was mentioned in Section 6.1, the number of strain types
needed to fully determine the elastic constants tensor is equal to the number of
independent elastic constants. Thus, considering Eq. (6.15) and Eq. (6.16), there
are three types of deformations for the B2 structure and thirteen types for the
B19′ structure.

6.4.2 Application of the Voro-shape Package

The method of tessellation of the space described in Subsection 4.5.1 works flaw-
lessly except when the symmetry decreases, for instance in case of low symmetry
crystals or deformed structures. In this case, the sum of the tetrahedra volumes is
not exactly equal to the volume of the partitioned cell. Thus, the integrations in
the FCD technique can not be calculated exactly. This can cause the appearance
of discontinuous jumps in total energy versus strain graphs for different strain
types and consequently unreliable elastic constants.

In order to overcome inaccuracies arising from these problems, a shape pack-
age (hereafter referred to as voro-shape) has been developed by H. Ehteshami4

based on voro++5 [102], an open source software library for carrying out three-
dimensional computations of the Voronoi tessellation. First, this package has
been modified to keep the relative ratio of atomic sphere radii fixed, and then
has been applied for all the calculations on B2 and B19′ phases. In Figure 6.1,
the effect of using this package in comparison with the old shape package is shown
for some selected deformation types of pure NiTi at B19′ phase. As one can see,
the graphs obtained by the old shape package are characterized by occasional
discontinuous jumps in the total energy, while using the voro-shape package has
improved the smoothness of the curves. It is also observed that for other concen-
trations (x > 0), the graphs of most deformation types obtained by the old shape
package are even more problematic, but the voro-shape package yields smoother

4Department of Materials Science and Engineering, KTH Royal Institute of Technology,
SE-100 44 Stockholm, Sweden

5http://math.lbl.gov/voro++/about.html

78

http://math.lbl.gov/voro++/about.html


6.4. Details of the New Developments

Figure 6.1: The total energy versus strain using old shape and voro-shape programs
for some selected deformation types of pure NiTi in B19′ phase.

energy curves.

6.4.3 Modification on Radial Mesh Points

Although using the voro-shape package has improved the graphs of total energy
versus strain, there are still some points with discontinuous jumps. These points
are shown in Figure 6.1 for some selected deformation types of pure NiTi in B19′

phase. Further investigation to find the source of this behavior revealed that for
the strains where the discontinuous jumps take place, the number of radial mesh
points inside the inscribed spheres changes. The number of these mesh points
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that are used to solve the Dirac equation alters due to changes of inscribed sphere
radii which in turn is a result of deforming the structure.

Although we could not identify the source of this problem, we have found
that keeping the number of the radial mesh points for both atoms Ni and Ti(Hf)
unchanged, can cure the energy trends at these points. Therefore, a new mode of
calculations (hereafter referred to as FRMS mode) has been implemented within
the code that enables one to keep the number of these mesh points fixed for all
strained structures of a certain deformation type, and that is equal to the min-
imum number of radial mesh points of all distorted structures. This value for

Figure 6.2: The total energy versus strain using voro-shape program in FRMS mode
compared to normal mode for some selected deformation types of pure NiTi in B19′

phase.
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every site in the unit cell corresponds to a structure that has the minimum frac-
tion of inscribed sphere radius to the Wigner-Seitz radius. Figure 6.2 shows the
improvement of the total energy versus strain graphs using FRMS calculations.
Note that we have applied FRMS calculations only for the B19′ structure.

6.5 Results

In this section, we report the results of our calculations. The computational
details have been discussed in Section 6.3. For all the calculations here, either
the equilibrium structural or elastic properties, the developments discussed in
the previous section have been applied for both B2 and B19′ phases, except the
FRMS mode which has been used only for calculating elastic constants in the
B19′ phase.

6.5.1 Structural Parameters of NiTi1-xHfx

Table 6.2 summarizes our calculated equilibrium structural properties of pure
NiTi in both B2 and B19′ phases using the EMTO method compared to some
available computational and experimental results in literature. Among the com-
putational works referenced in this table, Ref. [101] and Ref. [103] are based on
full potential methods, while in Ref. [104] a projector-augmented-wave (PAW)
method has been used. For all these computational results, similar to our cal-
culations, PBE-GGA has been applied for the exchange-correlation functional.
Note that the experimental data for B2 phase by Sittner et al. [100] was mea-
sured at 300 K which is close to 292 K, the lowest temperature which the B2
phase is stable and the experimental data for B19′ [96] was measured at the room
temperature. It should be noted that all calculated values are for T=0 K, and
no temperature effects have been taken into account.

As one can see from this table, EMTO overestimates the unit cell volume of
the B2 phase by 0.3% (or equivalently the lattice parameter by≈ 0.1%) compared
to the experimental data. Among the other computational results, Ref. [103]
also overestimates the unit cell volume of this phase, while Refs. [101, 104]
underestimate it compared to the experimental data. However, for the B19′

phase all computational methods, including EMTO, overestimate the unit cell
volume. For this phase, EMTO gives the largest unit cell volume with 3.3%
overestimation compared to the experimental data. Among the calculated lattice
constants of B19′ phase using EMTO, c0 has the largest difference compared to
the other computational results and has the major contribution in the unit cell
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Table 6.2: Equilibrium lattice parameter (Å) and unit cell volume (Å3) of NiTi in B2
phase and equilibrium lattice parameters, unit cell volume divided by 2 (for a better
comparison with B2 phase) and monoclinic angle γ (degree) in B19′ phase of pure
NiTi compared to the other computational results and experimental data. In all of
the computational methods referenced here, the PBE-GGA has applied for exchange-
correlation functional.

This work Theory[101] Theory[104] Theory[103] Exp

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

B2 a0 3.016 3.008 3.008 3.019 3.013[100]a

V0 27.43 27.22 27.22 27.52 27.34[100]a

B19′ a0 4.704 4.784 4.685 4.674 4.646[96]b

b0 2.939 2.943 2.941 2.919 2.898[96]b

c0 4.180 4.028 4.035 4.085 4.108[96]b

γ 101.57 102.76 97.78 99.09 97.78[96]b

V0/2 28.31 27.66 27.54 27.52 27.40[96]b

a Experiment [100] at 300 K
b Experiment [96] at room temperature

overestimation. Compared to the experimental data, one can also see that it is
only EMTO that overestimate c0. The larger error of the EMTO results for the
equilibrium structural properties of B19′ phase compared to B2 phase could be
due to two factors. First, as it was mentioned before, because the EMTO code
is not equipped for atomic coordinate relaxations, we have instead taken these
data from Ref. [101] which can cause inconsistencies in the calculations. Second,
it could be due to the procedure of the current implementation in which the FCD
technique is used only once at the end of the calculations after convergence of
the SCA self-consistent cycle. This gives less accurate results for low symmetry
crystals, because in such cases the non-spherical part of the potential, which is
missing in SCA, has more influence on the properties of the crystal.

Next we present our results for the unit cell volume of B2 and B19′ phases
as a function of Hf concentration in Figure 6.3. From literature, experimental
results are only available for the B19′ phase, which have been added to this graph.
The experimental data for pure NiTi (x = 0) in this figure is the one reported
in Table 6.2, while the data for other values of x has been taken from Ref. [91].
As one can see from this graph, the calculated unit cell volume of both phases
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Figure 6.3: The calculated unit cell volumes of NiTi1-xHfx as a function of Hf con-
centration x for B2 phase and B19′ phase divided by 2 in comparison with B19′ exper-
imental data (Exp1 from Ref. [96] for pure NiTi and Exp2 from Ref. [91] for (x 6= 0)).

increases linearly by raising the Hf concentration which is expected because Hf
has a larger atomic radius. In the case of the B19′ phase, this is in agreement
with the shown experimental data in this graph and also experimental observation
in Ref. [106]. Although the experimental data points suggest a non-monotonous
behavior between x = 0 and x = 0.1, such a conclusion is not robust, because
these data points have been taken from two different measurements and there is
no available experimental data in the range of 0 < x < 0.1. From the results
for B19′ phase in this figure, one can also see that the EMTO-CPA calculations
underestimate the volume increase from x = 0.1 to x = 0.4 by ≈ 50% compared
to the experimental data.

Figure 6.4 shows the calculated lattice parameters and the monoclinic angle
of NiTi1-xHfx in B19′ phase as a function of x compared to available experimental
data. As one can see from these graphs, EMTO-CPA calculations yield increas-
ing values for all lattice parameters and the monoclinic angle as a function of
Hf content with almost linear trends. For a0, b0 and γ, this is in agreement
with experimental data. The amount of calculated variations for these structural
properties from x = 0.1 to x = 0.4 have been underestimated compared to exper-
imental data. However, for c0 the trend of EMTO-CPA and experimental data
are in contradiction. This disagreement for c0 can be a consequence of CPA lim-
itations such as the lack of local atomic relaxations. Remember that here again
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Figure 6.4: The calculated lattice parameters and the monoclinic angle of NiTi1-xHfx
as a function of Hf concentration x compared to the experimental results. Exp1 data
are those repeated in Table 6.2 taken from Ref. [96] and Exp2 data are taken from
Ref. [91].

the experimental data of x = 0 and x = 0.1 are from two different measurements
and therefore, one cannot deduce any result from the changes within this range
of Hf concentration.

6.5.2 Elastic Properties of NiTi1-xHfx

We have calculated the elastic properties of NiTi(1−x)Hfx in both B2 and B19′

phase based on the computed equilibrium structures. The computational details
have been described in Sections 6.3 and 6.4. In Table 6.3, we list the calculated
and experimental elastic constants for pure NiTi in B2 phase. Here, C ′ has
been obtained by means of C11 and C12 using the well-known equation C ′ =
(C11 − C12)/2 for cubic structures.

Elastic constants usually decrease with increasing temperature. In general,
this is mainly due to the lattice expansion which softens the elastic properties

84



6.5. Results

Table 6.3: Calculated elastic constants, shear moduli C ′ and bulk modulus B (all
moduli in (GPa)) of pure NiTi in B2 phase compared to other computational results
and experimental data. B is calculated by applying the Birch-Murnaghan fit.

This work Theory[101] Theory[104] Theory[103] Expa Expb

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

C11 203 173 138 183 162 137

C12 135 157 169 146 129 120

C ′ 34 8 -16 19 16 8

C44 56 50 40 46 34 34

B 158 161 159 159 142 126

a Experiment [107] at 298 K
b Experiment [108] at 400 K

of the crystals. Comparing the experimental results from Ref. [107] measured at
298 K, which is the lowest temperature of B2 phase to be stable, with Ref. [108]
measured at 400 K shows this effect for C11, C12, C ′ and B. Since DFT calcu-
lations simulate ground-state properties of a material at 0 K and we have not
taken into account any temperature effects or lattice vibrations for our calcula-
tions, our results are better comparable to the experimental data measured at
298 K. Comparing our results with these experimental data shows that C11, C12

and C44 have been overestimated by 7%, 5% and 65%, respectively, which may be
due to the neglect of temperature effect. Among the other computational results,
Ref. [104] reported C12 > C11 or equivalently C ′ < 0. This would mean that
the B2 structure is unstable at zero K which is in agreement with experimental
observation. However, the results of this work especially for C11 and C12 are
quite different from other computational results, since it has reported the small-
est value for C11 and the largest value for C12 compared to other computational
results. For instance, comparing the experimental data for C11 at two different
temperatures, one can expect that an ab initio DFT calculation yields a value
larger than 162 GPa reported in Ref. [107]. While all the other computational
results including EMTO-CPA yield a larger value as it is expected, Ref. [104] has
reported 138 GPa which is obviously far from the expectation.

The polycrystalline elastic moduli of B2 structure are summarized in Table
6.4. Since for cubic structures BV = BR = BH , only BH is reported here. Among
the other DFT results, the one from Ref. [104], which reported a fully unstable
B2 phase, does not yield comparable results with experimental. The best results
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Table 6.4: Calculated macroscopic elastic properties of NiTi in B2 structure com-
paring with other computational results and experimental data. Only the Hill bulk
modulus BH is reported, because for cubic structures BV = BR = BH . All moduli are
given in GPa, except for A, AV R, and νH which are dimensionless.

This work Theory[101] Theory[104] Theory[103] Expa Expb

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

A 1.63 6.32 -2.58 2.49 2.06 4.00

BH 158 162 159 158 140 126

GV 48 33 18 35 27 24

GR 45 16 -93 29 24 15

GH 46 25 -37 32 25 20

AV R 3 35 -148 9 6 23

νH 0.37 0.43 0.63 0.41 0.41 0.43

EV 130 94 51 98 76 67

ER 123 47 -345 82 68 45

EH 127 71 -123 90 72 56

a Experiment [107] at 298 K
b Experiment [108] at 400 K

compared to experimental data have been reported from Ref. [101] calculated by
WIEN2k. Our result for the bulk modulus is in a good agreement with experi-
mental data and other DFT methods. It also agrees with the respective B value
from Table 6.3, calculated from a Birch-Murnaghan fit, which shows consistency
of results. The Young’s and shear moduli are overestimated and the anisotropy
ratios A and AV R are underestimated compared to FLAPW and WIEN2k results
and experimental data. For shear and Young’s moduli, the error of the Reuss
limit is larger than the Voigt limit.

Table 6.5 summarizes the elastic constants of pure NiTi in B19′ structure
compared to the other DFT results. There is no reported experimental data for
elastic properties of this phase in literature. Among the other DFT results in
this table, Refs. [104] and [103] have applied a stress–strain method for calcu-
lating elastic constants, while Ref. [101] similar to our work has applied a total
energy–strain method. Hence, our results are more comparable with those in
Ref. [101] calculated by WIEN2k. Overall comparison between the EMTO re-
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Table 6.5: Calculated elastic constants and bulk modulus B (all moduli in (GPa)) of
NiTi in B19′ structure comparing with other computational results. B is calculated by
applying the Birch-Murnaghan fit.

This work Theory[101] Theory[104] Theory[103]

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

C11 281 254 223 249

C12 122 104 99 107

C13 121 136 129 129

C16 22 21 -27 -15

C22 180 180 200 212

C23 198 151 125 125

C26 -18 0 -4 1

C33 245 248 241 245

C36 -2 -6 9 3

C44 92 91 76 87

C45 -2 -3 4 4

C55 97 93 77 86

C66 49 5 21 66

B 155 158 152 159

sults and other DFT results in Table 6.3 and 6.5, shows that the accuracy of
the EMTO results for most of the elastic constants of the low symmetry B19′

structure is in the same range as for the high symmetry B2 results. The largest
difference between our results and WIEN2k results for the B19′ phase is for C23

and C66. Other notably different results compared to WIEN2k results are for C11,
C12, C26 and C13. However, among them, C66 and C13 are better comparable with
VASP and FLAPW results. For some constants such as C23 and C11, the larger
discrepancies with other computational results are likely due to factors such as
taking the relaxed atomic coordinates from Ref [101] which causes inconsistency
in calculations, or the influence of the non-spherical part of the potential on the
properties of low symmetry B19′ structure, which is not taken into account prop-
erly within the current implementation of EMTO code. In addition, since the
current implementation of the EMTO-CPA code is not equipped for atomic co-
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Table 6.6: Calculated macroscopic elastic properties of NiTi in B19′ structure com-
paring with other computational results.

This work Theory[101] Theory[104] Theory[103]

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

BV 176 163 152 159

BR 149 127 143 157

BH 163 145 148 158

GV 65 57 56 71

GR 13 5 34 67

GH 39 31 45 69

AV R 67 84 24 3

νH 0.39 0.40 0.36 0.31

EV 174 153 149 185

ER 37 15 95 176

EH 108 87 122 181

ordinate relaxations, we have kept the internal coordinates, taken from Ref [101]
calculated for equilibrium structure, fixed at each lattice distortion. Among the
other DFT results in this table, the ones obtained using WIEN2k and VASP,
in contrast to FLAPW calculations, allowed internal coordinates optimization in
their calculations at each lattice distortion.

The polycrystalline elastic moduli of the B19′ structure are listed in Table
6.6. As it is clear from this table, our calculations overestimate all the macroscopic
moduli in Voigt, Reuss and Hill limits compared to WIEN2k results. This could
be expected from our results for elastic constants in Table 6.5. However, in
comparison to FLAPW results, EMTO underestimates the shear and Young’s
moduli.

Figure 6.5 shows the calculated elastic constants of NiTi(1-x)Hf(x) in B2 struc-
ture as a function of Hf concentration x. These graphs show that by increasing
the Hf content, C11 increases from 204 GPa up to 222 GPa at x = 0.2 and
then remains almost constant until x = 0.5. On the other, hand C12 decreases
from 135 GPa at x = 0 to 114 GPa at x = 0.5. The trend of C ′ calculated by
C ′ = (C11 − C12)/2 is quite similar to C11 so that it increases form 35 GPa at
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Figure 6.5: Elastic constants of NiTi(1-x)Hf(x) in B2 structure as a function of Hf
concentration x.

x = 0 to 53 GPa at x = 0.2 and then it remains constant. Finally, C44 does not
show any considerable changes and reduces slightly from 56 GPa at x = 0 to 55
GPa x = 0.5.

Figure 6.6 demonstrates the Hill’s macroscopic moduli and also Zener
anisotropy ratio for B2 structure as a function of Hf concentration. One can
see from this figure that BH decreases from 158 GPa at x = 0 to 149 GPa at
x = 0.5, while for shear and Young’s moduli there are steep increases from x = 0
until x = 0.2 and then remain almost constant. In the left upper panel B is
calculated by a Birch-Murnaghan fit. Both B and BH show similar trends by
increasing Hf content and their maximum difference is 2 GPa at x = 0.2 which
shows consistency of results. Last graph shows that the Zener anisotropy ratio
decreases from ≈1.6 to ≈1.0. Although this ratio for x = 0 is underestimated
compared to the experimental value (shown in Table 6.4), considering only the
trend of this graph shows that increasing Hf content makes the B2 structure
mechanically more isotropic.
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Figure 6.6: Hill’s polycrystalline moduli and Zener anisotropy of NiTi(1-x)Hf(x) in B2
structure as a function of Hf concentration x. In the left upper panel B is calculated
by a Birch-Murnaghan fit.

The calculated elastic constants of B19′ structure as a function of x are
shown in Figure 6.7. Our calculations predict an anisotropic behavior of elastic
constants for the B19′ phase. One can see that for most elastic constants, there
is no clear trend as a function of Hf concentration except for C55 which increases
monotonously. The largest variation occur for C11 decreasing from 281 GPa at
x = 0 to 255 GPa at x = 0.5. It should be noted that since the local atomic
relaxation effect cannot be taken into account in the CPA, the internal atomic
coordinates for all concentrations have been kept fixed at the values taken from
Ref. [101] calculated for pure NiTi. However, experimental observations show
that by increasing Hf content from x = 0 to x = 0.4 the internal atomic coor-
dinates change causing increases for the Ni–Ni and Ti(Hf)–Ti(Hf) and decrease
for Ni–Ti(Hf) average bond lengths [91]. Although there are no experimental
observations for different elastic constants of B19′ phase as a function of Hf
concentration, missing such an effect is most likely a reason for the anisotropic
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Figure 6.7: Elastic constants of NiTi(1-x)Hf(x) in B19′ structure as a function of Hf
concentration x.

behavior of the some constants.

The macroscopic moduli of the B19′ phase are depicted in Figure 6.8. The
upper panel shows the bulk modulus B obtained by Birch-Murnaghan fit com-
pared to Voigt and Reuss’s bulk moduli. One can see from this graph that BV

and B, in contrast to BR, show similar trends by increasing Hf concentration.
Here the results for BR at x = {0.2, 0.3, 0.4} are larger than BV . As it was
discussed in Subsection 6.1.1, the Voigt’s and Reuss’s elastic moduli are the strict
upper and lower limits of elastic moduli, respectively. Thus, BV must be larger
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Figure 6.8: Polycrystalline moduli of NiTi(1-x)Hf(x) in B19′ structure as a function of
Hf concentration x. In the upper panel B is calculated by a Birch-Murnaghan fit.

than or equal to BR for a crystal. The lower panels of this figure show the Voigt
and Reuss’s shear and Young’s moduli as a function of x. From these graphs,
one can see that our calculated Reuss’s moduli from x = 0.2 to x = 0.4 become
negative. To calculate the Reuss’s elastic moduli, one must use the elements of
the elastic compliance matrix sij (see Eqs. (6.22) and (6.23)), which is obtained
by inverting the elastic constants matrix using the ElaStic package. The compli-
ance matrix of the monoclinic structure (with γ 6= 90) has a form similar to the
elastic constant matrix shown in Eq. (6.16), i,e, both are symmetric and have
the same nonzero elements. One can show that each of those nonzero elements
sij with i = 1, 2, 3, 6 depend on all Cij with i = 1, 2, 3, 6, and the rest, i.e, s44,
s45 and s55 depend on all three elastic constants C44, C45 and C55. Thus, it is
clear that even one miscalculated elastic constant can change the values of many
compliance matrix elements and lead to such results. This is most likely due to
missing the local atomic relaxation effect. The calculated values for ER, AV R and
all Hill-averaged properties are also affected by the results for GR and BR (see
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Table 6.7: GV /BV ratio for pure NiTi in B2 and B19′ phases.

This work Theory[101] Theory[104] Theory[103] Exp

EMTO FLAPW+lo PAW FLAPW[105]

WIEN2k[8] VASP[9–11]

B2 GV /BV 0.30 0.20 0.11 0.22 0.19[107]

B19′ GV /BV 0.37 0.35 0.37 0.45 –

Subsection 6.1.1).

According to Pugh’s empirical rule [109], the ratio of G/B has a close rela-
tionship with ductile/brittle behavior of the material. Materials with G/B ≤ 0.57
have a tendency to be to be ductile. This ratio for pure NiTi in both B2 and
B19′ phases are shown in Table 6.7. All the computational methods including
EMTO calculate this ratio less than 0.57, showing intrinsic ductility of pure NiTi
in agreement with experiment. For the B2 our result overestimates G/B com-
pared to experiment and other DFT results and for B19′ structure, our result is
in a good agreement with other DFT results.

It is known by experimental observation that adding Hf makes the alloy less

Figure 6.9: GV /BV ratio for NiTi(1-x)Hf(x) in B2 and B19′ phases as a function of
Hf concentration x.
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ductile [93]. For instance, experimental investigation on tensile behavior of the
Ni49Ti36Hf15 shows a partially brittle behavior for this alloy [110]. The graph
of GV /BV ratio as a function of Hf content is illustrated in Figure 6.9. As one
can see from this graph, according to the empirical Pugh’s rule the EMTO-CPA
calculations for both phases yield GV /BV for all values of x in the ductile regime,
which is not in agreement with experiment. However, the overall trend of this
ratio for the B2 phase shows that adding Hf content decreases the ductility, which
is in agreement with experiment, while for the B19′ phase it does not change much
compared to the B2 phase.

6.6 Conclusion

In this chapter, we have introduced a number of new improvements within the
EMTO-CPA code as well as the integration with the ElaStic software which
together yield better results for the elastic properties of solids, especially low
symmetry crystals. We have applied these new implementations to calculate the
structural and elastic properties of the shape memory alloys NiTi(1−x)Hfx (x=0,
0.1, 0.2, 0.3, 0.4, 0.5) in both the cubic B2 and the monoclinic B19′ phases.
The ElaStic software automatizes the calculations by generating the input files
and then calculating the elastic properties from the output files. The first mod-
ifications have been performed in the kstr package to increase the accuracy of
Madelung matrices for high ls and also to speed up the calculation of the structure
constants matrix and its energy derivatives.

Conventional EMTO-CPA calculations for investigating elastic constants of
low symmetry crystals usually lead to ragged total energy–strain curves and con-
sequently unreliable results. To improve this behavior, we have introduced the
Voro-shape package as a replacement for the old shape package. This package
employs a Voronoi method for tessellation of the space which in the case of low
symmetry structures leads to a more accurate description of the total energy
within the FCD technique. Applying this package for NiTi(1−x)Hfx in the mono-
clinic B19′ structure enhances the smoothness of the energy-strain curves. How-
ever, our calculations show that despite the great improvement of the smoothness
of these curves by applying the Voro-shape package, there are still some points
with discontinuous jumps. Further analysis to find the source of this behavior
revealed that for the strains where the discontinuous jumps take place, the num-
ber of radial mesh points inside the inscribed spheres changes. Our calculations
show that keeping the number of these mesh points for all distorted structures of
a strain type constant, improves the energy trends at these points.

Our results for structural properties of NiTi(1−x)Hfx are in a good agreement
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with experimental data, except the increasing c0 lattice parameter of the mon-
oclinic phase as a function of Hf concentration which is in contradiction with
experimental data. The results for elastic constants of pure NiTi in the B2 phase
show that the current implementation of EMTO-CPA usually overestimate these
quantities which is in agreement with previous applications of this code on high
symmetry crystals. The results for NiTi(1−x)Hfx in this phase reveal a steep in-
crease for C11 as a function of x until x = 0.2 and then it remains almost constant.
A similar behavior has been obtained for the shear and Young’s moduli. On the
other hand, C12, similar to the Zener anisotropy A, demonstrates a steep decrease
as a function of x until x = 0.2 and then remains constant. The calculated value
for C44 does not show any significant change for all values of Hf concentration.

The results for the elastic constants of pure NiTi in the B19′ phase confirm
that with help of the above-mentioned improvements, the accuracy of the major-
ity of the calculated elastic constants are in the same range as the ones for the
B2 phase. However, there are also some constants such as C23 with a large dif-
ference compared to other computational results. We believe such discrepancies
are related to two factors, first, using inconsistent data for the relaxed atomic
positions and second, possibly higher influence of the non-spherical part of the
potential on such properties of the low symmetry crystals that is not taken into
account accurately in the current implementation of the EMTO-CPA code. For
NiTi(1−x)Hfx in the B19′ phase the majority of the calculated elastic constants do
not show a clear trend as a function of Hf concentration. Thus, our calculations
predict an anisotropic behavior for this properties. The unexpected calculated
values for Reuss macroscopic elastic moduli of x = {0.2, 0.3, 0.4} in the B19′

phase obtained from the calculated elastic constants also reveal the inaccuracy of
the elastic constants results, which is most likely due to missing the local atomic
relaxation effect.

Finally, our results for GV /BV of both phases and for all values of x yield
values less than 0.57. According to Pugh’s empirical rule, this means that our
calculations predict a ductile behavior for all values of 0 ≤ x ≤ 0.5 in both
phases. For pure NiTi, this is in agreement with experiment, while, for x ≥ 0.3
this is in contradiction with experiment. Nevertheless, the overall trend of our
results for this ratio as a function of x confirms that by adding more Hf content,
the ductility decreases which is in agreement with experimental observations.
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