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Abstract
In photoemission orbital tomography (POT), one measures the angular-distribution
of the photoelectron intensity of oriented organic molecules and interprets these
so-called momentum maps as the Fourier transform of the molecular orbital from
which the electron has been emitted. Recently, photoemission orbital tomography
has been extended to not only describe electron emission from the electronic ground
state, but from optically excited states, so-called excitons. This approach, dubbed
exPOT [Phys. Rev. B. 108, 085132 (2023)] allows to visualize, in momentum space,
the dynamics of excited states in molecular systems in real time by measuring the
angle-resolved momentum distribution of photoelectrons ejected by a laser pulse in
the extreme ultraviolet.

In this work, we validate the exPOT formalism for a series of organic molecules.
Specifically, we focus on organic molecules that exhibit excited states which are
characterized by a transition density matrix containing more than one dominant
contribution. To this end, we introduce a computationally efficient prescreening
method to identify candidate molecules exhibiting such non-trivial excited states.
For a chosen set out of these molecules, we solve Casida’s equation to quantify the
particle-hole contributions, which enables the application of exPOT to compute mo-
mentum maps. These findings are cross-checked by directly simulating pump-probe
angle-resolved photoemission spectroscopy using time-dependent density functional
theory. Thereby, we confirm the predictions of exPOT for excitons with multiple
contributions in the transition density matrix in terms of the energy and momentum
distribution of the resulting photoemission signatures.
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Zusammenfassung
Photoemissions-Orbitaltomographie (POT) misst die Winkelverteilung der Pho-
toelektronenintensität von orientierten organischen Molekülen und interpretiert
diese sogenannten Impulskarten als Fourier-Transformation des Molekülorbitals,
aus dem das Elektron emittiert wurde. Kürzlich gelang es die Photoemissions-
Orbitaltomographie zu erweitern, so dass nicht nur die Elektronenemission aus dem
elektronischen Grundzustand, sondern auch aus optisch angeregten Zuständen, soge-
nannten Exzitonen, beschrieben werden kann. Dieser Ansatz, genannt exPOT [Phys.
Rev. B. 108, 085132 (2023)], ermöglicht es, die Dynamik angeregter Zustände in
molekularen Systemen in Echtzeit im Impulsraum zu visualisieren, indem die winke-
laufgelöste Impulsverteilung von Photoelektronen gemessen wird, die durch einen
Laserpuls im extremen Ultraviolettbereich emittiert werden.

In dieser Arbeit validieren wir den exPOT-Formalismus für eine Reihe organis-
cher Moleküle. Insbesondere konzentrieren wir uns auf organische Moleküle, die
angeregte Zustände aufweisen, die durch eine Übergangsdichtematrix gekennze-
ichnet sind, die mehr als einen dominanten Beitrag enthält. Zu diesem Zweck
führen wir eine numerisch effiziente Vorauswahlmethode ein, um Kandidaten-
moleküle zu identifizieren, die geeignete, das heißt, nicht-triviale angeregte Zustände
aufweisen. Für einen ausgewählten Satz dieser Moleküle lösen wir anschließend
die Casida-Gleichung, um die Teilchen-Loch-Beiträge zu quantifizieren, was die
Anwendung von exPOT zur Berechnung von Impulskarten ermöglicht. Diese
Ergebnisse werden durch direkte Simulation der winkelaufgelösten Pump-Probe-
Photoemissionsspektroskopie unter Verwendung der zeitabhängigen Dichtefunktion-
altheorie gegengeprüft. Dadurch bestätigen wir die Vorhersagen von exPOT für
Exzitonen mit mehreren Beiträgen in der Übergangsdichtematrix in Bezug auf die
Energie- und Impulsverteilung der resultierenden Photoemissionssignaturen.
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1 Introduction
The emergence of photoemission orbital tomography (POT) has transformed our
ability to bridge theory and experiment in understanding the electronic structure
of organic molecular layers [1, 2, 3]. In this technique, momentum maps, the an-
gular dependence of the photoelectron intensity at constant initial state binding
energy, are linked to the Fourier transform of the electron-emitting molecular or-
bitals. This provides a direct connection between angle-resolved photoemission spec-
troscopy (ARPES) experiments and theoretical models. ARPES thus serves as the
backbone of POT, revealing the momentum-resolved electronic structure of thin
films and organic interfaces.

POT has been successfully applied to explore a range of phenomena, from charge
transfer mechanisms at organic/metal interfaces [4] and the aromaticity of large π-
conjugated molecules [5]. However, its extension to optically excited states has
remained a challenge. Recent advances in femtosecond pump-probe ARPES have
made it possible to track the momentum distribution of optically excited electrons in
real-time, thereby opening new avenues for studying ultrafast electron dynamics [6].
To address this gap, a simple approach that describes the excited state momentum
map as the Fourier transform of the coherent sum of the electronic part of the exciton
wave function. This recently proposed approach is called exPOT and provides a
theoretical link between the momentum maps and exciton structures [7]. In this
thesis, we validate this approach for a series of organic molecules in the gas phase by
directly simulating the optical excitation and the subsequent photoemission within
real-time time-dependent density functional theory. In particular, we investigate
molecules, which exhibit excited states characterized by a superposition of several
single-particle transitions, as this allows to demonstrate the full potential of exPOT.
In order to find suitable candidate molecules, we develop a prescreening method
based on ground state density functional theory (DFT) properties, which enables
the prediction of exciton structures described by particle-hole contributions with
low computational cost.

The thesis is organized as follows. Initially, the methods used throughout this
thesis are outlined. This includes an introduction to DFT together with essential
approximations to exchange-correlation functionals. Next, an overview of time-
dependent density functional theory (TDDFT) is given as a framework for mod-
eling excited states in the real-time (RT-TDDFT) fashion but also linear response
(LR-TDDFT) regime by addressing Casida’s equation. This is followed up by the
theoretical description of photoemission introducing the exPOT formalism, natural
transition orbitals (NTOs) and the time-dependent surface flux method to capture
angle-resolved photoemission. The chapter is concluded with a brief discussion of
group theory and transition dipole moments explaining the role of molecular sym-
metry and selection rules in electronic transitions.

Then, we focus on the development of the prescreening method. By using in-
formation that is readily available from ground state DFT computations, such as
the symmetry of Kohn-Sham orbitals, transition dipole moments, and energy dif-
ferences between occupied and unoccupied orbitals, we examine the properties of
excited states that feature a mixing of electron transitions. Focusing on molecules
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in the gas phase, we apply this method to small organic molecules consisting of less
than 40 atoms. In this process, we select molecules with large energy differences
between the orbitals involved in the transition and distinguishable momentum map
features for further analysis. The chosen molecules are suitable for momentum map
calculations, given their manageable computational requirements and experimental
practicality.

Subsequently, we solve Casida’s equation to obtain the optical absorption spectra
and exciton compositions of the selected molecules. Two methods are employed
for the calculation of optical spectra: real-time time-dependent density functional
theory (RT-TDDFT) and linear response time-dependent density functional theory
(LR-TDDFT). In RT-TDDFT, the system is perturbed by a δ-pulse and allowed to
evolve over time, while in LR-TDDFT, Casida’s equation is solved directly to obtain
the excitation spectra. Convergence tests are conducted to ensure the reliability of
both methods, and their results are compared to ensure consistency.

Eventually, we use the calculated exciton contributions to compute momentum
maps employing the exPOT formalism and validate these predictions using RT-
TDDFT simulations of angle-resolved photoemission spectra performed within the
time-dependent surface flux (t-SURFF) framework. This method describes the pho-
toemission process without assumptions on the final state, by modeling the flux of
emitted electrons as they are tracked through a detector surface. By comparing
these two computational approaches, we confirm that the excited molecular states
correspond to a superposition of multiple single-particle excitations. This highlights
the importance of exPOT for future studies on ultrafast electron dynamics in or-
ganic molecules. By linking ARPES, POT, and TDDFT, we aim to further our
understanding of exciton dynamics and contribute to the emerging field of “orbital
cinematography”, which promises to reveal real-time electron movement in molecular
systems.
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2 Theory

2.1 Density Functional Theory

This chapter provides a concise overview of density functional theory (DFT) to
familiarize the reader with the fundamental terminology used throughout this thesis.
For a more comprehensive introduction, the devoted readers are referred to the
literature [8, 9, 10, 11].

2.1.1 Introduction to Density Functional Theory

The electronic and optical properties of matter are fundamentally determined by the
behavior of electrons, which must be described using quantum mechanics. At the
molecular level, the quantum state of a system containing N electrons is governed
by the Hamiltonian operator

Ĥ = T̂ + Û + V̂ , (1)

with the kinetic energy part

T̂ =
1

2

N∑
i=1

p̂2i , (2)

the Coulomb interaction

Û =
N∑
j>i

1

|ri − rj|
, (3)

and the external potential

V̂ =
N∑
i=1

v(ri). (4)

Many-body quantum mechanics is typically expressed through the wave function
Ψ(r1, r2, . . . , rN). Formally, possible wave functions are given as the eigenfunctions
of the non-relativistic, stationary, and non-magnetic N -electron Schrödinger equa-
tion

ĤΨ = EΨ. (5)

Although the wave function contains all the necessary information, no closed-form
solution exists for systems with more than one electron. Moreover, the complexity
of the problem increases exponentially with the number of electrons, and for
N ≳ 103, the wave function approach becomes an insufficient theoretical description
[12].

In DFT, on the contrary, the electron density corresponding to the ground state
wavefunction, Ψ0, is employed as the primary variable, which reduces the number
of spatial coordinates from 3N to 3 and the complexity of the problem from 3N to
N3 :

n0(r) = n

∫
dr2 · · ·

∫
drN |Ψ0(r, r2, . . . , rN)|2. (6)
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For the electronic ground state of a finite system of interacting electrons, Ho-
henberg and Kohn demonstrated in 1964 that a one-to-one correspondence exists
between the external potential v(r) and the ground state electron density n(r) [13].
This result indicates that all observables can be expressed as functionals of the
ground state electron density. The significant advancement in DFT was achieved
with the work of Kohn and Sham, who provided a practical methodology for approx-
imating the ground state electron density [14]. As the Hohenberg-Kohn theorem is
valid for any form of the electron-electron interaction, one could theoretically con-
sider a scenario with zero interaction, i.e., U = 0. The Kohn-Sham (KS) approach
constructs a system of N non-interacting electrons that effectively approximates the
interacting system. This KS system is described by the following Hamiltonian:

ĤKS = T̂KS + V̂KS =
N∑
i=1

(
p̂2i
2

+ vKS(ri)

)
(7)

Here, it is essential that the non-interacting system is constructed in a way to yield
the same ground state electron density as the interacting system. The ground state
of this non-interacting system can be expressed as a Slater determinant

Ψ0(x1, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣
φN(r1) φN(r2) · · · φN(rN)

...
... . . . ...

φ1(r1) φ1(r2) · · · φ1(rN)

∣∣∣∣∣∣∣ . (8)

The KS orbitals φi need to satisfy the one-body Schrödinger equation

ĤKSφi(r) = ϵiφi(r), (9)

and allow the calculation of the ground state density

nKS(r) =
∑
j

|φj(r)|2 . (10)

As it is required that the KS system must replicate the exact ground state
electron density, the potential vKS needs to be adjusted. In essence, the distinction
between the interacting and non-interacting electron systems, and thus all many-
body effects, must be incorporated into the difference between v and vKS. Thereby,
a connection between the two systems can be established through the ground state
energy of the interacting system

E[n] = ⟨Ψ[n]|T̂ + Û + V̂ |Ψ[n]⟩

= T̂ [n] + Û [n] +

∫
d3r n(r)v(r)

= T̂KS[n] +

∫
d3r n(r)v(r) + EH [n] + Exc[n]. (11)

Hereby, we define the exchange-correlation energy as the crucial quantity that ac-
counts for the differences between the true interacting electron system and the non-
interacting Kohn-Sham system. Specifically, it accounts for the difference between
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the true kinetic energy T and the Kohn-Sham kinetic energy TKS, as well as the
electron-electron interactions beyond the mean-field approximation, where the lat-
ter is described by the Hartree energy

EH [n] =
1

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|
. (12)

With that, it is now possible to calculate the total ground state energy as a func-
tional of a density, which in turn is obtained from single-particle orbitals. Further,
provided Exc is known, this framework represents an exact mapping of the many-
body problem onto an effective single-particle system. In practice, the ground state
density can then be obtained self-consistently from the KS scheme:

1. Begin with an initial guess for the density n(0).

2. Calculate v
(0)
KS[n].

3. Construct the KS Hamiltonian H
(0)
KS.

4. Solve the KS equations H
(0)
KSφ

(1)
i = ϵiφ

(1)
i .

5. Compute the electron density n(1) =
∑

i |φ
(1)
i |2 and the total energy E

(1)
tot .

This procedure is repeated until a convergence criterion, e.g. ϵ =
∣∣∣E(j)

tot − E
(j−1)
tot

∣∣∣,
is met. However, as the exact form of Exc is not known, we are limited to ap-
proximations for exchange-correlation effects, which are discussed in the following
section.

2.1.2 Exchange-Correlation Functionals

The KS approach establishes a theoretical framework for determining the electronic
structure based on the electron density, but to apply it effectively, an approximation
for the exchange-correlation energy or its corresponding potential, as specified in
Eq. 11, must be developed. The first and simplest example, already proposed by
Kohn and Sham, is called local density approximation (LDA) [13]. This name
stems from the assumption that for a slowly varying density the exchange-correlation
functional at each point in space depends only on the local electron density, treating
each point as if it is part of the homogeneous electron gas (HEG). It can be written
as an integral over the exchange and correlation components of the HEG energy per
electron [11]:

ELDA
xc [n] =

∫
d3r n(r)

(
eHEG
x [n] + eHEG

c [n]
)
=

∫
d3r n(r)

(
− 3

4π

(9π/4)1/3

rs
+ eHEG

c (n(r))

)
.

(13)
Results obtained using the LDA approximation often show unexpectedly good agree-
ment with experimental data, even for non-metallic systems with electronic struc-
tures that significantly deviate from the uniform electron gas model. In this work its
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time-dependent counterpart, the adiabatic LDA, plays a vital role and is presented
in Sec. 2.2.1.

However, to improve upon the LDA, several steps for a better description of
exchange-correlation effects can be undertaken. This hierarchy of approximations
is often referred to as Jacob’s ladder of DFT, where the first rung is represented
by the LDA [15]. The next rung on Jacob’s ladder is the generalized gradient
approximation (GGA), which extends beyond the local density by also considering
the density’s spatial gradient, which may be written as:

EGGA
xc [n] =

∫
d3r n(r)Fxc (n(r),∇n(r)) . (14)

The most widely-used functional in this framework is the formulation of Perdew,
Burke and Ernzerhof [16] with more accurate predictions of binding energies and
ionization energies for molecules.

A major limitation of local and semi-local exchange-correlation functionals like
LDA and PBE is their inaccurate prediction of energy levels. This issue can be mit-
igated by incorporating a fraction of Fock-exchange, also known as exact-exchange
from Hartree-Fock theory, into the DFT energy expression as

EHF
x = −

∑
j>i

∫
d3r d3r′

φ∗
i (r)φ

∗
j(r

′)φj(r)φi(r
′)

|r− r′|
. (15)

Various functionals arise through different mixing ratios of semi-local exchange-
correlation functionals with exact exchange, with one of the most common being
B3LYP [17]:

EB3LYP
xc = (1− α)ELDA

x + αEHF
x + βEB88

x + γELYP
c + (1− γ)ELDA

c (16)

with α = 0.2, β = 0.72, γ = 0.81, and the GGA functionals EB88
x from Becke

[18] and ELY P
c from Lee, Yang, and Parr [19]. However, including Fock-exchange

increases the computational cost as solving the two-body integrals is expensive and
scales quadratically with the size of the system. Heyd, Scuseria, and Ernzerhof
(HSE) [20] proposed a solution to this issue by modifying the Coulomb interaction

1

r
→ 1− erf(ωr)

r
+

erf(ωr)
r

(17)

with the help of the error function

erf(x) =
2√
π

∫ x

0

dx′ e−x′2
. (18)

Eq. 17 can now be evaluated using distinct exchange-correlation methods for each
term, incorporating an effective range-separation parameter ω to control the spatial
range at which Fock exchange is included. This approach reduces the computational
complexity by minimizing the number of non-local integrals that must be computed.
The HSE energy functional is expressed as

EHSE
x (ω) = (1− α)EPBE,SR

x (ω) + αEHF,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (19)
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where PBE is used for both the long-range exchange energy and the correlation
energy. In progressing from B3LYP to HSE, we move from a global hybrid functional
to a range-separated hybrid (RSH) functional, with α and ω serving as parameters
that govern the mixing and separation of exchange contributions.

2.2 Time-dependent Density Functional Theory

In this section we extend density functional theory to the time-dependent regime
and show how time-dependent external potentials can be used to take into account
light-matter interaction. For further details on the following discussion, please refer
to [21, 22, 23].

2.2.1 Introduction to Time-dependent Density Functional Theory

For a system of N electrons under the influence of a time-dependent potential v(r, t),
the potential operator is given by

V̂ (t) =
N∑
i=1

v(ri, t) (20)

Thus, the Hamiltonian Ĥ(t) becomes explicitly time-dependent. Consequently, we
seek a solution to the time-dependent many-body Schrödinger equation (SE):

i
∂

∂t
Ψ = Ĥ(t)Ψ (21)

For similar reasons as in the static case, we aim to replace the many-body
wavefunction Ψ({ri}, t) with the electron density n(r, t) and introduce single-
particle Kohn-Sham orbitals φKS

i (r, t), analogous to ground state DFT. While
the Rayleigh-Ritz variational principle can be used to ensure that the density is
a valid replacement in the static case, this is not possible for the time-dependent case.

Runge-Gross Theorem
The proof of the one-to-one correspondence between time-dependent potentials

and densities, up to a time-dependent additive term, was given by Runge and Gross
[23]. This theorem replaces the Hohenberg-Kohn theorems in TD-DFT and estab-
lishes that the external potential v(r, t) is uniquely determined by the density n(r, t),
for a given initial state Ψ0 at time t0, which will be summarized in the following.

Consider the Heisenberg equation of motion for the expectation value j(r, t) of
the current-density operator Ĵ(r):

j(r, t) = ⟨Ψ(t)|Ĵ(r)|Ψ(t)⟩ (22)

with

Ĵ(r) = − i

2

N∑
i=1

[∇iδ(r− ri) + δ(r− ri)∇i] . (23)

This leads to
∂

∂t
j(r, t) = i⟨Ψ(t)|[Ĥ, Ĵ(r)]|Ψ(t)⟩. (24)
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Assuming two external potentials v(r, t) and v′(r, t) differ by more than a time-
dependent term

w(r, t) := v(r, t)− v′(r, t) ̸= w(t), (25)

and further assuming a common initial state Ψ0, we have

∂

∂t
(j(r, t)− j′(r, t))

∣∣∣∣
t=t0

= i⟨Ψ0|[v(r, t)− v′(r, t), Ĵ(r)]|Ψ0⟩ = n(r, t0)∇w(r, t0).

(26)
If the condition in Eq. 25 is satisfied, the two current densities will evolve differently
for t > 0. Using the continuity equation

∂

∂t
n(r, t) = −∇j(r, t), (27)

we can express the result from Eq. 26 in terms of the electron density as

∂2

∂t2
[n(r, t)− n′(r, t)]

∣∣∣∣
t=t0

= −∇[n(r, t0)∇w(r, t0)] (28)

To demonstrate that the right-hand side of Eq. 28 cannot vanish under the assump-
tion of Eq. 25, we consider the integral∫

d3r w(r, t)∇·[n(r, t0)∇w(r, t)] =

∫
d3r∇·[w(r, t)n(r, t0)∇w(r, t)]−

∫
d3r n(r, t0)[∇w(r, t)]2.

(29)
The first term on the right can be rewritten as a surface integral using Gauss’s
theorem, which vanishes for reasonable densities that decay sufficiently fast. The
second term has a strictly positive integrand, meaning the right-hand side of
Eq. 28 cannot vanish. This confirms that the densities for two different external
potentials evolve differently, supporting the one-to-one mapping n → v promised
by the Runge-Gross theorem. However, this only proves the uniqueness, not the
existence, of the external potential for a given density. This concern is known as the
“v-representability problem” [22], which, howeverm turns out not to limit practical
applications of the Runge-Gross theorem.

Time-dependent Kohn-Sham Equations
In analogy to the static case, we introduce a Kohn-Sham system of N non-

interacting electrons influenced by a potential vKS[nKS,Φ0](r, t), which yields an
identical electron density nKS(r, t) as the fully interacting system:

nKS(r, t) =
N∑
i=1

|φi(r, t)|2. (30)

These time-dependent Kohn-Sham orbitals φi(r, t) then satisfy the time-dependent
Schrödinger equations

i
∂

∂t
φi(r, t) =

(
−1

2
∇2 + vKS[nKS,Φ0](r, t)

)
φi(r, t), (31)

14



where the potential depends on the initial state Φ0, typically constructed from single-
particle wavefunctions via a Slater determinant as in Eq. 8. The time-dependent
Kohn-Sham (TDKS) potential can be expressed as

vKS[nKS,Ψ0,Φ0](r, t) = v(r, t) +

∫
d3r′

nKS(r
′, t)

|r− r′|
+ vxc[nKS,Ψ0,Φ0](r, t). (32)

All entities present in the TDKS potential are functionals of the time-dependent
density n(r, t), except for the external potential v(r, t). Similar to ground state
DFT, the equation defines the time-dependent exchange-correlation potential vxc,
as vKS must reproduce the same time-dependent density as the fully interacting
system.

In real-time TD-DFT, the initial state Φ0 is obtained from a converged DFT
ground state calculation. The individual Kohn-Sham orbitals are then propagated
in time according to Eq. 31 using a numerical scheme for the time derivative,
eliminating the need for a self-consistency cycle.

Adiabatic Local Density Approximation
Many TDDFT applications rely on the adiabatic approximation of the respective

ground state DFT functionals. Given a ground state density n0(r) and ground state
exchange-correlation functional vxc

0 [n0](r), the adiabatic approximation is defined as

va
xc(r, t) = v0xc[n0](r)

∣∣∣∣
n0→n(r,t)

. (33)

This means that the adiabatic exchange-correlation potential depends only on the
current density n(r, t), at a given time t and that there is no memory of the sys-
tem’s past. In this work, the adiabatic local density approximation (ALDA) is used
for time-dependent calculations, based on the homogeneous electron gas exchange-
correlation energy density

vALDA
xc (r, t) =

deHEG
xc (n)

dn

∣∣∣∣
n=n(r,t)

. (34)

However, the ALDA inherits the limitations of the static LDA, along with the
drawbacks of the adiabatic approximation.

Optical Excitations from Real-Time TDDFT
To explore the electronic response to an electromagnetic perturbation an efficient

method is to use a Dirac delta pulse, which instantaneously excites all eigenmodes
of the system [24]. In this scenario, the electric field component in the ν-direction,
is represented as

Eν(t) = E0
νδ(t). (35)

Its Fourier transform
Eν(ω) = E0

ν (36)
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is frequency-independent. The system’s response to the pulse can be captured
through the polarizability tensor αµν(t), which relates the induced dipole moment
pµ(t) in direction µ with the applied electric field:

pµ(t) =
∑
ν

αµν(t)Eν(t). (37)

The tensor’s diagonal components capture the response of the induced dipole along
the same direction as the applied electric field, while the off-diagonal components
describe how perturbations in one direction influence the response in another. In
the frequency domain, the polarizability is given by

αµν(ω) =
1

E0
ν

∫
dt eiωtpµ(t), (38)

Importantly, the imaginary part of the polarizability αµν is directly related to the
photoabsorption cross-section σµν(ω), which provides a direct link to experimental
data

σµν(ω) =
4πω

c
Im [αµν(ω)] . (39)

From this approach the excitation spectrum can be efficiently computed, allowing
for comparison with experimental photoabsorption measurements.

2.2.2 Linear Response TDDFT

In the framework of DFT, the results of a calculation can include both occupied and
unoccupied Kohn-Sham eigenstates, with corresponding eigenenergies ϵi from the
static Kohn-Sham Hamiltonian ĤKS. However, according to Janak’s theorem, these
Kohn-Sham eigenvalues do not represent the true excitation energies of the interact-
ing system. Rather, they serve as auxiliary quantities within the DFT formalism,
since DFT is fundamentally a ground state theory [?]. Within linear response the-
ory, TD-DFT simulates the dynamics of many-body effects during excitation by
describing excited states through time-dependent changes in electron density. In
this context, linear response theory refers to the approximation that the electron
density responds linearly to small external perturbations, allowing for accurate cal-
culations of excitation energies and transition properties. In the following, we briefly
outline linear response TDDFT (LR-TDDFT) [21] and Casida’s equation [25], which
is widely implemented in quantum chemistry software.

Consider a time-dependent external potential

v(r, t) = v0(r) + v1(r, t)θ(t− t0), (40)

where for t < t0, the system experiences only the time-independent potential v0(r),
typically representing the static nuclei’s electrostatic influence. At t = t0, the time-
dependent potential v1(r, t) is applied leading to excitation. Due to the Runge-Gross
theorem the electron density can be written as

n(r, t) = n[vKS](r, t). (41)
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For weak perturbations, the density can be expanded in powers of v1 as

n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . (42)

The first-order response n1(r, t) can be expressed as

n1(r, t) =

∫
dt′

∫
d4r′ χKS(r, t, r

′, t′)vKS,1(r
′, t′), (43)

where χKS[n0](r, t, r
′, t′) is the linear density-density response function:

χKS(r, t, r
′, t′) =

δn[vKS](r, t)

δvKS(r′, t′)

∣∣∣∣
vKS[n0]

. (44)

The integral
∫
d4r represents an integration over real space r and a summation over

the spin coordinate σ,
∑

σ

∫
d3r. The Kohn-Sham potential corresponding to the

first-order density response can be written as

vKS,1(r, t) = v1(r, t) +

∫
d3r′

n1(r
′, t)

|r− r′|
+ vxc,1(r, t). (45)

Here, the first-order exchange-correlation potential vxc,1(r, t) is expressed as

vxc,1(r, t) =

∫
dt′

∫
d4r′ fxc[n0](r, t, r

′, t′)n1(r
′, t′), (46)

and fxc[n0](r, t, r
′, t′) is the time-dependent exchange-correlation kernel, a functional

of the ground state density n0. This kernel, along with the response function
χKS(r, t, r

′, t′), depends only on the time difference t − t′. Switching to frequency
space via Fourier transform introduces the Hartree-xc kernel

fHxc[n0](r, r
′, ω) =

1

|r− r′|
+

∫
d(t− t′)eiω(t−t′)fxc[n0](r, t, r

′, t′). (47)

Substituting this into Eq. 43, the expression for the first-order density response,
yields

n1(r, ω) =

∫
d4r′ χKS(r, r

′, ω)

(
v1(r

′, ω) +

∫
d4r′′ fHxc[n0](r

′, r′′, ω)n1(r
′′, ω)

)
,

(48)
which must be solved self-consistently for n1(r, ω) and contains information about
the system’s resonant frequencies.

Casida’s Equation
In Casida’s approach a more computationally feasible matrix formulation of the

problem in Eq. 48 is achieved by focusing on a finite subspace of occupied or va-
lence, φ0,v and unoccupied or conduction, φ0,c, Kohn-Sham orbitals. This is enabled
through the Kohn-Sham response function in frequency space, which in terms of
these orbitals is written as

χKS(r, r
′, ω) = δσ,σ′

∑
v,c

(fcσ − fvσ)φ0,v(r)φ
∗
0,c(r)φ

∗
0,v(r

′)φ0,c(r
′)

ω − ωvcσ + iη
, (49)
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where ωvcσ = ϵvσ − ϵcσ are the excitation energies of the Kohn-Sham ground state,
distinct from the true excitation energies Ωm, which are given by the poles ω = Ωm

in the density response n1(r, ω). Detailed derivations are out of the scope of this
work and are provided in the literature [25, 22, 21].

The resonance energies Ω and matrices X and Y are obtained by solving the
following eigenvalue equation known as Casida’s equation(

B K
K B

)(
X
Y

)
= Ω

(
−1 0
0 1

)(
X
Y

)
(50)

The matrix elements are defined through the real ground state orbitals as

Bvc,v′c′(ω) = δvv′δcc′(εv − εc) +Kvc,v′c′(ω) (51)

and

Kvc,v′c′(ω) =

∫
d4r

∫
d4r′ φ∗

0,v(r)φ0,c(r)fHxc(r, r
′, ω)φ0,v′(r

′)φ∗
0,c′(r

′). (52)

Here, the matrices X and Y are associated with the particle-hole contributions
to the excited states, describing the mixing of states during electronic transitions.
Specifically, X provides information for the forward excitation from occupied to
unoccupied states, while Y represents the reverse process, essential for capturing
the configuration interaction that arises from correlated electron motion. In the
evaluation of this work, the Tamm-Dancoff approximation is not applied, as both
matrices are calculated. However, we only make use of X, which will be referred to
as transition density matrix.

The first term in matrix B, δvv′δcc′(ϵv − ϵc), corresponds to the energy differ-
ence between an occupied state v and an unoccupied state c. This component
captures the direct contributions of the energy levels to the excitation process. In
contrast, the second term, Kvc,v′c′(ω) accounts for the coupling between different
excitation modes, arising from the exchange-correlation interactions represented
through the kernel fHxc. This coupling term is critical for accurately incorporating
electron-electron interactions that affect the excited-state structure. Note that,
the indices v, v′ and c, c′ label summations over all occupied and unoccupied
Kohn-Sham states, respectively, including continuum states. As a result, this leads
to an infinite-dimensional eigenvalue problem in theory. However, in practical
applications, only a finite number of unoccupied states is considered to ensure
computational feasibility.

2.3 Theoretical Description of Photoemission

In this chapter, we explore the theoretical framework underlying the study of pho-
toemission processes, particularly focusing on photoemission angular distributions
(PADs). First, the technique named "exPOT" expands photoemission orbital to-
mography (POT) to study excited states by directly mapping angular distribu-
tions from the electronic structures of these excited states [7]. Second, we describe
the time-dependent surface flux (t-SURFF) method within real-time TDDFT (RT-
TDDFT), which captures outgoing electron waves without assuming a final state
[26].
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2.3.1 Photoemission from Excitons

In photoemission experiments, both the kinetic energy and momentum of an emitted
photoelectron are measured, leading to a three-dimensional data set I(Ekin, kx, ky).
This data serves as a distinct fingerprint for each electronic state, which is crucial
for understanding the electronic structure of molecules. To theoretically describe
the photoemission process, we start with Fermi’s golden rule

Wi→f ∝ |⟨ΨN
f |Ĥint|ΨN

i ⟩|2δ(ω + EN
i − EN

f ), (53)

which provides the transition probability Wi→f between the initial state ΨN
i with

energy EN
i and the final state ΨN

f with energy EN
f of the N -electron system. Next,

under the dipole approximation, the interaction Hamiltonian Ĥint simplifies to

Wi→f ∝ |⟨ΨN
f |AP̂ |ΨN

i ⟩|2δ(ω + EN
i − EN

f ), (54)

which is known as the one-step-model of photoemission. For the final state ΨN
f , the

"sudden approximation" allows to factorize the wavefunction into a free electron
γk and an (N − 1)-electron term with a hole in the j-th electronic level, assuming
no correlation with the remaining system. With this approximation and through
energy conservation, the kinetic energy Ekin of the emitted electron is related to the
energies of the initial and final states as

Ekin = ω + (EN
i,0 − EN−1

f,j ) = ω − εj, (55)

where εj denotes the ionization potential of the j-th state, from which the electron
is removed. Further, utilizing the Dyson orbital Dj, which describes the overlap
of the initial state and the remaining (N − 1) final state, allows us to express the
matrix element as

⟨ΨN
f |AP̂ |ΨN

i ⟩ =
∫

d3rγ∗
k(rN)AP̂ Dj(r) . (56)

As the next crucial step, a free-electron plane wave approximation for γk is applied,
which allows to relate the photoemission intensity I(k) to the Fourier transform of
the Dyson orbital via

I(k) ∝ |Ak|2 |F [Dj](k)|2 δ(ω − Ekin − ϵj). (57)

This theoretical framework of photoemission facilitates the technique known as pho-
toemission orbital tomography (POT) [1], which effectively combines angle-resolved
photoemission data with quantum mechanical predictions, creating a powerful tool
for visualizing and understanding electronic states.

Next, we examine the extension of POT to include excitons named "exPOT",
expanding its application beyond the study of occupied molecular orbitals through
ground-state electron photoexcitation. For a detailed derivation, see [7]. Excitons,
which are bound electron-hole pairs, represent fundamental optical excitations oc-
curring below the band gap in molecules and non-metallic solids. The wave function
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of the m-th exciton, with excitation energy Ωm, can be expanded in terms of electron
{χc(re)} and hole {ϕv(rh)} basis states as

Ψm(rh, re) =
∑
v,c

X(m)
vc φ∗

v(rh)χc(re). (58)

Here, X(m)
vc represents the transition density matrix as obtained by solving Casida’s

equation [Eq. 50] which characterizes the exciton. Utilizing the sudden approxi-
mation again, one can express the Dyson orbital Dj,m(r) that describes electron
detachment as

Dj,m(r) =
∑
v′

⟨ΨN
i,m|â

†
v′ |Ψ

N−1
f,j ⟩φv′(r) +

∑
c′

⟨ΨN
i,m|â

†
c′|Ψ

N−1
f,j ⟩χc′(r). (59)

In this equation, a†v and ac are the creation and annihilation operators for a hole in
the valence state v and an electron in the conduction state c, respectively. Approxi-
mating ΨN

i,0 by a single Slater determinant and taking into account that all integrals
in the sum over v′ and for c ̸= c′ vanish due to orthogonality allows to write

Dj,m(r) =
∑
v,c

X(m)
vc

〈
ΨN

i,0

∣∣â†vâcâ†câj∣∣ΨN
i,0

〉
χc(r)

=
∑
c

X
(m)
jc

〈
ΨN

i,0

∣∣∣â†j âj âcâ†c∣∣∣ΨN
i,0

〉
χc(r)

=
∑
c

X
(m)
jc χc(r).

(60)

Inserting this into Eq. 53 reduces the photoemission matrix element to

⟨ΨN
f |AP̂ |ΨN

i ⟩ ∝ (Ak)F [Dj,m](k). (61)

Here, F [Dj,m](k) signifies the Fourier transform of the Dyson orbital. The photoe-
mission intensity from the m-th exciton can be obtained by taking energy conserva-
tion into account via

ω = EN
f − EN

i = EN−1
f,j + Ekin − EN

0 − Ωm = Ekin + εj − Ωm (62)

and summing over all possible final hole configurations, resulting in

Im(k) ∝ |Ak|2
∑
j

∣∣∣∣∣∑
c

X
(m)
jc F [χc](k)

∣∣∣∣∣
2

δ (ω − Ekin − ϵj + Ωm) . (63)

This expression, referred to as "exPOT" (exciton POT), predicts that the photoe-
mission signal from a general exciton will exhibit contributions at multiple kinetic
energies, consistent with energy conservation and dependent on the hole’s position
following electron detachment, characterized by the ionization energy εj. At each
allowed kinetic energy, momentum maps are represented as Fourier transforms of
the coherent sum over unoccupied states, weighted by the corresponding transition
density matrix elements.
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2.3.2 Natural Transition Orbitals

Natural transition orbitals (NTOs) [27] enhance the physical understanding of ex-
citons, particularly in the context of the photoemission intensity for exPOT, as
expressed in Eq. 63. Let Nv denote the number of occupied orbitals φv and Nc the
number of unoccupied, or virtual, orbitals χc. Then, the transition density matrix
Xvc can be represented by a matrix of size Nv ×Nc that can be factorized by means
of a singular value decomposition

X = V ΛCT . (64)

Here, V and C are square matrices of sizes Nv×Nv and Nc×Nc, respectively, and Λ is
a rectangular matrix of size Nv×Nc with non-zero diagonal elements λ1, λ2, . . . , λNv .
These singular values are ordered by magnitude, satisfying the normalization con-
dition:

Nv∑
i=1

λ2
i = 1. (65)

Assuming Nv < Nc, we define new orbitals φ̃λ and χ̃λ via the transformations:

φ̃λ =
Nv∑
v=1

V T
λvφv, (66)

χ̃λ =
Nc∑
c=1

CT
λcχc. (67)

The exciton wave function can then be expressed in the electron-hole basis as follows:

Ψ(rh, re) =
Nv∑
λ=1

Λλφ̃
∗
λ(rh)χ̃λ(re). (68)

Incorporating Eq. 64 into the photoemission intensity expression from Eq. 63, we
can reformulate the exPOT intensity in terms of the NTO basis:

Im(k) ∝ |Ak|2
∑
j

∑
λ

VjλΛλ|F [χ̃λ](k)|2δ (ω + Ekin − ϵj + Ωm) . (69)

This transformation simplifies exciton representation using a few significant NTOs,
allowing for controlled accuracy by setting a threshold for Λλ. NTOs also provide
meaningful insights into transition character, enriching the analysis of excited-state
photoemission experiments.

2.3.3 Description of Photoemission in RT-TDDFT

In the RT-TDDFT approach, the system is perturbed with an external light field
whose frequency lies above the ionization threshold. This leads to the time-
dependent emission of charge density into the vacuum, which is detected using
a method based on flux integrals. This approach records the photoelectron flux
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through a detector surface, placed sufficiently far from the system so that only quasi-
free electrons are captured [28]. The flux per unit area provides the photoelectron
intensity, which can be described as a function of kinetic energy, parallel momen-
tum, photon energy, and observation time T . This method, named time-dependent
surface flux method (t-SURFF), adapted for real-time simulations of photoemission,
has been integrated into the OCTOPUS code [29] and applied to both molecular
and periodic systems [26, 30]. The photoelectron intensity is expressed as

I(k, ω, T ) = I(Ekin,k∥, ω, T ), (70)

where Ekin is the kinetic energy, k∥ the parallel momentum, and ω the photon energy.
Within an inner region A, where the electrons interact with the light field and

the atomic nuclei, the system is governed by the Kohn-Sham (KS) Hamiltonian
given by

ĤKS(t) =
1

2

(
p̂− A(t)

c

)2

+ vext(r, t) +

∫
dr′

n(r′, t)

|r− r′|
+ vxc[n](r, t). (71)

In contrast, in an outer region B, where photoelectrons behave as nearly free parti-
cles, their motion is described by the Volkov Hamiltonian expressed as

ĤV(t) =
1

2

(
p̂− A(t)

c

)2

(72)

Therefore, the system is governed by two Hamiltonians depending on the region

Ĥ(t) =

{
ĤKS(t) if r ∈ A,

ĤV(t) if r ∈ B.
(73)

Assuming that after some time T , the charge density between regions A and B
becomes spatially separated, the photoelectrons can be described by the analytical
solutions of the Volkov Hamiltonian. These solutions take the form of plane waves
with an additional phase factor due to the photon field

γk(r, t) = (2π)−3/2eiχ(k,t)eik·r, (74)

where χ(t) is the time-dependent phase factor given by

χ(t) =
1

2

∫ t

0

dτ

(
k− A(t)

c

)2

. (75)

In this context, the photoelectrons’ wave functions in region B can be expanded as

φB
j (r, t) =

∫
dk3 bj(k, t) γk(r, t). (76)

The density in region B, nB(r, t) =
∑

j |ϕB
j (r, t)|2, measures the photoelectrons that

have passed through the detector surface after time T . The total number of photo-
electrons is given by

Nphoto(T ) =
∑
j

∫
dk3 |bj(k, T )|2, (77)
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and the photoemission intensity can be determined from the momentum- and energy-
resolved emission probability. The intensity I(k) is related to the derivative of the
number of photoelectrons with respect to k

I(k) ∝ ∂Nphoto(T )

∂k
. (78)

Alternatively, using the continuity equation, the number of photoelectrons can be
expressed as the electron flux through the detector surface S, where the flux is
computed from the current density j(r, t)

Nphoto(T ) = −
∫ T

0

dt

∮
S
ds j(r, t). (79)

Here, the current density j(r, t) is obtained from the current density operator Ĵ(t)
acting on the Kohn-Sham orbitals

j(r, t) =
∑
j

⟨φj(t)|Ĵ(t)|φj(t)⟩. (80)

Substituting this into the flux equation, one can express the photoemission intensity
as [30]

I(k) ∝
∑
j

∣∣∣∣∫ T

0

dt

∮
S

ds ⟨γk(t)|Ĵ(t)|ϕj(r, t)⟩
∣∣∣∣2 . (81)

Thus, the intensity can be interpreted as a measure of the photoelectron flux that has
successfully traversed the detector, providing insight into the electronic structure of
the system. This framework enables a comprehensive understanding of photoemis-
sion processes, linking the theoretical formulation directly to observable quantities
in experiments.

2.4 Group Theory and Transition Dipole Moments

Group theory is an essential tool in chemistry and physics for describing the sym-
metry properties of molecules and their quantum states. In particular, the set of
irreducible representations of a given point symmetry group, the so-called character
tables, offer a systematic way to analyze how molecular orbitals, vibrations, and elec-
tronic transitions behave under various symmetry operations of a particular point
group. Character tables are instrumental in determining which molecular transi-
tions, such as dipole transitions, are allowed, and in classifying molecular orbitals
based on their symmetry properties [31, 32].

In this section, we will provide an overview of key concepts such as represen-
tations, irreducible representations, and reducible representations, and explain how
symmetry and group theory can predict allowed dipole transitions. We will use the
C2h point group character table as an example [33].
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2.4.1 Representations in Group Theory

In group theory, a representation describes how the symmetry operations of a point
group can be mapped to matrices or functions that describe the transformation of
objects such as molecular orbitals or vibrational modes. These representations are
crucial for characterizing the symmetry of quantum states. A reducible represen-
tation can be viewed as a composite of simpler, fundamental components known
as irreducible representations, abbreviated as irr. rep. A reducible representation
can be broken down into irreducible representations, which represent the most basic
symmetry properties of a system and cannot be simplified further.

Consider the character table for the C2h point group in Tab. 4 below

Tab. 1: Character table for the C2h point group from [33].

C2h E C2(z) i σh Pol. Dir.
Ag 1 1 1 1
Au 1 1 -1 -1 z
Bg 1 -1 1 -1
Bu 1 -1 -1 1 x, y

In this table, C2h denotes the point group of the molecule, describing the sym-
metry operations that leave the molecule unchanged. For C2h, the symmetry opera-
tions are E, the identity operation; C2(z), a 180-degree rotation around the z-axis;
i, inversion through the molecular center; and σh, reflection through the horizontal
mirror plane. The characters, which are the numbers in the table, e.g. 1, -1, indicate
how a molecular orbital or wavefunction behaves under each symmetry operation.
A character of 1 means the wavefunction is unchanged by the symmetry operation,
while a character of -1 means the wavefunction changes sign. The irreducible rep-
resentations Ag, Au, Bg, and Bu represent the symmetry properties of molecular
orbitals or transitions. The letters A and B indicate whether the representation
is symmetric (A) or antisymmetric (B) with respect to the C2(z) rotation. The
subscripts g (gerade) and u (ungerade) refer to symmetry (g) or antisymmetry (u)
with respect to inversion. The Pol. Dir. column lists the polarization directions
associated with the irreducible representations. For example, z indicates that dipole
transitions are allowed along the z-axis for irreducible representation Au, while x
and y indicate dipole transitions are allowed in the xy-plane for Bu. In group theory,
the reduction of a reducible representation into its constituent irreducible represen-
tations is achieved using mathematical techniques like the orthogonality theorem
or projection operators. Each irreducible representation corresponds to a specific
symmetry behavior under the symmetry operations of the point group.

2.4.2 Transition Dipole Moment and Allowed Transitions

One of the most important applications of character tables is in predicting whether
a particular electronic transition is allowed or forbidden based on symmetry. The
transition dipole moment between two quantum states, the initial state Ψi and the
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final state Ψf , is defined by

µfi =

∫
d3rΨ∗

f (r) µ̂Ψi(r) . (82)

In this expression, µfi is the transition dipole moment between the initial state Ψi

and the final state Ψf . The dipole moment operator µ̂ is typically given by −er̂,
where e is the charge of the electron. For each Cartesian direction, the transition
dipole moment can be written as a separate integral, depending on the direction of
the dipole moment operator, as

µx
fi =

∫
d3rΨ∗

f (r) (−ex̂)Ψi(r) , (83)

µy
fi =

∫
d3rΨ∗

f (r) (−eŷ)Ψi(r) , (84)

µz
fi =

∫
d3rΨ∗

f (r) (−eẑ)Ψi(r) . (85)

For a dipole transition to be allowed, at least one of these integrals must be non-
zero. This occurs if the symmetry properties of the initial state, the final state,
and the dipole moment operator along a given direction are compatible according to
group theory. In other words, the product of their irreducible representations must
contain the totally symmetric irreducible representation of the point group. If the
symmetry conditions are not satisfied, the integral will be zero, and the transition
will be forbidden by symmetry rules.

In the C2h point group, the dipole moment operator transforms as x, y, or z,
which correspond to the Bu and Au irreducible representations, respectively. Sup-
pose we are analyzing a transition between two states with the following symmetries:
the initial state Ψi has Bu symmetry, and the final state Ψf has Ag symmetry. The
dipole moment operator along the x-axis transforms as Bu. Thus, the direct product
of the irreducible representations would be

Bu ⊗Bu ⊗ Ag = Ag, (86)

which can be understood through the multiplication of the corresponding rows in
Tab. 4. Since the product contains the totally symmetric irreducible representation
Ag, this transition is allowed along the x-axis. The symmetry of the initial state,
the final state, and the dipole moment operator are compatible, so the transition
dipole moment integral will yield a non-zero value, making this transition allowed
by symmetry along the x-axis.
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3 Results

3.1 Prescreening of Potentially Interesting Molecules

The goal of this section is to develop a computationally efficient prescreening
method, which is able to predict excited states characterized by a non-trivial transi-
tion density matrix. It is based on properties that are readily available from ground
state DFT calculations and involves (i) the symmetry of KS orbitals, (ii) optical
transition matrix elements and (iii) energy differences between unoccupied and oc-
cupied KS orbitals, respectively.

First, we limit ourselves to molecules in gas phase with less than 40 atoms for
computational reasons. Second, as the computationally expensive t-SURFF simula-
tion is restricted to the ALDA functional, we further consider only molecules, if the
LDA calculations result in the same ordering of orbitals as calculations employing
other functionals. To check this, these results are compared to transition dipole
moments and energy differences from B3LYP calculations employing the NWChem
code, readily available in the Molecular Orbital Database [34, 35]. Next, due to the
Heisenberg uncertainty principle and to exclude degeneracies, large enough energy
differences between the states featured in the respective excitation are desirable. Ad-
ditionally, as the goal of the prescreening is finding candidates for the calculation of
momentum maps for the molecules’ excited states, we only proceed with excitation
profiles if the momentum map features of the contributing unoccupied states are
distinguishable enough from each other. Finally, in view of experimental feasibility,
we focus on the respective first excitation along the long molecular axis as resulting
from the absorption spectra exhibiting a non-trivial excited state transition density
matrix.

A table listing all prescreened molecules can be found in appendix A. Out
of these molecules tetracene (4A), fluorene, chrysene (4phenacene) and picene
(5phenacene) essentially fulfill the stated criteria and are further considered. In
addition, sexithiophene (6T) and NTCDA serve as examples for which the chosen
level of theory is not enough but are nevertheless included due to their relevance
for possible experiments. All molecules are planar π−conjugated molecules, which
are oriented in the (xy)−plane with their long molecular axis pointing along the
x−direction as depicted, e.g. in Fig. 1 for 4A. The displayed character tables are
adapted accordingly.

Tetracene
Tetracene (C14H4O6), a polycyclic aromatic hydrocarbons (PAH), belongs to the

class of acenes, consisting of linearly fused benzene rings [36]. It exhibits interesting
excited state dynamics in thin film form such as superradiance, exciton fission and
triplet recombination [37]. Moreover, tetracene single crystals find application as or-
ganic field-effect transistors [38, 39]. POT for tetracene on Ag(110) has revealed two
highest occupied molecular orbital emissions, which correspond to different molec-
ular species, indicating the coexistence of charged and uncharged states within the
film [40].

Tetracene exhibits D2h symmetry (Tab. 2), as it has a center of inversion, three
perpendicular C2 axis and three mirror planes [41, 31]. In this case transitions
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Fig. 1: Geometry of the tetracene molecule.

through x-polarized light, i.e. along the long molecular axis, are allowed if the
product of irreducible representations gives B2u. This is the situation for Ag ↔ B2u,
B1g ↔ B3u, B2g ↔ Au and B3g ↔ B1u transitions. These symmetry selection
rules are in accordance with the transition dipole moments in Fig. 2. Here, the
transition dipole strength is represented as circle areas positioned on a grid with the
valence band states ordered from top to bottom and the conduction band states from
left to right. Note that here and in the following, the highest occupied molecular
orbital (HOMO) is abbreviated as H, while the lowest unoccupied molecular orbital
(LUMO) is abbreviated as L. The labels H − 1, H − 2, H − 3, and so forth refer
to the lower lying valence states, whereas L + 1, L + 2, L + 3, and so on denote
the next higher conduction states. Therefore, the H→L transition is situated in the
top left corner. Additionally, the orbital energy differences are colour-coded where
dark blue indicates small energy differences, while dark red large ones. Panel (a)
shows the result based on database orbitals calculated with the B3LYP functional,
whereas in panel (b) states from an OCTOPUS LDA calculation are used. Both
approaches agree and lead to the same excitation profile, mainly consisting of a
H → L+2 (B3g → B1u) and a H-2 → L (B3g → B1u) transition. Both of these
transitions have similar dipole strengths of 3.2-3.4 eV·Å for both functionals, but, as
expected, larger energy differences of 4.3-4.5 eV for B3LYP compared to 3.0-3.2 eV
for LDA. Therefore, tetracene is a promising example for which two different valence
band state momentum maps appear at kinetic energies corresponding to ionization
potentials of different conduction band states, which represents an actual entangled
state [42].

Tab. 2: Character table for the D2h point group from [33] and 4A orbitals belonging
to a certain irr. rep.

D2h E C2z C2y C2x i σxy σxz σyz Pol. Dir. Orbitals
Ag 1 1 1 1 1 1 1 1
B1g 1 1 -1 -1 1 1 -1 -1
B2g 1 -1 -1 1 1 -1 -1 1
B3g 1 -1 1 -1 1 -1 1 -1 H, H-2
Au 1 1 1 1 -1 -1 -1 -1
B1u 1 1 -1 -1 -1 -1 1 1 z L, L+2
B2u 1 -1 -1 1 -1 1 1 -1 x
B3u 1 -1 1 -1 -1 1 -1 1 y
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(a)

(b)

Fig. 2: Transition dipole moments in x direction in eV·Å as circle areas calculated via
Eq. 82 with colour-coded energy differences and orbitals from (a) readily available
database B3LYP [34] and (b) OCTOPUS LDA ground state calculations for 4A.

Fluorene
Fluorene (C13H10) is another member of the polycyclic aromatic hydrocarbon

family and consists of a five-membered cyclopentane ring fused with two benzene
rings [43]. Also, the electronic properties of fluorene and its heteroanalogues are
characterized by π-conjugation [44]. They act as donors in photoactive materials
containing donor-acceptor-donor structures [45], are the base for click-polymers for
dye-sensitized solar cells [46] and organic field-effect transistors in form of liquid-
crystalline polymers [47]. Moreover, two photon absorption [48] by the means of
TD-DFT and valence and Rydberg electronic transitions [44] have been studied for
fluorene.

Fig. 3: Geometry of the fluorene molecule.

It has a C2v point group symmetry (Tab. 3), because of a two-fold rotational
axis and two vertical mirror planes [31, 32]. This means that transitions through x
polarized light are allowed if the product of the irr. reps. gives Bg, which is the case
for Ag ↔ Bg and Au ↔ Bu. This aligns with the transition dipole moments in Fig. 4
below for the B3LYP (panel (a)) as well as the LDA states (panel (b)), showing non-
vanishing values for H → L, H → L+1, H-2 → L+1 (all Au → Bu) as well as H-1 →
L+2 (Bu → Au) transitions. As the energy difference between the H and L and the
and L+1 energies are comparable, it can be assumed that these will contribute to
the lowest-lying excitation, with the H-1 → L+2 and H-2 → L+1 transitions making
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up the next higher excited state. Therefore, the photoemission angular distribution
(PAD) for the first exciton in fluorene is expected to be proportional to the Fourier
transform of a coherent sum of the L and L+1.

Tab. 3: Character table for the C2v point group from [33] and fluorene orbitals
belonging to a certain irr. rep.

C2v E C2(y) σv(xy) σv(yz) Pol. Dir. Orbitals
Ag 1 1 1 1 y
Au 1 1 -1 -1 H, H-2, L+2
Bg 1 -1 1 -1 x
Bu 1 -1 -1 1 z H-1, L, L+1

(a)

(b)

Fig. 4: Transition dipole moments in x direction in eV·Å as circle areas calculated via
Eq. 82 with colour-coded energy differences and orbitals from (a) readily available
database B3LYP [34] and (b) OCTOPUS LDA ground state calculations for fluorene.

Chrysene
Chrysene (C13H10), a tetracene isomer, thus also composed of four benzene rings,

but arranged in a zigzag manner and part of the phenacene class [49]. It can be
used as a blue fluorescent emitter in organic light-emitting diodes (OLEDs), with
some derivatives showing deep blue emissions and high quantum efficiency [50, 51].
However, it also poses environmental and health risks as it may be phototoxic and
photogenotoxic under UVB radiation [52] and contains carcinogenic properties and
environmental persistence due to low solubility [53]. First principle calculations have
revealed that it undergoes a red-shift under pressure [54], and the time-dependent
density functional based tight binding (TD-DFTB) method has been applied to in-
vestigate electronic relaxations, revealing that the brightest excited state in chrysene
decays faster compared to tetracene [55].

With a two-fold rotational axis (C2), a mirror plane perpendicular to the C2-
axis, that lies in the plane of the molecule and a center of inversion, it has C2h point
group symmetry (Tab. 4) [31, 56]. The corresponding character table is
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Fig. 5: Geometry of the chrysene molecule.

Tab. 4: Character table for the C2h point group from [33] and chrysene orbitals
belonging to a certain irr. rep.

C2h E C2(z) i σh Pol. Dir. Orbitals
Ag 1 1 1 1
Au 1 1 -1 -1 z H, H-1
Bg 1 -1 1 -1 L, L+1
Bu 1 -1 -1 1 x, y

The transitions in Fig. 6 exhibiting the strongest dipole moment with the lowest
energy differences of 4.2-5.1 eV for B3LYP and 2.9-3.8 eV for LDA are H → L, H
→ L+1, H-1 → L and H-1 → L. These are allowed per x polarization according to
C2h symmetry because they are of Au → Bg kind, as the direct product of these
irr. rep. and gives Bu. Here, it needs to be noted that H → L+1 shows a stronger
dipole moment than H → L, while H-1 → L shows a stronger one than H-1 →
L+1. This indicates that for the first excitation two PADs appear at different
kinetic energies, that both show features of the L and L+1 PAD, however, differing
regarding the main contribution. Additionally, by comparing Fig. 6 panel (a) with
panel (b) it is visible that the ordering of the L+3 and L+4 is interchanged for the
two applied functionals. However, transitions involving these states are expected
to not considerably contribute to the lowest lying excitation due to weak transition
dipole moments and low energy differences compared to the aforementioned H and
H-1 transitions.
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(a)

(b)

Fig. 6: Transition dipole moments in x direction in eV·Å as circle areas calculated
via Eq. 82 with colour-coded energy differences and orbitals from (a) readily avail-
able database B3LYP [34] and (b) OCTOPUS LDA ground state calculations for
chrysene.

Picene
The five-ring phenacene member, picene, has the chemical formula C22H14 and is

an isomer of pentacene [49]. It is a versatile material in electronic and optoelectronic
applications such as field-effect transistors (FETs) using alkyl-substituted picene
demonstrating high field-effect mobility [57]. Additionally, picene nanocrystalline
thin films doped with pentacene exhibit efficient energy transfer from picene to
pentacene, resulting in intense photoluminescence from pentacene, which could be
exploited in applications such as microwave amplification by stimulated emission
[58]. It was used as an example for the simulation of angle-resolved photoemission
spectroscopy (ARPES) intensity maps by approximating the final state as a plane
wave [2] and POT was applied to a picene multilayer on an Ag(110) multilayer
deconvoluting the free frontier orbitals of picene [59, 60].

Fig. 7: Geometry of the picene molecule.

It has C2v point group symmetry (Tab. 5) due to a two-fold rotational axis and
two vertical mirror planes [31, 56]. The transitions discussed in the following are all
of Au ↔ Bu kind and thereby allowed via x polarization. Panel (a) as well as (b) of
Fig. 8 are dominated by the H → L transition as it exhibits the strongest transition
dipole together with the lowest difference in orbital level energies. Additionally,
the next strongest allowed transitions are H-1 → L+1, H-1 → L+2, H-2 → L+1
and H-2 → L+2 with energy differences ranging from 4.6 eV to 5.7 eV for B3LYP
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Tab. 5: Character table for the C2v point group from [33] and picene orbitals be-
longing to a certain irr. rep.

C2v E C2(y) σv(xy) σv(yz) Pol. Dir. Orbitals
Ag 1 1 1 1 y
Au 1 1 -1 -1 H-1, H-2, L
Bg 1 -1 1 -1 x
Bu 1 -1 -1 1 z H, L+1, L+2

and from 3.3 eV to 4.1 eV for LDA. This suggests that the lowest lying picene
excitation mainly consists of the H → L transition and that a higher lying one has
contributions similar to the chrysene case. Namely, two momentum distributions
composed of features associated with the L+1 and L+2, but varying in intensity
and appearing at two different kinetic energies.

(a)

(b)

Fig. 8: Transition dipole moments in x direction in eV·Å as circle areas calculated via
Eq. 82 with colour-coded energy differences and orbitals from (a) readily available
database B3LYP [34] and (b) OCTOPUS LDA ground state calculations for picene.
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Sexithiophene
Sexithiophene is an organic semiconductor with optical and electronic properties

controlled by its π-conjugation [61], whose UV-visual absorption spectrum is char-
acterized by a few distinct peaks [62]. 6T thin films in particular find application
in organic photovoltaic cells [63]. As it can be seen in Fig. 9, it consists of 6 planar
thiophene, C4H4S, rings and its molecular formula is C24H14S6.

Fig. 9: Geometry of the sexithiophene molecule.

Sexithiophene belongs to the C2h symmetry group (Tab. 6) as it has a mirror
plane perpendicular to the two-fold rotational axis C2 [62, 64]. For dipole-allowed
optical transitions, which are polarized in the (xy)−plane, the product of initial
and final states must belong to the irreducible representation Bu. This implies that
the permitted transitions involve Ag and Au or Bg and Bu states, respectively, as
initial and final states. These selection rules are consistent with the transition dipole
moments for the long molecular axis illustrated in Fig. 10, where panel (a) is based
on database orbitals calculated with the B3LYP functional and panel (b) on an
OCTOPUS LDA calculation. Here it can be seen that the H → L (Bg → Au) and
H-1 → L+1 (Au → Bg) transitions show the strongest transition dipole moments
with additional, but weaker, contributions from H-2 → L, H-3 → L+3 (both Bg →
Au) and H → L+2, H-2 → L+2 (both Bg → Au) for both functionals. Therefore,
similar to tetracene, the excitation profile for 6T promises to represent an entangled
state.

Tab. 6: Character table for the C2h point group from [33] and 6T orbitals belonging
to a certain irr. rep.

C2h E C2(z) i σh Pol. Dir. Orbitals
Ag 1 1 1 1
Au 1 1 -1 -1 z H-1, L, L+2, L+3
Bg 1 -1 1 -1 H, H-2, H-3, L+1
Bu 1 -1 -1 1 x, y
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(a)

(b)

Fig. 10: Transition dipole moments in x direction in eV·Å as circle areas calculated
via Eq. 82 with colour-coded energy differences and orbitals from (a) readily available
database B3LYP [34] and (b) OCTOPUS LDA ground state calculations for 6T.

NTCDA
1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is an organic semicon-

ductor exhibiting a wide band gap, which makes it transparent in visible range and
useful as an exciton blocking layer in organic photovoltaic devices [65]. In the context
of POT NTCDA has been used as an example to show that understanding photoe-
mission intensities requires going beyond the molecular orbital picture, as imaging
experiments show Dyson orbitals [3]. It contains a naphthalene ring system, which
consists of fused C6 aromatic rings [66]. Its molecular formula is C14H4O6 and the
geometry can be seen in Fig. 11 below.

Fig. 11: Geometry of the NTCDA molecule.

As it contains three mutually perpendicular symmetry planes as well as three
C2 rotational axes, whose crossing point is a center of symmetry, it belongs to
the D2h point group (Tab. 7) [31, 67]. Transitions along the long molecular axis
(x direction) for this point group are electronically allowed if the direct product
of the representations of the electronic states has B2u symmetry [33]. This is in
accordance with the transition dipole moments shown in Fig. 12. Here it needs to
be noted that for panel (a) states calculated with the B3LYP functional are used,
whereas panel (b) is based on the PBE and panel (c) on the LDA functional. This
explains the different ordering of the outer valence orbitals and in particular the
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Tab. 7: Character table for the D2h point group from [33] and NTCDA orbitals
belonging to a certain irr. rep.

D2h E C2z C2y C2x i σxy σxz σyz Pol. Dir. Orbitals (PBE, LDA) Orbitals (B3LYP)
Ag 1 1 1 1 1 1 1 1
B1g 1 1 -1 -1 1 1 -1 -1
B2g 1 -1 -1 1 1 -1 -1 1 L, L+5 L
B3g 1 -1 1 -1 1 -1 1 -1 H-6, H-8, L+2 L+2
Au 1 1 1 1 -1 -1 -1 -1 H-1 H
B1u 1 1 -1 -1 -1 -1 1 1 z H-4, L+1 H-2
B2u 1 -1 -1 1 -1 1 1 -1 x
B3u 1 -1 1 -1 -1 1 -1 1 y

change in π- or σ-character for the HOMO, as discussed in [3]. This underlines
the importance of the choice of functional for ExPOT [Eq. 63], to correctly explain
the contributing particle-hole interactions and momentum map features. However,
the apparent transitions are consistent with respect to the symmetry rules from
Tab. 7 as the H-1 → L transition for PBE and LDA and the H → L transition
for B3LYP are of Au → B2g kind. Moreover, the additional transitions in Fig. 12
are electronically allowed with the H-1 → L+5 transition being of Au → B2g, H-4
→ L+2 of B1u → B3g and H-6 → L+1 and H-8 → L+1 of B3g → B1u character.
As the states involved in these transitions are also energetically close, NTCDA is
interesting for further Casida calculations.
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(a) (b)

(c)

Fig. 12: Transition dipole moments in x direction in eV·Å as circle areas calculated
via Eq. 82 with colour-coded energy differences and orbitals from (a) B3LYP and
(b) PBE ground state calculations from [34] and (c) OCTOPUS LDA ground state
calculations for NTCDA.
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3.2 Optical Response

In this section, we describe and compare two different ways to obtain optical absorp-
tion spectra of the investigated molecules together with convergence test results for
these methods. The convergence plots are only shown for 4A, as the results for the
other molecules do not deviate significantly. Additional results for the remaining
molecules can be found in Appendix B.

On the one hand, we employ RT-TDDFT where, after a preceding ground state
calculation, we perturb the system at an initial time t = 0 with a δ-pulse with a
pulse strength of 0.01 Å−1 that equally excites all optically allowed transitions [68].
The system then evolves for 6.5 fs with a time step of 1.5 as. Regarding convergence,
we vary the real space grid point spacing from 0.18 Å to 0.32 Å as well as the radius
of the spherical simulation box from 5.0 Å to 12.0 Å. For these tests, we define the
convergence criterion to be an energy difference of 0.01 eV for the peak energy of
the excitation of interest. We continue to use the obtained spacing and excitation
energy values in the subsequent t-SURFF simulation, as it is also performed in the
RT-TDDFT realm.

On the other hand, we compute the absorption spectrum by solving Casida’s
equation [Eq. 50] from LR-TDDFT [25]. To this end, we start from a ground state
calculation using the same geometry parameters from the RT-TDDFT calculation
and but we perform an unoccupied states calculation with 300 additional states.
Note that this value is at least 5 times the number of occupied states of the con-
sidered molecules. Based on these states, the optical spectrum together with its
decomposition into transitions from electron-hole pairs is obtained. We seek con-
vergence of the spectrum with respect to the Kohn-Sham energy window, i.e. the
maximally allowed eigenvalue difference for specifying which occupied-unoccupied
transitions will be taken into account, from 18 eV to 38 eV with a convergence thresh-
old defined by an energy difference of 0.01 eV for the targeted peak. The thereby
calculated transition density matrix for the m-th excitation X

(m)
vc quantifies the re-

spective exciton characteristics and renders the calculation of momentum maps via
the exPOT approach [Eq. 63] possible. Moreover, note that the calculations include
de-excitations beyond the Tamm-Dancoff approximation.

3.2.1 Tetracene

Fig. 13 shows the absorption spectrum of 4A for light polarized along the x-direction
upon excitation with a δ-pulse for different grid spacing values ranging from 0.18 Å
to 0.32 Å. In panel (a), it can be seen that the spacing values of 0.24 Å and be-
low, the spectra can be considered to be converged even for energetically higher
excitations above 10 eV. Panel (b) shows a zoomed-in region around the first promi-
nent absorption peak revealing revealing convergence of the peak with respect to
the spacing within 0.01 eV at 4.34 eV. In order to ensure sufficient accuracy in the
t-SURFF simulation while keeping the computational cost reasonable, we rely on a
grid spacing value of 0.22 Å and select a pump pulse energy of 4.34 eV.

In order to test the robustness of the Casida LR-TDDFT spectrum with respect
to the Kohn-Sham energy window, the spectra are calculated for energy windows
ranging from 18 eV to 38 eV, which is illustrated in Fig. 15. From panel (a) it is
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(a) (b)

Fig. 13: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the grid spacing for 4A for the (a) full energy range and (b)
zoomed in on the relevant excitation.

(a) (b)

Fig. 14: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the simulation box radius for 4A for the (a) full energy range
and (b) zoomed in on the relevant excitation.

apparent that all curves are matching closely even beyond the relevant energy range
up to 10 eV, with only the 18 eV showing some deviations for transition energies
larger than 15 eV on. This disagreement increases from 17 eV onwards with also the
22 eV curve starting to show significant differences. Taking a closer look at the first
peak in panel (b), it can be seen that the 30 eV, 34 eV and 38 eV curves align very
well at a peak position of 4.34 eV, with the other curves straying notably. Therefore,
we proceed with the Casida contributions resulting from the 30 eV energy window
calculation for the calculation of momentum maps via the exPOT approach.
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(a) (b)

Fig. 15: Convergence of the Casida LR-TDDFT optical spectrum with respect to
the Kohn-Sham energy window for 4A for the (a) full energy range and (b) zoomed
in on the relevant excitation.
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3.3 Momentum Maps

The goal of this section is to simulate photoemission angular distribution maps, so-
called momentum maps, for optically excited states. These theoretical predictions
are relevant for time-and angle-resolved photoemission experiments, where a pump
laser pulse creates an optical excitation and probe pulse kicks out an electron from
the molecule.

From the optical absorption spectra discussed in the previous section, the pump
pulse energy is obtained using RT-TDDFT, while the associated transition density
matrix is derived from LR-TDDFT. This information enables to compare two dif-
ferent theoretical approaches to calculate momentum maps. On the one hand, the
predictions of exPOT [7] and on the other hand, the more computationally intensive,
but accurate TDDFT simulations implemented in the real-space code OCTOPUS
[29] generating PAD maps using the t-SURFF method.

To enhance the comparability between the exPOT and t-SURFF approaches,
several steps are taken as outlined in [7]. First, the probe field is chosen in the z-
direction, perpendicular to the molecular plane, to minimize potential deficiencies of
the plane wave approximation [69]. Second, we use sufficiently long pump pulses to
target specific excitons, minimizing energy broadening from ultrashort pulses [70].
Probe pulses are also kept long to achieve good kinetic energy resolution. Lastly, we
use the adiabatic local density approximation (ALDA) for the t-SURFF method, as
more advanced functionals would be too computationally demanding. However, this
restriction does not apply to the exPOT formalism, which can utilize any method
that provides a transition density matrix in terms of single-particle orbitals.

3.3.1 Tetracene

We first investigate tetracene, whose optical absorption spectrum is shown in Fig. 16
panel (a). Here we compare the absorption spectra obtained from LR-TDDFT and
RT-TDDFT as discussed in Sec. 3.2. We find excellent agreement for the position
of the first peak at 4.34 eV for both methods, where the RT-TDDFT position is
marked with a red dashed line and the LR-TDDFT one with an asterisk. In panel (b)
the absolute squares of the Casida contributions for the considered excitation are
shown. These contributions compose the transition density matrix, characterizing
the exciton, as obtained by solving Eq. 50. The matrix elements are arranged as
colour-coded rectangles on a grid, with the valence states arranged vertically from
top to bottom and the conduction states horizontally from left to right. All of the
displayed transitions are allowed per the D2h symmetry rules in Tab. 2. It is evident
that the first exciton for tetracene is mainly made up of a H → L+2 transition, a
H-2 → L transition and a small contribution from H-2 → L+3. Therefore, as can
be seen in Eq. 63, it is expected that the momentum maps appearing at the kinetic
energies corresponding to the ionization potentials of the H and H-2 resemble the
Fourier transforms of the L+2 and L, respectively. Thus, this exciton represents an
entangled state.

Before computing the momentum maps from exPOT, we also present the com-
putational details of the t-SURFF approach. With the provided pump pulse energy,
the pump-probe laser system is configured as illustrated in Fig. 17. In this laser
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(a) (b)

Fig. 16: (a) Converged absorption spectra for 4A calculated with OCTOPUS in RT-
TDDFT (full line) and from Casida’s formalism within LR-TDDFT (dashed line).
The excitation energy used in the pump-probe simulation is marked with a vertical
red dashed line, while the Casida excitation energy is marked with a red asterisk.
(b) Absolute square of the occupied-unoccupied Casida transition contributions for
the excited state marked with a red asterisk.

setup both the pump and probe pulses are Both pulses are shaped with a sin2-type
envelope to ensure smooth on/off switching and are applied simultaneously and with
the same pulse duration, e.g. for 25 fs. All pump-probe simulations in this work are
based on this configuration, with variations in pulse length applied equally to both
pulses for all molecules. Additionally, the pump field energy is adjusted to match
the specific excitation studied, while the probe pulse energy remains constant with
an energy of 35 eV. Both field amplitudes are set to simulate laser intensities of
108 W/cm2. Throughout the simulations, the pump pulse is always polarized in the
x direction, while we use a z-polarized probe pulse. To prevent spurious reflections
at the simulation boundaries, a complex absorbing potential (CAP) of the form
iξ sin2

(
Θ(r −R0)

π
2R

)
with ξ = −0.2 a.u. is introduced, starting at R0 = 15 Å.

The flux of electron density is monitored over time through a spherical surface at
R0, allowing us to compute angle- and energy-resolved photoemission intensities
numerically.

Fig. 18 shows the angle-integrated photoelectron intensity as a function of the ki-
netic energy of the photoemitted electrons for tetracene as obtained from the pump-
probe simulation with the t-SURFF method. Note that we are using a logarithmic
scale for the intensity and that we are comparing the results for three different pulse
times, namely 10 fs, 15 fs and 25 fs. The solid vertical lines are positioned at energy
levels ω − ϵj and mark the emissions from the occupied states, i.e. H-2, H-1 and H
from left to right. Note that the H-1 and H-2 form a double peak. According to
the predictions of the exPOT formalism, one expects also peaks at ω − ϵj + ωpump,
indicated by the dashed lines. Indeed, the t-SURFF simulation results in peaks at
these energies in accordance with the energy conservation in Eq. 63 as well as the
transition density matrix in Fig. 16 panel (b).

Regarding the different pulse lengths, it is evident that as the pulse length in-
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Fig. 17: Example pump-probe laser setup used for photoemission simulations in
this work. Pulse duration and intensity are 25 fs and 108 W cm−2 respectively for
both fields. The pump field frequency is tailored according to the excitation under
consideration, while the probe pulse frequency remains unchanged attributed to a
fixed energy of 35 eV. In this case for tetracene, the pump pulse energy is set to
4.34 eV.

creases, the peaks in the spectrum become progressively narrower. This aligns with
the Heisenberg uncertainty principle, from which we expect an inverse relationship
between time and energy uncertainty, leading to improved energy resolution with
longer pulse durations. Explicitly, from ∆E ≥ ℏ

2∆t
, we obtain energy resolutions of

0.33 eV, 0.23 eV and 0.13 eV for pulse lengths of 10 fs, 15 fs and 25 fs, respectively.
In the following, we discuss the impact of the pulse length on the PAD features ob-
tained from the t-SURFF method and compare these maps to the Fourier transforms
of the involved occupied and unoccupied states.

Fig. 19 shows the PAD of the occupied state corresponding to ϵ1, the H or v = 1,
for the three different pulse lengths (panel (a)-(c)) as well as the Fourier transform
of the highest occupied orbital (panel (d)). Note, that the colorbar on the right-
hand side applies to all subsequent momentum maps, as the intensities have been
normalized. Therefore, the colorbar will be omitted in all further maps for the
sake of a more compact presentation. Due to the fact that the H is energetically
well-seperated from the lower lying orbitlas, only features associated with the H are
visible for all pulse lengths. In the top row (panel (a) - (c)) of Fig. 20 the map
appearing at Ekin = ω − ϵ3 is depicted. In this case, as the ionization potentials
of the H-1, ϵ2, and the H-2, ϵ3, are seperated only by 0.2 eV and we therefore
expect to observe signatures at both orbitals. In particular, features from the H-1
(Fig. 20 panel (d)) arise at kx = 0 Å, ky = ±1 Å and kx = ±0.8 Å, ky = ±1 Å.
These features decrease in intensity with longer pulse lengths due to the enhanced
energy resolution, while the features corresponding to the H-2 (Fig. 20 panel (e))
remain unchanged.

Next, we compare the excited state momentum maps from the t-SURFF sim-
ulation to the Fourier transforms of the mainly contributing unoccupied states
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Fig. 18: Total angle-integrated photoelectron intensity from t-SURFF for different
pulse durations for 4A. The solid vertical lines mark the energy levels corresponding
to the occupied states, while the dashed vertical lines denote the energy levels of
the excited states. The horizontal arrows indicate the pump pulse energy ωpump =
4.34 eV used in the simulation.

in the transition density matrix Fig. 16 panel (b). The PADs corresponding to
Ekin = ω − ϵ1 + ωpump are depicted in Fig. 21 panel (a)-(c) for the three different
pulse lengths, while panel (d) shows the Fourier transform of the L+2. The main
features of these maps are consistent for both methods, though some asymmetries
are observed in the t-SURFF maps. Notably, as the pulse length increases, the
asymmetric patterns evolve, leading to an enhanced intensity in the oval structures
at kx = 1.5 Å. This improves the agreement with the L+2 map. Subsequently, the
momentum maps evaluated at Ekin = ω − ϵ3 + ωpump for the different pulse lengths
are presented in Fig. 22 panels (a) to (c). The most intense features in these maps
show strong agreement with the Fourier transform of the L in panel (d), while also
exhibiting contributions from the L+3 (panel (e)). This observation is consistent
with the Casida contributions in Fig. 16 panel (b), which indicates a dominant con-
tribution from the L alongside an additional contribution from L+3. Moreover, it is
noticeable that as the energy resolution increases, the intensity of the L+3 features
diminishes, whereas the L features stay constant. In the following comparison of
methods for obtaining PADs and for the other observed molecules, only the results
using a 25 fs pulse length are presented.

Proceeding further, we now compare the t-SURFF result for tetracene to the
exPOT approach. The momentum maps in panel (a) of Fig. 23 and Fig. 24 obtained
using the t-SURFF method show strong agreement with those derived from the
EXPOT and NTO approaches in panel (b) and (c) of both figures. All methods
capture the primary features observed in the Fourier transforms of the L+2 in the
case of v = 1 and L for v = 3, respectively. This indicates the presence of an
entangled state, consisting of the H → L+2 transition contribution of 49%, while the
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(a) (b)

(c) (d)

Fig. 19: Comparison of the occupied state momentum maps for tetracene: t-SURFF
PAD appearing at Ekin = ω − ϵ1 = 30.0 eV for different pulse lengths of (a) 10 fs,
(b) 15 fs and (c) 25 fs and (d) Fourier transform of the H.
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(a) (b) (c)

(d) (e)

Fig. 20: Comparison of the occupied state momentum maps for tetracene: t-SURFF
PAD appearing at Ekin = ω−ϵ3 = 28.6 eV for different pulse lengths of (a) 10 fs, (b)
15 fs and (c) 25 fs and Fourier transforms of the (d) H-1 and (e) H-2 for tetracene.
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(a) (b)

(c) (d)

Fig. 21: Comparison of the excited state momentum maps for tetracene: t-SURFF
PAD appearing at Ekin = ω− ϵ1 +ωpump = 34.4 eV for different pulse lengths of (a)
10 fs, (b) 15 fs and (c) 25 fs and Fourier transform of the (d) L+2 for tetracene.
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(a) (b) (c)

(d) (e)

Fig. 22: Comparison of the excited state momentum maps for tetracene: t-SURFF
PAD appearing at Ekin = ω− ϵ3 +ωpump = 32.9 eV for different pulse lengths of (a)
10 fs, (b) 15 fs and (c) 25 fs and Fourier transforms of the (d) L and (e) L+3 for
tetracene.
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H-2 → L transition contributes by 45%. Additionally, the v = 3 map reveals features
corresponding to the L+3, driven by the H-2 → L+3 transition. However, this
contribution, which is minor at 1%, is not observed in the coherent sum, suggesting
that these features diminish with longer pulse durations. In contrast, the incoherent
sum maps in panel (d) of Fig. 23 and Fig. 24 show no significant deviations from
the other methods, as the dominant single state contributions prevail.

(a) (b)

(c) (d)

Fig. 23: Comparison of t-SURFF and exPOT momentum maps for tetracene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ1 + ωpump = 34.4 eV, (b) the exPOT
approach [Eq. 63], (c) a single NTO [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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(a) (b)

(c) (d)

Fig. 24: Comparison of t-SURFF and exPOT momentum maps for tetracene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ3 + ωpump = 32.9 eV, (b) the exPOT
approach [Eq. 63], (c) a single NTO [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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3.3.2 Fluorene

We now focus on the results for fluorene, first discussing a comparison of the absorp-
tion spectra obtained from LR-TDDFT and RT-TDDFT shown in Fig. 25 panel (a).
Here, we find good agreement between the profiles of the spectra, as both exhibit
the two strongest peaks in similar energy ranges. As for the first peak, it can be
seen that the position obtained from RT-TDDFT (red dashed line) sits beneath the
LR-TDDFT (red asterisk) one. As RT-TDDFT is also employed in the ARPES
simulation, we proceed to use the RT-TDDFT value of 4.40 eV for the pump pulse
energy. In panel (b) the absolute squares of the Casida contributions for the ex-
citation at 4.48 eV are shown. All of the displayed transitions are allowed per the
C2v symmetry rules in Tab. 3. The contributions reveal that the first exciton in
fluorene is mainly made up of a H → L and a H → L+1 transition. Consequently,
in a momentum map of this excited state, we expect to observe a weighted superpo-
sition of the L and L+1 at a kinetic energy corresponding to the photohole residing
in the H state. The additionally visible H-2 → L, H-2 → L+1 as well as the H-3
→ L+3 transitions will be excluded from further analysis as their contributions are
significantly smaller compared to the transitions involving the H.

Fig. 25: (a) Converged absorption spectra for fluorene calculated with OCTOPUS
in RT-TDDFT (full line) and from Casida’s formalism within LR-TDDFT (dashed
line). The excitation energy used in the pump-probe simulation is marked with
a vertical red dashed line, while the Casida excitation energy is marked with a
red asterisk. (b) Absolute square of the occupied-unoccupied Casida transition
contributions for the excited state marked with a red asterisk.

Figure 26 presents the kinetic energy photoemission spectrum for fluorene for
pulse durations of 10 fs, 15 fs, and 25 fs. As discussed above, we focus on the
emission appearing at Ekin = ω − ϵ1 + ωpump, i.e. the transition associated with the
H marked by the rightmost vertical dashed line. As the pulse length increases, we
again observe that the peaks in the spectrum become narrower, consistent with the
Heisenberg uncertainty principle.

For fluorene, the excitation under consideration leads to an exciton structure
consisting of a single hole state and multiple conduction states, a situation labeled
as "case (iv)" in the paper by Kern et al. [7]. The Fourier transforms of the two
conduction states, L and L+1, which together form the exciton structure involving
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Fig. 26: Total angle-integrated photoelectron intensity from t-SURFF for different
pulse durations for fluorene. The vertical solid lines mark the energy levels corre-
sponding to the occupied states, while the vertical dashed lines denote the energy
levels of the excited states. The horizontal arrows indicate the pump pulse energy
ωpump = 4.40 eV used in the simulation.

the H state, are shown in Fig. 27. To interpret the patterns seen in the momentum
maps in Fig. 28, we analyze the PAD features. Comparing the t-SURFF result in
panel (a) to the exPOT result from Eq. 63 in panel (b) and the sum of NTOs from
Eq. 69 in panel (c), we observe good agreement in the main features produced by all
methods. The PADs are predominantly characterized by contributions from the L
state, with additional enhancements at kx = ±1 Å corresponding to the L+1 state.
This observation is consistent with the Casida analysis, where the H → L transition
accounts for 68% , while the H → L+1 transition contributes 24%. Notably, accurate
reproduction of the intensity drop between ky = −0.5 Å and ky = 0.5 Å requires
the coherent sum from the exPOT approach or the sum of the first three NTOs
with contributions of 93%, 3% and 2%. This is further confirmed by panel (d) and
panel (e), where the mainly contributing single NTO as well as an incoherent sum
fail to show this reduction in intensity.

51



(a) (b)

Fig. 27: Fourier transforms of the unoccupied states involved in the Ekin = ω− ϵ1+
ωpump = 33.1 eV excitation for fluorene: PAD of the (a) L and (b) L+1.

(a) (b)

(c) (d) (e)

Fig. 28: Comparison of t-SURFF and exPOT momentum maps for fluorene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ1 + ωpump = 33.1 eV, (b) the exPOT
approach [Eq. 63], (c) sum of NTOs [Eq. 69], (d) single NTO with the largest con-
tribution λ1 and (e) an incoherent summation of the orbital contributions different
from the coherent sum present in Eq. 63 for the exPOT formalism.
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3.3.3 Chrysene

For chrysene, the optical absorption spectrum in Fig. 29 panel (a) reveals an excita-
tion at 3.3 eV for the RT-TDDFT marked by a vertical red dashed line and 3.4 eV
for the LR-TDDFT calculation marked by a red asterisk. Despite the relatively
low oscillator strength this excitation is further investigated, due to its non-trivial
transition density matrix elements shown in Fig. 29 panel (b). We observe that
this exciton involves multiple transitions, combining the entangled state character
from the tetracene example and the coherent superposition from the fluorene case.
Specifically, this excited state is comprised of the H → L and H → L+1 transitions,
as well as the H-1 → L and H-1 → L+1 transitions, though with differing relative
contributions. This is comparable to the exciton structure discussed for fluorene,
where transitions from the H state to multiple conduction states dominate. Ad-
ditionally, as seen with tetracene, contributions from lower-lying hole states, e.g.
the H-1, create a more complex excitonic structure. Consequently, it is expected
that the momentum maps at the kinetic energies corresponding to the ionization
potentials of H and H-1 will resemble the Fourier transforms of differently weighted
superpositions of the L and L+1 states.

Fig. 29: (a) Converged absorption spectra for chrysene calculated with OCTOPUS
in RT-TDDFT (full line) and from Casida’s formalism within LR-TDDFT (dashed
line). The excitation energy used in the pump-probe simulation is marked with
a vertical red dashed line, while the Casida excitation energy is marked with a
red asterisk. (b) Absolute square of the occupied-unoccupied Casida transition
contributions for the excited state marked with a red asterisk.

Figure 30 displays the kinetic energy photoemission spectrum for chrysene, sub-
ject to pulse durations of 10 fs, 15 fs, 25 fs, and 30 fs. The addition of the 30 fs pulse
duration leads to an enhanced energy resolution of approximately ∆E ≈ 0.11 eV,
allowing for a more precise investigation of the emission features. We concentrate on
the emissions identified at Ekin = ω−ϵ1+ωpump = 32.7 eV and Ekin = ω−ϵ2+ωpump

= 32.3 eV, corresponding to the transitions linked to the H and H-1 states, re-
spectively, which are marked by the two rightmost red vertical dashed lines. The
transition density matrix illustrated in Fig. 29 panel (b) emphasizes the significance
of these emissions, as they exhibit the largest contributions. Notably, as the pulse
length is extended, the spectral peaks exhibit a tendency to narrow, again aligning

53



with the Heisenberg uncertainty principle. It is also worth noting that the intensity,
relative to that of tetracene and fluorene, is lower by 10 orders of magnitude, which
can likely be attributed to a smaller oscillator strength.

Fig. 30: Total angle-integrated photoelectron intensity from t-SURFF for different
pulse durations for chrysene. The vertical solid lines mark the energy levels corre-
sponding to the occupied states, while the vertical dashed lines denote the energy
levels of the excited states. The horizontal arrows indicate the pump pulse energy
ωpump = 3.3 eV used in the simulation.

For chrysene, the momentum maps given by the Fourier transform of the in-
volved conduction states for both the v = 1 and v = 2 transitions, namely the L
and L+1, are shown in Fig. 31. Specifically, the excited state consists of H → L
(44%), H → L+1 (44%), H-1 → L (19%), and H-1 → L+1 (2%). Examining the
momentum maps in Fig. 32, the t-SURFF result evaluated for Ekin = ω− ϵ1+ωpump

= 32.7 eV (panel (a)) aligns well with both the exPOT (panel (b)) approach and
the first NTO map (panel (c)), as all methods capture the primary features of the L
and L+1 Fourier transforms. However, the incoherent sum show (panel (d)) shows
strong accentuations that are absent in the t-SURFF map, underlining the impor-
tance of the coherent sum to accurately describe the photoemission distributions. In
contrast, for the maps in Fig. 33 for v = 2, the agreement between the t-SURFF and
exPOT methods is poor. Several factors may contribute to this discrepancy. First,
the exPOT formalism, which approximates the final state as a plane wave, does not
capture asymmetries as effectively as the t-SURFF method, which does not rely on
such an approximation. Second, due to the Heisenberg uncertainty principle, other
nearby excitations may contribute to the momentum maps, complicating the analy-
sis, particularly as the asymmetries in the t-SURFF maps and the similarities in the
Fourier transforms of the involved conduction states make disentangling these con-
tributions difficult. Additionally, the simultaneous application of pump and probe
pulses in the ARPES simulation could introduce a potential source of error, as setups
involving delays between the pulses have not been tested in this work. It should also
be noted that the overall intensities are lower compared to the previously studied
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molecules, which may lead to numerical issues becoming more significant. Lastly,
the convergence tests for the optical absorption spectra, performed with a relatively
short propagation time of 6.5 fs, may have introduced a slight shift in peak positions,
potentially leading to an off-resonant excitation in the t-SURFF simulation.

(a) (b)

Fig. 31: Fourier transforms of the unoccupied states involved in the Ekin = ω− ϵ1+
ωpump = 32.7 eV and Ekin = ω− ϵ2+ωpump = 32.3 eV excitations for chrysene: PAD
of the (a) L and (b) L+1.

55



(a) (b)

(c) (d)

Fig. 32: Comparison of t-SURFF and exPOT momentum maps for chrysene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ1 + ωpump = 32.7 eV, (b) the exPOT
approach [Eq. 63], (c) single NTO [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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(a) (b)

(c) (d)

Fig. 33: Comparison of t-SURFF and exPOT momentum maps for chrysene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ2 + ωpump = 32.3 eV, (b) the exPOT
approach [Eq. 63], (c) sum of NTOs [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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3.3.4 Picene

For picene, the optical absorption spectrum in Fig. 34 panel (a) shows a strong
excitation at 4.33 eV for the RT-TDDFT (red dashed line) and 4.26 eV for the LR-
TDDFT (red asterisk). This excitation is investigated further, despite not being
the first peak in the spectrum, due to its high oscillator strength and the complex
exciton structure illustrated by the transition density matrix elements in Fig. 34
panel (b). The involved transitions include H-1 → L+1, H-1 → L+2, H-2 → L+1,
and H-2 → L+2, with varying contributions. Similar to tetracene and chrysene,
transitions from lower-lying hole states lead to a more complex exciton structure.
Therefore, the momentum maps corresponding to the ionization potentials of H-1
and H-2 are expected to resemble the Fourier transforms of weighted superpositions
of the L+1 and L+2 states.

Fig. 34: (a) Converged absorption spectra for picene calculated with OCTOPUS
in RT-TDDFT (full line) and from Casida’s formalism within LR-TDDFT (dashed
line). The excitation energy used in the pump-probe simulation is marked with
a vertical red dashed line, while the Casida excitation energy is marked with a
red asterisk. (b) Absolute square of the occupied-unoccupied Casida transition
contributions for the excited state marked with a red asterisk.

Figure 35 presents the kinetic energy photoemission spectrum for picene, ana-
lyzed with pulse durations of 10 fs, 15 fs, 25 fs, and 30 fs. We focus on the emissions
observed at Ekin = ω − ϵ2 + ωpump = 33.5 eV and Ekin = ω − ϵ3 + ωpump = 33.1 eV,
which correspond to transitions associated with the H-1 and H-2 states, respectively,
as highlighted by the two leftmost red vertical dashed lines. The transition density
matrix depicted in Fig. 34 panel (b) highlights the importance of these emissions, as
they account for the largest contributions. Furthermore, with the increase in pulse
length, the spectral peaks tend to become narrower, consistent with the principles
outlined by the Heisenberg uncertainty principle.

For picene, the momentum maps for the v = 2 and v = 3 transitions, corre-
sponding to emissions at kinetic energies related to ϵ2 and ϵ3, involve contributions
from the conduction states L+1 and L+2. The corresponding PADs are shown in
Fig. 36. The transitions consist of H-1 → L+1 (7%), H-1 → L+2 (27%), H-2 → L+1
(26%), and H-2 → L+2 (18%). In the case of v = 2, the momentum maps in Fig. 37
show good agreement between the t-SURFF results (panel (a)) and the exPOT ap-
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Fig. 35: Total angle-integrated photoelectron intensity from t-SURFF for different
pulse durations for picene. The vertical solid lines mark the energy levels corre-
sponding to the occupied states, while the vertical dashed lines denote the energy
levels of the excited states. The horizontal arrows indicate the pump pulse energy
ωpump = 4.34 used in the simulation.

proach (panel (b)) as well as the sum of NTOs (panel (c)), as all methods capture
the primary overlapping features from the Fourier transforms of the L+1 and L+2
conduction states. However, the incoherent sum (panel (d)) shows clear differences,
with noticeable features that are not present in the t-SURFF map, highlighting
the importance of coherent summation for accurately capturing the photoemission
distributions. For the PADs resulting from the v = 3 transition (Fig. 38), the dis-
agreement between the t-SURFF and exPOT methods persists. Possible reasons
for this poor agreement are the same as those discussed for the v = 2 transition
in chrysene, including limitations of the exPOT formalism, potential contributions
from nearby excitations, and the setup of the pump-probe pulses.
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(a) (b)

Fig. 36: Fourier transforms of the unoccupied states involved in the Ekin = ω− ϵ2+
ωpump = 33.5 eV and Ekin = ω − ϵ3 + ωpump = 33.1 eV excitations for picene: PAD
of the (a) L+1 and (b) L+2.

(a) (b)

(c) (d)

Fig. 37: Comparison of t-SURFF and exPOT momentum maps for picene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ2 + ωpump = 33.5 eV, (b) the exPOT
approach [Eq. 63], (c) single NTO [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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(a) (b)

(c) (d)

Fig. 38: Comparison of t-SURFF and exPOT momentum maps for picene: PADs
from (a) t-SURFF evaluated at Ekin = ω − ϵ3 + ωpump = 33.1 eV, (b) the exPOT
approach [Eq. 63], (c) sum of NTOs [Eq. 69] and (d) an incoherent summation of
the orbital contributions different from the coherent sum present in Eq. 63 for the
exPOT formalism.
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3.3.5 Sexithiophene

The optical absorption spectrum of sexithiophene (6T) ab obtained from TDDFT
using the ALDA kernel is characterized by two prominent transitions polarized
along 6T’s long molecular axis. The first peak visible at 2.01 eV in Fig. 39 is
composed of a main contribution from the H → L transition of 94% in addition to
3 smaller contributions from H-2 → L of 1%, H → L+1 of 3% and H-1 → L+2
of 1% as shown in panel (a) of Fig. 40. Note that, this result was obtained using
a local and frequency-independent LDA kernel when solving Casida’s equation
[Eq. 50] and when calculating the occupied and unoccupied states. However, the
adiabatic LDA functional ALDA, the extension of LDA for time-dependent density,
was shown to be insufficient when performing RT-TDDFT calculations for 6T to
represent the e-h interactions giving rise to the mixed excitation [71]. The use of
ALDA falsely features a second peak in the spectrum at a slightly higher energy. In
our case the Casida spectrum from LR-TDDFT features a peak at 2.8 eV in Fig. 39
with a main contribution from H-1 → L+1 of 50% depicted in panel (b) of Fig. 40.

To correctly capture the excited state picture of the lowest excitation in 6T
it is adviced to use many-body perturbation theory (MBPT) to calculate optical
excitations. Hereby, the quasiparticle energies are calculated via the GW approach
and solving the Bethe-Salpeter equation (BSE) HBSEAλ = EλAλ provides excitation
energies and wavefunctions of the e-h pairs [72, 73]. GW+BSE leads to exciton
contributions of 74% for H → L and 20% for H-1 → L+1 for the first excitation,
while the second peak vanishes. This indicates that the use of LDA splits the lowest
excitation into two peaks, due to an incorrect description of correlation effects. This
disagreement between the TDDFT and MBPT results stems from the inclusion of the
Ĥdir term in the effective two-particle hamiltonian ĤBSE = Ĥdiag+2γxĤ

x+γcĤ
dir.

The diagonal term Ĥdiag describes single-particle transitions. Ĥx is the repulsive e-h
exchange term and includes local field effects. The direct term Ĥdir represents the
attractive e-h interaction, as it incorporates the short-range Coloumb interaction.
The parameters γx and γc specify whether singlet or triplet excitations are calculated.
The result in [71] does not change when the Ĥx term is excluded but it leads to a
100 % H → L transition when both, the Ĥx and Ĥdir term, are omitted. Therefore,
it was concluded that the mixed character of the first exciton in 6T is due to e-h
correlation effects described by Ĥdir. In Casida’s equation the e-h correlation can be
accounted for via the choice of the XC functional in the kernel in Eq. 52. In the case
of 6T the LC-PBE0* functional, a long-range corrected PBE0 hybrid functional with
optimally tuned parameters for the inclusion of exact and DFT exchange, is used
in [74]. This leads to contributions of 90% for H → L and 7 % for the H-1 → L+1
transition. Therefore, despite the additional computational cost and the inclusion of
long-range exchange interactions in LC-PBE0*, a significant disagreement between
TDDFT and MPBT remains.
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Fig. 39: Linear response absorption spectrum for 6T along x direction from Casida
formalism.

(a) (b)

Fig. 40: Absolute square of the Casida transition density matrix values for 6T for
(a) the first peak at 2.01 eV and (b) the second peak at 2.8 eV.

3.3.6 NTCDA

The LDA Casida calculation for NTCDA reveals that most transitions that are
present in Fig. 12 panel (c) are contributing to the strongest excitation in the ab-
sorption spectrum for the x polarization direction in Fig. 41 (a) at 6.22 eV. The
decomposition into electron-hole transitions for this peak can be seen in Fig. 41 (b).
The additional H-4 → L+4 (B1u → B3g) transition is also electronically allowed,
however the transition dipole moment is relatively small with a value of 0.003 eV·Å
and therefore not visible in Fig. 12 panel (c). As this excitation shows PADs at
different kinetic energies that consist of the Fourier transform of a coherent sum of
different unoccupied states, it would be an interesting example to validate Eq. 63.
However, as the LDA functional used in the Casida calculation, the orbital ordering
issue remains. A functional that promises to solve this problem is the HSE06, as
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it incorporates exact HF exchange in the short-range [20]. However, in this partic-
ular case the ground state calculation for 48 states with the OCTOPUS code took
over 1 day compared to 12 seconds for the LDA functional. Considering that a full
pump-probe ARPES simulation based on the LDA functional takes around 1-2 days
for molecules of similar size, it has been decided to not further consider NTCDA for
the TDDFT calculations.

(a) (b)

Fig. 41: Casida calculation results for NTCDA: (a) linear response absorption spec-
trum along x direction and (b) absolute square of the Casida transition density
matrix values for the strongest peak at 6.22 eV.
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4 Conclusions and Outlook
The goal of this Master’s thesis has been to provide further theoretical support for a
recently developed approach that extends photoemission orbital tomography (POT)
to the description of optically excited states, termed exPOT [7]. This theoretical
method promises to provide insight into the connection between momentum maps, as
derived from femtosecond pump-probe photoemission experiments, and the spatial
structure of excitons in organic molecular systems. To this end, momentum maps
computed within exPOT have then been validated by real-time time-dependent
density functional theory simulations, thereby confirming that the excited states
represent a coherent superposition of multiple single-particle excitations.

In this chapter, we review the core conclusions of this thesis and discuss prospec-
tive opportunities for follow-up studies. Initially, we have developed a computation-
ally efficient prescreening method to predict excited states with non-trivial transi-
tion density matrices based on ground state DFT properties. This approach has
combined the symmetry of Kohn-Sham orbitals, the strength of transition dipole
moments, and energy differences between unoccupied and occupied KS orbitals
to identify suitable candidate molecules. Out of a series of planar π-conjugated
molecules, the prescreening has identified tetracene, fluorene, chrysene, and picene
as promising candidates for further analysis. Molecules that have not been further
considered have failed the prescreening mainly because the transition density ma-
trix is expected to exhbiti only one single dominant contribution and therefore show
no potential for testing the exPOT approach for non-trivial cases. Moreover, they
have either shown insufficient energy differences between excited states, making it
difficult to avoid degeneracies, or the involved unoccupied states have displayed in-
distinguishable momentum map features, limiting their suitability for the exPOT
approach.

Next, for the chosen set of molecules, optical absorption spectra have been
obtained using real-time time-dependent density functional theory (RT-TDDFT),
which perturbs the system with a δ-pulse to reveal potential pump pulse energies,
and linear response time-dependent density functional theory (LR-TDDFT), which
solves Casida’s equation to quantify the corresponding exciton characteristics. The
convergence of the RT-TDDFT spectrum has been tested with respect to grid spac-
ing and simulation box radius, though not the propagation time, which could im-
prove the agreement between RT-TDDFT and LR-TDDFT spectra due to enhanced
energy resolution, particularly for higher-energy excitations. This measure may also
result in a shift in the evaluated pump pulse energy values.

Lastly, momentum maps predicted by the exPOT approach have been success-
fully validated against time-dependent surface flux (t-SURFF) simulations. The
extension of the POT formalism to exPOT has revealed that photoemission from
bound electron-hole pairs can occur at multiple kinetic energies as seen in the ex-
ample of tetracene. Additionally, it has been shown that in the case of transitions
from a single valence state to several conduction states, as for fluorene, rationalizing
the appearing momentum map features necessitates the incorporation of a coherent
sum over unoccupied orbitals. In the cases of chrysene and picene, we combine the
insight from the tetracene and fluorene examples as we observe excitation profiles
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containing emissions at different kinetic energies that involve the same conduction
states, however differently weighted. While the momentum maps for higher-lying ex-
citations in chrysene and picene exhibited convincing agreement between the exPOT
and t-SURFF approaches, the same level of correspondence has not been achieved
for the lower-lying excitations. This difference can be attributed to several factors.
This includes the limitations of the plane wave approximation in exPOT, the in-
fluence of other energetically close excitations complicating the analysis due to the
Heisenberg uncertainty principle, and potential errors introduced by simultaneous
pump-probe setups or short propagation times in the convergence tests, possibly
leading to off-resonant excitations. Moreover, exPOT has also been formulated us-
ing natural transition orbitals (NTOs), which give these quantities direct physical
significance in photoemission experiments, as it has already been demonstrated in
studies on excitons in buckminsterfullerene thin films [75].

Experimental validation for the molecules treated in this work has not yet been
performed, thus this would be of significant interest. However, the challenges faced
in preparing high-quality samples and generating stable and distinct excitons in
these systems may hinder experimental validation, but future experiments could
address these issues by refining sample preparation techniques, optimizing pump-
probe setups, or utilizing higher-resolution photoemission methods to capture the
predicted momentum maps.
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A Appendix A: Prescreened Molecules
This appendix lists all molecules tested in the prescreening described in Sec. 3.1.
Molecules highlighted in green represent those that are included and analyzed within
the scope of this study. Orange highlights identify molecules that, while not fully
explored here, are marked as promising for future investigation. Molecules without
any highlighting were excluded as they do not meet the prescreening criteria.
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Tab. 8: List of prescreened molecules: Green highlights indicate molecules consid-
ered in this work, orange highlights denote those of interest for further evaluation,
while unmarked molecules do not pass the prescreening outlined in Sec. 3.1.

# Molecule Shortname
1 1-hydroxy-benzo-fluoren
2 1P
3 1P_F
4 1T
5 2A
6 2A_F
7 2P
8 2T
9 3-hydroxy-benzo-fluoren
10 3A
11 3A_F
12 3P
13 3phenacene
14 3T
15 4A
16 4A_F
17 4phenacene
18 4T
19 5phenacene
20 5T
21 6T
22 ADF
23 F4TCNQ
24 NTCDA
25 PTCDA
26 TCNB
27 TCNE
28 TCNQ
29 TTF
30 alizarin12
31 alizarin13
32 azulene
33 coronene
34 cytosine
35 fluorene
36 guanine
37 indigo
38 p-ANBP
39 phenazine
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B Appendix B: Additional Optical Spectra Conver-
gence Results

This appendix shows additional optical spectra convergence test results to the ones
for tetracene discussed in Sec. 3.2 for the remaining investigated molecules, namely
fluorene, chrysene and picene.

Fluorene

(a) (b)

Fig. 42: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the grid spacing for fluorene for the (a) full energy range and
(b) zoomed in on the relevant excitation.

(a) (b)

Fig. 43: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the simulation box radius for fluorene for the (a) full energy
range and (b) zoomed in on the relevant excitation.
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(a) (b)

Fig. 44: Convergence of the Casida LR-TDDFT optical spectrum with respect to
the Kohn-Sham energy window for fluorene for the (a) full energy range and (b)
zoomed in on the relevant excitation.

Chrysene

(a) (b)

Fig. 45: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the grid spacing for chrysene for the (a) full energy range and
(b) zoomed in on the relevant excitation.
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(a) (b)

Fig. 46: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the simulation box radius for chrysene for the (a) full energy
range and (b) zoomed in on the relevant excitation.

(a) (b)

Fig. 47: Convergence of the Casida LR-TDDFT optical spectrum with respect to
the Kohn-Sham energy window for chrysene for the (a) full energy range and (b)
zoomed in on the relevant excitation.
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Picene

(a) (b)

Fig. 48: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the grid spacing for picene for the (a) full energy range and
(b) zoomed in on the relevant excitation.

(a) (b)

Fig. 49: Convergence of the RT-TDDFT optical spectrum upon excitation with a
δ-kick with respect to the simulation box radius for picene for the (a) full energy
range and (b) zoomed in on the relevant excitation.
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(a) (b)

Fig. 50: Convergence of the Casida LR-TDDFT optical spectrum with respect to the
Kohn-Sham energy window for picene for the (a) full energy range and (b) zoomed
in on the relevant excitation.
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