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Chapter 1

Introduction

Angle resolved photoemission spectroscopy (ARPES) is used to study the electronic

structure of surfaces and is based on the photoelectric effect which has been first ex-

plained by Einstein 1905[1]. The quantum mechanical description of the photoemission

process can be achieved within the one step model of photoemission. A particularly

simple approach is to approximate the final state as a plane wave [2][3]. Under il-

lumination of monochromatic light, the electrons detected as function of angles and

energy correspond to the Fourier transformed initial state wavefunction of the observed

atomic structure. By this method is possible to directly measure ground state orbitals

of molecules. The wavefunction can be calculated theoretically via the so called density

functional theory [4].

This work describes the implementation of a python script to calculate orbitals in mo-

mentum space and imaging these as an ARPES simulation. The program generates

images of the molecular structure, the wavefunction and ground state orbitals in mo-

mentum space for a pre defined experimental setup. The input is a XSF file (internal

XCrySDen structure format) [5] in txt format used to store atomic data of molecules

and crystals.

1



Chapter 2

Theory

2.1 Experiment

With angle-resolved photoemission spectroscopy (ARPES), the electronic structure of

surfaces can be directly measured. It is based on the photoelectric effect [1]. The sample

is therefore illuminated with monochromatic light of the energy hν. The kinetic energy

of an electron escaping a material by absorbing a photon is given by [2]:

Ekin = hν − Φ− EB (2.1)

Ekin is the maximum kinetic energy of the electron [eV], Φ is the workfunction [eV] and

denotes the binding energy EB [eV]. The energy of the free electron approximated by a

plane wave is given by:

Ekin =
~2k2

2me
(2.2)

where me is the electron mass [eV].

In ARPES experiments, the emitted electrons are detected in terms of their kinetic

energy as well as their emission angle [2].

The parallel momenta components are obtaind by the following equations [2], where Θ

and Φ are the polar and azimuthal emission angles as indicated in 2.1:

kx =

√
2me · Ekin

~
sin Θ cos Φ (2.3)

ky =

√
2me · Ekin

~
sin Θ sin Φ (2.4)
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Figure 2.1: experiment

Within the one step model of photoemission, the photo-excitation is treated as a single

coherent process, from bound state |ψi〉 with energy Ei, to the free state |ψf 〉 with en-

ergy Ef and parallel momentum components kx and ky ([3]). When assuming a dipole

transition, the intensity distribution I(E,kx,ky) of the photoemited electrons is given by

Fermi’s golden rule expression [2]

I(E, kx, ky) ∝
∑
i

∣∣∣〈ψf (E, kx, ky)
∣∣∣ ~A · ~∇∣∣∣ψi

〉∣∣∣2 × δ(Ei + Φ + E − ~ω) (2.5)

Where ~A is the polarization vector of the incoming photon. By assuming a plane wave

with vector ~k as the final state |ψf 〉 the photocurrent Ii becomes proportional to the

Fourier transform of the initial wave function ψ̃i corrected by a polarization factor [3].

Ii(E, kx, ky) ∝
∣∣∣ ~A · ~k∣∣∣2 × ∣∣∣ψ̃i(kx, ky)

∣∣∣2 (2.6)

From a certain constant binding energy EB, |~k| is a constant. Therefore the Fourier

transformed wavefunction is ψ̃i evaluated on a sphere with radius |~k|. This can be

imaged as a cut of a sphere through momentum space representation of the initial state

orbital (see figure 2.2).

2.2 Density Functional Theory

To calculate the energies and eigenfunctions of a molecule, the Schroedinger Equation is

solved.

Ĥ
∣∣∣Ψ(~RM , ~rn)

〉
= E

∣∣∣Ψ(~RM , ~rn)
〉

(2.7)
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Figure 2.2: sphere cut trough orbitals [3]

We consider the Hamiltonian of a molecule with n electrons and M nuclei of ZJ protons:

H = − ~2

2me

n∑
j=1

∇2
j−

~2

2

M∑
J=1

∇2
J

mp
−

n∑
j=1

M∑
K=1

Zke
2

4πε0|~rj − ~Rk|
+

n∑
j=1

n∑
k>j

e2

4πε0| ~rjk|
+

M∑
J=1

M∑
K>J

ZJZKe
2

4πε0|~RJK |
(2.8)

The first term describes the kinetic energy of the electrons, the second one the kinetic

energy of the nuclei. The third sum describes the Coulomb interaction of nuclei and

electrons, the fourth the electron-electron and the third the nuclei-nuclei interaction.

The length of this expression gives an impression on the difficulty of solving the corre-

sponding Schroëdinger Equation. A first step in solving it, is to make a few assumptions.

’Atomic nuclei are much heavier than individual electrons. Each proton or neutron in a

nucleus has more than 1800 times the mass of an electron. This means, roughly speak-

ing, that electrons respond much more rapidly to changes in their surroundings than

nuclei can.’[4].

The so called Born-Oppenheimer approximation uses this observation to split the equa-

tion into two pieces. First it is solved for the groundstate energy ~E( ~R1... ~RM ) of fixed

nuclei positions via the Schödinger Equation. This decouples the equation into one only

dependent on the electron positions. ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (~ri) +
N∑
i=1

∑
j<i

U(~ri, ~rj)

 |Ψ(~rn)〉 = E |Ψ(~rn)〉 (2.9)
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This Hamiltonian describes a set of electrons moving in a fixed potential from the nu-

clei, the first term describes the kinetic, the second the electron-nuclei and the third the

electron-electron energy.

The n-electron wavefunction ψ(~r1, ~r2, ...~rN ) is a function of the 3n spatial coordinates.

The numerical complexity of this problem scales exponentially with the number of elec-

trons n [6]. A theory based on the electron density n(~r) would reduce this to a numerical

complexity to n3. The so-called density functional theory takes on to this approach.

One of the fundamental theorems of the DFT proven by Kohn and Hohenberg states

that: The ground-state energy from Schrödinger equation is a unique functional of the

electron density [4].

This can be described as followed:

E[{Ψi}] = Eknown[{Ψi}] + EXC [{Ψi}] (2.10)

where

Eknown[{Ψi}] = − h2

2m

∑
i

∫
Ψ∗i∇2Ψid

3r+

∫
V (~r)n(~r)d3r+

e2

2

∫
n(~r)n(~r′)

|r − r′|
d3rd3r′+Eion

(2.11)

The terms describe in order the kinetic energies, electron nuclei Coulomb interaction and

interaction of the pairs of electrons. The other functional EXC describes the exchange-

correlation function [4].

The second fundamental theorem of Hohenberg and Kohn states that:The electron den-

sity that minimizes the energy of the overall functional is the true electron density cor-

responding to the full solution of the Schrödinger equation.

Kohn and Sham showed that the electron density can be calculated by solving a set

of decoupled single electron equations, the so called Kohn-Sham equations:[
− h2

2m
∇2 + V (~r) + VH(~r) + VXC(~r)

]
φi(~r) = εiφi(~r) (2.12)

It contains an effective potential comprised of three contributions V,VH and VXC . The

first of these also appeared in the Eknown part of the total energy functional given above

(Eq. (13)). It describes the interaction of an electron and a fixed set of nuclei.

The so called Hartree potential VH describes the Coulomb repulsion between the electron
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of the Kohn−Sham equations and the total electron density.

VH(~r) = e2
∫

n(~r′)∣∣∣~r − ~r′∣∣∣d3r′ (2.13)

VEX defines exchange and correlation contribution to the single electron equations. It

can be formally be defined as a functional derivative of the exchange correlation energy

[4].

VEX =
δEEX(~r)

δn(~r)
(2.14)

To solve these equations, an interative process needs to be implemented.

1. An initial electron density n(~r) is guessed (e.g. via superposition of atomic densities).

2. The Kohn-Sham equations are solved to find the single particle wave functions

φi(~r).

3. The single particle wave functions are used to recalculate the electron density

nKS(~r)=2
∑

i φ
∗
i (~r)φi(~r).

4. the so obtained new electron density is the reused in 2. This self-consisting circle

ends, when the obtained electron density matches the used one.

2.3 XSF files

The xsf file (internal XCrySDen structure format) [5] is a txt format to store atomic

data of molecules and crystals. The main attributes are:

• all records are in free format

• the XSF formatted file is composed from various sections

• each sections begins with the keyword

• there are two types of keywords: (i) single keywords, and (ii) sandwich keywords,

which are defined as:

– single keyword: section begins with a single keyword and ends without an

end-keyword

– sandwich keyword: section begins with a begin-keyword (i.e. BEGIN keyword)

and ends with an end-keyword (i.e. END keyword), where keyword is one

among keywords.

• all coordinates are in ANGSTROMS units

• all forces are in Hartree/ANGSTROM units
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• the comment-lines start with the ”#” character (see below)

It contains the crucial informations of the molecule such as the positions of all atoms,

their atomic number, the wave-function etc. The text is therefore marked with keyword

to indicate the subsequently listed information. The keywords consist of single words

only. Commented lines are marked with # . The sequence of information after each

keyword is unique and must be in exact order. An example is given below.

# -0.0069489594686865 0.0000000000000000

DIM-GROUP

3 1

PRIMVEC

1.0371873288E+01 0.0000000000E+00 0.0000000000E+00

0.0000000000E+00 1.1006885939E+01 0.0000000000E+00

0.0000000000E+00 0.0000000000E+00 6.0008695454E+00

PRIMCOORD

12 1

6 6.4011395272E+00 6.2052261853E+00 3.0004347727E+00

6 5.1859366442E+00 6.9073479094E+00 3.0004347727E+00

6 6.4011395272E+00 4.8016597533E+00 3.0004347727E+00

6 5.1859366442E+00 4.0995380293E+00 3.0004347727E+00

...



Chapter 3

Method and Results

3.1 The benzene ring

In this work the molecule benzene is used as an example. It is a planar molecule con-

sisting of 6 carbon and 6 hydrogen atoms arranged in a ring with equivalent distance

between the carbon atoms. Each carbon atom additionally binds 1 hydrogen atom, re-

sulting in sp2 hybridization.

The carbon atoms have 4 valence electrons in the 2s2, 2p2 shells. hydrogen has one

valence electron in the 1s shell. This corresponds to 6 · 4 + 6 = 30 valence electrons for

the entire molecule. Due to spin occupation there are 15 orbitals to consider, 3 of which

are of π symmetry.

Figure 3.1: C6H6

8
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All-together there are 4 valence electrons per carbon atom. 3 of there electrons (+ the

1s electron 4) make the sigma s(σ)-bonds. The fourth electron is in a pz orbital and

forms π-bonds. So there are 6 π-electrons and 6 corresponding π-orbitals (3 of which

occupied).

The σ bonds between each atom are of little interest here.

Figure 3.2: π2 (left) and π1 (rigth) orbital of C6H6

3.2 Imaging atoms and bonds

The input of our program is an xsf ( internal XCrySDen structure format ) file. The file

is accessible as txt-file and read line by line. After a keyword shows up, the following

content is assigned to specific variables. Due to the size of these files, this may take a

while.

The file is accessed via the open function:

with open(fname3 ,’r’) as inFile:

#enter reading routine

data = inFile.readline ()

for i, data in enumerate(inFile ):

where ’data’ is a character array with the current line. First the atoms have to be plotted.

However the definition of the size of atoms is quite problematic since its effective size

changes for binding types and according to quantum-mechanics has no limit in space.

For atoms forming covalent bindings, which is the case here, typically the covalent radius

is used. It is listed in tables for the atoms used [7].
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The positions of the atoms and their atomic number is headed with the keyword ATOMS.

The following lines consist of the atomic number, and the x,y,z positions of the atoms

similar to the content listed after the keyword ’PRIMCOORD’ shown in the example of 2.3.

r=np.zeros(len(atomData [0]))

for i in range(0,len(atomData [0])):

r[i]= coreSizeFac*kovRad(int(atomData [0][i]))*0.01

# Make data

u = np.linspace(0, 2 * np.pi , 20)

v = np.linspace(0, np.pi, 20)

x = 1 * np.outer(np.cos(u), np.sin(v))

y = 1 * np.outer(np.sin(u), np.sin(v))

z = 1 * np.outer(np.ones(np.size(u)), np.cos(v))

# Plot the surface

for i in range(0,len(atomData [0])):

ax0.plot_surface(x*r[i]+ atomData [1][i], y*r[i]+ atomData [2][i], z*r[i]+ atomData [3][i], color=’b’)

’atomData’ 1-3 stores the x,y,z positions of the atoms in Angstrom, atomData[0] con-

tains the atomic number. The atomic number is compared to a table of covalent radii

corresponding to the atomic number which is realized in the function kovRad(). The

covalent radius is given in the range of (32[H]-272[Cs])10−12m. Since this definition is

useful to understand the sizes of atoms inside the molecule, a plot with pure covalent

radii would leave very few space to visualize orbitals:

Figure 3.3: C6H6 with covalent radii
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Because of the relatively large covalent radii the radius is scaled with a factor (coreSizeFac)

∈ [0, 1]. Relations between the volumes of the different atoms stay proper. The x,y,z

axis of figure 3.3 are scaled in Angstrom.

Figure 3.4: Figure of atoms, with covalent radii·0.1

To indicate the molecular bonds, the nuclei are connected via lines. Therefore the short-

est distance dmin between one atom and any other atom is found. Every atom in the

range of dmin · f (where f is a preset factor) is considered a binding partner of this atom.

dn = {d ∈ D : d < min(D) · f} (3.1)

dn with distance of partner in [m], f being the preset factor and D being the amount of

all atomic distances in [m]

This is implemented in the following routine:

def findNeighbours(atomPos ,allAtomPos ):

neighbours =[]

minDist=dist(atomPos ,allAtomPos [0])

for i in range(0,len(allAtomPos )):

if(minDist >dist(atomPos ,allAtomPos[i]) and dist(atomPos ,allAtomPos[i]

)>0):

minDist=dist(atomPos ,allAtomPos[i])

for i in range(0,len(allAtomPos )):

if(minDist*boundDist >=dist(atomPos ,allAtomPos[i])):

neighbours.append(allAtomPos[i])

return neighbours
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Here the variable ’boundDist ’ is the preset factor and set to 1.3.

Subsequently lines are drawn to connect the nuclei. In the implementation below a

2- or 3-dimensional molecule was considered. Later the sourcecode was only adapted to

3-dimensional molecules.

for i in range(0,len(atomPos )):

pos=( findNeighbours(atomPos[i],atomPos ))

for j in range(0,len(pos)):

if(len(pos[j])<3):

ax0.plot([ atomPos[i][0],pos[j][0]] ,[ atomPos[i][1],pos[j][1]]

,[0,0],c=’k’,linewidth =1.0)

if(len(pos[j])==3):

ax0.plot([ atomPos[i][0],pos[j][0]] ,[ atomPos[i][1],pos[j][1]] ,

[atomPos[i][2],pos[j][2]] ,c=’k’,linewidth=boundThickness)

Figure 3.5: Figure of molecule

3.3 Plotting molecular orbitals in real space

The wavefunction is stored in a table of probabilities in the xsf-file. The keyword

’DATAGRID 3D DENSITY’ indicates this section. The first line afterward shows how many

variables there are for each direction (nx,ny,nz), followed by one line with the origin of

the datagrid and three lines dedicated to the direction (lattice vectors). An example is

given below:
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DATAGRID 3D DENSITY

80 90 48

0.0 0.0 0.0

1.0371873288E+01 0.0000000000E+00 0.0000000000E+00

0.0000000000E+00 1.1006885939E+01 0.0000000000E+00

0.0000000000E+00 0.0000000000E+00 6.0008695454E+00

-1.5971783003E-10

-1.9233087226E-10

-2.2758253051E-10

-2.3961219969E-10

...

The first probability is of the gridpoint (0,0,0). The gridpoints are sorted so that x

variables are counted first (a,0,0). After the x tupel reaches ((nx-1),0,0) the y-tupel is

increased by 1 and the x tupel is reset to 0.

((nx − 1), 0, 0)→ (0, 1, 0) (3.2)

The same rule continues for the z tupel.

((nx − 1), (ny − 1), 0)→ (0, 0, 1) (3.3)

This very intuitive sequence can be easily read in with 3-loops over the x,y and z vari-

ables. (arrays in python start at 0, thus nx-1)

The orbital is then plotted via the ’plot surface’ function by choosing a z-plane to

plot a 2-dimensional cut of the wavefunction. A reasonable choice would therefore be

somewhere around (nz
2 ±

nz
4 ), since the plane of the molecule is located at nz

2 for this

example file.

This can be manually changed for different cuts later. The origin of the coordinate

system is at (0,0,0) and has the maximum lengths (xmax=10.3, ymax=11, zmax =6) Ȧ,

so for the subsequent cut the plane was choosen to z=3.75Å (0.75Ȧ above the benzene

ring).

Plotting the orbital in real space shows the subsequent figure, it corresponds to the π1

orbital.
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Figure 3.6: cut through the π1 orbitals of C6H6

Figure 3.7: figure of π1 orbital

3.4 Plotting the orbitals in momentum space

To obtain images of the orbitals in momentum space, the orbitals are Fourier-transformed

(see eq. 1.5-1.6). This is done via the ’np.fft.fftn()’ function. In the figures 3.4 to

3.6 the Fourier transformed wavefunction is plotted 2-dimensionally to illustrate the

processes, although the subsequent operations (zero-frequency shift, adding zeros and

interpolation) are done 3-dimensionally.

orbitals=np.fft.fftn(densData ,s=zeropad)

orbitals =np.fft.fftshift(orbitals)

In the source code above densData is the wavefunction. The parameter s is an ar-

ray of 3 numbers (x,y,z) witch extends the x,y,z components of the given 3-dim array

(wavefunction) with n zeros in the given direction. This increases the resolution of the
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Fourier transformation (see figure 3.9).

Figure 3.8: increase resolution

Afterward the zero frequency is shifted to the center of the spectrum. This is done via

the np.fft.fftshift() function (see figure 3.9).

Figure 3.9: shift of the zero frequency to the middle

By switching the point of view normal to the x-y plane, the orbitals can be seen (see

figure 3.10).

To resemble the experiment the orbitals are not cut in a plane (3.10), but in a sphere

where the radius k matches the wavevekor of the free electrons used in the experiment.

k =

√
Ekin · 2 ·me

~
(3.4)

Ekin ...kinetic energy of electron [eV], me....Mass of electron [kg], k... wavevektor [1/m]

To interpolate the points on the sphere, all gridpoints of the x-y axis are determined

first.

Pxy =
{

(x, y) ∈ (X × Y ) : k2 > x2 + y2
}

(3.5)

Pxyz = Pxy ×
√
k2 − x2 − y2 (3.6)
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Figure 3.10: π1 orbital in x-y plane

This is implemented as shown below:

def spherePoints(xl ,yl):

grid=np.array ([[0.0 ,0.0 ,0.0]])

indices=np.array ([[0 ,0 ,0]])

index=0

for x in range(len(xl)):

for y in range(len(yl)):

if((k**2)>(xl[x]**2+yl[y]**2)):

grid=np.vstack ([grid ,[0.0 ,0.0 ,0.0]])

indices=np.vstack ([indices ,[0 ,0 ,0]])

indices[index ][0]=x

indices[index ][1]=y

grid[index ][0]=xl[x]

grid[index ][1]=yl[y]

grid[index ][2]= kzsphere(xl[x],yl[y])

index=index +1

return grid ,indices
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To interpolate the points on the sphere, the instance RegularGridInterpolator is used.

The first argument is a tupel of lists, containing the x,y,z spacings. The second argument

contains the values of the regular grid in which the interpolation is done. The first two

arguments must match in size. The third argument is sets the interpolation method.

intergrid ,indices=spherePoints(kx,ky)

sphereCutData=RegularGridInterpolator ((kx, ky, kz),

orbitals ,method=’linear ’)( intergrid)

The function RegularGridInterpolator of the instance of the same name is then used

by adding the argument of the coordinates which are to be interpolated. This function

returns an array of values. To plot these values, they have to be refilled into an array.

interpolatedData=np.zeros((len(kx),len(ky)))

#fill in interpolated data in matrix

for i in range(len(sphereCutData )):

if(intergrid[i][0]**2+ intergrid[i][1]**2 <k**2):

#if datapoint in circle

interpolatedData[indices[i][0]][ indices[i][1]]=

np.abs(sphereCutData[i])

[h] The resulting array is then plotted via the pcolormesh function. Here Ekin was set

to 34.3 eV.

Figure 3.11: interpolated orbital-sphere cuts of π1(left) and π2(rigth)



Chapter 4

Conclusion

The aim of this work was to simulate the photoemission angular distribution of electrons

emitted from molecular orbitals. By assuming a plane wave as the final state one can

show that the photocurrent is proportional to the Fourier transform of the initial wave

function. The first step for this simulation was to visualize the wavefunction. A com-

monly used program to visualize molecules and their orbitals from xsf-files is VESTA.

For a benzene ring and the π1 orbital, the following plots were made, for an energy of

Ekin=24.0 eV.

Figure 4.1: Molecule and Orbitals in real space

Figure 4.1. Plot of a benzene molecule with its π1 orbital in real space. The left panel

shows the output of the program described in this work and the right image shows the

same file visualized via VESTA.

18
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Subsequently the wavefunction was Fourier transformed and interpolated on a sphere

with its radius corresponding to the kinetic energy of the emitted electrons. The orbital

plot of the momentum space for benzens π1 and π2 orbitals as output of the program

described in this work is shown below for a kinetic energy of Ekin = 32.4 eV correspond-

ing to the energies of the experiments in [8]:

Figure 4.2: π1 and π2 orbital in momentum space for Ekin = 32.4eV

Figure 4.3: Photoemission angular distributions from [8]
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Figure 4.3. Experimental momentum maps for energies of -8.3 eV (π1) and -8.6 eV (π2)

integrated over an energy window of 0.25 eV.

In [8] the photoemission angular distributions for emission of the π orbitals from benzene

are shown. The analysis of the photoemission momentum maps (MM) in [8] for benzene

suggests a breaking of degeneracy of the topmost π state into two different orbitals (π1

and π2) with emission peaks around -8.3 eV and -8,6 eV (energy with respect to vacuum

level). Due to the overlap of the density of states for energies from -8.3 to -8.6 eV for

these two orbitals, both are visible in the experimental MM of 4.3. The characteristics

of the corresponding orbital are more distinct at their emission peak. The momentum

map for an energy of -8.3 eV shows a higher correspondence to the π1 orbital, and the

one for an energy of -8.6 eV to the π2 orbital.
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Echevarŕıa, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. Covalent

radii revisited. Dalton Transactions, 2008.

[8] Larissa Egger, Bernd Kollmann, Philipp Hurdax, Daniel Lüftner, Xiaosheng Yang,
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