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Abstract

Angle-resolved photoemission spectroscopy (ARPES) offers the most direct access to
investigate the electronic bandstructure of surfaces and solids. Nevertheless, the inter-
pretation of ARPES data is often a complex task and simulations of bandstructures
and ARPES intensity distributions are desirable. With the knowledge of the electronic
eigenstates of a given system, it is possible to make predictions of the corresponding
intensity distribution of an ARPES experiment. This can be achieved within the so
called one-step model of photoemission which describes the photoexcitation from an ini-
tial state to a final, unbound state as a single coherent process. Thus, the photoemission
matrix element not only depends on the initial and final state, but additionally on the
polarization of the incident light beam. In this work, we focus on the differences in the
angular distribution of the photoemission intensity arising from excitation with right and
left handed circularly polarized light, respectively. This effect is referred to as circular
dichroism in the angular distribution (CDAD)[1].

A common [2; 3] way of evaluating the photoemission matrix element appearing in
the one-step model, if the final state is approximated as a plane wave, is the so called
velocity gauge, which can be interpreted as Fourier transform of the initial state. Within
this formalism the CDAD vanishes.

Another way of evaluating the photoemission matrix element is the so called length-
gauge. Here, the interaction Hamiltonian in the matrix element contains the position
operator in place of the momentum operator in the velocity gauge. By specializing on
planar hydrocarbons a general analytic expression of the photoemission matrix element
and its polarization dependence is found. To this end, a tight-binding (TB) model,
based on density functional theory (DFT) results, is constructed in order to calculate
the electronic eigenstates of any planar hydrocarbon systems. This way a method to
calculate the ARPES intensity distribution for arbitrary planar hydrocarbon molecules
is derived. Using this model, the photoemission matrix element in length-gauge predicts
a non-vanishing CDAD.

As an alternative and potentially more accurate approach to simulate ARPES inten-
sity maps, also time-dependent density functional theory (TDDFT) calculations are
performed. We utilize the so-called surface flux method, which produces ARPES in-
tensities without the need to approximate the final state, and which serves as an ideal
reference for benchmarking the TB-model. When comparing ARPES simulations of the
TDDFT and the TB-model for graphene, significant differences in the CDAD intensity
distributions are observed.
Finally, we also compare experimental photoemission momentum maps for the organic
molecule tetracene [4] with the momentum maps obtained by the TB-model and observe
reasonable agreement. Whether the evaluation of the matrix element in the length-gauge
shows the correct CDAD effect for molecular systems in general, however is not evaluated
and further testing is needed.

2



Kurzzusammenfassung

Winkelaufgelöste Photoemissionsspektroskopie (ARPES) ist eine Methode, um die elek-
tronische Bandstruktur einer Oberfläche oder eines Festkörpers möglichst detailliert zu
untersuchen. Die Interpretation der Ergebnisse von ARPES Experimenten ist oft schwie-
rig, weshalb Simulationen von Bandstrukturen und ARPES Intensitäten hilfreich sind.
Bei Kenntnis der elektronischen Eigenzustände des Systems ist es möglich, Vorhersagen
zur Intentsitätsverteilung des ARPES Experiments zu treffen. Dies ist mit Hilfe des soge-
nannten ”one-step model” der Photoemission möglich. Darin wird die Photoemission als
ein Übergang von einem Anfangs- in einen freien Endzustand, durch einen kohärenten
Prozess beschrieben. Das Photoemissionsmatrixelement hängt, neben dem Anfangs-
und Endzustand, auch von der Polarisationsrichtung des einfallenden Lichtstrahls ab.
Diese Arbeit beschäftigt sich vor allem mit den unterschiedlichen Ergebnissen der Inten-
sitätsverteilung des Photoemissionsmatrixelement für links und rechts händig zirkular
polarisiertes Licht. Dieser Effekt wird als ”circular dichroism in the angular distribu-
tion” (CDAD)[1] genannt.

Üblicherweise [2; 3] wird das Photoemissionsmatrixelement des ”one-step model”, im
Falle eines ebene-Welle-Endzustands, in der sogenannten Geschwindigkeits-Eichung berech-
net. Im Zuge dessen kann das Photoemissionsmatrixelement als Fouriertransforma-
tion des Anfangszustandes aufgefasst werden. In dieser Beschreibung verschwindet der
CDAD Effekt allerdings.

Die sogenannte Längeneichung bietet eine weitere Möglichkeit, das Photoemissionsma-
trixelement auszuwerten. Darin wird der Wechselwirkungsanteil des Hamiltonopera-
tors im Photoemissionsmatrixelement durch den Ortsoperator, anstelle des Impulsoper-
ators in der Geschwindikeitseichung, dargestellt. Durch eine Spezialisierung auf planare
Kohlenwasserstoffmoleküle wird ein Ausdruck für das Photoemissionsmatrixelement und
dessen Polarisationsabhängigkeit gefunden. Ein tight-binding (TB) Modell, basierend
auf Ergebnissen der Dichtefunktionaltheorie (DFT), wird konstruiert, um die elektro-
nischen Eigenzustände von beliebigen planaren Kohlenwasserstoffmolekülen zu berech-
nen. Auf diese Weise wird eine Methode zur Berechnung der Intensitätsverteilung eines
ARPES Experiments von beliebigen Kohlenwasserstoff Molekülen konstruiert. Mithilfe
dieses Modells wird gezeigt, dass das Photoemissionsmatrixelement in der Längeneichung
einen nicht verschwindenden CDAD Effekt aufweist.

Einen alternativen und potentiell genaueren Zugang, um ARPES Intensitätsverteilungen
zu simulieren, bildet die zeitanbängige Dichtefunktionaltheorie (TDDFT). Die darin
implementierte ”surface flux” Methode, welche ARPES Intensitäten ohne zustätzliche
Näherung für den Endzustand ermöglicht, dient als Referenz für das TB Modell. Es
wird gezeigt, dass die simulierten ARPES Intensitätsverteilung der TDDFT und der TB
Methode für Graphen bei zirkular polarisiertem Licht erhebliche Unterschiede aufweisen.
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Anschließend werden experimentelle Intensitätsverteilungen von [4] für das Molekül
Tetracene mit einer entsprechneden TB-Simulation verglichen. Dabei wird eine sig-
nifikante Übereinstimmung beobachtet. Ob die Auswertung des Photoemissionsmatrix-
elements in der Längeneichung den CDAD Effekt für Moleküle generell richtig beschreibt,
muss jedoch in zukünftigen Untersuchungen getestet werden.
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1 Introduction

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique to in-
vestigate the electronic structure of surfaces and interfaces. Over the past decades it has
helped to improve our understanding of the electronic structure of various materials sys-
tems, and in particular, of organic-metal interfaces. From a first-principles perspective,
such an interface between an organic molecule and a metallic surface can be considered
as a many-particle quantum mechanical system treated using the Schrödinger equation.
Practically solving this coupled many particle differential equation is only possible nu-
merically within appropriate approximations.

Density functional theory (DFT)[5] is a widely used method to calculate the electronic
ground state of a quantum mechanical many body system. In principle, it allows one
to calculate the exact ground state of the system from scratch without any empirical
knowledge, making it a so called ab-initio method. A semiempirical approach is the
so called tight binding (TB) method. Within this model it is possible to calculate the
electronic eigenstates of a given system with less computational afford than other pop-
ular methods such as DFT or Hartree-Fock, and thus even very large systems can be
treated. However the tight binding method presupposes information of the system and is
therefore not an ab-initio-method. The molecules forming metal-organic interfaces often
are hydrocarbons solely made up of carbon and hydrogen atoms. Within this limitation
a model can be setup which calculates the electronic eigenstates of an arbitrary planar
hydrocarbon molecule from scratch within the TB-model.

With the knowledge of the electronic eigenstates of a given quantum mechanical sys-
tem it is possible to make predictions of the corresponding intensity distribution of an
ARPES experiment. In the so called one-step model of photoemission [6] the photocur-
rent, obtained from a photoexcitation from an initial state to a final unbound state, is
treated as a single coherent process. The photoemission matrix element is proportional
to the photocurrent. Within the one-step model the final state of the photoelectron is
often chosen to be a free electron and thus as a plane wave [2; 3]. This photoemission
matrix element with a plane wave final state can, in the so called velocity gauge, be inter-
preted as Fourier transform of the initial state [2]. The absolute value of the expression
depends not only on the initial and final state but additionally on the polarization of
the incident light beam.

One particular effect regards the influence of the photocurrent on the handedness of
the incoming circularly polarized light. In particular, the photoemission matrix element
of circularly polarized light is of interest. The difference in the angular distribution of
the photocurrent of the right and left handed circularly polarized light is called circular
dichroism in the angular distribution (CDAD) [1]. However, when using the velocity
gauge and approximating the final state by a plane wave, it can be shown that no cir-
cular dichroism effect is to be expected.
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In this work the photoemission matrix element of the one step model will be evaluated
in the so called length gauge. The difference of the two formalisms is the operator in the
expectation value sandwiched by the initial and final states of the photoemission matrix
element. The velocity gauge uses the momentum operator, while the length gauge ex-
pression features the position operator, respectively. In principle both approaches should
be equivalent, however while the CDAD effect vanishes in the velocity gauge, it can be
shown that this is not the case in length-gauge.

In the so called Hückel model [7], the molecular orbitals of planar hydrocarbons are
assumed to be linear combinations of 2pz orbitals only. It can be shown that the CDAD
effect vanishes for a single 2pz orbital also in the length gauge expression for a plane
wave final state. Schönhense stated in [1] that altering the final state reintroduces the
CDAD effect in this case. Following this idea, it is of interest, if this modified final state
can improve ARPES simulations of planar hydrocarbons obtained by the photoemission
matrix element in length gauge, in the context of the CDAD effect.

If reasonable, the so obtained technique could provide an ansatz to simulate CDAD
effects within the one-step model of photoemission.
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2 Methodological Background

2.1 Fermi’s Golden Rule Expression

The famous Fermi’s golden rule expression [8], named after Enrico Fermi, describes the
transition rate from an initial state to a final state of a quantum mechanical system as
response of a weak periodic perturbation. It is widely used to describe photoemission
experiments such as ARPES [9; 10] which will also be done in this work. In order
to derive Fermi’s golden rule, we assume a perturbed system given by the Hamilton
operator H to be described as a sum of an unperturbed system, denoted as H0 and the
perturbation defined as H1. The Hamiltonian of an electron in the valence band under
the influence of an external vector potential is given by

H = H0 + H1 = H0 +

[
e

2me
(p ·A + A · p)

]
+

e2

2mec2
A2, (2.1)

where A denotes the external vector potential. In the following, the quadratic term is
assumed to be small and is neglected. With the commutation relation [p,A] = ih̄∇A
one can rewrite Ap + pA=2Ap. The time dependent vector potential is written in the
form

A(t) = −Ad · αe−i(ωt−k·r) (2.2)

and assuming the long wave limit (k 7−→ 0) simplifies to

A(t) = −Ad · αe−iωt, (2.3)

where α denotes the amplitude and Ad = A
|A| the polarization direction.

The initial state of a time dependent quantum mechanical system can be written as

|ψi(t)〉 =
∑
n

an(t)eitωn |ψn(t0)〉 (2.4)

By the use of the time dependent Schrödinger equation

Hψ = ih̄
∂ψ

∂t
(2.5)

,the orthogonality of the ψn and by sandwiching with < ψf |, the time dependence of the
coefficients af (t) can be written down as

ih̄∂taf (t) =

∞∑
n=0

〈ψn|H1|ψf 〉 an(t)eiωf,nt = 〈ψi|H1|ψf 〉 ai(t)eiωf,it, (2.6)

where ωf,n =
Ef−En

h̄ and by assuming in the last step a perturbation series where for
small time intervals only the term n = i contributes. The above equation can therefore
be integrated to

ih̄a
(1)
f (t) ≈

∫ t

−∞
dt′ 〈ψn|H1|ψf 〉 eiωi,f t

′
(2.7)
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with ωi,f = ωi − ωf . To evaluate the transition rate Ref (T ) from an initial state ψi to
a final state ψf , one needs to calculate the transition probability which is calculated by
|af (t)|2. The transition rate Ref (T ) is thus given by

Ref (T ) =
|af (t)|2

T h̄2 = − 1

T h̄2

∣∣∣∣∫ t

−∞
〈ψf |H1 |ψi〉 eiωi,f t

′
dt′
∣∣∣∣2 =

1

T h̄2 |α|
2

∣∣∣∣∫ t

−∞
eit
′(−ω−ωf+ωi)dt′

∣∣∣∣2 |〈ψf |Ad · p |ψi〉|2 =

1

T
|α|2

∣∣∣∣∫ t

−∞
eit
′(−E−Ef+Ei)dt′

∣∣∣∣2 |〈ψf |Ad · p |ψi〉|2

(2.8)

For t 7−→ ∞ this becomes:

Ref (T ) =
2π

T
|α|2 |〈ψf |Ad · p |ψi〉|2 δ(Efi − E) (2.9)

where Efi describes the energy quantum needed for the transition from ψi to ψf with
Efi = h̄ωfi. So ω = ωfi is equivalent to Ef = Ei + h̄ω and the final expression is known
as Fermi’s golden rule expression

Ref (T ) =
2π

T
|α|2 |〈ψf |Ad · p |ψi〉|2 δ(Ef − Ei − h̄ω). (2.10)

This expression can thus be used to describe optical transitions, where both initial
and final states are bound states, as well as transitions from a bound initial to a free
final state. Therefore photoemission processes can be treated with Fermi’s golden rule
expression. The evaluation of the matrix element |〈ψf |Ad · p |ψi〉| will be discussed in
more detail later.

2.2 ARPES-Experiment

Angle-resolved photoemission spectroscopy (ARPES) offers the most direct access to
measure the electronic bandstructure of surfaces. In ARPES experiments the sample
is illuminated with monochromatic light of the energy hν. By energy conservation, the
kinetic energy of an electron escaping the surface after absorbing a photon is given by
[9]

Ekin = hν − Φ− EB. (2.11)

Here, Ekin is the kinetic energy of the emitted electron, Φ is the workfunction and EB
denotes the binding energy. The energy of the free electron approximated by a plane
wave, in the non-relativistic regime (v << c), is given by:

Ekin =
h̄2k2

2me
(2.12)

where me is the electron mass.
In ARPES experiments, the emitted electrons are detected in terms of their kinetic
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energy as well as their emission angle [9]. The parallel momenta components are obtained
by

kx =

√
2meEkin

h̄
sin(ϑ) cos(ϕ) (2.13)

ky =

√
2meEkin

h̄
sin(ϑ) sin(ϕ) (2.14)

where ϑ and ϕ are the polar and azimuthal emission angles as indicated in Figure 2.1.

Figure 2.1: Schematic of the geometry of an ARPES experiment with angles as defined
above. χ denotes the angle of the incoming photons of the energy hν in
respect to the surface. The emitted electron is detected as a function of the
polar angle ϑ and it’s kinetic energy. By rotation of the surface around the
azimuthal angle ϕ, one can measure the entire subspace above the sample
surface.

The outcome of an ARPES experiment is the intensity of emitted electrons as a function
of the binding energy EB and parallel momenta components kx and ky. When assuming
a dipole transition, the intensity distribution I(E, kx, ky) of the photoemitted electrons
can be analytically calculated with Fermi’s golden rule expression [8] which is discussed
in Section 2.1. Thus, within the one-step-model of photoemission, the photo-excitation
is treated as a single coherent process, from bound state |ψi〉 with energy Ei, to the
free state |ψf 〉 with energy Ef and parallel momentum components kx and ky [10].
The definition of the momentum operator p evaluated in position representation gives
p = −ih̄∇. Together with Equation 2.10, this gives

I(E, kx, ky) ∝
∑
i

|〈ψf (E, kx, ky)|A · ∇ |ψi〉|2 × δ(Ei + Φ + E − h̄ω), (2.15)

where A is the polarization vector of the incoming photon. By assuming a plane with
wave vector k as the final state |ψf 〉 the photocurrent Ii becomes proportional to the
Fourier transform of the initial wave function ψ̃i modulated by a polarization factor [10]

11



I(E, kx, ky) ∝ |A · k|2 ×
∣∣∣ψ̃i(kx, ky)∣∣∣ . (2.16)

For a certain constant binding energy EB, |k| is a constant. Therefore the Fourier
transformed wavefunction ψ̃i is evaluated on a sphere with radius |k|. This can be
visualized as a cut of a sphere through momentum space representation of the initial
state orbital (see Figure 2.2).

Figure 2.2: This Figure, taken from [10], shows the Fourier transformed initial state (blue
and yellow) in 3d k space. The energy of the final state is given by Equation
2.12 and is thus a function of the absolute value of the wave vector k. A
constant energy is thus a sphere in 3d k-space here displayed in red. The
ARPES intensity of a constant energy evaluated with Equation 2.16 is the
cut of the Fourier transformed initial state with the corresponding constant
energy sphere.
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2.3 Graphene

Graphene is an allotrope of carbon, in which the carbon atoms arrange in a two-
dimensional hexagonal lattice. Graphene has become famous for its interesting electronic
properties an is described as a zero-gap semi-conductor. Thus, the valence- and conduc-
tion band ”touch” at the Dirac points (or K points) of the first Brillouin zone. In this
work, we will focus on the so called dichroism effect. In general dichroism refers to the
optical absorption-properties of a material for different polarizations of light. In particu-
lar, this work investigates how different polarization states of the incoming photon affect
the photoemission current. This effect can be studied on graphene very well. Its simple
two dimensional structure as well as its small unit cell containing only 2 atoms makes
it possible to do very expensive numerical calculations (such as with TDDFT, which we
will deal with in Section 2.7) relatively fast. Moreover properties can even be calculated
analytically. But let us start at the very beginning by defining the geometry of graphene.

Graphene has a hexagonal structure which originates from a triangular lattice with
a basis of two atoms per unit cell. A possible choice for lattice vectors would be:

a1 = a (1, 0, 0) , a2 = a
(
−1

2 ,
√

3
2 , 0

)
(2.17)

with a CC-bond length aL ≈ 1.42 Å and a lattice vector length of a = 2.47 Å. In reduced
coordinates the two atoms are located at

C1 = (0, 0, 0) , C2 = (1
3 ,

2
3 , 0). (2.18)

With this information one can visualize the lattice graphene in real space.
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Figure 2.3: Atomic structure of graphene with lattice vectors a1, a2 (See Equation 2.17)
and atom basis at position C1 and C2 (see Equation 2.18). The nearest
neighbor vectors δδδn of C1 are displayed in blue.

The nearest neighbors of atom C1 are defined as

δδδ1 = a
(

0, 1√
3
, 0
)

, δδδ2 = a
(

1
2 ,
−1

2
√

3
, 0
)

, δδδ3 = a
(
−1

2 ,
−1

2
√

3
, 0
)
. (2.19)

In a solid like graphene one can make use of the translational symmetries and thus of
Bloch’s theorem [11]. The eigenvalues En of the Schrödinger equation depend on the
wave vector En(k). They are periodic in k-space which is spanned by the reciprocal
lattice vectors.

Let us now take a look at the Brillouin zone of graphene. The reciprocal lattice can
be constructed with the relation ai · bj = 2πδi,j where bj denotes a reciprocal lattice
vector, one can construct the bj with the use of the lattice vectors from Equation 2.17
to be

b1 = 2π
a

(√
3

2 ,
1
2 , 0
)

, b2 = 2π
3a (0, 1, 0) . (2.20)

Taking a look at the first Brillouin-zone one can again see a hexagonal structure. The
Dirac cones defining the zero-band gap are located at the corners of the Brillouin zone,
denoted as K-points, and are given by

K = 2π
a

(
1

2
√

3
, 1

2 , 0
)

, K′ = 2π
a

(
− 1

2
√

3
, 1

2 , 0
)
, (2.21)
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which in reduced coordinates are given by

K =
(

1
3 ,

1
3 , 0
)

, K′ =
(
−1

3 ,
2
3 , 0
)
. (2.22)

An image of the Brillouin zone is displayed below.

Figure 2.4: The first Brillouin zone of graphene with Γ, M and K points. b1 and b2

denote the reciprocal lattice vectors (see Eq: 2.20))

To describe the optical properties of a material the electronic properties are needed.
There are various methods to determine these such as the tight-binding method and
the DFT method which will be discussed in Section 2.4 and 2.6. For graphene the two-
dimensional dispersion relation is shown below for a DFT calculation performed via the
Octopus code (see [12]) using a LDA functional and the pseudopotential set hgh-lda.
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Figure 2.5: Bandstructure of graphene with a k-point path M − K − Γ − K −M see
Figure 2.4.

One can see that at the K-points the topmost valence band and lowest conduction band
form Dirac cones. The Dirac points are degenerated points in the band structure due
to the point group of graphene. The fact that the valence and the conduction band are
touching each other at the K point results in the description of graphene as a ”zero-gap
semi-conductor”. Although graphene offers a lot of interesting properties it will be used
here mainly to provide a test material for the dichroism effect. The idea is to simulate
an ARPES experiment of graphene (see Section 2.2) with the use of Fermi’s golden rule
expression (see Section 2.1). Therefore one needs an initial state the electron of the
photoemission process emerges from. The following sections will deal with this problem
in detail.
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2.4 Tight-Binding-Approximation

The tight binding model is a quantum mechanical model to calculate the electronic
band structure. Within the tight-binding approximation, electrons are assumed to be
”tightly bound” to the atom which they belong to. This means that they only have
limited interaction with states and potentials of neighboring atoms. As a consequence
this method allows for fast computations in comparison to other methods such as DFT
which will be discussed in the later Section 2.6. Many papers such as Refs.[13; 14]
covering properties of graphene start out with a tight binding ansatz delivering realistic
models for a various set of problems.

2.4.1 Tight Binding Basics

Here, some of the basic concepts of the tight binding approach will be discussed very
briefly. As a starting point one needs eigenfunctions Ψ of the Hamiltonian eigenvalue
equation of the form

HΨ(k, r) = E(k)Ψ(k, r). (2.23)

In the tight binding approach these eigenfunctions are constructed as a linear combi-
nation from valence orbitals of the contributing atoms of the unit cell of a crystal. It
should be noted that atomic orbitals on different sites are in principle not orthogonal.
This problem will be dealt with later. In Section 2.4.4 a construction method for or-
thogonal atomic orbitals introduced by Löwdin [15] is presented. Solid state physics
deals with periodic systems. Here the Hamiltonian operator H has certain invariances
referring to the translational symmetry of the solid. Thus the eigenfunctions of Equation
2.23 are for a periodic system set up as so called Bloch functions which are classified by
the wave vector k as

Ψ(r,k)m,a = N−
1
2

∑
n

eik·Rnφm,a(r−Rn − bm) (2.24)

where φm,a are orthogonal atomic orbitals with the unit cell index n, m being the
atom index of the unit cell and a the index of the associated orbital. The Bloch basis
functions given by Equation 2.24 incorporate the translational symmetry properties of
the Hamiltonian. They are eigenfunctions of the translational operator and fulfill the
equation

Ψ(k, r + R) = eikRΨ(k, r). (2.25)

On the other hand, taking a look at a finite molecular system, a so called LCAO (linear
combination of atomic orbitals) ansatz is often made. Here the basis functions of the
corresponding Schrödinger equation are in position representation setup as

Ψi(r) =
∑
n,a

cinφa,n(r−Rn), (2.26)

where φa,n(r) are the atomic orbitals with the atom index n, the quantum number a of
the associated orbital and i the index of the eigenfunction of the Hamiltonian also referred
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to as molecular orbital. The eigenenergies of a molecular system are not a function of k
but discrete. In the following calculation we will deal with a Bloch-type basis function.
The calculation would be similar however for an LCAO ansatz. Without any further
discussion about the Hamiltonian H, the energy eigenvalues can be calculated with the
use of the Schrödinger equation as

H |Ψk〉 = Ek |Ψk〉 (2.27)

and by sandwiching this expression from the left by a single basis orbital < φn|

〈φn|H |Ψk〉 = Ek 〈φn|Ψk〉 (2.28)

which can be decoupled. By using Equation 2.24 in the above expression one ends up
with ∑

m

cm(k) 〈φn|H|φm〉 = E(k)
∑
m

cm(k) 〈φn|φm〉 (2.29)

which can be rearranged as a matrix equation:

Hn,mcm(k) = Sn,mcmE(k) (2.30)

With the corresponding matrix elements:

Hn,m =

∫
φ∗nH(r)φmdr (2.31)

and

Sn,m =

∫
φ∗nφmdr (2.32)

Usually not all of these matrix elements are evaluated. For the case of a orthogonal tight
binding theory the overlap matrix Sm,n is approximated by δm,n. This leads to a simple
eigenvalue problem. To some extent really crude approximations are made such as for
the Hückel-model (see Section: 2.4.2) which still yields reasonable results. A widely used
TB-application is the Slater-Koster formalism which will also be used in this work via
the chinook package described by [16]. It should also noted that the parameters used
in the tight-binding (TB) theory are often taken empirically making it a semi-empirical
method. As discussed in [17]: ”If the tight binding approximation contains enough of the
physics of the system we are studying then any reasonably chosen set of parameters will
provide us with a useful model”. Or in the words of Slater and Koster [18]: ”Instead of
computing the various integrals analytically, we shall use them as disposable constants,
to be chosen so that we shall fit the results of more accurate calculation made by other
methods”.

2.4.2 The Hückel Model

Erich Hückel [7] introduced a simplified model in order to describe aromatic π conjugated
systems. Due to its simplicity, the Hückel model is a commonly used method. It can be
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used to describe π conjugated hydrocarbon systems. With the refined extended Hückel
model also other orbitals can be included, this however will not be needed here but
can be looked up in [19]. For the Hückel-model we start out with a molecular orbital
Hamiltonian Hmol and a LACO ansatz.

Ψ =
∑
i

ciφi (2.33)

with φi being normalized atomic orbitals. In principle atomic orbitals at different atomic
sites are not orthogonal, one can however orthogonalize them by the method of Löwdin
[15] described in Section 2.4.4. Here we will simply assume that the atomic orbitals are
orthogonal as part of the Hückel model. With the stationary Schrödinger equation

Hψ = Eψ (2.34)

and by substituting Equation (2.33) into this expression, we end up with:∑
i

ciφiH = E
∑
i

ciφi. (2.35)

With applying
∫
d3rφj to right side ,which is the same operation as in Equation 2.28,

we obtain
n∑
j=1

(Hij − ESij)cj = 0 (2.36)

with

Hij =

∫
<3

φ∗i ĤφjdV (2.37)

refereed to as the Hamilton matrix and

Sij =

∫
<3

φ∗iφjdV (2.38)

referred to as the overlap matrix, with (i, j = 1, .., n). This problem has a solution if
[Hij − ESij ] is singular. Hence E must satisfy:

det([Hij − ESij ]) = 0 (2.39)

known as the secular equation. For the Hückel-model further simplifications are per-
formed:

• Only nearest neighbors are taken into account, so Hij 6= 0 only for atom i being a
neighbor of atom j.

• For aromatic planar C-H molecules it is assumed that the energy of an electron is
in an isolated C(2pz) orbital.
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• The energy of all bonds of the molecule are reduced to the bonds between the
C(2pz) orbitals (The C-H interactions are not taken into account).

• The overlap integral given by Equation 2.38 is approximated by the identity matrix.

By assuming a spherically symmetric potential around each nucleus and taking advan-
tage of the rotational symmetry of the 2pz orbital around z-axis, one can easily see the
corresponding matrix element of Equation 2.37 becomes a function of the distance of
the two orbitals only. In other words the carbon-carbon matrix element of 2pz orbitals,
called the hopping parameter β(r), can be expressed as a function of the C-C bond
length r.

For example lets take a look at benzene. With exactly the same distances between
the C atoms, the Hamilton matrix elements in the Hückel approximation of Equation
2.37 can take exactly 2 different values. α for Hii and β for Hij for i 6= j with Ri,Rj
being neighbor atoms:

H =



α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α

 (2.40)

The parameters of this matrix are then fitted to experimental energies or more accurate
methods. The eigenvectors of the Hamilton matrix are the coefficients cn forming the
eigenfunctions of the Hamiltonian as given in Equation 2.33. These eigenfunctions are
remarkably close to the molecular orbitals obtained with more accurate methods such
as the DFT method described in Section 2.6. In this work we will fit this model to the
DFT method, and find that it is justified to use the Hückel model for such systems.
In more involved numerical calculations, this method therefore can be used to make a
fast approximation of the molecular orbitals and the energies of a planar carbohydrate
system. The computational effort is reduced to the diagonalization of a n × n matrix,
where n is the number of carbon atoms of the system.

2.4.3 Slater Koster formalism

In 1954 Slater and Koster formulated a new tight binding based method [18]. The
methods starts off with an LCAO ansatz for n different atomic orbitals φn(r−Ri) with
Ri being the atomic origin of atom i. The so called Bloch sums Bn,k(r) defined by

Bn(k, r) =
∑
j

eikRjφn(r−Rj) (2.41)

are used to construct the wave function, as a linear combination

Ψk(r) =
∑
n

Bn(k, r)cn. (2.42)
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”In general, except at special k values, there will be matrix components of energy be-
tween all these Bloch sums, so that we shall have a secular problem whose order equals
that of the total number of atomic orbitals” [18]. They also make a statement about
the symmetry of the wavefunction: ”a wave function of a given k value must be made
up as a linear combination of functions having the symmetry properties of s, px, py, pz
,.. orbitals, and will not have the characteristics of any one of these types of orbitals.”[18]

”if we start with the atomic orbitals φn located on the various atoms of a unit cell,
and make Bloch sums from them, then we shall find that these Bloch sums are not or-
thogonal to each other. The reason is that the φn’s connected with orbitals on different
atoms and are thus not orthogonal to each other. We can remove this difficulty by im-
mediately setting up new atomic orbitals, linear combinations of the original ones, which
are orthogonal to each other. This can be done most symmetrically by the method of
Löwdin.” [18]

Starting off with atomic orbitals φj at the origin of each atom site, orthogonal atomic
orbitals ψj are obtained by the use of Löwdins method described in the Section 2.4.4.
So ψj,α(r−Rn−bj) is the orthonormal atomic orbital of atom j with quantum numbers
α in the unit cell denoted by Rn.

Bloch functions of the form

Ψk(r)j,α = N−
1
2

∑
n

eik·Rnψj,α(r−Rn − bj) (2.43)

where k is the Bloch-wavevector, N the number of unit cells in the sum, lattice vectors
are denoted as Rn, with a set of atoms j located at positions bj in each unit cell.

Since the Hamiltonian H has lattice periodicity, by the use of Equation 2.43, the Hamil-
tonian can be block-diagonalized with each block corresponding to a specific k.
For a chosen k value (looking at the corresponding block) one can describe the matrix
elements by:

Hhα,jβ(k) =
∑
n

e(ik·Rn)

∫
ψ∗hα(r−Rn − bh)Ĥψjβ(r− bj)d

3r (2.44)

where the translational symmetry is used to remove one of the sums over R (can be
seen in [20]). The single particle potential of H can be separated into potentials Vm(r)
centered at site bm (atomic potentials Vm(r)) as

V (r) =
∑
nm

Vm(r−Rn − bm), (2.45)

In the following steps only on-site integrals and two-center integrals are taken into ac-
count. On-site integrals refer to both atomic-like functions ψhα and ψjβ having the same
atom site as the potential at bk. Two-center integrals refer to one of the wavefunctions
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having the same atom site as bk.

When assuming spherically symmetric potentials Vm(r), the on-site matrix elements
are diagonal elements, the off-diagonal elements in the two-center approximation only
depend on the displacement u [20] given by

H ij
αβ(u) =

∫
d3rψ∗iα(r− u)Hψjβ(r). (2.46)

Here i, j denote the atomic positions and the angular momenta contained in α and
β. Assuming the atomic orbitals φi being s,p or d angular momenta only, each term of
Equation 2.46 can be expressed in 14 Slater-Koster parameters denoted as Habγ(u) where
a and b specify the angular momenta of the orbitals (s,p,d) and γ = σ, π, δ specifies the
component of the angular momentum relative to the direction u [20].

2.4.4 The Löwdin Method

In Section 2.4.1 it was already mentioned that atomic orbitals of distant atoms are in
principle not orthogonal. Their overlap may be small but neglecting it should be well
justified. In his paper Löwdin [15] showed that the secular equation problem of including
a non diagonal overlap matrix can be reduced to the same form as for a diagonal overlap
matrix with a transformed Hamilton matrix. These orthogonal atomic orbitals can be
set up as a linear combination of the original non-orthogonal ones. Löwdin started off
by defining the molecular wavefunctions as linear combinations of atomic orbitals of the
form

Ψi =
n∑
µ=1

φµχµ,i (2.47)

The problem of this ansatz is that the Bloch-sums of Equation (2.41) are not orthogonal
to each other. This is due to a non-vanishing overlap of orbitals of different atoms as
already mentioned.

Therefore the secular equation is constructed in a different way than in Equation (2.39)
for the original tight binding approach. By defining the overlap matrix as

Sm,n =

∫
φ∗mφndτ − δm,n (2.48)

and not using any simplifications on the overlap matrix, one ends up with the secular
equation of the form:

n∑
ν=1

Hµ,νχν =
n∑
ν=1

(δµ,ν + Sµ,ν)χνE. (2.49)

Here Hµ,ν are the matrix elements of the Hamilton-matrix, χν is the coefficient of atomic
orbital ν for a specific eigenfunction of the Hamilton matrix with the corresponding
eigenvalue E. In matrix form this can be written as:
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Ĥx = (1̂ + Ŝ)x̂Ê (2.50)

with Ê now being a diagonal matrix with Ei = Ei,i. Equation 2.48 implies the normal-
ization condition: ∑

µ,i

χµ,i(δµ,ν + Sµ,ν)χν,i = 1. (2.51)

Now a new matrix Ĉ of the form:

χµ,k = (δµ,j + Sµ,j)
− 1

2Cj,k (2.52)

is introduced. It can be written in matrixform as:

x̂ = (1̂ + Ŝ)−
1
2 Ĉ (2.53)

where the matrix (S+1)−
1
2 is formally given by a series expansion. With eq: (2.52) the

secular equation (2.49) can be expressed as:

Ĥ
′
Ĉ = ĈÊ (2.54)

with the expressions Ĥ
′
= (1̂+ Ŝ)−

1
2H(1̂+ Ŝ)−

1
2 and Ĉ

+
Ĉ = 1̂. So the secular equation

problem of including a non diagonal overlap matrix can be reduced to the same form
as for a diagonal overlap matrix with a transformed Hamilton matrix Ĥ’ which is again
self adjoint.

One can construct a set of fully orthogonal atomic wavefunctions ψ from the overlapping
atomic orbitals φ forming the molecular orbitals Ψ. With the construction of

φ = ψ(1̂ + Ŝ)−
1
2 (2.55)

forming orthogonal wavefunctions

∫
ψ∗ψdτ =

∫
φ∗(1̂ + Ŝ)−1φdτ

2.48︷︸︸︷
=

∫
φ∗(

∫
φ∗φdτ ′)−1φdτ =

∫
φ∗φdτ(

∫
φ∗φdτ ′)−1 = δ.

(2.56)
The molecular orbitals thus are calculated by

Ψj =

n∑
µ

ψµCµ,j (2.57)

This section only sketches the method of Löwdin. In his paper [15] he talks about the
treatment of H′, the calculation of the C matrix, appliance to certain systems and sim-
plifications. We will however stop here since this method is not explicitly implemented
in this work but rather implicitly used by the Slater-Koster formalism [18] from Section
2.4.3 of the Chinook package [16] later.
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2.4.5 The TB-Model for Graphene

To evaluate Fermi’s golden rule expression of Section 2.1 for graphene, one needs an
initial state. Here the TB-model of Section 2.4.1 will be used to calculate the highest
valence- and lowest conduction band. Therefore we will assume that only the 2pz orbitals
of the carbon atoms are involved. We will also suppose that the ψ2pz(r + Rn −Rj) are
orthonormal. It describes the 2pz orbital of atom at site Rj in the unit cell of Rn.

First, Bloch functions of the form

φjk(r) = N−
1
2

∑
n

eik·(Rn+Rj)ψ2pz(r−Rn −Rj) (2.58)

are setup, where k is the Bloch-wavevector, n the index of the sum over the lattice
vectors. Lattice vectors are denoted as Rn, with a set of atoms j located at positions bj
in each unit cell. So the two basis functions of graphene take the form

φ1
k(r) = N−

1
2

∑
n

eik·(Rn+R1)ψ2pz(r−Rn −R1) (2.59)

and
φ2
k(r) = N−

1
2

∑
n

eik·(Rn+R2)ψ2pz(r−Rn −R2). (2.60)

The matrix elements of the energy expectation values are given by the 2× 2 matrix

Hi,j(k) =
〈
φik(r)

∣∣ Ĥ ∣∣∣φjk(r)
〉

=

(
H1,1 H1,2

H∗1,2 H2,2

)
(2.61)

The diagonal elements are called onsite-energies and are calculated as:

Hj,j(k) =
1

N

∑
R,R′

eik(R−R′) 〈ψ2pz(r−R−Rj)| Ĥ
∣∣ψ2pz(r−R′ −Rj)

〉
(2.62)

Only including nearest neighbor interactions for the onsite element restricts (R = R′)
and leads to

=
1

N

∑
R

〈ψ2pz(r−R−Rj)| Ĥ |ψ2pz(r−R−Rj)〉 = ε2p. (2.63)

The off-diagonal elements are parametrized by the so called hopping parameter and are
calculated as:

H1,2(k) =
1

N

∑
R,R′

eik(R−R′+R1−R2) 〈ψ2pz(r−R−R1)| Ĥ |ψ2pz(r−R−R2)〉 (2.64)

The vector R −R′ + R1 −R2 refers to the nearest neighbor positions (see Figure 2.3)
denoted as δδδ1, δδδ2, δδδ3.
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H1,2 can thus be written as

H1,2(k) =
1

N

∑
R

(
eikδδδ1 + eikδδδ2 + eikδδδ3

)
· t =

(
eikδδδ1 + eikδδδ2 + eikδδδ3

)
︸ ︷︷ ︸

f(k)

·t (2.65)

where t is the hopping parameter.

Substituting Equation 2.58 into the Schrödinger equation

Ĥ
∣∣∣φjk〉 = E(k)

∣∣∣φjk〉 (2.66)

and sandwiching
〈
φjk

∣∣∣ from the left leads to the matrix equation∑
j

Hi,jcj =
∑
j

ESi,jcj . (2.67)

By assuming a diagonal overlap matrix Si,j the eigenvalue problem can be solved by

det(Ĥ − E · 1) = 0. (2.68)

Now inserting the elements of the Hamilton matrix H1,1 and H1,2 as∣∣∣∣ ε2p − E tf(k)
tf(k)∗ ε2p − E

∣∣∣∣ = 0 (2.69)

one identify the eigenenergies as

E±(k) = ε2p ± t · |f(k)| (2.70)

where t < 0 and the ± sign refers to ”+” being the valence and ”-” being the conduction
band. With the coefficients c from Equation 2.67 now given by

c± =
1√
2

± eiν(k)︸ ︷︷ ︸
f(k)
|f(k)|

, 1

 (2.71)

the corresponding eigenfunctions can be written as

Ψ+(k) =
1√
2

[
−e−iν(k) · φ1,q(r) + φ2,k(r)

]
Ψ−(k) =

1√
2

[
eiν(k) · φ1,q(r) + φ2,k(r)

]
.

(2.72)

The Equation 2.70 gives the bandstructure of graphene around the Fermi energy. The
points where E+(k) = E−(k) define the tip of the Dirac cones of graphene and identify it
as a zero-band gap semiconductor. The expressions 2.72 now describe the state forming
the valence- and the conduction band. We will later refer to these expressions in order
to evaluate the dichroism effect of an ARPES experiment and end this section here.
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2.5 Matrix Element in Velocity Gauge

A theoretical description of ARPES experiments can be accomplished within the so
called one-step model of photoemission [6]. Within this approach the ARPES intensity
is in principle evaluated by the use of Fermi’s golden rule expression [8][9][10] which
is discussed in Section 2.1. The corresponding transition matrix element is called the
photo emission matrix element. The external field is treated as perturbation and under
the assumption of a weak field A2 → 0 one ends up with a perturbation of

H1 =
e

me
A(t)p. (2.73)

The momentum operator can be written in position representation as p = −ih̄∇. Fermi’s
golden rule expression in dipole approximation gives

M(k) = 〈ψf |A · p|ψi〉 (2.74)

which is the transition matrix element where 〈ψf | is the final- and |ψi〉 the initial sate.
This is called the velocity form since the operator used for the transition probability
is the momentum operator. We will take a look at this formalism for graphene. The
photoemission matrix element calculated in this way depends on the polarization of the
light. For the TB model of graphene discussed in Section 2.4.5 the transition matrix
element with a plane wave final state can be relatively easily evaluated in velocity gauge
as

M(k) =
〈

Ψ±(q) |A · p| eikr
〉

= −ih̄A
∫
d3rΨ±(q, r)∗∇eikr (2.75)

Where Ψ±(q) are the eigenstates from Equation 2.72 given in Section 2.4.5. This ex-
pression can be evaluated straight forward as

|M(k)|2 = h̄2|A · k|2
∣∣∣∣∫ d3rΨ±(q, r)∗eikr

∣∣∣∣2 = h̄2|A · k|2 |F(Ψ±)(k)|2 (2.76)

with F(Ψ±)(k) being the Fourier transformation of Ψ±(q, r). Without any further eval-
uations of this expression, some important statements can be made. The dependence
on the polarization of the light in the photoemission matrix element can be reduced to
a factor of |A · k|2. In this work we will take a look at different polarization directions
and especially at circularly polarized light.

Circularly polarized light can be expressed with two perpendicular vectors A1 and A2

as A1 ± iA2 where the ± sign defines the handedness of the light. The difference of the
photoemission matrix element for left and right handed polarized light is called circular
dichroism. The photo emission matrix element depends on the polarization by the factor
|A · k|2. This factor gives the same value for right and left handed polarized light. So
the corresponding circular dichroism angular distribution (CDAD) vanishes. This is,
however, not the case generally. Methods beyond perturbation theory and a plane wave
final state like TDDFT (discussed in Section 2.7) are able to simulate this effect.
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The canonical commutation relation [r,H0] = − ih̄
me

p ,where H0 is the unperturbed
Hamiltonian from Section 2.1, can be used to transform expression 2.75 into the so
called length form. Equation 2.75 thus changes to

M(k) =
mi

h̄
A ·

〈
eikr|[r,H0]|Ψ

〉
=
mi

h̄
A ·

〈
eikr|rH0 −H0r|Ψ

〉
. (2.77)

Assuming
〈
eikr

∣∣ and |Ψ〉 to be eigenfunctions of H0 with eigenvalues Epw and EΨ the
above expression can be rewritten as

M(k) =
mi

h̄
A · (EΨ − Epw)

〈
eikr|r|Ψ

〉
(2.78)

and thus

|M(k)|2 =
∣∣∣A · ω(k)

〈
eikr|r|Ψ

〉∣∣∣2 , (2.79)

where
(EΨ−Epw)m

h̄ = ω(k). The corresponding transition matrix element is now obtained
by the position operator which denotes it as the length form. In this form one can not
immediately see the dependence of the matrix element on the polarization. Works such
as [1][16][14] suggest that it is possible to see a CDAD in the length gauge or at least
by making slight adjustments of the final state of the photoemission matrix element in
length gauge. In the Chapter 5 we will compare the APRES simulation of graphene of
a tight binding based program to TDDFT results. Subsequently there will be a detailed
discussion of the analytical result of the photo emission matrix element for graphene in
length-gauge.
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2.6 Density Functional Theory (DFT)

Density functional theory, introduced by Hohenberg and Kohn [5], is a widely used
method to calculate the electronic ground state of a quantum mechanical many body sys-
tem. In principle it allows one to calculate the exact ground state of the system without
having to solve the coupled many-body Schrödinger equation. This is done by mapping
the system of interacting electrons on to an auxiliary system of non-interacting elec-
trons in an effective potential. This potential includes the so called exchange-correlation
contribution which needs to be approximated. The main object in DFT is the electron
density. The auxiliary potential called the Kohn-Sham potential is a functional of the
electronic density. By assuming an initial ground state density one can re-evaluate the
Kohn-Sham potential and thus get to an improved ground state. The exact ground state
is then obtained by iterating this procedure.

But let us start off at the very beginning with the many particle Hamiltonian (given
in atomic units)

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

K∑
k=1

Zk
|ri −Rj |

−
K∑
k=1

∇2
k

2Mk
+

K∑
k=1

N∑
l>k

ZkZl
|Rl −Rk|

,

(2.80)
where Rk denotes the position of nucleus k with charge Zk and mass Mk. ri denotes
the position of electron i. The first term describes the kinetic energy T of the electrons,
the fourth one the kinetic energy of the nuclei. The third sum describes the Coulomb
interaction of nuclei and electrons Vne, the second the electron-electron and the fifth the
nuclei-nuclei interaction Vee and Vnn, respectively.
The fact that this is a coupled differential equation makes solving the Schrödinger equa-
tion a highly non trivial problem. Only very simple systems can be solved analytically.
A first step in order to deal with bigger systems is to make a few assumptions. ”Atomic
nuclei are much heavier than individual electrons. Each proton or neutron in a nucleus
has more than 1800 times the mass of an electron. This means, roughly speaking, that
electrons respond much more rapidly to changes in their surroundings than nuclei can”
[21].

By applying the so called Born-Oppenheimer approximation [22], which fixes the po-
sitions of the nuclei, one gets rid of the 4-th and 5-th term in Equation (2.80) and thus
simplifies it to

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj |
+

N∑
i=1

v(ri) = T + Vee +

N∑
i=1

v(ri) (2.81)

where Vne is rewritten as the external potential

v(r) = −
K∑
k=1

Zk
|r−Rk|

. (2.82)
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It is shown by the Rayleigh-Ritz minimal principle that

Eg = min
Ψ
〈Ψ| Ĥ |Ψ〉 (2.83)

For simplicity the ground state energy Eg is from now on denoted as E. By variation of
the normalized many-body wavefunction, such that it minimizes the matrix element, it
matches the energy of the ground state.

At this point let us introduce the electron density, defined as

n(r) = N

∫
Ψ∗(r1, ..., rN )Ψ(ri, ..., rN )dr1...drN . (2.84)

By fixing a trial density n(r), where all wave functions resulting in this density are
indicated by Ψ → n(r) one can write down the energy as a functional of the electronic
density in the form

E[n(r)] = min
Ψ7→n(r)

〈Ψ|H |Ψ〉 = min
Ψ7→n(r)

〈Ψ|T+Vee |Ψ〉+
∫
d3rv(r)n(r) = F [n(r)]+

∫
d3rv(r)n(r)

(2.85)
with the universal functional F [n(r)] defined as

F [n(r)] = min
Ψ7→n(r)

〈Ψ|T + Vee |Ψ〉 . (2.86)

Now minimizing this energy by varying the electron density, this leads to the so called
Hohenberg and Kohn minimal principle:

E = min
n(r)

E[n(r)] = min
n(r)

{
F [n(r)] +

∫
d3rv(r)n(r)

}
. (2.87)

With the constraint of a fixed electron number implemented as Lagrangian multiplier
(N =

∫
d3rn(r)) with the parameter µ, the variation δ

δn(r) yields

δ

{
F [n(r)] +

∫
d3rv(r)n(r)− µ

∫
d3rn(r)

}
= 0 (2.88)

and thus follows that
δF [n(r)]

δn(r)
+ v(r) = µ. (2.89)

This equation states that the external potential v(r) is uniquely defines by the ground
state density n(r) up to an additive constant and is called the Hohenberg and Kohn
theorem. Taking a look at Equation (2.81) it can be seen that H is determined by v(r).
The Hohenberg and Kohn theorem thus concludes that the ground state is a unique
functional of v(r).

Assuming the form of the universal functional F [n(r)] is known, the Hohenberg and
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Kohn theorem in principle enables us to determine the ground state density. Kohn and
Sham, however, suggested a different technique in order to do so.

The Kohn-Sham method introduces an auxiliary external potential vs(r) of an indepen-
dent many particle Hamiltonian, whose electron density matches the fully interacting
one. By introducing the axillary Hamiltonian Hs

Ĥs = −1

2

N∑
i=1

∇2
i +

N∑
i=1

vs(ri) =
N∑
i=1

hs(ri) (2.90)

with the ground state wavefunction Φ of Hs defined by the Schrödinger equation

Hs |Φ〉 = Es |Φ〉 . (2.91)

The ground state wavefunction Φ can be constructed as single Slater determinant due
to the Hamiltonian Ĥs being a sum of single particle operators. Now applying the
Rayleigh-Ritz minimal principle as well a constrained minimization as above the energy
of the system can be written as

E[n(r)] = min
Φ7→n(r)

〈Φ|Hs |Φ〉 = min
Φ7→n(r)

〈Φ|T |Φ〉+
∫
d3rvs(r)n(r) = Ts[n(r)]+

∫
d3rvs(r)n(r)

(2.92)
where Ts is the kinetic energy functional of the non-interacting system. The ground
state energy can then be obtained by the functional derivative as above leading to

δ

{
Ts[n(r)] +

∫
d3rvs(r)n(r)− µs

∫
d3rn(r)

}
= 0 (2.93)

and further

δTs[n(r)]

δn(r)
+ vs(r) = µs. (2.94)

Now assuming that vs reproduces the same density as v (is v-representable in both
cases), one can combine it with Equation (2.89), absorb µ and µs in vs and get

δF [n(r)]

δn(r)
+ v(r) =

δTs[n(r)]

δn(r)
+ vs(r). (2.95)

The universal functional F [n(r)], as defined by Equation (2.86), can be split up into
known parts (Ts the kinetic energy of the non interacting system and U the Hartree
energy) and the unknown part (Exc the exchange-correlation energy)

F [n(r)] = Ts[n(r)] + U [n(r)] + Exc[n(r)] (2.96)

absorbing the difficult physics. This directly leads to an expression for vs(r)

vs(r) = v(r) +
δU [n(r)]

δn(r)
+
δExc[n(r)]

δn(r)
= v(r) + vH([n], r) + vxc([n], r). (2.97)
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The auxiliary external potential vs, called the Kohn-Sham potential, reproduces the de-
sired ground state electron density. It can be constructed from the single-particle orbitals
φi(r) called the Kohn-Sham orbitals. These orbitals satisfy the eigenvalue equation[

−1

2
∇2 + vs(r)

]
φi(r) = εiφi(r) (2.98)

known as the Kohn-Sham equations and are the foundation of the practical solution.
They reproduce the full interacting ground state electron density n(r) by:

n(r) =

N∑
i=1

|φi(r)|2 (2.99)

At the beginning of the calculation, we have in general no idea of how these Kohn-Sham
orbitals look like. Thus, the Kohn-Sham potential of Equation 2.97 is also unknown.

By ”guessing” an initial ground state density ninit(r) and entering Equation (2.97)
vs is calculated. This is then used to determine the Kohn-Sham orbitals by Equation
(2.98) and subsequently to update the ground state density by Equation (2.99). This
procedure is repeated until convergence is reached meaning that n(r) is as close as it
can get to the full interacting ground state electron density. The ground state energy
can than be computed with :

E[n] = Ts[n] + U [n] + Exc[n] +

∫
d3rv(r)n(r) (2.100)

The crucial part of this algorithm is finding an appropriate approximation for the
exchange-correlation functional. With a known exact exchange-correlation functional
DFT gives in principle an expression of the exact ground state density. However, this
is in reality not the case. There is a number of different functionals which work better
or worse for certain systems. Choosing the ”right” functional is not trivial and the aim
here is to give a crude overview of the method. DFT has a wide palette of applications
in chemistry and physics. The accuracy and efficiency of the approximation of a a given
physical system has made the KS procedure such a successful method.

2.7 Time-Dependent Density Functional Theory (TDDFT)

Where DFT tries to give a solution to the stationary Schrödinger equation, the so
called time dependent density functional theory does the same for the time dependent
Schrödinger equation. TDDFT provides a tool to calculate the time dependent electron
density of a system in a time dependent external perturbation. It is thus possible to
evaluate time dependent processes such as excitations. This extremely powerful method
comes with the price of a high computational effort. Fundamentals are in principle sim-
ilar to the DFT code. In the context of a time dependent many body problem we take
a look at the time dependent Schrödinger equation (TDSE):

Ĥ(t)Ψ(t) = i
∂Ψ(t)

∂t
(2.101)

31



with
Ĥ(t) = T̂ + V̂ee + V̂ext(t) (2.102)

where T denotes the kinetic energy, V̂ee denotes the electron-electron repulsion and Vext
represents the combined potential the electrons experience due to the nuclear attraction
and due to any field applied to the system [23].

Just like in ordinary (non time dependent) DFT, the main object is the electron-density
n(r, t) of the interacting many body system. As the time-argument already implies, in
TDDFT the electron density has a time dependence. The density n(r, t) is the proba-
bility (normalized to the particle number N) of finding any one electron, of any spin σ,
at position r as described in [23] as

n(r, t) = N
∑

σ,σ2...σN

∫
d3r2...

∫
d3rN |Ψ(rσ, r2σ2...rNσN , t)|2 . (2.103)

Runge and Gross showed [24] that current densities n1(t, r) and n2(t, r) which evolve
from the same initial state Ψ0 in two physically distinct potentials vext(r, t) and v′ext(r, t),
will differ (proof can be seen in [23]). So with

vext(r, t) 6= v′ext(r, t) + c(t) (2.104)

follows that
Ψ0(r) : vext(r, t) ⇀ n(r, t) (2.105)

and
Ψ0(r) : v′ext(r, t) ⇀ n′(r, t) (2.106)

with
n(r, t) 6= n′(r, t). (2.107)

So a given time-dependent density points to a single time-dependent potential from a
given initial state.
Due to the uniqueness of the solution of the TDSE, a given time dependent potential
determines a unique time dependent wave function and thus a unique current density.

So there exists a one-to-one correspondence for a given initial state between the time-
dependent density and the time-dependent potential up to a purely time-dependent
constant.

Ψ0(r) : vext(r, t)←→ n(r, t) (2.108)

This constant is the result of the gauge-freedom of the theory and appears as a pure
phase factor in front of the wavefunction. For

Vext(t) −→ Vext(t) + c(t) (2.109)

H(t) −→ H(t) + c(t) (2.110)
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And thus
Ψ(t) = e−iHtΨ0 ⇀ e−it(H+c(t))Ψ0 = e−itc(t)Ψ(t) = c̃Ψ(t). (2.111)

The wavefunction is, as discussed above, uniquely determined, up to a phase factor, as
a functional of the density and the initial state

Ψ(t) = e−α(t)Ψ[n,Ψ0](t). (2.112)

To put all this to use, lets start with the time-dependent case of the DFT definition of the
density. Via a non interacting single Slater-determinant of single-particle spin-orbitals
φi(r, 0) the density can be constructed as

n(r, t) =

N∑
j=1

|φj(r, t)|2 . (2.113)

By assuming a non-interacting system with an auxiliary potential vKS and the initial
state Φ0 to reproduce the given density uniquely of the fully interacting system,

i
∂

∂t
φj(r, t) =

[
−∇

2

2
+ vext[n; Φ0](r, t) + vxc[n; Φ0](r, t) + vH [n; Φ0](r, t)

]
φj(r, t)

(2.114)
we obtain the time-dependent Kohn-Sham equations given by

i
∂

∂t
φj(r, t) =

[
−∇

2

2
+ vKS [n; Φ0](r, t)

]
φj(r, t). (2.115)

This auxiliary potential should lead to the same energy in the TDSE as the interacting
one and is thus defined as

vKS [n; Ψ0](r, t) = vext[n; Ψ0](r, t) +

∫
d3r′

n(r′, t)

|r− r′|
+ vxc[n; Ψ0,Φ0](r, t) (2.116)

where vext is the external time-dependent field. The second term on the right-hand
side is the time-dependent Hartree potential, describing the interaction of classical elec-
tronic charge distributions, while the third term is the exchange-correlation (xc) potential
which, in practice, has to be approximated. [23]

By assuming an initial set of N orthonormal KS orbitals which must reproduce the
exact density of the true initial state Ψ0 and its first time derivative given as

ṅ(r, t = 0) = −∇ · =m
N∑
i=1

∑
σ

φ∗i (r, 0)∇φi(r, 0). (2.117)

The TDKS equations (2.116) propagate these initial orbitals, under the external po-
tential, together with the Hartree potential and an approximation for the exchange-
correlation potential. As mentioned above, TDDFT calculations come with a high com-
putational cost. In this work we will take a look at graphene in an adiabatically switched
on external vector field with the aim to simulate the angle-resolved photoemission in-
tensity distribution. For this purpose we will make use of the octopus code [12] which
provides a TDDFT framework. In order to simulate an ARPES experiment octopus uses
the T-SURF method which will be discussed in the next chapter.
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2.7.1 The Surface Flux Method

To derive a suitable formalism which is capable of directly simulating the excitations and
subsequent emission of electrons induced by an external photon field within TDDFT in
semi-periodic systems, the surface flux or so called tSURFF method is employed [25].
This chapter should give an idea of how an ARPES experiment can be simulated in
the octopus code [12] which is used in this work. In such a simulation one defines a
volume (simulation box) where the system is in. Treating the entire simulation box
in a full TDDFT formalism would be a very inefficient way. Electrons emitted in a
photoemission process, will very soon not ”see” the potential of the surface any more.
Therefore the simulation region Ω is divided into 2 regions A and B. While in region A a
fully interacting KS-Hamiltonian ĤKS(t) is used, the electrons of region B are assumed
to be free and non-interacting [25].

Figure 2.6: Simulation box for graphene taken from [25]. It shows the simulation re-
gions A and B, the momentum of the emitted electron p and the interface S
between regions A and B.

Ĥ(t) =

{
ĤKS(t) for r ∈ A

ĤV (t) for r ∈ B
(2.118)

ĤV (t) is the so called Volkov Hamiltonian. It describes a set of non interacting free
electrons in an external vector field as

ĤV (t) =
1

2

N∑
j=1

[
−i∇j −

A(t)

c

]2

σ0. (2.119)
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It is diagonal in spin-space as denoted by σ0 which is the identity. This can be solved
as a set of single particle equations with the following plane wave spinors

χ̄p(r, t) =

√
2π

a1a2
eipre−iφ(p,t) (2.120)

with the time dependent phase

φ(p, t) =
1

2

∫ ∞
0

dτ

[
p− A(τ)

c

]2

(2.121)

where a1 and a2 are defined by the volume via the normalization condition. Since these
eigenstates also take into account the 2-dimensional periodicity of the system, they are
denoted as Bloch-Volkov waves [25].

After switching off the external perturbation A(t > T ) = 0, the KS-spinors are as-
sumed to be representable as a combination of scattered φ̄jk,B and bound component
φ̄jk,A where these parts only ”live” in their region.

φ̄jk(r, t) = φ̄jk,A(r, t) + φ̄jk,B(r, t) (2.122)

Under this assumption the number of electrons escaped per unit cell from region A at
time T can be calculated as

Nesc(T ) =

∫
Ω
dr

∫
BZ

∑
j=1

θj
∣∣φjk,B(r, T )

∣∣2 (2.123)

where θj is a shorthand for θ(µ− εj) where εj are the eigenvalues of ĤKS .
With the KS-spinors expanded as Coulumb-Volkov waves of the form

φ̄jk,B(r, t) =

∫
dp(b̄j(p)χp(r, t)) (2.124)

with their coefficients b̄j(p) where j denotes the spin. These coefficients can be calculated
using the continuity equation

Nesc(T ) =

∫ T

0

∮
S
ds(J(r, τ)) (2.125)

where S is the surface of the simulation box as seen in Figure 2.6. With the single
particle current density operator

ĵ(t) =
1

2

[(
−i∇− A(t)

c

)
+ cc.

]
σ0 (2.126)

the expectation value of the flux J(r, t) from Equation 2.125 can be expressed as the
expectation value of the single particle current density operator ĵ(t) from eq: 2.126 as:

J(r, t) =
∑
j=1

θj

∫
BZ

dk

∫
dpb̄j(p) 〈φjk(t)| ĵ(t) |χp(t)〉 . (2.127)
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Inserting this expression into the continuity equation 2.125 and comparing it to Equation
2.123 leads to an expression for the coefficients

b̄j(p) = −
∫ T

0
dτ

∮
S
ds 〈χp(τ)| ĵ(τ) |φjk(τ)〉 . (2.128)

The spinless momentum-resolved photoelectron probability P(p) is thus obtained as the
derivative of the number of electrons escaped per unit cell with respect to p as

P(p) =
∂Nesc(T )

∂p
=
∑
j=1

θj

+∑
α=−BZ

∫
BZ

dk |bjα(p)|2 . (2.129)

In order to use this method to simulate an ARPES experiment, one applies the external
vector potential to the system. Since these simulations should resemble an experiment,
the amplitude, intensity and frequency should match the ones of a realistic setup. How
these parameters can be tuned by the vector field is described in the next chapter.

2.7.2 Vectorfield as External Potential

It is for example possible to include an external perturbation as in (Equation 2.102) via a
time dependent external vector-potential. An adiabatically ”switched on” external field
is applied by multiplying the vector potential of the laser field (single frequency ω) with
an envelope function g(t) which increases and decreases slowly compared to the carrier
frequency of the pulse.

V (t, r) = f(r) cos(ωt+ φ(t))g(t) (2.130)

where f(r) describes a field type polarization or scalar potential. ω is defined by the
photon-energy which is a parameter of the experiment.

Ephoto = h̄ω (2.131)

And φ(t) is the phase. The carrier frequency ω of the vector potential together with the
amplitude of the envelope describes the intensity of the applied field as we will see now.
For a linearly polarized laser pulse in z direction with a given sin2 envelope the vector
filed would look like

A(t, x) = A0 · z · sin2

(
ωenvt

2

)
· f(x) · cos(ωt+ φ(t)). (2.132)

One can think of it this way: The envelope function enables the adiabatic switch on
process of the laser pulse. The maximum intensity of the signal is thus reached at the
maximum of the envelope function. Since ωenv << ω one can neglect the change of the
envelope to calculate the maximum intensity. For a carrier frequency of ω = 46 1

fs , an

envelope frequency of ωenv = 0.057 1
fs and an amplitude of A0 = 1 one can see this can

be seen below.
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Figure 2.7: Example of an external vector field with envelope function g(t) being
sin2(ωenvt) and a carrier frequency of ω with the frequencies described above.

The corresponding magnetic field of the Poynting vector would be

B = ~∇×A = yA0

(
∂f(x)

∂x

)
sin2(

ωenvt

2
) · cos(ωt+ φ(t)) (2.133)

with the assumption that ωenv << ω. Lets take a look at the intensity of the carrier
wave

B = yA0

(
∂f(x)

∂x

)
· cos(ωt+ φ(t)) (2.134)

and the corresponding electric field

E = −∂A
∂t

= zA0

(
∂f(x)

∂x

)
sin(ωt+ φ(t)) · ω. (2.135)

The intensity is defined as the time average of the energy flux S or Poynting vector.
With the absolute value taken of the electric field and the magnetic field, the field type
polarization f(r) can be left aside and the absolute value of the Poynting vector is given
by

|S(t)| = |E(t)| |B(t)| 1

µ0
=
A2

0ω

µ0
|sin(ωt+ φ(t))cos(ωt+ φ(t))| . (2.136)

This expression can then be integrated over a period T of the carrier frequency ω to get
the intensity

I = 〈S〉t =
1

Tµ0

∫ T

0
|E(t)| |B(t)| = A2

0ω

πµ0
. (2.137)
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A linearly polarized laser pulse in z direction with a given sin2 envelope dependent on
intensity and photon-energy would be thus expressed as

A(t) = θ(Tenv − t)θ(t) · z ·
√
Iπ

ω
· sin2

(
ωenvt

2

)
· f(x) · cos(ωt+ φ(t)). (2.138)

In the octopus code, the polarization of the vector potential A is set by the polarization
vector

n = [nx, ny, nz]. (2.139)

To make the connection to the statements above we again think of light as transverse
wave consisting of the electric field E and the perpendicular magnetic field B. These
fields can be (here as an example for the z-direction) setup as

Ez(t, z) = <
(

[ex, ey, 0]ei(kz−ωt)
)

(2.140)

and
Bz(t, z) = <

(
[bx, by, 0]ei(kz−ωt)

)
. (2.141)

where [ex, ey, 0] and [bx, by, 0] are perpendicular and normalized. The polarization vector
n used by the octopus code refers to the vector potential which translates directly into
the [ex, ey, ez] indices of the electric field by Equation 2.135.

Note that nx, ny, nz are possibly imaginary parameters. To get a linearly polarized
vector field in the z-direction one would use: nx = 1 and ny = 0, nz = 0. A left handed
circularly polarized vector field with a Poynting vector pointing to the z direction could,
for example, be given by nx = 1, ny = i, nz = 0. We will come back to this when actually
simulating ARPES experiments with different light polarizations in the TDDFT octopus
code for graphene in Section 4.4.
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3 Photoemission Matrix Element of Planar Hydrocarbons

3.1 Dichrosim of the 2pz Orbitals

As shown in Section 2.1, optical transition rates can be calculated via Fermi’s golden
rule expression using the transition matrix element. In order to evaluate the transition
matrix element, one needs an initial state such a molecular orbital for a molecule. Molec-
ular orbitals can, in an LACO ansatz, be described by a linear combination of atomic
orbitals. For a planar hydrocarbon molecule the Hückel model, as described in Section
2.4, can provide a reasonable tool to do so. Within the Hückel model one sets up the
molecular orbitals as linear combination of 2pz orbitals. Later in Section 4.1 we will
develop a Hückel model based on DFT results to setup molecular orbitals for an arbi-
trary hydrocarbon molecule. For the final state wavefunction let us assume a plane wave.

The ARPES intensity distribution, which is proportional to the transition matrix el-
ement, depends on the polarization of the incident light beam. In particular, we are
interested in the circular dichroism in the angular distribution, that is the difference
in photoemission intensity maps for left and right handed circularly polarized light [1],
respectively. In his paper [1] Schönhense showed explicitly that with the ansatz of a
plane-wave final state, the circular dichroism angular distribution (CDAD) of a single
2pz orbital vanishes for a A = [0,±i, 1] polarization. Here we expand this result by show-
ing that the CDAD of a single 2pz orbital vanishes for any polarization. Schönhense also
suggests to include an angular momentum dependent phase factor in the final state in
order to recover the CDAD.

We start our analysis by taking a 2pz orbital as initial state:

ψpz(r) =
1

2
√

6

(
Z

a0

) 3
2

ρ r e(− ρr
2

) ·
(

3

4π

) 1
2

cos(θ), (3.1)

where the abbreviation ρ = ( 2Z
na0

) has been made. Also note that the 2pz wavefunction
has no φ dependence.

The final state can be expressed by a plane wave expanded in spherical harmonics as
described in [26] in the following way

eikr = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Y
∗
lm(φk, θk)Ylm(φ, θ). (3.2)

Here Ylm are the spherical harmonics defined as

Ylm(φ, θ) =
1√
2π

√
2l + 1

2
· (l −m)!

(l +m)!
Plm(cos(θ))eimφ, (3.3)

where Pml(x) = (−1)m

2ll!
(1 − x2)

m
2
dl+m

dxl+m
(x2 − 1)l are the Legendre-polynomials. The

radial part is determined by the spherical Bessel functions jl(kr) which are given by
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jl(ρ) = (−ρ)l
(

1
ρ
d
dρ

)l (
sin(ρ)
ρ

)
.

Using spherical coordinates, we evaluate the matrix element for an arbitrary polarization
A = (Ax, Ay, Az) as

Mif = 〈ψf |A · r |ψi〉 =

∫
dφdθ drr2 sin(θ)e−ikr(A · r)ψpz(r). (3.4)

By inserting 3.2 one can rewrite this as

Mif = 4π

∫
d3r

∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(φk, θk)Y
∗
lm(φ, θ)(A · r)ψ2pz(r). (3.5)

Next we split the integral into a radial and a spherical part. For this purpose, the
function ψ2pz will be written as

ψ2pz(r) =
1

2
√

6

(
Z

a0

) 3
2

ρre(−ρr
2

)︸ ︷︷ ︸
R21(r)

(
3

4π

) 1
2

cos(θ)︸ ︷︷ ︸
Y10(θ)

= R21(r)Y1,0(θ). (3.6)

For a specific polarization directions the integral can be split up as a sum of the directions
of the polarization (A · r = Axx+Ayy+Azz). in order to evaluate the entire expression
we will treat each direction separately.

3.1.1 x-Polarization

For the x direction the corresponding integral is

4π

∫
d3r

∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(φk, θk)Y
∗
lm(φ, θ)Ax(r sin(θ) cos(φ))︸ ︷︷ ︸

Axx

cos(θ)f(r)︸ ︷︷ ︸
ψ2pz (r)

. (3.7)

By identifying sin(θ) cos(θ) cos(φ) with

sin(θ) cos(θ) cos(φ) =
1

2
sin(θ) cos(θ)

(
eiφ + e−iφ

)
=

1

2

√
8

15π
(Y2,−1 − Y2,1) (3.8)

and with the use of the orthogonality relation of the spherical harmonics given by∫
dΩYl,mY

∗
l′,m′ = δl,l′δm,m′ , (3.9)

the angular integral of Equation 3.7 can be evaluated as

∞∑
l=0

l∑
m=−l

∫
dΩY ∗lm sin(θ) cos(θ) cos(φ) =

√
2π

15
δl,2 (δm,−1 − δm,1). (3.10)

40



with the help of the Kronecker deltas, the summations in Integral 3.7 drops and we are
left with the integral over r. We are left with the integral over r. The radial part of the
remaining element is ∫ ∞

0
drr3jl=2(kr)R2,1(r) = f2(k) (3.11)

and can be evaluated analytically. In the later presented program (see Section 5.3)
we will however solve it numerically for convenience. The full contribution of the x
polarization to the matrix element is

M(k, φk, θk)x = 4πf2(k)

√
1

10
(Y2,1(θk, φk)− Y2,−1(θk, φk)). (3.12)

3.1.2 y-polarization

The y contribution of the matrix element can be derived in analogous manner as in
Section 3.1.1. By identifying spherical harmonics one can reduce the y contribution of
Equation 6.12 to

M(k, φk, θk)y = 4iπR2(k)

√
1

10
(Y2,1(θk, φk) + Y2,−1(θk, φk)). (3.13)

3.1.3 z-polarization

As in Section 3.1.1 we start out with the matrix element expression of the z-direction as
polarization given by

4π

∫
dr3

∞∑
l=0

l∑
m=−l

il jl(kr)Ylm(φk, θk)Y
∗
lm(φ, θ)Azr cos(θ)︸ ︷︷ ︸

Azz

cos(θ)f(r)︸ ︷︷ ︸
ψ2pz (r)

. (3.14)

The function cos2(θ) can be expressed as

cos2(θ) =
1

3

(√
16π

5
Y2,0 +

√
4πY0,0

)
. (3.15)

With the use of the orthogonality relation of Equation 3.10 of the spherical harmonics
one can find that the spherical integral∫

dΩY ∗lm cos2(θ) = δm,0
1

3

(√
16π

5
δl,2 +

√
4πδl,0

)
. (3.16)

The radial part of the remaining element of the sum is∫ ∞
0

drr3jl=2(kr)R2,1(r) = f2(k) (3.17)
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and ∫ ∞
0

drr3jl=0(kr)R2,1(r) = f0(k) (3.18)

and can be evaluated analytically. For convenience it is later on evaluated numerically.
The full contribution of the z polarization to the matrix element is

Mz(k, φk, θk) = 4π

(
Y0,0(θk, φk)f0 −

√
4

5
Y2,0(θk, φk)f2

)
(3.19)
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3.1.4 Circular Dichroism of the 2pz Orbital

The photoemission matrix element can be derived using the transition dipole moment
as shown in [1] by

dσ

dΩ
(k, θk, φk) ∝ |〈ψf |µ|ψi〉|2 , (3.20)

with µ = A·r. We evaluate this expression for circularly polarized light in the x−y-plane
using the result of Equation 3.12 and 3.13

|〈ψf |x+ iy|ψi〉|2 = 8π2f2
2

2π

15
|2Y2,−1(θk, φk)|2 , (3.21)

and

|〈ψf |x− iy|ψi〉|2 = 8π2f2
2

2π

15
|2Y2,1(θk, φk)|2 . (3.22)

When taking the property Yl,m(θ, φ) = (−1)mY ∗l,−m(θ, φ) into account, we see that the
dichroism expression vanishes

|〈ψf |x− iy|ψi〉|2 − |〈ψf |x+ iy|ψi〉|2 = 0. (3.23)

investigating the general case of a circularly polarized vector field of the form A =
A1 ± iA2, which can be expressed by the two vectors

A1 = (cos(χ) sin(η), sin(χ) sin(η), cos(η)), (3.24)

and
A2 = (cos(χ) cos(η), sin(χ) cos(η),− sin(η)), (3.25)

perpendicular to each other. With the results of the previous section summarized in
Equations 3.12, 3.13 and 3.19, the corresponding general dichroism expression can be
evaluated as follows:

〈ψf |A1 · r± iA2 · r|ψi〉 =

Mx cosχ (sin η ± i cos η)︸ ︷︷ ︸
(±ie∓iη)

+My sinχ (sin η ± i cos η)︸ ︷︷ ︸
(±ie∓iη)

+Mz (cos(η)∓ i sin η)︸ ︷︷ ︸
e∓iη

=

= e∓iη (±i(Mx cos(χ) +My sin(χ)) +Mz) .

(3.26)

When looking at the expressions Mx and My in Equations 3.12 and 3.13 one notices
that

Mx cos(χ) +My sin(χ) = 4πR2

√
2π

15︸ ︷︷ ︸
c̃

(
eiχY2,1 − e−iχY2,−1

)
. (3.27)

With Y2,−1 = −Y2,1e
−2iφ, it follows that

Mx cos(χ) +My sin(χ) = c̃Y2,1

(
eiχ + e−2iφe−iχ

)
= c̃Y2,1e

−iφ
(
eiχeiφ + e−iφe−iχ

)
.

(3.28)
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Multiplying out the expression
(
eiχeiφ + e−iφe−iχ

)
with use of the Euler formula leads

to
Mx cos(χ) +My sin(χ) = c̃Y2,1e

−iφ 2 (cos(φ) cos(η)− sin(φ) sin(η)) . (3.29)

Since c̃ ∈ < the above expression is real. This means for Equation 3.26 that

〈ψf |A1 · r± iA2 · r|ψi〉 = e∓iη

±i(Mx cos(χ) +My sin(χ))︸ ︷︷ ︸
∈=

+ Mz︸︷︷︸
∈<

 . (3.30)

Therefore the absolute value of Expression 3.30 is independent of the handedness (inde-
pendent of ±). So one can conclude also for a general case of circularly polarized light
the corresponding dichroism expression for a single atomic 2pz orbital:

|〈ψf |A1 · r− iA2 · r|ψi〉|2 − |〈ψf |A1 · r + iA2 · r|ψi〉|2 = 0. (3.31)

3.1.5 Introduction of an l-Dependent Phase Factor

In this subsection, we investigate whether the inclusion of a scattering phase for each
partial wave channel in the final state may lead to the appearance of a circular dichroism.
To this end, we insert a l-dependent phase factor e−iδl in the plane wave expansion as
already suggested by Schönhense [1]. thus the final state takes the form

Ψf (r,k) = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)e
−iδlY ∗lm(φk, θk)Ylm(φ, θ) (3.32)

the results of the expression 〈ψf |A · r|ψi〉 for the primitive polarizations along x,y, z
as given in Equations 3.12, 3.13 and 3.19 are modified by this phase factor as

M̃(k, θk, φk)r =


4π
(
Y0,0f0e

−iδ0 −
√

4
5Y2,0f2e

−iδ2
)

z

4πif2

√
1
10

(
Y2,1e

−iδ2 + Y2,−1e
−iδ2

)
y

4πf2

√
1
10

(
Y2,1e

−iδ2 − Y2,−1e
−iδ2) x

(3.33)

By the use of the vectors A1 and A2 from Equation (3.24) and (3.25) the expression
〈ψf |A1 · r± iA2 · r|ψi〉 can be calculated as before and gives

〈ψf |rA1 ± irA2|ψi〉 = e∓iη
(
±ie−iδ2(Mx cos(χ) +My sin(χ)) + M̃z

)
. (3.34)

Notice that Mx and My are the expressions found in Section 3.1.4 without the phase
factor. The absolute squared of this can be evaluated using that

|x+ y|2 = |x|2 + |y|2 + 2<(xȳ). (3.35)

When calculating

ICDAD = |〈ψf |Ar1 − iAr2|ψi〉|2 − |〈ψf |Ar1 + irA2|ψi〉|2 (3.36)

44



one can identify y =
(
±ie−iδ2(Mx cos(χ) +My sin(χ))

)
and x = M̃z of Equation 3.34

with Equation 3.35 and immediately see that only the 2<(xȳ) terms of each of the
expectation values of the expression 3.36 does not vanish. When taking a look at the
2<(xȳ) expression of

<
(
∓ieδ2(Mx cos(χ) +My sin(χ))M̃z

)
= (3.37)

we already know from Section 3.1.4 that (Mx cos(χ) +My sin(χ)) = Mxy ∈ <. Also Yl,0
and Rn ∈ <. By inserting the corresponding expression of Equation 3.33 for M̃z one can
rewrite the above described term as

= <

(
∓ieδ2Mxy

(4π)
3
2

3

(
Y0,0R0e

−iδ0 −
√

4

5
Y2,0R2e

−iδ2

))
(3.38)

which can be brought in the form

= <

(
∓iMxy

(4π)
3
2

3

(
Y0,0R0e

i(δ2−δ0) −
√

4

5
Y2,0R2

))
. (3.39)

Here the right term cancels directly due to the real part statement and the i factor in
front to

=
(4π)

3
2

3
MxyY0,0R0<

(
∓i ei(δ2−δ0)

)
. (3.40)

The absolute difference of the photoemission matrix elements of the right- and left
handed polarized vectorfields this leads to

ICDAD =
(8π)2

3
R0R2 sin(θk) cos(θk) sin(δ2−δ0)(cos(χ) cos(φk)−sin(χ) sin(φk)). (3.41)

This result is consistent with Equation (13) from the paper by Schönhense [1] who gives
a circular dichroism expression for

ICDAD =

(
dσ

dΩ

)
RCP

−
(
dσ

dΩ

)
LCP

∝ R0R2 sin(δs − δd) sin(2θk) sin(φk). (3.42)

When specifying the polarization to χ = π
2 and η = 0, that is the x± iy used in in Ref.

[1], we obtain from Equation 3.41 the identical result:

|〈ψf |z + iy|ψi〉|2 − |〈ψf |z − iy|ψi〉|2 ∝ R0R2 sin(δ0 − δ2) sin(2θk) sin(φk). (3.43)

Thus, the introduction of the l-dependent phase factor indeed leads to a CDAD signal.
If this is enough to also see the correct CDAD in the intensity distribution of a solid,
however, is a different question. An analytic treatment of this problem is not trivial. To
test this one could ,however, take an LCAO or Bloch wave ansatz to approximate an
initial state, include the phase factor in the final state and evaluate the matrix element.
This procedure is described in the next section.
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3.2 Photoemission Matrix Element within an LCAO Ansatz

In Section 3.1 an expression for the photoemission matrix element in length gauge of a
single 2pz orbital was derived. As shown in Section 3 the circular dichroism effect van-
ishes for a single 2pz orbital. As discussed in Section 2.5, the CDAD vanishes in velocity
gauge for any given system. But does the CDAD effect also vanishes in length gauge for
any given system? And if so, can it be reintroduced by the use of the l-dependent phase
factors discussed in Section 3?

In this section the photoemission matrix element of a system described by an LCAO
initial state will be analyzed. We will later on limit the basis set to 2pz orbitals and stay
in the tight binding formalism. In the LCAO ansatz a general molecular orbital can be
constructed as

Φj(r) =
∑
n,α

cjn,αφn,α(r−Rn) (3.44)

where n is the atom number, α the quantum numbers and j the index of the molecular
orbital. Evaluating the photoemission matrix element in length gauge and assuming a
plane wave final state one gets:

M(k) =
〈
eikr |A · r|Φj

〉
=
∑
n,α

cjn,α

∫
dr3e−ikrφn,α(r−Rn)(r ·A). (3.45)

By substitution of r′ = r−Rn one can split this up to

M(k) =
∑
n,α

cjn,αe
ikRn


∫
d3r′e−ikr

′
φn,α(r′)(r′ ·A)︸ ︷︷ ︸
Λ

+(Rn ·A)

∫
dr′3e−ikr

′
φn,α(r′)︸ ︷︷ ︸

F(φn,α)(k)


(3.46)

where F(φn,α)(k) is the Fourier transformed φn,α(r′) α-atomic orbital of atom n. The
expression Λ can be evaluated using the plane wave expansion of Equation 6.12 which
can be used to rewrite it as

Λ(k) =
∑
n,α

cjn,α

∞∑
l=0

l∑
m=−l

(−i)l
∫
d3rY ∗l,m(φ, θ)Yl,m(φk, θk)jl(kr)φn,α(r)(Axx+Ayy+Azz)

(3.47)
Where Yl,m are the spherical harmonics An are the components of the polarization vec-
torfield and x,y,z are Cartesian coordinates which have to be rewritten into spherical
coordinates.

Note that this very general expression includes as approximation only an LCAO ansatz
so far. By further assuming only 2pz orbitals as a basis of the LCAO, one can make use
of the results of 3 and rewrite Equation 3.46 to

M(k) =
∑
n

cjne
ikRn (Λ(k,A) + (Rn ·A)F(φn,α)(k)) (3.48)
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where the index α vanished because there is only one type of orbital for each atom. The
function lambda is given by

Λ(k,A) = Axλx(k) +Ayλy(k) +Azλz(k) (3.49)

and

λx(k) = 4πf2(k)

√
1

10
(Y2,1(θk, φk)− Y2,−1(θk, φk)) (3.50)

λy(k) = 4πi f2(k)

√
1

10
(Y2,1(θk, φk) + Y2,−1(θk, φk)). (3.51)

λz(k) = 4π

(
Y(0,0)(θk, φk)f0(k)−

√
4

5
Y(2,0)(θk, φk)f2(k)

)
. (3.52)

Equation 3.48 can be easily modified to include the l-dependent phase factor by simply
multiplying eiδl to the radial integral Rl(k). With the use of a tight binding method such
as the Hückel model one can calculate the coefficients cjn of a specific molecular orbital
Φj and directly evaluate Equation 3.48. The photoemission matrix element of Equation
3.48 corresponds to the intensity distribution of a photoemission process involving elec-
trons of the molecular orbital Φj .

In the next chapter we are going to take a look at a Hückel model based on DFT
calculations.Together with Equation 3.48 this model will be used later on to simulate
intensity distributions of photoemission processes.
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4 Implementation

4.1 Application of the Hückel Model

To implement the ansatz from Chapter 2.4, it is necessary to find values for the hopping
parameter introduced in Equation (2.31). The idea of the approach is to fit these values
to more accurate results from other methods like DFT (see Section 2.6). For a simple
planar hydrocarbon molecule in the Hückel-method the 2pz orbitals are taken into ac-
count. These atomic orbitals have a rotational invariance with respect to the z-axis.
Assuming spherically symmetric potentials around each nucleus, and planar molecules,
(all atoms are aligned in the x-y plane), the hopping parameters from the matrix element
of Equation 2.31 are functions of the absolute distance between two C atoms only.

For a molecule consisting of n-carbon atoms, the Hückel matrix is an n × n matrix.
the diagonal elements, the onsite energies, are taken as a parameter, and the off-
diagonal elements, the hopping parameters, are parametrized as a polynomial function
tk(r) = b0 + b1r + b2r

2 + ...+ bkr
k of order k with respect to the corresponding carbon-

carbon bond length. The coefficients of the polynomial are now referred to as {bn}.
To illustrate how a corresponding Hückel matrix would look like, an example for the
benzene molecule is given below.

H =



α t(r1) 0 0 0 t(r6)
t(r1) α t(r2) 0 0 0

0 t(r2) α t(r3) 0 0
0 0 t(r3) α p(r4) 0
0 0 0 t(r4) α t(r5)

t(r6) 0 0 0 t(r5) α

 (4.1)

While for benzene actually the ri = rj∀i, j. The eigenvalues of this matrix correspond
to the orbital energies and the corresponding eigenvectors cpi are the coefficients for the
molecular orbitals as defined in Equation 2.33:

ψp =
∑
i

cpiφi. (4.2)

Since the onsite elements α are the same in any kind of molecule and always located on
the main diagonal of the matrix, they correspond to an energy offset of each eigenvalue
and do not influence the eigenvectors. A single fit of the benzene molecule with treating
α and t as coefficients was performed and α was fitted to value of -3.459 eV.

This will be a short digression on how such a Hückel matrix can be setup via python.
Provided a list of atomic positions this could be implemented as follows:

1. Find the closest neighbor rnn of each atom.

2. Search for all atoms in a radius of r ∈ [rnn, rnn · df ] where df is a parameter in the
below displayed example code refereed to as the disanceFactor .
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3. Setup a 1 n× n matrix and set the diagonal elements as α.

4. Go through each row (row n corresponds to atom n) and add hopping parameters
at indices (atoms are numbered by the way they are listed in the atomic posi-
tion list) of nearest neighbor atoms (found in 2). So if an atom with index 1 has
nearest neighbors of {3, 48} the first row has hopping parameters t at H[1, 3] = t
,H[1, 4] = t and H[1, 5] = t. Since the matrix has to be symmetric one does the
same for the columns.

Note that when using this scheme to perform fits, the coefficients are parameters
or functions of parameters. The python code to setup a Hückel matrix as indicated
by Equation 4.1 using a polynomial type function for the hopping parameters is
shown below.

1 #setup a Huckl matrix of the C-atoms given by the atomPos -list ([x,y

,z]) with :coeffs beeing the coefficients of the polynomial used

as hopping parameter (dependent on bondlength)and distanceFactor

beeing the factor in order to determine the nearest neigbors of

each atom (between 1 and 1.5 usually).

2 def setupMatrixByBondDistance(atomPos ,distanceFactor ,coeffs):

3 matrix=np.zeros ((len(atomPos),len(atomPos)))

4 #get distances of nearest neighbor

5 radii=getDistancesOfCloseneigbours(atomPos ,distanceFactor)

6

7 #get indices of nearest neighbor

8 connections=getNeigboursInRadius(atomPos ,[1, distanceFactor ])

9

10 for atom in range(0,len(atomPos)):

11

12 #filling diagonal entries

13 matrix[atom ,atom ]= -3.459

14

15 #filling off -diagonal elements

16 for bondType in range(0,len(connections[atom])):

17 for i in range(0,len(connections[atom][ bondType ])):

18 matrix[atom ,connections[atom][ bondType ][i]]=-poly5(

19 radii[atom][i],coeffs [0], coeffs [1], coeffs [2], coeffs [3], coeffs [4],

coeffs [5])

20

21 return matrix

The function getNeigboursInRadius in principle returns a list of indices refer-
ring to the argument atomPos where atomPos is a list of atomic positions as
[[nx1, ny1, nz1], [nx2, ny2, nz2], ...].

The function getDistancesOfCloseneigbours does something very similar, but
returns the distances of the nearest neighbor atoms.

Each C-atom contributes 1 pz-electron to the molecule. There are in total NC pz-
electrons in the system. with NC carbon atoms there are NC 2pz atomic orbitals
forming the n × n Hückel matrix which has exactly NC eigenfunctions leading to
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NC molecular orbitals. Each molecular orbital can be occupied by 2 electrons.
Thus the HOMO orbital (highest occupied orbital) can be found at the NC

2 index
of the molecular orbitals (ordered by its eigenvalues from lowest to highest).
The eigenvalues of this matrix Ei({bn}) are then fitted to DFT based results as a
least square fit. This is done by minimization of

min︸︷︷︸
{bn}

[∑
i

(
Ei({bn})− EDFTi

)2]
. (4.3)

Since the bond distances of the atoms differ strongly between different molecules,
this fit was extended to several molecules in the form of

Eerr(
{
EDFTi,j

}
) =

∑
mol,j

∑
orbital,i

(Ei,j({bn})− EDFTi,j )2. (4.4)

This error function takes molecules (j) and their molecular orbitals (i) and com-
pares the energies calculated as eigenvalues of the Hückel-matrix Ei,j({bn}) to the
energies of DFT calculations EDFTi,j .

Equation (4.4) is then minimized with a least square fit function. Scipy provides
a very efficient routine called scipy.optimize.curve-fit, which was used here.

1 scipy.optimize.curve_fit(f, xdata , ydata)

f is here the model function f(xdata, ∗params) with xdata beeing the argument
and the parameter modeling the function. This in the Ei,j({bn}) from Equation
(4.4) where the x parameter is i, j. Getting this in the format needed, the following
was implemented:

1 def combinedModel(x,*xs):

2 coeff =[]

3 s=[]

4 for c in xs:

5 coeff.append(c)

6 for mol in range(0,len(moleculeIndices)):

7 mat=setupMatrixByBondDistance(moleculeCarbs[mol],

radiusFactos ,coeff)

8 eW,eV= np.linalg.eigh(mat)

9 for i in range(0, numberOfEnergies):

10 s.append(eW[int(x[i+numberOfEnergies*mol])])

11 return np.array(s)

where *xs symbolizes an arbitrary number of coefficients bn and moleculeCarbs
is a list (of lists) of carbon atom positions
[[[nx1, ny1, nz1], ..]︸ ︷︷ ︸

Mol−1

, [[nx1, ny1, nz1], ..]︸ ︷︷ ︸
Mol−2

, ..] which is defined outside the function. num-

berOfEnergies is also defined outside the function defining the number of orbitals
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included for each molecule.

Now making use of the scipy.optimize.curve-fit routine with the statement

1 best_vals , covar = curve_fit(combinedModel , molEigNumber ,

molDFTEnergys)

, the variables best-vals contains the optimized parameters of the polynomial for
the hopping parameter and covar the corresponding covariance matrix.

By assuming a quadratic polynomial t(r) = b0 + b1r+ b2r
2 for the hopping param-

eter, a fit including 38 molecules was performed. The DFT-energies are imported
with the ASE database-environment [27] from the Organic Molecule Database [28]
mentioned in Ref. [2] and the included molecules are listed in Table 1 in the
appendix. For each molecule 6 molecular energies (HOMO-2,HOMO-1,HOMO,
LUMO,LUMO+1,LUMO+2) were incorporated into the fit. The resulting param-
eters are:

{bn} = {−114.66,+146.73,−48.03} (4.5)

with the corresponding standard deviation of the fit for each parameter

{σn} = {17.63, 25.10, 8.94} . (4.6)

The resulting hopping parameter function with the interpolated bond distances
are shown below:
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Figure 4.1: The quadratic fit of the hopping parameter of the 2pz-2pz orbitals for dis-
tances of the corresponding atoms of r ∈ [1.35, 1.50]Å. The red dots in the
plot show the bond distances accounted in the fitting process. (these are not
exact values of the hopping parameter but only indicate which bond lengths
are taken into account for the fit)

A quadratic fit however cannot resemble a possibly more complex function. There-
fore a higher order polynomial is fitted f(r) = b1r

5 + b2r
4 + b3r

3 + b4r
2 + b5r+ b6.

The resulting hopping parameter function in the vicinity of r ∈ [1.35, 1.50] Å how-
ever does not change and a high standard deviation indicates over-fitting. For
completeness these results are displayed below.

{bn} = {233.7,−971.0, 959.4, 920.8,−2038.9, 887.0} (4.7)

with the corresponding standard deviation of the fit for each parameter

{σn} = {11300, 84180, 251078, 374472, 279107, 83130} . (4.8)

the 5-th order hopping parameter looks like

t(r)2pz,2pz = 233.70·r5−971.00·r4+959.40·r3+920.85·r2−2038.95·r+886.96. (4.9)

One can say that in the vicinity of 1.4 Å the hopping parameter can be approxi-
mated as a quadratic function.

To get an idea of the quality of the fit in context of the compared DFT energies
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and thus the reproduced eigenvalues, the subsequent figure shows the eigenvalues
of the Hückel-model together with the hopping parameter of Figure 4.2 and the
corresponding DFT-energies.

Figure 4.2: Energies of the associated molecular orbital calculated with the Hückel
method. The ’o’ marker account for the Hückel- and the ’x’ marker for
DFT-energies imported by the Organic Molecule Database [28]. All markers
between two dashed lines are orbital energies of the same molecule ordered
from HOMO-2 to LUMO+2. The x-axis labels the molecules by their index
in the organic molecule database [28] which can be looked up in Table 1.

The absolute errors of the fitted energies in reference to the DFT-energies from
Figure 4.2 are given in the plot below.
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Figure 4.3: Absolute difference of the Hückel energies in comparison to the DFT results
shown in Figure 4.2. All bars between two dashed lines are orbital energies
of the same molecule ordered from HOMO-2 to LUMO+2. The x-axis labels
the molecules by their index in the organic molecule database [28] which can
be looked up in Table 1.

The energy eigenvalues of the Hückel method resembles the DFT energies relatively
well considering the simplicity of the method. There are ways of improving on the
energy eigenvalues such as including a non-diagonal overlap matrix or including
next nearest neighbor-interaction. Since it is fitted to another method, it’s accuracy
can in principle not improve beyond the underlying method. Due to the simple
shape of the Hamilton-matrix the Hückel will always do worse in approximating
energies. One can say that predicting molecular orbital energies is not a strength
of the Hückel model. The approximation of the molecular orbitals however comes
really close to the ones calculated by DFT. This will be discussed in the subsequent
section.

4.2 Overlap of Hückel- and DFT Molecular Orbitals

From the fit described above, the eigenvectors of the matrix of Equation 4.1 de-
scribe the coefficients of the molecular orbitals. The molecular orbitals obtained
by the Hückel-method are, as already shown in Equation 4.2, given by

|Ψj〉 =
∑
i

cji |φi〉. (4.10)
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As atomic orbitals here the 2pz hydrogen orbitals with an atomic charge corre-
sponding to the effective nuclei charge (Slater’s rule) of carbon has been taken to
be Zeff = 3.28.

The program setting up the Hückel matrix shown in Section 4.1 is now used to-
gether with the fitted hopping parameters of Equation 4.5 to construct Hückel
molecular orbitals for arbitrary planar hydrocarbon molecule molecules from scratch.
The orbitals are saved in the cube-format and can be visualized via VESTA [29].
An example of the LUMO and HOMO orbitals of bisanthene simulated with this
method is given below:

Figure 4.4: HOMO (left) and LUMO (right) of bisanthene simulated with the Hückel
model of the fitted hopping parameters given in Equation 4.5.

To give a quantitative analysis of the so obtained wavefunctions, the molecular
orbitals of the Hückel-model are compared with the ones obtained by DTF with
the B3LYP xc-functional calculations. To this end, an overlap integral is performed
by

I[φ1, φ2] =

∫
V
φ1(~r)φ2(~r) (4.11)

where V is the volume of the simulated region, φ1 refers to the Hückel molec-
ular orbital and φ2 to the DFT molecular orbital. Since both wavefunctions are
normalized, the corresponding overlap integral I[φ1, φ2] ≤ 1. Therefore both wave-
functions have to be exactly on the grid/location of the simulated area. The closer
this overlap is to 1, the more alike these two wavefunctions are, while an overlap
of 0 would conclude an orthogonal setting.
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One way to visualize the orbitals is to make a cut in the x,y plane. The sub-
sequent image (Figure 4.5) gives an example for this and shows a cut in the z axis
at about 0.9 Å above the x,y symmetry plane for the HOMO orbital of benzene.

Figure 4.5: Example cut of the HOMO orbital in the x/y-plane of benzene at 0.9 Å above
the x,y symmetry plane

The following figures show cuts in this plane for the molecular HOMO orbital of
sexiphenyl from DFT and Hückel methods.
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Figure 4.6: Molecular HOMO orbital of sexiphenyl from DFT/B3LYP calculations at 1
Å above the x,y symmetry plane

Figure 4.7: Molecular HOMO orbital of sexiphenyl from TB calculations at 1 Å above
the x,y symmetry plane

The corresponding integrand of the overlap (φ1 · φ2) is shown below in the exact
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same plane. The overlap strongly depends on the effective charge Zeff chosen.
The one determined by Slater’s rule Zeff = 3.26 provides a starting point for an
optimization of this parameter. The maximum of the overlap of the HOMO orbital
of the DFT and Hückel model is reached for an effective charge of Zeff = 1.48.

Figure 4.8: Molecular HOMO orbital overlap of sexiphenyl at at 1 Å above the x,y
symmetry plane

The corresponding overlap integral gives I[φ1, φ2] = 0.944 which signifies a no-
ticeable similarity. Different overlap integrals are displayed below. The LUMO+2
orbital is excluded here because the Hückel model shows the LUMO+3 instead.

Hückel:
DFT:

LUMO+1 LUMO HOMO HOMO-1 HOMO-2

LUMO + 1 0.929 0.049 -0.014 -0.075 -0.082
LUMO -0.071 0.924 0.105 -0.082 -0.006
HOMO 0.004 -0.129 0.944 -0.034 -0.041
HOMO − 1 0.089 0.073 0.072 0.940 0.052
HOMO − 2 -0.063 -0.007 -0.034 0.084 0.937

Some ideally orthogonal orbitals ,like 〈HOMOHückel|LUMODFT 〉 or 〈HOMODFT |LUMOHückel〉
show a noticeable overlap. One can however clearly distinguish orthogonality of
different orbitals of the different methods. The DFT and Hückel molecular orbitals
fulfill among themselves the relation I[φi, φj ] = δi,j
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In conclusion one can say that the Hückel model gives a reasonable approxima-
tion of the molecular orbitals. Its fast setup allows for very efficient calculation
of even big molecules or systems. Using Hückel molecular orbitals as initial states
could also be used to evaluate photoemission matrix elements of the Fermi’s golden
rule expression discussed in Section 2.1. Thus one could relatively easy obtain an
ARPES simulation. We will come back to this idea later in Section 3.2.

An already existing code using the Slater-Koster formalism discussed in Section
2.4 is chinook [16]. In the next Chapter we will take a look at photoemission
simulations of graphene using this package.

4.3 TB Simulation with Chinook

Chinook [16] is a python package, which employs a tight binding ansatz to calculate
the band structure for periodic materials and simulates ARPES intensities within
the one step model of photoemission. One can model a system using multiple
orbitals per atom in a very efficient manner. It is also possible to include different
polarizations for the ARPES simulation. In principle it uses Fermi’s golden rule
expression of Section 2.1 to do so. We will take a look at the π-band of graphene
for different polarizations here. This chapter only shows some example scripts
demonstrating how to run chinook. The corresponding results are presented in the
next Section 4.3.1.

To start off, one defines the lattice vectors and the positions of the atoms in the
primitive unit cell as described in Section 2.3.

1 #lattice vectors

2 a = 2.47 #in bhor

3 avec = np.array ([[a,0.0 ,0.0] ,

4 [-a*0.5,a*(3**0.5) /2,0.0],

5 [0.0 , 0.0 ,10.0]])

6

7 #atomic positions

8 p1 = np.array ([0.0 ,0.0 ,0.0])

9 p2 = np.array ([a*(1/3) ,a*2/3 ,0.0 ])

Next the basis-args are defined, specifying the type of atoms, which atom belongs to
which positions, the orbitals included for each atom of the calculation and whether
or not to include spin polarization. In this case only 2pz orbitals are included for
the calculation which are denoted as ’21z’.

1 spin_args = {’bool’:False}

2

3 basis_args = { ’atoms’:[0,0],

4 ’Z’:{0:6} ,

5 ’pos’:[p1 ,p2],

6 ’orbs’:[[’21z’],[’21z’]],

7 ’spin’:spin_args}
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Using these settings, the Hamiltonian can be constructed by defining the onsite-
energies ep and the hopping parameter HP. The object H-list below defines the
Hamilton matrix. The first two elements of each list account for the basis indices
of the orbitals. This means the i, j indices of Hi,j = 〈φi |H|φj〉. The remaining
elements contain the vector connecting the atoms the two orbitals belong to in
(x,y,z) form. These are nothing else than the nearest neighbor vectors from Equa-
tion (2.19). For the nearest neighbor hopping parameter t, we make use of the
parametrization discussed in Section 4.1 leading to a value of t = −3.164eV when
setting the C-C distance to r = 1.42 Å.

Let us take a look at the example [ 0,0 , 0,0,0 ,ep]. The first two elements of the list
(orange) indicate the orbital index. In the basis-args instance of the script shown
above, two orbitals were included, both of 2pz type. In this example this refers to
H0,0 = 〈φ0 |H|φ0〉. The next 3 elements (marked yellow) denote the Cartesian co-
ordinates of the vector connecting the two respective orbitals. In the example this
is (x = 0, y = 0, z = 0) since it is the same orbital and there is no spatial difference.
The last quantity (ep) is the associated value which is the onsite energy in this case.

For two included orbitals and three nearest neighbors of each atom, The Hamilton-
matrix can be setup with five parameters. There are two onsite elements and
three nearest neighbor hopping parameters. In principle two parameters would be
sufficient here, but the onsite elements as well as the nearest neighbor hopping
parameter for each orbital have to be included explicitly.

1 #Hamilton

2 ep = 0 #onsite energy

3 HP = -3.164 #hopping parameter in eV

4

5 H_list =[[0,0,0,0,0,ep],

6 [1,1,0,0,0,ep],

7 [0,1, 0.0 , a/(3**0.5) , 0.0 ,HP],

8 [0,1, a/2 , -a/(2*3**0.5) , 0.0 ,HP],

9 [0,1,-a/2 , -a/(2*3**0.5) , 0.0 ,HP]]

10

11 hamiltonian_args = {’type’:’list’,

12 ’list’:H_list ,

13 ’cutoff ’:0.6*a,

14 ’renorm ’:1.0,

15 ’offset ’:0.0,

16 ’tol’:1E-4,

17 ’avec’:avec ,

18 ’spin’:spin_args}

The variable cutoff refers to the cutoff hopping distance (Which atoms to include
as nearest neighbors).
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To plot a band structure, a k-path has to be defined. This is done in reduced
coordinates. One can later take a look at the band structure along this path. Of
special interest is the region around the K-points. Therefore as k-path we defined
a line through the K-point perpendicular to the vector pointing from Γ to the
K-point. This is indicated with the blue line in the below figure.

Figure 4.9: First Brillouin zone of graphene indicating the K,Γ and M point as well as
the reciprocal lattice vectors b1 and b2 and the kpath spanned by the two
points K1 and K2 indicated by the red dotted line.
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1 #the points around the K-point from octopus

2 K1_oct_red =[0.21786328 , 0.44880339 ,0]

3 K2_oct_red =[0.44880339 , 0.21786328 ,0]

With k1-oct-red and k2-oct-red defining the k-path indicated in Figure 4.9 as
K1 and K2, given in reduced coordinates. They are later also used in the TDDFT-
code called Octopus.

1 #define Path for bandstructure plot

2 momentum_args = {’type’:’F’,

3 ’avec’:avec ,

4 ’grain ’:100,

5 ’pts’:[K1_oct_red ,K2_oct_red],

6 ’labels ’:[’K1’,’K2’]}

To work with this now a few objects have to be initialized

1 ### create necessary objects and solve TB for given Momenta and plot

bandstructure

2 basis = build_lib.gen_basis(basis_args)

3 kpath = build_lib.gen_K(momentum_args)

4 TB = build_lib.gen_TB(basis ,hamiltonian_args ,kpath)

5 TB.solve_H ()

Implementing this, one can take a look at the band structure of the k-path defined
above. The Subsequent plot shows the Dirac-cone of graphene.
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Figure 4.10: Band structure of graphene including 2pz orbitals for a k-path between the
points [0.218, 0.449, 0] and [0.449, 0.218, 0] (given in reduced coordinates)
with the dashed line indicating the Fermi energy. Energies from -1 to -2.5
eV are indicated for comparisons in Section 4.3.1.

In the above plot the Fermi energy is EF = 0 eV. In comparison to this, one can
take a look at Figure 4.11 showing the bandstructure of graphene for a k-point path
M −K − Γ−K −M simulated in a DFT calculation performed via the Octopus
code (see [12]) using a LDA functional and the pseudopotential set hgh-lda.
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Figure 4.11: Bandstructure of graphene along a k-point path M −K − Γ−K −M see
figure: 2.4

4.3.1 ARPES-Simulations in Chinook

Based on the tight-binding description of a single-layer graphene introduced in
the previous section, we will now demonstrate how ARPES intensity maps can
be obtained from chinook.To this end chinook provides an object called arpes-
lib.experiment to evaluate the given structure in terms of the ARPES cross section.
In principle chinook calculates Fermi’s golden rule expression (see Section 2.1) in
the real space representation with a plane wave final state which is expanded in
spherical-harmonics (see Section 3 later).

The arpes-lib.experiment object does take care of this. It is defined the follow-
ing way:

1 arpes_args_rh ={’cube’:{’X’:[xmin ,xmax ,dk],’Y’:[ymin ,ymax ,dk],’kz’

:0.0,’E’:[Eb[0],Eb[nE -1],nE]}, #domain of interest to solve TB

2 ’SE’:[’constant ’ ,0.1], #self energy -> broadening of

bands

3 ’hv’: hnu , #photon energy

4 ’pol’:np.array([np.sqrt (1/2) ,np.sqrt (1/2) ,0]), #

polariation vector of ligth for ARPES -setting

5 ’resolution ’:{’E’:0.08,’k’:0.04} , # ’k ’:0.045

6 ’T’:-1.0, # don’t involve themperature
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7 ’rad_type ’:’slater ’} # radial part of the wave

function

8

9 experiment_rh = arpes_lib.experiment(TB ,arpes_args_rh)

10 #evaluate the cross section

11 experiment_rh.datacube ()

12

13 #generate an image of the band structure at energy Eb[i]

14 Imap_rh ,Imap_resolution_rh ,axes_rh = experiment_rh.spectral(

ARPES_dict=arpes_args_rh ,slice_select =(’E’, Eb[i]),plot_bands=

False);

The script above generates an intensity distribution of a constant binding energy
momentum map based on the tight-binding model defined in the previous sec-
tion. The variable ’pol’: defines the polarization of the incident light beam. The
polarization direction is indicated in the upper right corner as a little arrow. Ret-
rospectively a few lines and labels to indicate the Brillouin zone, some important
points and the reciprocal lattice vectors were added. Of interest are simulations of
the same energy for different polarizations of the incident light.

The polarization of the subsequent plots was chosen as A = [ 1√
2
, 1√

2
, 0] which

specifies a linear polarization in the xy plane. Alternatively any other polarization
direction could have been used. The subsequent content should explain the process
as well as some general properties of the one step model of photoemission process.
Some constant binding energy momentum maps are shown for different binding
energies. These energies are indicated in 4.10.
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Figure 4.12: Photoemission intensity maps of single layer graphene at various constant
initial energies -1.0, -1.5, -2.0 and -2.5 eV below the Fermi edge for polarized
light of A = [− 1√

2
, 1√

2
, 0].

When taking a look at a different polarization A = [ 1√
2
, 1√

2
, 0] in the xy plane, per-

pendicular to the one before one gets different intensities for the band-maps. In
Section 2.5 an expression for the photoemission intensity has been derived (Equa-
tion 2.76) which states that in velocity gauge the expectation value is proportional
to the factor |A · k|2. As a consequence the intensity is expected to vanish in the
directions perpendicular to the polarization direction A. This can indeed be seen
in the Figures 4.13 .
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Figure 4.13: Constant binding energy momentum map for single-layer graphene at en-
ergy -2.0 eV below the Fermi edge, for light polarized as A1 = [− 1√

2
, 1√

2
, 0]

(left) and A2 = [ 1√
2
, 1√

2
, 0] (right).

The difference of the simulations with perpendicular polarization directions is
known as linear dichroism map. Such a plot for the two different polarization
directions A = [− 1√

2
, 1√

2
, 0] and A = [ 1√

2
, 1√

2
, 0] is shown below.

Figure 4.14: Linear dichroism map of single layer graphene for A1 = [− 1√
2
, 1√

2
, 0] and

A2 = [ 1√
2
, 1√

2
, 0] polarized light at an energy of 2.0eV below the Fermi edge.

Another form of dichroism maps discussed in the literature [14] are circular dichro-
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ism maps. They display the difference in ARPES intensity maps obtained from
right-handed and left-handed circularly polarized light. This effect is also known
as circular dichroism in the angular distribution (CDAD) [1]. In principle, chinook
can also simulate such CDAD maps by specifying an appropriate polarization vec-
tor. This can for instance be polarization vectors AL = [1, i, 0] for left-handed and
AR = [1,−i, 0] for right handed polarized light. As discussed in Section 2.5, with a
plane-wave final state and a matrix element in the velocity gauge, the CDAD signal
is expected to vanish (|AL · k|2 − |AR · k|2) = 0. However chinook calculates the
matrix element in length gauge (as can be looked up in [16]). So an investigation
on how chinook performs on this CDAD effect could tell us about the difference of
the matrix element in length gauge in comparison to the velocity gauge. For later
comparison with the TDDFT code octopus, we are particularly interested in the
CDAD effect close to the Fermi-edge for a k-path through the K-point (indicated
in Figure 4.9). To compare TDDFT results to TB-calculations in Chinook it is
useful to make cuts along k-paths in these band-maps and compare them instead
of the entire BZ. Unfortunately, Chinook has no implemented method for arbitrary
cuts in the k-space. A method to overcome this limitation is explained in the sub-
sequent section.

4.3.2 Interpolating Cuts on the Band Maps

The idea is very simple: Chinook calculates constant energy momentum maps in
the first-BZ on a regular grid on the k-space. One uses an interpolation algorithm
to calculate an arbitrary path in this 3-d intensity data cube (I(kx, ky, Eb)). This
is shown in the subsequent code. The variable Imap-rh in the code is the 3-d array
saving the band maps. The interpolation was done using the RegularGridInterpolator
from scipy.

1 from scipy.interpolate import RegularGridInterpolator as rgi

1 #define slices of the dispersion , NOTE: energySlice[j] where j

defines the index of the corresponding ernergy

2 energySlice_path=np.zeros((dE_int ,nPath ,3))

3 #do some transpose magic to make it work (interpolation somehow

swaps x and y axis ..?)

4 transposedImag=np.zeros ((dk,dk,dE))

5 for i in range(0,dE):

6 transposedImag [:,:,i]=np.transpose(Imap_rh [:,:,i])

7

8

9 sliceCutter_rh=rgi((kx,ky,Eb),transposedImag [:,:,:], method=’linear ’)

10 #interpolate intensities from (data) on the grid (kx ,ky) at energy E

=energyGrid[j] , for the path (kx_path ,ky_path)

11 interpolatedData=np.zeros((dE_int ,nPath))

12 for j in range(0,dE_int):

68



13 #make list of kx ,ky path for certan energy

14 k_path=np.array ([[ kx_path[i],ky_path[i],energyGrid[j]]for i in

range(0,len(kx_path))])

15 #save in array [[k-path energy j=1 ],[k-path energy j=2] ,....]

16 energySlice_path[j]=( k_path)

17 #print(j/dE_int) #print percent of done work

18

19 interpolatedData[j]= sliceCutter_rh(energySlice_path[j])

As k-path, the cut along the following points

K1 = (0.2179, 0.4488, 0) , K2 = (0.4488, 0.2179, 0) (4.12)

was chosen (given in reduced coordinates). It is a cut trough the K-point shown
in Figure 4.9. The band structure along this path is given below. The k-path is
also indicated in the intensity map directly by a yellow dashed line.

We want to compare linear dichroism maps as well as circular dichroism maps
later on. The K-point is located at K = [cos(60◦), sin(60◦), 0]. Choosing the po-
larization vectors to be oriented ±45◦ to the K-point, one can expect the linear
dichroism map to change sign along the chosen k-path. This should in theory be
absolutely antisymmetric with the intensity difference at the K-point being exactly
0. Thus the chosen polarizations should provide a well comparable linear dichro-
ism map. The polarization vectors where chosen as A1 = [cos(15◦), sin(15◦), 0] and
A2 = [cos(105◦), sin(105◦), 0].

Figure 4.15: Left panel: Bandmap of graphene for E=-2.0 eV with dashed yellow line
indicating the k-path of the band structure in the second plot. Right panel:
Band structure of cut through the Dirac cone below the Fermi level. The
polarization is A = [cos(15◦), sin(15◦), 0] which the little arrow on the upper
right corner of the left figure indicates.
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By taking a look at the perpendicular polarization of the same path, one can
observe the following intensities:

Figure 4.16: Left panel: Bandmap of graphene for E=-2.0 eV with dashed yellow line
indicating the k-path of the band structure in the second plot. Right panel:
Band structure of cut through the Dirac cone below the Fermi level. The
polarization is A = [cos(105◦), sin(105◦), 0] which the little arrow on the
upper right corner of the left figure indicates.

The difference can be visualized by making a linear dichroism map of the two
polarizations.
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Figure 4.17: Left panel: Dichroism momentum map of graphene for E=-2.0 eV with
dashed yellow line indicating the k-path of the band structure in the second
plot. Right panel: Dichroism APRES momentum map of cut through the
Dirac cone below the Fermi level. The polarization of the two simulations is
at A1 = [cos(105◦), sin(105◦), 0] and A2 = [cos(15◦), sin(15◦), 0] .The little
arrows on the upper right corner of the left figure indicate these.

Now we evaluate the circular dichroism in graphene as obtained from chinook. The
region of interest will again be the one around the K-point. Circularly polarized
light can be described by the use of imaginary numbers in the polarization vector,
as described in Section 2.7.2. The following images show simulations of ARPES
experiments for x-y circularly polarized light with different handedness and their
dichroism map, the so called circular-dichroism map.
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Figure 4.18: Left panel: Momentum map of graphene for E=-2.0 eV with dashed yellow
line indicating the k-path of the bandmap in the right panel. Right panel:
Bandmap for a cut through the Dirac cone below the Fermi level. The
polarization is A2 = [1, i, 0] marking right-handed polarized light.

Figure 4.19: Left panel: Momentum map of graphene for E=-2.0 eV with dashed yellow
line indicating the k-path of the bandmap in the right panel. Right panel:
Bandmap for a cut through the Dirac cone below the Fermi level. The
polarization is A2 = [1,−i, 0] marking right-handed polarized light.
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Figure 4.20: Left panel: Dichroism momentum map of graphene for E=-2.0 eV with
dashed yellow line indicating the k-path of the bandstructure in the right
panel. Right panel: Dichroism band map of a cut through the Dirac cone
below the Fermi level. The polarization of the two simulations is at A1 =
[1, i, 0] and A2 = [1,−i, 0].

One thing to notice here is the low intensity of 10−18. Thus, the observed dichroism
must rather be interpreted as only numerical noise. In Section 2.5 it was already
shown that circular dichroism can not be observed in velocity gauge. Since chi-
nook uses the length gauge in order to evaluate the matrix element, one would
conclude from the above simulation that the CDAD effect vanishes for graphene.
Schönhense in his paper [1] states that introducing a phase factor to the differ-
ent angular momentum parts of the final state free wave reintroduces this circular
dichroism effect. This will be discussed in the later chapter 5.3

In summary, the above presented results for linear polarizations look reasonable,
while the results for circular dichroism are not satisfying. For a detailed qualitative
analysis one however needs a reference to more accurate simulation, which is here
done with the octopus code and presented in the next chapter.
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4.4 TDDFT Calculation with Octopus

Octopus [12] is a very powerful TDDFT code, allowing a wide palette of appli-
cations. With the implemented t-surf method (see Section 2.7.1), it is possible
to simulate ARPES experiments by applying a real-space, real-time approach in-
stead of using Fermi’s golden rule expression (see Section 2.1). The so-obtained
photoemission angular distribution maps are potentially high accuracy since no as-
sumption on the final state needs to be made and thus provides an ideal reference
for the TB-model. Of course this method comes with a price, which is large com-
putational effort. Even simple structures such as graphene require a considerable
amount of time and resources.

Therefore only the photoemission intensity distribution of a k-path instead of the
entire BZ is simulated. This section shows required input file used to run the sim-
ulation as well as the results. As an input Octopus receives a text file named inp.
An example of this file is given below:

1 CalculationMode = TD ## first GS then TD

2 ExperimentalFeatures = yes

3 FromScratch = yes

4

5 ## Paralellisation only enabled at TD-calculations , best is N=(

states *(BZ K-points + Path KParKpoints= 12## auto

6 ParStates= 4## auto

7 #ParDomains=no

8

9 PeriodicDimensions = 2

10 Spacing =0.36

11 a = 4.651 # in bhor

12 BoxShape = parallelepiped

13

14 LL = 100 ## Relativly big nsized box in z-direction , at ca. 1/4/ bis

1/2 the simualted "Detector" should be

15 %LatticeParameters

16 a | a | LL

17 %

18 %LatticeVectors

19 1 | 0 | 0.

20 -1/2 | sqrt (3)/2 | 0.

21 0. | 0. | 1.

22 %

23 %ReducedCoordinates

24 ’C’ | 0. | 0. | 0.

25 ’C’ | 1/3 | 2/3 | 0.

26 %

27 %KpointsGrid

28 12 | 12 | 1

29 %

30 %KpointsPath ## Pfad entlang dem die Bandstruktur ausgewertet wird

31 119 ## points of the k-path -> 120 K-points -> multiple of

12 because of parallelisation
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32 0.21786328 | 0.44880339 | 0 ## K’-point

33 0.44880339 | 0.21786328 | 0 ## K-point

34 %

35

36 wpr = 30 * eV ## Photon energy

37 tcpr =2*pi/wpr

38 II = 1.0E9 ## Intensity in W/cm^2

39 EE = sqrt(II/3.51e+16) ## Electric field

40 AApr = EE * 137/ wpr # Amplitude

41 TT = 50 * fs ## Propagationtime

42 npr = TT/tcpr

43 Tpr = tcpr*npr

44

45 %TDExternalFields

46 vector_potential | 0 | 1 | i | wpr |" probe" ## Vektorfield in x-

direction

47 %

48 %TDFunctions

49 "probe" | tdf_from_expr | ’AApr*sin(wpr*t/(2* npr))^2* step(Tpr -t)*

step(t)’ ## Sin^2 envelope

50 %

51 TDTimeStep = 0.08 ##hbar\hartree

52 TDPropagationTime = Tpr

53

54 Lmin = LL / 4 ## start CAP at detector

55 AbsorbingBoundaries = cap

56 ABCapHeight = -1.0

57 %ABShape

58 Lmin | LL | "abs(z)" ## absorbing boundary after detector

59 %

60

61 PhotoElectronSpectrum = pes_flux ## enable this method

62 PES_Flux_Lsize = Lmin ## distance to detector = start of CAP

63

64 Emin = wpr - 25. * eV

65 Emax = wpr

66 DE = 0.01 * eV

67 %PES_Flux_EnergyGrid

68 Emin | Emax | DE ## energy window and resolution for ARPES band

struktur

69 %

70

71 ## set default of 50 to 500

72 OutputInterval = 500

73 RestartWriteInterval = 500

While many of the parameters are self-explanatory, a few points must be noted.
The TDDFT calculation starts from an already converged ground state calculation.
So before running the above script, one needs to do a DFT calculation by altering
the parameter CalculationMode to GS. The lattice parameters where chosen
described in Chapter 2.3. The photon energy was set to 30 eV with an intensity
of 1 MW/cm2. The probe pulse should be switched on adiabatically, thus an
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envelope sine function was used to slowly rise and decrease the amplitude of the
carrier frequency.

Figure 4.21: Example figure of an external vector field with envelope function (blue)
sin2(ωenvt) and a laser pulse (orange) cos(ωt) with frequencies of ωenv =
0.057 1

fs and ω = 46 1
fs

The maximal amplitude of the probe pulse corresponds to a maximal intensity of
1 MW/cm2 of the light. The total simulation time was set to 50 fs. The time
step was chosen as 0.08 h̄

H which is dt ≈ 0.0024 fs and gives a total of 25838 time
steps. One should really think about choosing the parameters of the probe pulse
correctly in order to get the desired energy and intensity for the simulation (A
detailed discussion can be found in Section 2.7.2).

Let us take a look at an ARPES simulation of linear polarized light. Choosing
a k-path trough the K points of the BZ, the path was chosen as a line connecting
the two points

K1 = (0.2179, 0.4488, 0) , K2 = (0.4488, 0.2179, 0) (4.13)

given in reduced coordinates, sampled along 120 points. The path was chosen to
be perpendicular to the vector pointing from Γ to the K-point. It is indicated in
Figure 4.9. It is also indicated in the Figures 4.17 to 4.20 of Section 4.3 as dashed
yellow lines through the K-point.
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The polarization can be adjusted in the input file above via the TDExternalFields
parameter. As already discussed in Section 4.3.2, choosing the polarization vec-
tors to be oriented ±45◦ to the K-point, should provide a well comparable linear
dichroism map. The polarizations were chosen as A1 = [cos(15◦), sin(15◦), 0] and
A2 = [cos(105◦), sin(105◦), 0].

With the T-SURF method described in Section 2.7.1, one can generate an out-
put file consisting of a table of the kx, ky, kpath, E and the P (E, kpath) values. The
values kx, ky define the corresponding point in the k-space. The kpath values ac-
count for the distance between K1 and K2 defined as the k-path. E accounts for
the corresponding energy and P (E, kpath) is the electron photoemission probability.
The electron photoemission probability is directly proportional to the intensity of
the ARPES simulation. Often [23] the units and absolute values of P (E, kpath) are
therefore not shown in plots. Because in the dichroism maps absolute differences
are calculated, we will show these values.
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Figure 4.22: Octopus simulations of ARPES intensities of graphene with a linear po-
larized vector field of A1 = [cos(15◦), sin(15◦), 0] (upper image) and A2 =
[cos(105◦), sin(105◦), 0] (lower image) for a time interval of 50 fs, an in-
tensity of I = 1 MW/cm2 and ω = 30 eV along K1 − K − K2 where
K = 0→ kpath = 0. P (k, E) refers to the electron photoemission probabil-
ity.
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Figure 4.23: Octopus simulations of ARPES intensities of graphene with a linear po-
larized vector field of A1 = [cos(15◦), sin(15◦), 0] (upper image) and A2 =
[cos(105◦), sin(10◦5), 0] (lower image) with focus on the 2pz band for a time
interval of 50 fs, an intensity of I = 1 MW/cm2 and ω = 30 eV along
K1 − K − K2 where K = 0 → kpath = 0. P (k, E) refers to the electron
photoemission probability.
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The graphene ARPES intensities sown in Figure 4.22 and 4.23 are in the range
of [0, 0.16] and the one of the 2pz band in the range of [0, 0.04]. One can see the
expected behavior of the intensity change along the k-path where the maximum
intensity is on the side next to the K-point where the polarization points at. This
is in agreement with the velocity gauge proportionality |A · k|2 of the one-step
model discussed in Section 2.5. However the intensity here is peaked close to the
K-point in opposite to the calculations done in chinook where the intensity rises
steadily in the direction of the polarization.

Now we want to take a look at ARPES simulations with circularly polarized light.
As already discussed in Section 4.3 this can be achieved with complex vectorfields
of the form AL = [1, i, 0] and AR = [1,−i, 0]. The same simulation properties as
for the linear polarized ARPES intensity simulations above were used.
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Figure 4.24: Octopus simulations of ARPES intensities of graphene with a linear polar-
ized vector field of AL = [1, i, 0] (upper image) and AR = [1,−i, 0] (lower
image) for a time interval of 50 fs, an intensity of I = 1 MW/cm2 and
ω = 30 eV along K1−K −K2 where K = 0→ kpath = 0. P (k, E) refers to
the electron photoemission probability.

81



Figure 4.25: Octopus simulations of ARPES intensities of graphene with a linear polar-
ized vector field of AL = [1, i, 0] (upper image) and AR = [1,−i, 0] (lower
image) with focus on the 2pz band for a time interval of 50 fs, an intensity of
I = 1 MW/cm2 and ω = 30 eV alongK1−K−K2 whereK = 0→ kpath = 0.
P (k, E) refers to the electron photoemission probability.

The intensity of the ARPES simulated band structures for Figure 4.24 and 4.25 is
in the range of [0, 0.16] and the one of the 2pz is in the range [0, 0.07]. One can
see that in the 2pz band the electron photoemission probability is strongly peaked
on one side of the K-point. This is in disagreement with the one-step model dis-
cussed in Section 2.5 which predicts no difference between left- and right handed
polarized light in the velocity gauge. The results of the chinook simulation for cir-
cularly polarized light conclude that there is also no dichroism in the length-gauge.

By a closer investigation of the ansatz of the chinook program [16] (Equation
(9)) one notices that the final state of the matrix element is not a plane wave, but

82



a set of plane waves emerging from each isolated atomic orbital.

M(k) ∝
〈
eikr |A · r|Φα

i (r)
〉∑

α

nα

〈
eikr |A · r|φα(r)

〉
(4.14)

This means for the 2pz band of single layer graphene that the matrix element is a
sum matrix elements of the 2pz orbitals only. We have showed in Section 3 that
the dichroism of a single 2pz orbital vanishes. Thus it is no surprise that in chinook
this effect can not be seen in this setup. We will discuss this in more detail in the
next section.

5 Comparison and Analysis

5.1 Conclusions of the Chinook Simulations

In Section 4.3.2 it was shown that for single layer graphene, simulated with the
chinook program, the CD effect cannot be seen. In equation (9) of Ref.[16] it is
explained that chinook evaluates the photoemission matrix element

M(k) ∝
〈
eikr |A · r|Φj(r)

〉
(5.1)

in length gauge. Chinook also uses an LCAO basis which was for the simulation in
Section 4.3.2 limited to 2pz atomic orbitals, where only nearest neighbor interac-
tions were included in the TB model. One can therefore say that the photoemission
matrix element was calculated within the Hückel approximation. In Section 3.2 we
have derived a general expression (Equation 3.48) for planar hydrocarbons within
the Hückel model.

To this end let us take a look, at the defining equations given in Ref.[16]. For
consistency, we have adjusted the notation of Ref.[16] to match the notations used
throughout this work. Using an LCAO ansatz of the form Φj =

∑
n,α c

j
n,αφn,α,

The photoemission matrix element as described in Ref.[16] is written as

M(k) ∝
〈
eikr |A · r|Φα

j (r)
〉

=
∑
n,α

cjn,α

∫
d3reikr(A · r)φn,α(r)e−ζα,n = (5.2)

and expanded with Equation 6.12, (A · r) =
∑

µAµY1,µ and
φn,α(r) = Rn,α(r)Ylα,mα(Ω) into

M(k) =
∑
n,α

cjn,αe
−ζα,n

∞∑
l=0

l∑
m=−l

Yl,m(Ωk)(i)
l·

·
(∫

drjl(kr)r
3Rα,n(r)

)∑
µ

Aµ

(∫
dΩYl,mY1,µYlα,mα

)
.

(5.3)
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Note that the additional term e−ζα,n defines an empirical extinction factor which
is supposed to take into account the mean free path of a photoemitted electron.
(note: The sum over m is not explicitly mentioned in Ref.[16] for some reason).
One should also notice A 6= (A−1, A0, A1). For some reason also complex conju-
gation of certain terms was not mentioned explicitly.

Apart from these small inconsistencies in the notation, there is one more impor-
tant point to be noted in the transition from Equation 5.2 to 5.3. Each of the
atomic orbitals φn,α, indicated by the index n, has a different coordinate frame
(transformed by a shift r = rn − Rn). The plane wave final state, however, is
referred to only one common r. In the above derivation, however, each atomic
orbital is paired with a plane wave at its origin. This means that the final state
of the matrix element is actually not a single plane wave, but set of plane waves
emerging from each isolated atomic orbital.

For an LCAO initial state, the photoemssion matrix element is of the form

M(k) ∝
∑
α

nα

〈
eikr |A · r|φα(r)

〉
, (5.4)

where nα is some real constant.

For an initial state consisting of a linear combination of identical 2pz orbitals
this means that

M(k) ∝
∑
α

nα

〈
eikr |A · r|φ2pz(r)

〉
=
〈
eikr |A · r|φ2pz(r)

〉∑
α

nα. (5.5)

In Section 3.1.4 it has been shown that for left handed AL and right handed AR

polarized light
|〈ψf |AR · r|ψi〉|2 − |〈ψf |AL · r|ψi〉|2 = 0, (5.6)

which is exactly what has been shown by the chinook simulations of Section 4.3.2
for the vanishing CDAD map of single layer graphene.

Inspection of Equation 5.4 also reveals that the chinook program can show a non-
vanishing CDAD if the atomic orbitals φα are not identical. In order to validate
this hypothesis, we investigate hexagonal boron nitride (hbn) which also forms a
honeycomb lattice similar to graphene, but in the case of hbn, the basis consists of
two inequivalent atoms, namely boron and a nitrogen, respectively. Applying the
Hückel model to hbn, the atomic orbitals, even if only 2pz orbitals are included,
are different due to a different nuclear charge. Thus one cannot proceed as in
Equation 5.5 and pull the matrix element out of the sum. Figure 5.1 shows the
CDAD map of AL = [0, 1, i] and AL = [0, 1,−i] polarized light as obtained from
chinook, which is in fact clearly not vanishing.
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Figure 5.1: Constant binding energy CDAD map of hbn (left panel) and graphene (right
panel) simulated in chinook. The polarizations where taken as AL/R =
[0, 1,±i].

For comparison, the result of a chinook simulation for graphene with the same
polarizations is displayed in Figure 5.1. On the other hand, when choosing a
polarization as AL/R = [1,±i, 0], also for hbn the CDAD vanishes.

Figure 5.2: Constant binding energy CDAD map of hbn as simulated in chinook. The
polarizations where taken as AL/R = [1,±i, 0].
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One can again explain why the CDAD map vanishes for this polarizations by
looking at the corresponding matrix elements. At this point it should be clear that
chinook does not provide a suitable framework to further investigate the CDAD
effects in the tight binding approximation. Since the simulations in chinook of
linear polarized photoemission intensities of graphene looked, as discussed in 4.3.2,
reasonable, we will compare them to the TDDFT simulations of the octopus code.
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5.2 Comparison of the Linear Dichroism

The linear dichroism maps of graphene simulated in chinook, presented in Section
4.3.2, show the expected |A · k|2 dependence, discussed in Section 2.5. To com-
pare this to the octopus results, the corresponding dichroism map of the ARPES
simulation presented in Section 4.4 is shown in Figure 5.4.

Figure 5.3: Linear dichroism map from the TDDFT simulation for graphene (com-
pare Figure4.22). The linear polarizations were taken along A1 =
[cos(15◦), sin(15◦), 0] and A2 = [cos(105◦), sin(105◦), 0] together with a time
interval of 50 fs, an intensity of I = 1 MW/cm2 and ω = 30 eV along
K1 − K − K2 where K = 0 → kpath = 0. P (k, E) refers to the electron
photoemission probability.

A direct comparison of the linear dichroism APRES intensity distribution simu-
lated in chinook (shown in Figure 4.17) can be seen in Figure 5.4.
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Figure 5.4: Left panel: Linear dichroism map of the TDDFT simulated graphene ARPES
intensity distributions shown in Figure 5.3. Right panel: Linear dichroism
map of the TB simulated graphene ARPES intensity distributions shown in
Figure 4.17.

Note that the energy of the intensity distribution in the chinook simulation has
a steeper slope. This could be explained by the fact that octopus utilized the
LDA functional while the Hückel model of Section 4.1 was fitted to DFT energies
calculated with the B3LYP functional. One can see that even though the chinook
example resembles the effect, the LDAD effect gets weaker close to the Dirac point
(kpath = 0). The intensity distribution of the chinook simulation is proportional to
the factor |A · k|2 which describes the velocity gauge discussed in Section 2.5. For
increasing kpath > 0 the scalar product A1 · k rises while A2 · k falls. It is possible
that the octopus simulation also shows this proportionality, but the photo-electron
emission probability generally rises when approaching the K-point thus the two
effects cancel each other.

Even though it is not possible to make reasonable comparisons of the ARPES
intensity maps of circularly polarized light with the chinook simulations, the cir-
cular dichroism intensity distribution of the TDDFT simulations done in octopus
are shown in Figure 5.5 for completeness.
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Figure 5.5: Circular dichroism map of the TDDFT simulated graphene ARPES intensity
distributions shown in Figure 4.24. The circular polarizations were taken
along AL = [1, i, 0] and AR = [1,−i, 0] together with a time interval of 50
fs, an intensity of I = 1 MW/cm2 and ω = 30 eV along K1 −K −K2 where
K = 0→ kpath = 0. P (k, E) refers to the electron photoemission probability.
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5.3 Application of the LCAO Method

Since chinook has demonstrated problems in correctly accounting for CDAD effect
in the tight binding approximation, the question whether the CDAD effect exists
within the plane wave final state approximation in conjunction with the length
gauge for the transition matrix element could not have been answered. We now
want to make use of some of the results collected along the sections of this work
to write a python script which calculates the photoemission intensity distribution
of arbitrary 2p2-hybridized hydrocarbons. By setting up a Hückel model for the
molecule, and using the hopping parameter function from Section 4.1, one gets a
set of coefficients cjn for a corresponding molecular orbital Φj . Using the LCAO
ansatz from Section 3.2 one can evaluate the photo emission matrix element with
Equation 3.48〈

eikr |A · r|Φj

〉
=
∑
n

cjne
ikRn (Λ(k,A) + (Rn ·A)F(φn,α)(k)) . (5.7)

By evaluating the Λ function and subsequently computing the photoemission ma-
trix element on a sphere with constant k value, one gets constant binding energy
momentum maps. The CD map is then setup and normalized by

ICD =
IL − IR
max(IR)

(5.8)

As an example output, the constant binding energy momentum maps of the HOMO
orbital of the tetracene molecule are shown in Figure 5.8. The polarizations were
chosen as AL = [i, cos(65◦), sin(65◦)] and AL = [cos(65◦), i, sin(65◦)] to achieve an
azimuthal angle of the incident light beam of 65◦. This can be compared to a
photoemission tomography experiment for the tetracene molecule adsorbed on a
Ag(100) surface from [4]. In [4] the Figures (S6) and (S7) show experimental k-
maps of the HOMO orbital of tetracene. The Hückel model gives an orbital energy
of EHOMO = −2.06 eV for the HOMO orbital of tetreacene.
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Figure 5.6: Right panel: Experimental k-maps of the HOMO orbital for the tetracene
molecule from Figure (S6) of [4]. Left panel: Constant binding energy mo-
mentum of the HOMO orbital of the tetracene molecule simulated in the
Hückel approximation with a photo-electron energy of 35 eV and polariza-
tion of A1 = [i, cos(65◦), sin(65◦)].

Figure 5.7: Right panel: Experimental k-maps of the HOMO orbital for the tetracene
molecule from Figure (S7) of [4]. Left panel: Constant binding energy mo-
mentum of the HOMO orbital from the tetracene molecule simulated in the
Hückel approximation with a photo-electron energy of 35 eV and a polariza-
tion of A1 = [cos(65◦), i, sin(65◦)].

91



These momentum maps look reasonable compared to experimentally obtained mo-
mentum maps from Ref. [4]. The fact that the CDAD is clearly visible (shown
in Figure 5.8), is a clear evidence that the length-gauge and the velocity gauge
evaluated photoemission matrix elements are not equivalent.

Figure 5.8: CDAD map of the HOMO orbital from the tetracene molecule simulated
in the Hückel approximation with a photo-electron energy of 35 eV and
polarizations of AL/R = [±i, cos(65◦), sin(65◦)].

The CDAD is different for different polarizations. It would be interesting to see how
well this method works in general. A detailed analysis of the quality of constant
binding energy momentum maps simulated within this model is, however, beyond
the scope of this work. In the next section we will try to apply this method to
graphene to get an insight on the CDAD effect of the photoemission intensity dis-
tribution evaluated in length gauge within the Hückel approximation for periodic
materials.
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5.4 The LCAO Method for a Graphene like System

Here we will test the program discussed in Section 5.3 on a finite graphene like
system consisting of a grphene disk (see Figure 5.9). To this end, we approximate
the infinitely extended graphene lattice by a finite disc-shaped cluster which is
cut out from grpahene. When the diameter of this finite cluster is large enough,
the result should approximate those of the infinite layer. A question at hand is if
CDAD within the length gauge expression of the photoemission matrix element for
single layer graphene exists. If so, does it compare to the CDAD effect shown by
the octopus code in Section 4.4. Does the introduction of an angular momentum-
dependent phase factor to the final state plane wave changes the photoemission
intensities such that they resemble the results from the TDDFT calculation of oc-
topus in of Section 4.4? To answer these questions, let us jump right into the setup
of the simulation.

Within the approach given by Equation 5.7, only finite systems without peri-
odic boundary conditions can be treated. Therefore a circular molecule consisting
of 3658 carbon atoms repeated the same way as in graphene was set up. The
shape of a circle was chosen to minimize open bonds at its circumference. The
corresponding geometry can be seen in Figure 5.9.
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Figure 5.9: Geometry of the finite graphene-like cluster with 3658 carbon atoms in real
space. Each blue line represents a carbon-carbon bond.

Calculating the eigenstates of this system can be done efficiently with the Hückel
method from Section 4.1. For comparison the density of states can be visualized
by adding up a sharp Gauß peak at each energy eigenvalue over the entire energy
eigenvalue spectrum of the system. The eigenvalues of the Hückel matrix gives the
energies εn. The DOS can be approximated as:

D(E) ≈
∑
n

1√
2πσ2

e−
(E−En)2

2σ2 (5.9)

where σ was chosen as 0.1. The energy spectrum of this model is in E ∈ [−12.97, 6.12]
eV. In the Hückel matrix the the hopping parameter is chosen as t(1.42) = −3.15
eV and the onsite energy was set to ε = −3.42 eV which also gives the Fermi
edge. The DOS of this Hückel model is shown in Figure 5.10. Together with the
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dispersion relation of Section 2.4.5 given by Equation 2.70, the DOS, defined by

D(E) =
1

V

N∑
i

δ(E − Ei(k)), (5.10)

can be evaluated for an infinite system. Choosing the same hopping parameter
and on-site energy as in the Hückel model, and evaluating the dispersion relation
of Equation 2.70 on a finite k-grid inside the first BZ, the resulting DOS is also
included in Figure 5.10.

Figure 5.10: Density of states for the finite graphene cluster (green) and the ideal
graphene (orange) with the dispersion given by Equation 2.70. The hopping
parameter was chosen as t = −3.15 eV and the on-site energy ε = −3.42
eV giving the Fermi edge (marked with black line).

This plot already gives a hint on the quality of the approximation to ideal graphene.
It comes really close to the DOS of the periodic structure. The peak at the Fermi
edge is an edge effect of the open borders of the molecule. To calculate the pho-
toemssion intensity according to Equation 3.48, not just one eigenstate of the
system, but several around the same energy have to be taken into account. To be
precise, all momentum maps in an energy window of ±0.3 eV of the chosen energy
of the DOS are summed up. So the photoemssion intensity is thus given by

I(k) =
∑
i

ω(Ei)

∣∣∣∣∣∑
n

cEin e
ikRn (Λ(k,A) + (Rn ·A)F(φn)(k))

∣∣∣∣∣
2

(5.11)

where cEin is the eigenfunction of the Hückel matrix corresponding to the eigenvalue
Ei and ω(Ei) is a weight factor. The weight factor is given by a Gauß function of
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the form

ω(εp) =
1√

2πσ2
e−

(Eb−Ei)
2

2σ2 (5.12)

Where Eb is the chosen constant binding energy. The shape of a Gauß function is
motivated by the factor

δ(h̄ω − Ei −
h̄2k2

2m
− Φ) (5.13)

in the general expression for the photocurrent of Equation 2.15. Choosing polar-
izations of A = [1, 0, 0] and A = [0, 1, 0] and including all states of ±0.30 eV (by
choosing σ = 0.1 eV) around the energy of Eb = −4.92 eV (-1.5 eV below Fermi
edge) the result can be seen in Figure 5.11.

Figure 5.11: Constant binding energy momentum map for a binding energy of E = −4.92
eV, photoelectron energy of Ekin = 30 eV and a polarization of A = [1, 0, 0]
(right panel) and A = [0, 1, 0] (left panel) of a finite graphene like molecule
of 3658 atoms.

Note that the intensity here was evaluated for each k-point explicitly. Therefore
no broadening of the k-space in order to smoothen the data has been applied.
The convergence to the infinite extended graphene layer can be seen by a series of
simulations with increasing size of the finite cluster.
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Figure 5.12: Constant binding energy momentum maps for a photoelectron energy of
Ekin = 30 eV, a polarization of: A = [1, i, 0] and binding energy of −1.3
eV below the Fermi edge calculated with the LCAO method for 358, 835,
1444 and 3658 atoms sized clusters.

The constant binding energy momentum maps for linearly polarized light obtained
within this finite cluster approximation compare relatively well to the chinook
simulations of Section 4.3. For comparison both simulations are displayed for a
polarization of A = [1, 0, 0] and a binding energy of −1.5 eV below the Fermi edge
in Figure 5.13.
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Figure 5.13: Constant binding energy momentum map for a photoelectron energy of
Ekin = 30 eV and a polarization of A = [1, 0, 0] simulated with chinook
(right panel) with a binding energy of -1.5 eV and with the LCAO method
(left panel) for a cluster of 3658 atoms and a binding energy of E = −4.92
eV which is −1.5 eV below the Fermi edge.

The simulations for circularly polarized light of A = [1, i, 0] and A = [1,−i, 0] of
the LCAO method leads to the result shown in Figure 5.14. The constant binding
energy was set to −1.5 eV below the Fermi edge in order to make comparisons
to the TDDFT simulations with circularly polarized light (shown in Figure 5.15)
possible.
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Figure 5.14: Constant binding energy momentum map for a binding energy of E = −1.5
eV below the Fermi edge, a photoelectron energy of Ekin = 30 eV and
polarizations of A = [1, i, 0] (upper left panel) and A = [1,−i, 0] (upper
right panel) as well as the CD map (lower panel) of a finite graphene like
molecule of 3658 atoms.

The magnitude of the CD map was normed by

ICD =
IR − IL
max(IR)

. (5.14)

This way the CD intensity map displays the absolute value of the CD effect. The
differences of the CD effect in Figure 5.14 are at about 60 percent of the maxi-
mum of the two separated momentum maps. The CDAD effect is visible and can
due to the noticeable intensity of the CD map not be interpreted as numerical noise.

Comparing this dichroism to the one obtained in the TDDFT simulations shown
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in Figure 5.15 one can see that, along the k-path marked with a green line in both
Figure 5.14 and 5.15, they show no similarity. The Octopus calculations reveal
an antisymmetric CDAD intensity distribution changing sign at the k-point while
the intensity distribution of the dichroism map of the finite cluster changes sign
multiple times along the k-path.

Figure 5.15: Circular dichroism intensity distribution of graphene simulated in the oc-
topus code with a time interval of 50 fs, an intensity of I = 1 MW/cm2

and ω = 30 eV along K1 −K −K2 (shown in Figure 4.9) where K = 0→
kpath = 0 for polarizations of AL/R = [1,±i, 0]. P (k, E) refers to the elec-
tron photoemission probability. The green line indicates the k-path at a
constant binding energy of −1.5 eV.

As shown in Figure 5.12, the size of the finite cluster has a direct effect on the
quality of the corresponding momentum map. It is possible that an antisymmet-
ric behavior of the intensity distribution of the CD map is visible in the limit of
an infinite cluster. It is also possible that the CDAD effect vanishes within this
limit. Due to the similarity of the cone size and the DOS of the finite cluster of
3658 atoms to the ideal graphene, it is likely that the displayed CDAD of Figure
5.15 is also shown in the limit. Instead of further increasing the finite cluster size,
using a Bloch wave ansatz would enable us to directly evaluate the CD map of the
limit. Possibly this difficulty can be overcome by the use of the already discussed
angular-momentum dependent phase factor.

One can include an angular-momentum dependent phase factor in the plane wave
expansion as in Section 3.1.5 relatively easy in the Expression 5.11 by simply
multiplying each of the radial integrals Rl(k) with a corresponding phase factor
e−iδl . This results in a change of the CDAD shown in Figure 5.15. In Section
3.1.5 the CDAD of a single 2pz orbital was shown to be proportional to the factor
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sin(δ0 − δ2). We will thus choose δ0 = −π
2 and δ2 = π

2 to maximize this factor.
The corresponding constant binding energy momentum maps for A = [1, i, 0] and
A = [1,−i, 0] polarizations are shown in Figure 5.16

Figure 5.16: Constant binding energy momentum maps of a finite graphene like molecule
of 3658 atoms. for constant energy of E = −1.5eV below the Fermi edge
for polarizations of A = [1, i, 0] (upper left panel), A = [1,−i, 0] (upper
right panel) and the corresponding CD map (lower panel) with an included
l-dependent phase factor as described above (δ0 = −π/4, δ2 = π/4). The
photoelectron energy was set to 30 eV.

The simulated dichroism here has about the same magnitude as the one in Figure
5.14 without the l-dependent phase factor. When looking at the upper right K-
point of the CD map (lower panel of Figure 5.16), one can actually see a change of
the intensity distribution along the indicated k-path. It appears that the intensity
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difference has shifted more to the side of the left handed polarized photoemission.
However there is no similarity to the CD intensity distribution of Figure 5.15.
Also it is not possible to see a CDAD right away in the momentum maps of Figure
5.16. The octopus calculations of Section 4.4 using circularly polarized light shows
a very strong CDAD around the K-points as can be seen in Figure 4.25. In the
TDDFT simulations the CDAD can be seen directly and the intensity difference
of the left and right handed polarized light is at about the same intensity as the
intensity of each one of them. One can conclude that the the l-dependent phase
factor does improve the quality of the ARPES simulation of circularly polarized
light for graphene. These observations lead us to the conclusion.
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6 Conclusion

In order to simulate ARPES intensities, the one-step model of photoemission is
utilized which treats the photoexcitation from an initial state to a final unbound
state, as a single coherent process. The associated photocurrent is proportional to
the photo-emission matrix element given by Fermi’s golden rule expression as

M(k) = 〈Ψf |A · p|Ψi〉 . (6.1)

Here, the final state is often approximated as a free electron and thus as a plane
wave [2; 3].

Two seemingly equivalent ways of evaluating M(k) are the velocity gauge and
the length gauge. They both derive from Fermi’s golden rule. By choosing a
plane wave final state and inserting the position representation of the momentum
operator, one obtains the velocity gauge

Mv(k) = −ih̄
〈
eikr |A · ∇|Ψi

〉
. (6.2)

The length gauge is then obtained by the use of the canonical commutation relation.
By assuming

〈
eikr

∣∣ and |Ψi〉 to be eigenfunctions of the Hamilton operator with
eigenvalues Ef and Ei, the length gauge expression of the matrix element can be
expressed as

Ml(k) = m(Ei − Ef)
〈
eikr |A · r|Ψi

〉
. (6.3)

These expressions for the matrix element are evaluated further by specializing
on planar hydrocarbons with sp2 hybridization. Here, the initial state |Ψi〉 was
assumed as molecular orbitals obtained by the Hückel model. The efficiency of
this model makes the calculation of even very large molecules possible. Within
this approximation, the molecular orbitals are constructed as a linear combination
of atomic 2pz orbitals of the carbon atoms. Due to the symmetry of the 2pz
orbital and the fact that the molecule is planar, the hopping parameter, giving
the Hamilton matrix its form, is a function of the distance of the corresponding
atomic 2pz orbital only. By fitting the eigenvalues of the Hamilton matrix of the
Hückel model of a given molecule to corresponding eigenvalues obtained by DFT
calculations, the hopping parameter t was fitted as a quadratic polynomial function
of the interatomic carbon-carbon distance r to

t(r) = −48.0r2 + 146.7r − 114.7, (6.4)

where t is given in eV and r is in Å. The standard deviation is given in Section
4.1.

Even though the Hückel model is quite simple and makes several crude approx-
imations, the comparison to DFT calculations in Section 4.2 together with the
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reproduced density of states and the momentum maps in Section 5.3 show that it
is indeed a justified choice as an initial state of the one-step model of photoemission.

As can be seen from Equation 6.1, the absolute value of the photoemission ma-
trix element depends, not only on the initial and final state, but additionally on
the polarization of the incident light beam. Further evaluating Equation 6.2, the
polarization dependency of the photocurrent in the velocity gauge is proportional
to

|Mv(k)|2 ∝ |A · k|2 |F(Ψi)(k)|2 . (6.5)

On the other hand, the photoemission matrix element, evaluated in length gauge
with a plane wave final state and choosing the initial state as a linear combination
of 2pz orbitals (following the Hückel approximation), can be expressed as

M(k) =
∑
n,α

cn,αe
ikRn (Λ(k,A) + (Rn ·A)F(φn,α)(k)) . (6.6)

Note that in the derivation of Equation 6.6 the Rayleigh expansion

eikr = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Y
∗
lm(φk, θk)Ylm(φ, θ). (6.7)

has been used, and that F(φn,α)(k) in Equation 6.6 refers to the Fourier transfor-
mation of the 2pz orbital. The term Λ(k,A) is defined as follows

Λ(k,A) = Axλx(k) +Ayλy(k) +Azλz(k), (6.8)

with
λx(k) = −f2(k)

√
3 · 8π cos(θk) sin(θk) sin(φk), (6.9)

λy(k) = −f2(k)
√

3 · 8π cos(θk) sin(θk) cos(φk), (6.10)

λz(k) =
√

4π
(
f0(k)− f2(k)(3 cos2(θk)− 1)

)
. (6.11)

As shown in Section 3.2, the difference in the angular distribution of the photocur-
rent of the right and left handed circularly polarized light, called circular dichroism
in the angular distribution (CDAD), vanishes for a plane wave final state in the
velocity gauge. However, this is not the case for the length gauge expression in
general.

To test this hypothesis, two types of simulations have been performed. First, we
used the chinook [16] program where the length gauge is implemented in conjunc-
tion with a TB initial state. It was shown that simplifications, on the photoemssion
matrix element, applied in chinook make it an inappropriate tool to further inves-
tigate CDAD effects, which is demonstrated for graphene.

Second, the photoemission intensity is evaluated with the help of Equation 6.6.
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Here, for a tetracene molecule we find a non-vanishing CDAD effect. Thus, in
contrast to the velocity gauge, the CDAD effect of the length gauge formalism of
the photoemission matrix element with a plane wave final state does not vanish in
general. The photoemission matrix element, simulated with Equation 6.6, shows
for tetracene, in comparison to the experimental data from [4], reasonable results.
Further investigations on how well Equation 6.6 together with the Hückel model
simulates circular dichroism for molecules in general could possibly lead to a better
understanding of the CDAD effect.

To make further progress, we have investigated how a simple modification of the
final state modifies the result. To this end, we include an l-dependent phase factor
in the final state, which modifies Equation 6.7 to

Ψf (r,k) = 4π

∞∑
l=0

l∑
m=−l

iljl(kr)e
−iδlY ∗lm(φk, θk)Ylm(φ, θ). (6.12)

This is motivated by the fact that a vanishing CDAD effect of a single 2pz orbital
can be cured with such a phase factor [1].

In Section 5.3 the photoemission intensity distribution of single layer graphene was
approximated by a large graphene like planar hydrocarbon molecule. Even though
a CDAD effect was shown, comparisons to TDDFT calculations, performed with
the octopus code, (see Section 4.4) show only few similarities.

The introduction of an angular momentum dependent phase factor in the final
state as suggested by Schönhense in [1] does not provide a solution to this prob-
lem. A Hückel modeled large graphene like molecule is not an ideal framework to
analyze this problem. In order to investigate this, a Bloch-wave initial state would
provide a better model. Fully covering the CDAD effect in periodic systems may
also be beyond the plane wave final state.

In Figure 5.4 it was shown that the linear dichroism effect of graphene near the K-
point of the TDDFT result is slightly different to the one obtained within the one
step model of photoemission. However in principle they shows the same properties.
The predicted dependence of |A · k|2 is shown in the one-step model (in chinook
as well as with the use of Equation 6.5). It is possible that the TDDFT simulation
performed with the octopus code also shows this proportionality, but the electron
photo-emission probability generally rises when approaching the K-point and thus
the two effects cancel each other. Resembling this effect could possibly also go
beyond the plane wave final state.
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7 Appendix

Table 1: Molecules used for the fitting process described in Section 4.1.
Molecule Short name Chemical formula Database index [28]

benzene 1P C6H6 1
biphenyl 2P C12H10 2
terhenyl 3P C18H14 3
quaterphenyl 4P C24H18 4
quinquephenyl 5P C30H22 5
sexiphenyl 6P C36H26 6
septiphenyl 7P C42H30 7
naphthalene 2A C10H8 8
anthracene 3A C14H10 9
tetracene 4A C18H12 10
pentacene 5A C22H14 11
hexacene 6A C26H16 12
heptacene 7A C30H18 13
phenanthrene 3phenacene C14H10 17
chrysene 5phenacene C18H12 18
picene 4phenacene C22H14 19
7phenacene 7phenacene C30H18 21
bisanthene bisanthene C28H14 22
coronene coronene C24H12 23
hexabenzocoronene hexabenzocoronene C42H18 24
decapentaene t-10A C10H12 237
trans-12-acetylene t-12A C12H14 238
trans-14-acetylene t-14A C14H16 239
trans-16-acetylene t-16A C16H18 240
trans-18-acetylene t-18A C18H20 241
trans-20-acetylene t-20A C20H22 242
annulene-C18 annulene1 C18H18 287
annulene-C30 annulene2 C30H30 288
kekulene-equal kekulene-equal C48H24 289
annulene-C18-equal annulene-inner C18H18 290
annulene-C30-equal annulene-outer C30H30 291
kekulene-superaromatic kekulene-super C48H24 292
2P-1.38 2P-1.38 C12H10 312
2P-1.40 2P-1.40 C12H10 313
2P-1.42 2P-1.42 C12H10 314
2P-1.44 2P-1.44 C12H10 315
2P-1.46 2P-1.46 C12H10 316
2P-1.48 2P-1.48 C12H10 317
perylene perylene C20H12 266
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Lüftner, Felix Hajek, Philipp Hurdax, Matteo Jugovac, Giovanni Zamborlini,
Vitaliy Feyer, Georg Koller, Peter Puschnig, Frank Stefan Tautz, Michael G.
Ramsey, and Serguei Soubatch. Coexisting charge states in a unary organic
monolayer film on a metal. The Journal of Physical Chemistry Letters 10,
6438–6445 (2019).

[5] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136,
B864 (1964).

[6] P. J. Feibelman and D. E. Eastman. Photoemission spectroscopy - correspon-
dence between quantum theory and experimental phenomenology. Phys. Rev.
B 10, 4932 (1974).

[7] Hückel E. Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektro-
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