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Abstract
This thesis is concerned with the calculation of the structure and the optical
properties of small silver clusters (Ag1 to Ag5) with a special focus on Ag3. For
the calculations of the structure and the electronic spectra I am applying Den-
sity Functional Theory and its time-dependent expansion within the Casida
formalism, that is implemented in the program package ABINIT. Next I am
comparing the calculated spectra to experimental data from literature.
Further, I am investigating the vibronic transitions of an electronic excitation
for Ag3 using the Franck-Condon principle. In doing so I am also looking into
the temperature dependence of vibronic transitions.
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1 Introduction

1 Introduction

Starting with birth human beings are driven by curiosity. How does the world
around us function? What is it made of? Science gives us a lot of answers to our
questions and additionally raises new interesting questions. In order to provide
these answers, scientists all over the world have always tried to look deeper
into the matter around us. Especially since the last century it is possible to
investigate and work with smaller particles than ever before. An interesting
branch of these discoveries is nanotechnology, which also introduces nanoclus-
ters, that are especially important for this work.
One feature of those nanoclusters, not totally understood by now, is that

Figure 1.1: Picture of fluorescence from a 16.6-nm Ag/Ag2O film excited at
514.5 nm, taken from [1].

small silver clusters show strong photo activated emission for short wavelengths
(λ < 520 nm). What is even more interesting is the fact, that the clusters blink
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and change their emission wave length [1]. Figure 1.1 shows a picture of fluo-
rescent silver nanoclusters of different sizes emitting at different wave lengths.
The aim of this work is the ab-initio calculation of the absorption spectra of
different small silver clusters within the framework of density functional theory.
With that at hand, it may be possible to tell which wavelengths are emitted
from which cluster.
Some literature already exists on these problems: calculations of the struc-
ture and the absorption spectra of small silver clusters have been done in
[2, 3, 4, 5, 6], some of these will later on be used for comparison with the
computed results. From the experimental section literature on measurements
of structures, emission and absorption spectra can be found in [1, 7, 8, 9, 10].
Throughout this work, if not especially mentioned otherwise, atomic units are
used. This unit system is very convenient in atomic and molecular physics, as
some of the most used units are set to unity. These units and units derived
from them are given in Table 1.1.

Table 1.1: Atomic units (me = 1/(4πε0) = e = ~ = 1) and quantities derived
from them (Eh and a0).

Quantity Name Symbol SI units
Mass electron rest mass me 9.109 · 10−31 kg
Length Bohr radius a0 5.292 · 10−11 m
Charge elementary charge e 1.602 · 10−19 C
Angular momentum reduced Planck’s constant ~ 1.054 · 10−34 Js
Energy Hartree energy Eh 4.360 · 10−18 J
Electrostatic constant Coulomb’s constant 1/(4πε0) 8.988 · 109 N m2/C2
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2 Basics

This chapter deals with some fundamental knowledge needed to follow this
work. The first section contains some facts about atoms and molecules, what
holds them together and what they consist of. Also the foundation of their
mathematical description, the Schrödinger equation, will be summarized shortly.
The Lagrange formalism and the Hamilton formalism are used later in this
work and a short section deals with the basic framework of these two meth-
ods. The last section of this chapter discusses the Franck-Condon principle in
molecules and its consequences.
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2.1 Atoms and Molecules

All matter around us is made of atoms. We ourselves are made of atoms.
This has been postulated long time ago, as records of ancient Greeks and
other philosophers tell us. The development of a better model of the atom
has thrived at the beginning of the 20th century. Different atom models have
been published and discussed until the theory of quantum mechanics has been
well-established. Thereby also the idea of the indivisibility of atoms had to be
abandoned.
The atom consists of protons, neutrons and electrons. While the protons and
the neutrons are located in the center of the atom, the electrons build a neg-
ative charge cloud around the nucleus. The nucleus is built of the positive
charged protons and the charge neutral neutrons. They stick together due to
the strong nuclear force. The electrons are hold in place by the Coulomb force.
The number of protons in the nucleus is called atomic number and specifies
the element. On Earth 94 different elements can be found, more have been
synthesized. For Silver (Ag) the atomic number is 47. This tells us that one
neutral silver atom consists of 47 protons and as many electrons. The sizes
of atoms range from 1 · 10−10 − 3 · 10−10 meters, while the nuclei themselves
are much smaller with sizes in the range of 1 · 10−15 − 5 · 10−15 meters. Each
of this atoms has characteristic chemical properties defined by the number of
protons, neutrons and electrons it is made of.
The different atoms do not only exist independently, they interact with each
other and form clusters and molecules consisting of atoms of the same kind or
a mixture of atoms. The smallest molecules are assembled by just two atoms,
for example N2 or H2. Larger molecules can be proteins or nucleic acids like the
DNA. The atoms within molecules bind together because of chemical bonds
between the atoms. The properties of molecules can be very different from the
atoms they consist of and depend upon the atoms they are made of, the struc-
ture and the way in which the atoms are arranged in the molecule, binding
energies of the atoms and the energy required to change the structure of the
molecule [11].

4
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In which way atoms and molecules and their interaction are described depends
upon the problem in question. For some problems it is sufficient to just look
upon the valence electrons, for other problems additionally the core electrons
of the atom have to be taken into account. To treat molecular vibrations of a
molecule, partly Newtonian mechanics can be used and the atoms are modelled
as points in space, located at the center of mass of the atom. In that way Ag3

will be treated in Section 4.4 to extract the vibronic transitions of the cluster.
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2.2 Lagrange and Hamilton formalism

2.2.1 Lagrange formalism

The Lagrange formalism is a very powerful tool in classical mechanics. The
formalism allows in general to solve complex systems with a minimum amount
of work. It can be understood as a generalization of the principles of clas-
sical mechanics, i.e. Newton’s axioms. Contrary to the Newton axioms, the
Lagrange formalism makes it possible to take constraints to a problem easily
into account. The formalism is embodied either in the Lagrange equations of
the first kind, including constraints by additional constraint equations, or in
the Lagrange equations of the second kind, incorporating the constraints with
generalized coordinates.
The Lagrange equations of the first kind are given as [12]:

mnr̈n = Fn +
R∑
α=1

λα
∂gα(r1, . . . , r3N , t)

∂rn
n = 1, 2, . . . , 3N

gα(r1, . . . , r3N , t) = 0 α = 1, 2, . . . , R
(2.1)

The sum runs over all R constraints and there are, all together, 3N differen-
tial equations and R constraint equations. As can be seen in equation (2.1),
the Lagrange equations of the first kind are an extension to the Newtonian
equations of motion extended by the constraint forces. A constraint equation
of the form g(r1, . . . , r3N) = 0 is called holonomic. These holonomic constraint
equations significantly simplify a problem, because they reduce the degrees of
freedom of a problem by R.
Usually it is not necessary to know the exact form of the constraint forces. The
Lagrange equations of the second kind offer an even more elegant way to derive
the equations of motion for the system in question. The system is described by
generalized coordinates, which are any coordinates (q1, q2, . . . , qf ), that com-
pletely define a system of f degrees of freedom [13]. So the 3N coordinates {ri}
reduce to 3N −R = f generalized coordinates {qj}, that automatically satisfy
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the holonomic constrained equations. A typical example would be a simple
pendulum in two dimensions with mass M , the movement of the pendulum is
constrained by the rod of length l to a circle. The system can be described, for
instance, with Cartesian coordinates {x1, x2} and the constrained equation

x2
1 + x2

2 − l2 = 0. (2.2)

Because the movement is constraint from the two dimensional plane to a one
dimensional curve, the degrees of freedom for the system are just one, hence
it is possible to define a generalized coordinate q1 describing the system. It is
straightforward to choose the angle ϕ, which gives the Cartesian coordinates
as  x

y

 =
 l cos(ϕ)
l sin(ϕ)

 (2.3)

and automatically satisfies (2.2).
The Lagrange equations of the second kind are given as

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 j = 1, . . . , f, (2.4)

with the Lagrangian [14]
L = T − V, (2.5)

where T (q̇) contains the kinetic energy and V (q) the potential energy of the
system and the Lagrangian is a function of the coordinates q, the corresponding
generalized velocities q̇ and time t. Here we used:

q = {q1, . . . , qf} q̇ = {q̇1, . . . , q̇f} (2.6)

Contrary to the 3N differential equations and R algebraic equations for the
Lagrange equations of the first kind, we have only 3N−R differential equations.

7
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2.2.2 Hamilton formalism

The Hamilton formalism provides a different formulation of classical mechan-
ics, that can be used in many areas in physics, most prominently maybe, in
its extension to quantum mechanics [14]. To calculate the Hamiltonian H of a
system, the first step is the calculation of the canonical momenta

pj = ∂L(q, q̇, t)
∂q̇j

, (2.7)

which indirectly have already been used in (2.4). In general the potential V
has no dependencies on the velocities q̇ and the canonical momenta are

pj = ∂T (q, q̇, t)
∂q̇j

. (2.8)

Now the generalized velocities can be written as a function of the canonical
momenta, the generalized coordinates and time q̇j = q̇j(q, p, t) and have to be
eliminated in the Lagrangian, which then is a function of q, p and t, L(q, p, t).
With that, the Hamiltonian is given as [12]:

H(q, p, t) =
f∑
j=1

q̇j(q, p, t)pj − L(q, p, t) (2.9)

If, as in most cases, the first term in (2.9) equals 2T , H is the energy of
the system. This correspondence is a very important feature of the Hamilton
formalism, especially with its application in quantum mechanics. Using (2.4),
the so called canonical equations can be derived as partial derivatives of H
[12]:

ṗj = −∂H(q, p, t)
∂qj

(2.10)

q̇j = ∂H(q, p, t)
∂pj

(2.11)

8
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So the equations of motion in the Hamilton formalism are 2f differential equa-
tions of first order for qj and pj, that replace the f differential equations of
second order for qj from (2.4).

9
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2.3 Schrödinger equation

The fundamental equation in quantum mechanics is the Schrödinger equation
postulated by Erwin Schrödinger in 1926. Since then, with this equation many
problems could be understood and solved, like the spectrum of the hydrogen
atom or the alpha decay.
The time-dependent Schrödinger equation for a free particle reads

i~ ∂
∂t
ψ(r, t) = − ~2

2m∇
2ψ(r, t) = Hψ(r, t), (2.12)

where H denotes the Hamiltonian operator of the system. This is an equation
for the plane wave function ψ(r, t), that describes the system. As in Section 2.2
already discussed, the H operator originates from the Hamiltonian theory of
mechanics and corresponds to the total energy of the system. H is the sum of
a kinetic and a potential part, and for a particle moving in a potential V (r, t)
with the energy

E = p2

2m + V (r, t), (2.13)

the Hamilton operator of the system is given as

H = − ~2

2m∇
2 + V (r, t). (2.14)

Now the Schrödinger equation for a particle in a potential reads [15]:

i~ ∂
∂t
ψ(r, t) = − ~2

2m∇
2ψ(r, t) + V (r, t)ψ(r, t) (2.15)

For (2.14) the correspondences for the energy and the momenta [16]

E → i~ ∂
∂t

and p→ ~
i∇ (2.16)

10



Ab initio calculation of small silver clusters

2 Basics

have been used.
For a Hamilton operator H independent of time, the time dependency of the
Schrödinger equation can be separated with the ansatz [15]:

ψ(r, t) = ϕ(r)e−iEt/~ (2.17)

With that the time-independent Schrödinger equation reads

Hϕ(r) = Eϕ(r), (2.18)

which has the form of an eigenvalue equation for the Hamilton operator H.

11
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2.4 Franck-Condon principle

An electronic transition in a molecule results in a different potential energy
surface for the nuclei. This leads to another vibrational frequency of the nuclei,
and that directly influences the absorption spectrum of the system, which
can be measured. To look upon these effects, the Franck-Condon principle is
introduced.
The principle follows from the Born-Oppenheimer approximation discussed in
Section 3 and relies on the high mass ratio of nuclei and electrons to state,
that the nuclei stay in position Re during the actual electronic transition and
reposition immediately afterward to R′e. In Figure 2.1 the classical and the
corresponding quantum mechanical illustration are shown. In both plots two

Figure 2.1: The classical and the quantum mechanical graphical illustration
of the Franck-Condon principle. Both pictures are taken from [17,
pp. 380].
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potentials for a molecule are plotted with the equilibrium bond lengths Re and
R′e, respectively. The Franck-Condon principle says, that, as an electron gets
excited, the nuclei change from the ground state vibrational mode ψv of the
Re curve to the vibrational mode ψv′ of the R′e curve with the largest overlap
to the original mode.
Within the Franck-Condon principle, the electric dipole transition moment
µ = µe + µN from the ground state |εv〉 to the excited state |ε′v′〉 can be
calculated as [17]:

〈ε′v′|µ |εv〉 =
∫
ψ∗ε′(r; R)ψ∗v′(R) (µe + µN)ψε(r; R)ψv(R)dτedτN =

= 〈v′|v〉
∫
ψ∗ε′(r; R)µeψε(r; R)dτe+

+ 〈ε′|ε〉
∫
ψ∗v′(R)µNψv(R)dτN

=µε′ε 〈v′|v〉

(2.19)

In the last step it has been used, that the electron wave functions are orthogonal
to each other, so the scalar product vanishes. The nuclear coordinates {R} are
only parameters for the electron wave functions, which is a result of the Born-
Oppenheimer approximation, and allows to assume, that the scalar product of
the electron wave functions is independent of the nuclei positions.
The square of the overlap integral is called the Franck-Condon factor FC(v′, v)
[11]:

FC(v′, v) = |〈v′|v〉|2 (2.20)

13
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In this work we calculate the optical properties of small silver clusters from
first principles. To accomplish this, the first task is to find the solution of the
Schrödinger equation for a system of silver atoms. From that the electronic
structure of the system and further properties can be determined. For solving
the Schrödinger equation of a molecule, different methods are available. One
of the first established methods is the Hartree-Fock method. Here the total
wave function of the system is approximated by a Slater determinant of the
one electron orbitals. The electrons move in an effective potential and do not
directly interact with each other. The Schrödinger equation is now evaluated
for these one electron wave functions in the effective potential.
Density functional theory (DFT) follows a different approach: Contrary to the
one electron wave functions in the Hartree-Fock method, the electron density
of the system plays the central role. The electron density n(r) describes the
probability to find dN electrons in the volume element d3r at position r. Owing
to a theorem by Hohenberg and Kohn [18], all other features of the system are
computable as functionals from the electron density. The major advantage over
Hartree-Fock method is that for an N electron system the electron density is
not dependent on 3N spatial coordinates of one electron wave functions, but
only on the 3 spatial coordinates!
Both methods make use of the Born-Oppenheimer approximation. Within this
approximation the motion of the nuclei is separable from the motion of the
electrons. It assumes, that the electrons with the small mass compared to the
nuclei, can instantly follow the slow movements of the nuclei. This is a huge
simplification to the problem for fixed nuclear positions.
Using DFT the total energy of a system can be computed and furthermore
the geometry of the ground state can be determined. This is the state where
the energy is minimal. Varying {R} and computing the corresponding energy
E({R}) of the system gives the energy as a function of the coordinates {R}.
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This is called a potential energy surface (PES). From that, the optimal geo-
metrical arrangement of the nuclei can be found by searching for the absolute
minimum of the energy.
While the determination of the equilibrium geometry only requires knowledge
about the electronic ground state of a system, the calculation of optical proper-
ties asks for electronically excited states. These can be calculated with different
methods. In this thesis, time-dependent density functional theory (TDDFT)
will be used. This is an extension of DFT and uses a time-dependent electron
density for its calculation.
In connection with the vibronic energy levels of the system the spectrum can
be improved and better predictions are possible.

15
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3.1 Density Functional Theory

As has already been mentioned before, finding the energy of a cluster of atoms
or a molecule, and therefore solving the corresponding Schrödinger equation
of the system, is a major problem in quantum mechanics. There are different
methods available, but in this thesis we will concentrate on density functional
theory (DFT). This chapter shall give a basic understanding to this topic. Fur-
ther information can be found elsewhere [18, 19, 20].
The full Schrödinger equation depends on all coordinates of the nuclei and
the electrons. Within the Born-Oppenheimer approximation, the movements
of the electrons and the much heavier nuclei are separated. This is justified
by the assumption, that the electrons can follow the nuclei adiabatically. The
Schrödinger equation can then be solved in its time-independent form for fixed
positions of the nuclei.
In the next step, the many-electron Schrödinger equations ought to be solved
for the electrons of the system. Silver has the atomic number Z = 47. In this
work we look at small silver clusters, for example in Ag3 there are N = 3 ·Z =
141 electrons. Thus the Schrödinger equation has to be solved for 3 ·N = 423
coordinates.
The solution of this many-electron Schrödinger equation poses severe difficul-
ties since the complexity of the problem scales exponentially with the number
of electrons. At this point the electron density n(r) provides an alternative.
The electron density of the system is dependent on just three spatial coordi-
nates and it is the incorporated in the formalism of density functional theory.
The foundation of DFT are two theorems found by Hohenberg and Kohn in
1964. The first theorem says [21]:

The external potential v(r) is determined, to within an additive
constant, by the electron density n(r) .

This tells us that one can derive the external potential of the system from
the electron density of a system. Furthermore, all properties of an N elec-
tron system can be determined via the electron density of the system. These

16
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quantities are defined as functionals of the electron density. A functional is
not to be confused with a function. While a function maps one number onto
another, a functional maps a whole function onto one number. For example
the total energy of the system is defined as a functional of the electron density
function:

E[n(r)] = F [n(r)] +
∫
v(r)n(r)dr (3.1)

where F [n(r)] is the universal functional containing the kinetic energy and the
interactions of the electrons. This equation can be found in [18].
The second theorem states that:

For a trial density ñ (r), such that ñ (r) ≥ 0 and
∫
ñ (r) dr = N ,

E0 ≤ E [ñ (r)] , (3.2)

where E [ñ (r)] is the energy functional given in (3.1), and E0 is
the ground state of the system. [21].

What follows from this theorem is that the electron density minimizing the
energy functional in (3.1) is the exact electron density of the ground state.
These two theorems can be used to derive a procedure to find the electron
density of the system in question. This instruction has been found by Kohn
and Sham in 1965 [18] and the set of equations is called after them the Kohn-
Sham equations. The universal functional for the Kohn-Sham equations con-
tains another term called the exchange-correlation energy EXC[n(r)] containing
quantum mechanical exchange of electrons and electron correlation:

F [n(r)] = T0[n(r)] + U [n(r)] + Exc[n(r)] (3.3)

Their scheme makes it possible to calculate the electron density iteratively and
moreover quite simply. That is because every equation has to be solved for just
a single electron.
For the description of the Kohn-Sham equations Kohn’s Nobel lecture has been

17
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used, see [18]. The formalism starts with a trial electron density n1(r) and N
equations for the not interacting electrons ϕi:(

−1
2∇

2 + veff(r)
)
ϕi(r) = εiϕi(r) (3.4)

The effective potential that contains all the interaction of the electrons is given
by

veff(r) = vext(r) + vH(r) + vxc(r). (3.5)

The external potential, the Hartree potential and the exchange-correlation
potential are given by

vext(r) = −
∑
i

Zi
|r−Ri|

(3.6)

vH(r) =
∫ n(r′)
|r− r′|

dr′ (3.7)

vxc(r) = δExc[n(r)]
δn(r) (3.8)

The quantity vext(r) describes the Coulomb interaction of the electrons with the
nuclei, vH(r) contains the Hartree interaction of the electrons. The exchange-
correlation potential is defined as a functional derivative of the exchange-
correlation energy Exc[n(r)] with respect to the electron density. The exchange-
correlation energy is defined to contain all interactions not considered in the
other terms. The one electron equations (3.4) can now be solved for the N
eigenfunctions ϕi(r). These eigenfunctions yield the electron density of the
system:

n(r) =
N∑
i=1
|ϕi(r)|2 (3.9)

The Kohn-Sham equations (3.4) together with the definition of the effective
potential (3.6)-(3.8) and the electron density (3.9) have to be solved self-
consistently [20]. After each iteration a new trial density has to be computed
from the just calculated density from equation (3.9) and the density from
previous iterations. A convergence criterion defined at the beginning of the
calculation is applied at this point on the electron density that determines the

18



Ab initio calculation of small silver clusters

3 Theory

final density is reached.
There are different ways to calculate the new trial electron density ni+1(r). A
simple way would be

ni+1 = αni + (1− α)ni−1 (3.10)

with the mixing parameter α.
The crucial part of the Kohn-Sham equations is the exchange-correlation en-
ergy Exc[n]. Its exact form is only known for the uniform electron gas [19].
For non-uniform electron densities, suitable approximations have to be found.
First, the simplest approximation of Exc[n] is the local density approximation
(LDA) [22]:

ELDA
xc [n] =

∫
euniformxc (n(r))n(r)dr (3.11)

Here euniformxc (n) denotes the exchange-correlation energy per particle of the
uniform electron gas of the density n [18]. It may seem as a crude approxima-
tion to use euniformxc (n) for the density of the uniform electron gas is constant
at all positions in space. Interestingly enough LDA has proven to work sur-
prisingly well even for systems which are far from uniform electron gas. Many
properties can be described with satisfactory accuracy with this, compared to
other methods, simple approximation [22]. The local spin density approxima-
tion (LSDA) is an extension of LDA including spin. The next step in approxi-
mating the exchange-correlation energy is to add a dependency of the gradient
of the electron density at r, which leads to the so-called generalized gradient
approximation (GGA) [23]:

EGGA
xc [n↑, n↓] =

∫
fxc(n↑, n↓, ~∇n↑, ~∇n↓)n(r)dr (3.12)

Once the energy of the ground state of a system is computed, it can be used
for structure optimizations. Also, ground state DFT calculations present the
starting point of TDDFT, the calculation of excited states. This i the topic of
the next chapter.
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3.2 Time dependent Density Functional Theory

Density functional theory has proven to be very useful for the description of
ground state properties of a system. For many applications, however the calcu-
lation of the excited states of a system is essential. From the development of the
Kohn-Sham equations to the extension of a time dependent treatment some
years have passed. In 1984 Runge and Gross proved a theorem stating that
the time dependent density uniquely determines the time dependent external
potential and vice versa:

For every single-particle potential v(r, t) which can be expanded
into a Taylor series with respect to the time coordinate around
t = t0, a map G : v(r, t) → n(r, t) is defined by solving the time-
dependent Schrödinger equation with a fixed initial state Φ(t0) =
Φ0 and calculating the corresponding densities n(r, t). This map
can be inverted up to an additive merely time-dependent function
in the potential [24, p. 998].

This theorem can be seen as the analogon of the Hohenberg-Kohn theorems
for the time-independent case. So again, if the exact time-dependent electron
density of a system is known, all other properties of the system can be calcu-
lated. The digression from 3N spatial coordinates to 3 coordinates is the same
as for the time-independent case.
The role of minimizing the total energy in the time-independent case is taken
here by the variation of the action A of the system:

A =
∫ t1

t0

〈
Ψ(t)

∣∣∣∣∣i ∂∂t − Ĥ(t)
∣∣∣∣∣Ψ(t)

〉
dt (3.13)

If the functional derivative of the action with respect to the density gives zero,
the proper density n(r, t) has been found [25]:

0 = δA

δn(r, t) =
∫ t1

t0

〈
δΨ(t′)
δn(r, t)

∣∣∣∣∣i ∂∂t′ − Ĥ(t′)
∣∣∣∣∣Ψ(t′)

〉
dt′ + const. (3.14)
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Now the Kohn-Sham equations in their time-dependent form can be formu-
lated. The density for the non interacting electrons ϕi is given as

n (r, t) =
occ∑
i

ϕ?i (r, t) · ϕi (r, t). (3.15)

The time-dependent Schrödinger equation for non interacting electrons looks
quite similar to (3.4) except for the time dependency [26]:

(
−1

2∇
2 + veff(r, t)

)
ϕi(r, t) = i

∂

∂t
ϕi(r, t) (3.16)

The effective potential veff is given by

veff(r, t) = vext +
∫ n(r′, t)
|r− r′|

dr′ + vxc(r, t)︸ ︷︷ ︸
vSCF(r,t)

. (3.17)

Here, vext denotes the attraction of the nuclei and vSCF is the self consistent field
potential. The role of the energy is now taken by the action of the system and
therefore the time-dependent exchange-correlation potential can be written as
the derivative of the action with respect to the density [27]:

vxc (r, t) = δAxc [n (r, t)]
δn (r, t) (3.18)

3.2.1 Casida formalism

For a small perturbation of the system a linear response approach can be used.
One way to formulate linear response is the so-called Casida formalism which
is also utilized in the ABINIT code which has been used for the calculations
of this thesis. As ABINIT uses the Casida formalism this approach will be
described shortly. The perturbation vpert is added to the effective potential in
the Kohn-Sham equations:

veff(r, t) = vext + vSCF(r, t) + vpert(r, t). (3.19)
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The change of veff due to the introduction of vpert is given by

δveff(r, t) = δvSCF(r, t) + δvpert(r, t). (3.20)

The linear response of the density matrix arising from the change in the po-
tential can be expressed in second quantization notation as

δPijσ(ω) = fjσ − fiσ
ω − (εiσ − εjσ)δv

eff
ijσ(ω). (3.21)

In this notation the Greek index corresponds to spin while the Latin letters
refer to space coordinates. The basis are the unperturbed molecular orbitals
where the fiσ denote the occupation numbers and the εiσ the eigenenergies of
the orbitals [25]. The connection of vSCF to the density matrix is given with
the use of the coupling matrix K̂ in the following way:

δvSCFijσ (ω) =
∑
klτ

Kijσ,klτ (ω)δPklτ (3.22)

And the coupling matrix is given by [28]:

Kijσ,klτ =
∫ ∫

ϕ?iσ(r)ϕjσ(r)
(

1
|r− r′|

+ ∂vxcσ (r)
∂nτ (r′)

)
ϕkτ (r′)ϕ?lτ (r′)drdr′ (3.23)

Further calculation allows one to define the matrix Ω̂ [25]:

Ωijσ,klτ (ω) =δσ,τδi,kδj,l (εlτ − εkτ )2

+ 2
√

(fiσ − fjσ) (εjσ − εiσ)Kijσ,klτ (ω)
√

(fkτ − flτ ) (εlτ − εkτ ),
(3.24)

whose eigenvalues are the squares of the excitation energies ωn:

Ω̂ (ω) Fn = ω2
nFn (3.25)

Also the oscillator strengths fn can be calculated from this equation using the
eigenvectors Fn. With the oscillator strengths and the excitation energies at
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hand, the calculation of the spectrum is easy with the dynamic polarizability
α [26]:

α (ω) =
∑
n

fn
ω2
n − ω2 (3.26)
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4 Results

The theoretical tools described in the previous Chapter 3 form the basis for the
problems proposed in Chapter 1. For the implementation of density functional
theory the open source program package ABINIT has been used. Further in-
formation on how ABINIT works can be found in [29].
First convergence parameters had to be tested to find appropriate values for
each one. Next these parameters were used to find the equilibrium structures
of the different clusters. At this step an interesting feature has been found for
Ag3: The calculations suggest two structures for the equilibrium, a nearly lin-
ear formation of the atoms and a equilateral triangular formation. In literature
on the structure of Ag3, for example [2, 3, 7, 6, 4], the almost linear structure
has not been discussed. Therefore a special attention has been laid on the two
possible structures of Ag3.
With the equilibrium configuration found, the next step were the TDDFT
calculations. From the excitation energies and the oscillator strengths the
spectra were built and compared to spectra derived from experiments. The
exchange-correlation functionals are for LDA the Perdew-Wang 92 functional
[30], which has been used for both ground state and excited states calculation,
and for GGA the Perdew-Burke-Enzerhof functional [23] for ground state cal-
culations.
The calculations for the vibronic spectra were computed with the program
Mathematica.
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4.1 Convergence Parameters

The results of ab-initio (TD)DFT calculations do not depend on adjustable
parameters. However, there are a number of so-called convergence parameters
which, for example, define the size of the basis set or the size of the simulation
cell, which have to be determined. In order to determine suitable values for
these convergence parameters, a quantity of interest, such as the total energy
or the equilibrium geometry, is calculated as a function of the convergence pa-
rameter. From this dependence, together with a targeted precision, the value of
the convergence parameter can be obtained. Thereby parameters, which lead
to a minimum of computational effort at a target accuracy, are determined.
To find the appropriate parameters, the calculations of the total energy for
Ag2 were done for different values of the parameters while changing the bond
length between the atoms. By plotting the total energy for different values of
the bond length we get a curve with a minimum of the energy at the equi-
librium bond length of the dimer. To extract the ground state distance we fit
the data with a cubic polynomial and extract the minimum. This has to be
done for different values of the parameters. In a diagram where the equilibrium
bond length versus the parameter values is plotted, we can see for example in
the figures 4.3, 4.4, or 4.5, that for better values of the parameters, the bond
length reaches convergence. The same can be done to the parameter ω for the
quadratic term in the fit. Now the task is to find the value that gives rise to a
low computation cost at one hand and on the other hand provides acceptable
results.
Such plots have been generated for the parameters ecut, acell and nband. ecut
is used in the Kohn-Sham equations and determines the kinetic energy cut-
off and therefore the number of plane waves to represent the wave function.
The parameter acell sets the size of the cell in which the molecule is located.
Because ABINIT works with periodic boundary conditions, the values of this
parameter should be chosen big enough such that there is no interaction be-
tween the periodic replica of molecules. In Figure 4.1 one sees the concept of
periodic boundary conditions in two dimensions. The cell in the middle has
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Figure 4.1: The concept of periodic boundary conditions in 2D. d labels the
inter-cell distance used as convergence parameter.

eight neighbor molecules and the convergence parameter used is the inter-cell
distance d, which is the minimum distance to the next neighbor molecule.
Note, that the actual calculations use periodic boundary conditions in three
dimensions. The third parameter nband determines the number of electronic
states used in the calculation. The number of unoccupied states is a conver-
gence parameter for TDDFT calculations. See Section 3.1 for further details on
these parameters. For all three parameters, the computation time increases as
the value of the parameter increases. We can see this in Figure 4.2, where for
different values of nband and ecut the CPU time for the TDDFT-calculation
of N2 is plotted. Additionally this figure tells us that the CPU time is more
sensitive to a larger number of bands in the calculation than an increase of the
value of ecut.
The following figures show the convergence for the three parameters ecut, nband
and acell. For ground state calculations, the number of bands has to be just
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Figure 4.2: The CPU time for the DFT-calculation of N2 for different values
of ecut and nband.

larger than the number of valence electrons. This is because the unoccupied
bands do not play a role in the ground state calculation. So the number of
bands for DFT calculations is set to 20 for Ag2. In Figure 4.3 the ground state
distance d is plotted for different values of ecut. The plot contains the minimum
distances d for the ground state as well as for the first excited state which are
referred to as E0 and E1, respectively. We see that for ecut = 20Ha and larger
values the minimum distance d does not change significantly. This applies to
the ground state as well as to the first excited state.
For nband the plot has only been generated for the excited states (TDDFT),
because, as mentioned before, for the ground state of the system (DFT) the
number of unoccupied bands has no effect on the calculation. The plot can
be seen in Figure 4.4. Here convergence is reached at about 80 bands for Ag2

giving 40 bands per atom.
The Figure 4.5 shows the convergence of the equilibrium bond length with
respect to the parameter acell. The equilibrium bond length is sufficiently con-
verged for a inter-cell distance d = 22a0 to the next Ag2 molecule.
To summarize the convergence of all three parameters, the deviation to the
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Figure 4.3: Convergence for the parameter ecut. For the DFT calculation of the
Ag2 system nband has the value 20 and for the TDDFT calculation
50 bands were used. The inter-cell distance d is 22a0

à

à

à à

à
à

40 60 80 100 120
nband

2.603

2.604

2.605

2.606

2.607

d@AD

à E1

Figure 4.4: Convergence for the parameter nband. For the TDDFT calculation
of the Ag2 system ecut has the value 25Ha, the inter-cell distance
d is 22a0.
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data has been taken from the previous plots in Figures 4.3-4.5
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converged value of all the calculations is shown in Figure 4.6. A summary of
the three parameters is also given in Table 4.1.

Table 4.1: Converged parameters for DFT and TDDFT calculations derived
from the Ag2 system.

acell (d) [a0] ecut [Ha] nband [per atom]
DFT 22 25 10
TDDFT 22 25 40
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4.2 Structures for the clusters Ag2 to Ag5

For the determination of the equilibrium structure, the total energy of a cluster
has been calculated for different bond lengths and angles. The energy is then
plotted as a function of the bond length. At the minimum of the total energy,
the equilibrium distance is found. For Ag2 the situation is pretty easy: There
is only one parameter defining the structure, the bond distance. For larger
clusters, this gets rapidly more complicated, as for every additional atom an
additional parameter depicts the structure and has to be optimized to find the
equilibrium structure of the cluster. For this reasons the structure optimiza-
tion has only been verified by comparison to [2] for Ag2 (1 parameter) and Ag3

(2 parameters), for the other clusters (Ag4 and Ag5) the structure parameters
have been taken from the same source.

4.2.1 Ag2

The plot for the energy as a function of the distance d between the two atoms
with a fit is given in Figure 4.7. The minimum energy is at d = 2.53Å. The
calculations have been done with the parameters derived in the previous section
and are listed in the Table 4.1.

4.2.2 Ag3

The determination of the ground state geometry for Ag3 is somewhat more
complicated because we have to vary two parameters. The first approach was
to expect an equilateral triangle and thus eliminating one parameter. The
remaining parameter is the length of one side. But this lead to problems:
the DFT calculations did not converge because of an instability related to
the degeneracy of the highest occupied molecular orbital. To take care of this
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Figure 4.7: Ground state bond length calculation for Ag2.

problem some asymmetry has to be introduced. For example by using a second
parameter and looking upon the structure of an isosceles triangle. Here the
parameters used are the base length b and the length of the other two sides
a, see also Figure 4.8. A plot has been generated for a calculation where for

Figure 4.8: The parameters a and b used in the calculations for Ag3.

different values of the parameters a and b the calculated energy is plotted. This
can be seen in Figure 4.9.
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Figure 4.9: Potential energy surface of Ag3 as a function of the two parameters
a and b using GGA.

The left plot in Figure 4.9 is a plot of the potential energy surface and gives
a better understanding of the form of the potential, the right plot is a density
plot of the same data and shows additionally the data points used for the
interpolation. At the left side of the plots the parameters form a triangle. The
more one moves to the right side of the plots, the more the silver atoms are
arranged in a line. The white areas in the right plot refer to points where the
calculation did not converge. These points also include the cases where the
parameters form a equilateral triangle.
What is surprising with these plots is, that they show two local minima. One
pronounced global minimum, which corresponds to a triangular structure of
the atoms, and the other minimum at a configuration, where the parameters
describe a nearly linear silver trimer. These two minima and the saddle point
between the minima are listed in Table 4.2. There it can be seen, that the
difference of the energy between the minima and the saddle point is also very
small with 30 and 14 meV, respectively. All three points have the same value for
parameter a, so the minimum energy path connecting the two minima across
the saddle point can be characterized by a fixed bond distance a = 2.675Å.
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This energy path is shown in Figure 4.10 and contains additionally a graphic
interpretation of the parameters of the silver trimer for the minima.
These calculations also have been done using LDA. Here, the minima are not
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Figure 4.10: Minimum energy path connecting the two local minima using
GGA. The minima and the saddle point are given as (a, b)
coordinates.

that distinctive and the potential energy surface has a slightly different form,
as can be seen in Figure 4.11. Additionally, it is observable, that the position of
the minima has shifted to smaller bond lengths compared to GGA (see Figure
4.10). This is an effect of the well known over-binding of LDA [31, p. 5]. In
Figure 4.12, the plot with the cut through the potential energy surface at the
minimum of parameter a, corresponding to the plot in Figure 4.9 for GGA, is
shown. The minima and the saddle point are summarized in Table 4.2. From
this table one can calculate the differences of the minima to the saddle point
as 125.7 meV and 0.7 meV, respectively. In comparison to the results from
the GGA calculations, the first minimum is sharper in LDA, while the second
minimum has nearly vanished.
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Figure 4.11: Potential energy surface of Ag3 as a function of the two parameters
a and b using LDA.
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Figure 4.12: Ground state bond length calculation for Ag3 with a = 2.575Å
using LDA.
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Table 4.2: Minima and saddle point for Ag3 calculated with GGA and LDA,
respectively.

a [Å] b [Å] E − E0[meV]
GGA M1 2.675 3.081 -2512.96

M2 2.675 4.862 -2496.79
S 2.675 3.889 -2483.1

LDA min1 2.575 3.0627 -2834.41
min2 2.575 4.65236 -2709.42
saddle 2.575 4.29864 -2708.7

4.2.3 Comparison

The bond length derived for Ag2 and the structure parameters for the trian-
gular form of Ag3 are in good accordance to previous calculations [2, 3, 6] and
experiments [10], as can be observed in Table 4.3. For the linear form of Ag3

Table 4.3: Comparison of calculated values of Ag2 and the triangular form of
Ag3 to values from literature calculated and experimentally found.

d1 [Å] d2 [Å]
Ag2
this work 2.53
Idr. [2] 2.57
Bon. [3] 2.52
Fou. [6] 2.50
expt. [10] 2.53
Ag3
this work 2.675 3.081
Idr. [2] 2.64 3.068
Bon. [3] 2.58 2.88
Fou. [6] 2.67 2.986

no other reports could be found to compare the parameters with. This may
be because in most works only the energetically lowest isomer is discussed.
But, as in Table 4.2 or in Figure 4.10 observable, the difference of the energy
between the two minima is only 16 meV. For the clusters Ag4 and Ag5, the
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parameters calculated in [2] are taken. These parameters (bold) can be seen
in Figure 4.13, which has also been taken from [2].

Figure 4.13: Parameters for clusters Ag3 to Ag5, the bold parameters and the
picture are from [2] and the parameters in brackets from [3].
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4.3 Optical spectra for the clusters Ag2 to Ag5

To calculate the optical spectrum of a cluster, excitation energies and corre-
sponding oscillator strengths are needed. These can be obtained, as discussed
also in Section 3.2, via a TDDFT calculation: The starting point is a DFT
calculation that yields the ground state Kohn-Sham orbitals ϕ(r). These en-
ter equation (3.23), from which the excitation energies ωi and the oscillator
strengths fi are obtained with equations (3.24) and (3.25).
The structures given in Table 4.2 for Ag2 and Ag3 and in Figure 4.13 for Ag4

and Ag5 are used for the calculation.The spectra are compared to experimen-
tal data taken from [7], where the absorption spectra have been measured for
silver clusters in an argon matrix at 7 Kelvin. The spectra are given in the
form (ωi,fi), which corresponds to discrete peaks. So, for a better comparison,
the peaks are broadened with a Gaussian function. The absorption spectrum
then has the form

α(ω) =
∑
n

fne
− (ω−ωn)2

2∆2 , (4.1)

with ∆ being the broadening factor.
The first excitation energies with corresponding oscillator strengths larger than
fi > 10−3 calculated for Ag are given in Table 4.4. The graphical realization of

Table 4.4: First computed excitation energies ωi and oscillator strengths fi
with fi > 10−3 for Ag.

i ωi [eV] fi main band contribution
1 3.976 2.222 · 10−1 6→ 9, spin up
2 3.9764 2.225 · 10−1 6→ 8, spin up
3 3.9798 2.217 · 10−1 6→ 7, spin up
4 5.7767 2.067 · 10−3 6→ 15, spin up
5 5.7768 2.082 · 10−3 6→ 14, spin up
6 5.7771 2.076 · 10−3 6→ 16, spin up

this data with Equation (4.1) is presented in Figure 4.14. As can be observed,
the main peak calculated is at the same position as the one found in experi-
ment.
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For Ag2 the calculated excitation energies and oscillator strengths are given
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Figure 4.14: Absorption spectrum calculated for Ag1, the broadening factor is
∆ = 0.04.

in Table 4.5, the spectrum generated from this data is given in Figure 4.15. In

Table 4.5: First computed excitation energies ωi and oscillator strengths fi
with fi > 10−3 for Ag2.

i ωi [eV] fi main band contribution
1 3.1478 3.234 · 10−1 11→ 12
2 3.9962 1.044 · 10−3 8→ 12
3 3.9962 1.044 · 10−3 9→ 12
4 4.8300 3.528 · 10−1 11→ 14
5 4.8300 3.528 · 10−1 11→ 13
6 5.6418 1.710 · 10−2 1→ 12

comparison to the experimental data, a small shift of the peaks is observable.
Within this shift the two spectra have peaks at nearly the same values.
The two structural forms of Ag3 are compared to experimental data in Figure
4.16. Neither of the two structures shows a good agreement with the experi-
mental data. What can also be seen, is that the two computed spectra differ
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Figure 4.15: Absorption spectrum calculated for Ag2, the broadening factor is
∆ = 0.04.
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Figure 4.16: Absorption spectra calculated for Ag3, the broadening factor is
∆ = 0.06.
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also from each other profoundly. The triangular structure of Ag3 shows ex-
citations nearly at the same energies as the experimental data does, but the
oscillator strengths do not agree at all. The two main peaks of the computed
spectra at ω ≈ 5 eV are totally off and if ignored, a shift of some peaks due to
vibronic transitions, as investigated later on, may could improve the spectra.
A closer examination of the spectra for the transition from a linear structure
to a triangular structure of Ag3 has been done in Section 4.3.1.
The spectrum calculated for Ag4 is compared to experimental data in Figure
4.17. Again, a shift of 0.14 eV is observable, i.e. the main peak in the exper-
imental data is at 3.07 eV and at 2.93 eV in the computed spectrum. Apart
from that, the oscillator strengths and the shape of the spectrum fits rather
well.
In Figure 4.18 the spectrum calculated for Ag5 is visualized and compared to
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Figure 4.17: Absorption spectrum calculated for Ag4, the broadening factor is
∆ = 0.04.

experimental data. The computed spectrum shows a shift of 0.2 eV with the
two main peaks at 3.18 eV and at 3.48 eV for the computed spectrum and at
3.27 eV and at 3.73 eV for the experimental data. The oscillator strengths do
not match that well for this structure, but again the shape of the spectrum
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Figure 4.18: Absorption spectrum calculated for Ag5, the broadening factor is
∆ = 0.06.

has been reproduced well.
In general, there are some possible sources of errors in calculating the proper
spectrum. One problem could be an incorrect equilibrium structure from the
DFT calculation due to the exchange-correlation functionals, which are just
approximations. Another reason for deviations in the spectra could be, that
the experimental measurements were done on silver clusters embedded in a
neon matrix [7].

4.3.1 Ag3 spectrum

As two possible structures have been found for Ag3, the transition from one
to the other structure has been studied in more detail. Some results of these
efforts are shown in Figure 4.19. Spectra have been computed for different val-
ues of the parameter b, while parameter a stays fixed at a = 2.675 Å. While
the spectra computed at the two structures corresponding to the two local
minima differ significantly from each other, the evolution of peaks and their
corresponding shifts become traceable when plotting spectra for intermedi-
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Figure 4.19: Absorption spectra calculated for Ag3 with parameter a fixed at
a = 2.675 Å and different values of parameter b. Comparison to
experimental data plotted in black and dashed. The broadening
factor for both computed and experimental data is ∆ = 0.04.
Computed excitation energies ωi exhibiting an oscillator strength
fi > 0.005 are denoted by a small vertical line |.

43



Ab initio calculation of small silver clusters

4 Results

ate geometries. But it is still observable, that none of the computed spectra
matches the experimental data well, although some peaks do fit.
In order to analyze the nature of the optical transitions and to understand
the change in the electronic structure upon altering the geometry from the
triangular to the linear configuration, we plot the orbitals above and below
the Fermi energy. These are referred to as highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) and their en-
ergies are plotted for spin up and spin down with corresponding orbitals for
different values of b in Figure 4.20. The breaking of the bond between the two

Figure 4.20: HOMO and LUMO for different Ag3 structures with parameter a
fixed at a = 2.675 Å.

atoms at the base of the triangle can be seen in this figure.
Additionally we can see, that the energy for the HOMO with spin up rises with
larger values for site b and in this process reaches a energetically less favorable
geometry, while the energy for the HOMO with spin down has its energetically
most favorable structure at the linear configuration of Ag3. These two effects
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almost cancel itself and may be the reason for the low energy variation in the
equilibrium potential (see i.e. Figure 4.10), although for the potential all en-
ergies below the Fermi energy have to be taken into account.
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4.4 Vibronic energies for Ag3

For the calculation of the vibronic energies of Ag3 the trimer is modeled as
three particles located on the edges of an equilateral triangle with bonds at the
two sites with equal length, see Figure 4.21. To calculate vibronic energies we
will consider small displacements of the atoms with respect to the equilibrium
configuration. In Figure 4.9 we can observe, that the variation of the bond

Α

aa

bx1

x2

x5

x6

x3

x4

Figure 4.21: The model structure for Ag3 with the generalized coordinate α,
the angle between the two a sites, and Cartesian coordinates
x1, . . . , x6.

length b in the range b = 3− 5.5 Å leads to energy changes that correspond to
a variation of bond length a in the range a = 2.6−2.75 Å, thus a much smaller
range. From that we conclude, that the a bond is a lot more rigid compared
to the b bond and we can assume, as a simplification to our problem, that
changes in a and b are decoupled and can be treated separately. Because of
the stiffness of the a bond we assume it to be fixed and consider the dynamics
related to changes of b only. In the center of mass system this leaves us with
just one degree of freedom and the generalized coordinate of choice is α, the
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angle between the two a sides. The Cartesian coordinates x1, . . . , x6 in Figure
4.21 can be expressed as a function of α as follows:

r =



x1

x2

x3

x4

x5

x6


= a

3



−3 sin(α/2)
− cos(α/2)

0
2 cos(α/2)
3 sin(α/2)
− cos(α/2)


(4.2)

To find the classical Hamiltonian of this system, we follow the instructions
from Section 2.2. The Lagrangian is built from kinetic and potential energy, T
and V , respectively. For the kinetic energy we find

T = mṙ2

2 = m

2

6∑
i=1

ẋi = ma2

12 (2 + cos(α)) α̇2. (4.3)

The potential energy for this problem is already known from the calculations
in Section 4.2.2, and for the value a = 2.675 Å the potential is given in Figure
4.10.
To construct the Hamiltonian H the canonical momenta from (2.8) are needed,
and because V is independent of the velocities α̇ we have:

pα = ∂L

∂α̇
= ∂T

∂α̇
= ma2

6 (2 + cos(α)) α̇ (4.4)

The Lagrangian as a function of α and pα then is:

L(α, pα) = 3
ma2

p2
α

2 + cos(α) − V (α) (4.5)

And according to (2.9) the classical Hamiltonian of the system reads:

H(α, pα) = pαα̇− L(α, pα) = 3p2
α

ma2 (2 + cos(α)) + V (α) (4.6)
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To translate the classical Hamilton function into a Hamilton operator describ-
ing the quantum mechanical motion of the oscillations we use the prescriptions
given in Equation (2.16). According to this rules the momentum has to be re-
placed by pα → −i~ ∂

∂α
. With this we obtain the time-independent Schrödinger

equation: (
3

ma2 (2 + cos(α))
∂2

∂α2 + V (α)
)
ψv(α) = Evψv(α) (4.7)

To solve the time-independent Schrödinger equation for the vibrational wave
functions ψv we discretize the α coordinate and transfer the problem into a
matrix eigenvalue equation. The grid used consists of n = 1000 points for α
and has been solved using the method Eigensystem from Mathematica. The
potential V0 for the ground state has been taken from Figure 4.10 as a function
of α and mirrored at π, so that V0(2π − α) = V0(α) ∀π < α ≤ 2π. For the
first electronically excited state the potential V1 is derived from the values in
Figure 4.19. These two potentials plotted as a function of α can be seen in
Figure 4.22.
Additionally, Figure 4.22 shows for the ground state and the excited state
potential the eigenfunctions at the corresponding eigenvalues. What is appar-
ent at once, is, that for the excited state, the eigenfunctions are concentrated
in the two deep valleys of the potential. This means, fluorescence from the
first excited state to the ground state can only occur to vibronic states of the
ground state, which are located beneath the two deep valleys of the excited
state potential.
This qualitative finding is further emphasized by calculating the transition
probabilities from a vibronic state v corresponding to the electronic ground
state to a vibronic state v′ at the excited state following the Franck-Condon
principle. The Franck-Condon factors FC(v′, v) can be calculated according to
Equation (2.20) using the eigenfunctions ψv from Equation (4.7).
The energy for the first excited electronic transition at ω = 0.414 eV for the
triangular equilibrium structure is then shifted to lower energies for emission
and to higher energies for absorption. The results of these shifts are plotted in
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Figure 4.22: Potential of ground state and the first excited state mirrored at
π with the first 22 and 50 eigenvectors, respectively. The eigen-
functions for the paired eigenvalues are colored red and blue
alternately.
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Figure 4.23, the discrete peaks are broadened with the Gaussian function from
(4.1). It can be seen, that the Franck-Condon factors are non-zero not only

Figure 4.23: Franck-Condon factors calculated for eigenfunctions in Figure
4.22 are denoted by dots, the broadening factor is ∆ = 0.02 eV.

for one vibronic transition, but for a series of transitions. So the overall peak
position of the transition, gets shifted and the oscillator strength is distributed
to several vibronic transitions according to those factors.
Because the eigenvalues of the ground state a very close together (see Figure
4.22), within the range of kBT , at finite temperature we must take into ac-
count, that not only the ground state of the vibronic states is occupied but
also excited states. To this end, the Boltzmann statistics can be used. The
probability pi for the occupation of a higher lying state with energy Ei is given
as [32]

pi(T ) = 1
Z

exp−
E0−Ei

kBT , (4.8)

with Z being the partition function and kB the Boltzmann constant. The
Franck-Condon factors are now additionally weighted with the occupation
probability for different temperatures. In Figure 4.24 the shifted peaks are
plotted for various temperatures. We see, that the emission spectrum does not
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vary much with an increase of temperature, which has to be since kBT is much
smaller than the energy differences of the eigenvalues of the excited state. This

Figure 4.24: Plot of electronic excitation at ω = 0.414 eV and the shifted
excitations due to vibronic transitions for absorption and emission
with a broadening factor of ∆ = 0.02 for different temperatures.

is different with the absorption spectra. While for T = 0 K and for T = 20 K
the spectra are almost the same, a larger shift of about 1 eV of the absorption
to higher energies can be observed for T = 100 K and T = 290 K. This is a
result of the occupation of eigenstates, whose eigenfunctions are centered in
the ground state potential in Figure 4.22 and have a significantly larger overlap
to eigenfunctions of higher lying eigenstates of the excited potential. In Fig-
ure 4.22 it can also be seen, that the first eigenfunctions, which are centered
in the excited potential, have eigenvalues about 1 eV higher than the ground
state eigenvalue of the excited potential. This corresponds to the shift of the
absorption spectra observable in Figure 4.24.

51



Ab initio calculation of small silver clusters

5 Conclusion

5 Conclusion

In this paper we investigated the structure and absorption spectra of small
silver clusters within DFT and TDDFT. The calculated absorption spectra
showed an overall good agreement with experimental data from literature.
We particularly focussed on Ag3, which exhibited two equilibrium configura-
tions, one being a nearly linear and the other a triangular structure. For those
two structures, and for the evolution from one to the other, we computed the
absorption spectra. For this changing of the configuration a shift of the peaks
could be observed. Also we studied the breaking of the bond at the base of the
triangular structure for the evolution to the linear configuration at the orbitals
of the bands at the Fermi energy (HOMO and LUMO).
Additionally we investigated vibronic transitions for Ag3, their influence on an
electronic transition, and the effect of a temperature T > 0 K. As suspected,
the inclusion of the vibronic transitions displaced the electronic peak to higher
energies for absorption and to lower energies for emission. For high tempera-
tures (100− 290 K) we observed a shift of the absorption peaks to even higher
energies, while the peaks for the emission did not significantly change.
Within this work we did only look upon the vibronic transitions for the first
electronic peak, which got shifted significantly for higher temperatures. So to
get a spectrum that better matches experimental data, it may be necessary to
look upon the vibronic transitions for the main electronic peaks in the spec-
trum. In addition, further investigations of the influence of temperature on the
spectrum could be a way to improve the calculated spectra.
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• ABINIT
Version: 6.12,
Website: http://www.abinit.org/downloads/source-packages/,
date: 15.01.2013.

• TEXnicCenter
Version: 1.0,
Website: http://www.texniccenter.org/resources/downloads/29,
date: 15.01.2013.

• VESTA
Version: 3.1.0,
Website: http://jp-minerals.org/vesta/en/download.html,
date: 15.01.2013.

• Wolfram Mathematica
Version: 9.0.0.0,
Website: http://www.wolfram.com/solutions/education/students,
date: 15.01.2013.
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