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In the first part of this thesis, a comprehensive ab-initio study within the frame-
work of density functional theory (DFT) of all Shockley surface states of the (110),
(100), and (111) facets of the face-centered cubic metals Al and Cu is performed. By
comparing the bulk projected band structure with those of slab calculations, Shock-
ley surface states are identified and a comprehensive analysis of their characteristic
properties is conducted. Particular care is put on the convergence of calculated en-
ergy positions and effective masses of surface states with respect to the number of
metallic layers used in our repeated slab approach. In addition to band offsets and
band dispersions, also computed surface energies, work functions, as well as typical
decay lengths of surface states into the bulk and into the vacuum are compared
among the investigated metals and facets and compared to available experimental
data. Moreover, the DFT calculations are used to simulate angle-resolved photoe-
mission (ARPES) intensities within the one-step model of photoemission.
In the second part of the thesis, the prototypical organic/metal interface PTC-

DA/Ag(110) is investigated. A careful convergence study on the projected density
of states (pDOS) with respect to the number of atomic silver layers is performed.
This highlights a parity dependence of the pDOS in the energy range of the lowest
unoccupied molecule orbital (LUMO) on the number of silver layers. Additionally,
photoemission intensities are simulated which allow a three-dimensional analysis of
this issue.
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1 Introduction

Shockley surface states of metals, first described by William Shockley [1], are long
known to significantly affect the properties of solid surfaces in many aspects, such
as molecular adsorption mechanisms. They exist in gaps of the bulk projected band
structure of metals and affect details of the surface potential, which is important for
dissociation rates and catalytic reactions [2]. Electrons which occupy such surface
states are located only to few atom layers or even only to the topmost atom layer at
the surface. The probability of finding such an electron decreases exponentially from
the surface into the bulk material. Typical experiments to observe surface states
are angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling mi-
croscopy (STM). Often surface states contribute to bonding processes or even make
bonding possible, e.g. molecule-monolayers on metal surfaces, by a hybridization
of the energy bands corresponding to the surface state with energy bands of the
molecule.
One aim of this thesis is to calculate characteristic properties of Shockley surface

states. In order to calculate their electronic structures, from which all physical
information of these surface states can be derived, from first principles, i.e. without
the use of empirical data, an underlying theory which accounts for the quantum
mechanical nature of the electron is needed. This basic theory is given by the many-
electron Schrödinger equation. Only for a small number of very simple systems,
analytic solutions of the single-electron Schrödinger equation have been found. For
systems containing several electrons, the solution can only be obtained numerically,
however, the computational effort scales exponentially with respect to the number
of electrons. Thus, unfortunately, for most other cases, including metal surfaces,
there is need for computational schemes and for approximations of the Hamiltonian
of the Schrödinger equation. During the last century, a host of approximations and
schemes which solve the many-electron-Schrödinger equation has been developed.
One formalism, which does not seek to solve the many-electron Schrödinger equation,
but to obtain properties of the electronic ground state from the electron density, is
the density functional theory (DFT). In contrast to most other methods, where
the many-electron wave functions are considered, the DFT is based on the electron
density of the system. This approach was first proposed by Thomas and Fermi
in 1927. A few decades later, in 1964, Hohenberg and Kohn gave the proof that
the electron density can be handled as the basic property of a quantum-mechanical
system [3]. In principle, the DFT is exact, but the main problem is that the total
energy is not known solely in terms of the electron density. Unfortunately, the
proof of Hohenberg and Kohn does not include a scheme for a practical use. A
year after, Kohn and Sham presented such a practical concept, using the so-called
Kohn-Sham equations [4]. In principle, this concept is also exact as long the total
energy is explicitly known in terms of the density. For these unknown parts there

1



1 Introduction

has been elaborated a huge amount of approximations. One of them, which is used
within this thesis, is the generalized gradient approximation (GGA), in particular
the GGA-PBE, named after its authors Perdew, Burke, and Ernzerhof [5, 6].
In this thesis, relaxed uncovered low-index metal surfaces of aluminium and cop-

per and a prototypical molecule/metal interface are investigated. In Chapter 2
the underlying basic concepts, such as the many-particle Schrödinger equation and
facets of the face center cubic crystal, are briefly introduced. In Chapter 3 an
introduction to DFT is given, by presenting the two theorems of Hohenberg and
Kohn, Kohn-Sham formalism, and a brief overview of GGA. Within this thesis, the
Vienna Ab-inito Simulation Package (VASP) has been used for solving the Kohn-
Sham equations. Its applications with respect to this thesis are also introduced in
Chapter 3, as well as the one-step model, which provides a framework to calculate
photoemission intensities. Thereafter, in Chapter 4, the main part of this thesis,
the calculated results are presented. This chapter consists of two parts. The first
part contains a study of uncovered metal surfaces, namely the (110), the (100), and
the (111) facets of aluminium and copper. Surface energies and work functions for
these facets are calculated and compared to experimental data from literature. By
use of the bulk projected band structure method, Shockley surface states of the in-
vestigated facets are detected and a careful convergence study with respect to the
number of atom layers of characteristic properties, such as the effective electron
mass, is performed. Thereafter, the DFT calculations are used to calculate photoe-
mission intensity maps for Cu(110) within the one-step model. In the second part
of Chapter 4, the molecule/metal interface PTCDA/Ag(110) is investigated moti-
vated by recent research on this prototypical organic/metal interface [7, 8]. First,
a careful convergence study on the projected density of states (pDOS) with respect
to the number of atomic silver layers is performed. Thereby, in the energy range
of the lowest unoccupied molecular orbital (LUMO), a characteristic dependence of
the pDOS on the parity of the layer number is obtained. In detail, while for an
even number of layers one intensity peak is obtained, for an odd number of layers
three peaks appear. These merge into one peak for layer numbers greater than 19
or so. Moreover, photoemission intensity maps are calculated in order to receive
a three-dimensional view to this issue, and further to analyse an unknown feature
stated in Ref. [7]. Finally, photoemission intensity maps of the PTCDA/Ag(110)
system are compared to band structures of the uncovered Ag(110) surface.
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2 Basic Concepts

In this chapter the Schrödinger equation, the fundamental equation within this the-
sis, is introduced briefly. Afterwards, some crystal surfaces, which are used in the
simulation part of the thesis are considered. The corresponding Brillouin zones
are constructed and proper paths inside the Brillouin zones are defined. Moreover,
surface states, bulk states and resonance states are distinguished. Finally, the pho-
toelectric effect is brought up.

2.1 Many electron Schrödinger equation
The properties of materials are governed by the electro-static interaction between
electrons and atomic nuclei. Within the Born-Oppenheimer approximation which al-
lows to separate the electronic from the nuclear dynamics, the fundamental equation
is the many-electron Schrödinger equation for the electrons.

i~
∂

∂t
Ψ = ĤΨ (2.1)

Usually one separates the spatial and temporal variables by

Ψ = ψe−iEt/~ (2.2)

The resulting stationary non-relativistic Schrödinger equation is

Ĥψ(r1σ1, r2σ2, ..., rNσN ) = Eψ(r1σ1, r2σ2, ..., rNσN ). (2.3)

The Hamiltonian for N electrons is [9, 10, 11]

Ĥ = − ~2

2m

N∑
i=1
52
i︸ ︷︷ ︸

=T̂

+
N∑
i=1

v(ri)︸ ︷︷ ︸
=V̂ext

+ 1
2

N∑
i=1

N∑
j 6=i

e2

|ri − rj |︸ ︷︷ ︸
=V̂ee

(2.4)

where T̂ is the kinetic energy, V̂ext is the external potential and V̂ee is the electron-
electron interaction. Electrons are known to be fermions, according to the spin-
statistic theorem the solution of Eq. 2.3 has to be antisymmetric with respect to
particle exchange

ψ(r1σ1, ..., riσi, ..., rjσj , ..., rNσN ) = −ψ(r1σ1, ..., rjσj , ..., riσi, ..., rNσN ) (2.5)

From the antisymmetric behaviour it follows that there are N ! permutations of the
indices with the same |ψ|2. Hence the probability of detecting an electron with the

3



2 Basic Concepts

spin σ1 in the volume element d3r1, an electron with the spin σ2 in the volume
element d3r2, and so on, is given by

N !|ψ(r1σ1, r2σ2, ..., rNσN )|2d3r1d
3r2 . . . d

3rN (2.6)

The summation over all spins and the integration over all spatial coordinates are

1
N !

∑
σ1...σN

∫
R3N

N !|ψ(r1σ1, r2σ2, ..., rNσN )|2d3r1d
3r2 . . . d

3rN = 1 (2.7)

Further one can define the electron spin density nσ(r) as the probability of finding
an electron in d3r at r with the spin σ.

nσ(r) = 1
(N − 1)!

∑
σ2...σN

∫
R3(N−1)

N !|ψ(rσ, r2σ2, ..., rNσN )|2d3r2 . . . d
3rN (2.8)

= N
∑

σ2...σN

∫
R3(N−1)

|ψ(rσ, r2σ2, ..., rNσN )|2d3r2 . . . d
3rN (2.9)

2.1.1 The variational principle

Often one is interested in the ground state |ψ〉 of a Hamiltonian Ĥ with the ground
state energy E0. The definition

E[ψ] ≡ 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(2.10)

leads directly to the

Variational principle: ∀ψ : E[ψ] ≥ E0

A practically important consequence is

E0 = min
ψ
E[ψ] (2.11)

Moreover, the division by the scalar product of the wavefunction guarantees the
constraint 〈ψ|ψ〉 = 1.

Proof. Let be {ψi} the orthonormal eigenset of Ĥ. Then ψ =
∑
i ciψi. Using

Eq. 2.10 one gets

E[ψ] = 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=
∑
i |ci|2Ei∑
i |ci|2

≥
∑
i |ci|2E0∑
i |ci|2

= E0 (2.12)

because E0 ≤ E1 ≤ E2 ≤ . . . �

2.1.2 The Hellmann-Feynman-Theorem
Assume that the energy of a quantum system (with normalized wave functions)
depends on a parameter λ.

Eλ = 〈ψλ|Ĥλ|ψλ〉 (2.13)
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2.1 Many electron Schrödinger equation

One can consider the derivative

∂Eλ
∂λ

= ∂

∂λ̃
〈ψλ̃|Ĥλ|ψλ̃〉

∣∣∣∣∣
λ̃=λ

+ 〈ψλ|
∂Ĥλ

∂λ
|ψλ〉 (2.14)

Using the variational principle, namely Eq. 2.11 one gets

∂

∂λ̃
〈ψλ̃|Ĥλ|ψλ̃〉

∣∣∣∣∣
λ̃=λ

= 0 (2.15)

Now Eq. 2.14 becomes

∂Eλ
∂λ

= 〈ψλ|
∂Ĥλ

∂λ
|ψλ〉 (2.16)

This is the Hellmann-Feynman theorem. An important application of the Hellmann-
Feynman theorem is to determine the equilibrium geometries of the ions in a solid.
To this end, an Hamiltonian with the positions of the ions Rα as parameters has to
be used.

Ĥ = − ~2

2m

N∑
i=1
52
i + 1

2

N∑
i=1

N∑
j 6=i

e2

|ri − rj |
+

N∑
i=1

M∑
α

e2Zα
|ri −Rα|

+ 1
2

M∑
α=1

M∑
β 6=α

e2ZαZβ
|Rα −Rbeta|

(2.17)

Equilibrium will be reached, if the energy of the system is minimized and the forces
on the ions

FRα = ∇RαE = 〈ψ|∇RαĤ|ψ〉
!= 0 (2.18)

vanish.

2.1.3 Bloch’s theorem
A crystal is characterized through its periodicity which is mathematically described
by a spatially periodic potential in the Schrödinger equation. Bloch’s theorem states
the resulting properties to the wave functions of such a system with translational
symmetry. The Schrödinger equation for an electron in a crystal reads(

− ~2

2m 5
2
r +V (r)

)
ψnk(r) = En(k)ψnk(r) (2.19)

where n denotes the band index and k is the wavevector or the crystal momentum
of the corresponding electron. Furthermore, the periodicity of the (infinite) crystal
leads to [12]

Bloch’s theorem: If V (r + ζ1 · a1 + ζ2 · a2 + ζ3 · a3) = V (r), with ζi ∈ Z
and three linear independent vectors ai, then the solutions are ψnk(r) =
unk(z) exp{ik · r}, where unk(r + ζ1 · a1 + ζ2 · a2 + ζ3 · a3) = unk(r).

The theorem states that for a periodic potential the wavefunction is given by a plane
wave times a periodic function with the same periodicity as the potential. Note, that
Bloch’s theorem mathematically holds only for infinite crystals.
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2 Basic Concepts

2.2 Crystal surfaces

All crystals investigated in this thesis are of the type face centered cubic (fcc) [12, 13]
- see Fig. 2.1. In this section, the unit cell vectors of an fcc-crystal are reviewed.
Then, three crystal surfaces are graphically displayed, namely the (100), (110) and
(111) surface. For the later use, their unit cells are constructed. Further the unit
cell vectors and the positions of the lattice points are calculated. Moreover, the
reciprocal lattice vectors of those three unit cells are computed. As well, the Brillouin
zone (BZ) of the fcc-crystal and in particular the Brillouin zones of the three surfaces
are graphically displayed. Finally, k-paths in the Brillouin zones are suggested. To
this end, some special points in the BZs are calculated.

2.2.1 The face centered cubic crystal

Figure 2.1: The unit cell of
the fcc crystal.

The primitive lattice vectors of the fcc crystal are

a1 = a

2

 0
1
1

 (2.20)

a2 = a

2

 1
0
1

 (2.21)

a3 = a

2

 1
1
0

 (2.22)

2.2.2 Facets
A plane can be described by its normal vector

n =

 l
m
n

 ∝
 1/sx

1/sy
1/sz

 (2.23)

where sx is the point of intersection of the x-axis and so on. The integer numbers
l,m and n (with the smallest possible absolute values) are called Miller indices. A
plane is then denoted by the expression (lmn). A negative number is usually denoted
by an overline, e.g. (101). Moreover, one can write directions in a similar way, by
using square brackets [xyz], e.g. [100] for the x-direction.
As already mentioned, three surfaces are considered. Figs. 2.2a, 2.2b, and 2.2c

show the lattice planes (100), (110) and (111) in the fcc crystal. In Fig. 2.2 the
hatched areas define the unit cells of the facets. The red arrows define the lattice
vectors of the unit cells of the facets. The black, gray and white spheres picture the
atoms of the first, second and third layer. They lay on different planes parallel to
the page. With the knowledge of the lattice vectors and the positions of the lattice
points it is possible to build up an crystal with the desired surface.
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2.2 Crystal surfaces

[100]

[010]

[001]

a

(a) The (100) facet of
the fcc crystal.

[100]

[010]

[001]

a

(b) The (110) facet of
the fcc crystal.

[100]

[010]

[001]

a

(c) The (111) facet of
the fcc crystal.

[010]

[001]

a√
2

a

(d) The hatched area
pictures the unit
cell of the (100)
facet.

[110]

[001]

a√
2

a

(e) The hatched area
pictures the unit
cell of the (110)
facet.

[110]

[101]

a√
2

a√
3

a√
2

(f) The hatched area
pictures the unit
cell of the (111)
facet.

[010]

[001]

a√
2

a√
2

[011]

[011]

(g) The red arrows
denote the lattice
vectors of the (100)
facet.

a√
2

a

[001]

[110]

(h) The red arrows
denote the lattice
vectors of the
(110) facet.

[121]

[101]

a√
2

[011]

[110]

(i) The red arrows de-
note the lattice vec-
tors of the (111)
facet.

Figure 2.2: The (100), (110) and (111) facets of the fcc crystal.
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2 Basic Concepts

Calculation of the lattice vectors

The (100) facet. The lattice vectors are represented by the red arrows of Fig. 2.2g.
By defining the x-axis in [011]-direction, the y-axis in [011]-direction and the z-axis
in [100]-direction, the (100) lattice vectors are

a1 = a√
2

 1
0
0

 , a2 = a√
2

 0
1
0

 , a3 = a

 0
0
1

 (2.24)

The cell contains two atoms at positions

P1 = 0,P2 = 1
2a1 + 1

2a2 + 1
2a3 (2.25)

and hence of two different layers. The layer sequence is ABABAB.. .

The (110) facet. The lattice vectors are represented by the red arrows of Fig. 2.2h.
By defining the x-axis in [110]-direction, the y-axis in [001]-direction and the z-axis
in [110]-direction, the (110) lattice vectors are

a1 = a√
2

 1
0
0

 , a2 = a

 0
1
0

 , a3 = a√
2

 0
0
1

 (2.26)

The cell contains two atoms at positions

P1 = 0,P2 = 1
2a1 + 1

2a2 + 1
2a3 (2.27)

and of two different layers. The layer sequence is ABABAB.. .

The (111) facet. The lattice vectors are represented by the red arrows of Fig. 2.2i.
The x-axis is choosen to show in direction of [121] and the y-axis shows in direction
of [011]. The z-axis cleary shows in direction of [111]. The lattice vector a1 shows
into direction [110], a2 shows into direction [011], and, a3 shows into direction [111].
The length of a3 is the space diagonal

√
3a of Fig. 2.2c. The coordinates a2,y = a√

2 ,
a2,x = 0, a1,y = − a

2
√

2 and

a1,x =

√(
a√
2

)2
−
(

a

2
√

2

)2
=

√
3a2

8 =
√

3
2
a

2 (2.28)

follows from Fig. 2.2i. The (111) lattice vectors are

a1 = a

2
√

2


√

3
−1
0

 , a2 = a√
2

 0
1
0

 , a3 =
√

3a

 0
0
1

 (2.29)

The cell contains three atoms at positions

P1 = a1,P2 = 2
3a1 + 1

3a2 + 1
3a3,P3 = 1

3a1 + 2
3a2 + 2

3a3 (2.30)

and of three different layers. The layer sequence is ABCABCABC.. .
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2.2 Crystal surfaces

2.2.3 The reciprocal lattice
The reciprocal lattice is defined through

eiK·R = 1 (2.31)

where K is a point of the reciprocal lattice and R is a point of the ’real space’ lattice.
If a1,a2,a3 are the lattice vectors then the cell volume is V = a1 · (a2 × a3) and the
reciprocal lattice vectors are

b1 = 2π
V

(a2 × a3)

b2 = 2π
V

(a3 × a1)

b3 = 2π
V

(a1 × a2)

(2.32)

The reciprocal lattice vectors of the (100) facet

By using Eq. 2.32 one gets

V = a3

2 (2.33)

and further

b1 = 2π
a


√

2
0
0

 , b2 = 2π
a

 0√
2

0

 , b3 = 2π
a

 0
0
1

 (2.34)

The reciprocal lattice vectors of the (110) facet

By using Eq. 2.32 one gets

V = a3

2 (2.35)

and further

b1 = 2π
a


√

2
0
0

 , b2 = 2π
a

 0
1
0

 , b3 = 2π
a

 0
0√
2

 (2.36)

The reciprocal lattice vectors of the (111) facet

By using Eq. 2.32 one gets
V = 3

4a
3 (2.37)

and further

b1 = 2π
a

 2
√

2
3

0
0

 , b2 = 2π
a


√

2
3√
2

0

 , b3 = 2π
a

 0
0
1√
3

 (2.38)
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2 Basic Concepts

2.2.4 k-paths in the first Brillouin zone
The first Brillouin zone is the Wigner-Seitz cell in the reciprocal lattice. In Fig. 2.3,
the Brillouin zone of a bulk fcc lattice is plotted. Commonly the band structure
E(k) is plotted by choosing representative k-paths within the BZ. The two red
paths represent proper k-paths on the two-dimensional surface Brillouin zones. In
general, paths are defined through k-points with a special symmetry, e.g. the most
symmetric point Γ. k-points on the surface of the 3D-Brillouin zone, i.e. on a
two-dimensional surface Brillouin zone, are denoted by an overline, e.g. Γ.

kx

ky

kz

Γ

Γ
X

M

Γ
X

K

Figure 2.3: First Brillouin zone of the fcc lattice. In addi-
tion, the (001)-surface and the (111)-surface.

The k-path on the kx, ky-surface of the Brillouin zone of the (100) facet.

By using Fig. 2.4 the k-points are

Γ = 0, X = 1
2b1, M = 1

2b1 + 1
2b2 (2.39)

where the vectors bi are taken from Eq. 2.34.
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b2

b1
Γ X

M

2π
a

√
2

2π
a

√
2

Figure 2.4: First Brillouin zone of the (100) facet.

The k-path on the kx, ky-surface of the Brillouin zone of the (110) facet.

By using Fig. 2.5 the k-points are

Γ = 0, X = 1
2b1, S = 1

2b1 + 1
2b2, Y = 1

2b2 (2.40)

where the vectors bi are taken from Eq. 2.36.

b2

b1

Y

Γ X

S

2π
a

√
2

2π
a

Figure 2.5: First Brillouin zone of the (110) facet.

The k-path on the kx, ky-surface of the Brillouin zone of the (111) facet.

By using Fig. 2.6 the k-points are

Γ = 0, M = 1
2b1, K = 1

3b1 + 1
3b2 (2.41)

where the vectors bi are taken from Eq. 2.38.
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b2

b1

Γ X

K

2π
a 2
√

2/3

2π
a

√
2

Figure 2.6: First Brillouin zone of the (111) facet.

2.3 Shockley surface states
A crystal surface violates the periodicity of the crystal lattice. Thus, in the direction
perpendicular to the surface the fundamental theorem about periodicity of crystals,
the theorem of Bloch, does not hold anymore. This allows for new solutions for
the electron wavefunction. In the vicinity of the surface, the probability for such a
new electron wavefunction is larger than apart from the surface. In other words one
can say that the electron is more localized at the vicinity of the surface. Hence one
denotes it as a surface state. On the contrary, a usual bulk wavefunction (a plane
wave times a lattice periodic function) does not have this feature of the probability.
A one-dimensional illustration of the lattice periodic potential of a crystal without
and with a terminating surface is shown in Fig. 2.7a and 2.7b, respectively.
Recall Eq. 2.19 - the Schrödinger equation for an electron in a crystal(

− ~2

2m 5
2
r +V (r)

)
ψnk(r) = En(k)ψnk(r). (2.42)

Consider an infinite periodic one-dimensional lattice - see Fig. 2.7a. Then the
Schrödinger equation simplifies to a one-dimensional form.(

− ~2

2m
d2

dz2 + V (z)
)
ψnk(z) = En(k)ψnk(z) (2.43)

One can apply

Bloch’s theorem (in 1D): If V (z + ζ · a) = V (z), with ζ ∈ Z, then the
solutions are ψnk(z) = unk(z) exp{ikz}, where unk(z + ζ · a) = unk(z).

Note that the wavenumber k ∈ R. Now consider a half-infinite periodic one-
dimensional lattice - Fig. 2.7b. Due to the surface at z = 0, the translational
periodicity of the lattice is broken. This leads to the following ansatz for the wave-
functions [14]:

ψnk(z) =
{
Bu−nk(z) exp{−ikz}+ Cunk(z) exp{ikz} if z < 0
A exp{−

√
2m(V0 − E) z~} if z > 0

(2.44)
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2.3 Shockley surface states

z

V (z)

a

(a) An infinite 1D lattice.

z

V (z)

crystal vacuum

a

V0

(b) A half-infinite 1D lattice.

Figure 2.7: A simple 1D lattice example.

The coefficients A,B,C are determined by the condition that ψ and ψ′ must be
continuous at z = 0 and be normalized. In contrast to the infinite 1D lattice, where
k ∈ R, in the half-infinite 1D lattice the wavenumber k ∈ C. In this simple example
there are two cases which lead to different types of the wavefunction - see Fig. 2.8.

Case 1: Imk = 0 =⇒ bulk state - see Fig. 2.8a

Case 2: Imk 6= 0 =⇒ surface state - see Fig. 2.8b

For the sake of completeness, it should be mentioned that there is the possibility of
another state, the resonance state - see Fig. 2.8c, which, however, does not occur in
this simplified example.
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z

Re ψ(z)

(a) Bulk state.

z

(b) Surface state.

z

(c) Resonance state.

Figure 2.8: The different types of states at crystal surfaces.

2.4 The photoelectric effect

~ω

Energy

Φ

0
~ω0

Ekin

Emax

Figure 2.9: The lower
limit of the
frequency.

The photoelectric effect was ex-
perimentally discovered by Heinrich
Hertz in 1887 and theoretically de-
scribed by Albert Einstein in 1905.
An electron of a solid can be emit-
ted when a photon with energy ~ω
is absorbed by the solid. This is the
so-called photoelectric effect [15].
In this effect the work function Φ
plays an important role. It deter-
mines the lower limit of the fre-
quency of the photon - see Fig. 2.9.
One can define this angular fre-
quency limit ω0 through Φ = ~ω0.
With that definition the range of
the kinetic energy Ekin of the emit-
ted electron can now be given with
respect to the energy of the photon.

Ekin ∈ (0, Emax] (2.45)

where Emax = ~(ω− ω0). If ω− ω0 < 0 then the mechanism is not possible and the
electron can not leave the solid.
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3 Theory

In this chapter a brief introduction to density functional theory with the focus on
the Kohn-Sham equations is given. Further, some standard methods for numerically
solving the Kohn-Sham equations are introduced. Moreover, the problem that plane
waves provide a poor description of the wave function close to atomic nuclei is
considered. This has led to the invention of many methods, e.g. the pseudo-potential
method, or the PAW method. A small selection of such methods, according to the
simulation package which is used, is shortly introduced. After that, the concept of
the supercell is brought up which provides a possibility to simulate a crystal surface.
Finally, the calculation of the photoemission intensity via the one-step model is
presented.

3.1 Density functional theory (DFT)
Usually when solving the Schrödinger equation, the external potential is given by
the atomic nuclei. Thus, the external potential determines the wavefunction and
thereby the electron density.

vext(r) =⇒ ψ(r, r2, .., rN ) =⇒ n(r) = N

∫
|ψ(r, r2, .., rN )|2d3r2..d

3rN (3.1)

The question that may arises now is: is it conceptual possible to reverse this pro-
cedure and start from the electron density? At this point density functional theory
comes into play which offers that possibility.
One can consider the Thomas-Fermi model, proposed in 1927, as a first density

functional theory. Based on the uniform electron gas, they expressed the total
classical energy of an atom in terms of the density only. Although, the model was
historically important, its results are bad, since the kinetic energy is approximated
in a poor manner.
After the Thomas-Fermi theory, it took more than 30 years until Hohenberg and

Kohn showed that the electron density can be handled as the central quantity and
an accurate computational scheme can be developed. The basis of DFT is provided
by the [3]

First Hohenberg-Kohn theorem: A given electron density uniquely de-
termines the (external) potential and hence the total energy of the system.

n(r) =⇒ vext(r) (3.2)

Proof by contradiction. Consider two many-electron systems with different ex-
ternal potentials v′ 6= v + const.
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3 Theory

System 1: n, ψ, v, Ĥ, E

System 2: n′, ψ′, v′, Ĥ ′, E′

Assume that there is only one density for two different potentials.

n = n′ (3.3)

Using the variational principle - Eq. 2.11 - one has

E = 〈ψ|Ĥ|ψ〉 < 〈ψ′|Ĥ|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+
∫

(v − v′)n′d3r (3.4)

E′ = 〈ψ′|Ĥ ′|ψ′〉 < 〈ψ|Ĥ ′|ψ〉 = 〈ψ|Ĥ|ψ〉+
∫

(v′ − v)nd3r (3.5)

Addition of these two inequalities gives

E + E′ < E + E′ +
∫

(v − v′)(n′ − n)d3r (3.6)

0 <
∫

(v − v′) (n′ − n)︸ ︷︷ ︸
=0

d3r = 0 (3.7)

where the assumption (n′ − n) = 0 has been used, which leads to a contradiction.
Hence, there can not exist two different potentials, apart from an additional constant,
which lead to the same density �.
It is very surprising that the electron density already contains all physical informa-

tions of the system, but has 3(N−1) variables less than theN -electron-wavefunction.
Since the electron density is a fundamental characteristic of a many-electron sys-

tem, it makes sense to write the total energy as a functional of the electron density.
This is best done by the so-called ’constrained search’ approach by Levy [16], which
gives another opportunity to prove the first Hohenberg-Kohn theorem and further
leads directly to their second theorem. The total energy functional can be obtained
by minimizing 〈ψ|Ĥ|ψ〉 over all many-electron wave functions ψ that yield a given
electron density n. Denote this set of such ψ which yield the same density as

{ψ → n} ≡
{
ψ ∈ H

∣∣∣N ∫
|ψ(r, r2, .., rN )|2d3r2..d

3rN
}

(3.8)

The total energy functional

E[n] = min
{ψ→n}

〈ψ|Ĥ|ψ〉

= min
{ψ→n}

〈ψ|T̂ + V̂ee + V̂ext|ψ〉

= min
{ψ→n}

〈ψ|T̂ + V̂ee|ψ〉+
∫
v(r)n(r)d3r

(3.9)

Thus, the total energy may be separated into a universal part

F [n] ≡ min
{ψ→n}

〈ψ|T̂ + V̂ee|ψ〉 (3.10)
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3.1 Density functional theory (DFT)

which is the same for any system of N electrons, and, into a system-specific part,
which contains the Coulomb energy of n(r) in V̂ext. Now one can get the ground
state energy by minimizing E[n] with respect to n.

E0 = min
n
E[n] = min

n

(
F [n] +

∫
v(r)n(r)d3r

)
(3.11)

Eq. 3.11 states the

Second Hohenberg-Kohn theorem: The density n0 which minimizes
the total energy is the ground state density.

Before a method for calculating (approximately) the ground state energy of a many
particle system is considered, the total energy functional is separated into suitable
parts.

E[n] = F [n] + V [n]
= T [n] + Vee[n] + V [n]
= Ts[n] + VH [n] +

(
T [n]− Ts[n]

)
+
(
Vee[n]− VH [n]

)
+ V [n]

(3.12)

where Ts[n] is the kinetic energy of non-interacting particles. For a non-interacting
system the universal part reduces to

F [n] 7→ Ts[n] = min
ψ→n
〈ψ|T̂ |ψ〉 (3.13)

One can define the so-called exchange-correlation-energy via

Exc[n] ≡
(
T [n]− Ts[n]

)
+
(
Vee[n]− VH [n]

)
(3.14)

The exchange part of it is due to the Pauli principle and the correlation part is due
to correlations. Now the total energy can be rewritten

F [n] = Ts[n] + VH [n] + Exc[n] (3.15)

where

VH [n] = 1
2

∫ ∫
n(r)n(r′)
|r− r′| d

3rd3r′ (3.16)

is the Hartree energy, which describes the classical part of the electron-electron
repulsion. The external potential energy V [n] contains the electron-core-interaction
plus another possible potential V0, e.g. an external electric field.

V [n] =
∫
v0(r)d3r +

∑
α

∫
Zαn(r)
|Rα − r|d

3r (3.17)
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3.1.1 Kohn-Sham equations

Although the Hohenberg-Kohn theorems, published in 1964, are rather important
and powerful and give some insights to quantum physics, they unfortunately do not
provide a way of calculating the ground state energy. In order to derive a scheme
that can be applied in practice, in 1965 Kohn and Sham suggested to consider a
non-interacting system of electrons [4], i.e. V̂ee = 0, which leads to the same density
as the corresponding physical system. For a non-interacting electron system each
electron obeys a one-particle Schrödinger equation

(
− 1

2∆ + vs([n]; r)
)
φk(r) = εkφk(r) (3.18)

the so-called Kohn-Sham equations [4]. The wavefunctions φk are the so-called
Kohn-Sham orbitals. The important trick is do define the potential vs such that the
Kohn-Sham system yields the same density as the corresponding physical system.
This can be achieved by choosing

vs([n]; r) = vext([n]; r) + vH([n]; r) + vxc([n]; r) (3.19)

where

vH([n]; r) = δVH [n]
δn(r) =

∫
n(r′)
|r− r′|d

3r′ (3.20)

and

vext([n]; r) = δV [n]
δn(r) = v0(r) +

∑
α

Zα
|Rα − r| (3.21)

can be explicitly given in terms of the electron density while the exchange-correlation
energy per volume

vxc([n]; r) = δExc[n]
δn(r) (3.22)

needs to be approximated in an appropriate manner. The Kohn-Sham equations
have to be solved in a self-consistent way - see Fig. 3.1. Mathematically the Kohn-
Sham equations describe a non-interacting system hence the probabilities |φk|2 are
independent. In this case the electron density is simply the sum over these proba-
bilities

n(r) =
∑

k∈BZ

occ∑
n

|φnk(r)|2 (3.23)

where the first summation is over all k-points in the Brillouin zone and the second
summation is over the occupated states only.
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n0(r)

vKS(r)

ĤKSφi(r) = εiφi(r)

n(r) =
∑
i focc|φi(r)|2 converged? end

no, then mix n0 and n1 to new n

yes

Figure 3.1: The self-consistent algorithm for solving the Kohn-Sham equations.

3.1.2 Exchange-correlation energy
The main difficulty of DFT is to find good approximations for the exchange-correlation
energy functional Exc[n]. There are many approximations, e.g. the local-density ap-
proximation (LDA).

ELDA
xc [n] =

∫
eunifxc (n(r))d3r (3.24)

where eunifxc (n(r)) = eunifx (n) + eunifc (n) is the exchange-correlation energy per vol-
ume of a uniform electron gas with the electron density n(r). The exchange energy
of a uniform electron gas eunifx ∝ n4/3 can be derived via uniform coordinate scaling
[10]. The correlation energy of a uniform electron gas is not known exactly, hence
approximations are needed. Usually one uses the following expression [10]

eunifc (n) = −2c0(1 + α1rs) ln
[
1 + 1

2c0
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)
]

(3.25)

where

β1 = 1
2c0

exp
(
− c1

2c0

)
, (3.26)

β2 = 2c0β
2
1 , and the constants c0 = 0.031091 and c1 = 0.046644. The parameter

rs =
(

3
4πn

)1/3
is the Wigner-Seitz radius, the radius of a sphere which on average

contains one electron. The other constants α1 = 0.21370, β3 = 1.6382, and β4 =
0.49294 are determined via fits within Quantum Monte Carlo methods. The LDA
forms the basis of all other ab inito exchange-correlation functional approximations.
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In this thesis, a generalized gradient approximation (GGA) is used - to be more
precise, the GGA-PBE [5, 6], which is named after its authors John P. Perdew,
Kieron Burke, and Matthias Ernzerhof. In contrast to LDA, in the GGA the gradient
of the density is taken into account. A generalized gradient approximation can be
written as [10]

EGGA
xc [n] = EGGA

x [n] + EGGA
c [n] =

∫
f(n(r),∇n(r))d3r (3.27)

The exchange energy is given by

EGGA
x [n] = Ax

∫
n4/3Fx(s)d3r (3.28)

where Ax is a constant and

Fx(s) = 1 + κ− κ

1 + µs2/κ
(3.29)

is a function of the reduced density gradient s = |∇n|
2kFn = |∇n|

2(3π)1/3n4/3 with the Fermi
wavenumber kF and a constant 0 ≤ κ ≤ 0.804 to satisfy the Lieb-Oxford bound.
Note, that for a constant density EGGA

x

∣∣∣
s=0

= ELDA
x . The correlation energy is given

by

EGGA
c [n↑, n↓] =

∫
n↓
(
ec(rs, ζ) +H(rs, ζ, t)

)
d3r (3.30)

where n↑, n↓ are the spin densities and ec is the correlation energy per electron of
the uniform electron gas. Further one has another reduced density gradient t = |∇n|

2ksn
with the Thomas-Fermi-wavenumber ks and the relative spin polarization ζ = n↑−n↓

n↑+n↓ .
The additional function in the integral of Eq. 3.30 is

H(rs, ζ, t) = c0φ
3(ζ) ln

(
1 + βMB

c0
t2
[ 1 +At2

1 +At2 +A2t4

])
(3.31)

where βMB = 0.066725 is calculated via the high-density limit,

φ = 1
2
[
(1 + ζ)2/3 + (1− ζ)2/3

]
(3.32)

and

A = βMB

c0

1
exp[−ec(rs, ζ)/c0φ3] (3.33)
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3.2 DFT in practice
The algorithm in Fig. 3.1 provides a scheme to solve the Kohn-Sham equations
in a self-consistent way. In this section, the concept of writing the Kohn-Sham
equations as a matrix equation is introduced. For that a set of basis functions has
to be choosen. The case of plane waves as basis functions is explicitly described.
Further, a pseudo-potential method and the PAW method are introduced. Pseudo
potentials and the PAW method are used within the simulation package VASP,
which afterwards is overviewed in this section. Finally, a concept of simulating
crystal surfaces is introduced.

3.2.1 The Kohn-Sham equations as a matrix eigenvalue problem
The Kohn-Sham equations for a translationally periodic potential are

Ĥφk(r) = ε(k)φk(r). (3.34)

Motivated by Bloch’s theorem, the wavefunction φk(r) can be written as a linear
expansion

φk(r) = eik·r
∑
j

cj(k)ϕj(r)

︸ ︷︷ ︸
uk(r)

(3.35)

with a set of lattice-periodic basis functions ϕj(r + R) = ϕj(r). Plugging this
expansion into Eq. 3.34 one obtains∑

j

Hij(k)cj(k) = ε(k)
∑
j

Sij(k)cj(k), (3.36)

the so-called secular equation, where the Hamiltonian matrix elements are the fol-
lowing integrals over the cell volume Ω

Hij(k) =
∫

Ω
ϕ∗i (r)e−ik·rĤeik·rϕj(r)d3r, (3.37)

and the overlap matrix elements are

Sij(k) =
∫

Ω
ϕ∗i (r)ϕj(r)d3r. (3.38)

Plane wave basis set.

It is convenient to choose plane waves for the basis functions.

ϕj(r) ≡ ϕG(r) = 1√
Ω
eiG·r (3.39)

Then Eq. 3.35 becomes

φk(r) = 1√
Ω
eik·r

∑
G
cG(k)eiG·r (3.40)
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To fulfill the lattice-periodicity, G must be a point of the reciprocal lattice. For a
plane wave basis set, the overlap matrix elements are simply the Kronecker deltas

SGG′ = 1
Ω

∫
Ω
e−iG·reiG

′·rd3r = δGG′ (3.41)

and the Hamiltonian matrix element is

HGG′(k) = 1
2(k + G)2δGG′ +

1
Ω

∫
Ω
V (r)e−i(G−G′)rd3r (3.42)

Eq. 3.36 becomes ∑
G′
HGG′(k)cG′(k) = ε(k)cG(k) (3.43)

This eigenvalue equation represents the Kohn-Sham equations in a plane wave ex-
pansion. In principle the expansion in plane waves includes a summation over an
infinite number of G vectors. For numerical applications, one has to make a cut-off.
The cut-off is defined through the maximal energy of the plane waves

Ecutoff = 1
2G

2
max. (3.44)

The numerical expansion of the wavefunction is

φk(r) = 1√
Ω
eik·r

|k+G|≤Gmax∑
G

cG(k)eiG·r (3.45)

3.2.2 Pseudo-potential

r

R(r), v(r)

r0

vPP(r)

RAE(r)
RPP(r)

vAE(r)

node

Figure 3.2: Example of a pseudo-potential.

The Kohn-Sham equations de-
scribe all electron states includ-
ing the core states. When in-
vestigating systems where the
unit cell contains several atoms,
the number of electrons will be
rather large. In this case a
big effort has to be made to
compute such systems. Par-
ticularly, when expanding the
wavefunction of a notably local-
ized electron into plane waves
1. At this point, one can dis-
tinguish between core electrons
and valence electrons. A rough description is that the core electrons are tightly
bound (localized) to the nuclei, while the valence electrons are not localized. In the

1 Typically, electrons localized near nuclei are well-described by a product of a few spherical
harmonics and radial wavefunctions. Unfortunately, their plane-wave expansion has a poor
convergence.
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pseudo-potential method one consider the valence electrons only. Nevertheless, the
core electrons have to be taken into account. Since the core electrons are localized
close to the nuclei, it is convenient to treat them together as ions. In order to ob-
tain frozen ions, i.e. the ions have no dynamics, one has to introduce the so-called
frozen-core-approximation. Within this approximation the core electrons contribute
to the effective potential of the ions.
The aim of the pseudo-potential method is, that a valence wavefunction is rep-

resented by a smooth function (the so-called pseudo wavefunction) |φv〉, to avoid
the exhaustive use of plane waves. Usually a plane wave is not orthogonal to a core
wavefunction and hence the pseudo wavefunctions need to be orthogonalized. Let
|ψc〉 be the core wavefunctions and let |ψv〉 be the valence wavefunctions. The con-
nection between a pseudo wavefunction and the corresponding valence wavefunction
can be achieved via [10, 12]

|ψv〉 =
(
1−

∑
c

|ψc〉〈ψc|
)
|φv〉 (3.46)

where the coefficients 〈ψc|φv〉 guarantee the orthogonality of the valence states to
the core states. The Kohn-Sham equation for |φv〉 is

Ĥ|ψv〉 = εv|ψv〉

Ĥ|
(
1−

∑
c

|ψc〉〈ψc|
)
|φv〉 = εv

(
1−

∑
c

|ψc〉〈ψc|
)
|φv〉

Ĥ|φv〉 −
∑
c

〈ψc|φv〉 Ĥ|ψc〉︸ ︷︷ ︸
=εc|ψc〉

= εv|φv〉 −
∑
c

〈ψc|φv〉εv|ψc〉

⇒
(
Ĥ −

∑
c

(εc − εv)|ψc〉〈ψc|
)

︸ ︷︷ ︸
≡Ĥpseudo

|φv〉 = εv|φv〉

(3.47)

where Ĥpseudo is the Pseudo-Hamiltonian and |φv〉 is the Pseudo-wavefunction.

Pseudo-Potential construction

The general construction of a first-principle norm-conserving pseudo-potential ac-
cording to the recipe of Troullier and Martins [17, 10] involves the following steps:

(1) Solve self-consistently the free atom all-electron (AE) radial Kohn-Sham equa-
tion (

− 1
2
d2

dr2 + l(l + 1)
2r2 + vAEKS [nAE](r)

)
rRAE

nl (r) = εAEnl rR
AE
nl (r) (3.48)

where

vAEKS [nAE](r) = −Z
r

+ vH[nAE](r) + vxc[nAE](r) (3.49)

(2) Choose a proper cutoff radii r0 which is at least larger than any node-position
of the all-electron wavefunction.
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(3) Normalization conditions for the ansatz for the PP-wavefunction RPP
l (r)

• if r > r0 then RPP
l (r) = RAE

l (r)
• if r < r0 then

∫ r0
0 |RPP

l (r)|2r2dr =
∫ r0

0 |RAE
l (r)|2r2dr

(4) Inversion of Eq. 3.48 yields the screened pseudo-potential.

vPPscr,l(r) = εPPl −
l(l + 1)

2r2 + 1
2rRPP

l (r)
d2

dr2
(
rRPP

l (r)
)

(3.50)

(5) Remove screening effects

vPPl (r) = vPPscr,l(r)− vH[nAE](r)− vxc[nAE](r) (3.51)

An example for the radial wavefunctions RAE
l (r) and RPP

l (r) and the corresponding
potentials are given in Fig. 3.2. A pseudo wavefunction must not have any nodes. It
also must not change the charge of the ion because then the properties of scattering
processes would be modified. A typical ansatz for the pseudo wavefunction is a sum
of even polynomial functions or a sum of spherical Bessel functions.

3.2.3 PAW-method

Figure 3.3: The augmented
regions in the
vicinity of the
nuclei.

Usually electronic wavefunctions have strong oscilla-
tions near the nuclei, while auxiliary wavefunctions,
e.g. pseudo wavefunctions, have no oscillations in the
vicinity of the nuclei. As already mentioned when
expanding a wavefunction into plane waves with a
given accuracy, the physical (all-electron) wavefunc-
tion needs much more plane waves than a pseudo
(valence-electron) wavefunction. However, due to
the fact that for pseudo wavefunctions the number
of nodes in the vicinity of the nuclei is not correct,
pure pseudo-potential methods lead to some phys-
ically wrong results. An aim would be to have a
combination of physical correct results such as in all-
electron theories and a numerically fast performance
such as in pseudo-potential methods. Accordingly,
the projector augmented wave (PAW) method [18]
combines advantages of the pseudo-potential method and all-electron methods such
as the LAPW-method. In this method one has the real, physical wavefunction |ψ〉
and an auxiliary wavefunction (a pseudo wavefunction) |ψ̃〉 both for the valence
electrons.
In the PAW method space is divided into two regions - see Fig. 3.3. One type

of region is in the vicinity of the nuclei, the so-called augmentation regions Ωα

around each ion at the positions Rα. The second type of region is formed by the
disjoint of the first type. In the second type of region, the wavefunctions |ψ〉 = |ψ̃〉.
In the vicinity of the nuclei the auxiliary wavefunction is different to the physical
wavefunction.
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In order to switch between both wavefunctions, a linear transformation T maps
the auxiliary wavefunction onto the real wavefunction.

|ψ〉 = T |ψ̃〉 (3.52)

Since there is only a difference inside the augmentation regions, the transformation
can be written

T = 1 +
∑
α

T̂α (3.53)

When applying T̂α onto the auxiliary wavefunction, it gives a contribution inside the
augmented region Ωα around the ion at Rα only. The expansion of the auxiliary
wavefunction within Ωα into partial waves |φ̃i〉, i.e. plane waves, reads

|ψ̃〉 =
∑
i

|φ̃〉ci (3.54)

The coefficients are

ci = 〈p̃i|ψ̃〉 (3.55)

where |p̃i〉 are the so-called projector functions. In each augmented region Ωα

〈p̃i|φ̃j〉 = δij (3.56)

The linear transformation T can be written as

T = 1 +
∑
i

(|φi〉 − |φ̃i〉)〈p̃i|. (3.57)

The physical wavefunction can thus be obtained from the auxiliary wave functions
in the following way

|ψ〉 = |ψ̃〉 −
∑
i

|φ̃i〉〈p̃i|ψ̃〉+
∑
i

|φi〉〈p̃i|ψ̃〉. (3.58)

The first summation term subtracts the auxiliary parts of the wavefunction inside
the augmented regions. The second summation term adds the physical parts of the
wavefunction inside the augmented regions.
As the wavefunctions, all other quantities, e.g. the electron density and the total

energy, can be transformed between the physical and the auxiliary representation.
Each quantity Q consists of its auxiliary representation Q̃, minus the projected
augmentation auxiliary part Q̃1, and plus the projected augmentation physical part
Q1.

Q = Q̃− Q̃1 +Q1 (3.59)

The representation of an arbitrary local operator A reads

Ã = T †AT = A+
∑
i,j

|p̃i〉
(
〈φi|A|φj〉 − 〈φ̃i|A|φ̃j〉

)
〈p̃j | (3.60)

For example the electron density is given by

〈ψ|r〉〈r|ψ〉 = 〈ψ̃|r〉〈r|ψ̃〉+
∑
i,j

〈ψ̃|p̃i〉
(
〈φi|r〉〈r|φj〉 − 〈φ̃i|r〉〈r|φ̃j〉

)
〈p̃j |ψ̃〉 (3.61)
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3.2.4 Vienna ab initio simulation package (VASP)
Within this thesis, the Vienna ab Initio Simulation Package (VASP), written in
Fortran, has been used. VASP solves the Kohn-Sham equations using a plane wave
basis set with periodic boundary conditions [19, 20, 21, 22]. Moreover a Hartree-
Fock method, a many-body perturbation method, and a Green’s function method is
available.
Now a brief introduction into performing a calculation with VASP is given. There

are four input files, which are necessary when executing VASP, the file ’INCAR’,
the file ’KPOINTS’, the file ’POSCAR’, and the file ’POTCAR’.

INCAR In the INCAR file one can declare possible parameters of the calculation,
e.g. the global break condition (which determines when the Kohn-Sham algo-
rithm stops) via the tag EDIFF. For almost any parameter there are default
values, e.g. EDIFF=E-04. In Tabs. 3.1 and 3.2 a selection of tags are de-
scribed.
An example of an INCAR file for a self-consistent computation of the Kohn-
Sham-equations is given below.

1 SYSTEM=Al bulk
2
3 #p r e c i s i o n o f c a l c u l a t i o n
4 PREC=Accurate
5 ENCUT=400 # plane wave cut−o f f in eV
6 EDIFF=1E−8 # t o t a l energy sc f−c r i t e r i o n
7
8 #make DOSCAR f i l e
9 ISMEAR=1 # swi t ch f o r the type o f smearing

10 SIGMA=0.1 # width o f the smearing in eV
11 EMIN=−20 # lower boundary o f the energy range f o r DOS
12 EMAX=20 # upper boundary o f the energy range f o r DOS
13 NEDOS=1001 # number o f g r i d p o i n t s f o r the DOS
14 LORBIT=10 # DOS i s w r i t t e n i n t o the f i l e DOSCAR
15
16 #make LOCPOT f i l e
17 LVHAR=.TRUE. # wr i t e p o t e n t i a l i n t o the f i l e LOCPOT

The SYSTEM tag allows to add a comment, e.g. what system is calculated.
The tags PREC, ENCUT, and EDIFF determine the accuracy of the calcula-
tion. The tag LORBIT determines that a file with the density of states should
be generated and the tags ISMEAR, SIGMA, EMIN, EMAX, and NEDOS
state how the DOS should be computed.
Another example of an INCAR file for the non-self-consistent calculation of
the energy eigenvalues of a choosen k-path to plot a bandstructure is shown
below.

1 SYSTEM=$system_name bulk
2
3 #p r e c i s i o n o f c a l c u l a t i o n
4 PREC=Accurate
5 ENCUT=400 # plane wave cut−o f f in eV
6 EDIFF=1E−8 # t o t a l energy sc f−c r i t e r i o n
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7
8 #read from prev ious computed WAVECAR f i l e
9 ISTART=1

10 #non−s e l f c o n s i s t e n t c a l c u l a t i o n
11 ICHARG=11

The tags ISTART=1 and ICHARG=11 states that no self-consistent calcula-
tions are performed and the orbitals and the density has to be read from the
files WAVECAR and CHGCAR from a previous self-consistent calculation.

Table 3.1: A list of VASP-tags for the INCAR file.

Tags for a usual Kohn-Sham run.
SYSTEM For comments, e.g. the name of the system.
PREC Defines precision mode of calculation. Roughly, one can choose

between accuracy and speed. Possible values are ’Low | Medium |
High | Normal | Single | Accurate’.

EDIFF Global break condition: If the total energy difference and the eigen-
value difference between two Kohn-Sham steps are both smaller
than EDIFF then the Kohn-Sham algorithm stops.

NELMIN Minimum number of Kohn-Sham iterations. Default value is 2.
NELM Maximum number of Kohn-Sham iterations. Default value is 60.
ENCUT Cut-off energy.
NBANDS Number of energy bands in the calculation. There should be always

some unoccupied bands in the calculation.

Tags for computing the density of states.
EMIN Lower boundary of the energy range for the calculation of the DOS
EMAX Upper boundary of the energy range for the calculation of the DOS
NEDOS Number of grid points on which the DOS is evaluated.
ISMEAR Determines how the occupacies of the orbitals are set.
SIGMA Width of the smearing in eV. In theory the occupation curve is the

Fermi-Dirac-distribution at T = 0 which is a step function. To
handle with a smoother curve, one introduces via the parameter
SIGMA a ’computational’ temperature above zero.

KPOINTS When calculating the density, an integral over the Brillouin zone has
to be performed. In numerical applications one uses a finite set of proper k-
points, e.g. a grid of k-points. The file KPOINTS defines these k-points. A
simple example for automatically generating a k-mesh is given below.

1 Automatic mesh
2 0
3 Monkhorst−Pack
4 3 3 3 # 3x3x3 k−p o i n t s
5 0 . 0 . 0 . # g l o b a l s h i f t o f a l l k−p o i n t s
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The first line is a comment line for the user only. The second line contains
the number of k-points with the exception of the number 0, which activates an
automatic generation scheme. For the automatic generation scheme, the first
character of the third line specifies the generation method, here the ’M’ of the
so-called Monkhorst-Pack [23]. The only two possible characters are ’M’ and
’G’. Both generate a mesh-grid, the latter generates a centered one at the Γ
point. The three positive integer numbers at line four determines the number
of points along the reciprocal lattice vectors b1, b2, and b3. Line five offers a
global shift of all k-points. Another example for entering k-points for a k-path
is given below.

1 kpo int s for bandstructure G−M−K−G
2 10 # number o f k−p o i n t s o f one l i n e
3 Line # swi t ch to l i n e mode
4 Rec ip roca l # r e c i p r o c a l coord ina te mode
5
6 0.00000 0.00000 0.00000 1 # Gamma
7 0.50000 0.00000 0.00000 1 # M
8
9 0.50000 0.00000 0.00000 1 # M

10 0.33333 0.33333 0.00000 1 # K
11
12 0.33333 0.33333 0.00000 1 # K
13 0.00000 0.00000 0.00000 1 # Gamma

VASP will generate 10 equidistant points between the k-points (0, 0, 0) and
(0.5, 0, 0), 10 equidistant points between (0.5, 0, 0) and (0.33333, 0.33333, 0),
and 10 equidistant points between (0.33333, 0.33333, 0) and (0, 0, 0). The first
character of line three ’L’ switches to this line scheme. The first character of
line four ’R’ states that the k-points below are given in units of the reciprocal
lattice vectors. Otherwise one can use the Cartesian mode with the character
’C’. Then the k-points are given in units of 2π/a, where a is the lattice constant.

POSCAR This file contains the lattice vectors and the positions of the ions in the
cell. A simple example for a POSCAR files is given below.

1 Cu−f c c
2 3 .61 # s c a l i n g f a c t o r
3 0 .00 0 .50 0 .50 # f i r s t l a t t i c e v e c t o r
4 0 .50 0 .00 0 .50 # second l a t t i c e v e c t o r
5 0 .50 0 .50 0 .00 # t h i r d l a t t i c e v e c t o r
6 Cu
7 1 # number o f ions
8 Di rec t # d i r e c t coord ina te mode
9 0 0 0 # p o s i t i o n o f ion

Again, the first line is a comment line for the user only. The number in the
second line is a scaling factor, usually 1 or the lattice constant in Å. Lines
three to five define the lattice vectors. Their values has to be multiplied by
the scaling factor from line two. In line six, one can specify the atomic types,
here ’Cu’ for copper. For more than one species, one has to separate them
by the space character, e.g. ’Cu H O’. In line seven, the number of ions are
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given. For more than one species, again one has to separate them by the space
character, e.g. ’4 2 1’. The first character of line eight ’D’ states that the
positions of the ions are given in units of the lattice vectors. Otherwise one
can use the Cartesian mode via ’C’. Then the coordinates of the ions, here only
one ion, are written in the further lines.

POTCAR This file contains pseudopotentials of an atomic species. Moreover, the
file contains constants such as the atomic mass, the number of valence elec-
trons, and others. If more than one species is used, then one has to concatenate
the corresponding POTCAR files in the right order. The same order has to
be taken as specified in the ’POSCAR’ file. Fortunately, one does not need to
generate a POTCAR file by oneself, which would of course exceed the scope of
this thesis, since the VASP community offers a whole collection of POTCAR
files for all elements in the periodic table.
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Figure 3.4: Supercell.

Table 3.2: A further list of VASP-tags for the INCAR file.

Tags for a ionic relaxation run.
EDIFFG Break condition for a ionic relaxation:

If the total energy difference between
two ionic steps is smaller than ED-
IFFG then stop. If EDIFFG is neg-
ative then the relaxation will stop if
all forces on the ions are smaller than
the absolute value of EDIFFG.

NSW Maximum number of ionic steps. The
default value is zero.

POTIM Sets a scaling constant for a relaxation
step. When a coordinate is changed,
then the width of the change is pro-
portional to POTIM.

IBRION This tag sets how the positions of the
ions are updated and moved. Several
modes ’-1, 0, 1, 2, 3, 5, 6, 7, 8, 44’ are
possible. Within this thesis mode ’2’
has been used. In this mode a conju-
gate gradient method is used to obtain
the relaxed ion positions.

Tags to store data of the potential.
LVHAR If this tag is set to .TRUE. then VASP

stores the total local potential minus
the exchange-correlation-potential to
the file LOCPOT.

LVTOT If this tag is set to .TRUE. then VASP
stores the total local potential to the
file LOCPOT.

Tags to compute k-paths for bandstructures.
ISTART Determines whether or not to read

the orbital coefficients from the
file WAVECAR. ISTART=0 specifies
that the coefficients are not read from
WAVECAR. ISTART=1 specifies to
read the coefficients.

ICHARG Determines the initial charge density
for tag-values from 0 to 4. For tag
value 11 the charge density will be
read from the file CHGCAR from a
previous calulation.
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3.2.5 Supercell - How to simulate a surface?
The periodic boundary condition states that a defined crystal cell will be repeated
infinitely times in all spatial directions. To simulate a surface of a crystal, one has to
construct a so-called supercell [24]. That means that the usual unit cell is enlarged
into the normal direction of the surface plane. The enlarged space is kept empty and
represents the vacuum - see Fig. 3.4 where the supercell of a (100) slab consisting
of 15 layers is visualized. There are three important questions:

1. What (enlarged) thickness is needed for a good representation of the vacuum?

2. How many atom layers are necessary for a good simulation?

3. Does the geometric equilibrium still hold for the ’bulk’ positions of the atoms
in the presence of a vacuum?

All three questions are taken into account within the simulations in this theses. The
first and the second questions offer to perform convergence tests, while the last one
can be handled via Eq. 2.18, which has been derived with the help of the Hellmann-
Feynman theorem. Such a geometric optimization is already implemented in VASP
and is used in the simulations in this thesis. If the surface plane is normal to the
z-direction, the z-values of the ionic positions have to be relaxed only. Therefore
the VASP-tags for ionic relaxations of Tab. 3.2 has to be specified. Additionally, in
the POSCAR file one has to set what coordinates of what ions has to be relaxed.
For example, the relaxed POSCAR file of Al(100) is given below.

1 Al (100) s u r f a c e 05 l a y e r
2 1.0000000000000000
3 2.8567113959936519 0.0000000000000000 0.0000000000000000
4 0.0000000000000000 2.8567113959936519 0.0000000000000000
5 0.0000000000000000 0.0000000000000000 20.0799999999999983
6 Al
7 5
8 S e l e c t i v e dynamics
9 Di rec t

10 0.000000000000000 0.000000000000000 0.795571630928995 F F T
11 0.500000000000000 0.500000000000000 0.898145385663847 F F T
12 0.000000000000000 0.000000000000000 0.000000000000000 F F F
13 0.500000000000000 0.500000000000000 0.101854614336152 F F T
14 0.000000000000000 0.000000000000000 0.204428369071004 F F T

In line 8 the first character ’S’ states that there is additional information to the
positions of the ions (lines 10–14) that specifies whether a coordinate of a ion can
be changed during ionic relaxation or not. This specification is set by the characters
’T’ and ’F’. However, at least one coordinate in z-direction should be set to FALSE,
otherwise it could be possible that during ionic relaxation the whole slab is moving
through the supercell.
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3.3 Calculation of photoemission intensity

3.3.1 The one-step model

e-

Electron
analyzer

[001]

[010]

[100]

#
'

Ekinℏ!

Figure 3.5: The one-step model.

If a photon of sufficiently
large energy ~ω excites
an electron of a sample,
and no electron-electron
collision and no electron-
phonon collision takes
place, then the electron
will be emitted with the
energy ~ω − EB off the
solid, where EB is the
binding energy of the ini-
tial electron state. The
binding energy can be
rewritten by EB = Ei +
Φ where Φ is the work
function of the sample
and Ei is the energy be-
low the Fermi level of the
initial state of the elec-
tron before it has been
emitted. A schemati-
cally picture of this pro-
cess of ultraviolet angle-resolved photoelectron spectroscopy (ARPES) is illustrated
in Fig. 3.5. Within the one-step model of photoemission, the intensity of the emitted
electrons is given by the sum over the transition probabilities of all occupied orbitals
[25, 26]

I(ϑ, ϕ;Ekin) ∝
∑
i

∣∣∣〈ψ∗f (ϑ, ϕ;Ekin)| e2mc
(
A ·p + p ·A

)
|ψi〉

∣∣∣2× δ(Ei+ Φ +Ekin−~ω
)
.

(3.62)
Here, the δ-functional guarantees energy conservation. Additionally, the parallel
momentum is conserved. The photon interacts through its vector potential A and
momentum operator p. Moreover, |ψf 〉 represents the final state and |ψi〉 represents
the initial state, an occupied orbital, of the emitted electron. The polar emission
angle ϑ, the azimuthal emission angle ϕ and the kinetic energy Ekin of the emitted
electron is just another representation of the wavevector k of the emitted electron
[8]

kx =
√

2meEkin/~2 sinϑ cosϕ

ky =
√

2meEkin/~2 sinϑ sinϕ

kz =
√

2meEkin/~2 cosϑ

(3.63)
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3.3 Calculation of photoemission intensity

Within the one-step model higher orders of interaction are neglected, which would
describe that an excited electron would fall back to its initial state and emits another
photon which excites another electron (and so on).
Further, for ultraviolet (UV) light one can apply the dipole approximation. Since

the wavelengths of UV light are much larger than usual lattice constants, one can
neglect the the spatial derivation of the photon vector potential. With that the
commutator of the momentum operator and the vector potential vanishes

[p,A] = −i~∇ ·A ≈ 0 (3.64)

and hence the dipole approximation simplifies the term
e

2mc
(
A · p + p ·A

)
≈ e

mc
A · p (3.65)

3.3.2 Final state approach
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Figure 3.6: Universal curve of the inelastic mean
free path (IMFP) for the materials Al,
Cu, Ag, Au.

The most simple approxi-
mation, and one which has
been shown to produce ex-
cellent results for organic
molecules/metals [25], is to
approximate the final state
|ψf 〉 in Eq. 3.62 by a plane
wave. Here, a plane wave
does not include the pos-
sibility of an interaction of
the electron with the mat-
ter. This fact is taken
into account by introducing
an inelastic mean free path
(IMFP) z0 for the electrons
inside the metal. The in-
tensity of excited electrons
which do not interact in-
side the solid decreases ex-
ponentially by the IMFP
into the solid.

I = I0e
− z
z0 (3.66)

The IMFP z0 can be approximately described by a function of the kinetic energy
Ekin of the electron, the so-called universal curve. Fig. 3.6 shows the universal curve
for the materials aluminium, copper, silver and gold taken from [27].
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4 Results
In the first section, the uncovered metal surfaces of aluminium and copper are in-
vestigated. A convergence study with respect to the number of atomic metal layers
forms the heart of the first section. In order to strengthen the significance of the
statements, convergence studies with respect to the k-mesh and with respect to
the vacuum thickness are performed. Apart from surface energies and from work
functions of the studied facets, surface states are determined and several proper-
ties, e.g. the effective electron mass, are calculated. The simulated results are then
compared with selected experimental data. Furthermore photoemission intensity
maps of Cu(110) are calculated within the one-step model. In the second section,
the metallic Ag(110) surface covered by the organic molecule PTCDA (3,4,9,10-
perylene-tetracarboxylic-dianhydride) is considered. As in the first part, the number
of metal layers are varied and photoemission intensity maps are calculated.
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Figure 4.1: Total energy vs. lattice constant of copper and aluminium.

DFT-GGA optimized lattice constant. A simple application of the VASP package
is to calculate the DFT-GGA optimized lattice constants of aluminium (Al) and
copper (Cu). For this purpose, one varies the size of the lattice constant of the
simulated structure, solves for each size the Kohn-Sham equations and plots the
lattice constant versus the total energy leading to the equation of state (Energy vs.
volume). This is a standard method to find theoretical values of the lattice constant
of a compound. Additionally, in Fig. 4.1 the equation of state curves are computed
for various k-meshes. For the lattice constant asim = 3.635 Å, the simulated total
energy of copper reaches its minimum. The experimental value of copper reads
aexp = 3.61 Å. For aluminium one has asim = 4.04 Å and aexp = 4.05 Å. Note that

35



4 Results

for all subsequent calculations of this thesis, the DFT-optimized lattice constants
asim are used.

4.1 Uncovered metal surfaces

4.1.1 Vacuum thickness
When constructing a surface within the repeated slab approach, a vacuum layer has
to be inserted in order to separate adjacent surfaces in the supercell. In order to
determine the appropriate width of this layer, a convergence study is performed. In
Fig. 4.2a the surface energy of a 15 layer Al(100) slab and in Fig. 4.2b the work
function of a 15 layer Al(100) slab is plotted against the vacuum thickness. Since
here the focus is set on the vacuum thickness, the surface energy and the work
function are defined later in Subsec. 4.1.5 and Subsec. 4.1.6. For the subsequent
studies of clean surfaces a vacuum thickness of 12 Å is taken.
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Figure 4.2: Convergence studies of the vacuum thickness.

4.1.2 Number of k-points
As for the vacuum thickness, a brief study about the convergence with respect to
the k-point-sampling is now considered. In Fig. 4.3a and in Fig. 4.3b, the surface
energy and the work function of Al(100) is plotted against the number of k-points
in the first Brillouin zone.
For further studies in this section the used number of k-points is 27x27x19 (27x27x1)

for (100) and (111) bulk (surface) calculations and 27x19x27 (27x19x1) for (110) bulk
(surface) calculations 1.

1 For a (110) facet the ratio |b1|/|b2| =
√

2. In order to obtain an almost square k-mesh, the
number of k-points along b2 is choosen to 19 ≈ 27 · 1√

2 .
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4.1 Uncovered metal surfaces
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Figure 4.3: Convergence studies of number of k-points.

4.1.3 Ionic relaxation

The distances between the ions in a slab such as in Fig. 3.4 need to be modified
because due to the surface the crystal translational symmetry is broken. Particularly
for ions near to the surface, interlayer spacings are expected to relax where typical
changes are in the order of 5% with respect to bulk interlayer distances. The INCAR
file of the ionic relaxation reads

1 SYSTEM = i o n i c r e l a x a t i o n
2
3 PREC = Accurate
4 ENCUT = 400 # plane wave cut−o f f in eV
5 EDIFF = 1E−8 # t o t a l energy sc f−c r i t e r i o n
6
7 EDIFFG = −1E−2 # break cond i t i on f o r i o n i c r e l a x a t i o n
8 IBRION = 2 # take con juga te g r a d i e n t method
9 NSW = 50 # Maximum number o f i o n i c s t e p s

10 POTIM = 0.1 # s c a l i n g cons tant f o r a r e l a x a t i o n s t e p
11 SMASS = −3

The tag EDIFFG=-E-2 guarantees that after the ionic relaxation all forces acting
on the ions have dropped below 0.01 eV / Å. A conjugate gradient method is used
by setting IBRION=2. The corresponding POSCAR file is similar to the one in
Subsec. 3.2.5. The unrelaxed POSCAR file can be constructed via Eqs. 2.24 and
2.25.
Such relaxation calculations are rather time consuming. One has to perform a

self-consistent calculation for every geometric step.
Since the distance between adjacent layers dij converges to material dependent

numbers, one can save much computational time when using the relaxed data from
previous calculations. For example when calculating the ionic relaxed positions for
a N -layer slab and the N − 1 slab has already been relaxed, then one can use the
results of dij of the N − 1-layer slab to construct a pre-relaxed N -layer slab. For
this pre-relaxed slab less geometric steps are needed to reach the desired accuracy
specified by the tag EDIFFG. Such a construction scheme has been used within this
thesis.
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4 Results

After the ionic relaxation has been completed, one can calculate the difference
of the relaxed and the bulk distances dij , where i and j denote the layer number
counted from the top to bottom, respectively.

∆dij ≡ drelaxedij − dbulkij (4.1)

A list of ∆d12 for aluminium and copper facets is given in Tab. 4.1.

Table 4.1: Relative changes in interlayer distances ∆d12 of aluminium and copper.
The absolute values of the Hellmann-Feynman forces on the ions have
dropped below 0.01 eV Å−1.

∆d12 [%]
Number of layers Al(100) Al(110) Al(111) Cu(100) Cu(110) Cu(111)

5 1.96 -6.86 1.61 -3.15 -9.46 -1.01
6 0.90 -9.83 0.64 -3.11 -10.22 -0.81
7 1.62 -8.46 0.68 -3.00 -9.88 -0.80
8 1.02 -7.19 1.40 -2.94 -10.13 -0.96
9 1.58 -5.91 0.95 -2.86 -9.90 -0.86
10 1.50 -7.07 0.65 -2.99 -10.08 -0.90
11 1.82 -8.88 1.14 -2.98 -9.95 -0.86
12 1.75 -8.04 0.94 -3.00 -10.07 -0.90
13 1.78 -6.73 0.81 -3.01 -10.06 -0.86
14 1.54 -7.21 0.87 -2.94 -9.98 -0.90
15 1.46 -7.34 0.93 -3.00 -9.97 -0.89
16 1.51 -8.10 0.79 -3.00 -10.05 -0.88
17 1.33 -7.94 0.88 -3.03 -10.05 -0.88
18 1.42 -7.43 0.94 -3.00 -9.93 -0.86
19 1.37 -7.30 0.81 -3.03 -10.05 -0.87
20 1.43 -7.71 0.86 -3.01 -10.05 -0.88
21 1.44 -7.88 0.94 -3.02 -10.05 -0.86
22 1.46 -7.66 0.85 -3.01 -10.00 -0.86
23 1.44 -7.49 0.86 -3.02 -10.05 -0.88
24 1.41 -7.48 0.94 -3.01 -9.99 -0.85
25 1.42 -7.65 0.81 -3.02 -10.05 -0.87

In Fig. 4.4, the relaxation distances ∆dij in percent between adjacent layers i and
j of the three investigated aluminium facets are plotted. As expected ∆dij tends to
zero for increasing indices i and j. One interesting feature is the sign of ∆dij . For
example the sign of ∆dij of Al(110) alternates with increasing indices. In Fig. 4.5
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4.1 Uncovered metal surfaces

−5

0

5

∆d12 ∆d23 ∆d34 ∆d45 ∆d56 ∆d67 ∆d78 ∆d89

∆
d
ij
[Å

]

Al(100); Al(110); Al(111);

Figure 4.4: Relative changes in interlayer distances ∆dij of 25-layer
Al(100), Al(110), and Al(111) slabs.

the relative relaxation distances ∆dij between adjacent layers i and j of the three
investigated copper facets are plotted. One also notes that relaxations are largest for
the (110) facet which contains the least-coordinated atoms on the surface, the (111)
facet shows the smallest geometrical changes due to the high coordination number
of surface atoms.
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Figure 4.5: Relative changes in interlayer distances ∆dij of 25-layer
Cu(100), Cu(110), and Cu(111) slabs.

4.1.4 Band structure

Consider a unit cell of a bulk system which is constructed by N layers perpendicular
to the z-direction of the unit cell. Within VASP two steps of calculation are needed
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4 Results

to obtain the energy and k-point data for band structures. In the first step, one
has to solve self-consistently the Kohn-Sham equations of the system. In the second
step, one performs a non-self-consistent calculation using the Kohn-Sham potential
and the electron density of the first step. This can be achieved via the VASP-tags
ISTART=1 and ICHARG=11. In the second step, the line mode has to be used to
define the choosen k-path in the file KPOINTS (see Subsec. 3.2.4). Afterwards, the
k-points of the path and the corresponding energy values of the bands are stored into
the file EIGENVAL. In order to get scalar k values for plotting the band structure
one has to use the following algorithm.

Computing a scalar k-path from the file EIGENVAL

Each band (denoted as n) of the band structure stored in the file EIGENVAL can
be considered as a set { (

k1, E
n
k1

)
,
(
k2, E

n
k2

)
, ...,

(
km, Enkm

) }
(4.2)

where m is the number of k-points in the k-path.

1. Step Set the first k-point of the path to zero (or any other constant).

k1 ≡ 0 (4.3)

2. Step Compute the difference vector ∆kj .

∀j ∈ {2, 3, ...,m} : ∆kj ≡ kj − kj−1 (4.4)

3. Step Transform the difference vector from the reciprocal basis into the Cartesian
basis.

∀j ∈ {2, 3, ...,m} : ∆k′j ≡ BTkj (4.5)

where B =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 with the reciprocal lattice vectors bi =


bi1

bi2

bi3

.
4. Step Compute the scalar k-value.

∀j ∈ {2, 3, ...,m} : kj ≡ kj−1 + |∆k′j | (4.6)

Finally, after applying this algorithm for all bands stored in EIGENVAL, one has
obtained a bandstructure which can be plotted using two dimensions only.{ (

k1, E
n
k1

)
,
(
k2, E

n
k2

)
, ...,

(
km, E

n
km
) }

(4.7)
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4.1 Uncovered metal surfaces

Bulk projected bandstructures

When comparing the band structure of a slab calculation with that of the bulk
crystal, one represents the bulk band structure as so-called bulk projected band
structure. Since the kz value is not a good quantum number for the surface due to the
broken translational symmetry at the surface, one plots band structures for a series
of kz values. In practice one has to increase the z-value by sufficiently small steps
from kz = 0 to kz = kz,max ≡ b33/2 and calculate for each kz the band structure,
where b33 is the z-coordinate of the reciprocal lattice vector b3 (see Eqs. 2.34, 2.36,
and 2.38). A k-point with z-component kz = kz,max is located at the edge of the
Brillouin zone. Finally, one can plot all these computed bands together and one has
a bandstructure with ’filled’ bands. Within this method band gaps are easily visible.
For the calculation of the energy bands of the slab calculation (the bands which are
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(b) Bulk projected band structure for
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(c) Bulk projected band structure for
kz ∈ {0, 2/10kz,max}.
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(d) Bulk projected band structure for
kz ∈ {0, 4/10kz,max}.
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(f) Surface band structure of 5 layer
slab compared with the bulk pro-
jected band structure.

Figure 4.6: Band structure generation of Al(100).
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4 Results

plotted overlayed on top of the bulk bands in Fig. 4.6f), one computes the k-path
with kz = 0 only. Afterall, one can plot the bands of the supercell onto the bulk
bands. This is a method to find surface states via bandstructures. A surface state
corresponds to an energy band which is located in a band gap of the bulk projected
bands.
The choosen k-path for the (100) facet is

Γ−X −M − Γ (4.8)

for the (110) facet

S − Y − Γ− S −X − Γ (4.9)

and for the (111) facet

Γ−M −K − Γ (4.10)

These special k-points of the first Brillouin zone have been defined in Subsec. 2.2.4
The three k-paths above are visualized in Figs. 2.4–2.6 by the red lines.
The KPOINTS file for the k-path of a (100) facet, which has been used for

Fig. 4.6f, reads
1 kpo int s for bandstructure G−X−M−G
2 81 # number o f k−p o i n t s o f one l i n e
3 l i n e # swi t ch to l i n e mode
4 r e c i p r o c a l # r e c i p r o c a l coord ina te mode
5
6 0.00000 0.00000 0 .000 1 # Gamma
7 0.50000 0.00000 0 .000 1 # X
8
9 0.50000 0.00000 0 .000 1 # X

10 0.50000 0.50000 0 .000 1 # M
11
12 0.50000 0.50000 0 .000 1 # M
13 0.00000 0.00000 0 .000 1 # Gamma

The second line states that 81 k-points are computed between two specified points.
That’s in total 243 points for each energy band of the (100) facet.
In Figs. 4.7–4.12 the band structures of the three investigated surfaces of alu-

minium and copper are plotted. The bulk energy bands are visualized by the gray
areas. The energy bands of the slab calculation are shown as lines. A brown color is
used for bulk-like bands, that are those which lie on top of areas filled by the bulk
projected bands. Bands which exhibit a pronounced surface state character, i.e.,
which are located in the gaps of the bulk projected bands, are highlighted by the
red lines.
In all bandstructure plots the Fermi energy is set to zero. The Fermi level is

figured by a dashed line.
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4.1 Uncovered metal surfaces
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Figure 4.7: Band structure of a 25-layer Al(100) slab plotted on top of the
bulk projected band structure.
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Figure 4.8: Band structure of a 25-layer Al(110) slab plotted on top of the
bulk projected band structure.
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Figure 4.9: Band structure of a 25-layer Al(111) slab plotted on top of the
bulk projected band structure.
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Figure 4.10: Band structure of a 25-layer Cu(100) slab plotted on top of the
bulk projected band structure.
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4.1 Uncovered metal surfaces
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Figure 4.11: Band structure of a 25-layer Cu(110) slab plotted on top of the
bulk projected band structure.
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Figure 4.12: Band structure of a 25-layer Cu(111) slab plotted on top of the
bulk projected band structure.
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4.1.5 Surface energy

The total energy per molecule/atom of a crystal with a surface differs from the
total energy per molecule/atom of its corresponding infinite crystal (bulk). One can
define the so-called surface energy as this difference. The crystal defined via Fig. 3.4
has two surfaces per unit cell. Taking this into account the surface energy reads

Esurf = 1
2 (Eslab −N · Ebulk) (4.11)

where Eslab is the total energy of the system with the surface, Ebulk is the total
energy per molecule/atom of the bulk system, and N is the number of layers in the
slab. In Fig. 4.13 the surface energies of the investigated surfaces are plotted vs. the
number of layers.
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Figure 4.13: Surface energies of copper and aluminium surfaces.

4.1.6 Work function

The main quantity when considering binding energies of valence electrons in a solid
is the work function which is the minimum energy which is needed to remove an
electron from the crystal surface to the vacuum. For metals the Fermi energy EF
equals the energy of the highest occupied state. The work function is defined through

Φ = Evac − EF (4.12)

Fig. 4.14 shows the plane-averaged 2 electro-static potential for a Al(100) slab con-
sisting of 10 atomic layers. For comparison, also the plane-averaged total potential,
i.e., electro-static potential plus exchange-correlation potential is shown [28]. The

2 ’Plane-averaged’ means that for each point z the energy potential is arithmetically averaged
over the x, y-plane inside the supercell.
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4.1 Uncovered metal surfaces

exchange-correlation energy does not contribute to the vacuum energy potential. In
Fig. 4.15 the work functions of the investigated surfaces are plotted vs. the number
of layers.
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Figure 4.14: Comparison of the total potential with and without the
exchange-correlation potential of a 10 layer Al(100) slab.

0 5 10 15 20 25
3.8

4

4.2

4.4

4.6

4.8

4.26

4.06

4.5
4.38

4.78

Number of layers

W
or
kf
.

Φ
[eV

]

Cu(110); Cu(100); Cu(111); Al(110); Al(100); Al(111)

Figure 4.15: Work functions of copper and aluminium surfaces.
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4.1.7 Electron density
In VASP the electron (charge) density is stored into the file CHGCAR. Consider for
example a CHGCAR file computed for a 5-layer Al(100) slab.

1 Al100 s u r f a c e
2 1.0000000000000000
3 2.856711 0.000000 0.000000
4 0.000000 2.856711 0.000000
5 0.000000 0.000000 20.080000
6 Al
7 5
8 Di rec t
9 0 .000000 0.000000 0.795572

10 0.500000 0.500000 0.898145
11 0.000000 0.000000 0.000000
12 0.500000 0.500000 0.101855
13 0.000000 0.000000 0.204428
14
15 40 40 280
16 −.15139436439E+01 −.99353103102E+00 0.54057079040E+00 . .
17 . .

In lines 2–5, a scaling factor and the lattice vectors are stored. In lines 9–13 the
positions of the ions are stored. In line 15 the numbers n1, n2, and n3 are stored
which define the three-dimensional grid on which the density is calculated. At n1
equidistant points along the first lattice vector, at n2 equidistant points along the
second lattice vector, and at n3 equidistant points along the third lattice vector
the charge density has been calculated. Then starting from line 16, the n1 · n2 · n3
electron density values are stored. The fastest index is that along the first lattice
vector, the slowest index is that along the third lattice vector. One can read the
values for example with a ’C++’ program using the following code.

1 . .
2
3 char f i l ename [ ]= "CHGCAR" ;
4
5 // read from f i l e CHGCAR
6 i f s t r e a m myf i l e ( f i l ename ) ;
7 i f ( my f i l e . is_open ( ) )
8 {
9

10 // read f i r s t l i n e
11 g e t l i n e ( myf i l e , l i n e ) ;
12
13 // read s c a l e f a c t o r
14 myf i l e >> s c a l e ;
15
16 // read l a t t i c e v e c t o r s
17 myf i l e >> a11 ;
18 myf i l e >> a12 ;
19 myf i l e >> a13 ;
20 myf i l e >> a21 ;
21 myf i l e >> a22 ;
22 myf i l e >> a23 ;
23 myf i l e >> a31 ;
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4.1 Uncovered metal surfaces

24 myf i l e >> a32 ;
25 myf i l e >> a33 ;
26
27 // compute l e n g t h o f v e c t o r s
28 a1=s q r t ( a11∗a11 + a12∗a12 + a13∗a13 ) ;
29 a2=s q r t ( a21∗a21 + a22∗a22 + a23∗a23 ) ;
30 a3=s q r t ( a31∗a31 + a32∗a32 + a33∗a33 ) ;
31
32 // volume o f c e l l ( a1 x a2 ) ’ . a3
33 vo l=( a12 ∗ a23 − a13 ∗ a22 ) ∗ a31 + ( a13 ∗ a21 − a11 ∗ a23 ) ∗ a32 +

( a11 ∗ a22 − a12 ∗ a21 ) ∗ a33 ;
34
35 // area | a1 x a2 |
36 xyarea=s q r t ( ( a12 ∗ a23 − a13 ∗ a22 ) ∗ ( a12 ∗ a23 − a13 ∗ a22 ) + (

a13 ∗ a21 − a11 ∗ a23 ) ∗ ( a13 ∗ a21 − a11 ∗ a23 ) + ( a11 ∗ a22 −
a12 ∗ a21 ) ∗ ( a11 ∗ a22 − a12 ∗ a21 ) ) ;

37
38 // read f u r t h e r l i n e s , depends on number o f l a y e r s
39 g e t l i n e ( myf i l e , l i n e ) ;
40
41 . .
42
43 // read number o f p o i n t s s t o r e d a long the l a t t i c e v e c t o r s
44 myf i l e >> n1 ;
45 myf i l e >> n2 ;
46 myf i l e >> n3 ;
47
48 // read e l e c t r o n d e n s i t y
49 for ( int k=0; k<n3 ; k++){
50 for ( int j =0; j<n2 ; j++){
51 for ( int i =0; i<n1 ; i++){
52 // read va lue
53 myf i l e >> dens i ty [ i ] [ j ] [ k ] ;
54 }
55 }
56 }
57
58 // c l o s e f i l e
59 }
60 myf i l e . c l o s e ( ) ;
61
62 . .

Now one can compute the average electron density which is equal to the number of
valence electrons in the unit cell divided by the cell volume.

Nvalence/V ≡ n = 1
V

∫
V
n(x, y, z)dxdydz (4.13)

where V is the unit cell volume. One can further calculate the average electron
density as a function of z.

n(z) = 1
A

∫
A
n(x, y, z)dxdy (4.14)

where A = |a1 × a2| is the area spanned by the first and second lattice vectors. In
numerical implementations one has to replace the integral by a sum over all points
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with the same z. In this case the average electron density reads

n(z) = 1
A

∑
x,y

n(x, y, z)∆x∆y (4.15)

with ∆x = |a1|
nx

and ∆y = |a2|
ny

, where nx and ny are the number of points along the
first and second lattice vectors.
In Fig. 4.16 the average electron densities n(z) of Al(110), Al(100), and Al(111)

slabs, each consisting of 25 layers, are plotted. The gray area pictures the average
positive ionic background charge (jellium model). In order to have a reference posi-
tion, for all densities in this plot, the unrelaxed z-position of the surface layer is set
to zero. One can notice that the ordering of the densities reaching into the vacuum
is from Al(111), Al(100) to Al(110). In fact, this is exactly the reverse ordering of
the xy-area per ion sizes

Axy110 = 1√
2
a2 > Axy100 = 1

2a
2 > Axy111 =

√
3

4 a2 (4.16)

The area per ion Axy is a measure how close the ions are packed within the corre-
sponding layer.
Analogously, in Fig. 4.17 the average electron densities n(z) for 25 layer slabs of

Cu(110), Cu(100), and Cu(111) are plotted. As for aluminium, the ordering of the
densities reaching into the vacuum is from Cu(111), Cu(100) to Cu(110).
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Figure 4.16: Comparison of the electron charge densities of Al(100),
Al(110), and Al(111) slabs consisting of 25 layers.
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Figure 4.17: Comparison of the electron charge densities of
Cu(100), Cu(110), and Cu(111) slabs consisting of 25
layers.

4.1.8 Surface states
The surface states have been identified by plotting the calculated energy bands of
a N -layer slab on top of the bulk projected bandstructure. In Tabs. 4.2 and 4.3, a
list of surface states has been determined via using the bandstructures of Figs. 4.7–
4.12. In order to confirm that a state is indeed a surface state, we visualize the

Table 4.2: Energy and k-point positions of surface states of alu-
minium. There are labels defined for some surface states.

Al(100) Al(110) Al(111)
at k-point E − EF [eV] at k-point E − EF [eV] at k-point E − EF [eV]

(label)
Γ -2.72 S -0.22 K (K1) -0.63
X 1.78 X -2.79 K (K2) 8.14

wavefunction or the density contribution of the state. As defined in Sec. 2.3, the
amplitude of the wavefunction (and of the electron density) of the surface state
has to decrease into the metal, otherwise it is not a surface state, but a bulk or a
resonance state. In Fig. 4.18 the electron density of the surface state at the S point
of Al(110) is plotted. One can see the exponential decay from the surface into the
metal. All other surface states listed in Tabs. 4.2 and 4.3 have a similar behaviour.
Some of them, for example X2 and M of Cu(100), are so strongly confined to the
topmost layer that only one peak is visible.
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Table 4.3: Energy and k-point positions of surface states of copper.
There are labels defined for some surface states.

Cu(100) Cu(110) Cu(111)
at k-point E − EF [eV] at k-point E − EF [eV] at k-point E − EF [eV]
(label) (label) (label)

Γ -4.73 S 6.70 Γ -0.48
M -1.14 X (X1) 1.69 K (K1) -3.76

X (X1) -4.21 X (X2) 4.95 K (K2) -3.58
X (X2) -0.06 Y (Y 1) -4.49 K (K3) -3.07
X (X3) 3.19 Y (Y 2) -0.53 K (K4) -2.70

Y (Y 3) 1.52 K (K5) -2.67
K (K6) -2.11
K (K7) 3.67
K (K8) 4.30
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Figure 4.18: Electron density per cell volume of the surface
state at the S point of Al(110). The vertical dot-
ted lines depict the z-positions of the layers. Addi-
tionally, the total electron density is plotted. The
right ordinate labels the density for the surface
state and the left ordinate labels the total density.
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4.1.9 Splitting energy

In Fig. 4.19 a surface state of the surface Al(110) at the S-point is plotted. Here,
the energy band of the surface state is shown for several numbers of layers. One
can notice that there are in fact two surface state bands, one one arising from the
top, the other from the bottom surface of the slab. As long as the slab thickness is
smaller than the vertical decay rate of the surface state, these two states will interact
with each other and their energies will split forming a bonding and an anti-bonding
combination, respectively. The vertical distance between the energy values of both
surface bands at the S point decreases exponentially for a linear increase of the
numbers of layers. This vertical distance is the so-called splitting energy of the two
energy bands. The exponential decay gives another characteristic of the speed of
convergence.
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Figure 4.19: Surface state at the S-point of Al(110).

In Fig. 4.20 splitting energies of surface states of Al(100) and Al(110), in Fig. 4.21
splitting energies of surface states of of Al(111) and Cu(100), and in Fig. 4.22 split-
ting energies of surface states of of Cu(110) and Cu(111) are plotted.
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Figure 4.20: Splitting energy of surface states of Al(100) and Al(110).
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Figure 4.21: Splitting energy of surface states of Al(111) and Cu(100).
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Figure 4.22: Splitting energy of surface states of Cu(110) and Cu(111).

4.1.10 Effective electron mass

The energy of a free electron reads

E(k) = ~k2

2me
. (4.17)

In the vicinity of a point k0 in the Brillouin zone, where a Shockley surface state is lo-
cated, one can approximately describe the two-dimensional dispersion by a parabola

E(k) = E(k0) + ~ (k− k0)2

2m∗ , (4.18)

where m∗ ≡ m̃ ·mele is the effective electron mass. In order to compute the effective
electron mass, a parabola is fitted into selected data points of the energy band of
the surface state. In this thesis, the Levenberg-Marquardt algorithm has been used
for the fit [29, 30]. The number of selected points for the parabolic fit is 5. However,
as discussed in Sec. 4.1.9, there are always two energy bands for one surface state.
Hence the effective mass has been computed for both, the lower and the upper band.
One has to take into account that in general the effective electron mass is anisotropic.
For this very reason the direction is specified, e.g. Γ → X, which means that the
surface state is located at the Γ point and the direction is towards the X point.
Two parameters have been used for the parabolic fit

E(k) = E0 + E1 · k′2, (4.19)

namely E0 and E1. The parameter k0 can directly be taken from the energy band,
hence one can shift k′ = k − k0. In Fig. 4.23 a plot of such a fit is given. In order
to point out the parabolic character of the surface band, all used data points except
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the minimum are reflected about the ordinate. However, although there is no need,
since in the fitting function the linear term is dropped, the reflected data points
have been used in the fit too.
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Figure 4.23: Parabolic fit into data points of a surface state
energy band at the Γ point towards the X
point of a 25-layer Al(100) slab.

In Fig. 4.24a the effective electron masses of the upper and lower energy bands of
the surface state at Γ of Al(100) are plotted vs. the number of layers. To consider
possible direction-dependences, two directions, Γ→M and Γ→ X, have been used.
However, the effective electron mass of this surface state has no anisotropic char-

acter due to the 4-fold symmetry of the (100) surface.
In Fig. 4.24b the effective electron masses of the upper and lower energy bands in

the direction X → S of the surface state at X of Al(110) are plotted vs. the number
of layers. One can notice, that for a small number of layers the effective electron
mass depends upon whether the number of layers is even or odd. For increasing
number of layers this effect vanishes.
In Fig. 4.25a, the effective electron masses of the upper and lower energy bands

and in both directions, K1 → Γ and K1 →M , of the surface state at K1 of Al(111)
is plotted vs. the number of layers. The convergence of the effective electron mass
is rather slow, but nevertheless one can state that the effective electron mass of this
surface state is different for the two investigated directions.
For copper, a more extensive list of surface states has been found. For that

reason in Fig. 4.25b only the lower energy bands have been used. In contrast to
all other effective energy masses of Cu(100), the effective electron mass at Γ shows
no anisotropic character as expected due to symmetry. One has to notice that the
range of the ordinate is larger than those of the plots of the aluminium facets, so
there is a larger spread in values.
In Fig. 4.26a the effective electron masses of the surface states of Cu(110) are
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Figure 4.24: Effective electron mass m̃ = m∗/m of surface states of
Al(100) and Al(110).

plotted vs. the number of layers. As for Al(110) one can notice, that for a small
number of layers some effective electron masses depend on whether the number of
layers is even or odd. In Fig. 4.26b the effective electron mass of the surface states
Γ, K7, and K8 are plotted. While for the surface states at K the effective electron
masses have anisotropic behaviours, the effective electron mass of the surface state
at Γ is isotropic. To summarise the investigation on the effective electron masses,
all converged values are given in Tab. 4.4.
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Figure 4.25: Effective electron mass m̃ = m∗/m of surface states of
Al(111) and Cu(100).
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Figure 4.26: Effective electron mass m̃ = m∗/m of surface states of
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Table 4.4: Effective electron masses of surface states of aluminium and copper.

material k-point E − EF [eV ] direction m̃ = m∗/m

Al100 Γ -2.72 Γ→M 1.09
Γ→ X 1.09

X 1.78 X → Γ 0.05
X →M 1.11

Al110 S -0.22 S → X 0.11
X -2.79 X → S 1.13

Al111 K -0.63 K → Γ 0.3
K →M 0.9

Cu100 Γ -4.73 Γ→M 1.77
Γ→ X 1.77

X -4.21 X → Γ 0.65
X →M 2.66

X -0.06 X → Γ 0.06
X →M 0.60

X 3.19 X → Γ 0.79
X →M 1.62

Cu110 S 6.70 S → X 0.08
X 1.69 X → Γ 0.17

X → S 0.43
X 4.95 X → Γ 1.16

X → S 1.08
Y -4.49 Y → Γ 1.60

Y → S 1.42
Y -0.53 Y → Γ 0.18

Y → S 0.24
Y 1.52 Y → Γ 0.7

Y → S 0.84
Cu111 Γ -0.48 Γ→ K 0.31

Γ→M 0.31
K 3.67 K → Γ 0.07

K →M 0.15
K 4.30 K → Γ 0.23

K →M 0.47
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4.1.11 Decay depth
Another characteristic property of a surface state is the exponential decay rate of
the amplitude of the electron density, respectively, the electron wavefunction (see
Sec. 2.3 where surface states are introduced). One can define a so-called decay depth
z0 of the envelope curve

nenvelope(z) = a1 exp{−z/z0} (4.20)

of the electron density. Taking into account that an N -layer slab has two surfaces,
in this thesis a linear combination of two exponential functions is considered, thus

nenvelope(z) = a1 exp{−z/z0}+ a2 exp{z/z0}. (4.21)

Here, the z-coordinates are translated such that z = 0 is located in the middle of the
slab. As already noted, for the effective electron mass, the Levenberg-Marquardt
algorithm has been used for the non-linear fit. The fitting parameter of Eq. 4.21 are
z0, a1, and a2. The used initial values are z0 = 10, a1 = 1, and a2 = 1. To avoid
the fact that nenvelope(z; z0, a1, a2) ≡ nenvelope(z; z0 → −z0, a1 → a2, a2 → a1), the
constraints z0, a1, a2 ≥ 0 have been used. In Fig. 4.27 such a fit of the decay depth
of a surface state of Al(111) is plotted.
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Figure 4.27: Non-linear fit for the decay depth of a surface state of
Al(111). The surface state is located at the K point
and at the energy 0.62 eV below the Fermi level. The
data of a 23-layer slab is shown.

In Fig. 4.28 the decay depths of surface states of Al(100) and Al(110) are plotted
vs. the number of layers. Compared to other quantities such as the effective electron
mass, the decay depth has a slower convergence with respect to the number of layers.
An example is the decay depth of the surface state at Γ of Al(100), where for 25
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layers the value is not converged yet. For the decay depths of Al(110) one can
notice, that for a small number of layers the decay depth depends slightly upon the
fact whether the number of layers is even or odd. The layer sequence for the (110)
surface is ABAB.. . For increasing number of layers this effect vanishes. However,
for the surface state at X convergence is rather slow.

5 10 15 20 25
4

6

8

10

Number of layers

D
ec
ay

de
pt
h
[Å

]

Γ lower band; Γ upper band;
X lower band; X upper band

(a) Decay depths of surface states at Γ
and X of Al(100).

10 15 20 25
2

4

6

8

10

Number of layers

D
ec
ay

de
pt
h
[Å

]

S lower band; S upper band;
X lower band; X upper band

(b) Decay depths of surface states at S
and X of Al(110).

Figure 4.28: Decay depths of surface states of Al(100) and Al(110).

In Fig. 4.29 the decay depths of surface states of Al(111) and Cu(100) are plotted
vs. the number of layers. The decay depths of Al(111) depend slightly upon the fact
whether the modulo operation ’N mod 3’ of the number of layers is zero, one or two,
i.e. that the decay depths for N = 8, 11, 14, .. has a slightly different behaviour than
those for N = 9, 12, 15, .. and those for N = 10, 13, 16, .. . The layer sequence for the
(111) surface is ABCABC.. . For increasing number of layers this effect vanishes.
In Fig. 4.30 the decay depths of surface states of Cu(110) and Cu(111) are plotted

vs. the number of layers. A list of the calculated decay depths is given in Tab. 4.5.
The corresponding energy values can be used to find the surface states in the band
structures in Figs. 4.7–4.12.
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Figure 4.29: Decay depths of surface states of Al(111) and Cu(100).
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Figure 4.30: Decay depths of surface states of Cu(110) and Cu(111).
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Table 4.5: Decay depths of surface states of aluminium and copper.

material k-point E − EF [eV ] Decay depth [Å]

Al100 Γ -2.72 12.0
X 1.78 7.4

Al110 S -0.22 4.5
X -2.79 10.0

Al111 K -0.63 4.8
K 8.14 7.7

Cu100 Γ -4.73 2.4
X -4.21 2.4
X 3.19 2.1

Cu110 S 6.70 3.0
X 1.69 4.6
X 4.95 1.7
Y -0.53 3.6
Y 1.52 2.3

Cu111 Γ -0.48 3.7
K 3.67 3.4
K 4.30 3.0

4.1.12 Photoemission intensity

Another possibility to find surface states, is to consider photoemission intensities.
In this thesis the photoemission intensity has been calculated within the one-step-
model and applying the dipole approximation. Therefore Eq. 3.62 has been used. In
numerical applications the Dirac delta functional has to be replaced by a distribution
function, e.g. the normal distribution.

f(x) = 1
σ
√

2π
exp

{
−(x− x0)2

2σ2

}
(4.22)

The delta functional of Eq. 3.62 reads

δ
(
Ei + Φ + Ekin − ~ω

)
(4.23)

Since the polar emission angle, the azimuthal emission angle, and the kinetic energy
Ekin can be transformed into a wavevector basis kx, ky, and kz, the argument of the
delta functional depends on the energy and the wavevector. Hence the broadening of
the delta functional has to be performed in direction of the energy and in the three
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directions of the wavevector k. The broadening parameter is σ, σE for the energy
broadening and σkx , σky , and σkz for the wavevector broadening. Furthermore a
final state approach, described in Subsec. 3.3.2, has been applied. The universal
curve visualized in Fig. 3.6 has been used to determine the inelastic mean free path
IMFP.

In Fig. 4.31 the photoemission intensity of Cu(110) along the k[001]-axis is plotted.
The parameters in the calculation are ~ω = 30 eV, σk[001] = 0.02 Å−1 , σE = 0.02
eV, and IMFP = 10 Å. The red curves in the figure picture three surface states at
the k-point Y . The surface states at EB = −1.52 eV and EB = 4.49 eV are rather
good visible in the contour plot of the photoemission intensity. In contrast to these
states, the surface state at EB = 0.53 eV is very close to the bulk projected bands.
In order to specify this dispersion as a surface state in the photoemission intensity
plot, it is needed to increase the number of points in the k-grid. For the calculation
a Monkhorst-Pack meshgrid of 54x38x1 k-points has been used.

Figure 4.31: Photoemission simulation: E-vs-k-plot along the k[001]-
axis of a 25-layer Cu(110) slab. For the calculation
a Monkhorst-Pack grid of 54x38x1 k-points has been
used. Additionally, energy bands from Γ to Y are plot-
ted on top of the photoemission intensity. The red
curves denote surface states at Y .
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In Fig. 4.32 the photoemission intensity of Cu(110) along the k[110]-axis is plotted.
The parameters in the calculation are ~ω = 30 eV, σk[110]

= 0.02 Å−1 , σE = 0.02
eV, and IMFP = 10 Å. A Monkhorst-Pack grid of 54x38x1 k-points has been used.
The red curves in the figure picture two surface states at the k-point X. The surface
states are located at the binding energies EB = −1.69 eV and EB = −4.95 eV.

Figure 4.32: Photoemission simulation: E-vs-k-plot along the k[110]-
axis of a 25-layer Cu(110) slab. For the calculation
a Monkhorst-Pack grid of 54x38x1 k-points has been
used. Additionally, energy bands from Γ to X are plot-
ted on top of the photoemission intensity. The red
curves denote surface states at X.
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4.1.13 Summary of results
In Tab. 4.6 the surface energies and the work functions of the investigated surfaces
are summarized. The results are compared to available experimental data, where a
good agreement can be reached. The calculated work functions and surface energies
tend to have slightly smaller values than those of the corresponding experimental
values. The work functions of copper have a decreasing ordering from Cu(111),
Cu(100) to Cu(110). Notice that in Fig. 4.17, the densities reaching into the vacuum
have the same ordering. This is also expected for aluminium, but, however, Al(111)
has a smaller work function than Al(110), for both, experimental and simulated data.
For the surface energies, as expected, both materials have a decreasing ordering from
(110), (100) to (111).
One can notice that in Tab. 4.7 the energy band positions, the effective electron

masses, and the decay depths of the surface states are in a good agreement with
experiments. Most energies of the surface states tend to have slightly smaller values
than those of the corresponding experimental values. The slight energy shift of the
energy bands is characteristic for DFT-GGA calculations.
Due to the symmetric property of the Γ point, all calculated effective electron

masses at this special point are isotropic. Note that all other effective masses are
anisotropic.

Table 4.6: Surface energy and work function of facets of Cu and Al.

workf. Φ[eV ] surf. energy [eV ]

material this work exp. this work exp.

Al100 4.26 4.41 [31] 0.48

Al110 4.06 4.28 [31] 0.72 0.81 [32]

Al111 4.06 4.24 [31] 0.36

Cu100 4.50 4.59 [33] 0.59

Cu110 4.38 4.38 [33] 0.89

Cu111 4.78 4.94 [33] 0.46 0.64 [24]
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4.1 Uncovered metal surfaces

Table 4.7: Energy, effective mass and decay depth of selected surface states.

E − EF [eV ] m̃ = m∗/m decay
depth [Å]

material k-point this work exp. direction this w. exp. this w.

Al110 S -0.22 -0.2 [34] S → X 0.11 4.5
X -2.79 -2.7 [34] X → S 1.13 10.0

Al100 Γ -2.72 -2.8 ± 0.2 [35] Γ→M 1.09 1.07 [36] 12
Γ→ X 1.09 1.07 [36]

X 1.78 X → Γ 0.05 7.4
X →M 1.11

Al111 K -0.63 -0.7 [35] K → Γ 0.3 0.32 ± 0.06 [37] 4.8
K →M 0.9

Cu110 Y -0.53 -0.51 [2] Y → Γ 0.18 0.26 [2] 3.6
Y → S 0.24

Y 1.52 1.8 ± 0.2 [38] Y → Γ 0.7 0.8 ± 0.2 [38] 2.3
Y → S 0.84

X 4.95 5.4 ± 0.3 [38] X → Γ 1.16 2.0 ± 0.2 [38] 1.7
X → S 1.08

Cu100 Γ -4.73 Γ→M 1.77 2.4
Γ→ X 1.77

X -0.06 -0.06 [39] X → Γ 0.06 0.16 [39]
X →M 0.60

Cu111 Γ -0.48 -0.44 [2] Γ→ K 0.31 0.38 [2] 3.7
Γ→M 0.31 0.38 [2]
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4.2 Organic/metal interfaces

In this section, the interface of a monolayer comprised of organic molecules with a
metallic surface is investigated. First, the molecule is introduced and a possible unit
cell of the system is defined. Second, a convergence study with respect to the number
of k-points and with respect to the number of substrate layers is performed. Then
the photoemission intensity for a freestanding monolayer of molecules and for the
covered substrate is calculated by using the one-step model - see Eq. 3.62. Finally
the energy positions of two surface states of the system are investigated. To this
end, photoemission intensity maps of the molecule-metal system are compared to
the bandstructure of the clean metal.

4.2.1 Supercell of PTCDA on Ag(110)

The investigated material is a silver surface, Ag(110), covered with a monolayer of
perylene-tetracarboxylic-dianhydride (PTCDA). This molecule/metal interface has
attracted considerable interest over the last years and has been intensively studied,
both, experimentally and theoretically [40, 41, 7, 8, 42]. A PTCDA molecule consists
of 24 carbon (C) atoms, 8 hydrogen (H) atoms and 6 oxygen (O) atoms. To realize a
DFT calculation of this system, its supercell has to be constructed. The choice of the
supercell is taken from [41]. In Fig. 4.33 some views of the supercell are given. The
supercell vectors are pictured as black arrows where a denotes the lattice parameter
of silver for which we took the theoretical value a = 4.16 Å.
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1

 (4.24)

The height of the supercell is

h0 = (N − 1) ·∆h0 + ∆hPTCDA + hvac (4.25)

where N is the number of atomic silver layers, ∆h0 = a
2
√

2 is the (bulk) distance
of adjacent substrate layers, ∆hPTCDA is the distance between the topmost sub-
strate layer and the PTCDA-layer, and hvac is the thickness of the vacuum. In the
simulations the thickness of the vacuum was choosen to be hvac = 16 Å.
As copper and aluminium, silver has a fcc structure. Hence, the layer sequence of

Ag(110) is ABAB.. In contrast to the supercells of the clean metals in the first part
of chapter 4, now one layer consists of 12 metal atoms instead of one. The x− and
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y−positions of the twelve Ag-atoms of layer A are as follows(3a
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The x− and y−positions of the twelve Ag-atoms of layer B are(
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A relaxation of the first two layers at the surface connected to the molecule-monolayer
is performed by using 5 substrate layers in total. This relaxed distances are taken
for all other supercells with different number of substrate layers in order to avoid
geometrical effects and to highlight effects due to the variation of the number of sub-
strate layers. The relaxed geometries for the PTCDA molecule are taken from [8].
A visualization of the supercell for a 15-layer Ag(110) slab, covered with a PTCDA
monolayer, is given in Fig. 4.33. The unit cell vectors are displayed by the black
arrows. The directions [111] and [111] of the unit cell vectors denoted in Fig. 4.33a
refer to the silver (110) layers, which are defined in Fig. 2.2h.

[11 1]
[111]

[110]

[001]

(a) Top view.

[110]

[001]

(b) Side view.

[11 1] [111]

[110]

(c) Diagonal view.

Figure 4.33: PTCDA on Ag(110).
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4.2.2 Density of states (DOS)

In this subsection a convergence study is performed in order to find out how many
k-points are needed to obtain converged density of states (DOS) curves. Fig. 4.34
shows the DOS of a free standing PTCDA monolayer and the projected DOS (pDOS)
of a PTCDA monolayer on 5 Ag(110) layers. Here, the pDOS is the contribution to
the DOS from the PTCDA ions only. The black dashed line indicates the energy of
the highest occupied molecule orbital (HOMO) respectively at the former highest
occupied molecule orbital (FHOMO). The red dashed line indicates the energy of the
lowest unoccupied molecule orbital (LUMO) respectively at the former lowest unoc-
cupied molecule orbital (FLUMO). We see that the DOS of the free-standing layer
is already converged with a k-grid of 6x6x1. Similarly, also the PTCDA/Ag(110)
interface exhibits a converged pDOS spectrum when using a 6x6x1 k-grid. We note
that already for a 3x3x1 k-grid, reasonably converged results can be expected.
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(b) 5 layers Ag(110) covered with PTCDA.

Figure 4.34: pDOS of PTCDA on Ag(110).

In addition to the convergence with respect to the number of k-points, we have also
studied the convergence of the pDOS spectrum with respect to the number of metal-
lic layers. We have varied the number of Ag-layers from 4–25 layers and evaluated
the pDOS (Fig. 4.35). Note that all calculations are based on the relaxed adsorption
geometry obtained for the 5-layer slab [8], and that Ag-layers have simply be added
at the bottom of the slab by assuming the bulk layer spacings. While the shape
and position of the HOMO-related peak in the pDOS shows a weak influence on
the number of Ag-layers, there is a strong layer-dependence for the FLUMO-feature
shown in Fig. 4.35. In particular, we observe a pronounced ’even-odd’ dependence:
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4.2 Organic/metal interfaces

While the FLUMO seems to consists of three distinct peaks for the odd number of
layers, particularly, in the range from 5–11, the pDOS for the even-numbered slabs
always exhibits only one peak.
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Figure 4.35: pDOS of PTCDA on Ag(110) at FLUMO.
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In Fig. 4.36 the values of (F)HOMO and (F)LUMO in terms of the binding energy
against the number of substrate layers are plotted.
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Figure 4.36: Binding energy of (F)HOMO and (F)LUMO of PTCDA on Al(110).

4.2.3 Work function
The supercell depicted in Fig. 4.33 is an asymmetric slab, i.e., the PTCDA-monolayer
is only on one side which implies different work functions on each side. This can
lead to a convergence problem in the Kohn-Sham algorithm because due to periodic
boundary conditions on the supercell, the potential at an arbitrary point on the
boundary must be equal to its opposite point. Introducing a dipole in the vacuum
area does solve this problem [28]. In VASP this method is already implemented.
The use of the dipole correction scheme is easily done by setting the corresponding
VASP-tags.

1 IDIPOL=3
2 LDIPOL=.TRUE.

The tag LDIPOL=.TRUE. switches on the potential correction mode. The tag
IDIPOL=3 switches on the monopole, dipole and the quadrupole corrections. An-
other optional tag is the DIPOL-tag which specifies the position of the dipole in
the supercell. If this tag is not set, then VASP places the dipole where the elec-
tron charge density averaged over a plane (xy-plane) has a minimum, that is in the
middle of the vacuum layer.
Fig. 4.37 shows the plane-averaged electro-static potential of a 15 layer Ag(110)

slab covered with a PTCDA-monolayer. The vertical dashed lines display the z-
positions of the metal layers and the z-position of the PTCDA layer. Φ0 is the
work function of the unrelaxed clean metal surface and Φ is the work function of
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4.2 Organic/metal interfaces

the covered metal surface. The work function Φ is needed for further photoemission
calculations. Moreover, one can notice the small step of the potential in the vacuum
at z ≈ 32 Å, which is a consequence of the added dipole layer. In Fig. 4.38 the
work function Φ against the number of substrate layers is plotted. As for the pDOS,
the values appear to oscillate between even and odd numbers of layers before a
convergence is reached.
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Figure 4.37: Hartree potential plus core-potential of PTCDA on 15 layers Ag(110).
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Figure 4.38: Work function of PTCDA on Ag(110).
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4.2.4 Photoemission intensity

Due to the adsorbed PTCDA molecule, the number of Ag(110) atoms in the unit cell
is set to 12. While for the clean Ag(110) surface a band structure plot is useful, the
bandstructure for the PTCDA/Ag(110) interface would be difficult to interpret due
to multiple band-folding into the much reduced Brillouin zone of the supercell. By
calculating the photoemission intensity, more insights into the electronic structure
of the interface can be gained and a better comparison with experimental data is
enabled. To this end, we have computed the ARPES intensity within the one-step
model of photoemission as described in Sec. 3.3 given by Eq. 3.62.
Before we analyse results for the PTCDA/Ag(110) interface, we compute the

ARPES intensity for a freestanding layer of PTCDA molecules. Note that for these
calculations the geometry of the PTCDA layer is frozen in the state which it exhibits
when it is adsorbed. Fig. 4.39 and 4.40 show momentum maps at the HOMO and
LUMO energy, respectively. A momentum map displays the angular distribution of
the photo-current at a fixed binding energy. In these figures, we show two sets of
experimental data taken from Refs. [7, 8] and compare them to simulated momen-
tum maps for a free-standing layer of PTCDA. For these simulations, the following
parameters have been used: ~ω = 30 eV, σk[001] = σk[110]

= 0.1 Å−1, σE = 0.1 eV,
and IMFP = 10 Å. We note an overall good agreement between the experimental

(a) Experiment of PTCDA on
Ag(110) taken from [7].

(b) Left semi-circle: Simulation
of a free PTCDA monolayer.
Right semi-circle: Experiment
of PTCDA on Ag(110) taken
from [8].

Figure 4.39: Photoemission intensity maps of PTCDA on Ag(110)
at (F)HOMO.

and theoretical momentum maps, in particular for the HOMO. On closer inspection,
the experimental map for LUMO, in particular the data taken from Ref. [7], exhibits
an additional peak at normal emission, that is at the center k[001] = k[110] = 0, while
the other experiment (the right semi circle in Fig. 4.40b) does not show such a peak
at k[001] = k[110] = 0 [8]. In Ref. [7], it was argued that a possible origin for this
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4.2 Organic/metal interfaces

peak could be the hybridization between the LUMO and metallic states. It must
be noted that due to different experimental geometries in the two experiments, the
polarization factor appearing in the formula of the one-step-model may explain the
discrepancy in the two sets of experimental data with respect to this normal emission
feature.

(a) Experiment of PTCDA on
Ag(110) taken from [7].

(b) Left semi-circle: Simulation
of a free PTCDA monolayer.
Right semi-circle: Experiment
of PTCDA on Ag(110) taken
from [8].

Figure 4.40: Photoemission intensity maps of PTCDA on Ag(110)
at (F)LUMO.

In order to clarify whether, this normal emission peak indeed arises from hybridiza-
tion, we have also simulated the photoemission intensity for the PTCDA/Ag(110)
interface within the one-step model. In addition to constant binding energy (CBE)
momentum maps, we have also computed band maps, that is, maps of the pho-
toemission intensity as a function of binding energy and parallel momentum vector
for a fixed emission plane. Fig. 4.41 shows such band maps for an emission plane
which is rotated by 32◦with respect to the k[001] axis (note that this emission plane
is highlighted in Fig. 4.43a). The left panel displays experimental data while the
middle and right panels show simulated maps for PTCDA adsorbed on a 14 and
15 layer slab, respectively. The reason for taking a 32◦ rotated plane is that under
such an angle peaks from both, the FHOMO and FLUMO, can be obtained in one
band map. Note that the HOMO orbital has nodal planes both along the x and
y direction, so no significant photoemission intensity is to be expected for these
emission directions. One can clearly identify the three molecular features denoted
as M1, M2 and M3 in Ref. [8] also in the simulated band maps, where M1 refers to
the FLUMO, M2 to the HOMO, and M3 to a set of 4 π-orbitals. When comparing
simulated results for 14 and 15 layers of Ag atoms, we observe the same tendency
as has already observed for the pDOS. An even number of layers gives rise to only
one peak for the FLUMO, while for the odd number of layers, the FLUMO splits
into three peaks. In comparison to experiment, both simulations show stronger con-
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tributions from the substrate sp bands, in particular parabolic-like bands around
the Γ point in the binding energy range from 0 to 3 eV at k‖ = 0. The number
and energy position of these silver-derived bands strongly change with the number
of silver layers. We have performed a convergence study with respect to the num-
ber of layers which reveals that the number of such silver bands continues to grow
with increasing number of layers, and that their energy positions do not converge to
any special energy position. In order to analyse, band maps of the FLUMO energy

(a) Experiment of PTCDA
on Ag(110) - taken from
[8].

(b) Simulation of PTCDA
on 14-layer Ag(110).

(c) Simulation of PTCDA
on 15-layer Ag(110).

Figure 4.41: Energy-momentum maps of PTCDA on Ag(110) along
the 32◦-rotated k[001]-axis.

region further, we have computed bands maps along the k[110] axis in which the
FLUMO shows a pronounced peak. Fig. 4.42 compares experimental data of such
a band map [7] with simulated maps for PTCDA on a 14 and on a 15 layer slab,
respectively. One clearly observes that in contrast to Fig. 4.42b (14 layers), one
has three intensity peaks at the FLUMO area in Fig. 4.42c (15 layers) in agreement
with the investigations on the pDOS in Subsection 4.2.2. The convergence study
from 4 to 25 numbers of silver layers N has shown that for increasing N the three
intensity peaks move to one energy position and superpose to one peak only. In
order to investigate the sensitivity of the molecule-derived photoemission intensity
on the number of Ag-layers further, we have also simulated CBE maps for a 14
and a 15 layer computation which are shown in Fig. 4.43. Here, Fig 4.43a shows a
FLUMO map of the 14 layer slab at E1 = 0.56 eV which equal to the peak posi-
tion of the pDOS in the FLUMO region. Figs. 4.43b–4.43d, on the other hand are
maps simulated for a 15 layer slab at binding energies E2 = 0.59 eV, E3 = 0.85 eV,
and E4 = 1.65 eV, respectively. Thus, the first two maps show the FLUMO region
while the last map is at the maximum of the HOMO. In Fig. 4.43c, there is a peak
at the center k[001] = k[110] = 0 similar to what has been observed experimentally
in Ref. [7]. Figs. 4.41b and 4.41c, however, identify the peak as a minimum of a
parabolic silver energy band. Thus, the convergence study with respect to the num-
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(a) ARPES intensity experiment of PTCDA on
Ag(110) - taken from [7].

(b) Simulation of PTCDA on 14-layer Ag(110).

(c) Simulation of PTCDA on 15-layer Ag(110).

Figure 4.42: Energy-momentum maps of PTCDA on Ag(110) along
the k[110]-axis.

ber of silver layers shows that the appearance of this peak at the energy position of
the high binding energy side of the FLUMO peak may only be accidental. This is
further demonstrated by the fact that no such peak appears in the 14 layer calcu-
lation. In summary, we can state that a variation over the number of layers (4–25)
did not show a convergence of the FLUMO map with respect to intensity at the Γ
point and that the accidental appearance of normal emission intensity arises from
band minima of Ag sp bands which are moving through the energy position of the
FLUMO. Thus, we conclude that the origin of the experimentally observed normal
emission peak (see Fig. 4.40a) could not be clarified.
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(a) Momentum-map of PTCDA on 14
layers Ag(110) at the binding energy
E1 = 0.56 eV (at FLUMO).

(b) Momentum-map of PTCDA on 15
layers Ag(110) at the binding energy
E2 = 0.59 eV (at FLUMO).

(c) Momentum-map of PTCDA on 15
layers Ag(110) at the binding energy
E3 = 0.85 eV (at FLUMO).

(d) Momentum-map of PTCDA on 15
layers Ag(110) at the binding energy
E4 = 1.65 eV (at FHOMO).

Figure 4.43: Momentum-maps of PTCDA on Ag(110) at the bind-
ing energies E1, E2, E3, and E4 defined in Fig. 4.42.
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4.2.5 Surface state

The sensitivity of the FLUMO feature on the amount of Ag-layers and the fact
whether an even or odd number is used, both for the pDOS spectra and in the
photoemission maps, may suggest that a surface state of Ag(110) substrate may
play a role in the hybridization of the molecular LUMO with the metal. To this
end, we attempt to investigate how surface states of an uncovered Ag(110) surface
are modified upon adsorption of PTCDA by analysing photoemission intensity maps.
Fig. 4.44 compares the photoemission intensity of PTCDA on 15 layers Ag(110) to

Figure 4.44: Photoemission simulation: Band map with an emis-
sion plane along the k[001]-axis of a 15-layer Ag(110)
slab covered with a PTCDA monolayer. Additionally,
energy bands from Γ to Y of a clean 15-layer Ag(110)
slab are plotted onto the photoemission intensity. The
red curves picture surface states at Y .

the bandstructure from Γ to Y of an uncovered 15-layer Ag(110) slab. Note that
in this figure, also states above the Fermi level (E = 0 eV) are shown simply by
neglecting the respective Fermi-Dirac factor in the evaluation of the photoemission
intensity. The red lines denote the bands of the two surface states detected via
bulk-projected band structures, both located at the Y -point, one at the binding
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energy EB = −1.24 eV and the other one at the binding energy EB = 0.1 eV.
One can see that there is no (or at least a very weak) hybridization effect on the
energy position of the surface state at EB = −1.24 eV after adsorbing a PTCDA
monolayer. Additionally, the corresponding parabola in the vicinity of the Y -point
has not changed. This leads to the conclusion that the effective electron mass seems
to be not (or at least very weak) modified by the molecule layer. In fact, the more
interesting surface state is located at EB = 0.1 eV, which is occupied in contrast to
the state at EB = −1.24 eV. Unfortunately, the calculation is not accurate enough
to give insights on how the PTCDA-monolayer affects this occupied surface state.
The parameters in the calculation are ~ω = 30 eV, σk[001] = 0.05 Å−1 , σE = 0.03
eV, and IMFP = 10 Å. A Monkhorst-Pack grid of 6x6x1 k-points has been used.

Moreover, and what could be very interesting is, that there seems to be another
surface state at Y at the binding energy EB = −2.30 eV which does not occur for
the uncovered Ag(110) slab.

Figure 4.45: Photoemission simulation: Band map with an emis-
sion plane along the k[110]-axis of a 15-layer Ag(110)
slab covered with a PTCDA monolayer. Additionally,
energy bands from Γ to X of a 15-layer Ag(110) slab
are plotted onto the photoemission intensity. The red
curves picture surface states at X.
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4.2 Organic/metal interfaces

In Fig. 4.45 the photoemission intensity of PTCDA on 15 layers Ag(110) is com-
pared to the bandstructure from Γ to X of a clean 15-layer Ag(110) slab. The red
lines denote the bands of the two surface states detected via bulk-projected band
structures, both located at the X-point, one at the binding energy EB = −4.04
eV and the other one at the binding energy EB = −1.70 eV. Again, one can see
that there is no hybridization effect on the energy position of the surface state at
EB = −4.04 eV after adsorbing a PTCDA monolayer. In order to reveal possible
modifications of the other surface state at EB = −1.70, there is need for a denser
k-mesh and for more atomic silver layers. The parameters in the calculation are
~ω = 30 eV, σk[110]

= 0.05 Å−1 , σE = 0.03 eV, and IMFP = 10 Å. A Monkhorst-
Pack grid of 6x6x1 k-points has been used.
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5 Conclusion

In the first part of the thesis, a comprehensive study on uncovered metal surfaces
is performed within the framework of density functional theory. In particular, the
low-index surfaces (111), (100), and (110) of the two fcc metals Al and and Cu are in-
vestigated. Several quantities characterising the electronic and structural properties
of these surfaces are calculated including the surface energy and the work function.
A particular focus is put on the accurate determination of the electronic structure
of Shockley surface states. By comparing the bulk projected band structures with
the band structures of the respective slab calculations, all relevant Shockley surface
states are determined and their energetic positions, their energy dispersion (effective
masses), and their wave functions are analysed. Care has been put on reaching con-
verged results, in particular with respect to the number of atomic layers used in the
metallic slabs. The results are compared to available experimental data where over-
all good agreement can be noted. In addition, photoemission intensity maps within
the so-called one-step model are applied to the Cu(110) surface and corresponding
energy-momentum maps have been obtained.
In the second part of the thesis the focus is set on a molecule/metal interface

to investigate molecule-substrate interactions, where the model interface perylene-
tetracarboxylic-dianhydride (PTCDA) on Ag(110) has been selected. In particular,
the sensitivity of the electronic structure on the number of layers in the Ag(110) has
been in the focus of interest. While many properties of molecule/metal interfaces,
such as the adsorption geometry, do only require moderate thicknesses of metallic
slabs (5 layers are often sufficient), other properties, such as the shape of molecule-
derived density of states spectra (pDOS), are much more sensitive to the number
of metal layers. In this work, we have demonstrated such an effect for the former
LUMO (FLUMO) of the molecule which becomes occupied upon adsorption due to
electron transfer from the metal. We have calculated the electronic structure for
PTCDA monolayers sitting on 4–25 layers of Ag and observed a pronounced de-
pendence of the pDOS on the amount of Ag layers and the fact whether an even
or odd number has been used. These calculations also served as starting point for
the simulation of photoemission intensity maps within the one-step-model which are
compared to recent experimental data. The overall agreement of these simulations
with the experimental data is very good. Moreover, an attempt has been made to
shed light on an apparent discrepancy reported in constant binding energy maps at
the energy position of the FLUMO. While one experiment has reported significant
photoemission at normal emission and attributed this fact to the hybridization of
the LUMO with metallic states, another experiment did not show such a normal
emission peak. Unfortunately, the simulated photoemission maps resulting from
this thesis could not provide a final answer to this open problem. The appearance
of normal emission features in the LUMO peak could be demonstrated for the PTC-
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5 Conclusion

DA/Ag(110) interface. Due to the slow convergence of the photoemission maps
with respect to the number Ag layers in conjunction with the numerical effort of
such computations (note that the 25 layer calculation already contains 338 atoms),
future work will be necessary to clarify this issue.
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