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Abstract

In this work the metal-organic interface of the cyclic hydrocarbon molecule
coronene (C24H12) adsorbed on three metal surfaces – Au(111), Ag(111) and
Cu(111) – is studied with density functional theory.

As a first step, the most favorable adsorption sites of coronene on the three
metal surfaces, as well as the optimal azimuthal orientation with respect to the
substrate’s high symmetry directions, are determined. After finding the op-
timal adsorption geometries for the different systems, we compare the results
for adsorption heights and energies for different computational treatments of
dispersive van der Waals-forces in the case of coronene on Au(111). Exper-
imental data of benzene (C6H6) and hexa-peri-hexabenzocoronene (C42H18)
serves as a reference to interpret the results obtained.

In the next step, we compare the electronic structure of the respective sys-
tems. For the case of Cu(111) simulations with a generalized-gradient- as well
as a hybrid-functional for the exchange-correlation potential are presented.

With the one-step model of photoelectron emission, photoelectron angular
distribution maps are simulated and discussed. In the case of coronene on
Ag(111) we can directly compare these simulations to experimental results,
for which we find good agreement.

iii



iv



Kurzzusammenfassung

In dieser Arbeit werden die metall-organischen Grenzflächen des zyklischen
Kohlenwasserstoff-Moleküls Coronen, adsorbiert auf drei verschiedenen
Metalloberflächen – Au(111), Ag(111) und Cu(111) – mittels Dichtefunktion-
altheorie untersucht.

Im ersten Schritt werden die günstigsten Adsorptionsplätze von Coronen
auf den drei Metalloberflächen, sowie die optimalen azimuthalen Drehrich-
tungen, bestimmt. Nachdem die optimale Adsorptionsgeometrie der ver-
schiedenen Systeme gefunden wurde, vergleichen wir die Ergebnisse von Ad-
sorptionshöhen und Energien für verschiedene numerische Methoden zur Be-
handlung der dispersiven Van-der-Waals Kräfte am Beispiel von Coronen
auf Au(111). Experimentelle Daten von Benzen (C6H6) und Hexa-peri-
hexabenzocoronene (C42H18) dienen zum Vergleich und der Interpretation der
gewonnen Ergebnisse.

Im nächsten Schritt vergleichen wir die elektronische Struktur der
jeweiligen Systeme. Im Fall von Cu(111) werden Simulationen mit
einem Generalized-gradient Funktional sowie mit einem Hybridfunktional
präsentiert.

Mit dem One-step Modell der Photoelektronsemission werden winke-
laufgelöste Verteilungskarten der Photoelektronsemission erzeugt und disku-
tiert. Für den Fall von Coronen auf Ag(111) können diese Simulationen, mit
guter Übereinstimmung, unmittelbar mit experimentellen Daten verglichen
werden.
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Chapter 1

Introduction

The field of organic semiconductors research, and with it the description of
metal-organic interfaces, has been active for the past 30 years and is ever grow-
ing to this date. Numerous possibilities for the actual fabrication of organic
electronics and opto-electronics are being developed and some have already
been put on the market, such as organic light emitting diodes (OLED), or-
ganic field effect transistors (OFET) or polymer photovoltaics.

With metal-organic interfaces, electronic and opto-electronic properties
can be tuned in an almost unlimited scope, which also explains the great suc-
cess of these systems. Among the properties that can be tailored are enery
levels, gap sizes, light adsorption- and emission spectra, inter-molecular in-
teractions, the properties of charge carrier transport and moreover the actual
determinants of the manufacturing process. The main reasons for this diver-
sity come along with the electronic structure: aromatic hydrocarbon molecules
have delocalized π-electrons which are responsible for their exceptional elec-
tronic and optical intra-molecular properties [1]. However, the question of
charge transport between adjacent molecules in thin films of heterostructures
is more involved than with classical semiconductors and charge injection from
the metal into the organic is determined by the level alignment of the interface.
Moreover, the absence of strong intermolecular forces and the weak binding
to metal surfaces in the van der Waals-regime has consequences that makes it
necessary to put considerable effort in the understanding of organic molecules
on metal surfaces. In this thesis we study such a system, namely the adsorp-
tion of coronene on the surfaces of gold, silver and copper.

The molecule coronene (C24H12), an organic, π-conjugated molecule con-
sisting of 6 benzene rings grouped flatly around another one in the center,
is such a molecule. It occurs naturally in the mineral carpathite and shows
fluorescence under ultra-violet light when in solution [2]. Potassium-doped
coronene crystals have gained particular interest for showing superconductive
behavior up to 15 K [3]. The three fcc (111)-surfaces of gold, silver and copper
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2 CHAPTER 1. INTRODUCTION

– as a group often referred to as the Coinage metals – are typical noble metal
surfaces to deposit organic materials on and can serve as electrodes in organic
semiconductor structures.

The course of this work is outlined as follows. In the next chapter the the-
oretical framework of the method being used, is introduced. After the founda-
tions of density functional theory (DFT) have been laid, the techniques and ap-
proximations necessary to compute many-particle systems are depicted. Here
the focus is put on the approximations for three different exchange-correlation
functionals as well as three different treatments of van der Waals-forces. After
this comparison follows a short introduction to the DFT code being used in
this thesis, i.e. the Vienna Ab-initio Simulation Package (VASP). The theoret-
ical part of this thesis is then concluded with a summary about the simulation
of photoemission spectroscopy, which is described within the one-step model
of photoelectron emission.

The remaining chapter is devoted to the results obtained within this thesis.
As a first step, the optimal adsorption geometry of coronene on each of the
three metal surfaces is determined. We first find the most favorable adsorption
site on each metal surface and then the optimal azimuthal orientation of the
molecule with respect to the surface. When determining the adsorption height
and energy, particular emphasis is laid on the interface coronene/Au(111), for
which three different van der Waals-correction schemes are compared. In lack
of experimental data for this system, we compare the results to the adsorption
of benzene (C6H6) on Au(111) and hexa-peri-hexabenzocoronene (C42H18) on
the same surface.

In order to examine the electronic structure of the three respective sys-
tems, the density of states is presented, where, in the case of Cu(111), a more
sophisticated calculation with a hybrid functional is added to bridle short-
comings of the functional used otherwise. The most interesting physics of a
metal-organic interface happens at the gap between the metal surface and the
molecule. Here we show the behavior of the difference in charge density and
its derivatives with respect to the z-direction as well as the change in work
function. Although we do not see any major charge transfer for these systems,
the reduction of the work function caused by the Pauli push-back effect of the
spill-out electron charge of the metal is visible.

The power and the success of the method of Orbital Tomography lies not
only in the experimental improvements that made it possible to reconstruct
maps of molecular orbitals and surfaces from photoelectron spectroscopy, but
also in the fact that we have a simple model at hand that allows the ex-
perimental data to be compared with DFT results. The 2D k-space maps
of the most important molecular orbital of coronene, the highest occupied
molecular orbital (HOMO), are compared to those of the HOMO feature of
the adsorbed layers. Accordingly, the change in electronic structure due to
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the inter-molecular interaction and the molecule-substrate interaction is made
visible and can be quantified to some extent.

For the case of coronene on Ag(111), this HOMO emission is compared to
an experimental result that was published in 2017 alongside with some of the
results of this thesis [4].
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Chapter 2

Methodology

In this chapter the theoretical foundations of methods used in this work are
laid. A short introduction to density functional theory (DFT) is given, where
the emphasis is on how VASP incorporates the concepts of DFT. In this
course, the main focus is on the computational treatment of van der Waals-
interactions, conceptually leaning towards the application in the field of metal-
organic interfaces.

2.1 The Theorem of Hohenberg and Kohn

If one wants to treat a condensed matter system on a non-relativistic quantum
mechanical footing, the Hamiltonian of the system will consist of contributions
from the protons, the electrons and the interaction between both. For such
a many-body system, the cores are usually treated as a slowly varying back-
ground which generate a potential for the fast moving electrons, i.e. the Born-
Oppenheimer approximation [5]. The Hamiltonian for the electron system can
now be written in the form

Ĥ = T̂ + V̂ + Û . (2.1)

T̂ is the kinetic energy operator of the electrons, V̂ the single-particle potential
operator (i.e. Coulomb attraction from the cores or external fields) and Û the
interaction potential operator (i.e. Coulomb repulsion between electrons). To
distinguish between formal operators and their spatial representation, we will
denote the latter with lower-case letters. In the language of second quantiza-
tion [6, 7] and measured in natural units (h̄ = me = e = 1), these integrals
read

Ĥ =− 1

2

∫
d3r ψ̂†

σ(r)∇2ψ̂σ(r) +

∫
d3r ψ̂†

σ(r)V (r)ψ̂σ(r)

+
1

2

∫
d3r

∫
d3r′ ψ̂†

σ(r)ψ̂
†
σ′(r

′)U(r, r′)ψ̂σ′(r′)ψ̂σ(r),

(2.2)

5



6 CHAPTER 2. METHODOLOGY

where implicit summation over spin variables σ and σ′ is understood. The
field operator ψ̂†

σ(r) creates an electron with spin σ at the site r, which can
be expressed in terms of creation- and annihilation-operators and a suitable
one-particle basis set {ϕi(r)}:

ψ̂(†)(r) =
∑
i

ϕi(r)a
(†)
i . (2.3)

For the following, we will oppress the spin index and assume intrinsic summa-
tion over spin indices. The fermionic character of the system is reflected in the
algebra of the creation- and annihilation-operators ({ai, a†j} = δij plus trivial
ones). These operators act on the Fock vacuum state |0〉 (with suitable nor-
malization etc.) to create an N -particle state |Ψ〉, which is in turn a solution
to the stationary Schrödinger equation (SE)

Ĥ |Ψ〉 =
(
T̂ + V̂ + Û

)
|Ψ〉 = E |Ψ〉 . (2.4)

We now assume that the ground state of this system is non-degenerate and
has the solution Ψ0, i.e.

Ĥ |Ψ0〉 = E0 |Ψ0〉 . (2.5)

The only part in the Hamiltonian that is unique for each system is V̂ , because
the kinetic term and the interaction terms are entirely governed by electron
properties that do not differ to the electron gas. Consequently, there exists a
set of potentials V that have a set of ground-state solutions Ψ0 such that a
surjective mapping exists.

M1 : V → Ψ0 (2.6)

The set of ground state densities N for the corresponding wave-function con-
sists of all elements n(r):

n(r) = 〈Ψ0|ψ̂†(r)ψ̂(r)|Ψ0〉 , ∀ |Ψ0〉 ∈ Ψ0. (2.7)

Therefore, another surjective mapping exists, that maps the ground states to
the densities, i.e.

M2 : Ψ0 → N . (2.8)

If the two surjective mappings, M1 and M2, are each one-to-one (injec-
tive), we can fully invert the combined mapping (bijective) M = M2 ◦M1:

M−1 = (M2 ◦M1)
−1 . (2.9)

The first task on the agenda is now to show that M1 is injective, i.e. showing
that two potentials

V̂ , V̂ ′ ∈ V : V̂ 6= V̂ ′ + const. (2.10)
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lead to different ground sate solutions |Ψ0〉 , |Ψ′
0〉 ∈ Ψ0 in the SEs:(

T̂ + V̂ + Û
)
|Ψ0〉 = E0 |Ψ0〉 ,(

T̂ + V̂ ′ + Û
)
|Ψ′

0〉 = E′
0 |Ψ′

0〉 .
(2.11)

Assuming the contrary that we want to proof, |Ψ0〉 = |Ψ′
0〉, and subtracting

the two SEs from each other, we get

(V̂ − V̂ ′) |Ψ0〉 = (E0 − E′
0) |Ψ0〉 , (2.12)

which leads to a contradiction to the assumption 2.10, not unless if the wave
functions would vanish on the whole domain, which is rather unphysical. We
have just proven that M1 is indeed one-to-one and will now continue to do
the same for M2, i.e. we want to show that

|Ψ0〉 6= |Ψ′
0〉 ⇒ n(r) 6= n′(r). (2.13)

From the variational principle of Rayleigh-Ritz 1 it follows that on the one hand

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉 = 〈Ψ′
0|(Ĥ ′ + V̂ − V̂ ′)|Ψ′

0〉 =

E′
0 +

∫
d3r n′(r)[V (r)− V ′(r)],

(2.14)

and on the other hand

E′
0 < E0 +

∫
d3r n(r)[V ′(r)− V (r)]. (2.15)

Again, we assume the contrary of what we want to prove, n(r) = n′(r), and
add 2.14 to 2.15, only to find that this results in the contradiction

E0 + E′
0 < E0 + E′

0. (2.16)

In reductio ad absurdum, we have seen that both M1 and M2 are bi-
jective, from which follows that M is a fully invertible one-to-one mapping.
Consequently, we have established the first result of the famous 1964 paper by
Hohenberg and Kohn [9]: the ground-state density uniquely determines (up
to a constant) the local external potential v(r) that gives rise to it.2 Further-
more, any observable Ô can be expressed as a functional of the ground-state
density n(r):

Ô[n] = 〈Ψ0[n]|Ô|Ψ0[n]〉 , (2.17)

which reads for the energy in particular

E[n] = 〈Ψ0[n]|(T̂ + Û + V̂ )|Ψ0[n]〉 . (2.18)

1see e.g. [8], Vol. II p. 330 ff.
2 [10], p.332
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This energy is the true ground-state energy if, and only if, the density is the
ground-state density, E0 can therefore be obtained via a minimization process:

E0 = min
n ∈N

E[n]. (2.19)

In order to establish more terminology, we define the universal functional, or
sometimes called the Hohenberg-Kohn functional, as

F [n] = 〈Ψ0[n]|(T̂ + Û)|Ψ0[n]〉 , (2.20)

in order to rewrite 2.18 as

E[n] = F [n] +

∫
d3r V (r)n(r), (2.21)

which again emphasizes the fact that F [n] is independent of the local potential,
i.e. independent of the system.

From the perspective of variational calculus, the minimum condition 2.19
might also be formulated in another way: the energy is stationary if small
variations around the ground-state energy vanish, i.e. δE = 0. Using the
functional derivative of F [n], δF [n]/δn(r), we can write the variation of the
energy functional as

E[n+ ηδn]− E[n] = η

∫
d3r

[
δF [n]

δn(r)
+ V (r)

]
δn(r) +O(η2)

!
= 0, (2.22)

where η is a small positive parameter and δn(r) the variation of the density.
The latter must lead to densities that still have the same total particle number,
thus the variation is restricted but still arbitrary enough such that 2.22 can
only hold, up to order of η, if the term in brackets vanishes, which leads to
the condition

δF [n]

δn(r)
= −V (r). (2.23)

Using the density as the main variable to describe an N -electron system,
has brought us from a wave-function based description with 3N parameters,
to a density based description with 3 parameters, which is an enormous sim-
plification in terms of computational effort when it comes to systems with
realistic sizes. Several subtleties have been left out in the discussion above,
such as the possibility of a degenerate ground-state, a thorough examination
for which class of densities and potentials the proof holds and the extension to
e.g. spin-polarized systems, excited states or finite temperature [11, 10, 12, 13].
The question how the minimization process of 2.19 can be done and how to
calculate observables will be subject to the next sections.
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2.2 The Kohn-Sham Scheme

The idea that flattened the path for the success of DFT came from Kohn and
Sham in 1965 [14] and drew its logic from the following argument: for each
interacting N -electron system, for which the knowledge of its ground-state
density is sufficient to describe all physical observables, there exists a corre-
sponding non-interacting N -electron system that has the same ground-state
density. For this auxiliary system, one can also formulate an energy functional
according to the theorem of Hohenberg and Kohn, the only difference here is,
of course, the lacking of the interaction term:

Ea[na] = Ta[na] +

∫
d3r Va(r)na(r). (2.24)

The variation of the energy with respect to the density (under the constraint
that the density is positive definite and conserves the particle number), δEa[n] =
0, gives the ground-state density which shall be equal to that of the interacting
system, i.e.

na(r) = n(r). (2.25)

If the ground-state is again non-degenerate, both densities can be represented
in a one-particle basis that are solutions of the one-particle effective SE(

−1

2
∇2 + va(r)

)
φi(r) = εiφi(r) ⇒ n(r) =

∑
i

|φi(r)|2. (2.26)

For the actual interacting system, we have the original energy functional as

E[n] = T [n] + U [n] +

∫
d3r V (r)n(r), (2.27)

to which we will now add and subtract the kinetic energy functional of the
non-interacting system, Ta, and the classical electron-electron repulsion, i.e.
the Hartree energy-functional

EH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
, (2.28)

such that the energy functional reads

E[n] = T [n] +Ta[n]−Ta[n] +EH[n]−EH[n] +U [n] +

∫
d3r V (r)n(r). (2.29)

In doing so, we can introduce the exchange-correlation energy functional Exc[n]
as

Exc[n] = T [n] + U [n]− Ta[n]− EH[n] = F [n]− Ta[n]− EH[n], (2.30)
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and rewrite the energy functional as

E[n] = Ta[n] + EH[n] + Exc[n] +

∫
d3r V (r)n(r). (2.31)

We can now vary the density in the same fashion as in 2.22 to obtain a mini-
mum for the energy:

0
!
= E[n+ ηδn]− E[n] =

η

∫
d3r

[
δTa
δn(r)

+

∫
d3r′

n(r′)

|r− r′|
+
δExc

δn(r)
+ V (r)

]
δn(r) +O(η2).

(2.32)

As above, the integral vanishes always if the term in brackets vanishes. This
leads to the condition

δTa
δn(r)

= −VH(r)− Vxc(r)− V (r) ≡ −VKS(r), (2.33)

where we have introduced the resulting effective potential, the Kohn-Sham
potential VKS(r), and have used

δEH[n]

δn(r)
=

∫
d3r′

n(r′)

|r− r′|
≡ VH(r) and

δExc

δn(r)
≡ Vxc(r). (2.34)

The Kohn-Sham potential is a local potential (although it functionally
depends on non-local entities) and instead of minimizing the energy functional,
it is equivalent to solve the Schrödinger system of non-interacting electrons
in an effective Kohn-Sham potential, which is referred to as the Kohn-Sham
equation: [

−1

2
∇2 + VKS(r)

]
φi(r) = εiφi(r). (2.35)

Since the form of the Kohn-Sham potential is unknown, one has to solve the
above equation self-consistently:

1. start with an initial guess of N orbitals

2. construct the density via n(r) =
∑N

i |φi(r)|2 and with it the potential

3. solve the Kohn-Sham equation with a chosen approximation for the
exchange-correlation functional

4. reconstruct the density and compare to initial density

5. repeat 2.–5. until desired convergence is reached
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Once the self-consistent density has been obtained, the ground state energy
can be constructed in the following way. The non-interacting kinetic energy
functional for the ground-state density is constructed as

Ta[n] =

N∑
i

εi −
∫

d3r VKS(r)n(r), (2.36)

which we can now insert in the expression for the energy functional of the
interacting system (eq. 2.21) and use eq. 2.30 to get the final expression for
the ground-state energy:

E[n] =

N∑
i

εi −
∫

d3r n(r)

[
1

2

∫
d3r′

n(r′)

|r− r′|
+ Vxc(r)

]
+ Exc[n]. (2.37)

It is important to emphasize that this ground-state energy is in princi-
ple exact, although in practice the exchange-correlation functional has to be
approximated. The Kohn-Sham orbitals however, do not represent the true
ground-state wave function but can rather be seen as an approximation.3 The
main difficulty in practical DFT calculations lies in the construction of the
exchange-correlation functional, a topic that will be briefly touched in the
next section.

2.3 Exchange-Correlation Functionals

For the treatment of exchange and correlation effects, as well as kinetic en-
ergy effects that lie beyond the non-interaction approximation Ta[n] of the last
section, we want a functional that is both computationally efficient and de-
scribes all these effects with the most desirable precision. Since Exc[n] must be
constructed from the densities in the iterative calculation scheme, an explicit
functional dependence on n(r) is necessary.

For the construction of these functionals two approaches are possible. On
the one hand, one can improve the accuracy in the description of physical
systems by means of fitting parameters to the actual systems as an empirical
method. On the other hand, one can construct functionals from pure theory,
which is called ab-initio, although parameters are used, but they are not fitted
to the experiment. While empirical methods are of widespread use in chemistry
and applied physics, we restrict ourselves to an ab-initio approach in this work.

2.3.1 Local Density Approximation

The simplest yet very successful approximation, the local density approxima-
tion (LDA), takes the exchange-correlation energy per particle of the homoge-
neous electron gas at a certain density, εxc(n). The exchange part of this entity

3The N -th eigenvalue can be seen as an exception. It could be shown that −εN is the
first ionization energy for the N-electron system, see e.g.[15] p. 35 ff and references therein.
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is known exactly, whereas the correlation part is simulated by e.g. Quantum
Monte Carlo (QMC) methods.

ELDA
xc [n] =

∫
d3r n(r)εxc (n(r)) . (2.38)

In principle, such an approximation is only valid for a very slow varying den-
sity. Nonetheless, this scheme has also been successfully applied to a wide
range of systems without such restrictions. The great success of the LDA is
partly owed to the fact that errors in the exchange treatment cancel those of
the correlation on a systematic level [16].

2.3.2 Generalized Gradient Approximation

Extending the LDA, it would be desired to not only consider the density
at point r but also its changes at that point to account for spatially rapidly
varying situations. Approximations that take the densities and their gradients
into account are called generalized gradient approximations (GGAs)[17] and
are of the general form

EGGA
xc [n] =

∫
d3r f (n(r),∇n(r)) . (2.39)

A successful implementation of this kind is the Perdew-Burke-Ernzerhof (PBE)
functional, which was also used in the practical calculations of this work.
A class of functionals that use the density, its gradient and also the (non-
interacting) kinetic energy density,

nT(r) =
1

2

N∑
i

|∇ϕi(r)|2, (2.40)

are referd to as meta-GGA functionals:

EM−GGA
xc [n] =

∫
d3r f (n(r),∇n(r), nT(r)) . (2.41)

The performance of meta-GGA is reported to be superior to plain GGA for
most systems, since the additional entity nT(r) can fulfill more constraints,
e.g. the correlation energy is self-interaction free [18].

2.3.3 Hybrid Functionals

A class of functionals that takes local- and semilocal approximations and ad-
ditionally exact exchange into account, are the hybrid functionals. Exact ex-
change from Hartree Fock theory is non-local due to the pairwise interaction
of all electrons [19]:

EHF
x = −1

2

N∑
i,j

∫
d3r

∫
d3r′

ϕi(r)ϕj(r
′)ϕj(r)ϕi(r

′)

|r− r′|
. (2.42)
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Hybrid functionals mix the different kinds of interactions, usually regulated
by a mixing parameter. In the case of range-separated hybrid functionals, the
amount of contributions from semi-local exchange-correlation functionals and
exact exchange is dependent on the distance, resulting in different behavior for
the long-range and the short-range interactions [20]. The improved accuracy
of this scheme is paid with a steep increase of computational effort, therefore
such a calculation is usually done as a second step after geometry relaxation
of the system has been computed with a local or semi-local functional. Here
we have used the Heyd-Scuseria-Ernzerhof (HSE) functional [21, 22, 23].

2.4 Treatment of van der Waals-Forces

One part of the correlations between electrons are long-range dispersion in-
teractions referred to as van der Waals-forces (vdWFs). These forces arise
from spontaneous fluctuations in the density of one atom, molecule or surface,
resulting in electric fields that can induce a polarization of other, remote con-
stituents of the system. In the dipole approximation, the energy between two
atoms with electric polarizabilities α1 and α2 scales with

Edipole
vdWF ∝ − α1α2

|r1 − r2|6
, (2.43)

thus an attractive, long-range force results that is not incorporated in local or
semi-local correlation functionals. There are several ways to incorporate these
effects at different levels of sophistication [24]. A functional that is explicitly
designed for these purposes, treats the non-local part of the correlation energy
from vdWF as

Enl
c =

∫
d3r

∫
d3r′ n(r)Ξ(r, r′)n(r′), (2.44)

where the integral kernel Ξ(r, r′) is a function of the spatial separation |r− r′|
and a functional of the respective densities and their gradients [25].

In this work however, we use a different approach for vdWFs and treat
these interactions as corrections to the ground-state energy that are computed
as an additional step after the Kohn-Sham scheme. In order to compare differ-
ent levels of these corrections, we have used different methods, the standard
being the Tkatchenko-Scheffler (TS) method [26]. Here, only the pairwise
interaction between different atoms is described as

EvDWF = −1

2

∑
i,j

fdamp(|ri − rj |,R0
i ,R

0
j )

C6
ij

|ri − rj |6
, (2.45)

with the major ingredient being the C6
ij coefficients that should represent the

polarizability of each atom and that are computed beforehand, either from
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model systems or fitted to experiments. The function fdamp is needed to
switch off vdWFs at short distances, in which the R0

i play the role of short-
range cutoff-parameters. We use C6

ij , R
0
i and atomic polarizabilities αi that

are designed to describe organic-metal-interfaces more accurately than those
of the original TS method [27].

One of the most apparent shortcomings of the TS method is the lacking of
screening effects. Since each atom of a molecule or a surface has a dipole field
and is itself polarizable, screening plays an important role, especially when
other dipole fields lie in between long-range interactions, i.e. intermediate
atoms screen the electric fields. Such effects have to be treated on a many-body
level, it is however possible to use a two-body approximation when the atomic
polarizability is not taken as an external parameter αi for each atom, but taken
to be frequency-dependent and continuous in space: α(r, iω). Moreover, the
polarizabilities are interacting in the sense that they feel a first-order dipole
correction via the field-tensor Θ(r, r′) to the αTS

i (r, iω), such that

αSCS(r, iω) = αTS
i (r, iω) + αTS(r, iω)

∫
d3r′ Θ(r, r′)αSCS(r, iω). (2.46)

This integral-equation has to be solved self-consistently to get correct polar-
izabilties for each frequency iω at each point in space r [28]. In practice, the
αTS
i (r, iω) are taken to be frequency-dependent only and are given a certain

value at each atom site i. We are thus replacing the integration over space by
summation over all other atoms:

αSCS
i (iω) = αTS

i (iω) + αTS
i (iω)

∑
i 6=j

Θjiα
SCS
i (iω), (2.47)

which has to solved self-consistently non the less [29].

A third correction, that alters the TS-SCS scheme, is the many-body dis-
persion (MBD) method of Tkatchenko et. al. [28, 30, 31]. The main differ-
ences of this method to the previous ones are two-fold. On the one hand,
the contributions of each atomic site to the self-consistent screening equa-
tion, i.e. the interaction term of 2.46, is replaced by contributions from the
sum of coupled spherical harmonic oscillators (HO) with a Gaussian smear-
ing: nHO(ri) = (π3/2R3)exp[−r2i /(2R

2)]. The atomic polarizabilities are thus
replaced by those of the i = 1 . . . N HOs

αSCS
i (iω) = αTS

i (iω) + αTS
i (iω)

∑
i 6=j

TjiαSCS
i (iω). (2.48)

Here, the dipole interaction tensor, Tji = ∇j ⊗ ∇iW (|rj − rj |) mediates the
interaction between two spherical Gausian distributions with the Coulomb-
like interaction W (|rj − rj |) = erf[|rj − rj |/(

√
2R)]/|rj − rj |. By virtue of this
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concept, much computational time can be saved since the spatial contributions
of 2.48 can be carried out analytically beforehand and stored in a matrix.
On the other hand – and conceptually more important – long-range many-body
interactions are introduced with the random phase approximation (RPA) [32,
33]. By summing up all Feynman diagrams of the “ring” type up to infi-
nite order, long-range correlation effects naturally emerge due to an effec-
tive screening potential. We take the frequency-dependent density-density
response function χ(r, r′, iω) to obey a Dyson-like integral equation

χλ = χ0 + χ0λv(|r− r′|)χλ. (2.49)

The parameter λ connects the interaction via the Coulomb-type potential v,
which here will be v(|r − r′|) = W (|rj − rj |), to the non-interacting response
function χ0, constructed from the KS orbitals. This interaction is adiabatically
connected via λ, hence the contribution to the correlation energy is taken in
the framework of the adiabatic-connection and fluctuation-dissipation theorem
(ACFD) [34]:

EC =
−1

2π

∫ ∞

0
dω

∫ 1

0
dλ Tr

[(
χλ(r, r

′, iω)− χ0(r, r
′, iω)

)
v(|r− r′|)

]
. (2.50)

Consequently, the MBD method accounts for long-range correlation effects
between valence electrons with intermediating quasi-particles that are modeled
by spherical quantum harmonic oscillator response functions, located at the
atom sites. From benchmarks and conclusions in the above cited reports,
it follows that the MBD description of van der Waals-interactions should be
especially suited for large molecules weakly bond to metal surfaces where the
screening due to quasi-free metal electrons plays an important role.

2.5 Computational Implementation

In the preceding paragraphs, the foundations for DFT calculations have been
laid. Due to the complications involved and the computing power demanded,
actual DFT calculations are usually done on a multi-CPU cluster with software
packages maintained by a large scientific community. Among different choices
available, we use the Vienna Ab-initio Simulation Package (VASP) [35, 36, 37,
38]. In the following paragraphs a brief overview about this code and the kind
of approximations and computational implementations that are used, will be
given.

2.5.1 The Kohn-Sham Scheme in k-Space

In section 2.2 it was shown that the many-electron problem of any system can
be mapped on an effective single-particle problem with the SE[

−1

2
∇2 + VKS(r)

]
φi(r) = εiφi(r). (2.51)
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In order to simulate a molecular layer on a metal surface, we exploit the
translational symmetry of the problem by investigating a part of the whole
structure that is sufficient to inhibit all constituents and use periodic bound-
ary conditions, which then describes an infinitely large system. Note that this
necessarily involves the z-direction too, which leads to stacked layers of the in-
terface and is commonly referred to as the repeated slab-approach, see e.g. [39].
By virtue of translational symmetry, we can make use of Bloch’s theorem [40]
and express the wave-function with the wave vector k and the band index i:

φi(r) → φik(r+R) = φik(r)e
ikR, (2.52)

with R being a vector that leaves the Hamiltonian invariant.
Any local observable, like n(r), is then given by an integral over k, where

Ω is taken to be the first Brillouin zone (BZ) and cik the occupation number
of the state |ik〉:

n(r) =
1

Ω

∑
i

∫
Ω
d3k cik|φik(r)|2. (2.53)

On the computer we will naturally replace the integration by a summation
over a sample of k-points in the first BZ, weighted with wk:

n(r) =
1

Ω

∑
i,k

(∆k)3 wkcik|φik(r)|2. (2.54)

The upper bound of the sum over k introduces a convergence parameter such
that the BZ can be sampled with a number of discrete points that are weighted.
What has to be specified in the program is the number of sampling points per
spatial direction nj , such that the k-point mesh is sampled with the spacing,
e.g. in j-direction with

∆kj =
2π

dnj
, (2.55)

d being the size of the unit cell in the specific direction. In this work, we typi-
cally work with Monkhorst-Pack grids [41] from 4×4×1 to 8×8×3 sampling
points, leading to around hundred sampling points, which can be reduced by
VASP with the help of symmetry operations. The number of bands is typically
of the order of electrons in the system, making the summation relatively fast
on the computer. There are some technicalities involved when sampling the
BZ. One of these could be mentioned at this point: when performing integrals
of entities like energy etc. over the BZ, one encounters discontinuities in these
entities in metal systems at the Fermi edge, which is usually mathematically
treated with step-functions. On the computer, however, these hard steps have
to be replaced by an appropriate kind of smearing, which is done in our case
by the method of Methfessel and Paxton [42].

For modeling the wave-functions, we can use a basis of plane waves:

φik(r) =
1√
Ω

∑
p

cpike
i(p+k)r, (2.56)
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where usually the cutoff is taken to obey the condition |p+k|2 < 2Emax, with
the energy cutoff Emax at around a few hundred eV. It should not be confused
that here we denote the reciprocal space vectors with p and the wave-numbers
of the plane waves with k. In the basis of the Fourier coefficients, the SE is
reduced to a matrix eigenvalue equation for each k-point p of the form∑

p′

Hpp′kcp′ik = εikcpik, (2.57)

with the Hamilton matrix consisting of the diagonal kinetic contribution and
the Fourier transform of the Kohn-Sham potential ṽKS(p− p′),

Hpp′k =
1

2
|k+ p|2δpp′ +

1

Ω
ṽKS(p− p′). (2.58)

The main computational effort involved will thus be the diagonalization of
large matrices.

2.5.2 The PAW Method

Although plane waves are a very convenient basis to compute matrix ele-
ments or use the fast Fourier transformation (FFT) to rapidly change between
reciprocal- and real-space, they impose problems related to core-electrons and
the rapid oscillations of wave-functions close to the nuclei. In the vicinity
of the nuclei the wave-functions vary strongly within small regions and have
high kinetic energies, whereas in the inter-atomic regions they have low ener-
gies and are relatively smooth and responsive to the surrounding. Because of
the former, a large cut-off would be necessary to expand a wave-function into
plane waves, which is computationally very demanding.

There are several ways to overcome this problem, one feature that most
of them have in common is to treat the atomic regions and the interatomic
regions separately. Examples that could be mentioned here are the augmented
plane-wave (APW) method [43, 44], that can be altered to the linearized aug-
mented plane-wave (LAPW) method [45] or the orthogonalized plane-wave
(OPW) method [46]. In the OPW method, one uses plane waves which are
orthogonalized to the core states as a basis for the valence states, which effec-
tively reduces the need for large expansion cut-offs.

Pseudo-potentials can be seen as an extension of the OPW method. Here,
inside a sphere of given radius rc, the wave-function of valence electrons
is replaced by an auxiliary, smooth pseudo-wave-function, so is the poten-
tial [47, 48]. In VASP it is possible to use pseudo-potentials, in this work how-
ever, we use the pseudo-potentials of the projector augmented wave (PAW)
method, which are delivered and maintained by the community [49, 50].
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2.6 Photoemission Tomography

In the course of this section a short overview on the technique of photoemis-
sion tomography (PT) will be given. Angle-resolved ultra-violet photoelectron
spectroscopy (ARUPS) is a standard experimental method to study the elec-
tronic structure of a material. The technique dates back to the 1970s and
uses the photoelectric effect: photons from a monochromatic source with the
energy ω can transfer energy when scattering with matter such that electron-
emission can occur. In a simple picture, first the binding energy of the electron
Ei has to be invested, then the work function, i.e. the energy needed to bring
the electron from the sample into vacuum, has to be overcome. The resulting
photoelectron energy is then the net of the ingredients [51]:

Ekin = ω − Ei − Φ. (2.59)

This energy and the angle-dependence of these photoelectrons carry informa-
tion of the electronic structure of the material.

In order to be able to describe this process from a theoretical point of view,
we take the energies (and its dispersion with k) and the wave-functions of the
Kohn-Sham system from the DFT calculations and simulate the interaction
with the photons. To this end, we use the one-step model of photoemission
for this purpose [52, 53], which can be seen as Fermis golden-rule (first oder
perturbation theory in the interaction). The angle-resolved photoelectron in-
tensity I(θ, φ,Ekin) is proportional to the transition matrix elements from
initial states |i〉 to the final state |f〉 with the interaction of the photon field
A (minimal coupling) and restricted by energy conservation:

I(θ, φ,Ekin) ∝
∑
i

| 〈f |pA|i〉 |2δ(h̄ω − Ei − Φ− Ekin). (2.60)

The problematic part this expression is how to simulate the final state. In the
plane-wave final state approximation, we use plane waves, which is a coarse
approximation but is reported to work very well in many cases [54, 55, 56, 57].
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Results

3.1 Geometry Relaxations

3.1.1 Adsorption Geometry

As a first step, we study the adsorption of coronene on the (111)-surfaces of Au,
Ag and Cu and determine the equilibrium adsorption sites. Since coronene is
a flat molecule with rotational symmetry, we expect the molecules to have the
following degrees of freedom: the lateral position (i.e. x- and y-coordinate)
on the surface, the rotational angle with respect to the metal lattice (the
so-called azimuthal orientation) and the adsorption height above the metal
surface (z-coordinate). While the latter is determined self-consistently in the
ionic relaxation process, one has to take care of the lateral position and the
rotational angle manually as an input parameter in the calculation.1 The
reason is that, there is a multitude of local energy minima on the potential
energy landscape and the typical ionic relaxation schemes only guarantee to
find a nearby local minimum, but not the global energy minimum.

In doing so, we calculated the adsorption energy for different sets of pa-
rameters and chose the most favorable ones for further examinations. In terms
of unit cells, low-energy electron diffraction (LEED) experiments for coronene
on Au(111) [58] and coronene on Ag(111) [59] both found a supercell with an
epitaxial matrix of [

4 0
0 4

]
. (3.1)

For the case of coronene on Cu(111), experimental data [60] suggests an epi-
taxy matrix of [

5 1
−1 4

]
, (3.2)

1Other than that, there exist several more automatic techniques to find minima in the
adsorption energy-landscape, such as thermal annealing, genetic algorithms or database-
powered machine learning codes that would, in this case, be too sophisticated tools for the
purpose.

19
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where the unit-cell vectors were taken to be b1 = a/
√
2(1, 0)T (i.e. the

[110]-direction of the (111) fcc surface) and b2 = a/(2
√
2)(1,

√
3)T. In the

expressions for the unit vectors a is the lattice constant, for which the values
aAu = 4.078 Å, aAg = 4.085 Å and aCu = 3.615 Å were used.

As a starting point, total energies for the three high-symmetry adsorption
sites depicted in figure 3.1 were computed for 2 different rotational angles
(0◦ and 30◦). The rotational angle φ is defined as the positive rotation be-
tween the zig-zag-direction of the molecule (as defined in graphene) and the
[110]-direction of the respective fcc-surfaces, see also figure 3.2. In this case,
the total energies allow for a direct comparison since they have been computed
in the same fashion and the sizes of the unit cells are the same. The results
are shown in table 3.1.
Although the differences in total energies are close to the typical error of such

Figure 3.1: Adsorption sites for the center of the coronene molecules on the
(111)-surface, denoted from left to right: center, top, bridge.

Table 3.1: Total energies of different adsorption sites of coronene on Au(111),
Ag(111) and Cu(111) computed with the PBE exchange-correlation
functional and TS method for van der Waals-corrections with op-
timized parameters (most favorable ones highlighted).

Au, 30◦ Au, 0◦ Ag, 30◦ Ag, 0◦ Cu, 25◦ Cu, 0◦

Center -551.034 -551.040 -537.276 -537.349 -710.752 -710.875

Top -550.950 -551.012 -537.098 -537.036 -710.814 -710.604

Bridge -551.007 -551.007 -537.271 -537.341 -710.754 -710.843

calculations (around 2meV/atom), the energetically most favorable configu-
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rations (highlighted in the table) were the same on each surface, which gave
confidence to choose the center site for further calculations.

In a second step, we varied the rotational angle of the molecule (center
position), the results are shown in figure 3.3. These computations were done

Figure 3.2: Optimized adsorption sites of coronene on Ag(111) (left) and
coronene on Cu(111) (right). The rotational angle φ is defined
as the positive rotation between the zig-zag-orientation of the
molecule and the fcc [110]-direction.

in two individual steps: one in which the positions of all atoms were held
fixed, and another where the atoms in the molecule as well as the two topmost
layers of the respective metal surface were allowed to relax. This resulted
in energetically converged positions at the price of small deviations from the
pre-set angles (maximum 1◦). Around the respective energy minimum, the
step-size for the rotational angle was refined to this value, such that the angular
differences were in the order of movements the molecule would make in the
process of geometric relaxation during the DFT calculation.

One observes that the minima lie around 5◦, where coronene on silver shows
the smoothest curve, coronene on gold the most prominent and coronene on
copper a less distinct minimum. The minima between 4.5◦ and 6.5◦ can be
explained with intermolecular interaction upon adsorption: with this orien-
tation, the interdigitated H-atoms minimize the energy, as can be seen when
bringing the two panels of figure 3.2 together. The minimum found for the
case of coronene on silver is also supported by experimental data from a STM
study [4]. It is also apparent that the curve for coronene on copper does not
resemble the other two in the region around 15◦, where, contrastingly, a sec-
ond minimum appears. This fact is due to the smaller size of copper atoms
and the resulting lattice structure, allowing for another energetically favorable
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Figure 3.3: Total energies of coronene on the (111)-surfaces of gold, silver and
copper with respect to the rotational angle of the molecule. The
angle of 0◦ is defined such that the zig-zag orientation of coronene
is in the [110]-direction of the substrate. Rotations further than
30◦ are redundant because of the molecule’s symmetry. The cal-
culations were done with the PBE exchange-correlation functional
and the TS van der Waals-correction with optimized parameters.

position of the coronene molecule.

Table 3.2 exhibits the adsorption energies, the adsorption heights as well
as the deviations of the z-coordinates of surface and molecule respectively.
Here, and in the following, we define the adsorption energy as the energy of
the interface minus the sum of 1 ML of coronene molecules and the substrate,
i.e.

Eads = Eint − (Emol + Esub). (3.3)

Note that for calculating both the energies of the substrate and the molecules,
atomic positions were held fixed. The energies and distances draw a clear pic-
ture: coronene on gold and silver behave similar in terms of adsorption energy
and distance, whereas coronene on copper is more strongly bound and located
at a shorter distance. For the adsorption height the following convention is
used throughout this thesis. We take the average z-value of all carbon atoms
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of the coronene molecule and subtract from that the average z-value of the
topmost metal layer. While coronene molecules in the gas phase have a per-
fectly flat geometry, upon adsorption we see a mild distortion in such a way
that inner carbon atoms are further away than the outer ones. Vice versa, the
surface atoms slightly rearrange due to molecule-substrate interaction. Both
phenomena are not exceptionally strong in this case, but their effects can be
seen in the two last rows of the table: the most reactive substrate, copper, de-
forms the molecule the most, the least reactive substrate, gold, is rearranged
the most upon adsorption. Note that the given errors are statistical errors
from accounting for counting different z-coordinates for different atoms that
would have to be smeared out with the errors of the DFT calculation. Conse-
quently, the figures of table 3.2 should be seen as a trend rather than absolute
values.

Table 3.2: Adsorption energies and adsorption heights of coronene on Au(111),
Ag(111) and Cu(111) at optimized sites.

Au Ag Cu

Eads [eV] -2.178 -2.151 -2.465

d [Å] 3.19 ± 0.08 3.10 ± 0.04 2.87 ± 0.06

∆zsur [Å] 0.04 0.02 0.02

∆zmol [Å] 0.04 0.03 0.05

Having determined the adsorption geometry for each system, more precise
computations could be utilized. In particular, we refined the k-mesh from 4×
4×1 to 8×8×1 and allowed for a energy-cutoff of 500 eV. As described in the
preceding chapter, the energy and the electronic structure of the systems under
consideration depend also on the chosen exchange-correlation functional and
its van der Waals-correction, which will be addressed to the next paragraph.

3.1.2 Van der Waals Schemes

In many systems the general adsorption geometry and the electronic struc-
ture of the systems under consideration are fairly independent of the chosen
DFT functional and the according Van der Waals-correction. In systems that
are dominated by physisorption, however, the adsorption energy and the ad-
sorption height are strongly influenced by the computational treatment of the
non-local-interactions within the system. In order to investigate, how sensitive
the adsorption structure is with respect to the treatment of van der Waals-
interactions, we want to compare results from calculations that have been car-
ried out with different methods. It follows from the results shown above that
the adsorption of coronene on Au(111) is most sensitive to these subtle forces,
since the binding is the weakest of all three systems. Accordingly, the case of
coronene on gold was examined further, utilizing the three different van der
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Waals-correction-schemes that have been described in section 2.4.

The results can be seen in table 3.3, where the adsorption energy, the
average adsorption height as well as the surface and molecule rearrangements
are shown for the four cases: The TS method with the optimized parameter
from Ruiz et. al. [27], the TS method with SCS, the MBD method with default
van der Waals-parameter and the MBD method with van der Waals-parameter
obtained with the SCS method. A fifth method, the MBD method with the
optimized van der Waals parameter from Ruiz et. al. [27], was also tested,
we do not show the results in table 3.3 however, since the results are almost
identical to the MBD-SCS data.

Table 3.3: Adsorption energies and adsorption heights of coronene on Au(111)
for the PBE functional with different van der Waals-correction
schemes: Tkatchenko-Scheffler (TS), TS with self-consistent screen-
ing (TS-SCS), many-body dispersion (MBD) and MBD with SCS.

TS TS-SCS MBD MBD-SCS

Eads [eV] -2.178 -3.986 -1.674 -1.410

d [Å] 3.19 ± 0.08 3.22 ± 0.10 3.32 ± 0.07 3.33 ± 0.06

∆zsur [Å] 0.04 0.07 0.04 0.03

∆zmol [Å] 0.04 0.02 0.03 0.03

The results for the adsorption height draw a clear line: the more sophisti-
cated the van der Waals-correction, the greater the adsorption height with the
largest step towards the MBD methods. To the best of our knowledge, there
is, unfortunately, no experimental data for this system to which our results
could be compared to. It should therefore serve as a reference to compare these
values to the closest members of the aromatic family, namely benzene (C6H6)
and hexa-peri-hexabenzocoronene (HBC, C42H18). The experimental data [61]
and corresponding DFT simulations [62] for benzene on Au(111) report an ad-
sorption height of d = 3.7 Å and a binding energy of EB = −0.64 eV. For HBC
on Au(111) the only available figure is an adsorption height of d = 3.09 Å,
although measured at a coverage of 0.3 ML [63]. When comparing the adsorp-
tion heights, we find that our results lie in between the smaller and the bigger
molecule, indicating that the longer adsorption height of the MBD method
should be preferred in order to match the pattern. In terms of binding ener-
gies, we can only take the value of benzene with a binding energy per carbon
atom of EB/C− atom = −0.11 eV. Interpolated to the number of carbon
atoms of coronene, this would lead to a binding energy of EB = −2.56 eV.
Note that this value cannot be trusted due to the different adsorption heights
such that these argumentations are everything else than compelling and should
only be seen as side remark as the physisorption of different sizes of aromatic
molecules are subjected to the subtle interplay between molecule and sur-
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face structure, intermediated by van der Waals-forces. The results of van der
Waals-correction schemes are concluded by further remarking that the case of
coronene is indeed very sensitive to the computational treatment of dispersion
forces (as can be seen in strong deviations of the respective binding energies).
For further calculations we stick to the TS scheme since this is computation-
ally much less demanding and typically the electronic structure will be less
affected by the choice of method than the adsorption energies.

3.2 Electronic Structure

When talking about the electronic structure of a quantum mechanical system,
an important measure is usually the electronic density of states (DOS), which
is here averaged over spatial regions and evaluated in a certain range of energy.
As a starting point, the total DOS of the three systems is depicted in figure 3.4.
The curves have been normalized such that the maximum equals 1 and are
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Figure 3.4: DOS of the composite systems of coronene on the adsorbates
Au(111), Ag(111) and Cu(111) respectively.

merely used for qualitative comparison of the systems. Energetically below the
Fermi edge, the most prominent peaks stem from the metal d-bands. In order
to distinguish substrate from molecular features or features that arise from the
hybridization between molecule- and substrate-states, it is useful to project the
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DOS (pDOS) on atomic orbitals, which is shown for the case of gold and silver
in figure 3.5. Note that the values of the interface and the substrate have been
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Figure 3.5: The pDOS of the interface coronene-Au(111) in the upper panel
and of coronene-Ag(111) in the lower panel.

scaled to the same value, whereas the curve for the molecule has been scaled
with a factor of 67.3 (top) and 136.6 (bottom) to allow for a direct comparison.
When comparing all three curves for one system, it is apparent that most of
the DOS is resulting from the substrate and the molecule contributes very
little and only at distinct positions in energy.

For the case of coronene/Au(111) and coronene/Ag(111) (figure 3.5), it
is possible to assign the peaks closest to the Fermi level to the HOMO and
LUMO, respectively. In the case of coronene/Cu(111) however, it is not pos-
sible to be certain about the HOMO position, since the first peak below the
Fermi edge is energetically already in the range of the Cu d-bands, which can
be seen in the upper panel of figure 3.6. This behavior must be seen as a
shortcoming of the PBE-functional, which results in the Cu d-bands being
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Figure 3.6: The pDOS of the interface coronene-Cu(111). Upper panel: eval-
uated with the GGA functional. Lower panel: evaluated with the
HSE functional.

at a too low binding energy, see e.g. [64]. In order to overcome this behav-
ior, another calculation with a hybrid functional, the Heyd-Scuseria-Ernzerhof
(HSE) functional, was done. The resulting pDOS can bee seen in the lower
panel of figure 3.6. Here, the HOMO is more prominent and lies energetically
above the Cu d-bands, although by a rather small margin.

In oder to characterize the electronic structure of a composite system,
it is fruitful to look at how charges rearrange upon adsorption. In general, a
metal surface exhibits a surface dipol due to the non-vanishing electron density
outside the surface [65]. This dipole layer can be reduced due to the electron
density of the molecule, which repels charges as a result of the Pauli principle
(push-back-effect [66, 67]). Figure 3.7 gives an overview of this behavior for the
three different systems. Horizontally, the three columns represent the three
different adsorbates gold, silver and copper, while vertically the change in
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electrostatic potential ∆Epot, the transferred charge Q and the charge-density
difference ∆ρ are plotted versus the z-axis, respectively. The dotted lines in
the background represent the charge density, where the magnitudes have been
scaled to mark the z-positions of the molecule and the respective surface atoms
as references.

Starting from the lowest row, ∆ρ(z) shows the plane-averaged charge-
density difference, which is defined as

∆ρ(z) = ρtot(z)− [ρmol(z) + ρsub(z)] . (3.4)

Thus, in addition to the charge density of the full system (ρtot(z)), we have
performed two additional calculations, one in which only the molecule mono-
layer is present and one for the substrate. Note that in these two calculations,
the atomic positions have been fixed to those of the full system and that the
charge densities have been integrated over the x, y-plane. We now clearly see a
rearrangement of positive charge in the outer region of the surface as the result
of a diminishing surface dipole (push-back-effect). Conversely, this results in
a reduced electron density at the position of the molecule, with the preferred
region of origin being the one closer to the surface and with the exception
of the molecule center. Coronene is a typical member of the aromatic family
with delocalized π-orbitals in which the electrons can move considerably free
and thus push back the electrons of the surface dipol, rather than the local-
ized electrons of the σ-system, where we even see a slight positive net charge
rearrangement upon adsorption.

Integrating the difference in charge density over the z-direction from z0 to
the point z gives the net change in charge at that point, which can be seen in
the middle panel and is defined as

Q(z) =

∫ z

z0

dz′∆ρ(z′), (3.5)

where we take z0 to be out in the vacuum region [68]. When starting outside
from the vacuum, we see a “lack of negative charge” that peaks in the middle
between the molecule and the surface.

Turning to the uppermost panels, integrating once more over z gives the
plane-averaged change in the electrostatic potential induced by the interaction
of the molecule with the substrate (here: ∆Epot(z)). Away from the gap
in the vacuum direction, this potential relative to the Fermi energy can be
related to the change in work function ∆Φ of the system, i.e. the change in
energy necessary to remove one electron from the system into the vacuum.
The values of Φ itself were determined as 4.55 eV, 3.57 eV and 3.76 eV for
coronene on gold, silver and copper respectively. The work function of the
uncovered (111)-surfaces are 5.25 eV for gold, 4.40 eV for silver [69] and 4.78
eV for copper [70], such that we get a work function change of 0.70 eV (Au),
0.83 eV (Ag) and 1.11 eV (Cu) which is also indicated in black color in the
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upper panel of figure 3.7. We thus see a stronger work function change when
going from the from less reactive surfaces to the more reactive. This behavior
agrees with statements made before and again reflects the way how adsorption
on copper leads to a stronger molecule-surface-interaction than in the other
cases. It should also be noted that the push-back-effect is stronger in the case
of Cu due to the shorter adsorption height of the coronene molecules.

3.3 Photoemission Angular Distributions

The most direct experimental method to explore the electronic structure of
surfaces is photoemission spectroscopy. Using UV-light, ultra-violet photoe-
mission spectroscopy (UPS) gives access to the DOS. When taking into ac-
count also the angular dependence of the photoemitted electrons, even further
insights can be gained.

In order to study the effects of the adsorption on the electronic structure of
the coronene molecule, we first simulated 1 ML of coronene without substrate.
In contrast to a single molecule, the 1 ML structure shows inter-molecular
interaction, which allows us to separate the effects of molecule-molecule- and
molecule-substrate-interaction. For the case of 1 ML of coronene, the defining
equation 2.60 for the photoemission intensity is reduced from a summation over
all bands and k-points to only one single molecular orbital as the initial state.
Since the summation over k-points leads to delta-functions that project out the
respective point in the Brillouin zone, these peaks have to be smeared-out by
Gaussian-type distributions on the computer, where we used a broadening of

∆k = 0.05 Å
−1

. Moreover, the energy resolution of the photoemission energy
in the experiment is not sharp, such that we also use a broadening in energy
that was set to ∆E = 0.05 eV.

We now look at the HOMO of the molecule, which is a 2-fold degenerate
state. The left and middle panel of figure 3.8 show the respective photoemis-
sion angular distribution maps of each state, whereas the right panel is the
superposition of both. In general, we see a clear six-fold symmetry of the
HOMO features, which represents the geometry of the molecule. It is also
noticeable that the molecules are rotated with respect to the main symmetry
axes (here the value of the optimized rotational angle for the case of gold had
been taken).

Only recently, a method has been developed which can be used for adsor-
bates on substrates. When approximating the final state with a plane wave,
the influence of the bulk states is overestimated since each electron can con-
tribute equally to the photoemission current, regardless of its origin inside the
bulk. In practice, however, electrons that are nearer to the surface will be
be emitted more likely due to the damping of the light intensity inside the
material and the fact that low-lying electrons (if they have been excited by
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the incoming light-beam) will scatter from the material and will thus be ef-
fectively suppressed in the current. The way to implement a mean-free path
of the scattered electrons is an exponential damping of the plane wave final
state inside the bulk. This method is reported to produce excellent results for
hydrocarbons on metal surfaces, e.g. for perylenetetracarboxylic dianhydride
(PTCDA) on Cu(100) [71].

The photoemission angular distribution map of 1 ML of coronene can now
be compared to those of the HOMO of the coronene-interfaces with Au(111)
and Ag(111), which can be seen in figure 3.9, where the energy corresponds
to the HOMO peaks from figure 3.5. Note that the 1 ML map and the inter-
face maps have now been symmetrized in oder to represent the fact that in
an actual experiment, the surface of emitting electrons is large compared to
the size of the domain islands. Consequently, the data is a mix from differ-
ent domain orientations, which we can simulate by applying mirror symmetry
with respect to the high-symmetry axes of the structure. For the interface
of coronene with Ag(111), similar features than those of the HOMO of the
free-standing coronene layer can be observed, although a slight influence from
the substrate is present in the background, which however still shows six-fold
symmetry. For the case of coronene on Au(111), this background-structure is
richer and does not show clear six-fold symmetry. The fact that the molecule-
substrate-interaction is stronger for the case of Au(111) also agrees with the
fact that the molecular HOMO feature lies closer to the metal d-bands than
for the case of Ag(111) (see also figure 3.5). For both cases, we furthermore
see deformations of the main lobes due to the interaction of the substrate.

In the course of this work, a paper with experimental and theoretical results
was published [4]. Figure 3.10 was taken from this publication and shows a
comparison of experimental to theoretical results for coronene on Ag(111).
From the zoom-in in the lower panel, it can be concluded that the simulations
fit the experimental data very well, especially in the case of the HOMO.

As discussed before, the above mentioned behavior of the substrate influ-
ence in the case of silver is even more prominent for the case of cornene on
Cu(111), since the d-bands are covering the HOMO for the PBE calculation,
which lead to an extra calculation utilizing the HSE functional. In figure 3.11,
the two prominent HOMO and HOMO-1 (left and middle) features from the
PBE calculation are compared to the HOMO feature of the HSE calculation
(right map). In this case, even more influence of the substrate can be seen
for the two PBE maps, whereas the HSE map shows very little influence of
the substrate and looks similar to the 1 ML HOMO feature in figure 3.8. It
must be noted that the broadening in energy and momentum necessary to

generate these maps from discrete sets of points was set to ∆k = 0.05 Å
−1

and ∆E = 0.05 eV throughout, whereas for the HSE calculation we had to
restrict to 0.1 eV for both values. This is owed to the fact that for PBE we
were able to use a k-mesh of 8 × 8 × 3 whereas for HSE we had to restrict
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to 4 × 4 × 1 for computational reasons. The coarser grid in k-space would
produce artifacts in the photoelectron angular distribution maps if computed
with the finer k-space broadening. This also explains the smoothness and
good contrast of the HSE map and its good agreement to the HOMO feature
of 1 ML.
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the photoemission intensity has been normalized to 1.
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Figure 3.10: Upper panel: theoretical results for coronene on Ag(111) with
the HOMO feature in the middle and binding energies of ±0.1 eV
with respect to the HOMO to the left and right.
Lower panel: zoom-in of the theoretical calculations (top) com-
pared to expermental results (bottom) respective to the above
energies.
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functional is shown. Note that the in the latter – due to computa-
tional limitations that do not allow for a finer k-space mesh with
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. The k-space is measured in
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1.
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Chapter 4

Conclusions and Outlook

In this thesis a comprehensive theoretical study of the organic-metal inter-
faces of coronene on the (111)-surfaces of gold, silver and copper has been
conducted. In determining the optimal adsorption sites with respect to the
metal surfaces, we have found an overall similarity for all three systems, where
the center of the molecule has been found to be in the center position of three
metal atoms. For the azimuthal orientation of coronene on the three metal
surfaces, we have determined the minima to lie between 4.5◦ and 6.5◦, which
is also supported by experimental data from STM imaging. The last degree
of freedom – the adsorption height – has been computed with geometry relax-
ations, with an emphasis on the system coronene on Au(111) since this system
has been found to show the weakest binding to the surface. Having utilized
three different methods for the implementation of long-range dispersion forces,
we find that the adsorption height and the adsorption energy varies strongly
with the methods. Experimental data for our system was not available, thus we
have compared the results to the similar systems benzene/Au(111) and hexa-
peri-hexabenzocoronene/Au(111), where we see that the data for coronene
resembles the trend in adsorption height when moving up in the family of
cyclic hydrocarbons. Although problematic to compare, we have concluded
to prefer the more sophisticated method of many-body dispersion. After the
geometric optimization, we have studied the electronic structure of the three
interfaces.

Also, regarding the density of states and the energy position of the HOMO,
we have found similarities for the surfaces silver and gold. For copper however,
a further calculation with a hybrid functional had to be performed in order to
clarify the HOMO position. When analyzing the charge rearrangements upon
adsorption, we have seen that the surface dipole gets diminished (push-back
effect) in all three cases accompanied by a reduction of the work function, with
the magnitude following the line of surface reactiveness from gold to copper.
We have not seen any significant charge transfer between surface and molecule
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in any case whatsoever.

In order to simulate photoemission spectroscopy, photoemission angular
distribution maps have been computed. By this virtue, comparison of the
electronic states of 1 ML of coronene and the adsorbates had been possible.
From this we have seen the influence of the different substrates to the HOMO
states and the inter-molecular dispersion. For the case of coronene on silver,
these simulations have been compared to experimental data and show good
agreement.

As an outlook to further studies, we could state that the validation of
our results would benefit from experimental data of the respective systems, of
which only STM and ARUPS data for coronene/Ag(111) is available to this
day. Especially a study of adsorption heights and energies would be desirable
to clarify the question of van der Waals-corrections. Alternatively, DFT simu-
lations of benzene with different correction schemes could be compared to the
existing experiments.
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