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Abstract

Within this thesis the geometric and electronic properties of the tetracene/Ag(110) interface
and the tetracene/Cu(110) interface are studied in the framework of density functional
theory. The optimal adsorption geometry is investigated for both systems using damped
molecular dynamics to relax different supercells and calculate the respective adsorption
energies. We further analyze the electronic structures of the energetically most favorable
geometries in terms of work function modifications, charge rearrangements, projected
density of states and molecular orbital projected density of states. Finally, we compare
simulated photoemission momentum maps for the two systems with experimental data.





Kurzzusammenfassung

In dieser Arbeit werden die elektronischen und geometrischen Eigenschaften der
Tetrazen/Ag(110) und der Tetrazen/Cu(110) Oberfläche im Rahmen der Dichtefunktion-
altheorie studiert. Um die optimale Adsorptionsgeometrie zu untersuchen werden für
beide Systeme mit der Hilfe von ’damped molecular dynamics’ verschiedene Superzellen
relaxiert und deren Adsorptionsenergien berechnet. Außerdem analysieren wir die elek-
tronische Struktur der energetisch günstigsten Geometrien hinsichtlich der Änderung der
Austrittsarbeit, der Ladungsdichteumverteilung, der projizierten Zustandsdichte und der
Molekülorbital projizierten Zustandsdichte. Schließlich werden simulierte Photoemission-
Impuls Karten beider Systeme mit experimentellen Daten verglichen.





Contents

1 Introduction 1

2 Theory 3
2.1 Quantum Mechanical Many Electron Problem . . . . . . . . . . . . . . . . . . 3
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Exchange-Correlation Energy Functional . . . . . . . . . . . . . . . . . 7

2.3 In-Silico DFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Plane Wave Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Projector Augmented Wave Method . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Calculations with the Vienna Ab-Initio Simulation Package . . . . . . . 12
2.3.4 Simulation of a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Simulated Photoemission Intensity . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Fundamentals of Photoemission Spectroscopy . . . . . . . . . . . . . . . 13
2.4.2 Calculation of the Photoemission Intensity . . . . . . . . . . . . . . . . 14

3 Results 17
3.1 Adsorption Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Ionic Relaxation Calculations with VASP . . . . . . . . . . . . . . . . . 17
3.1.2 The Tetracene/Ag(110) Interface . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 The Tetracene/Cu(110) Interface . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 The Tetracene/Ag(110) Interface . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 The Tetracene/Cu(110) Interface . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Charge Rearrangements and Work Function Variations . . . . . . . . . . . . . 30
3.3.1 The Tetracene/Ag(110) Interface . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 The Tetracene/Cu(110) Interface . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Photoemission Momentum Maps . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 The Tetracene/Ag(110) Interface . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 The Tetracene/Cu(110) Interface . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Comparison of the Tetracene/Ag(110) Interface to the Tetracene/Cu(110) . . 40

4 Conclusion 43

5 Bibliography 47

i



ii Contents



CHAPTER 1
Introduction

The general motivation to investigate organic/metal interfaces is that a good knowledge of
the electronic properties of such interfaces is crucial to reach a better performance and
stability in modern organic electronics.

In this work a theoretical analysis of two specific organic/metal interfaces is conducted.
A theoretical viewpoint proofs useful on the one side to gather detailed knowledge, while
on the other hand it can also be beneficial to better understand and interpret data from
experimental research.

An organic/metal interface is a solid state system exhibiting quantum mechanical behavior
and should therefore be described using the Schrödinger equation, which unfortunately
can only be solved exactly for very simple problems. Thus a numerical treatment and
appropriate approximations are inevitable. In this thesis we approach the problem using
density functional theory (DFT), which is a formalism describing the ground state of a
quantum mechanical 𝑁 -electron system using only the electron density instead of the
complicated 𝑁 -electron wave functions. The main ideas and strategies of DFT will briefly
be introduced in the first part of this thesis.

The organic material of interest in this work is tetracene, an organic semiconductor
that is used building organic field-effect transistors and organic light-emitting diodes. In
particular we explore the electronic properties of tetracene on two different metal surfaces
with face-centered cubic crystal structure: Ag(110) and Cu(110).

Using the Vienna ab-initio simulation package (VASP) to conduct DFT calculations we
start our analysis by investigating the optimal adsorption geometry of tetracene on both
surfaces. Moreover we calculate the density of states and compare it to the experimental
energy distribution curve (EDC) to gain insight about molecular orbital positions. Con-
sequently we analyze the rearrangement of charge upon adsorption of tetracene on both
surfaces as well as the work function variations, which are especially important when it
comes to technical applications of organic/metal interfaces. To gather additional knowledge
about the nature about the molecular orbitals of both interfaces we visualize them in
k-space by simulating photoemission momentum maps and then compare them to their
experimental counterparts.
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CHAPTER 2
Theory

2.1 Quantum Mechanical Many Electron Problem
The fundamental equation to describe materials from a quantum mechanical point of view
is the Schrödinger equation. Therefore we need to write down the Hamiltonian of our
system. In this description we group the constituents of a solid into valence electrons 𝑒
and lattice ions 𝑖, considering that core electrons are tightly bound to the nucleus, while
valence electrons contribute to chemical bonding and therefore have a major influence on
the properties of the material.

�̂� = 𝑇𝑒 + 𝑇𝑖 + 𝑉𝑖−𝑖 + 𝑉𝑒−𝑖 + 𝑉𝑒−𝑒 (2.1)

This is the so called molecular Hamiltonian [1], which consists of the kinetic energy of the
electrons and the kinetic energy of the ions, as well as the electron-electron, ion-ion and
electron-ion interaction.

Due to the huge mass difference between electrons and ions one can assume, that the
electrons follow the lattice ions instantaneously. Therefore following the well known Born-
Oppenheimer approximation, the electronic dynamics can be separated from the ionic
dynamics. The coordinates of the lattice ions are consequently regarded as parameters
for the electronic problem. In the resulting Hamiltonian for 𝑁 electrons the lattice ions
contribute in the form of an external potential

�̂� = −1
2

𝑁∑︁
𝑖=1

𝛥𝑖⏟  ⏞  
𝑇𝑒

+
𝑁∑︁
𝑖=1

𝑣(𝑟𝑖)⏟  ⏞  
𝑉𝑒𝑥𝑡

+ 1
2

𝑁∑︁
𝑗 ̸=𝑖

𝑒2

|𝑟𝑖 − 𝑟𝑗 |⏟  ⏞  
𝑉𝑒−𝑒

(2.2)

Now we can write down the stationary Schrödinger equation for a system with the
complete set of quantum numbers 𝑘.

�̂�𝜓𝑘(𝑟1𝜎1, 𝑟2𝜎2, . . . ,𝑟𝑁𝜎𝑁 ) = 𝐸𝑘𝜓𝑘(𝑟1𝜎1, 𝑟2𝜎2, . . . ,𝑟𝑁𝜎𝑁 ) (2.3)

The wave functions 𝜓 are antisymmetric under the exchange of two electrons and fulfill
the normalization condition∑︁

𝜎1

· · ·
∑︁
𝜎𝑁

ˆ
𝑑3𝑟1 · · · 𝑑3𝑟𝑁 |𝜓𝑘(𝑟1𝜎1, 𝑟2𝜎2, . . . ,𝑟𝑁𝜎𝑁 )|2 = ⟨𝜓𝑘|𝜓𝑘⟩ = 1 (2.4)

3



4 Chapter 2 Theory

The electrons in the wave function are indistinguishable, hence the expression

𝑁 !|𝜓𝑘(𝑟1𝜎1, 𝑟2𝜎2, . . . ,𝑟𝑁𝜎𝑁 )|2𝑑3𝑟1 . . . 𝑑
3𝑟𝑁 (2.5)

gives the probability of finding any electron with spin 𝜎1 in 𝑑3𝑟1 and any electron with
spin 𝜎2 in 𝑑3𝑟2 and so on. The full wave function depends on the coordinates and spins
of all 𝑁 electrons and consequently has 3𝑁 dimensions. For solid state systems, which
contain a huge number of electrons (around 1023), handling such high dimensional wave
functions is imposssible due to an exponential scaling with 𝑁 . Another equally interesting
but much more convenient physical quantity is the 3-dimensional electron spin density. It
is defined, so that 𝑛𝜎(𝑟)𝑑3𝑟 is the probability of finding an electron with the spin 𝜎 in 𝑑3𝑟
at 𝑟. [2]

𝑛𝜎(𝑟) = 𝑁
∑︁

𝜎1...𝜎𝑁

ˆ
𝑑3𝑟2 . . .

ˆ
𝑑3𝑟𝑁 |𝜓𝑘(𝑟1𝜎1, 𝑟2𝜎2, . . . ,𝑟𝑁𝜎𝑁 )|2 (2.6)

From 2.4 and 2.6 it follows that

∑︁
𝜎

ˆ
𝑑3𝑟 𝑛𝜎(𝑟) = 𝑁. (2.7)

2.2 Density Functional Theory
Density functional theory (DFT) is a theory used to describe the ground state of a many
electron system based on the idea to use the electron spin density instead of the full wave
function. Two theorems by Hohenberg and Kohn build the proper mathematical basis for
DFT, they will be discussed in the following.

2.2.1 Hohenberg-Kohn Theorems
To discuss the Hohenberg-Kohn theorems, we follow the constrained search approach by
Levy [3] instead of performing the reductio ad absurdum proof as it was done originally
by Hohenberg and Kohn [4]. As a starting point we take the wave function variational
principle, which tells us that minimizing ⟨𝜓|�̂�|𝜓⟩ over all normalized many electron wave
functions yields the ground state energy:

𝐸0 = min
𝜓

⟨𝜓|�̂�|𝜓⟩ (2.8)

Subsequently we split the task into two steps:

1. minimize with respect to the wave functions
2. minimize with respect to the density

Starting by minimizing over all wave functions that give the same fixed electron density
yields the total energy functional:
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𝐸[𝑛] = min
𝜓→𝑛

⟨𝜓|�̂�|𝜓⟩ (2.9)

= min
𝜓→𝑛

⟨𝜓|𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝑒−𝑒|𝜓⟩ (2.10)

= min
𝜓→𝑛

⟨𝜓|𝑇 + 𝑉𝑒−𝑒|𝜓⟩ +
ˆ
𝑣(𝑟)𝑛(𝑟)𝑑3𝑟 (2.11)

The first term in 2.11 does not depend on the specific system and is therefore called the
universal functional:

𝐹 [𝑛] ≡ min
𝜓→𝑛

⟨𝜓|𝑇 + 𝑉𝑒−𝑒|𝜓⟩ (2.12)

Hohenberg-Kohn Theorem 1 The ground-state energy of a system of interacting elec-
trons as described by the Schrödinger equation is a unique functional of the total electron
density. [4]

In the second step one can now calculate the ground state energy by minimizing the
total energy functional over all electron densities, that give the same number of electrons.

𝐸0 = min
𝑛

𝐸[𝑛] = min
𝑛

{︂
𝐹 [𝑛] +

ˆ
𝑣(𝑟)𝑛(𝑟)𝑑3𝑟

}︂
(2.13)

Hohenberg-Kohn Theorem 2 The electron density that minimizes the energy of the
overall functional is the true electron density corresponding to the full solution of the
Schrödinger equation. [4]

The minimization is carried out under the constraint of a fixed electron number 𝑁 .
Using the technique of Lagrange multipliers one obtains

𝛿{𝐹 [𝑛] +
ˆ
𝑑3𝑟𝑣(𝑟)𝑛(𝑟) − 𝜇

ˆ
𝑛(𝑟)𝑑3𝑟⏟  ⏞  

=𝑁

} != 0 (2.14)

where 𝜇 is the Lagrange multiplier. The resulting Euler equation reads

𝛿𝐹 [𝑛]
𝛿𝑛(𝑟) + 𝑣(𝑟) = 𝜇. (2.15)

2.2.2 Kohn-Sham Equations
Although the Hohenberg-Kohn theorems reveal important properties about the electron
density of a system, they do not provide a method to calculate the ground state density.

For the purpose of developing a scheme, that can be applied in practice, Kohn and
Sham proposed to consider an auxiliary non-interacting system of electrons [5], hence the
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electron-electron potential vanishes. This system should be constructed in such a way, that
it gives the same density as the corresponding system where the electrons interact with
each other. The new Hamiltonian of this auxiliary system reads

�̂�𝑆 = 𝑇 + 𝑉 𝑆
𝑒𝑥𝑡 (2.16)

Minimizing over all wave functions that give the same fixed electron density gives

𝐸[𝑛] = min
𝜑→𝑛

⟨𝜑|�̂�𝑆 |𝜑⟩ = min
𝜑→𝑛

⟨𝜑|𝑇 |𝜑⟩⏟  ⏞  
𝑇𝑆 [𝑛]

+
ˆ
𝑛(𝑟)𝑣𝑆(𝑟)𝑑3𝑟 (2.17)

Here we have introduced the functional 𝑇𝑆 [𝑛], which describes the kinetic energy of a
system of independent electrons. Note that 𝜑 is, unlike the 𝑁 -electron wave function 𝜓 of
the interacting system, only a single Slater determinant of single particle wave functions
𝜙𝑖.

The second minimization step with respect to the density, including the constraint´
𝑛(𝑟)𝑑3𝑟 = 𝑁 = const. , results in

𝛿𝑇𝑆 [𝑛]
𝛿𝑛(𝑟) + 𝑣𝑆(𝑟) = 𝜇 (2.18)

The universal functional 𝐹 [𝑛], like suggested by Kohn and Sham is given below

𝐹 [𝑛] = 𝑇𝑆 [𝑛] + 𝑈 [𝑛] + 𝐸𝑥𝑐[𝑛] (2.19)

𝑈 [𝑛] is the Hartree energy and 𝐸𝑥𝑐[𝑛] is the exchange-correlation energy, which is basically
defined to include everything that the other terms in 2.19 are lacking, but this will be
discussed in more detail in 2.2.3. In order to achieve that the Euler equations 2.15 and
2.18 are equivalent the Kohn-Sham potential 𝑣𝑆(𝑟) must take the following form

𝑣𝑆(𝑟) = 𝑣(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟) (2.20)

where

𝑣𝐻(𝑟) = 𝛿𝑈 [𝑛]
𝛿𝑛

=
ˆ

𝑛(𝑟′)
|𝑟 − 𝑟′|

𝑑3𝑟′ (2.21)

is the Hartree potential and

𝑣𝑥𝑐(𝑟) = 𝛿𝐸𝑥𝑐[𝑛]
𝛿𝑛

(2.22)
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is the exchange correlation potential.
Now we can write down the Kohn-Sham equations, which are single particle Schrödinger

equations.[︂
−1

2𝛥+ 𝑣𝑆(𝑟)
]︂
𝜙𝑖(𝑟) = 𝜀𝑖𝜙𝑖(𝑟) (2.23)

The energies 𝜀𝑖 are called Kohn-Sham energies and the single-particle wave functions
𝜙𝑖(𝑟) Kohn-Sham orbitals. In our auxiliary system of non-interacting electrons the 𝑁 -
electron wave function 𝜑 is a Slater determinant consisting of single-particle wave functions
𝜙𝑖, therefore one can express the density in a very simple form

𝑛(𝑟) =
𝑁∑︁
𝑖=1

|𝜙𝑖(𝑟)|2 (2.24)

2.2.3 Exchange-Correlation Energy Functional
In the previous chapter the exchange-correlation energy functional has been introduced as
the quantity that includes all physical effects, that are not covered by the other terms in the
total energy functional. No analytical form of 𝐸𝑥𝑐, where no unknown quantities remain,
has yet been discovered, hence an approximation must be used. Such an approximation
should account for:

1. self interaction correction (over counted in Hartree energy)
2. Pauli principle
3. Coulomb correlations of electrons

Nonetheless we can split the exchange-correlation energy functional in its two main parts

𝐸𝑥𝑐[𝑛] = 𝐸𝑥[𝑛] + 𝐸𝑐[𝑛] (2.25)

where the exchange part is defined as

𝐸𝑥[𝑛] ≡ ⟨𝜑𝑚𝑖𝑛𝑛 |𝑉𝑒−𝑒|𝜑𝑚𝑖𝑛𝑛 ⟩ − 𝑈 [𝑛] (2.26)

In consequence the correlation part is

𝐸𝑐[𝑛] = 𝐸𝑥𝑐[𝑛] − 𝐸𝑥[𝑛] = ⟨𝜓𝑚𝑖𝑛𝑛 |𝑇 + 𝑉𝑒−𝑒|𝜓𝑚𝑖𝑛𝑛 ⟩ − ⟨𝜑𝑚𝑖𝑛𝑛 |𝑇 + 𝑉𝑒−𝑒|𝜑𝑚𝑖𝑛𝑛 ⟩ (2.27)

Recalling 2.19 we notice that 𝜓𝑚𝑖𝑛𝑛 is the wave function that yields the density 𝑛 and
minimizes ⟨𝑇 + 𝑉𝑒−𝑒⟩ and from 2.17 we know that 𝜑𝑚𝑖𝑛𝑛 is the wave function that yields
the density 𝑛 and minimizes ⟨𝑇 ⟩, thus

𝐸𝑐[𝑛] < 0 (2.28)
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Working out a good approximation of the exchange-correlation energy functional is one of
the main difficulties in DFT. The simplest approximation is the local density approximation
(LDA)

𝐸𝐿𝐷𝐴𝑥𝑐 =
ˆ
𝑛(𝑟)𝑒𝑢𝑛𝑖𝑓𝑥𝑐 (𝑛(𝑟))𝑑3𝑟 (2.29)

𝑒𝑢𝑛𝑖𝑓𝑥𝑐 (𝑛(𝑟)) = 𝑒𝑥(𝑛(𝑟)) + 𝑒𝑐(𝑛(𝑟)) (2.30)

In a uniform electron gas the density can be written in terms of 𝑟𝑆 the Wigner-Seitz radius,
which is the radius of a sphere that on average contains one electron.

𝑛 = 3
4𝜋𝑟3

𝑆

(2.31)

Using this result the exchange energy per electron can be calculated

𝑒𝑥(𝑛(𝑟)) = −
(︂

3
2𝜋

)︂ 2
3 3

4𝑟𝑆
(2.32)

For the correlation energy per electron analytic expressions are only known for the high
density limit (𝑟𝑆 → 0) [6] and the low density limit (𝑟𝑆 → ∞) . For intermediate cases the
correlation energy per electron can be computed using quantum Monte-Carlo methods [7].

A more sophisticated approximation is the general gradient approximation (GGA), which
unlike the LDA also includes the gradient of the density and can be written like [8]

𝐸𝐺𝐺𝐴𝑥𝑐 [𝑛] =
ˆ
𝑓(𝑛(𝑟),∇𝑛(𝑟))𝑑3𝑟 (2.33)

GGA’s can be considered semilocal and in contrast to LDA there is no universal form,
but many different kinds of GGA.

2.3 In-Silico DFT Calculations
2.3.1 Plane Wave Expansion
In order to perform calculations one has to choose an appropriate set of basis functions. In
the case of translational symmetry, plane wave functions are the best choice, because they
are orthonormal, complete and lattice periodic and thus obey Bloch’s theorem.

𝜑𝑘+𝐺(𝑟) = 1√
𝛺
𝑒𝑖(𝑘+𝐺)𝑟 (2.34)

Here 𝑘 is the Bloch vector, 𝐺 is a reciprocal lattice vector and 𝛺 is the crystal volume.
Expanding the Kohn-Sham orbitals into plane waves yields
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𝜙𝑛𝑘(𝑟) = 1√
𝛺
𝑒𝑖𝑘𝑟

∑︁
𝐺′

𝑐𝑛𝑘(𝐺′)𝑒𝑖𝐺′𝑟 (2.35)

Inserting the expansion into the Kohn-Sham equations, we find the following matrix
eigenvalue equation∑︁

𝐺′

𝐻𝐺𝐺′(𝑘)𝑐𝑛𝑘(𝐺′) = 𝜀𝑛𝑘𝑐𝑛𝑘(𝐺′) (2.36)

For the Hamiltonian matrix element one finds

𝐻𝐺𝐺′(𝑘) = |𝑘 + 𝐺|2

2 𝛿𝐺𝐺′ + 1
𝛺
𝑣(𝐺 − 𝐺′) (2.37)

Here 𝑣(𝐺 − 𝐺′) is the Fourier transform of the Kohn-Sham potential. The kinetic energy
term naturally is diagonal since plane waves are eigenfunctions of the free electron.

Strictly speaking the plane wave expansion of Eq. 2.35 includes a sum over an infinite
number of reciprocal lattice vectors 𝐺. Since in practice one has to use a finite number of
basis functions, we have to establish a cut-off for all numerical applications

𝐸𝑐𝑢𝑡 = 1
2𝐺2

𝑚𝑎𝑥 (2.38)

The following flow chart demonstrates how to put the self-consistent solution of the
Kohn-Sham equations into practice using a plane wave expansion.
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initial density 𝑛0(𝑟)

set up Kohn-Sham potential 𝑣𝑆(𝑟)
and calculate Fourier transform 𝑣𝑆(𝐺)

set up and diagonalize Hamiltonian matrix 𝐻(𝑘)

calculate new density 𝑛′(𝑟) =
∑︀

𝑛

∑︀𝐵𝑍
𝑘 |𝜙𝑛𝑘(𝑟)|2

convergence
|𝐸[𝑛𝑖] − 𝐸[𝑛𝑖+1]|

< 𝜀

mix old and new density

calculation completed
𝑛(𝑟) 𝐸[𝑛(𝑟)]no yes

Figure 2.1: Self-consistent solution of Kohn-Sham equations

2.3.2 Projector Augmented Wave Method

𝑟𝑐

Fig. 2.2: Schematic illustration of the augmen-
tation region (red) and the interstitial region
(blue)

The chosen basis set of plane wave func-
tions works really well in the bonding re-
gion between the lattice ions, where the
potential is smooth and the wave functions
are plane-wave like. In the region near the
lattice ions however the kinetic energy is
high, which causes the wave function to os-
cillate strongly. This behavior is easily de-
scribed by a product of a few spherical har-
monics and radial wave functions, but the
plane wave expansion converges very slowly.
This problem can be cured using the projec-
tor augmented wave method (PAW) [9, 10].
The PAW method distinguishes between
the region near the lattice ions (|𝑟| < 𝑟𝑐) as
seen in Fig. 2.2, called augmentation region
and the interstitial region. In the augmen-
tation region an auxiliary wave function |𝜙⟩
is used. It has a rapidly convergent plane
wave expansion and is related to the true wave function |𝜙⟩ through a transformation T
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operator

|𝜙⟩ = T |𝜙⟩ (2.39)

In the augmentation region the auxiliary wave function can be decomposed into auxiliary
partial waves

|𝜙⟩ =
∑︁
𝑖

𝑐𝑖 |𝛼𝑖⟩ (2.40)

with coefficients

𝑐𝑖 = ⟨𝑝𝑖|𝜙⟩ (2.41)

The |𝑝𝑖⟩ are called projector functions. Together with the auxiliary partial waves they
have to fulfill the following orthogonality relation in the augmentation region

⟨𝑝𝑖|𝛼𝑖⟩ = 𝛿𝑖𝑗 (2.42)

The transformation operator T can be written

T = 1 +
∑︁
𝑖

(|𝛼𝑖⟩ − |𝛼𝑖⟩) ⟨𝑝𝑖| (2.43)

So for the full wave function it follows

|𝜙⟩ = |𝜙⟩ −
∑︁
𝑖

⟨𝑝𝑖|𝜙⟩ |𝛼𝑖⟩⏟  ⏞  
I

+
∑︁
𝑖

⟨𝑝𝑖|𝜙⟩ |𝛼𝑖⟩⏟  ⏞  
II

(2.44)

By means of the projector functions the term I removes the non-physical part from the
auxiliary wave function, while the term II adds the required physical part to end up with
the true wave function. Equivalent to 2.2.3 the variational principle yields Schrödinger-like
equations for a set of auxiliary wave functions

T��̂�T |𝜙𝑛⟩ = 𝜀𝑛T
�T |𝜙𝑛⟩ (2.45)

Expectation values can now be obtained either from the auxiliary wave functions directly,
or from the reconstructed physical wave functions
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⟨𝐴⟩ =
∑︁
𝑛

𝑓𝑛 ⟨𝜙𝑛|𝐴|𝜙𝑛⟩ +
𝑁𝑐∑︁
𝑛=1

⟨𝜙𝑐𝑛|𝐴|𝜙𝑐𝑛⟩ (2.46)

=
∑︁
𝑛

𝑓𝑛 ⟨𝜙𝑛|T�𝐴T|𝜙𝑛⟩ +
𝑁𝑐∑︁
𝑛=1

⟨𝜙𝑐𝑛|𝐴|𝜙𝑐𝑛⟩ (2.47)

Here 𝑓𝑛 are the occupations of valence states, |𝜙𝑐𝑛⟩ are the core states and 𝑁𝑐 is the
number of core states.

2.3.3 Calculations with the Vienna Ab-Initio Simulation Package

Fig. 2.3: Slab model: side view of 2
supercells

All calculations in this work were realized using the
Vienna Ab-Initio Simulation Package (VASP) [11–13],
which is a program package applicable for ab-initio elec-
tronic structure calculations and quantum-mechanical
molecular dynamics.

The Kohn-Sham orbitals, electron charge density
and local potential are expanded in a plane wave basis
set utilizing the PAW method.

To solve the Kohn-Sham matrix equation 2.36 by
matrix diagonalization VASP uses the residual min-
imization method with direct inversion of the itera-
tive subspace (RMM-DIIS) or blocked Davidson algo-
rithms.

VASP offers different exchange correlation function-
als: LDA, GGAs and meta GGAs. In this work the
exchange correlation functional found by J. P. Perdew,
K. Burke and M. Ernzerhof [14] (PBE) was used. The
PBE functional retains correct features of the local
spin density approximation (LSDA), an extension of
LDA 2.29 to spin-polarized systems, and adds the ener-
getically most important features of gradient-corrected
nonlocality. One should consider, that equilibrium
distances are usually overestimated while vibrational
frequencies are mostly underestimated by PBE.

Nonetheless the PBE functional (nor a LDA or any
other GGA functional for that matter) is not able to accurately describe long-range van
der Waals interactions. For this reason the Tkatchenko-Scheffler method [15] was used for
Van der Waals corrections.

2.3.4 Simulation of a Surface
In this work sufaces of two different materials are investigated: silver and copper. Both
materials are crystals and hence best described using a so-called supercell and periodic
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boundary conditions. How does one describe a surface using periodic boundary conditions?
One way to do it is the slab model [16], like pictured in 2.3. The slab model applies periodic
boundary conditions in all three dimensions and the supercell is built in a way that the
resulting simulated system is a series of stacked slabs of the solid separated by a vacuum
slab. It is important to choose the thickness of the vacuum layer and the number of crystal
layers wisely:

• The vacuum has to be large enough to prevent the crystal surface of one supercell to
interact with the bottom of the crystal in the next supercell. To guarantee, that this
is the case the charge density has to be close to zero in the vacuum slab.

• In a face-centered cubic (fcc) material (like Ag or Cu) the distance between two
adjacent layers in the bulk is constant. This is not true at the surface: For top layers
of the material it is energetically more favorable to alter their z-positions from the
ideal bulk positions. This phenomenon is called surface relaxation. Therefore one has
to simulate enough layers, so that surface relaxation does not depend on the number
of simulated layers, to get realistic results.

A supercell is described using three lattice vectors: One in z-direction defining the height
and two vectors in x- and y-direction respectively describing the shape of the cell in the
plane of the interface. As soon as we put molecules on a surface these x- and y-direction
lattice vectors (𝑎overlayer and 𝑏overlayer) have to be larger than the original x- and y-direction
unit vectors of the surface material (𝑎surf and 𝑏surf) in order to fit the molecules in the new
cell, which is called overlayer cell and describe the desired geometry. This overlayer cell is
commonly described using the so-called epitaxial matrix 𝐴:

(︂
𝑎overlayer
𝑏overlayer

)︂(︂
𝐴11 𝐴12
𝐴21 𝐴22

)︂
⏟  ⏞  

𝐴

=
(︂

𝑎surf
𝑏surf

)︂
(2.48)

2.4 Simulated Photoemission Intensity
2.4.1 Fundamentals of Photoemission Spectroscopy

~𝜔

𝛾 𝑒−

𝐸𝑘𝑖𝑛

𝜃

𝜑

𝑥
𝑦

𝑧

Fig. 2.4: Schematic illustration of photoemis-
sion spectroscopy

Photoemission Spectroscopy is a highly use-
ful experimental technique based on the
photoelectric effect, which was first mea-
sured by Hallwachs in 1888 following earlier
observations by Hertz. The theoretical ex-
planation was given 17 years later by Ein-
stein using the hypothesis of light quanta
[17]. A so-called photoelectron is emitted
when an incoming photon with energy ~𝜔
is absorbed by the solid. We can write the
energy of the photoelectron as
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𝐸𝑘𝑖𝑛 = ~𝜔−𝐸𝐵 = ~𝜔−𝛷−𝐸𝑖 (2.49)

Here 𝐸𝐵 denotes the binding energy, which consists of the work function 𝛷 and 𝐸𝑖 the
energy of the photoelectron’s initial state with respect to the Fermi energy. This means,
that we can gather information about the electronic structure of a system interpreting the
intensity resulting from photoemission spectroscopy.

2.4.2 Calculation of the Photoemission Intensity
One can describe the photoemission intensity using the one-step-model [18, 19], which is
illustrated in 2.5. The one-step-model describes the photoemission process as a transition
from an electronic bound state to an electronic continuum state due to excitation caused
by an incoming photon.

The photoemission intensity can be written as a Fermi’s golden rule like expression
containing a sum over all transition probabilities from the initial states |𝛹𝑖⟩ to the desired
final state |𝛹𝑓 (𝜃,𝜑;𝐸𝑘𝑖𝑛)⟩, which is characterized by the direction (𝜃,𝜑) and the kinetic
energy of the photoelectron, times a 𝛿-function ensuring energy conservation.

𝐼(𝜃,𝜑;𝐸𝑘𝑖𝑛) ∝∑︁
𝑖

| ⟨𝛹𝑓 (𝜃,𝜑;𝐸𝑘𝑖𝑛)| 𝐴 · 𝑝 + 𝑝 · 𝐴 |𝛹𝑖⟩ |2 × 𝛿(𝐸𝑖 + 𝛷+ 𝐸𝑘𝑖𝑛 − ~𝜔) (2.50)

For our application the quadratic term in 𝐴 is negligable and hence was dropped in this
description. Furthermore we now assume dipole approximation, which holds sufficiently
well, because the wavelength of ultraviolet light is much lager than common lattice constants.
The dipole approximation (𝐴 ≈ 𝑐𝑜𝑛𝑠𝑡.) causes the following commutation relation to vanish

[𝐴,𝑝] = 𝑖~∇𝐴 = 0 (2.51)

and simplyfies the photon electron interaction to

1
2(𝐴 · 𝑝 + 𝑝 · 𝐴) = 𝑝 · 𝐴. (2.52)

Additionally we approximate the final state |𝛹𝑓 (𝜃,𝜑;𝐸𝑘𝑖𝑛)⟩ by a plane wave and hereby
neglect spherical scattering effects of the outgoing wave. Applying both approximations to
2.50 yields

𝐼(𝑘𝑥, 𝑘𝑦;𝐸𝑘𝑖𝑛) ∝ |𝐴 · 𝑘|2
∑︁
𝑖

| ⟨𝑒𝑖𝑘𝑟|𝛹𝑖⟩ |2 × 𝛿(𝐸𝑖 + 𝛷+ 𝐸𝑘𝑖𝑛 − ~𝜔) (2.53)
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Fig. 2.5: Schematic illustration of the
one-step model (from [20])

In this formulation the photoemission intensity
is proportional to the Fourier transform of the ini-
tial state times the polarization factor |𝐴 · 𝑘|2. As
an input for the simulated photoemission intensity
the Kohn-Sham orbitals 𝜙𝑖 and energies 𝜀𝑖 can be
used. This is an approximation, which has turned
out to yield satisfying results for many organic/metal
interfaces [21].





CHAPTER 3
Results

In this section the results are presented. All calculations were conducted using VASP
[11–13] and the resulting data was processed using PYTHON and MATLAB as well as
VESTA and xmgrace for visual processing.

3.1 Adsorption Geometry
As a first step we investigate the adsorption geometry of both systems, the tetracene/Ag(110)
and the tetracene/Cu(110) interface. The correct adsorption geometry serves as a basis for
all other calculations and analysis.

3.1.1 Ionic Relaxation Calculations with VASP
The adsorption geometry is the optimal geometry for the combined system and can therefore
be found by minimizing the energy with respect to different positions of the lattice ions
in the super cell. VASP includes different algorithms to perform such an ionic relaxation.
The ionic relaxation method used in this work is damped molecular dynamics, which can
be activated setting the IBRION flag in the VASP input file INCAR to 3 (𝐼𝐵𝑅𝐼𝑂𝑁 = 3).
The positions and velocities of the lattice ions are updated in every ionic relaxation step
according to the following damped second order equation of motion, which is describing
intermolecular forces [22, 23].

�̈� = −2𝛼𝐹 − 𝜇�̇� (3.1)

VASP uses the velocity Verlet method to implement 3.1:

𝑣𝑁+ 1
2

= 1
1 + 𝜇/2

(︁(︁
1 − 𝜇

2

)︁
𝑣𝑁− 1

2
− 2𝛼𝐹𝑁

)︁
(3.2)

𝑥𝑁+1 = 𝑥𝑁+1 + 𝑣𝑁+ 1
2

(3.3)

𝐹𝑁 are the current forces, while the damping factor 𝜇 and the time step 𝛼 must be
specified in the INCAR file using the flags SMASS and POTIM. In order to stop the ionic
relaxation calculation a break condition must be met: All forces must be smaller than
EDIFFG, which is like the other parameters set in the INCAR file.

17
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In this work the following values were used:

• damping factor 𝜇 : 𝑆𝑀𝐴𝑆𝑆 = 0.4

• time step 𝛼 : 𝑃𝑂𝑇𝐼𝑀 = 0.15

• break condition: 𝐸𝐷𝐼𝐹𝐹𝐺 = 10−2 𝑒𝑉
Å

Depending on the initial configuration of the super cell it is possible that the ionic
relaxation calculation settles only for a local minimum in total energy instead of the global
minimum. For this reason one considers various starting geometries, described by possibly
different supercells, that are likely to describe the ideal adsorption geometry and compares
them. If the cells contain the same number of atoms one can directly compare the respective
total energies. Is this not the case, one has to calculate the adsorption energy, which is
defined as

𝐸ad = 𝐸mol + 𝐸surf − 𝐸mol/surf (3.4)

where 𝐸mol is the total energy of the isolated molecule, 𝐸surf is the energy of the substrate
surface and 𝐸mol/surf is the energy of the molecule/substrate interface.

3.1.2 The Tetracene/Ag(110) Interface

In this section we investigate two adsorption sites for tetracene on the Ag(110) surface
and compare them to literature [24]. Ag is an fcc crystal, hence the Ag(110) surface
is characterized by its close-packed rows, which can be seen in Figs. 3.1 or 3.2. Most
likely tetracene adsorbs either parallel to these close-packed rows (along the [110] axis)
or perpendicular to them (along the [001] axis). For this reason, we use two overlayer
structures defined by the following epitaxial matrices:

• parallel orientation:

𝐴‖ =
(︂

6 0
0 3

)︂
(3.5)

• perpendicular orientation:

𝐴⊥ =
(︂

4 0
0 4

)︂
(3.6)
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[110]

[001]

Figure 3.1: Relaxed super cells for the tetracene/Ag(110) interface, left: 𝐴⊥, right: 𝐴‖

In Fig. 3.1 the relaxed supercells, which have been obtained using damped molecular
dynamics, are pictured for both orientations. Table 3.1 shows a comparison of the calculated
adsorption energies to values from literature [24]. We note:

• The adsorption energies for the parallel and the perpendicular orientation differ only
slightly, in the present calculation (approx. 80 meV) and the literature (approx. 70
meV).

• The present calculations suggest that the parallel orientation is favorable while
literature suggests, that the perpendicular orientation is favorable.

Table 3.1: Comparison of adsorption energies for different super cells of the tetracene/Ag(110)
interface

parallel perpendicular
calculated adsorption energy 2.12 eV 2.04 eV
adsorption energy from literature [24] 2.21 eV 2.28 eV

Since the energy difference between the parallel and perpendicular orientation is quite
small and because of the inherent approximations in the DFT calculations (𝐸𝑥𝑐 functional,
Van der Waals corrections), a definite statement about the actual adsorption geometry is
difficult. Fortunately there is more that one possibility to determine how the molecule is
oriented on the surface and we will come back to this question in Section 3.4.1.

For now we examine the two adsorption geometries more closely and for this purpose
take a look at the side view of the super cells. In Fig. 3.2 we see that in both cases the
tetracene molecule lies almost flat on the surface and its geometry is only sightly different
from the geometry of tetracene in the gas phase. Additionally the adsorption height is
almost identical for both adsorption orientations, as it can be seen from Table 3.2.
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Figure 3.2: Side view of the relaxed supercells for the tetracene/Ag(110) interface, left: 𝐴⊥,
right: 𝐴‖

Table 3.2: Comparison of adsorption height for different supercells of the tetracene/Ag(110)
interface

𝐴‖ 𝐴⊥
adsorption height 2.51 Å 2.52 Å

3.1.3 The Tetracene/Cu(110) Interface
The Cu(110) surface is, like the Ag(110) surface, characterized by close-packed rows due
to the fcc crystal structure, whereas the main difference between both surfaces is the
considerably smaller lattice constant of Cu (𝑎𝐶𝑢 ≈ 3.63Å while 𝑎𝐴𝑔 ≈ 4.12Å).

Literature [25, 26] states consistently, that tetracene adsorbs parallel to the close-packed
rows on a Cu(110) surface, but there is no agreement on which adsorption site is favored
or how the tetracene molecules are orientated on the surface with regard to each other. In
this work we investigate all four high-symmetry adsorption sites for the two most likely
adsorption patterns respectively. The two investigated adsorption patterns are depicted in
Fig. 3.3. Either way the tetracene molecule is oriented along the [110] axis, but in one
case the molecules are arranged side by side (Fig. 3.3 right) while in the other case they
are shifted, so that a chess board like pattern is formed (Fig. 3.3 left). We chose the chess
board pattern super cell to be skew-angled in order to make it smaller. The corresponding
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epitaxial matrices are:

• chess board pattern:

𝐴1 =
(︂

5 1
0 2

)︂
(3.7)

• square pattern:

𝐴2 =
(︂

5 0
0 2

)︂
(3.8)

Conveniently both supercells contain the same number of atoms, thus we can directly
compare total energies instead of adsorption energies.

[110]

[001]

[110]

[001]

Figure 3.3: Relaxed supercells for the tetracene/Cu(110) interface, left: 𝐴1, right: 𝐴2

For each adsorption pattern, we investigated four different adsorption sites, which are
named according to the position of the two central tetracene rings with respect to the
surface atoms (see Fig. 3.4).

From the comparison in Table 3.3 we can see, that for the hollow, long bridge and top
adsorption sites, the chess board pattern is slightly more favorable. Among the adsorption
sites the top and short bridge sites are clearly unfavored, while the hollow and long bridge
sites yield comparable energies with a slight preference for the latter. All in all the chess
board pattern with the long bridge adsorption site is the energetically most favorable
geometry.
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Top site:

Hollow site:

Short bridge site:

Long bridge site:

Figure 3.4: Different adsorption sites of tetracene on the Cu(110) surface

Taking a closer look at the side view of a relaxed square and chess board pattern super
cell (both in long bridge site) in Fig. 3.5 it becomes apparent why the latter is more
favorable: Due to the different geometry the tetracene molecules come closer in the square
pattern and thus have to bend much more to adsorb than in the chess board pattern.

From now on we will concentrate on the two most favorable adsorption geometries (𝐴1
in the long bridge adsorption site and 𝐴2 also in the long bridge adsorption site) for further
analysis. The adsorption heights taken as an average over all heights of atoms belonging
to the tetracene molecule are compared in Tab. 3.4. The adsorption height in the 𝐴1
geometry is significantly smaller than the height in geometry 𝐴2, which is due to the strong
deformation of tetracene in the latter case. Note that the shortest carbon-copper distances
are comparable for the 𝐴1 and 𝐴2 structures.

Table 3.3: Comparison of total energies for different supercells of the tetracene/Cu(110)
interface

𝐴1 𝐴2
top site -407.38 eV -407.10 eV
hollow site -408.96 eV -408.88 eV
long bridge site -409.02 eV -408.98 eV
short bridge site -407.64 eV -407.67 eV

Table 3.4: Comparison of adsorption height for different supercells of the tetracene/Cu(110)
interface

𝐴1 𝐴2
adsorption height 2.33 Å 2.54 Å
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Figure 3.5: Side view of two relaxed supercells for the tetracene/Cu(110) interface, left: 𝐴1
in long bridge site, right: 𝐴2 in long bridge site

3.2 Density of States
In this section we compute the density of states (DOS) for both systems and compare the
results to photoemission spectroscopy data experiment conducted by Xiaosheng Yang and
co-workers from the Peter Grünberg Institute (PGI-3) at the Forschungszentrum Jülich
[27].

The DOS is a quantity of great interest because it carries information about the electronic
structure of a system: The peaks in the DOS indicate the locations of molecule orbitals.

In this work two methods are used to obtain the DOS from the output data produced
by a VASP calculation:

• projected density of states (pDOS) The pDOS can be extracted from the PRO-
CAR file, which contains the band energy for each k-point split up into contributions
from each atomic orbital.
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• molecular orbital projected density of states (mopDOS) To calculate the
mopDOS a separate VASP calculation for the free standing molecule has to be
carried out. Then the Kohn-Sham wave functions, which can be obtained from the
WAVECAR file from the full system and the free standing molecule are used to
perform a projection of the DOS on the molecule orbital of the freestanding molecule
layer. [28]

Experimentally, the information is contained by so-called energy distribution curve (EDC).
The EDC is measured using photoemission spectroscopy, which was briefly introduced in
2.4.1.

3.2.1 The Tetracene/Ag(110) Interface
In Fig. 3.6 the pDOS of both orientations of tetracene on silver are compared to an
experimental EDC. It is important to note, that the presented pDOS is a DOS projected
on the molecular orbitals of tetracene and therefore represents the proportion of the DOS
of the tetracene/Ag(110) system, which is related to the tetracene molecule. The EDC on
the other hand represents the whole tetracene/Ag(110) system. It should also be noted
that the experimental data can only yield the occupied DOS showing a characteristic Fermi
edge around the Fermi energy, while in the computed DOS we do not include a Fermi-Dirac
distribution, which is why in this case also the unoccupied DOS is shown.

The pDOS of the parallel and perpendicular orientation are rather similar, both show the
lowest unoccupied molecular orbital (LUMO - denoted as L in Fig. 3.6) slightly above the
Fermi edge and partially occupied upon adsorption of tetracene on silver. The the highest
occupied molecular orbital (HOMO - denoted as H) is approximately at the same energy
and the third peak is actually a double peak for both orientations - note the shoulder at
the right slope! We name those two peaks HOMO-1 and HOMO-2 (H-1 and H-2 in the
picture).

The EDC also shows four peaks in total. The first peak (M1 in the picture) can be
identified with the left slope of the LUMO. The fact, that the LUMO appears in the
experimental data at all confirms its partial occupation, since only occupied orbitals can
be detected using photoemission spectroscopy.

Moreover the experimental peak M2 can be matched to the HOMO peak from the pDOS,
but for M3 and M4 an assignment is not at all clear at this point.

In Table 3.5 the peak positions from Fig. 3.6 as well as the respective HOMO-LUMO
gap are listed for comparison.

Looking at the comparison of pDOS and mopDOS Fig. 3.7 the nature of the double
peak (H-1 and H-2) becomes apparent: It consists of two peaks from separate molecular
orbitals (H-1 and H-2).
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Figure 3.6: pDOS of the 𝐴‖ and the 𝐴⊥ tetracene/Ag(110) interface in comparison with
the EDC from experiment [27]

Table 3.5: Presumed molecular orbital positions from calculated pDOS and experimental
EDC for the tetracene/Ag(110) system

L H H-1 H-2 H-L gap
pDOS: 𝐴‖ calculation 0.08 eV -1.36 eV -2.46 eV -2.73 eV 1.44 eV
pDOS: 𝐴⊥ calculation 0.13 eV -1.39 eV -2.47 eV -2.69 eV 1.52 eV

M1 M2 M3 M4 M2-M1 gap
experimental [27] -0.15 eV -1.55 eV -2.45 eV -3.20 eV 1.40 eV

3.2.2 The Tetracene/Cu(110) Interface

In Fig. 3.8 the pDOS for the 𝐴2 and 𝐴2 geometry are shown together with the experimental
EDC of the tetracene/Cu(110) system. Both pDOS curves show two peaks associated
with the tetracene molecule (L and H) before the copper d-bands begin. We interpret this
peaks as HOMO and LUMO. The LUMO appears slightly below the Fermi edge, hence is
occupied upon adsorption of tetracene on copper.
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Figure 3.7: Comparison of mopDOS and pDOS for (a) 𝐴⊥ and (b) 𝐴‖ adsorption geometry
for the tetracene/Ag(110) system
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The experimental EDC also shows two peaks (M1 and M2), but both appear at a higher
binding energy than the calculated peaks. This can also be seen from the comparison
of peak positions in Tab. 3.6. Moreover HOMO-LUMO gaps are compared: They are
larger for both geometries of tetracene on Cu(110) than the experimental result, whereby
the energetically more favorable geometry 𝐴1 yields a satisfyingly good estimate of the
HOMO-LUMO gap.
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Figure 3.8: Comparison of mopDOS, pDOS and experimental EDC [27] for the
tetracene/Cu(110) system

Table 3.6: Presumed molecular orbital positions from calculated pDOS and experimental
EDC for the tetracene/Cu(110) system

L H H-L gap
pDOS: 𝐴1 calculation -0.14 eV -0.89 eV 0.75 eV
pDOS: 𝐴2 calculation -0.08 eV -0.95 eV 0.87 eV

M1 M2 M1-M2 gap
experimental -0.82 eV -1.52 eV 0.70eV

A comparison of the calculated pDOS to the calculated mopDOS can be seen in Fig.
3.9. The mopDOS curves confirm the previous assignment of peaks. Note that the LUMO
peak in 3.9 (b) has a double peak structure with a shoulder on its left slope for the
𝐴2 structure, which may be due to the pronounced bend of the molecule or arise from
strong intermolecular dispersion. However in contrast to the H-1 H-2 double peak from
tetracene/Ag(110) (Fig. 3.6) it only describes one orbital as shown by the mopDOS
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calculation.
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Figure 3.9: Comparison of mopDOS to pDOS for the tetracene/Cu(110) system in (a) the
𝐴1 geometry and (b) the 𝐴2 geometry
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3.3 Charge Rearrangements and Work Function Variations
In this section we look at the charge density of both interfaces and compare them to the
charge density of the bare surface. We will observe charge rearrangements and moreover
discuss the closely related work function variations. The work function is the energy needed
to remove an electron from the system to the vacuum level and therefore a quantity of
great interest especially concerning technical applications. The work function is influenced
by the surface dipole layer, which exists at a bare surface because of the spilling of the
electrons outside the ionic lattice of the solid. Those spilled electrons create an excess of
negative charge above the surface and a positively charged area right beneath the surface.
The resulting dipole layer acts as a barrier when extracting an electron from the system
and therefore increases the work function. When a layer of molecules adsorbs on a surface
the dipole layer is altered hence the work function of the system changes. This is mostly
caused by two effects:

• Due to Pauli’s principle the adsorbed molecules push the spilled out electrons, which
are causing the surface dipole layer, a bit back into the solid as pictured in 3.10. This
is called the push back effect and it results in a lowering of the work function.

• The second effect is charge transfer from the solid to the adsorbed molecule, which
has the opposite impact on the work function of the system, namely an increased
work function.

Figure 3.10: Schematic representation of the push back effect from [29]

The work function modification 𝛥𝛷 can be gained from a charge density analysis, as
described in [30]:

1. Calculate the difference in charge density 𝛥𝜌 regarding the combined system versus
the bare surface.
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2. Solve the one-dimensional Poisson’s equation for the plane-averaged charge density
difference, thus integrate 𝛥𝜌 twice over space to obtain the electrostatic potential
associated with 𝛥𝜌.

3. The jump in the calculated potential equals the work function variation 𝛥𝜌 (see Figs.
3.11 and 3.12).

As a second possibility, the work function variation 𝛥𝛷 can be evaluated directly from
the respective electrostatic potential values:

𝛥𝛷 = 𝛷(surf/mol) − 𝛷(surf) (3.9)

where 𝛷(surf/mol) is the work function of the combined system and 𝛷(surf) is the work
function of the surface by its own.

The work function is

𝛷 = 𝐸vac − 𝐸𝐹 (3.10)

where 𝐸vac is the vacuum energy and 𝐸𝐹 is the Fermi energy. This can be computed
from a VASP calculation: 𝐸vac can be identified from the electrostatic potential, which is
contained by the VASP output file LOCPOT and 𝐸𝐹 can be found in the OUTCAR file.

3.3.1 The Tetracene/Ag(110) Interface

In Fig. 3.11 we see the charge density analysis for tetracene on silver in a perpendicular
and a parallel adsorption orientation. Comparing both we see almost no difference, with
the exception of the total charge density of the surface, which is higher in 3.11 (b) due
to the higher number of silver atoms in the respective super cell. In both cases 𝛥𝜌, the
charge density variation, and the ’potential’ (𝛥𝜌 integrated two times over space) were
scaled by a factor of 100. Looking at 𝛥𝜌 (blue curve) we see a series of bonding dipoles,
which are a consequence of the push back effect and a slight charge transfer from the silver
surface to the tetracene molecule layer.

Measuring the potential jump to get the work function variation 𝛥𝛷, we get -0.40
eV for the perpendicular adsorption orientation and -0.36 eV for the parallel adsorption
orientation, while we get -0.42 eV and -0.43 eV respectively from the direct calculation. In
Table 3.7 we see a comparison of both methods to compute the work function variation.

The results are in relatively good agreement and state consistently, that the work
function is lowered upon adsorption of tetracene on silver. For the sake of completeness
the additional dipole due to the geometric distortion of the tetracene molecules is an is
shown in Table 3.7. In [31] this effect is called bend dipole as opposed to the bond dipole
arising from charge rearrangements. Since this geometric distortion of tetracene on silver
is rather small the bend diplole does not play an important role. For the case of tetracene
on copper on the other hand it has a crucial influence on the work funktion as will be
discussed in the next section.
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Figure 3.11: Charge density analysis for (a) the 𝐴⊥ and (b) the 𝐴‖ tetracene/Ag(110)
interface
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Table 3.7: Work function variation of the tetracene/Ag(110) system

𝐴⊥ 𝐴‖
𝛥𝛷 from Eq. 3.9 -0.40 eV -0.36 eV
bond dipole -0.42 eV -0.43 eV
bend dipole -0.01 eV -0.07 eV

3.3.2 The Tetracene/Cu(110) Interface
The charge rearrangement analysis for tetracene on copper is shown in Fig. 3.12. We see a
overall similar result compared to the tetracene/Ag(110) system:

The charge density variation 𝛥𝜌 shows strong oscillations in the region between molecule
and surface indicating a series of bonding dipoles caused by the push back effect. In
fact the present oscillations have a higher amplitude than the ones observed for the
tetracene/Ag(110) system. This possibly is the direct result of a stronger push back effect
due to a smaller adsorption height. Despite those strong bonding dipoles the work function
variation 𝛥𝛷 seen from the change in the electrostatic potential associated with 𝛥𝜌 is not
considerably larger than the ones seen concerning the tetracene/Ag(110) system for neither
of both present adsorption geometries (𝐴1 and 𝐴2). This puzzling fact can be clarified by
recalling the position of the LUMO in the calculated density of states (Fig. 3.8), which
is beneath the Fermi edge and indicates a strong charge transfer from the copper surface
to the tetracene molecules. The charge transfer reverses part of the the effect caused by
bonding dipoles, but the push back effect still dominates thus in total 𝛷 is lowered upon
adsorption of tetracene on copper.

In Tab. 3.8 a comparison of both discussed methods to gain the work function variation
𝛥𝛷 from a DFT calculation is shown. The values measured from charge density analysis
are considerably lower than the values calculated according to 3.9, but consistently state
a lowering of the work function. The difference between the two methods arises from
an additional dipole due to the geometric distortion of the tetracene molecules, which
is not taken into account in the charge rearrangement analysis. The upward bending of
the H-atoms introduces the bend dipole, which can be seen from Tab. 3.8. In this case,
the bend dipole acts as a barrier for the spilled electrons and therefore lowers the work
function.

Table 3.8: Work function variation of the tetracene/Ag(110) system

𝐴1 𝐴2
𝛥𝛷 from Eq. 3.9 -0.52 eV -0.53 eV
bond dipole from charge density analysis -0.21 eV -0.11 eV
bend dipole -0.42 eV -0.50 eV
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Figure 3.12: Charge density analysis for (a) the 𝐴1 and (b) the 𝐴2 tetracene/Cu(110)
interface



3.4 Photoemission Momentum Maps 35

3.4 Photoemission Momentum Maps

In this section the method discussed in 2.4.2 is used to simulate photoemission momentum
maps for both interfaces and subsequently the simulated maps are compared to experimental
data measured by Xiaosheng Yang and co-workers from the Peter Grünberg Institute (PGI-
3) at the Forschungszentrum Jülich [27].

3.4.1 The Tetracene/Ag(110) Interface

The photoemission angular distribution measured over wide polar and azimuthal angular
ranges can be used as a fingerprint for molecular emissions. Here, we simulate such
momentum maps as resulting from angle-resolved photoemission spectroscopy (ARPES).
To this end, we have to specify at which energy level we want to image the electronic
structure in k-space. For this task we use the peak energies from the calculated DOS given
in Table 3.5 to visualize the molecular orbitals of the system.

In Fig. 3.13 we see a comparison of simulated to measured ARPES maps. The first
thing, that catches the eye is the alignment of the ARPES maps, which is alike for the
simulation of a parallel adsorption pattern and the experimental data, but rotated by an
angle of 90 degrees for the simulation of a perpendicular adsorption pattern. This can best
be seen for the molecular emission right below the Fermi level, which exhibits pronounced
peaks around 𝑘‖ ≈ 1.5Å−1 along the molecular axis. This fact clearly indicates, that
the tetracene molecules in the experiment are adsorbed parallel to the close-packed rows.
Therefore we can conclude that the 𝐴‖ structure describes the correct adsorption geometry
in agreement with our results for the adsorption energy presented earlier in 3.1.

The first experimental orbital (M1) exhibits a comparably weak intensity and takes a
form in k-space similar to the simulated LUMO. The observation of a peak that can be
identified with the LUMO confirms the finding from previous analysis, namely that the
LUMO gets partially occupied upon adsorption of tetracene on silver. M2 resembles the
simulated HOMO ARPES map, but so does M3. Judging from the M3 energy, its ARPES
map should resemble the HOMO-1 ARPES map, which shows features, that lie much
more closely together in k-space than the HOMO features. The last ARPES map (M4)
roughly resembles the HOMO-2 map, but could also be interpreted as a superposition of
the HOMO-2 and the HOMO-1 map.

A feasible hypothesis explaining these observations is the existence of a second layer of
tetracene in the experiment, which may be responsible for the somewhat strange second
HOMO lookalike peak M3.
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Figure 3.13: (a): simulated ARPES maps for the 𝐴⊥ adsorption geometry, (b): simulated
ARPES maps for the 𝐴‖ adsorption geometry, (c): ARPES maps from experimental data [27]

Putting this hypothesis to the test an ionic relaxation calculation for a double layer
of tetracene on the Ag(110) surface, with a parallel adsorption orientation regarding the
close-packed rows, was conducted. The second layer of tetracene was placed in a chess
board like manner on top of the first layer.

Looking at the side view of the relaxed supercells in Fig. 3.14, we see that for a coverage
of 0.47 molecules per nm2 , as in Fig. 3.1 on the right side, during relaxation the tetracene
molecules from the second layer twist slightly and dive into the gaps between the tetracene
molecules of the first layer resulting in a merging of the second layer with the first layer.
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Figure 3.14: Side view of the supercells containing a double layer of tetracene on Ag(110),
left: super cell from Fig. 3.1 right side with an extra layer of tetracene added, right: new super
cell with a higher coverage

Consequently we continue the investigation of a double layer of tetracene on Ag(110)
with a considerably larger coverage of 0.85 molecules per nm2 The side view of the relaxed
super cell using this higher coverage is shown in Fig. 3.14 on the right side. One sees two
separate layers of tetracene on top of each other.

To find the energy positions of the molecular orbitals of this new system we calculate
the pDOS, this time projecting on the first and second layer of tetracene separately. The
resulting pDOS curves are compared to the experimental EDC in Fig. 3.15. As expected for
both layers of tetracene we see a similar pDOS, whereby the pDOS of the upper tetracene
layer is shifted towards higher energies. This pattern can also be seen from the energies
in Table 3.9, where all peak positions are listed for comparison. To distinguish the peaks
from the upper and lower layer of tetracene the subscripts u and l respectively have been
introduced.

Moreover one notes that the coverage of tetracene on silver does influence the peak
positions in the projected density of states: All peak positions except for the LUMO peak
position shift to lower binding energies with a higher coverage. A possible explanation
for the different behavior of the LUMO could be a higher charge transfer from silver to
the molecule layer at higher coverage, which would lower the position of the LUMO in
reference to the Fermi energy.



38 Chapter 3 Results

-4 -3 -2 -1 0 1
0 0

1 1

2 2

3 3

lower 4A layer
upper 4A layer
experimental EDC

LH

H-1

H-2

M1

M2M3

M4

𝐸 − 𝐸𝐹 [𝑒𝑉 ]

In
te

ns
ity

[a
rb

.
un

it
s]

D
O

S
[a

rb
.

un
it

s]

Figure 3.15: Comparison of the pDOS of the tetracene double layer on Ag(110) (Fig. 3.14,
right side) and the experimental EDC [27]

Table 3.9: Presumed molecular orbital positions from calculated pDOS for a monolayer
and a double layer of tetracene on silver in a parallel adsorption position compared to the
experimental EDC [27]

L H H-1 H-2
pDOS: monolayer low coverage 0.08 -1.36 -2.46 -2.73
pDOS: monolayer high coverage 0.03 -1.24 -2.38 -2.68

L𝑢 L𝑙 H𝑢 H𝑙 H-1𝑢 H-1𝑙 H-2𝑢 H-2𝑙
pDOS: double layer high coverage 0.46 | 0.01 -1.15 | -1.31 -2.44 | -2.47 -2.63 | -2.75

M1 M2 M3 M4
experimental data [27] -0.15 -1.55 -2.45 -3.20

Looking at the associated simulated ARPES maps compared to the experimental ones
in Fig. 3.16 we note that the double layer of tetracene exhibits two HOMO like peaks (H𝑙

and H𝑢) as expected, but their energies do not quite match up with the energies of the
two HOMO lookalike peaks observed in experiment (M2 and M3).
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Figure 3.16: (a): simulated ARPES of a monolayer tetracene on silver, (b): ARPES maps
from experimental data [27], (c): simulated ARPES of the upper layer of two layers tetracene
on silver, (d): simulated ARPES of the lower layer of two layers tetracene on silver
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3.4.2 The Tetracene/Cu(110) Interface
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Fig. 3.17: (a): simulated ARPES maps for
tetracene on copper in 𝐴1 geometry, (b):
ARPES maps from experimental data [27],(c):
simulated ARPES maps for tetracene on copper
in 𝐴2 geometry

In Fig. 3.17 the simulated ARPES maps
are compared to maps from photoemission
spectroscopy. The orientation of the fea-
tures seen in all maps is consistent and
confirms that tetracene adsorbs parallel to
the close-packed rows on a Cu(110) surface.

The simulated LUMO ARPES map can
be identified with the experimental M1 map
for both tetracene/Cu(110) calculations.
The M1 map shows a rather strong intensity,
hence shows a filled orbital. This confirms
the previously observed charge transfer and
occupation of the LUMO upon adsorption
of tetracene on Cu(110).

Moreover the HOMO peak can reliably
be matched to the experimental M2 peak.
The HOMO map shown in Fig. 3.17 (a)
(𝐴1 geometry) exhibits the for a tetracene
HOMO characteristic features more clearly
than the H-map shown in (c) (𝐴2 geome-
try), which is considerably blurred. This
might be a consequence of the strong de-
formation of tetracene in the 𝐴2 geometry.
The comparison with the experimental map
thus also suggests, that an adsorption geom-
etry with a substantial geometric distortion
of tetracene as seen in 𝐴2 is rather unlikely.

It should also be noted, that in the simu-
lated maps a substructure is visible, which
presumably arises from strong intermolec-
ular dispersion and molekule-substrate in-
teraction. A similar effect was observed
and studied in [32] in a coronene/Ag(111)
system.

3.5 Comparison of the Tetracene/Ag(110) Interface to the Tetracene/Cu(110)
In this section we briefly compare the results from both interfaces starting with a comparison
of adsorption energies in Tab. 3.10. We see that generally the adsorption energies on
Cu(110) are higher than the energies on Ag(110). In particular it is the tetracene/Cu(110)
𝐴1 geometry that yields the largest value.
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Table 3.10: Comparison of adsorption energies for tetracene on Ag(110) and Cu(110)

𝐸𝑎𝑑
Tetracene/Ag(110): 𝐴‖ 2.12 eV
Tetracene/Ag(110): 𝐴⊥ 2.04 eV
Tetracene/Cu(110): 𝐴1 3.32 eV
Tetracene/Cu(110): 𝐴2 2.89 eV

Furthermore it also is the tetracene/Cu(110) 𝐴1 geometry which exhibits the lowest
adsorption height as it can be seen from Tab. 3.11.

Table 3.11: Comparison of adsorption height for tetracene on Ag(110) and Cu(110)

adsorption height
Tetracene/Ag(110): 𝐴‖ 2.51 Å
Tetracene/Ag(110): 𝐴⊥ 2.52 Å
Tetracene/Cu(110): 𝐴1 2.33 Å
Tetracene/Cu(110): 𝐴2 2.54 Å

From Tab. 3.12 we can consistently state, that tetracene lowers the work function
upon adsorption on a Ag(110) surface as well ws an a Cu(110) surface. Moreover both
systems exhibit charge transfer from the surface to the tetracene molecule layer. The
tetracene/Ag(110) LUMO gets partially occupied but remains slightly above the Fermi
edge while the tetracene/Cu(110) LUMO on the other hand is completely occupied upon
adsorption and consequently has an energy beneath the Fermi energy.

Table 3.12: Comparison of work function variation for tetracene on Ag(110) and Cu(110)

direct calculation bond dipole bend dipole
Tetracene/Ag(110): 𝐴‖ -0.43 eV -0.36 eV -0.07 eV
Tetracene/Ag(110): 𝐴⊥ -0.42 eV -0.40 eV -0.01 eV
Tetracene/Cu(110): 𝐴1 -0.52 eV -0.21 eV -0.42 eV
Tetracene/Cu(110): 𝐴2 -0.53 eV -0.11 eV -0.50 eV

Finally we compare HOMO-LUMO gaps for both systems. From Tab. 3.13 we see, that
the present calculations throughout yield slightly larger gaps than the experiment does.
Interestingly the systems that were slightly favorable regarding adsorption engergy (𝐴‖ for
Ag(110) and 𝐴1 for Cu(110)) also give the best results concerning the HOMO-LUMO gap.
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Table 3.13: Comparison of the HOMO-LUMO gap for tetracene on Ag(110) and Cu(110)

HOMO-LUMO gap
Tetracene/Ag(110): 𝐴‖ 1.44 eV
Tetracene/Ag(110): 𝐴⊥ 1.52 eV
Tetracene/Ag(110): experiment [27] 1.40 eV
Tetracene/Cu(110): 𝐴1 0.75 eV
Tetracene/Cu(110): 𝐴2 0.87 eV
Tetracene/Cu(110): experiment [27] 0.70 eV
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Conclusion

The goal of this thesis was to gather detailed knowledge about the electronic properties of
the tetracene/Ag(110) and the tetracene/Cu(110) interface. Moreover we aimed to better
understand and interpret data from experimental research by comparison to theoretical
simulations.

This challenge was tackled by means of density functional theory calculations which were
carried out using VASP. The first step was to investigate the optimal adsorption geometry
as a basis for further analysis.

For the tetracene/Ag(110) interface we choose two geometries, namely parallel (𝐴‖) and
perpendicular (𝐴⊥) to the close-packed rows. They were studied in terms of adsorption
energy and adsorption height. Contradictory to literature [24] the present calculations sug-
gest that the adsorption geometry parallel to the close-packed Ag(110) rows is energetically
preferred over the perpendicular alignement by 80 meV.

To find the optimal adsorption geometry for the tetracene/Cu(110) system, we examined
two strucures proposed by literature [25, 26], which both have the same coverage, but
a different arrangement of the tetracene molecules: In the 𝐴1 structure the molecules
are arranged in a chess board pattern, whereas in the 𝐴2 structure they are arranged
face-to-face. Moreover we analyzed all four high-symmetry adsorption sites for both
structures respectively. We found, that the long bridge adsorption site is clearly preferred
in both structures of tetracene on copper, while the 𝐴1 structure is slightly more favorable
energetically than the 𝐴2 structure.

As a next step we computed the density of states and found that the LUMO gets
partially occupied upon adsorption of tetracene on Ag(110). This effect proved to be
even stronger for the case of tetracene/Cu(110), where one finds a filled LUMO beneath
the Fermi edge. A comparison of the simulated DOS to the experimental photoemission
data showed a satisfyingly good agreement of the HOMO-LUMO gaps calculated from
the tetracene/Ag(110) 𝐴‖ and the tetracene/Cu(110) 𝐴1 structure to experimental data
while both other structures yielded HOMO-LUMO gaps considerably larger than the
experimental gaps.

A charge rearrangement analysis showed charge transfer from the surface to the tetracene
layer accompanied by the formation of bonding dipoles due to the push back effect in both
systems. However the push back effect outweighs the effect of charge transfer, which results
in a lowering of the work function upon adsorption of tetracene on Ag(110) as well as on
Cu(110).

Finally we simulated ARPES maps and compared them to experimental ARPES maps.
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The analysis of the tetracene/Cu(110) system showed consistent results clearly confirming
the adsorption of tetracene parallel to the close-packed Cu(110) rows as well as the filling
of the LUMO. The simulated ARPES maps concerning the tetracene/Ag(110) system
likewise confirm the partial occupation of the LUMO as well as adsorption of tetracene
parallel to the close-packed Ag(110) rows. However the simulated ARPES maps show
LUMO, HOMO, HOMO-1 and HOMO-2 patterns as expected while in the experimental
data shows two HOMO lookalike maps. Presuming a second layer of tetracene could be
the cause of the second HOMO peak, a DFT calculation using a double layer of tetracene
on Ag(110) was performed. From this calculation we obtain a second HOMO peak but not
at the same energy as in the experiment. This subject remains an open question, future
work will be necessary to clarify this issue.
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