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Abstract

Photoemission tomography is a powerful new tool in science, which allows the recon-
struction of electron orbitals from experimental photoemission data, through the use
of iterative algorithms. It is based on Fermi’s golden rule for a photoemission process,
and the use of a plane wave approximation for the final state. With this assumption
the experimental data of angle-resolved photoemission spectroscopy (ARPES) becomes
proportional to the absolute value Fourier transform (FT) of the initial state. At the
same time, the information on the phase of the wave function is lost in the process.
However, with the use of the iterative algorithms discussed in this thesis, this phase can
be recovered.

This work makes use of the ARPES measurement data of complex molecules like
perylene-3,4,9,10-
tetracarboxylic dianhydride (PTCDA) and pentacene (5A), and reconstructs their elec-
tron orbitals using two different iterative methods, the Gerchberg-Saxton (GS) algorithm
and a combination of error reduction (ER) and phase-constrained hybrid input-output
(PC-HIO) algorithms. The latter algorithm was applied to this ARPES measurement
data for the first time.

Using these methods, the real space and Fourier space images of the electron or-
bitals of the above mentioned molecules could be reconstructed. Thereby, advantages
and disadvantages of the various methods have been compared and assessed for future
applications.
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Kurzzusammenfassung

Photoemissions-Tomographie ist ein mächtiges neues Werkzeug in der Oberflächenphysik,
welches die Rekonstruktion von Elektronenorbitalen aus experimentellen Messdaten,
durch die Verwendung von iterativen Algorithmen, ermöglicht. Sie basiert auf Fer-
mis goldener Regel für den Photoemissionsprozess und einer Näherung des Endzustands
durch eine ebene Welle. Unter dieser Annahme kann gezeigt werden, dass die exper-
imentellen Messdaten einer winkelaufgelösten Photoelektronenspektroskopie (ARPES)
zum Absolutbetrag der Fouriertransformation (FT) vom Anfangszustand proportional
werden. Da es sich um den Absolutbetrag der FT handelt, geht die Phase der Wellen-
funktion verloren. Mithilfe von iterativen Algorithmen kann diese jedoch rekonstruiert
werden.

Diese Arbeit verwendet die ARPES Messdaten von komplexen Molekülen wie zum
Beispiel 3,4,9,10-Perylentetracarbonsuredianhydrid (PTCDA) und Pentacen (5A), und
rekonstruiert ihre Elektronenorbitale mit zwei unterschiedlichen iterativen Methoden,
dem Gerchberg-Saxton (GS) Algorithmus und einer Kombination aus dem error re-
duction (ER) Algorithmus und dem phase-constrained hybrid input-output (PC-HIO)
Algorithmus. Die zweite Methode wurde zum ersten mal auf diese APRES Messdaten
angewendet.

Mit diesen Methoden knnen die Elektronenorbitale dieser Moleküle im Realraum und
im Fourierraum rekonstruiert und abgebildet werden. Anschließend wurden Vor- und
Nachteile der unterschiedlichen Methoden für zukünftige Anwendungen verglichen und
beurteilt.
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List of Abbreviations

5A pentacene

ARPES angle-resolved photoemission spectroscopy

DFT density functional theory

ER error reduction (algorithm)

FFT fast Fourier transform

FT Fourier transform

GS Gerchberg-Saxton (algorithm)

HIO hybrid input-output (algorithm)

HOMO highest occupied molecular orbital

LUMO lowest unoccupied molecular orbital

PC-HIO phase-constrained hybrid input-output (algorithm)

PTCDA perylene-3,4,9,10-tetracarboxylic dianhydride
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1 Introduction

In quantum mechanics the spatial probability distributions of electrons in atoms are
called orbitals. Atomic orbitals used to be a concept of theoretical physics, with no
way to create images from experimental data. However, in the past couple of decades
scientists have been able to make use of different methods to reconstruct orbitals from ex-
perimental observation, ranging from X-ray and electron diffraction data [1] to scanning
tunneling microscopy, as well as electron momentum spectroscopy and photoemission
spectroscopy [2]. This work mainly focuses on the method of angle-resolved photoemis-
sion spectroscopy (ARPES).

In 1887 Hertz discovered, that electrons can be emitted from a sample when electro-
magnetic radiation hits the surface. This effect was later explained by Einstein in 1905,
who proposed the concept of wave-particle duality. In the case of the photoelectric effect
this meant, that light itself is also part particle, quantized into discrete wave packets
called photons. When these photons have the appropriate energy, they are able to kick
out the electrons in the sample.

ARPES is based on the photoelectric effect and is the most direct technique to deter-
mine the electronic band structure of a surface. The probability for the electron to be
emitted can be calculated from Fermi’s golden rule of perturbation theory. Furthermore,
by assuming that the photoemitted electron is no longer influenced by the potential of
the sample, the final state can be approximated with a plane wave. With this approach
the ARPES measurement data becomes proportional to the absolute value Fourier trans-
form (FT) of the initial state, in this case the electron orbitals. One might assume, that
a simple inverse FT on the measured data would be sufficient to reconstruct the orbitals,
but the problem lies in the fact, that it is the absolute value of said FT, which results
in the phase of the electron wave function to be lost.

This anomaly is called the phase problem, which will be described in more detail
in Chapter 2.4. In fact, an inverse FT of the ARPES measurement data produces
a real-space wave function with twice the spatial extent and wrong phase. To correct
this, we introduced two different iterative reconstruction methods, the Gerchberg-Saxton
(GS) algorithm and a combination of error reduction (ER) and phase-constrained hybrid
input-output (PC-HIO) algorithms. Both of these methods require a known spatial
extent of the molecules in real space, called the domain constraint.

With the GS algorithm, the value outside of the domain constraint is reduced by a
constant factor of its initial value with each iteration, therefore reducing the error at
each step and slowly iterating to the desired real-space wave function. This idea is also
used in the second method with the ER algorithm, which sets the values outside of the
spatial extent to zero with each iteration. This alone would not converge to a useful
result, which is why we have to combine it with the PC-HIO algorithm. This algorithm

6



in a way recycles the wave function and calculates the difference between itself outside
of the domain constraint in each iteration.

With these methods it is possible to reconstruct the electron orbitals of complex
molecules. With the use of the ARPES measurement data of perylene-3,4,9,10-tetracarboxylic
dianhydride (PTCDA) and pentacene (5A), this work is dedicated to the software imple-
mentation of these phase recovery algorithms, as well as their comparison in performance.
The results are depicted and described in more details in the Chapters 4.2 and 4.3.
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2 Theory

2.1 Angle-resolved photoemission spectroscopy (ARPES)

samplex

y

z

hν
e−

θ

φ

Detector

Figure 1: Schematic layout of the ARPES experiment: From the monochromatic light
source a photon with energy hν enters the sample and kicks out a photoelec-
tron. The kinetic energy of the electron is measured as a function of the angles
θ and φ.

Angle resolved photoemission spectroscopy (ARPES) is the most direct experimental
technique to determine the electronic (band) structure of a surface. As the name sug-
gests, the angles, at which photoelectrons are emitted, are of much importance in this
kind of setup.

ARPES is based on the photoelectric effect, that was discovered in 1887 by Hertz,
and later explained by Einstein in 1905, for which he famously received the Noble prize.
Einstein introduced the wave-particle duality of light, and therefore the concept of a
photon. The usual ARPES experiment uses monochromatic UV light as a source, so
that the energy of those photons hν is constant. The kinetic energies Ekin of the photo-
electrons are measured as a function of their angle (see Fig. 1), which, by conservation
of energy, is given by [3]:

Ekin = hν − Φ− EB. (1)

Here Φ is the work function, which is given by the energy difference between vacuum
level and Fermi energy Φ = Evac − EF , and EB is the electrons binding energy with
respect to the Fermi level, which is characteristic for a given electronic state [4]. Under
the assumption, that the emitted electron is no longer influenced by the potential of
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its solid, the final state of the electron can be approximated as a free particle with the
energy:

Ekin =
~2(kex)2

2me
(2)

Here kex is the wave number of the emitted photoelectron, and me is its mass. From
Eq. (2) it follows that

kex =

√
2meEkin

~
. (3)

The x and y components of the wave vector can now be expressed using the measured
angles θ and φ like [3, 5]

kexx =

√
2meEkin

~
sin θ cosφ (4)

kexy =

√
2meEkin

~
sin θ sinφ. (5)

Due to the geometry of the ARPES experiment, the electrons wave vector component
parallel to the surface before and after its exit from the sample is conserved (Fig. 2),
and can be described using the reciprocal lattice vector G like [4]

kex
|| = k|| + G||. (6)

As kex
|| is known by measurement, k|| can also be calculated using this equation.

z

k

kex

k||

kex
||

sample

vacuum

Figure 2: Geometry of the ARPES experiment: Parallel component of the wave vector
is conserved when exiting the surface.
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2.2 Quantum Mechanics of the photoemission process

The photoemission process can be explained using either the three-step model, or the
one-step model. The three-step model divides the process into optical excitation of
the electron from an initial to a final state by absorption of a photon, travel of the
photoelectron towards the surface, and transmission of the electron into the vacuum.

The one-step model, on the other hand, describes the photoemission in a single step
and makes use of Fermi’s golden rule from perturbation theory, which describes the
transition rate from an initial state ψi to a final state ψf under a certain perturbation,
in this case the absorption of a photon [3, 4]. Thus, the photoemission intensity I is
proportional to the transition rate:

I ∝ |〈ψf |Hint|ψi〉|2δ(Ekin + Φ− EB − hν). (7)

Here, the δ function accounts for energy conservation, as stated in Eq. (1), and Hint is
the interacting or perturbing Hamiltonian. The unperturbed Hamiltonian H0 has the
form:

H0 =
p2

2me
+ eV (r), (8)

where V (r) stands for the potential. For a particle with charge e, in presence of an
electromagnetic field, the momentum operator must be replaced by p→ p− e

cA, known
as the minimal coupling principle, and the Hamiltonian becomes

H =
1

2me
[p− e

c
A]2 + eV (r) =

=
p2

2me
+ eV (r)︸ ︷︷ ︸
H0

+
e

2mec
(Ap + pA) +

e

2mec
A2︸ ︷︷ ︸

Hint

= H0 +Hint (9)

Assuming the vector potential A is weak, one can neglect its quadratic term, i.e. using
the approximation A2 ≈ 0. The Eq. (9) can then be further simplified by employing
Coulomb gauge ∇A = 0, and the commutator relation of momentum operator and
vector potential [p,A] = i~∇A which in this gauge becomes zero [3]. Now with the use
of Ap + pA = 2Ap the second term in Eq. (9) can be rewritten, and the interaction
Hamilton simplifies to

Hint =
e

mec
Ap, (10)

which can be inserted back into Eq. (7) to get the final result:

I ∝ |〈ψf |Ap|ψi〉|2δ(Ekin + Φ− EB − hν). (11)
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2.3 Plane wave approximation

Under the simplifying assumption that the photoemitted electron is no longer influenced
by the potential produced from the solid, it makes sense to approximate the final state
|ψf 〉 with a plane wave of the form |ψf 〉 ∝ eikf r. Inserting this, and the momentum
operator p = −i~∇, into Eq. (11) for a single photoelectron gives us [7]

I ∝ |〈eikf r|A(−i~∇)|ψi〉|2 = |i~〈ψi|A∇|eikf r〉|2 =

∣∣∣∣i~∫ ψ∗i (r)A∇eikf r dr

∣∣∣∣2. (12)

Here ψi(r) is the wave function in real space. Applying the derivative on eikf r and
pulling the position-independent terms to the front leads to:

I ∝
∣∣∣∣i~∫ ψ∗i (r)Aikfe

ikf r dr

∣∣∣∣2 = ~2|Akf |2
∣∣∣∣∫ ψ∗i (r)eikf r dr

∣∣∣∣2 (13)

= ~2|Akf |2
∣∣∣∣∫ ψi(r)e−ikf r dr

∣∣∣∣2. (14)

Here we have used the fact, that |z|2 = zz∗ = (zz∗)∗ = |z∗|2 holds for an arbitrary
complex number z. The resulting integral can be identified as the Fourier transform
(FT) of ψi(r), therefore the expression for the intensity becomes

I ∝ ~2|Akf |2|ψ̃i(kf )|2, (15)

where ψ̃i(kf ) is the wave function in Fourier space. The problem is, that it is the squared
absolute value of ψ̃i(kf ), thus its imaginary part and therefore its phase is lost during
an ARPES measurement. This is called the phase problem, which will be explored in
more detail in Chapter 2.4.
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2.4 The phase problem

During an ARPES measurement one can only directly observe the photoemission inten-
sity (see Eq. (15)), while the phase of the wave function is lost. This loss of information
is called the phase problem, further illustrated in Fig. 3 [6] for a one-dimensional sine
function localized to the interval [−L

2 ,
L
2 ]. The model wave function in Fig. 3A represents

the desired electron orbital wave function Ψ(x) in real space, constrained to a certain
length L. Its Fourier transform Ψ(k), depicted in Fig. 1B, is not what can actually be
measured in an ARPES experiment. What is measured is the squared absolute value of
the Fourier transformed wave function |Ψ(k)|2 in Fig. 3D, the intensity distribution of
the photoelectrons in momentum space. Therefore, when one tries to simply compute
the inverse Fourier transform (FT−1) of the measured data, the result in Fig. 3C will
be a wave function with wrong spatial extent (twice the length 2L) and wrong phase
(now symmetric). [6]

Figure 3: The phase problem of a 1D wave function. (A) 1D model wave function Ψ(x):
sine function limited to length L with wave number k0. (B) Fourier transform
(FT) of the model function Ψ(k). (C) Squared absolute value of the function
in Fourier space |Ψ(k)|2, where the phase is lost. (D) Inverse Fourier transform
(FT−1) back into real space, with wrong spatial extent 2L and wrong phase.
Image taken from [6], p. 606.

The goal of the following chapters will be to recover the lost phase in Fig. 3C and find
the desired wave function like in Fig. 3A, using the known spatial constraint L.
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The fact, that the spatial extent becomes twice the length 2L can be also demonstrated
analytically. Let us define the auto-correlation function R(x) of the real-space wave
function ψ(x), which is given by the following integral

R(x) =

∫ ∞
−∞

ψ(x′)ψ(x′ − x) dx′. (16)

Note that ψ(x′) is a function, that vanishes outside of a spatial region of length L.
ψ(x′−x) is the same function but shifted by x. With this definition it follows, that R(x)
has to be zero outside of the range 2L, as R(x > L) and R(x < −L) become zero. If we
now calculate the Fourier transform R̃(k) of R(x) we get

R̃(k) =

∫ ∞
−∞

R(x) eikx dx (17)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ ψ(x′)ψ(x′ − x) eikx. (18)

Inserting a one in the shape of eikx
′
e−ikx

′
= 1 into this equation leads to

R̃(k) =

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ ψ(x′)ψ(x′ − x) eikx eikx
′
e−ikx

′
(19)

=

∫ ∞
−∞

dx′ ψ(x′) eikx
′
∫ ∞
−∞

dxψ(x′ − x) e−ik(x
′−x). (20)

Using the variable substitution u = x′ − x in the second integral, we get du = −dx, and
R̃(k) becomes

R̃(k) =

∫ ∞
−∞

dx′ ψ(x′) eikx
′
∫ x′−∞

x′+∞
(−du)ψ(u) e−iku. (21)

The x′ in the second integral boundaries are irrelevant, as we are dealing with infinities.
Thus, we can change the boundaries back to −∞ and ∞, and inverse them to remove
the minus inside the integral. Finally we find, that the integrals in Eq. (21) can be
identified as the Fourier transform ψ̃(k) and the complex conjugate Fourier transform
ψ̃∗(k) respectively:

R̃(k) =

∫ ∞
−∞

dx′ ψ(x′) eikx
′

︸ ︷︷ ︸
ψ̃∗(k)

∫ ∞
−∞

duψ(u) e−iku︸ ︷︷ ︸
ψ̃(k)

(22)

= ψ̃∗(k) ψ̃(k) = |ψ̃(k)|2. (23)
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Therefore, the Fourier transform of the auto-correlation function R(x) is just the squared
absolute value of ψ̃(k), which as shown before, is exactly what is measured in an ARPES
experiment. If we where to reverse the recent steps we can then conclude, that the inverse
Fourier transform of R̃(k) = |ψ̃(k)|2 will have a spatial extent of twice the length 2L.
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3 Method

3.1 Simple reconstruction algorithm (Gerchberg-Saxton (GS)

algorithm [7])

To recover the lost phase information of the orbital wave function, we will be applying
an iterative algorithm. The first step of the algorithm is to make a guess for the missing
phase, which in general means to either randomly generate one (between −π and π),
or to just leave it zero (Fig. 4A [6]). Using that phase we can compute the first
inverse Fourier transform to obtain the real-space function, like that in Fig. 4B. Because
we know the true spatial extent of the wave function in real space, usually called the
domain constraint, we can now correct the function by multiplying it with a so-called
box-function. It has the value of one inside of the box, and β < 1 outside of the box.
Therefore, the wave function is unchanged inside of the box, and reduced by a certain
percentage outside of the box. The feedback Parameter β is usually set to β = 0.1, so
that the wave function is reduced to 10% of its original value. After a Fourier transform
back to momentum space in Fig. 4D we now have a slightly better guess for the lost
phase than at the start. As the final step, we use this wave function, and replace its
amplitude with the initially measured data from Fig. 4A, which had no phase. By
repeating this process many times, one can now slowly recover the phase (Fig. 4E&4F
after 15 iterations, and 4G&4H after 250 iterations.) [6]

Figure 4: Iterative phase recovery algorithm, using PTCDA HOMO as an example. (A)
ARPES measurement of Fourier space, where the color represents the phase
and the black isolines illustrate the square root of the intensities. After an
inverse Fourier transform we get (B). (C) Corrected wave function, reduced to
10% of its value outside of the confinement box, with its Fourier transform in
(D). After 15 iterations leads to (E)&(F), and after 250 iterations to (G)&(H).
Image taken from [6], p. 607.
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A simple conceptual implementation of this algorithm in python is shown in the fol-
lowing code excerpt:

while i < imax:

f = np.fft.ifft(F) * np.sqrt(N)

f *= box

F = np.fft.fft(f) / np.sqrt(N)

phi = np.angle(F)

F = F_data * np.exp(1j*phi)

i += 1

Here the small f denotes the wave function in real space, and the capital F denotes
the wave function in Fourier space. First the inverse fast Fourier transform (FFT−1)
of F is calculated with np.fft.ifft(), to get its corresponding real-space function.
This example also includes the normalizations of the functions, using the square root
np.sqrt(). The domain constraint is applied by multiplying the function with a box
function, in the code denoted by box, which has a value of β = 1 inside of the domain,
and β = 0.1 outside of the domain. After another FFT back into Fourier space, we
calculate the phase of the new wave function, and multiply it with the initial data
F_data. For the 2-dimensional problem the FFT commands become np.fft.fft2()

and np.fft.ifft2().

This code can be extended with a termination condition, by implementing an error
criterion into the while loop, which was also done in this work, in Section 4.1 for the
one-dimensional problem.

3.2 Error reduction (ER) and hybrid input-output (HIO)

algorithm

This is an improved method of the Gerchberg-Saxton (GS) algorithm described above,
suggested by James Fienup in 1978 [8]. It divides the simple reconstruction algorithm
into two separate ones, the error reduction (ER) algorithm, and the hybrid input-output
(HIO) algorithm, which was extended by Ross John Harder in 2010 to the phase-
constrained hybrid input-output (PC-HIO) algorithm [9]. The basic concept of all these
algorithms is the same, with the only difference being in the approach to the object
domain constraint (see Fig. 5). [7]

The first step is again to make an initial guess for the phase of the wave function and
multiply it with the measured Amplitude |F (kx, ky)| =

√
I(kx, ky), the square root of

the Intensity as we have seen in Chapter 2.2 and 2.4. After an inverse Fourier transform
we get the first initial estimate for our wave function in real space in Fig. 5 step (1),
denoted by a small gk(x, y), usually called the input [8]. In step (2) we obtain the wave
function in Fourier space Gk(kx, ky). Next, the amplitude of Gk(kx, ky) gets replaced
by the measured data |Gk(kx, ky)| = |F (kx, ky)| (Fourier domain constraint) in step (3),
to get G′k(kx, ky), which is identical to the final step in the GS algorithm. Finally, we
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obtain the wave function in real space g′k(x, y) in step (4), called the output [8]. The
main difference of this method comes in step (5), the object domain constraint.

Figure 5: Iterative phase recovery algorithm, using ER and PC-HIO. Here X ≡ kx and
Y ≡ ky. (1) Multiply measured data |F (kx, ky)| =

√
I(kx, ky) with a random

phase, and calculate the FT, to get an initial estimate for the real-space func-
tion gk=1(x, y). (2) FT of the wave function in real space, to get the Fourier
space function Gk(kx, ky). (3) Replace the calculated amplitude |Gk(kx, ky)|
with the experimental amplitude |F (kx, ky)| (4) inverse FT back into real space
(5) Alternate between the object domain constraint of ER and HIO algorithm.
Image taken from [7], p. 16.

The object domain constraint of the GS algorithm from Chapter 3.1 was a simple
multiplication of the wave function with a box-function, with a value of β=1 inside the
box and β=0.1 outside of the box. The domain constraints of the ER and PC-HIO are
as follows:

ER : gk+1(x, y) =

{
g′k(x, y), if (x, y) ∈ γ
0, if (x, y) /∈ γ

(24)

PC −HIO : gk+1(x, y) =

{
g′k(x, y), if (x, y) ∈ γ
gk(x, y)− βg′k(x, y), if (x, y) /∈ γ

(25)

where γ are all the points inside of the domain constraint, β = 0.9 is the feedback
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parameter, and gk(x, y) and g′k(x, y) is the wave function before and after applying the
Fourier domain constraint. As seen in these equations the ER algorithm sets the wave
function outside of the box to zero during an iteration, simply reducing the error as the
name suggests, while the PC-HIO algorithm subtracts the output g′k(x, y), multiplied by
a feedback parameter β, from the input gk(x, y). In both cases the wave function inside
the domain stays the same, and gets reduced outside of the domain, similar to the GS
algorithm.

Usually, the reconstruction process consists of a combination of the ER and PC-HIO
algorithms in an alternating sequence, to achieve a faster convergence. In particular
we start out with 20 iterations of the ER algorithm, followed by 10-30 iterations of the
PC-HIO algorithm and finished with about 5-10 ER algorithm iterations. [7]

To implement the ER and PC-HIO algorithms in python we can again use a while
loop:

while i < imax:

G = np.fft.fft(g) #step (2)

phiG = np.angle(G)

G_prime = F_data * np.exp(1j*phiG) #step (3)

g_prime = np.fft.ifft(G_prime) #step (4)

#step (5): Switch between ER and PC-HIO

i f i <= nER or i > (nER+nHIO): #ER

g = g_prime * box0

i f i > nER and i <= (nER+nHIO): #PC -HIO

gnew = g - 0.9* g_prime

g = np.add(gnew*box0inv , g_prime*box0)

i += 1

Where g, g_prime, G and G_prime correspond to gk(x, y), g′k(x, y), Gk(kx, ky) and
G′k(kx, ky) from before. phiG is the phase of Gk(kx, ky) and F_data are again the mea-
sured data from the experiment. In step (5) we alternate between the ER and the
PC-HIO domain constraint, with nER and nHIO being the number of ER and PC-HIO
iterations. box0 is a box function with value β = 1 inside the box and β = 0 outside,
while box0inv is the opposite of that, with β = 0 inside the box and β = 1 outside.

The number of PC-HIO steps has the most impact on the resulting image, and can
be the difference between a useful image or not, as can be seen in the highly varying
number of PC-HIO iterations in the results of Chapter 4.3. Therefore, the code was
implemented in a way, such that we could compare the images with different number of
PC-HIO iterations, and choose the ones of interest.
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4 Results

4.1 The one-dimensional problem

To demonstrate the effectiveness of the algorithm described in Chapter 3.1, we will first
tackle the problem of a simpler, one-dimensional phase retrieval. To achieve that, the
first task was to create a one-dimensional sine function localized to the interval [−L

2 ,
L
2 ],

similar to the model wave function in Fig. 3A, and then compute the absolute value
Fourier transform of it, to simulate the measured data with lost phase (see Fig. 6).
As the domain constraint is fulfilled, because of given L, we can apply the iterative
algorithm on the absolute value of the function, and after some iterations get back the
initial sine function.

In Fig. 6A we have the initial model function in blue, with a confinement length of
L=12 (note that some lines overlap). Analytically this wave function has the form

ψ(x) =

{
sin(k0x), if |x| ≤ L

2

0, if |x| ≥ L
2 .

(26)

To obtain its Fourier transform ψ̃(k), we need to solve the integral

ψ̃(k) =

∫ ∞
−∞

ψ(x) e−ikx dx. (27)

As the wave function in Eq. (26) is only nonzero for |x| ≤ L
2 , the integral outside of this

boundary vanishes, and we are left to calculate

ψ̃(k) =

∫ L/2

−L/2
sin(k0x) e−ikx dx. (28)

This integral can be solved by integration by parts twice in a row, to get an equation,
which has the integral on both sides:

∫ L/2

−L/2
sin(k0x) e−ikx dx =

[
(i sin(k0x) +

k0
k

cos(k0x))

]L/2
−L/2

+
k20
k2

∫ L/2

−L/2
sin(k0x) e−ikx dx.

(29)

leading to:

ψ̃(k) =

∫ L/2

−L/2
sin(k0x) e−ikx dx =

[
(ik sin(k0x) + k0 cos(k0x))e−ikx

k2 − k20

]L/2
−L/2

(30)
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Inserting the boundary values and using the trigonometric identities

2 sin θ cosφ = sin(θ + φ) + sin(θ − φ) (31)

2 cos θ sinφ = sin(θ + φ)− sin(θ − φ), (32)

leads to the final solution of the Fourier transform of ψ(x):

ψ̃(k) =
i sin( (k+k0)L2

k + k0
−
i sin( (k−k0)L2

k − k0
. (33)

Fig. 6B shows the result of Eq. (33) by numerical integration, using the numpy FFT
command in python. Note that the wave function ψ̃(k) is imaginary, therefore the
dashed blue line in Fig. 6B (real part) is zero, besides tiny peaks at +k0 and −k0, which
are most likely a result of discrete Fourier transform instead of the continuous Fourier
transform in the analytic calculation.

What is measured though is the absolute value of the Fourier transformation, i.e. the
green curve in Fig. 6B, which after an inverse Fourier transform yields the solid blue
line in Fig. 7A, with a confinement length of 2L.

Then the procedure of the GS algorithm is applied. After five iterations the algorithm
is starting to take effect, as seen in Fig. 8A and 8B, having a small dip in the amplitude
outside of the spatial confinement. An image even closer to the initial one we can find
after 40 iterations in Fig. 9, which becomes almost identical to the initial wave function
after 250 iterations, in Fig. 10.

Figure 6: Initial model sine function with real part, imaginary part, and absolute value in real space
(A) and Fourier space (B).
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Figure 7: Iteration N=0 of the algorithm: real part, imaginary part, and absolute value
in real space (A) and Fourier space (B).

Figure 8: Iteration N=5 of the algorithm: real part, imaginary part, and absolute value
in real space (A) and Fourier space (B).
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Figure 9: Iteration N=40 of the algorithm: real part, imaginary part, and absolute value
in real space and Fourier space.

Figure 10: Iteration N=250 of the algorithm: real part, imaginary part, and absolute
value in real space (A) and Fourier space (B).

22



Here we implement a termination condition, which stops the program, when the dif-
ference of phases between wave functions inside the box becomes small enough. This is
the so-called cost function:

box∑
x,y

|Arg(fn(x, y))−Arg(fn+1(x, y))| → Min, (34)

which is minimized until a certain accuracy is achieved. To obtain an accuracy of 10−15

for the phase difference inside of the spatial domain, only N = 66 iterations are needed
in our example. As one can see in Fig. 11, the phase difference fluctuates between each
step, which could be avoided by averaging over a reasonably small number of iterations
(eg. 3 to 5) to make the curve more smooth.

Figure 11: Convergence of the absolute value phase difference.
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4.2 The two-dimensional problem: GS algorithm

This work uses the ARPES measurement data of perylene-3,4,9,10-tetracarboxylic dian-
hydride (PTCDA) (C24H8O6) for its highest occupied molecular orbital (HOMO) and
its lowest unoccupied molecular orbital (LUMO), as well as the data of pentacene (5A)
(C22H14) for its LUMO, HOMO, and HOMO-1 (one below the HOMO). Here we as-
sumed, that the spatial constraint of the molecules are defined by their van der Waals
size, which is 14.8× 7.2 Å2 for PTCDA and 14.8× 5.6 Å2 for 5A. [6]

Due to the fact, that the measurement data used in this work is centered around
the coordinate origin, it includes negative values (see Fig. 12A). Applying the inverse
(fast) Fourier transform on this measurement data, using the python (numpy) command
numpy.fft.ifft2(), will result in a wave function with every second element in the grid
having a wrong sign (see Fig. 12C, on the example of PTCDA HOMO).

To avoid this one needs to either create a chessboard-like matrix with alternating sign
and multiply the wave function with this matrix, or to shift the measurement data to
start in the origin of the coordinate system, at the values x = 0 and y = 0, to avoid
negative values. This way we can get the corrected image in Fig. 13C.

As can be seen in Fig. 14B, after 60 iterations the phase of the wave function is
starting to take on shape, but the wave function itself has almost no change in its real
space in Fig. 14C. After 80 iterations the wave function in real space is also starting
to change (see Fig. 15C). The final result of PTCDA HOMO is depicted in Fig. 16,
which is in agreement with its one-electron wave function from density functional theory
(DFT) [3].

The results of PTCDA LUMO, and 5A HOMO, HOMO-1 and LUMO are shown in
the Fig. 17, 18, 19 and 20. The GS algorithm only failed for the data of 5A HOMO-1
(Fig. 19), where the real part in real space does not correspond to expectations, but
the imaginary part does. Physically, this does not make any sense, so it is most likely
just a coincidence. For a correct result see Fig. 26, where we successfully applied the
ER/PC-HIO algorithm on the same data.

One notable fact is that the wave function of PTCDA LUMO in real space is slightly
oscillating between two vertically symmetric solutions with each iteration (Fig. 21),
which comes from an asymmetry in the measurement data and can be an issue when
trying to define a termination condition using the wave function in real space. To fix
this, we can modify the measurement data to be symmetric along the x axis, by replacing
the values y > 0 above the x axis with the values y < 0 below, and get a result like in
Fig. 22, which stops oscillating, but also has its confinement space shifted along the x
axis.
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Figure 12: GS algorithm: Initial uncorrected wave function of PTCDA HOMO, with the ARPES
measurement data in (A): (A) real part in Fourier space. (B) imaginary part in Fourier
space. (C) real space

Figure 13: GS algorithm; Initial corrected wave function of PTCDA HOMO, with the ARPES mea-
surement data in (A): (A) real part in Fourier space. (B) imaginary part in Fourier space.
(C) real space
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Figure 14: GS algorithm; PTCDA HOMO, after 60 iterations: (A) real part in Fourier space. (B)
imaginary part in Fourier space (B). (C) real space, corrected

Figure 15: GS algorithm; PTCDA HOMO, after 80 iterations: (A) real part in Fourier space. (B)
imaginary part in Fourier space. (C) real space, corrected
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Figure 16: GS algorithm; Result of PTCDA HOMO, after 400 iterations: (A) real part in Fourier
space. (B) imaginary part in Fourier space. (C) real space, corrected

Figure 17: GS algorithm; Result of PTCDA LUMO, after 250 iterations: (A) real part in Fourier space.
(B) imaginary part in Fourier space. (C) real space, corrected
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Figure 18: GS algorithm; Result of 5A HOMO, after 250 iterations: (A) real part in Fourier space.
(B) imaginary part in Fourier space. (C) real space, corrected

Figure 19: GS algorithm; (Failed) Result of 5A HOMO-1, after 250 iterations: (A) real part in Fourier
space. (B) imaginary part in Fourier space. (C) real part in real space (D) imaginary part
in real space
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Figure 20: GS algorithm; Result of 5A LUMO, after 250 iterations: (A) real part in Fourier space. (B)
imaginary part in Fourier space. (C) real space, corrected

Figure 21: Real-space function oscillation for PTCDA LUMO, depicted for the iterations 250 to 253.
Center peaks change shape for every second iteration (marked with arrows).
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Figure 22: GS algorithm; Symmetritzed result of PTCDA LUMO, after 250 iterations: (A) real part
in Fourier space. (B) imaginary part in Fourier space. (C) real space, corrected

4.3 The two-dimensional problem: ER and PC-HIO algorithm

Here we again deal with the ARPES measurement data of PTCDA and 5A for the
HOMO and LUMO, as well as the HOMO-1 for 5A only, with the van der Waals sizes
14.8× 7.2 Å2 for PTCDA and 14.8× 5.6 Å2 for 5A. [6] The results are depicted in Fig.
23 to 27, all in agreement with DFT, with the one in Fig. 26 being of particular interest,
as it failed using the GS algorithm in the previous chapter.

The phase-recovery process was realized using a random initial phase, therefore re-
peating runs can lead to slightly different outcomes. The following images where all
obtained using 20 ER iterations in the beginning and 10 ER iterations at the end, while
the number of PC-HIO iterations varies between 8-30, depending on the data. Having a
different number of PC-HIO iterations can also lead to results which are shifted in real
space, or do not seem to agree with DFT at all. Therefore, the algorithm was set up in
a way that enabled the direct comparison of the final figure with different PC-HIO steps
between 8-30, to find the best image. It is also again necessary to multiply the final
real-space function with a chessboard-like matrix, for the reasons discussed in chapter
4.2.
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This method requires a lot less iterations than the GS algorithm, making it much
faster. However, this comes with a disadvantage of the algorithm being very dependent
on the number of PC-HIO steps for different ARPES measurement data. It can be very
effective for measurement data, where the number of PC-HIO iterations barely changes
the final image. But in other cases it requires so many cycles with different PC-HIO
steps, that this method is even slower than the GS algorithm.

Also noticeable is that due to the nature of the PC-HIO algorithm, the wave function
in Fourier space takes on a more squarish shape for all the results, showing that this
algorithm works better for objects with sharper edges [7].

Figure 23: Result of PTCDA HOMO, using ER/PC-HIO method with 30 PC-HIO iterations. (A) real
part in Fourier space. (B) imaginary part in Fourier space. (C) real space, corrected
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Figure 24: Result of PTCDA LUMO, using ER/PC-HIO method with 28 PC-HIO iterations. (A) real
part in Fourier space. (B) imaginary part in Fourier space. (C) real space, corrected

Figure 25: Result of 5A HOMO, using ER/PC-HIO method with 21 PC-HIO iterations. (A) real part
in Fourier space. (B) imaginary part in Fourier space. (C) real space, corrected
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Figure 26: Result of 5A HOMO-1, using ER/PC-HIO method with 10 PC-HIO iterations. Corrected
result of Fig. 19. (A) real part in Fourier space. (B) imaginary part in Fourier space. (C)
real space, corrected

Figure 27: Result of 5A LUMO, using ER/PC-HIO method with 8 PC-HIO iterations. (A) real part
in Fourier space. (B) imaginary part in Fourier space. (C) real space, corrected

33



5 Conclusions and Outlook

In this thesis the electron wave functions of PTCDA and 5A for there HOMO, LUMO
and HOMO-1 for 5A where reconstructed from angle-resolved photoemission data. We
used two different iterative methods, the GS algorithm and the ER/PC-HIO algorithms,
to recover the orbitals in real space and Fourier space.

The GS algorithm succeeded for the most part, with only one failed result for 5A
HOMO-1, all the other images are in good agreement with DFT. The measurement data
of PTCDA LUMO turned out to be asymmetrical, resulting in real-space images which
oscillate between two solutions. One can fix this problem by modifying the measurement
data, but then the final real-space wave function has its confinement space shifted along
the x axis.

The results obtained with the ER and PC-HIO algorithm are all in agreement with
DFT. This method requires a lot less iterations than the GS algorithm, but due to its
dependence on the number of PC-HIO steps, one needs to run the algorithm multiple
times to find the correct number of iterations for each particular measurement data. The
wave functions in Fourier space also take on an squarish shape.

In this thesis we determined the quality of an image from the PC-HIO algorithm by
comparing to DFT. In future works, this process can be automated using normalized
root-mean-square metric in Fourier space ER [7]. By applying this metric at the end
of each ER cycle one can determine the quality of each image. At the end one can
also average over multiple images with different randomized initial phases, to make the
results more consistent and easier to recreate. Overall the PC-HIO algorithm has a lot
of ways for improvement, making it a very exciting method to explore and optimize.
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