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Abstract

In quantum mechanics, a particle is defined by its wave function. The
Schrödinger equation describes, how this wave function behaves under
the influence of a potential energy. Here, one distinguishes between
bound solutions which lead to discrete energy levels and unbound,
scattering solutions which generally exhibit a continuous energy spec-
trum. For the latter case, if one wants to know the state of such a
particle, one needs to solve the Schrödinger equation for the given po-
tential. For non-trivial external potentials, this proves quite difficult.
However, this equation can be rewritten into an integral equation —
the so called Lippmann-Schwinger equation — and then solved nu-
merically to get an approximate solution. In this thesis, one such im-
plementation gets discussed in the 1-dimensional and 2-dimensional
case for a few chosen potentials.
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1 Introduction and Derivation of Lippmann-

Schwinger Equation

In quantum mechanics, a particle is defined by its state, which is described
as the ket-vector |ψ〉 in Hilbert-space. Multiplying from the left with the bra-
vector 〈r|, gives the wave function corresponding to this state |ψ〉 in position
space:

〈r|ψ〉 = ψ(r) (1)

The stationary behavior of the state |ψ〉 in some potential V = V (r) is de-
scribed by the time-independent Schrödinger equation

Ĥ |ψ〉 = E |ψ〉, (2)

with the Hamiltonian Ĥ = Ĥ0 + V (r), where Ĥ0 is the Hamiltonian of a free
particle. This equation can be rearranged to assume the following form:

(E − Ĥ0) |ψ〉 = V |ψ〉. (3)

By splitting the state |ψ〉 into an eigenstate of the free Hamiltonian |φ〉 and
a scattered state |ψs〉 via |ψ〉 = |φ〉+ |ψs〉, and inserting this into equation 3,
one obtains

(E − Ĥ0) |ψs〉 = V |ψ〉. (4)

Here the property that |φ〉 is an eigenstate of Ĥ0, and therefore satisfies the
free particle Schrödinger equation (E − Ĥ0) |φ〉 = 0, has been used.

Multiplying both sides from the left with (E − Ĥ0)
−1 leads to

|ψs〉 = (E − Ĥ0)
−1 V |ψ〉, (5)
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where |ψs〉 = |ψ〉 − |φ〉 can be used to get

|ψ〉 = |φ〉+ (E − Ĥ0)
−1 V |ψ〉, (6)

which is known as the Lippmann-Schwinger equation. However, as E is an
eigenvalue of Ĥ0, (E − Ĥ0) is singular and therefore not invertable. To cir-
cumvent this, the operator gets a slight complex offset, which will approach 0
in the end. Therefore, a mathematically more consistent version of equation 6
would be

|ψ〉 = |φ〉+ lim
ε→0

(E − Ĥ0 + iε)−1 V |ψ〉. (7)

This form of the Lippmann-Schwinger equation uses kets to represent the
quantum mechanical states. However, it is a lot more intuitive to choose a
basis and represent the state in it. For this thesis, position representation
has been chosen. To transform equation 7, one firstly inserts a full basis of
position eigenstates:

|ψ〉 = |φ〉+

∫
dnr′ |r′〉〈r′| lim

ε→0
(E − Ĥ0 + iε)−1 V |ψ〉. (8)

Multiplying this equation from the left with position eigenstates 〈r|, one
obtains

〈r|ψ〉 = 〈r|φ〉+

∫
dnr′ 〈r|r′〉 lim

ε→0
(E − Ĥ0 + iε)−1 V 〈r′|ψ〉. (9)

Using relation 1 and the fact that 〈r′|r〉 = δ(r − r′), where δ is the Dirac
delta function, equation 9 assumes its position representation:

ψ(r) = φ(r) +

∫
dnr′ δ(r − r′) lim

ε→0
(E − Ĥ0 + iε)−1 V ψ(r′). (10)
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Defining the Green’s function G(r) as

lim
ε→0

(E − Ĥ0 + iε)G(r − r′) = δ(r − r′), (11)

one can substituteG into equation 10 to get the integral form of the Lippmann-
Schwinger equation:

ψ(r) = φ(r) +

∫
dnr′G(r − r′)V (r′)ψ(r′) (12)

For this integral to converge, V (r′) needs to approach 0 outside a finite area
fast enough, such that

lim
|r′|→∞

|r′| V (r′) = 0. (13)

2 1-Dimensional Case

In the 1-dimensional analysis, the Lippmann-Schwinger equation only de-
pends on a scalar position r, which must not be confused with the absolute
value of the vector r. This means, that the generally 3-dimensional integral
transforms into a 1-dimensional one.

ψ(r) = φ(r) +

∫
dr′G(r, r′)V (r)ψ(r′) (14)

For a single dimension, the free wave function φ(r) — meaning the eigenfunc-
tion to the free Hamilton operator in 1 dimension — and the corresponding
energy eigenvalue E are given by

φ(r) = eikr and E =
k2

2
. (15)
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Here, as well as the rest of this thesis, natural units are used to keep notation
concise. [1]

2.1 Derivation 1d-Green’s Function

The biggest problem of the integral form of the Lippmann-Schwinger equation
is finding the corresponding Green’s function. To simplify the notation, the
limits −∞ and +∞ are omitted in the following.

Starting from the 1-dimensional single particle Schrödinger equation,

[
−1

2

d2

dr2
+ V (r)

]
ψk(r) = Ek ψk(r), (16)

one can insert the scattered energy eigenvalues given in equation 15. Rear-
ranging equation 16 then yields

[
d2

dr2
+ k2

]
ψk(r) = 2V (r)ψk(r). (17)

Now the left side can be interpreted as some operator Ĥ ′ acting on ψk(r),
where

Ĥ ′ =
d2

dr2
+ k2 (18)

The Green’s function G(r − r′) of this operator Ĥ ′, which is also the Green’s
function of the normal Hamiltonian Ĥ, is then defined as

[
d2

dr2
+ k2

]
G(r − r′) = δ(r − r′). (19)

Again, a small imaginary shift is added to avoid the singularity of the op-
erator. For simplicity, the limit is not written explicitly in front of every
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equation.

[
d2

dr2
+ k2 + iε

]
G(r − r′) = δ(r − r′). (20)

Introducing the concept of the Fourier transform from the spatial r-space to
the conjugate wave vector k-space, we define G̃(k′) by

G(r − r′) =
1√
2π

∫
dk′ eik

′(r−r′) G̃(k′). (21)

Knowing that the Fourier transform of the delta function is 1√
2π

, one can
write

δ(r − r′) =
1√
2π

∫
dk′ eik

′(r−r′) 1√
2π

(22)

Inserting both of these identities into equation 20, one gets

[
d2

dr2
+ k2 + iε

]
1√
2π

∫
dk′ eik

′(r−r′) G̃(k′) =
1√
2π

∫
dk′ eik

′(r−r′) 1√
2π

(23)

1√
2π

∫
dk′

[
k2 − k′2 + iε

]
eik

′(r−r′) G̃(k′) =
1√
2π

∫
dk′ eik

′(r−r′) 1√
2π

(24)

As the integration with respect to k′ and the derivative with respect to r are

independent from one another and eik
′(r−r′) G̃(k′) as well as d

dr

(
eik

′(r−r′) G̃(k′)
)

are assumed to be continuous everywhere, the Leibniz rule for integration al-
lows the exchange of the two operations.

Applying the Fourier transform to both sides yields an expression for G̃(k′):

[
k2 − k′2 + iε

]
G̃(k′) =

1√
2π

(25)

G̃(k′) =
1√
2π

1

k2 − k′2 + iε
(26)
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To get G(r − r′), the inverse Fourier transform, equation 21, gets used.

G(r − r′) =
1

2π

∫
dk′

eik
′(r−r′)

k2 − k′2 + iε
(27)

G(r − r′) = − 1

2π

∫
dk′

eik
′(r−r′)

k′2 − k2 − iε
(28)

Now one can split the denominator into two factors and use the taylor ex-
pansion to approximate the square root:

√
k2 + iε ≈ k +

iε

2k
=: k + iδ (29)

This approximation is valid since ε� k. Here δ = ε
2k

was used and replaces
the entity that will approach 0 in the end.

Using this, equation 28 will read

G(r − r′) = − 1

2π

∫
dk′

eik
′(r−r′)

[k′ − (k + iδ)] [k′ + (k + iδ)]
(30)

For further analysis, the problem will be split into two possibilities: r − r′ > 0
and r − r′ < 0. Introducing a simpler, special case of the Theorem of Residues,
Cauchy’s Integral Theorem,∮

C

dz
1

z − z0
f(z) = ±2πif(z0), (31)

where f(z) has no singularity in z0 and C denotes some curve in the complex
plane which encloses the singularity z0, one can calculate the integral in
equation 30. The sign of the right hand side depends on the mathematical
direction of the curve. [4]

To do this, the purely real integral in equation 30 needs to be turned into
an integral along some closed contour. For this to work, the contour needs
to close the current path of integration without contributing to the value of
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the integral. In case of r − r′ > 0, this can be done by looping around from
a far positive real k′ over the upper complex plane to a negative real k′. To
see that this additional path does not change the integral, the exponential
function can be split into a purely real dampening term and a complex phase:

eik
′(r−r′) = eiRe k′(r−r′) e−Im k′(r−r′) (32)

The absolute value of the phase is always 1, and for the case of r − r′ > 0
and a contour far in the upper complex plane, the real exponential function
will vanish. Therefore, the numerator is bounded and the denominator will
go to infinity for high values of k′. As a result, the integrand vanishes for the
part added to the path of integration.

In equation 30 the singularities can be easily recognized as being at k′ = k + iδ
and at k′ = −k − iδ. As k is real and δ is positive, one singularity lies in
the upper half of the complex plane, the other in the lower half. Therefore,
the contour described in the last paragraph encloses only a single singularity:
the one at k′ = k + iδ. This in turn means, that Cauchy’s Integral Theorem
can be used to evaluate the integral:

G(r − r′) = − 1

2π

[
2πi

ei(k+iδ)(r−r
′)

(k + iδ) + (k + iδ)

]
(33)

= − i
2

ei(k+iδ)(r−r
′)

k + iδ

δ→0−−→ − i
2

eik(r−r
′)

k
(34)

The same calculations can be done for r − r′ < 0. In this case, the contour
will loop via the negative imaginary plane back from the end to the beginning
of the prior integration path. In the decomposition of the exponential func-
tion in equation 32, Im k′ < 0 and as r − r′ < 0, this term vanishes again.
Therefore this contour also does not contribute to the integral. In this con-
tour, the singularity at k′ = −k − iδ is the only one inside the curve and as
a result, Cauchy’s Integral Theorem can be applied again. However, in this
case the direction of the contour is mathematically negative and therefore
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the negative sign needs to be used in the theorem.

G(r − r′) = − 1

2π

[
−2πi

ei(−k−iδ)(r−r
′)

(−k − iδ)− (k + iδ)

]
(35)

= − i
2

e−i(k+iδ)(r−r
′)

k + iδ

δ→0−−→ − i
2

e−ik(r−r
′)

k
(36)

As the two cases differ only by the sign of r − r′, the minus sign in equation 36
can be included in the bracket and the two solutions can be fused together
to get one solution for all values of r:

G(r − r′) = − i
2

eik|r−r
′|

k
(37)

Further detail, as well as the main source of this information can be found in
Griffiths: Introduction to Quantum Mechanics [2], as well as Baym: Lectures
on Quantum Mechanics [1].

2.2 Transformation for Numerical Evaluation

To implement a numerical evaluation of the Lippmann-Schwinger equation
(eq. 12), firstly, the integral needs to be transformed into some discrete sum,
which the computer can handle. In this case, the trapizoidal rule was cho-
sen, as it converges sufficiently fast and is still quite easy to implement. [6]
The trapizoidal rule estimates the integral by splitting the domain into N
equidistant sections and approximating the area in each section with the area
of a trapezoid. Figure 1 demonstrates this slicing of the domain:
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Fig. 1: Estimating an integral using the trapezoidal rule. Here, the domain of the
integral is defined as the interval [a, b] and h denotes the width of each slice.
Taken from: [3]

Given a functional I, which, acting on a function f , calculates the integral
of f from a to b:

I[f ] =

b∫
a

dx f(x), (38)

one can use the linearity of I to split the domain [a, b] into N equidistant
intervals to get

I[f ] =
N−1∑
n=0

∫ a+(n+1)h

a+nh

dx f(x). (39)

Now, using the formula for the area of a trapezoid, I can be approximated
by

IN [f ] =
h

2

N−1∑
n=0

[f(a+ nh) + f(a+ (n+ 1)h)] . (40)
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The bigger the number of subdivisions N , the better the approximation. The
error of this method scales as O(h2) for the entire interval [a, b]. For the limit
of N →∞, both functionals are equal:

lim
N→∞

IN [f ] = I[f ]. (41)

Taking the 1-dimensional variant of the Lippmann-Schwinger equation (eq. 14),
the infinite bounds of the integral need to be transformed to some finite val-
ues a and b. In this case, the infinite integral can be approximated by just
starting the integration path at some low value a and stopping at some high
value b. This is justified, if the potential V (r) quickly vanishes near one of
these bounds, and the other parts of the integrand stay bounded. Under
these assumptions, the integral outside the interval [a, b] is negligibly small.
So by setting a and b to some value distant from the significant parts of the
potential, the infinite integration bounds can be approximated finite:

ψ(r) = φ(r) +

∞∫
−∞

dr′G(r, r′)V (r)ψ(r′) (42)

≈ φ(r) +

b∫
a

dr′G(r, r′)V (r)ψ(r′) (43)

To allow numerical calculations, the position r will be discretized to a vector
rj, where j ∈ N indexes the various positions, where r is defined. In the case
of this numerical evaluation, this also gets chosen to be the same interval [a, b]
as the domain of r′, but this is not strictly necessary. For notational conve-
nience, some abbreviations will be used in the next equations: r′ = a+ jh
will be replaced by rj, and following this, for some function F (rj), the short-
cut Fj will be used. This last substitution will also be expanded to functions
depending on several variables: F (rj,r

′
k) = Fjk. Using this notation and im-

plementing the discretization discussed in equation 40 with some large N ,
one gets

ψl ≈ φl +
h

2

N−1∑
n=0

[
Gln Vn ψn +Gl(n+1) Vn+1 ψn+1

]
. (44)
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For the sake of simplicity, N is assumed to be large enough for the differ-
ence between the real integral and the approximation to be negligibly small.
Therefore ’=’ will be written instead of ’≈’.

Summing over n yields every (GlnVnψn)-term twice, except the first (n = 0)
and the last (n = N). Excluding these two terms from the sum, the equation
can be modified to read

ψl = φl +
h

2
Gl0 V0 ψ0 +

h

2
GlN VN ψN + h

N−1∑
n=1

Gln Vn ψn. (45)

After this discretization, Gln can be represented by a matrix, where l in-
dexes the rows and contributes the dependence of G on rl, and n indexes
the columns and contributes the dependence on r′n. The multiplication of
Gln with Vn and ψn needs to be interpreted element-wise. This multiplica-
tion of G with V yields a matrix again. So, by scaling this matrix by h,
weighing the first and last column by 1

2
and calling it K, equation 45 can be

written quite compactly:

ψl = φl +
N∑
n=0

Kln ψn. (46)

Bringing the sum to the left side of the equation, and multiplying ψl with
the identity matrix δln yields:

N∑
n=0

δln ψn −
N∑
n=0

Kln ψn = φl (47)

Here,
∑

n δlnψn = ψl was used to insert the identity matrix. Now, as the sums
are finite, they can be joined and the common factor of ψn can be separated.

N∑
n=0

[δln −Kln]ψn = φl (48)

Introducing yet another matrix Aln = δln −Kln, one can see, that this equa-
tion corresponds to a system of linear equations with the coefficient matrix
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Aln , the unknown vector ψn and the inhomogeneity φl.

N∑
n=0

Alnψn = φl (49)

This system of linear equations can then be solved quite easily using a com-
puter. As this derivation shows, the solution to this system of equations then
also gives an approximation for the solution of the 1-dimensional Lippmann-
Schwinger equation, which is the original problem.

2.3 Implementation in Python

For all numerical evaluations in this thesis, Python 3.7.3 will be used. To
make repeated calculations easier and the whole program more user friendly,
the user input and customization options have been put into a separate file
independent of the actual code. In this input file, the box dimensions [a, b],
the number of slices N , the wave number of the incoming wave k and the
potential can be specified.

a = −1.5; # l e f t border o f s imu la t i on box
b = 1 . 5 ; # r i g h t border
N = 160 ; # number o f s u b d i v i s i o n s
pot id = ’ square ’ ; # id o f p o t e n t i a l to use
k vec = numpy . l i n s p a c e ( 0 . 1 , 4 . 5 , 4 . 5 / 0 . 1 ) ;

# wave number f o r incoming wave

Here, pot_id refers to an identifier, which corresponds to a below defined
potential. A dictionary then links the ID to the function pointer. For a
rectangular potential, one could define the function like this:

def Square ( x ) :
L = 2 ;
V0 = 1 ;
z = numpy . z e ro s ( x . shape ) ;
z [ abs ( x ) <= L/2 ] = −V0 ;
return z ;

To implement equation 49 and therefore the solution of the Lippmann-Schwinger
equation, the matrix Aln needs to be calculated. As Aln depends on Kln ,
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which in turn is a function of Gln and Vn, these also need to be implemented.
Firstly, the program creates two identical spatial vectors with the parameters
a, b and N specified in the input file. It then uses numpys meshgrid function
to get two matrices with all possible combinations of two positions. For each
combination, the program then calculates the potential Vn and the Green’s
function matrix Gln , which in turn are used to calculate Kln and then Aln .

def G(x , xp ) : # 1 dimens iona l Greens func t i on
return −1 j / k ∗ numpy . exp (1 j ∗ k ∗ abs ( x − xp ) ) ;

K = numpy . z e ro s ( (N+1, N+1) , dtype = numpy . complex )
# setup K(x , t ) matrix

[ xx , t t ] = numpy . meshgrid (x , t ) ; # get a l l (x , t ) combinations
K = (G( xx , t t ) ∗ V( t t ) ) . t ranspose ( ) ; # c a l c u l a t e va lue s o f K
A = numpy . i d e n t i t y (N+1) − h ∗ K;

Having evaluated the matrix Aln , it is now possible to solve the system of
linear equations. For this purpose, numpys linalg.solve function has been
chosen because it has performed best in the timed tests. Performance will
be discussed more extensively in section 4.

phi = numpy . exp (1 j ∗ k ∗ x ) ; # inhomogenous func t i on phi

p s i = numpy . l i n a l g . s o l v e (A, phi ) ; # s o l v e system o f equat ions

2.4 Results

Using matplotlib, this — generally complex — vector ψn can now be plotted.
However, plotting the real and imaginary part is not very insightful, so the
absolute value |ψn| will be displayed. The following image uses a square
potential well, which has a value of −1 inside the interval [−1, 1] and 0
outside. Furthermore, the number of subdivisions was chosen to be N = 320,
and the wave number k was varied in the interval [0.5, 4.5].
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Fig. 2: Absolute value of wave function |ψ| as a function of position x.
This example uses the square potential well. (N = 320)

As one can see, the lower the wave number k, the more the wave function
gets damped. This is expected, as for a lower k, the reflection coefficient is
generally higher and therefore also the reduction of the incoming wave. To
the right side of the barrier, no reflected waves are present, so no interference
occurs. This results in the absolute value of the wave function ψn being con-
stant. Of course, it still oscillates in the real and imaginary parts, but these
are just rotations in the complex plane without changes in the magnitude.

Analagously to the reflection coefficient, the transmission coefficient T of the
passing wave depends on k. For the case of a square well potential, the
transmission coefficient T (E) can be calculated analytically, which can be
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used to test the numerical implementation.

T (E) = |ψ(b)|2 =

[
1 +

V 2
0 sin(qL)

4E (E + V0)

]−1
(50)

where E =
k2

2
, q =

√
2 (E + V0) and L = b− a. (51)

By the definition of the transmission coefficient given in the first part of
equation 50, the numerically calculated wave function ψn will give values for
T . As |ψn| is constant for all positions between the end of the potential and
the right border b, T will be the same value regardless of the point chosen,
given it is somewhere inside this interval. In the numerical calculations of
this thesis, the point b will be chosen nonetheless.

In the following picture, this transmission coefficient T is displayed as a
function of k.
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Fig. 3: Transmission coefficient T as a function of wave number k.
Here 100 equidistant values for k in the interval (0, 4.5] were chosen.

Figure 3 shows clearly, that the values from the numerical solution to the
Lippmann-Schwinger equation match the analytical form perfectly. It should
be noted that the numerical evaluation of the Lippmann-Schwinger equation
breaks down for small values of k. In particular, the special case k = 0 is
ill-defined in the numerical approach and must be avoided.

3 2-Dimensional Case

For the 2-dimensional analysis, the Lippmann-Schwinger equation depends
on a 2-dimensional position vector r = (x, y). In this form, the equation
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assumes the following form:

ψ(x, y) = φ(x, y) +

∫
dx′ dy′G(x, y;x′, y′)V (x′, y′)ψ(x′, y′) (52)

Here, φ(x, y) denotes the wave function of the free Hamilton operator in
2-dimensions:

φ(x, y) = eikr = ei(kxx+kyy) with corresponding E =
|k|2

2
=
k2

2
(53)

For the sake of simplicity, the vector (x, y) will be denoted as r and the vector
(kx, ky) as k. These must not be confused with the 3-dimensional r and k
used in the general derivation of the Lippmann-Schwinger equation.

3.1 Derivation 2d-Green’s Function

The beginning of the derivation of the 2-dimensional Green’s function is
analogous to the 1-dimensional variant. However, later on, they start to
differ drastically. First of, the 2-dimensional Schrödinger equation is needed:

[
1

2
∆ + E

]
ψk0(r) = V (r)ψk0(r) (54)

In this equation ∆ = d2

dx2
+ d2

dy2
denotes the Laplace operator. Using the en-

ergy from equation 53, equation 54 now becomes

[
∆ + k20

]
ψk0(r) = 2V (r)ψk0(r). (55)

Applying the definition of the Green’s function, one gets

[
∆ + k20 + iε

]
G(r, r′) = δ(r − r′), (56)

where again a small imaginary shift was introduced to avoid the singularity.
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By again using the 2-dimensional Fourier transform

G(k, r′) =
1

2π

∫
d2r e−ikrG(r, r′) (57)

G(r, r′) =
1

2π

∫
d2k eikrG(k, r′) (58)

equation 56 can be rewritten as

[
∆ + k20 + iε

] 1

2π

∫
d2k eikrG(k, r′) = δ(r − r′). (59)

Again, using the Leibniz rule for integration, this equation transforms to

1

2π

∫
d2k

[
∆ + k20 + iε

]
eikrG(k, r′) = δ(r − r′) (60)

1

2π

∫
d2k

[
−k2 + k20 + iε

]
eikrG(k, r′) = δ(r − r′) (61)

Applying the Fourier transform on both sides and dividing by [−k2 + k20 + iε]
yields a formula for G(k, r′):

G(k, r′) = − 1

2π

e−ikr
′

k2 − k20 − iε
(62)

Using the inverse Fourier transform, G(r, r′) can be found:

G(r, r′) = − 1

(2π)2

∫
d2k

e−ik(r−r
′)

k2 − k20 − iε
= G(r − r′) (63)

To get rid of the (r − r′) term and to separate the two integrals, a transforma-
tion of variables will be made. A new position variable u = r − r′ = −u êu

with a perpendicular coordinate êw gets introduced. Here, êu and êw repre-
sent unit vectors in the direction of u and orthogonal to it respectively. In this
system of coordinates, the wave vector k can be written as k = ku êu + kw êw.
This representation of k allows the simplification ku = (ku êu + kw êw) (−u êu) =
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−ku u due to the orthogonality relation êw êu = 0 and normalization cri-
terium êw êw = êu êu = 1. In this notation k2 = |k|2 = k2u + k2w. Applying
this coordinate transformation to equation 63 yields

G(u) = − 1

(2π)2

∫
dku dkw

e−ikuu

k2w + k2u − k20 − iε
. (64)

As the numerator doesn’t depend on kw, it can be put in front of the in-
tegral with respect to kw. The denominator can now be factored using
a2 + b2 = (a+ ib)(a− ib).

G(u) = − 1

(2π)2

∫
dku e

−ikuu
∫

dkw
1

k2w + k2u − k20 − iε
(65)

= − 1

(2π)2

∫
dku e

−ikuu... (66)

...

∫
dkw

1

(kw + i
√
k2u − k20 − iε)(kw − i

√
k2u − k20 − iε)

(67)

In the second integral — the one with respect to kw — the part
√
k2u − k20 − iε

acts like a constant and will be replaced by z0. For the sake of simple notation,
kw will be replaced by z, and the integral with respect to kw examined alone:

∫
dkw

1

(kw + i
√
k2u − k20 − iε)(kw − i

√
k2u − k20 − iε)

= ... (68)

... =

∫
dz

1

(z + iz0)(z − iz0)
(69)

Again, having a similar problem as in equation 30, the Theorem of Residues
(eq. 31) will be used to manage the integral over the singularities. For
ku > k0, z0 is real, otherwise z0 is imaginary. As z0 is in the limit a root
of a real number, z0 cannot have both a real and an imaginary part. De-
pending on this, the poles are either purely real or imaginary. If the poles
are purely real, the same path as for equation 30 can be used. Otherwise,
the curve will also be the same, except it will not need to curve around the
singularities, as they will not lie on the path of integration anymore. In
both cases, only one singularity resides within the curve and the Theorem of
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Residues will give the same value for the integral.

∫
dz

1

(z + iz0)(z − iz0)
=

∮
C

dz
1

z − iz0
1

z + iz0
(70)

= 2πi
1

iz0 + iz0
=
π

z0
(71)

Resubstituting z0 and inserting this result into equation 67 will give

G(u) = − 1

(2π)2

∫
dku e

−ikuu π√
k2u − k20 − iε

(72)

For taming this integral, one can split it into a real and an imaginary part. To
do this, the denominator needs to be identified of being purely real or purely
imaginary. This only depends on the magnitude of ku and k0: If |ku| > |k0|,
then it is real, if |ku| < |k0|, then it is imaginary. As k0 is a fixed constant
and ku is the variable of integration, the integral, which has limits (−∞,∞),
can be split into a part, where |ku| > |k0| and one where |ku| < |k0|.

G(u) = − 1

(2π)2

∫
dku e

−ikuu π√
k2u − k20 − iε

(73)

= − 1

(2π)2

 ∫
|ku|>|k0|

dku
π e−ikuu√
k2u − k20 − iε

+

∫
|ku|<|k0|

dku
π e−ikuu√
k2u − k20 − iε


(74)

= − 1

(2π)2

 ∫
|ku|>|k0|

dku
π e−ikuu√
k2u − k20 − iε

+

∫
|ku|<|k0|

dku
iπ e−ikuu√
k20 − k2u + iε


(75)

Now the denominators are purely real. Furthermore, they are even func-
tions with respect to ku, as they only depend on k2u. Using Euler’s identity,
eiϕ = cosϕ+ i sinϕ, the numerator can be separated into a real and imag-
inary part. Using the linearity of the integral, the (cos kuu+ i sin kuu) sum
can be split into separate integrals. In case of the numerator containing
sin kuu, which is an odd function, the integrand is a product of and odd and
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an even function, which is an odd function. As the integral spans a symmetric
domain, the positive and negative parts of the domain of the integral cancel
and the integral vanishes. Therefore only the parts with cos kuu remain. As
cos kuu is an even function and the integrand then is a product of two even
functions, the whole integrand is an even function. Again, the domain of the
integral is symmetric, so the contribution of the positive and negative part of
the domain are equal. Therefore the domain can be confined to the positive
part and the result multiplied by 2. For the sake of readability, G(u) will be
split into the outer and inner integral.

G(u) = − 1

(2π)2
[Go(u) +Gi(u)] (76)

Just coping with the outer integral for now, one gets:

Go(u) =

∫
|ku|>|k0|

dku
π e−ikuu√
k2u − k20 − iε

(77)

=

∫
|ku|>|k0|

dku
π (cos kuu+ i sin kuu)√

k2u − k20 − iε
(78)

=

∫
|ku|>|k0|

dku
π cos kuu√
k2u − k20 − iε

+

∫
|ku|>|k0|

dku
π i sin kuu√
k2u − k20 − iε

(79)

=

∫
|ku|>|k0|

dku
π cos kuu√
k2u − k20 − iε

(80)

= 2

∞∫
k0

dku
π cos kuu√
k2u − k20 − iε

(81)

Analogously the inner integral Gi(u) can be simplified to

Gi(u) = 2

k0∫
0

dku
iπ cos kuu√
k20 − k2u + iε

. (82)

Continuing with the outer integral Go(u), a substitution s = ku
k0

transforms
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it into a standard integral

Go(u) = 2π

∞∫
1

k0 ds
cos k0us√

(k0s)2 − k20 − iε
(83)

ε→0−−→ 2π

∞∫
1

k0 ds
cos k0us√
(k0s)2 − k20

= 2π

∞∫
1

ds
cos k0us√
s2 − 1

(84)

Here the limit has been applied as the singularity is now at the margin of the
integration interval, where it does not contribute to its value. This special
integral as a function of k0u is given by the 0th order Bessel function of second
kind Y0(k0u). As only the numerical evaluation of this integral counts, and
there are a lot of python packages which can deal with Bessel functions, this
function will not be evaluated further.

Go(u) = 2π

∞∫
1

ds
cos k0us√
s2 − 1

= 2π
[
−π

2
Y0(k0u)

]
= −π2 Y0(k0u) (85)

Returning to the inner integral, a substitution of ku = k0 cosϑ is helpful.

Gi(u) = 2πi

0∫
π
2

−k0 sinϑdϑ
cos (k0u cosϑ)√
k20 − k20 cos2 ϑ+ iε

(86)

ε→0−−→ 2πi

0∫
π
2

−k0 sinϑdϑ
cos (k0u cosϑ)√
k20 − k20 cos2 ϑ

(87)

= 2πi

π
2∫

0

dϑ cos (k0u cosϑ) (88)

This, again, is a standard integral whose value is given by a Bessel function.
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This time, it’s the 0th order Bessel function of first kind J0(k0u).

Gi(u) = 2πi

π
2∫

0

dϑ cos (k0u cosϑ) = 2πi
[π

2
J0(k0u)

]
= iπ2 J0(k0u) (89)

Combining these forms of the inner (eq. 89) and outer (eq. 85) integral and
replacing k0 by k, the Green’s function can be calculated as given in equa-
tion 76:

G(u) = − 1

(2π)2
[
−π2 Y0(ku) + iπ2 J0(ku)

]
(90)

= −1

4
[−Y0(ku) + iJ0(ku)] (91)

= − i
4
H

(1)
0 (ku) (92)

Here, a new function H
(1)
0 (z) ≡ J0(z) + iY0(z), the 0th order Hankel function

of first kind, has been introduced. Resubstituting u = r − r′ and therefore
u = |r − r′| will yield the Green’s function for the 2-dimensional Lippmann-
Schwinger equation as a function of positions r and r′.

G(r, r′) = − i
4
H

(1)
0 (k |r − r′|) (93)

Similar to the 1-dimensional case, G(r, r′) is only a function of the distance
between its two position arguments. As a result, it is also often written as
G(r− r′). Moreover it only depends on the magnitude k of the wave vector,
as defined in equation 53.

3.2 Transformation for Numerical Evaluation

For transforming the 2-dimensional Lippmann-Schwinger equation (eq. 52)
into a form, which can be solved easily numerically, the integral will again
be turned into a sum. To allow for a more straight-forward discretization,
we make use of the midpoint-rule which exhibits the same accuracy as the
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trapizoidal rule (eq. 40 and 41 as well as fig. 1), but treats all points, in-
cluding the end points, identically. Similar to the trapezoidal rule, instead of
approximating the area under the curve with trapezoids, in the rectangular
midpiont rule, rectangles will be used. For the height of the rectangles, the
point in the middle of the interval in the domain of the function will serve,
hence the name midpoint rule.

Fig. 4: Illustration of the midpoint rule.
Here xi denotes the center point and p the width of the intervals (equivalent to
h in the rest of this thesis).
Taken from: [5], slightly modified.

Taking the same functional I as before in section 2.2, equation 38 and 39, it
can be approximated with the rectangular rule as follows:

IN [f ] = h

N−1∑
n=0

f

(
a+

(
n+

1

2

)
h

)
(94)

Again, for higher and higher N , IN [f ] approaches I[f ].

lim
N→∞

IN [f ] = I[f ] (95)
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For adapting this integration method to 2 dimensions, an 2-d analog to I will
be defined:

I ′[f ] =

by∫
ay

bx∫
ax

dx dy f(x, y) (96)

By switching from 1 to 2 dimensions, these rectangles become cuboids, whose
height equals the value of the function in the center of the top and bottom
face. Splitting the total integration period [ax, bx] on the x-axis into Nx

equidistant parts of width hx and [ay, by] on the y-axis into Ny equidistant
parts of width hy, the rectangular midpoint rule gives the following approxi-
mation for I ′[f ]:

I ′Nx,Ny [f ] = hx hy

Nx−1∑
nx=0

Ny−1∑
ny=0

f

(
ax +

(
nx +

1

2

)
hx, ay +

(
ny +

1

2

)
hy

)
(97)

As these two sums are finite and the two indices nx and ny are completely
independent of each other, the two sums can be merged into a single one,
whose index n ranges from 0 to N − 1, where N = NxNy. To keep the no-
tation more compact, f(xn, yn) will be denoted as fn, where the dependence
of x and y on n are given by

xn = ax +

(
(n mod Nx) +

1

2

)
hx (98)

yn = ay +

(
n− (n mod Nx)

Nx

+
1

2

)
hy (99)

Here, ’mod’ symbolizes the mathematical modulo operation, which returns
the remainder of a division.

Using this notation, equation 97 can be rewritten as

I ′N [f ] = hx hy

N−1∑
n=0

fn (100)
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Applying this approximation to the 2-dimensional Lippmann-Schwinger equa-
tion (eq. 52), its discretized version turns into

ψl = φl + hx hy

N−1∑
n=0

Gln Vn ψn. (101)

All indices in this equation are linear indices, which represent positions in
the (x, y)-plane.

Similar to the 1-dimensional case, a matrix Kln = hx hy Gln Vn can be defined.
Rearranging equation 101 yields

N∑
n=0

(δln −Kln) ψn = φl (102)

and with Anm = δnm −Knm the standard form of a system of linear equations
can be obtained:

N∑
n=0

Aln ψn = φl (103)

3.3 Implementation in Python

The core of the Python implementation of the 2-d model is similar to the 1-d
variant. However, as the increased processor and memory demands strongly
limit the capabilities of the 2-dimensional version, more emphasis has been
put on computational efficiency when writing the code. For the sake of saving
memory, a lot of readability of the code is sacrificed, as all big matrices are
stored in one and the same space, referenced by one and the same pointer.

Identical to the 1-dimensional version, a separate file was used for the input.
For the integrals to be evaluated for x ∈ [x1, x2] and y ∈ [y1, y2], the following
code was used:
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x1 = −2;
x2 = 2 ;
y1 = −2;
y2 = 2 ;
Nx = 40 ; # number o f po in t s in x d i r e c t i o n
Ny = 40 # number o f po in t s in y d i r e c t i o n
pot id = ’ Trench ’ ; # type o f p o t e n t i a l to use
ang le = numpy . z e ro s ( (16 , 1 ) ) ; # ang le between k and x−a x i s
k mag = numpy . l i n s p a c e (1 , 16 , 1 6 ) ; # magnitude o f k vec to r

Instead of defining the wave vector k by its Cartesian components in x and
y-direction, k can be fed into the program in polar coordinates. The reason
for this is the ability to separately change the magnitude and the angle of
the vector very easily.

In the main code, the x and y vectors get defined and with meshgrid and
scipys cdist, the distance between r and r′ gets calculated for every combi-
nation of 2 points.

X, Y = numpy . meshgrid (x , y ) ; # get a l l (x , y ) combinat ions
eps = 1e−4; # f o r avo id ing 0 in hankel f unc t i on
coords = numpy . array ( [ numpy . r a v e l (X) ,

numpy . r a v e l (Y ) ] ) . t ranspose ( ) ;
S = sc ipy . s p a t i a l . d i s t ance . c d i s t ( coords , coords + eps ,

’ euc l i d ean ’ ) + 0 j ;

Here, a tiny shift eps to the second point has been introduced. The idea
behind this is to avoid the singularity in the Hankel function later on. As
this shift is negligiby small compared to the other values for the distance, it
can be ignored in the endresult. However, to keep the code consistent with
the formula, this eps-shift is added to all coordinates, over which the integral
is defined.

Furthermore, a complex + 0j is added. Reason for this is to convert the
datatype of S to be complex, which in turn has been done to be able to store
other (complex) matrices, which will be derived from S, in the same space S

refers to.

The Hankel function is calculated using scipy.special.hankel1, which is
the most suitable tested variant. Further detail concerning the performance
of various parts of the code can be found in section 4.
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s c ipy . s p e c i a l . hankel1 (0 , k∗S , out=S ) ;
S ∗= −1 j / 4 ;

At this point, S contains the Green’s function. To get the coefficient matrix
of the system of linear equations, the same algorithm as in the 1-dimensional
case is used. However, it has been rewritten in a different style to allow
reusing the same storage space S reserves.

h = ( x [ 1 ] − x [ 0 ] ) ∗ ( y [ 1 ] − y [ 0 ] ) ;
S ∗= numpy . r a v e l (V(X + eps , Y + eps ) ) ;
S ∗= −h ;
S += numpy . i d e n t i t y (N) ;
p s i = numpy . l i n a l g . s o l v e (S , phi ) ;

Here h = hxhy is calculated directly using adjacent points of the grid of po-
sitions. In the end, again numpy.linalg.solve has been used to solve the
system of linear equations.

3.4 Results

As in the 1-dimensional case, matplotlib is used to plot the results. All
shown wave functions are not normalized, as only their behavior inside the
simulation box is known.

For the first demonstration, a simple cuboid potential trench has been chosen.
It spans all y-values and has a depth of V0 = −1 for all x ∈ [−0.5, 0.5].
Figure 5 displays V (x, y) in the simulation box [−2, 2]× [−2, 2].
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Fig. 5: Potential V (x, y) used for the first simulation. Nx = Ny = 120

Setting k = 8 êx and keeping Nx = Ny = 120, the the following square of
the absolute value of the wave function |ψ(x, y)|2 has been calculated:
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Fig. 6: Absolute value of wave function |ψ(x, y)|2.
k = 8 êx and Nx = Ny = 120. V as shown in figure 5.
Lighter colors (greenish yellow) depict higher values, darker ones (blueish
turquoise) lower values. Not normalized.

Repeating this with k = 16 êx, a similar result can be obtained:
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Fig. 7: Absolute value of wave function |ψ(x, y)|2.
k = 16 êx and Nx = Ny = 120. V as shown in figure 5.
Lighter colors (greenish yellow) depict higher values, darker ones (blueish
turquoise) lower values. Not normalized.

The first thing that stands out in these images is the high amplitude of the
wave function for positive x and |y| > 1. These mountains start at the corners
of the potential well at x = −0.5 and move slowly inward. The source of
these peaks can be interpreted as the wave function, which diffracts around
the edges at y = ±2 and bends around the potential. This could happen
because the simulation only takes the potential inside this [−2, 2]× [−2, 2]
chamber into account, whereas the Lippmann-Schwinger equation describes
the behavior of the wave function on the whole R2-plane. Further evidence
for this explanation is provided by the angle, at which these extrema move
towards the center. For k = 8, they close faster and reach almost to y = ±0.5
at the end of the simulation box, while for k = 16, they only reach to about
y = ±1.0. This would be expected from the two wave functions with different
energies.

Furthermore, one can see that the squared amplitude of the wave function
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is slightly higher inside the trench (for x ∈ [−0.5, 0.5]). This corresponds to
a higher probability amplitude in an area of lower energy. The difference
is only this small because the energy of the wave is given by E = k2

2
(see

equation 53) which is a lot bigger than the depth of the potential.

Without going into detail, but just to demonstrate the possibility to use
different potentials, a double slit potential will be simulated. It will have a
small barrier with two small slits in the center. The following picture should
again clarify the details.

Fig. 8: Potential used for the double slit experiment.
In the purple area V = 0, everywhere else V = 1. Nx = Ny = 120.

For k = 16 êx, the following wave function has been computed. As in the
example above, only the square of the absolute value of the wave function
will be shown.
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Fig. 9: |ψ(x, y)|2 for the double slit potential displayed in figure 8.
Nx = Ny = 120, k = 16 êx.

In this picture the incoming parallel wave fronts on the left are clearly visible,
as well as the parts of the wave function, that pass through the two slits.
Identical to the cuboid trench potential shown before, the wave function
leaks around the barrier and interferes with the parts of the wave function,
that pass through the slits.

4 Performance and Improvements

As the 2-dimensional variant consumes a lot of computational power, the
code has been optimized for speed and memory efficiency. Several tests and
improvements have already been made, however, the end product is still
definitely not perfect. For timing the code, a custom primitive timer class
was written. It allows setting markers in the code and outputs the time
passed between these markers using pythons time package.
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The first test tries to improve the speed for the calculations of the distances
between all points on the plane. Prior to using scipys cdist, a fourfold nested
loop has been used. As the following output of the timer class shows, cdist
proves far superior.

### Analys i s o f computat ional t imes : ###

4 loop : 113.303951 seconds
c d i s t mgrid : 0 .000136 seconds

a r r a y i f i c a t i o n : 0 .000054 seconds
c d i s t c a l c : 0 .179445 seconds

p r i n t i n g : 0 .197794 seconds

#######################

In this output, 4 loop counts the time it takes for the 4 nested for-loops
to calculate all the distances. cdist mgrid times the creation of the posi-
tion matrices by numpys meshgrid. arrayification is the part, where the
meshgrid-matrices get converted into 1-dimensional numpy arrays. cdist

calc then calculates all possible distances and printing prints the results
and checks if cdist and the 4 loop variant both yield the same result. This
test uses Nx = Ny = 80.

A similar test was performed for different variants of calculating the Hankel-
function. Apart from scipy.special.hankel1 also the variant with J0 + iY0
was implemented, where scipy.special.jv and scipy.special.yn were
used to calculate J0 and Y0. As scipy is not the only package, which provides
integrated bessel functions, also mpmath.hankel1 was tried. This package,
however, proved immensely slow compared to the scipy variants.

### Analys i s o f computat ional t imes : ###

sc ipy hankel1 : 0 .002666 seconds
s c ipy jv + yn : 0 .001937 seconds

mpmath hankel1 : 4 .239912 seconds

#######################

In this test, 104 random real numbers in the interval (0, 1) were fed in the
three functions. It is plain to see, that mpmaths variant takes about 2000
times as long as the scipy methods. Even though the J0 + iY0 variant is a bit
faster than the pure H

(1)
0 version, the hankel1 function was prefered. Reason
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for this is the ability to easily overwrite the input matrix with the output
matrix of the hankel1 function to save memory. This was crucial, as these
were the biggest matrices in the whole program and needed several GiB of
memory.

All these tests have been performed in separate programs to isolate the func-
tions, which have been focused on. To conclude the digression on perfor-
mance, the main program, which solves the Lippmann-Schwinger equation,
will be analyzed. The following results are taken from the calculation of the
double slit simulation with Nx = Ny = 120. Only the potential V (x, y) and
|ψ(x,y)|2 are being plotted.

### Analys i s o f computat ional t imes : ###

Beginning : 0 .000261 seconds
p o t e n t i a l p l o t : 0 .190887 seconds

ynumerical i n i t : 0 .000017 seconds
c a l l o f l s e func t i on : 0 .000633 seconds

s p a t i a l d i s t anc e : 2 .370444 seconds
hankel : 80 .085719 seconds

setup o f A matrix : 1 .753537 seconds
sys o f eq s o l v i n g : 67.217227 seconds

reshape , r e t : 0 .078901 seconds
p l o t s at end : 0 .068395 seconds

#######################

Total time needed : 151.766021 seconds

In this list, Beginning describes the pulling of the necessary information
from the input file and setting up basic variables. As the label suggests,
potential plot times the plotting of the potential V (x, y). ynumerical

init only takes the initialization of the final output matrix for the wave
function into account, while call of lse function is the function call of
the function, which solves the Lippmann-Schwinger equation with the given
parameters. spacial distance is the time cdist took for calculating all
possible distances and hankel the time it took for evaluating the hankel
function for all these distances. In setup of A matrix the matrix Aln is
calculated and sys of eq solving times the solving of the system of linear
equations. reshape, ret reforms the 1-dimensional wave function vector
into the 2-dimensional matrix, which is then returned to the main program.
In plots at end various plots can be specified to be drawn. In this example,
however, only 1 plot has been ordered: |ψ(x,y)|2.
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As these numbers clearly suggest, the Hankel function and the solving of the
system of linear equations are the only big hits on computation time. All
other parts are negligible in comparison. Therefore, for improving the run-
time of this code, one should focus on accelerating these two parts. Memory
consumption wise, this program needs about 6.2 GiB for the 120x120 reso-
lution and about 11.5 GiB for 140x140. A higher resolution has not been
possible to test because of these high demands.

5 Summary

The Lippmann-Schwinger equation, which has been derived from the Schrö-
dinger equation in section 1, describes the behavior of quantum mechanical
waves in the presence of some potential. By means of numerical integration,
this integral equation can be refactored into a system of linear equations
and solved numerically (sec. 2.2 and sec. 3.2). In section 2.3 an implementa-
tion of this numerical way of solving the 1-dimensional variant is discussed.
Similarly, the 2-dimensional implementation is described in section 3.3.

To sum up, the resulting wave functions behave as expected from quantum
mechanical waves in their specific environment. This in turn suggests, that
the program works as intended.
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