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Abstract

The technique of angular-resolved photoemission spectroscopy is especially suited to access the
quantum mechanical properties of molecules and crystalline surfaces. Within photoemission
orbital tomography, we can unambiguously interpret the photoelectron angular distribution as
the momentum space signatures of quantum mechanical wave functions. This interpretation
relies on certain assumptions for the theoretical modelling of the photoemission process, where
especially the assumption of a plane wave as the final state of the liberated photoelectron should
be emphasized. This work contains a collection of five publications about applications and
extensions of photoemission orbital tomography viewed from a theoretical perspective.

The application of photoemission orbital tomography requires electronic structure calcula-
tions, that are, in most cases, only possible within density functional theory, which is due to the
large number of degrees of freedom in the considered systems. The necessary approximations
in this method lead to an underestimation of long-range electron correlation; this correlation,
however, plays an important role for the adsorption of molecules on surfaces, since the result-
ing van der Waals forces often make a considerable contribution to the binding energy. In three
publications that are part of this thesis, it is shown that the correct description of these van
der Waals forces poses a serious challenge, especially for the adsorption of organic molecules
on the interface between magnesium oxide and Ag(100). On this surface, we specifically ex-
amine self-metalation of the porphyrin molecules tetraphenylporphyrin and porphin, and, in
addition, observe large structural changes in the organic semiconductor perylenetetracarboxylic
dianhydride. For the latter case, the comparison between theory and experiment demonstrates
that here, photoemission orbital tomography can serve as precise instrument to quantitatively
determine changes in the molecular structure.

When varying the photon energy in angular-resolved photoemission spectroscopy, the de-
pendence of the photocurrent with respect to the photoelectron’s momentum component per-
pendicular to the surface can be measured. From these data, it is possible to gain additional
insight into scattering effects in the photoemission process, as well as into the interaction be-
tween the photoelectron and the surface. For graphene, an atomically thin two-dimensional
modification of carbon, a comparison between theory and experiment reveals that the observed
modulations in the photoemission intensity cannot be explained within the plane wave final
state assumption. However, in a fourth publication it is demonstrated that the experimental
findings can be accounted for by a more direct method, namely the simulation of photoemission
spectroscopy within time-dependent density functional theory. Moreover, additional insight is
gained when extending the plane wave model to scattered waves, which incorporates scatter-
ing effects from different angular momentum channels, as well as from neighboring atoms in
the graphene lattice. Within the photoemission orbital tomography interpretation of photoe-
mission data and the help of this understanding, it is now possible to remove artefacts in the
experimental data—which result from the photoemission process itself—from the underlying
material properties.
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In a fifth publication, we extend the applicability of photoemission orbital tomography to
a special class of excited states. Optical excitations in semiconductors and isolators below the
band gap lead to bound electron-hole pairs, the so-called excitons. Since these quasi-particles
are described as correlated wave functions, their treatment within the formalism of photoe-
mission orbital tomography has not been possible before. With the extension to such systems,
new consequences for the photoemission from these states arise. Depending on the configura-
tion of the hole state, here our theoretical results predict exciton signatures at different kinetic
energies and the electronic part of the exciton demands a coherent sum over the unoccupied
single-particle orbitals for each of those momentum space patterns.
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Kurzzusammenfassung

Um quantenmechanische Zustände von Molekülen oder Kristalloberflächen sichtbar zu ma-
chen, eignet sich vor allem die Technik der winkelaufgelösten Photoemissionsspektroskopie.
Die so gewonnen, experimentellen Daten können innerhalb der Photoemissionsorbitaltomo-
graphie als eindeutige Signaturen von Wellenfunktionen im Impulsraum interpretiert werden.
Diese Interpretation beruht auf bestimmten Annahmen in der theoretischen Modellierung des
Photoemissionsprozesses, wobei insbesondere die Verwendung von ebenen Wellen als Endzu-
stand des freien Photoelektrons hervorzuheben ist. Diese Arbeit beinhaltet eine Sammlung von
fünf Veröffentlichungen die sich—aus theoretischer Sicht—mit Anwendungen und Erweiterun-
gen der Photoemissionsorbitaltomographie beschäftigen.

Für die Anwendung der Photoemissionsorbitaltomographie wird eine Simulation der elek-
tronischen Struktur benötigt, was auf Grund der großen Anzahl von Freiheitsgraden in den
betrachteten Systemen zumeist nur mit Dichtefunktionaltheorie möglich ist. In dieser Methode
führen die notwendingen Näherungen dazu, dass langreichweitige Korrelationen von Elektro-
nen unterschätzt werden; diese Korrelationen spielen jedoch für die Adsorption von Molekülen
auf Oberflächen eine entscheidende Rolle, da die daraus resultierenden van der Waals Kräfte oft
maßgeblich zur Bindung beitragen. In drei Arbeiten, die Teil dieser Dissertation sind, konnte
gezeigt werden, dass insbesondere die Adsorption von organischen Molekülen auf der Gren-
zschicht von Magnesiumoxid und Ag(100) eine besondere Herausforderung für die korrekte
Beschreibung der van der Waals Kräfte darstellt. Konkret wurde dabei auf dieser Oberfläche
die Selbstmetallierung der beiden Porphyrinmoleküle Tetraphenylporphyrin und Porphin un-
tersucht, sowie eine besonders große strukturelle Veränderung des organischen Halbleiters
Perylentetracarbonsäuredianhydrid beobachtet. In letzterem Fall wurde durch den Vergleich
von Theorie mit Experiment deutlich, dass die Photoemissionsorbitaltomographie hier ein sehr
genaues Instrument zur quantitativen Bestimmung von Veränderung der molekularen Struktur
darstellt.

Wird innerhalb der Photoemissionsspektroskopie zusätzlich noch die Photonenenergie vari-
iert, kann dadurch auch die Abhängigkeit des Photostroms von der Impulskomponente des
Photoelektrons orthogonal zur Substratoberfläche vermessen werden. Diese Daten liefern zusät-
zliche Erkenntnisse über Streuprozesse im Photoemissionsprozess sowie der Wechselwirkung
des Photoelektrons mit der Oberfläche. Für Graphen, eine zweidimensionale Modifikation des
Kohlenstoffs, konnte anhand des Vergleichs experimenteller Daten mit theoretischen Simula-
tionen in einer vierten Arbeit gezeigt werden, dass hier die Annahme einer ebenen Welle als
Endzustand nicht mehr ausreicht, um die beobachteten Modulationen in der Photoelektronen-
intensität zu erklären. Die experimentellen Daten konnten jedoch mit einer direkteren Methode
zur Simulation von Photoemissionsspektroskopie mittels zeitabhängiger Dichtefunktionalthe-
orie sehr gut reproduziert werden. Dies gelang auch anhand einer Erweiterung des ebenen
Wellen Modells auf Streueffekte zwischen unterschiedlichen Drehimpulskanälen sowie zwis-
chen Nachbaratomen im Graphen Gitter. Mit diesem Verständnis ist es möglich, bei der Inter-
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pretation von Photoemissionsdaten mittels Photoemissionsorbitaltomographie nun Artefakte
des Experiments, die sich aus dem Photoemissionsprozess ergeben, von wirklichen Materi-
aleigenschaften zu trennen.

In der fünften Arbeit wurde die Anwendbarkeit der Photoemissionsorbitaltomographie auf
spezielle angeregte Zustände erweitert. Optische Anregungen in Halbleitern oder Isolatoren
unterhalb der Bandlücke führen zu gebundenen Elektron-Loch Paaren, den so gennanten Exzi-
tonen. Diese Quasiteilchen müssen als korrelierte Wellenfunktionen beschrieben werden und
konnten daher bisher nicht im Formalismus der Photoemissionsorbitaltomographie behandelt
werden. Durch die Erweiterung auf solche Systeme ergeben sich einige neue Konsequenzen für
die Photoemission aus solchen Zuständen. Dabei lassen sich—je nach Konfiguration des Loch-
Zustands—Signaturen eines Exzitons bei verschiedenen kinetischen Energien beobachten und
der Elektronenanteil der Exziton-Wellenfunktion führt dazu, dass jede dieser Impulsraumsig-
naturen mit einer kohärenten Summe über die unbesetzten Einteilchenzutände gebildet werden
muss.
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Chapter 1

Introduction

The development of quantum mechanics in the beginning of the twentieth century has started a
revolution that transformed our fundamental understanding of nature and how we perceive it.
Yet consequences like the uncertainty principle have had a formal—not to say philosophical—
implication, that had little impact on our everyday life, as compared to other branches of
physics and chemistry. In the new millennium, however, a Second Quantum Revolution is be-
lieved to bring quantum mechanics to more practical relevance by directly exploiting its inner
workings in the technology that we use [1]. Among those are the important predictions of
quantum information theory [2, 3, 4] and their application for quantum computing, which will
become important, if not for the whole of information technology, at least for cryptology once
the decoherence time has been sufficiently enlarged [5, 6]. As for the carriers of quantum in-
formation, a multitude of different system are currently being explored, including ion traps [7],
ultracold atoms [8, 9], superconducting qbits [10, 11, 12], spin defects [13, 14] or topological
materials [15].

Moreover, the semiconductor technology for “classical” computing, enabled by modern
solid state theory, would have been unthinkable without the fundamental understanding of
quantum mechanics. In the future, alternatives to silicon-based semiconductors are expected to
become more important; these alternatives are other inorganic material, such as GaAs, but es-
pecially the field of organic electronics [16, 17, 18, 19, 20, 21] has emerged as a cheap, flexible and
resource-efficient alternative to silicon. In organic electronics devices, three important proper-
ties of two-dimensional carbon-based chemical networks come together: relative mechanical
stability and excellent conduction, both resulting from carbon’s ability to form sp2-bonds, and
sheer infinite possibilities to combine molecular building blocks, most of which inspired by na-
ture. Both for the basic research on the constituents of such organic devices, as well as for build-
ing the actual combinations of electrodes and the active regions, the study of organic molecules
interfaced with metallic and non-metallic contacts is crucial. At the interface, the basic proper-
ties of the individual layers and their interplay shape the overall properties of the device, such
as the interface geometry, charge rearrangements or transport properties [22, 23]. Most of the
aforementioned can be embraced by the term electronic structure of such interfaces, which is also
the primary concern of this work.

Before going further, another important aspect of organic molecules should not be left un-
addressed: their interaction with light. Just as their inorganic counterparts, organic semicon-
ductors can be utilized as active materials in photo diodes [24, 25, 26], organic light-emitting
diodes [27, 28, 29, 30, 31] or organic solar cells [32, 33, 34]. Some of these devices have already
become commercially available, such as organic light-emitting diode (OLED) displays, and es-

1



Chapter 1. Introduction

pecially the latter case of organic photovoltaic is of tremendous importance for a green energy
future. In order to understand the interaction of organic molecules with light on a fundamental
level, it are again the quantum properties of such molecules that need to be understood.

So how do we understand the quantum properties of materials such as organic molecule-
substrate interfaces? In an experimental approach, a large palette of different surface science
techniques exist, that all have their pros and cons. Arguably the most direct methods to visual-
ize the shape of molecules on ordered (conducting) surfaces, are scanning tunneling microscopy
(STM) [35, 36] and the related atomic force microscopy (AFM) [37, 38]. STM utilizes the quan-
tum mechanical tunneling of electron current from the sample to a tip that is scanning the sur-
face and can thereby image the local charge density distribution which builds up the topology
of surfaces. By varying the bias voltage or tunneling current conditions, this technique can be
turned into a spectroscopy method—scanning tunneling spectroscopy (STS)—that is able to de-
tect the energy levels of the quantum states. Its accessible energy range, however, is limited to
only a few eV below and above the Fermi level. In addition, all scanning probe methods have
in common that they always show a local probe of the system and that the results allow only
for a rather rough comparison with the quantum mechanical energy levels and wave functions,
which, from a theory perspective, can be seen as the full characterization of a quantum system.

In a complementary method—photoelectron spectroscopy—experimental results and theoret-
ical predictions are directly connected. As an application of the photoelectric effect, here the
sample is irradiated with light of sufficiently high energy to emit electrons. These photoelec-
trons then carry most of their quantum properties; most notably, their initial energy level is
encoded in their final kinetic energy in relation to the energy of the photons. The photon en-
ergy in turn can be varied from few eV to the keV range, thereby giving access to the complete
spectrum of electron binding energies in a material. When probing the deep-lying core levels
with x-ray radiation, x-ray photoelectron spectroscopy (XPS) [39, 40] can detect the atom species
and their chemical states, which was therefore termed electron spectroscopy for chemical analysis by
its inventor [41, 42]. In angular-resolved photoemission spectroscopy (ARPES), also the emis-
sion angle of the photoelectrons is detected, which allows to deduce the parallel components of
their initial momentum and is therefore the probe that yields the most direct information of the
quantum states of a material [43, 44, 45].

At the same time, results of ARPES measurements are often more difficult to interpret and
in many cases the combination of experimental and theoretical effort is expedient. This has
resulted in a technique termed photoemission orbital tomography (POT), where a direct con-
nection between molecular orbitals and their momentum space signatures arises from a simple
model of the photoemission process as an one-step transition from an initial state, describing
the bound electron in the system, and the final state of the photoelectron [46]. In particular, the
photoelectron is modeled as a free particle by a plane wave, which then establishes a Fourier
transform-like relation between real- and momentum space. This relation has been used to de-
termine the geometry of adsorbate layers [47, 48, 49], the hybridization between these layers
and the substrate [50, 51, 52] or the nature of reaction products on the surface [53]. Inverting
the connection between real- and momentum space, POT can even be used to reconstruct real-
space images of orbitals from photoemission data [54, 55, 56, 57, 58]. While the complex-valued
phase of the wave function cannot be fully retrieved in ARPES, nevertheless, POT and its real-
space reconstruction protocol emphasizes the role of orbitals and brings them into the realm of
quantum mechanical observables.

In this work, the frontiers of POT are being explored in three different directions. First, the
theoretical description of the electronic structure, i.e., the initial state of the photoelectron pro-
cess is explored. This many-electron state is described by means of density functional theory
(DFT) [59, 60, 61, 62, 63, 64], which allows for an accurate yet economic simulation of the collec-
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tive nature of hundreds to thousands of electrons under the influence of the electron-electron
and electron-ion interaction. The necessary approximations to allow for such a description typ-
ically neglect or underestimate long-range correlation interactions, the so-called van der Waals
interactions [65, 66]. These attractive forces originate from temporal fluctuations in the charge
density and play an important role for the binding of molecules to surfaces [67, 68], but are also
encountered in two-dimensional systems [69, 21, 70], soft matter [71, 72] or biology [73, 74, 75].
In the context of POT, organic molecules have mainly been studied when adsorbed on metal
surfaces, while here we are exploring their interaction with a special surface: thin layers of
MgO on the Ag(100)-surface. This system has the interesting property that, despite MgO being
an insulator, it can promote charge transfer from the metal through the interlayer into the ad-
sorbed molecules via electron tunneling [76]. In addition, the magnesium ions in the substrate
allow for an important type of on-surface reactions, namely the self-metalation of porphyrine-
based molecules. This organic building block is at the heart of many important molecules in
nature, such as haemoglobin, cytochromes, chlorophyll or vitamin B12, and gains its function-
ality from the ability to incorporate metal ions in its center [77, 78]. Wether the self-metalation
of such molecules is possible on the MgO/Ag(100) surface and how the charge transfer is re-
lated to this process, is studied in this work, with special emphasis on the role of van der Waals
interactions and their approximate treatment in a DFT framework for the energetics of the met-
alation. If an organic molecule has some of its carbon replaced by oxygen, such as in the case
of perylene-tetracarboxylic dianhydride (PTCDA) adsorbed on MgO/Ag(100), the Mg2+-ions
offer strong binding to the molecule’s oxygen atoms. This constitutes a further interesting case
for POT, since it poses the question if, and to which extent, structural changes of the molecular
geometry can be observed by changes in the momentum space signatures of the corresponding
orbitals.

Despite its merits, POT has also been criticized for its simplifications regarding the final
state [79, 80] and even shown to be insufficient in certain circumstances [81, 82], which is mostly
attributed to the plane wave assumption. Thus, as a second major topic of this work, the role
of the final state in POT is therefore explored. The assumption of a plane wave as the final state
in photoemission can be avoided in by following two routes: replacing it by another, explicit
final state or avoiding an assumption about the final state at all. Borrowed from the quantum
mechanical scattering problem, the scattered wave approximation (SWA) [83, 84] can be used to
follow the road in the one direction. The other route leaves the realm of time-independent quan-
tum mechanics altogether. With time-dependent DFT (TDDFT), the photoemission process can
be modeled very closely to the experiment: by coupling a light field to the electrons, they are
ejected from the sample and by measuring their energy and angular distribution at a detector
surface placed around the sample, ARPES can be directly simulated [85, 86]. Importantly, on
their way to the detector, the photoelectrons interact with each other and with the rest of the
sample and we thus can use this method to study final state effects. Such effects emerge primar-
ily if photoemission from light with different polarization directions or with different photon
energies is compared and here the final state is explored for the prototypical two-dimensional
material graphene.

Beyond the control of initial states from DFT and the consideration of different final states,
we finally push the frontiers of POT to the description of photoemission from excited states as
a third research direction followed in this thesis. Very recently, enabled by laser high-harmonic
generation or free-electron lasers, it has become possible to study also the dynamics of excited
states in time- and angle-resolved photoemission spectroscopy (trARPES) experiments. While
the case of optical population of formally unoccupied states above the band gap should, in
principle, be covered by the established formulation of POT, the situation is somewhat different
for excitation energies lower than the band gap in non-metallic systems. Here, quasi-particles
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Chapter 1. Introduction

form—the excitons—that are not straightforward to include in the formalism of POT due to
their entangled character stemming from the electron-hole interaction. In the last part of this
work, we therefore undertake the effort to include the description of excitons into the formalism
of POT, where the control of results is possible by the comparison to simulations from TDDFT.

This thesis is organized as follows. In Chapter 2, an overview over the methods used in this
thesis is given, which covers a brief introduction to DFT and its approximations with regard to
exchange-correlation functionals and the inclusion of van der Waals interactions. Subsequently,
the time-dependent fashion of DFT, TDDFT is established by recapitulating its principle there-
oms: the Runge-Gross theorem and the van Leeuwen thereom. After a short note on the impli-
cations of light-matter interaction on a semiclassical level, the two major approaches of excited
states calculations from TDDFT are reviewed: the time-propagation method and the linear-
response formalism. The methodology is concluded by describing photoelectron spectroscopy
in going from the experiment to its simulation at different levels of sophistication. After some
general remarks about the Golden Rule matrix element for photoemission and its relation to
other formalisms, we introduce the plane wave approximation (PWA) and deduce a formalism
for the simulation of excitons with POT. Touching the subject of different final states, in addi-
tion, the SWA is introduced and, finally, the simulation of photoemission from TDDFT via the
surface-flux method is reviewed. After introducing the methodology, the Chapters 3-7 present
the results of this work by incorporating the respective publications into the thesis. Each pub-
lication is introduced by a short significance statement and its author contributions. The pub-
lications are then presented with slight adaptions to layout and standards for references etc.,
but have not been altered in terms of content. To each publication, respective appendices or
supporting material are also included in the chapters. Note that in this way, the notation and
the choice of units are not standardized throughout this thesis. The presentation of the results
is completed by the concluding Chapter 8 and a list of publications.
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Chapter 2

Methods

2.1 Density Functional Theory

DFT is arguably the most important tool for electronic structure simulations in physics and
chemistry and the interfaces between organic molecular layers and (metal) substrates are no
exception. The success of DFT lies in a well proportioned balance between accuracy and com-
putational effort, such that its key papers are the most cited in physics and its implementations
are among the codes that consume the most CPU time on current supercomputers. With more
computing power, the future is even brighter and DFT is considered to endow our increasing
demand for simulations in key fields of the present, such as green energy, nanotechnology, opto-
electronics or materials science.

In this section, a brief introduction into the foundations of DFT is given, focusing on concepts
that will be used for the extension of DFT to the time-domain in Section 2.2. Subsequently,
different approximations of exchange-correlation effects, inherent in DFT, are discussed with
reference to our work on the electronic structure of various molecule-substrate interfaces. In
close relation, we also compare different methods to treat non-local van der Waals interactions;
these are especially important for molecular interfaces with metal-isolator surfaces, as in the
magnesium oxide-silver substrates. For more complete introductions on the foundations of
DFT and its various approximations for the exchange-correlation effects, the devoted readers
are referred to the literature [61, 62, 63, 64, 87, 88, 89].

2.1.1 Foundations

The electronic and optical properties of matter are governed by the motion of the electrons
and their description requires quantum theory, if we are interested in systems of the size of
individual molecules. On this level, a system of N electrons is characterized by the Hamiltonian

H = T + U + V , (2.1)

with contributions from the kinetic energy

T =
1
2

N

∑
i

p2
i , (2.2)
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the Coulomb interaction

U =
N

∑
j>i

1
|ri − r j|

, (2.3)

as well as any external potential that the electrons may feel:

V =
N

∑
i

v(ri). (2.4)

In the latter, the potential of the ions is included and we employ the Born-Oppenheimer approxi-
mation. Unless stated otherwise, we use atomic units such that h̄ = m = e2/4πϵ0 = 1.

Many-body quantum mechanics is commonly formulated in terms of the wave function
Ψ(r1, r2, . . . , rN), where we suppress the spin degree of freedom in following. Although for-
mally the N-electron non-relativistic, stationary and non-magnetic Schrödinger equation,

HΨ = EΨ (2.5)

contains all desired information in the wave functions, there exists no closed solution for more
than two electrons. Even worse, the complexity of the problem scales exponentially with the
number of electrons and for N ≳ 103 it thus ceases to remain a valid scientific concept [60].

In DFT we instead use the electron density of the ground-state Ψ0 as the main variable,
thereby moving from 3N to 3N spatial variables:

n0(r) = N
∫︂

dr2· · ·
∫︂

drN |Ψ0(r, r2, . . . , rN)|2. (2.6)

The mathematical proof that in a finite system of interacting electrons in its ground state, there
exists a one-to-one mapping of the external potential and the ground-state density—the electron-
electron interaction given—was stated by Hohenberg and Kohn in 1964 [59]:

v(r) ↔ n(r). (2.7)

Essentially, this means that all observables can indeed be expressed as functionals of the ground-
state density. Proving the Hohenberg-Kohn theorem is straightforward by reductio ad absur-
dum [59, 87, 64, 61]. The ground state energy, as one specific observable, is expressed as a
functional of the density in the following way:

E[n] = ⟨Ψ[n]|T + U + V |Ψ[n]⟩

= F[n] +
∫︂

dr n(r)v(r), (2.8)

thereby defining the universal functional F[n]. It is universal in the sense that it is the same
for all systems under the influence of the same electron-electron interaction and one could,
in principle, minimize Equation 2.8 with respect to some trial wave functions and thus find the
ground state energy and density. Aside from formal aspects, such as the v-representability prob-
lem [90, 91, 92, 93], the constrained search for the universal functional [94, 95] is impracticable
and the exact form of F[n] remains unknown.

The great success of DFT began only when Kohn and Sham [96] established a recipe on how
to calculate, at least approximately, the ground state density along the following lines. The
Hohenberg-Kohn theorem holds for any given form of the electron-electron interaction, one
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2.1. Density Functional Theory

could therefore also choose zero interaction, i.e. U = 0. The Kohn-Sham (KS) system represents
such a collection of N non-interacting electrons and can be written with the Hamiltonian

HKS = TKS + VKS =
N

∑
i

(︄
p2

i
2

+ vKS(ri)

)︄
, (2.9)

with the important restriction that this system must lead to same ground state density as the
interacting system. The ground state of such a non-interacting system can be written as a Slater
determinant

Ψ0(x1, . . . , xN) =
1√
N!

⃓⃓
⃓⃓
⃓⃓
⃓

φN(r1) φN(r2) · · · φN(rN)
...

...
...

φ1(r1) φ1(r2) · · · φ1(rN)

⃓⃓
⃓⃓
⃓⃓
⃓

, (2.10)

with the KS orbitals φi satisfying the effective one-body Schrödinger equation

HKS φi(r) = εi φi(r). (2.11)

The ground state density is then obtained from

nKS(r) =
N

∑
j

⃓⃓
φj(r)

⃓⃓2 . (2.12)

The crucial part here lies in demanding that the KS system reproduces the exact ground state
density,

nKS(r)
!
= n(r). (2.13)

Obviously, this can only be achieved by modifying the potential vKS accordingly. In other
words: the difference between a system of interacting and non-interacting electrons, i.e. all
many-body effects, must be hidden in the difference between v and vKS (and the differences in
kinetic energy, see below). Rewriting the ground state energy of the interacting system, as in
Equation 2.8, with

E[n] = T [n] + U[n] +
∫︂

dr n(r)v(r)

= TKS[n] +
∫︂

dr n(r)v(r) + EH[n] + Exc[n], (2.14)

we have brought the two systems together. Moreover, we have defined the exchange-correlation
energy as a new entity that should take care of the differences between both systems, i.e. the
difference between the true kinetic energy, T , and the kinetic energy of the KS system, TKS, as
well as the electron-electron interaction beyond the mean-field. The latter is the known as the
Hartree energy EH:

EH[n] =
1
2

∫︂
dr dr′

n(r)n(r′)
|r − r′| . (2.15)

Having reformulated Equation 2.8 with Equation 2.14, we still do not know the exact form
of Exc, but we are now in the position to at least evaluate the energy as a functional of a density
that can be easily computed in terms of single-particle orbitals φi. Assuming for a moment
that Exc would be known, then it can be stated that the above formalism is an exact mapping
of the many-body problem on an effective single-particle system. Moreover, we then could
compute the true ground state density in a self-consistent scheme, the KS scheme, that requires
the following steps:
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(i) Make an initial guess for the density n(0)

(ii) Compute v(0)KS [n]

(iii) Construct the KS Hamiltonian H(0)
KS

(iv) Solve H(0)
KS φ

(1)
i = εi φ

(1)
i

(v) Compute n(1) = ∑i

⃓⃓
⃓φ(1)

i

⃓⃓
⃓
2

and the total energy E(1)
tot

After step (v), one can evaluate a convergence criterion, e.g. ϵ =
⃓⃓
⃓E(j)

tot − E(j−1)
tot

⃓⃓
⃓ and stop the

calculation at some desired value of ϵ, otherwise the scheme is repeated from step (ii). The
first numerical bottleneck of this scheme is step (ii), since the Poisson equation needs to solved,
which is usually done in momentum space. The second is step (iv), which usually involves
diagonalizing a large matrix and which is where most of the CPU time in DFT codes is spent.
It could be further remarked that a critical point in the self-consistent evaluation of (ii)-(v) is
feeding in the new density, which can be potentially overshooting the changes and is therefore
prone to instabilities. One therefore usually uses a mixing scheme between the old and the
new density and numerical algorithms, such as the conjugate gradient algorithm [97], to ensure
faster convergence.

With the KS scheme described above, a practical method has been established that allows
for computing the many-electron problem with the help of the density and some auxiliary sys-
tem of non-interacting electrons. In principle, this description is formally exact, if we were in
possession of the exchange-correlation energy Exc. Since we are not, the price that we have to
pay is living with a more or less appropriate formulation of Exc as a functional of the density,
depending on the level of computational effort we are willing to invest. Before turning to the
following paragraph, which is devoted to the approximations for exchange-correlation effects,
some general remarks to DFT with regard to this work can be made.

(i) Although the foundations of DFT guarantee that all observables can be expressed as func-
tionals of the ground-state density, the quantum mechanical wave function is not an ob-
servable and we will frequently treat the KS orbitals as the true orbitals, which is custom-
ary but formally not justified [98].

(ii) Coming from Hartree-Fock (HF) theory, Koopmans theorem [99] gives an interpretation
of the energy levels as electron-removal energies in finite systems. In DFT, this only holds
for the highest occupied orbital but is, in contrast to the HF equivalent, exact [100]. In
general, however, the energy eigenvalues εi are non-physical.

(iii) Related with (ii) is also the infamous “band gap problem” of DFT, which consists in the
fact the fundamental gap of semiconductors and insulators is severely underestimated
when relying on KS energies.

2.1.2 Approximations for Exchange- and Correlation Effects

With the KS scheme described in the preceding paragraph, we have obtained a formal method
for computing the electronic structure in terms of the density. To make this method practical,
however, an approximation for the exchange-correlation energy (or its potential) as defined in
Equation 2.14 has to be found.
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2.1. Density Functional Theory

The Local Density Approximation

The first example of such an approximation was already given by Hohenberg and Kohn in their
seminal paper [59], guided by the following considerations. If the density is only slowly vary-
ing in space, one might as well take properties of the homogeneous electron gas (with constant
density) for the construction of an exchange-correlation functional. The exchange expression for
the homogeneous electron gas (HEG) had already been derived by Dirac in 1930 [101] such that
only the correlation part has to be calculated. This can be done by Quantum Monte Carlo tech-
niques [102], leading to a suitable parametrization, e.g. as given by Perdew and Zunger [103] or
Perdew and Wang [104]. Accordingly, this approximation is termed the local density approxi-
mation (LDA) and can be expressed as an integral over the exchange- and correlation parts of
the HEG energy per electron [64]:

E(LDA)
xc [n] =

∫︂
dr n(r)

(︂
e(HEG)

x [n] + e(HEG)
c [n]

)︂
(2.16)

=
∫︂

dr n(r)

(︄
− 3

4π

(9π/4)1/3

rS
+ e(HEG)

c [n]

)︄
,

with the Wigner-Seitz radius rS and e.g. the correlation energy per electron from Perdew and
Wang [104]

e(HEG)
c [n] = −2c0(1 + α1rS)ln

{︄
1 +

1

2c0(β1r1/2
S + β2rS + β3r3/2

S + β4r2
S)

}︄
, (2.17)

with fit parameter c0, α1, β1, β2, β3 and β4. Given the crudeness of the LDA, some results are
remarkably accurate, for instance the lattice constants in bulk metals [105], which is attributed
to fortunate error-cancellation and some exact properties that the LDA fulfills, e.g. the sum
rules for the exchange-, correlation- and exchange-correlation holes from coupling constant-
integration [64] or the coordinate-scaling behavior of the density [106]. Note that the LDA
can also be extended to spin-polarized systems [107] and is then called the local spin density
approximation (LSDA). In this work, the LDA is primarily used in its time-dependent fashion,
the adiabatic LDA, which is described in Section 2.2.

Generalized Gradient Approximations

The next step on the so-called Jacob’s ladder [108] is the generalized-gradient approximation
(GGA), which, as the name suggests, takes also the gradient of the density into account:

E(GGA)
xc [n] =

∫︂
dr n(r)F (n(r),∇n(r)) . (2.18)

For the exact form of F (n(r),∇n(r)), many variants exist. Among the most successful ones are
the formulations of Becke [109] or Perdew, Burke and Ernzerhof (PBE) [110]. Improvements
of the latter over LDA are most pronounced for binding- or ionization energies in molecules,
while some metal lattice constants are even inferior [105]. Nonetheless, the original paper for
PBE is the most cited reference of all physics and in this work we also partly rely on the PBE
functional for the calculations of metal-organic interfaces.

Meta-GGAs

A direct extension of GGA functionals are Meta-GGA (MGGA) functionals, which do not only
take gradients but also second derivatives of the density, as well as the KS orbital kinetic-energy
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density,

τ(r) =
1
2 ∑

i
|∇ϕi(r)|2, (2.19)

into account:

E(MGGA)
xc [n, τ] =

∫︂
dr n(r)F (n(r),∇n(r), ∆n(r), τ) . (2.20)

In this way, MGGAs achieve a higher flexibility that can be used to partly remove the self-
interaction error [111] and fulfill exact constraints like global properties of the exchange and
correlation energies, the scaling of the density or the asymptotic behavior of the xc potential
when r → 0 or r → ∞ [112]. Earlier forms of MGGAs include the PKZB [113] and TPSS [114]
functionals, while a more recent implementation was introduced by the SCAN functional [115].

Hybrid Functionals

One of the most dissatisfying shortcomings of local and semi-local exchange-correlation func-
tionals, such as LDA and PBE, is the wrong prediction of energy levels. Despite the fact that
only the highest occupied molecular orbital (HOMO) has a well-defined physical meaning, both
the occupied- and unoccupied frontier orbitals from DFT calculations are utilized e.g. for the in-
terpretation of energies of molecular adsorbates or the electronic band-gap where especially the
latter is often very wrong in (semi-) local functionals. One way of overcoming this deficiency is
to use a portion of Fock-exchange, also termed exact-exchange in DFT, from HF theory, which
is defined in its energy expression as

EHF
x = −∑

j>i

∫︂
dr dr′

φ∗
i (r)φ∗

j (r
′)φj(r)φi(r′)

|r − r′| . (2.21)

For the mixing ratios of semi-local exchange-correlation functionals with EHF
x , different families

of functionals exist. In quantum chemistry, one of the most widely used implementations is
B3LYP [116, 117], defined as

EB3LYP
x = (1 − α)ELDA

x + αEHF
x + βEB88

x + γELYP
c + (1 − γ)ELDA

c , (2.22)

with α = 0.2, β = 0.72, γ = 0.81 and the GGA-type functionals EB88
x from Becke [109] and ELYP

c
from Lee, Yang and Parr [118]. Incorporating Fock-exchange increases the computational bur-
den at least by an order of magnitude, since computing the two-body integrals is expensive and
has a quadratic scaling with system size, which is especially unfavorable for metal-organic in-
terfaces where a large number of atoms have to be computed. A way to overcome this was pro-
posed by Heyd, Scuseria and Ernzerhof (HSE) [119], where the idea is to rewrite the Coulomb
interaction,

1
r
→ 1 − erf(ωr)

r
+

erf(ωr)
r

, (2.23)

with the error function

erf(x) =
2√
π

∫︂ x

0
dx′e−x′2 . (2.24)

10



2.1. Density Functional Theory

The two terms in Equation 2.23 can now be evaluated with different means of exchange-cor-
relation, thereby introducing an effective range-separation parameter ω controlling the spatial
distance where Fock-exchange is mixed in or not, which reduces the number of non-local inte-
grals that need to be evaluated. The HSE energy functional reads

EHSE
x = (1 − α)EPBE,SR

x (ω) + αEHF,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.25)

where the long-range part of the exchange energy, as well as the correlation, is taken from PBE.
In the revised form of HSE [120], the mixing parameter in the short range is α = 0.25 and
ω = 0.11 bohr−1.

The step from B3LYP to HSE can be seen as going from a global hybrid to a range-separated
hybrid (RSH), where the mixing- and range-separation parameter α and ω define the functional.
Generalizing this concept, such a set of parameter can be optimized for each individual system,
where for molecules in the gas-phase the optimal parameter can be found by comparison of one
aforementioned exact property in DFT: the HOMO level being equal to the ionization potential.
One therefore computes e.g. a N-electron molecule in its neutral electronic configuration, addi-
tionally as the anion with N + 1 electrons and then compares their energy difference with the
HOMO level. By minimizing this difference in the two-parameter space of α and ω, the so-
called optimially-tuned range-separated hybrid (OT-RSH) [121, 122] functionals are invoked,
which are reported to give very accurate results, especially for the KS-gap [123]. Recently, this
method has been extended to solids [124].

The steps taken on Jacob’s ladder have so far lead to the improvement of the exchange part
in the missing many-body interactions only. Improving on the correlation part is considerably
harder. In DFT, the random phase approximation (RPA) [125] would provide such means but
the implementations of the RPA are prohibitively expensive for our systems of interest. We
therefore have to resort to other methods for describing long-range correlation effects, a topic
which is raised in the next paragraph.

2.1.3 Dispersive Interaction Corrections

Beyond static classical electromagnetic forces that are taken into account by the Hartree term
already, quantum fluctuations induce small, non-permanent dipole moments that lead to addi-
tional attractive forces. These forces would be included by the long-range correlation of the true
electron-electron interaction, but are not incorporated in the exchange-correlation approxima-
tions discussed so far. While at first glance this influence might seem small compared to chemi-
cal bonding, it can be particularly important for organic molecules physisorbed on (metal) sur-
faces. Without such dispersive forces, a molecule might even not bind to the surface at all [67]
and van der Waals-interactions play an important role in widespread areas of research, such
as metal-organic interfaces [126, 127, 128, 129], vertically stacked 2D systems [69, 21, 70], soft
matter [71, 72] or biology [73, 74, 75]. Consequently, a large amount of literature and review
articles [130, 131, 132, 66, 133] exist that deal with the numerous ways to incorporate van der
Waals interactions into DFT. In the following, three types of such approximations, at different
levels of sophistication, are briefly described and will be classified with respect to the interfaces
that are subject to this work.

Empirical Corrections after Grimme

Already in the early works of London [134, 65] a long-range, attractive behavior between mo-
lecules was inferred, that, together with a short-ranged part to account for Pauli repulsion,
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culminated in the famous Lennard-Jones potential [135],

U(R) = U0

[︄(︃
R0

R

)︃12
− 2

(︃
R0

R

)︃6
]︄

, (2.26)

with R being the distance between the constituents and where the constants R0 and U0 are
used to set the minimum position and magnitude. It is exactly this R−6-law that is used in the
original method after Grimme [136]. Here, van der Waals corrections enter as an additional
term in the exchange-correlation energy, i.e.

Exc = EDFT
xc + EvdW. (2.27)

Note that this energy is added to the total energy after each self-consistent electronic cycle, such
that it will only affect the system for geometry optimizations and not the electronic structure
obtained from single-point calculations. The van der Waals energy EvdW according to Grimme
was initially defined as

EvdW = −s6 ∑
i<j

Cij
6

R6
ij

fdamp
(︁

Rij
)︁

, (2.28)

with the sum running over all pairs of atoms i, j and a coefficient Cij
6 for each pair, as well as

a global scaling factor s6 and a function fdamp to damp the interaction at small inter-atomic
distances where covalent bonding should dominate. In practice, the C6 coefficients are not
needed for each pair of atoms but an average of the form

Cij
6 = 2

Ci
6Ci

6

Ci
6 + Ci

6
(2.29)

is taken, such that a single coefficient is supposed to account for an atom sort in all of its possible
configurations and hybridization states. In an updated version of the method [137], usually
termed DFT-D3, the coefficients are geometry-dependent and are also adjusted according to
their local chemical coordination. Moreover, three-body interactions are also taken into account
via an additional term with R−8-scaling and Cij

8 -coefficients. This makes the DFT-D3 method
a very versatile yet cost-efficient way to incorporate van der Waals forces in DFT calculations,
also for periodic systems [138]. From a conceptional point of view, however, criticism may
arise for the empiricism introduced by the open parameter in the description, although the C6-
coefficients may be also calculated from TDDFT [139].

The Method of Tkatchenko and Scheffler

As a second example, we describe a family of methods initialized by Tkatchenko and Schef-
fler [140], which still make use of equations 2.27 and 2.28 but put the parameter of the method
on a more sound basis. In contrast to Grimme’s method, the physical environment is respected
in such a way that the C6 coefficients are functionals of the relative, dynamic polarizability of
each atom in the system. This connection arises from the Casimir-Polder integral [141]:

Cij
6 =

3
π

∫︂ ∞

0
dω αi (iω) αj (iω) . (2.30)

Since the αi are tensor-valued entities at imaginary frequencies, their practical calculation in-
volves tracing over spatial directions and truncating the Padé series [142, 143], leading to an
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effective frequency dependency. While for free atoms, the calculation is rather straightforward
and polarizabilities αfree

i can be computed from TDDFT [139], for atoms in molecules and solids
this task is more involved. In this case, one can make use of a general property, namely that
there exists a direct relation between volume and polarizability [144], such that the effective
atomic volumes scale the polarizability of free atoms:

αi =
Veff

i

Vfree
i

αfree
i , (2.31)

and, ultimately, the van der Waals-coefficients as

Cii
6 =

(︄
Veff

i

Vfree
i

)︄2

Cii
6,free. (2.32)

In the case of interaction between unlike atomic species, a combination rule is defined by

Cij
6 =

2Cii
6 Cjj

6(︂
αj
αi

Cii
6 + αi

αj
Cjj

6

)︂ . (2.33)

Effective volumes are obtained from Hirshfeld partitioning [145, 146] as

Veff
i

Vfree
i

=

∫︁
dr wi(r)r3n(r)∫︁
dr r3nfree

i (r)
, (2.34)

with the Hirshfeld weights wi(r) defined as

wi(r) =
nfree

i (r)

∑j nfree
j (r)

. (2.35)

In this way, the van der Waals coefficients are functionals of the electron density and therefore
respect the local charge environment. Employing the additivity of C6-coefficients [140], the sum
of these atomic C6-coefficients then make up the van der Waals-parameter of the entire (sub-)
system, e.g. the molecule and the surface, respectively. As before, the van der Waals force has to
be damped at small distances, where the correct behavior is already represented by the (semi-)
local xc-functional. Here, the damping function

fdamp =
1

1 + exp
{︃
−d
(︃

Rij

R0
ijs

+ 1
)︃}︃ (2.36)

depends on the shape parameter d, s, as well as on the van der Waals radii R0
ij. The latter can be

computed from their atom-in-molecule counterparts, R0
i , as R0

ij = R0
i + R0

j , with the R0
i being

defined via the free-atom van der Waals radii (R0,free
i ) as

R0
i =

(︄
Veff

i

Vfree
i

)︄ 1
3

R0,free
i . (2.37)
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Surpassing the original scheme of Tkatchenko and Scheffler, several noteworthy extensions
have been developed. First, with iterative Hirshfeld partitioning [147, 148], free atoms are no
longer used as a reference method for the atoms-in-molecules approach. Instead, atomic ref-
erence charges are determined self-consistently, which leads leads to an improvement in the
description of ionic solids [149]. Second, electrodynamic response effects can be incorporated
with the self-consistent screening equation [150, 151],

αSCS
i (iω) = αi(iω)− αi(iω)∑

j>i
τijα

SCS
j (iω), (2.38)

although results are mixed [152], especially in the case of ionic solids. For metals, an atoms-in-
molecules approach is even more problematic due to the large number of quasi-free electrons.
As a remedy and a third example, the set of optimized van der Waals parameter of Ruiz et.
al. [153] should respect the enhanced screening in metal surfaces and were also used in part of
this work. Forth, an extension via the many-body dispersion method includes long-range con-
tributions based on the random-phase approximation of the correlation energy [151, 154, 155].
Tests for the many-body dispersion method in its plane wave implementation [156] in systems
that incorporated ionic solids were, however, numerically problematic, such that this method
has not been used in this work. Overall, the methods to treat van der Waals interaction after
Tkatchenko and Scheffler represent a direct generalization of the London theory of dispersion
and are computationally flexible and cheap. While their performance in metal and ionic solids
may be enhanced, the general concept of atoms-in-solids remains questionable in the cases of
organic molecules on metal-oxide substrates.

Van der Waals Density Functionals

The major similarity between all methods for van der Waals interactions in DFT that have been
discussed so far, is that they are applied after one electronic cycle. In this way, they affect
only energies and forces but the electron density itself is affected only implicitly in relaxations.
For overcoming this limitation, one would need to explicitly incorporate long-range correla-
tion into the exchange-correlation functional applied in the KS scheme. From a fundamental
point of view, an exact expression of the correlation energy exists in form the adiabatic connec-
tion fluctuation-dissipation (ACFD) theorem [157, 158, 159, 160], which formally connects the
exchange-correlation energy to the electronic response when adiabatically switching from the
exact many-body interaction to the KS system. Correlation energy functionals developed from
this expression commonly make use of the RPA [125, 161, 162, 163, 164, 165, 166] but are limited
to atoms, simple solids or small molecules due to their scaling with system size as O(N4) or
worse [157].

As a feasible alternative, the family of van der Waals density functional (vdW-DF)s split the
correlation part of the xc functional in a short-range part, treated in the LDA, and a non-local
long-range part, such that

EvdW−DF
xc [n] = EGGA

x [n] + ELDA
c [n] + Enl

c [n]. (2.39)

For deriving the non-local correlation part, Enl
c , one starts from the ACFD theorem and, after

some approximations for the response functions and the dielectric function [167, 157], arrives at
the result that the long-range correlation energy can be expressed in the form

Enl
c [n] =

∫︂
dr dr′ n(r)Φ(r, r′)n(r′), (2.40)
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2.2. Time-dependent Density Functional Theory

with a non-local integration kernel Φ(r, r′). Depending on the functionals used for exchange
and short-range correlation, as well as on the exact form of the kernel Φ, several fashions
of vdW-DFs exist alongside the original method [167]; among those are vdW-DF2 [168],
optPBE-vdW [169], optB88-vdW [169], optB86b-vdW [170], VV10 [171], rVV10 [172] and
SCAN+rVV10 [173].

2.2 Time-dependent Density Functional Theory

Very much alike DFT being a formally exact replacement of the time-independent many-body
Schrödinger equation (SE), the time-dependent many-body SE can be recast into a time-de-
pendent fashion of DFT called TDDFT. With this method, we have access to explicitly time-
dependent phenomena, like the temporal evolution of the electrons in a molecule under the
influence of a photon field, which is exactly the physical process in photoemission. TDDFT
thus allows to directly simulate the photoemission experiment in real-time by adding a pho-
toelectron detector to the simulation environment. Moreover, TDDFT provides access to the
calculation of excited states, both in the linear response regime and with a real-time formalism.
For the latter, no restrictions on the field strength need to made, thereby allowing for non-linear
phenomena, such as laser high-harmonic generation. In a combination of different laser pulses
and a real-time photoelectron detection scheme, we can directly simulate photoemission from
excited states, such as in pump-probe experiments. These different methods therefore make
TDDFT a very promising tool to investigate different aspects of the foundations and extensions
of POT.

In this section, a brief introduction in the theoretical foundations of TDDFT is given, cen-
tering around the Runge-Gross and van Leeuwen theorems and the resulting time-dependent
KS equations. This is accompanied by an overview of methods for the calculation of excited
states, namely Casida’s equation [174] in the linear response regime and the real-time propa-
gation [175]. In the presentation of the topics, we loosely follow Reference [157], which is an
excellent resource for both a didactic and complete treatment of the subject. For work presented
in this thesis, we mainly have used the real-space real-time code OCTOPUS [176, 177], which
will be used in the scheme for the detection of photoelectrons (see Paragraph 2.3.6).

2.2.1 The Runge-Gross Theorem

For a system of N electrons under the influence of a time-dependent potential v(r, t), the poten-
tial operator

V(t) =
N

∑
i

v(r, t) (2.41)

and with it the Hamiltonian H(t) become explicitly time-dependent and we thus seek a solution
of the time-dependent many-body SE

i∂tΨ = H(t)Ψ. (2.42)

For a given initial state Ψ0 at time t0, a formal solution exists,

Ψ(t) = U(t, t0)Ψ0, (2.43)

with the time-propagation operator

U(t, t0) = T e−i
∫︁ t

t0
dt′H(t′). (2.44)
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Here, T is the time-ordering operator to ensure causality. Since a closed-form solution of the
many-electron SE of the ground state in terms of wave functions turned out to be hopeless, it is
even more so for the time-dependent case. We therefore would like to have a time-dependent
version of the Hohenberg-Kohn theorem that would allow us to express all observables in terms
of the—now potentially time-dependent—densities n(r, t). The rigorous proof that there exists
a one-to-one correspondence (up to certain modifications of the potential, see below) of the
time-dependent potentials and densities was given by Runge and Gross [178] and will be sum-
marized in the following.

Relying on the principle of reductio ad absurdum, it will be shown that two different poten-
tials, v and v′, lead to different densities at a later time, if the system has evolved from the same
initial state Ψ0. It is noteworthy that Ψ0 is not necessarily an eigenstate of v or v′ at initial time
t0 [157] and that v and v′ have to differ by more than a purely time-dependent function f (t), i.e.

v(r, t)− v′(r, t) ̸= f (t). (2.45)

The latter condition is required, since adding a time-dependent scalar function f (t) to the po-
tential leads to a simple time-dependent phase-factor of the wave function, which would then
vanish when computing the density. It is further assumed that both potentials can be expanded
in a Taylor series about the initial time t0:

v(r, t) =
∞

∑
k

1
k!

vk(r)(t − t0)
k. (2.46)

The condition 2.45 then translates to

∃k ≥ 0 : vk(r)− v′k(r) ̸= const. (2.47)

As a first step, starting from the current density operator,

J(r) =
1
2i

N

∑
j

[︁
∇jδ(r − r j) + δ(r − r j)∇j

]︁
, (2.48)

and the equation of motion of the current density,

i
∂

∂t
j(r, t) = ⟨Ψ(t)| [J(r), H(t)] |Ψ(t)⟩, (2.49)

we can compute the time evolution of the difference in current density between the unprimed
and the primed system at time t0:

∂t
{︁

j(r, t)− j′(r, t)
}︁⃓⃓
⃓
t=t0

= −i⟨Ψ0|
[︁

J(r),
{︁

H(t0)− H ′(t0)
}︁]︁

|Ψ0⟩

= −n(r, t0)∇
{︁

v(r, t0)− v′(r, t0)
}︁

. (2.50)

A detailed derivation of how to get to the second line of Equation 2.50 is shown in Appendix A.
As a consequence, if the two potentials differ at time t0, the two current densities j and j′ will
differ at some time infinitesimally later. With the requirement that the potentials may be Taylor-
expandable around t0, and k now denoting the smallest k for which Equation 2.47 holds, we
need to evaluate the equation of motion, i.e. Equation 2.49, k times to find

∂k+1

∂tk+1

{︁
j(r, t)− j′(r, t)

}︁⃓⃓
⃓
t=t0

= −n(r, t0)∇
{︁

vk(r)− v′k(r)
}︁

, (2.51)
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thereby concluding that the current densities differ at t > t0 if the potentials differ by more than
a purely time-dependent function.

In a second step, it needs to be shown that if the current densities differ, so will the densities,
both of which being related to each other by the continuity equation:

∂

∂t
n(r, t) = −∇j(r, t). (2.52)

Taking the (k + 1)-th time derivative, we get

∂k+2

∂tk+2

{︁
n(r, t)− n′(r, t)

}︁⃓⃓
⃓
t=t0

= −∇ ∂k+1

∂tk+1

{︁
j(r, t)− j′(r, t)

}︁⃓⃓
⃓
t=t0

= ∇
(︁
n(r, t0)∇

{︁
vk(r)− v′k(r)

}︁)︁
. (2.53)

It is now left to show that, under the conditions stated above, the right-hand side of Equa-
tion 2.53 cannot vanish, for which we define the shorthand notation

∇
(︁
n(r, t0)∇

{︁
vk(r)− v′k(r)

}︁)︁
=: ∇(n0∇∆vk). (2.54)

Taking the integral over all space of ∇(∆vkn0∇∆vk), we can make use of the divergence theo-
rem:

∫︂

V
dr ∇(∆vkn0∇∆vk) =

∫︂

∂V
dS ∆vkn0∇∆vk, (2.55)

where the flux integral on the right-hand side vanishes for realistic potentials [179]. Applying
the product rule on the left-hand side leads to

∫︂

V
dr ∆vk∇(n0∇∆vk) +

∫︂

V
dr n0(∇∆vk)

2 = 0

⇒
∫︂

V
dr ∆vk∇(n0∇∆vk) = −

∫︂

V
dr n0(∇∆vk)

2. (2.56)

It is now straightforward to see that the integrand on the right-hand side of Equation 2.56 is non-
zero, since ∆vk is non-zero by construction and therefore the right-hand side of Equation 2.53
cannot vanish, which completes the proof of the Runge-Gross theorem.

In summary, it has been shown that two densities, n(r, t) and n′(r, t), both evolving from the
same initial many-body state Ψ(t0) will start to differ at infinitesimal time later than t0, if their
potentials v(r, t) and v′(r, t) differ by more than a merely time-dependent function and are both
Taylor-expandable around t0. This establishes the fundamental existence theorem of TDDFT:
for a given initial state, there exists an invertible mapping of the time-dependent density on the
time-dependent potentials. All observables are therefore unique functionals of the density and
the many-body initial state. The additional dependency on the initial state is not a consequence
of the construction of TDDFT but rather an unavoidable facet of any initial-value problem, such
as the time-dependent SE. For practical calculations, we would like to establish a representation
in analogy to the KS scheme, which is yet to be shown and will be part of the subsequent
paragraph.

2.2.2 The van Leeuwen Theorem

Aiming at a time-dependent fashion of the KS scheme, we want to map the problem on a differ-
ent two-particle interaction, i.e. non-interacting particles. Therefore, consider the Hamiltonian

H ′(t) = T + U ′ + V ′(t), (2.57)
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which differs in the interaction potential u′(r − r′) and the external potential v′(r) from the ref-
erence Hamiltonian H(t). Imposing the same conditions on the external potentials as before,
namely being Taylor-expandable around time t0, we assume furthermore that the primed sys-
tem starts from a different initial state Ψ′(t0) than the reference system. The task is now to show
that, under these conditions, the primed system can lead to the same density as the reference
system. As a first step, consider an equation of motion for the current density, i.e.

∂t j(r, t) = −i⟨Ψ(t)| [J(r), H(t)] |Ψ(t)⟩, (2.58)

which leads to

∂

∂t
j(r, t) = −n(r, t)∇v(r, t)− F(r, t), (2.59)

with additional force densities arising from internal kinetic- and interaction effects in the many
electron system [180, 157], that we subsume under F(r, t) for the following. Taking the diver-
gence,

∂

∂t
∇j(r, t) = −∇ (n(r, t)∇v(r, t))−∇F(r, t), (2.60)

and using the continuity equation, Equation 2.52, produces

∂2

∂t2 n(r, t) = ∇ (n(r, t)∇v(r, t))−∇F(r, t). (2.61)

Writing the same equation for the primed system and subtracting it from the unprimed, we get

∇
(︁
n(r, t)∇

{︁
v(r, t)− v′(r, t)

}︁)︁
= ∇

{︁
F(r, t)− F ′(r, t)

}︁
, (2.62)

where it has been assumed that both densities are identical at all times. Equation 2.62 is a second
order differential equation in time (reminiscent from Equation 2.61) and as initial conditions we
require that for both initial states, Ψ(t0) and Ψ′(t0), the densities n(r, t0) and n′(r, t0) are equal.
Additionally, we demand that

∂tn(r, t)
⃓⃓
⃓
t=t0

= ∂tn′(r, t)
⃓⃓
⃓
t=t0

. (2.63)

Note that from this requirement, it also follows that the linear momentum of both systems must
be equal at initial time t0, since

P(t) =
∫︂

dr j(r, t) =
∫︂

dr r
∂

∂t
n(r, t), (2.64)

where the continuity equation has been used in the last step and it has been assumed that the
currents vanish at infinity. It turns out, however, that it is possible to construct initial states for
which the densities, and their time-derivatives, are equal at t0, while the currents do not van-
ish at infinity [180]. Such cases can be excluded with the condition P(t0) < ∞. As boundary
condition, one can demand that v(r, t) = v′(r, t) for r → ∞, which also fixes c(t) in v′(r, t).
Then Equation 2.62 is a Sturm-Liouville differential equation [180, 157]. Using the abbrevia-
tions ∆v(r, t) := v(r, t)− v′(r, t) and ∆F(r, t) := F(r, t)− F ′(r, t), we can write our differential
equation at time t0 as

∇ (n(r, t0)∇∆v(r, t0)) = ∇∆F(r, t0). (2.65)
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A solution for ∆v(r, t0) exists, since ∆F(r, t0) can be constructed from the given initial states
Ψ(t0) and Ψ′(t0) and we thus obtain v′(r, t0). Remember that v′(r, t0) is, by construction, Taylor-
expandable around t0, i.e.

v′(r, t) =
∞

∑
k

1
k!

v′k(r)(t − t0)
k, (2.66)

with

v′k(r) =
∂k

∂tk v′(r, t)
⃓⃓
⃓
t=t0
. (2.67)

By obtaining v′(r, t0), we have therefore determined the term v′0(r) in the Taylor expansion of
v′(r, t). Taking the first time-derivative of Equation 2.65 at time t0 leads to

∇
(︃

∂

∂t
n(r, t0)

⃓⃓
⃓
t=t0

∇∆v(r, t0) + n(r, t0)∇
∂

∂t
∆v(r, t0)

)︃⃓⃓
⃓
t=t0

= (2.68)

= ∇
(︃

∂

∂t
n(r, t0)

⃓⃓
⃓
t=t0

∇(v0(r)− v′0(r)) + n(r, t0)∇(v1(r)− v′1(r)
)︃⃓⃓
⃓
t=t0

=
∂

∂t
∇∆F(r, t0)

⃓⃓
⃓
t=t0

,

from which we infer v′1(r). For higher orders in k, we always get v′k(r) from v′k−1(r) and thus
recursively get v′(r, t) by explicit construction. This completes the proof of the van Leeuwen
theorem, that can be summarized in the following statement. For a given electron interac-
tion u(r, r′), external potential v(r, t) and initial state Ψ(t0), there exists a different system with
an interaction u′(r, r′) and an external potential v′(r, t), which is unique up to a purely time-
dependent function c(t), that reproduces the same time-dependent density.

Just as in the case of ground state DFT, we are especially interested in the case u′(r, r′) = 0,
because we want to map the system of interacting electrons onto an auxiliary system of non-
interacting electrons and thus obtain a time-dependent version of the KS scheme. With the
theoretical foundations provided by the van Leeuwen theorem, this is indeed possible. The
academic questions if any system can be represented by a potential that is Taylor-expandable
around t0 and if this condition can be relaxed, are still open [181, 182, 183, 184, 185]. For prac-
tical calculations in the systems of our interest, however, everything is well-defined and in the
following we will turn to the description of the time-dependent KS scheme and further approx-
imations.

2.2.3 The Time-dependent Kohn-Sham Scheme

For a numerical propagation of a many-electron system in an non-interacting KS Hamiltonian,
that is now explictily time-dependent, we suppose that from a preceding DFT calculation for
the ground state, a solution to the Schrödinger equation

HKS φ0
i (r) = Ei φ

0
i (r) (2.69)

exists. From the wave functions, we know the density of the ground state:

n0
KS(r) =

N

∑
j

⃓⃓
⃓φ0

j (r)
⃓⃓
⃓
2

. (2.70)
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At a later time t > t0, we add a time-dependent potential and therefore get the time-dependent
Kohn-Sham (TDKS) potential as

vKS[n, Ψ0, Φ0](r, t) = v(r, t) +
∫︂

dr′
n(r′, t)
|r − r′| + vxc[n, Ψ0, Φ0](r, t). (2.71)

There are several things to remark for the TDKS potential. First of all, the entities are now
functionals of the time-dependent density n(r, t), with the exception of the external potential
v(r, t) of course. Just as in ground state DFT, the above equation should be seen as the defi-
nition of the time-dependent exchange-correlation potential vxc, since vKS must reproduce the
same time-dependent density as the full system. As mentioned in the paragraphs dealing with
the Runge-Gross- and the van Leeuwen-theorem, vxc carries an additional dependence on the
many-body initial state Ψ0, and on the KS ground state Φ0. While Ψ0 is of course not accessible,
we assume that the system is initially in its ground state and Φ0 to be a single Slater determi-
nant, constructed of the φj(r). Note that while we do know the density at time t0, this is not
enough since also the phase information of the wave function needs to be fixed at initial time.

Before we describe the local density approximation for vxc in the next paragraph, an addi-
tional property of the TDKS scheme needs to be discussed. For obtaining the minimal energy
of the ground state, we needed a self-consistency cycle, as described in the foundations of DFT,
see Paragraph 2.1.1. For the TDKS scheme, an exact analogy would mean that we could adhere
to the following procedure.

(i) Take the density and wave functions at t0 from the ground state calculation.

(ii) Make an initial guess for the density n(0)(r, t) at all times t > t0.

(iii) Compute vKS[n(0)](r, t).

(iv) Construct the KS Hamiltonian HKS[n(0)].

(v) Solve the TDKS equation for the orbitals φ
(1)
j (r, t).

(vi) Obtain new density n(1)(r, t) from φ
(1)
j (r, t).

(vii) Compare new density n(1)(r, t) with old density n(0)(r, t).

If the convergence criterion is not fulfilled in step (vii), then repeat the procedure of steps
(iii)-(vi) until the desired convergence is reached. Clearly, already the second step of guess-
ing a global time-dependent density seems hopeless for the general case and in practice, we
go a different way by propagating the TDKS equation using a numerical propagator for time-
dependent Schödinger equations, such as the Crank-Nicolson algorithm [186] or one of the
many other available [187]. All of these methods discretize the time variable and approximate
the quantum mechanical time-evolution operator. Then, the global self-consistency requirement
can be limited to one that is only local in time by, for instance, a predictor-corrector scheme.

2.2.4 The Adiabatic Local Density Approximation

In contrast to ground state DFT, the approximations for exchange-correlation effects in TDDFT
introduce very little new physics, despite exhibiting an additional degree of freedom, i.e. the
time variable. Excluding a few exceptions [188, 189, 190], in almost all cases the adiabatic ap-
proximation to the respective ground state DFT functionals is used. If n0(r) is the ground state
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density and v0
xc[n0](r) the ground state xc functional, then the adiabatic approximation is de-

fined as

va
xc(r, t) = v0

xc[n0](r)
⃓⃓
⃓
n0→n(r,t)
. (2.72)

This means essentially that the adiabatic exchange-correlation potential is a functional of the
density at the actual time and thus carries no memory of the past of the system. For most
systems, this works surprisingly well. Counterexamples are e.g. double excitations [191, 192]
or resonantly-driven systems [193, 194]. In this work, the adiabatic local density approximation
(ALDA) is used exclusively for time-dependent calculations. As in the static case, we use the
energy density of the homogeneous electron gas e(HEG)

xc (see Paragraph 2.1.2):

v(ALDA)
xc (r, t) =

de(HEG)
xc (n)

dn

⃓⃓
⃓⃓
⃓
n=n(r,t)

. (2.73)

As a consequence, the ALDA will of course inherit all the shortcomings of the static LDA, in
addition to the problems introduced by the adiabatic approximation discussed above. Nonethe-
less, excitation energies of molecular systems computed with the ALDA and real-time TDDFT
are remarkably good, which will be shown in detail in Paragraph 2.2.6.

2.2.5 Light-matter Interaction and Dipole Moments

Before we discuss how excited states or spectroscopic observables can be computed within
TDDFT, we need to set the stage and introduce miscellaneous entities that occur in quantum
mechanical light-matter interaction. First of all, let us take a step back from the TDKS Hamil-
tonian and write the non-relativistic, electronic N-body Hamiltonian with an electromagnetic
vector field A(r, t) coupled to the system. In the Coulomb gauge, we write

H(t) =
N

∑
j=1

[︄
1
2

(︃
pj +

1
c

A(r j, t)
)︃2

+
µB
c

σ∇j × A(r j, t) + vext(r j) +
N

∑
k>j

1
|r j − rk|

]︄
, (2.74)

where µB is the Bohr magneton and σ denotes the vector of Pauli matrices. This implies that
the photon field can be treated as a classical field, which is justified for photon numbers larger
than one per cubic wavelength (typically > 4 orders of magnitude larger for the fields treated
in this work, see e.g. Reference [157]).

As a next step, we make use of the dipole approximation. If the photon field varies only
slowly on the characteristic length scale of the electrons, we can treat the electromagnetic field
as uniform in space, i.e. A(r, t) → A(t). Then the curl of A vanishes and we are left with

H(t) =
N

∑
j=1

[︄
1
2

(︃
pj +

1
c

A(t)
)︃2

+ vext(r j) +
N

∑
k>j

1
|r j − rk|

]︄
. (2.75)

Moreover, one often makes the additional approximation to ignore terms proportional to O(A2),
which is justified when the momenta induced by the photon field are small in reference to the
electrons’ kinetic momenta. In this case, Equation 2.75 reduces to

H(t) =
N

∑
j=1

[︄
1
2

p2
j +

1
c

pj A(t) + vext(r j) +
N

∑
k>j

1
|r j − rk|

]︄
. (2.76)
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Inherited from the gauge freedom in electrodynamics, we can similarly represent the electron-
photon coupling in the Hamiltonian within different gauges. In the length gauge, the pj A(t)-
term is replaced by r jE(t), with the electromagnetic field

E(t) = −1
c

∂A(t)
∂t

. (2.77)

Note that the length gauge is only defined in the dipole approximation.
Gauge freedom also applies if we want to consider optical matrix elements of the static

Hamiltonian H0, for which we assume a system of eigenstates {|n⟩}, i.e.

H0|n⟩ = εn|n⟩. (2.78)

Dipole matrix elements in the length form are then defined as

dnm =
N

∑
j=1

⟨n|r j|m⟩, (2.79)

and are a measure of the probability for transitions of the system between different eigenstates
|n⟩ → |m⟩. Using the commutation relation

[︁
r j, H0

]︁
= ipj, (2.80)

we can write

dnm =
N

∑
j=1

i
εm − εn

⟨n|pj|m⟩, (2.81)

which is usually referred to as the velocity form of the dipole matrix element. In addition, there
exists also the acceleration form, which reads

dnm =
N

∑
j=1

1
(εm − εn)2 ⟨n|∇jvext(r j)|m⟩. (2.82)

If the exact eigenstates of the N-electron system were known, all the formulations of the dipole
matrix elements would be equal; in practice, however, differences can arise due to the approx-
imations introduced in DFT or due to numerical parameter, such as basis set truncation. If
non-local pseudopotentials are used to approximate the core electrons, additional care has to
be taken since the non-local part of vext does not commute with the momentum- or position
operator and extra terms arise [195, 196].

For a time-dependent Hamiltonian H(t), we can define the time-dependent dipole moment
with the time-dependent density n(r, t) as

d(t) =
N

∑
j=1

∫︂
dr r j n(r, t). (2.83)

Its time-derivatives can be obtained by the Ehrenfest theorem for an observable O:

d
dt

⟨O⟩ = −i ⟨[O, H(t)]⟩+
⟨︃

∂

∂t
O
⟩︃

, (2.84)
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as

d
dt

d(t) =
N

∑
j=1

∫︂
dr Ψ∗(t)pjΨ(t), (2.85)

and

d2

dt2 d(t) = −
N

∑
j=1

∫︂
dr n(r, t)∇jvext(r j, t). (2.86)

Having gained access to the dipole moments, we will show in the following how this quan-
tity can be related to observables in spectroscopy. As stated above, the dipole moments can on
the one hand be formulated in terms of matrix elements with eigenstates of the time-independent
problem. This treatment will be subject to the paragraph about linear-response TDDFT (Para-
graph 2.2.7). On the other hand, we can use the time-dependent density in order to obtain
time-dependent dipole moments. The questions of how this entity can be recorded from real-
time propagation of the TDKS equations and how the time-dependent dipole moment is related
to optical spectroscopy, are discussed in the following paragraph.

2.2.6 Optical Excitations from Real-time TDDFT

Optical spectroscopy probes the excitations of quantum systems with light in the energy range
from hundreds of meV to few eV, an energy window somewhat correlated to the human vis-
ible range. In this energy window, transitions involving the frontier orbitals of molecules, or,
respectively, the highest occupied and lowest unoccupied bands in solids, play the most im-
portant role. In addition, the low-energy part of the optical spectrum and the infrared part
can be sensitive to vibrations, which are not part of this work since we ignore the influence of
nuclear degrees of freedom and their imprint on the electronic structure, as expressed by the
Franck-Condon principle [197, 198], for instance.

In general, we could couple a monochromatic electromagnetic field to our system, prop-
agate it in time and watch how much the electrons respond to this perturbation. If we hit an
eigenmode of the system, this response will be drastically enhanced and we could then vary the
frequency of the field to find all the eigenmodes versus the photon energy. Although possible,
there is a more efficient way. By taking a Dirac delta pulse, we achieve a perturbation that acts
instantly on the system. Written as an electric field polarized in the Cartesian ν-direction, we
have

Eν(t) = E0
νδ(t). (2.87)

This field has the important property that it can excite all eigenmodes of the system, which can
be seen by taking the Fourier transform,

Eν(ω) = E0
ν, (2.88)

and thereby going from the time- to the frequency domain. Adding a few more items to the list,
we define pµ = −dµ, and with it the polarizability tensor as

pµ(t) = ∑
ν

αµν(t)Eν(t). (2.89)
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In this way, its off-diagonal elements can also give a measure of how a system can respond in a
different direction than it was initially perturbed. In the frequency domain, we have

αµν(ω) =
1

E0
ν

∫︂
dt eiωt pµ(t), (2.90)

and the imaginary part of the polarizability can be directly connected to the photoabsorption
cross section,

σµν(ω) =
4πω

c
ℑ(αµν), (2.91)

and can therefore be compared to experimental data.
The possibility to extract the time-dependent dipole moment from a real-time TDDFT calcu-

lation and compute optical properties with it, was first described by Yabana and Bertsch [175]
for gas-phase molecules and later extended to clusters [199, 200] and the dielectric function
in periodic systems [201]. The approach can be summarized as follows. For one polarization
direction ν of the field, apply a delta kick at initial time t0. Note that for this step, it is also
possible to either switch on or off a constant electric field at t0, such that Eν = E0

νΘ(t ± t0), with
Θ denoting the Heaviside step-function. Then the system is propagated for time T, while all
three µ-components of the time-dependent dipole moment are recorded. If this procedure is
repeated for the other two Cartesian directions of the field polarization ν, we obtain αµν from
Equation 2.90 and, subsequently, σµν from Equation 2.91. As a technical remark, when evalu-
ating the Fourier transform over the finite time interval T, one needs to introduce a window
function or an additional damping parameter in order to eliminate numerical instabilities [202].

While the optical absorption spectrum can also be computed in the linear-response formula-
tion, which is detailed in the next paragraph, the real-time propagation method has the advan-
tage that it is not restricted to the linear response of the system to some external perturbation
and therefore arbitrarily high field strengths can be applied. This allows for the description of
non-linear phenomena, such as high-harmonic generation [203] or field-induced effects [204].

2.2.7 Optical Excitations from Linear Response TDDFT

In this paragraph the linear response formalism of TDDFT is reviewed with the computation
of optical excitations in mind. Although in the case of Casida’s equation [174], which we will
restrict ourselves to here, no observables are actually calculated from time-propagation, the ap-
paratus of TDDFT is required for the formal derivation of the method. In fact, the majority of
applications of TDDFT fall in the linear response regime and therefore a large body of introduc-
tory and review literature exist [205, 206, 207, 208, 209, 210] beyond the original formulation of
local density linear response TDDFT [211, 212].

Consider a system of electrons in the ionic potential v0 in its ground state at initial time
t0. We now assume that a perturbation in the form of a scalar potential v1(r, t) will modify
the external potential vext(r, t0) = v0 and the ground state density n(r, t0) = n0(r) at some
later time t > t0. We can then write the external potential as vext(r, t) = v0 + v1(r, t) and the
time-dependent density as

n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . , (2.92)

where the ni result from a Taylor expansion with respect to the perturbation, labeled by the
order in v1. A converging perturbation expansion requires the interaction to be sufficiently
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small and in the linear order we can write can write the density response as

n1(r, t) =
∫︂

dt′
∫︂

dr′χ(r, t, r′, t′)v1(r′, t′). (2.93)

For defining the response function χ, different routes can be followed. With the many-body
ground state Ψ0 given, the density-density response is defined as

χ(r, t, r′, t′) = −iΘ(t − t′)⟨Ψ0|
[︁
n(r, t), n(r′, t′)

]︁
|Ψ0⟩, (2.94)

where n is the density operator in the interaction picture and where the step function ensures
causality. In frequency space, this expression can be written in the Källén-Lehmann representa-
tion [213, 214, 157]:

χ(r, r′, ω) = lim
η→0+

∞

∑
n=1

{︄
⟨Ψ0|n(r)|Ψn⟩⟨Ψn|n(r′)|Ψ0⟩

ω − Ωn + iη
− ⟨Ψ0|n(r′)|Ψn⟩⟨Ψn|n(r)|Ψ0⟩

ω + Ωn + iη

}︄
. (2.95)

Here, the sum runs over all excited states Ψn of the many-body system and it is obvious that
χ(r, r′, ω) will have poles at the true excitation energies Ωn. Alternatively, and more in a density
functional spirit, we can define the density-density response function as a change of the density
induced by the external potential and write (in the time domain)

χ(r, t, r′, t′) =
δn[vext](r, t)
δvext(r′, t′)

⃓⃓
⃓⃓
⃓
vext[n0]

. (2.96)

This definition requires that the functional n[vext] can be inverted, i.e. vext(r, t) = vext[n](r, t),
which is guaranteed by the Runge-Gross theorem. In addition, χ can then be viewed as a func-
tional of the ground-state density, a manifestation of the fact that the linear response of a system
is encoded in its ground state properties.

Supported by the van Leeuwen theorem, we can also invoke the non-interacting TDKS sys-
tem and define an analogous response function:

χKS(r, t, r′, t′) =
δn[vKS](r, t)
δvKS(r′, t′)

⃓⃓
⃓⃓
⃓
vKS[n0]

. (2.97)

We can now make the connection between the external potential and the TDKS system, which
is given, in analogy to Equation 2.14, as

vKS(r, t) = vext(r, t) +
∫︂

dr′
n(r′, t)
|r − r′| + vxc(r, t). (2.98)

With the chain rule for functional derivatives, we can relate the response function, defined as in
Equation 2.96, with the TDKS system:

χ(r, t, r′, t′) =
∫︂

dr′′
∫︂

dt′′
δn[vext](r, t)
δvKS(r′′, t′′)

δvKS(r′′, t′′)
δvext(r′, t′)

⃓⃓
⃓⃓
⃓
vext[n0]

. (2.99)

Then, we calculate the functional derivative of vKS with respect to vext as

δvKS(r′′, t′′)
δvext(r′, t′)

⃓⃓
⃓⃓
⃓
vext[n0]

=δ(r′′ − r′)δ(t′′ − t′)
∫︂

dr′′′
∫︂

dt′′′
(︄

δ(t′′ − t′′′)
|r′′ − r′′′| +

+
δvxc(r′′, t′′)
δn(r′′′, t′′′)

)︄
δn(r′′′, t′′′)
δvext(r′, t′)

. (2.100)
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Inserting Equation 2.100 into Equation 2.99 leads to

χ(r, t, r′, t′) =χKS(r, t, r′, t′) +
∫︂

dr′′
∫︂

dt′′
∫︂

dr′′′
∫︂

dt′′′ χKS(r, t, r′′, t′′)·

·
(︄

δ(t′′ − t′′′)
|r′′ − r′′′| +

δvxc(r′′, t′′)
δn(r′′′, t′′′)

⃓⃓
⃓⃓
⃓
n0

)︄
χ(r′′′, t′′′, r′, t′). (2.101)

It is common to define the time-dependent exchange-correlation kernel as

fxc[n0](r′′, t′′, r′′′, t′′′) :=
δvxc[n0](r′′, t′′)

δn(r′′′, t′′′)

⃓⃓
⃓⃓
⃓
n0

, (2.102)

and rewrite

χ(r, t, r′, t′) =χKS(r, t, r′, t′) +
∫︂

dr′′
∫︂

dt′′
∫︂

dr′′′
∫︂

dt′′′ χKS(r, t, r′′, t′′)·

·
(︄

δ(t′′ − t′′′)
|r′′ − r′′′| + fxc[n0](r′′, t′′, r′′′, t′′′)

)︄
χ(r′′′, t′′′, r′, t′). (2.103)

This expression is a Dyson-type equation and has to to be solved self-consistently. If we further
multiply it by the perturbing potential, i.e. v1(r′, t′), and integrate over r′ and t′, we get the
linear density response as

n1(r, t) =
∫︂

dr
∫︂

dt′ χKS(r, t, r′, t′)vKS,1(r′, t′), (2.104)

with the effective (TDKS) perturbing potential

vKS,1(r′, t′) := v1(r′, t′) +
∫︂

dr′′
n1(r′′, t)
|r′ − r′′| +

∫︂
dr′′

∫︂
dt′′ fxc[n0](r′, t′, r′′, t′)n1(r′′, t′′). (2.105)

Combining Equations 2.104 and 2.105, we have a formalism that is an exact representation of the
linear response of a many-body system in terms of the auxiliary time-dependent Kohn-Sham
system and the ground state density. The computation, however, has to be carried out in a
self-consistent manner and fxc[n0] has to be approximated in a suitable way. Changing from
the time domain to the frequency domain once more, we can also write the combination of
Equations 2.104 and 2.105 as

n1(r, ω) =
∫︂

dr′ χKS(r, r′, ω)v1(r′, ω)+

+
∫︂

dr′
∫︂

dr′′ χKS(r, r′, ω)

(︄
1

|r′ − r′′| + fxc[n0](r, r′, ω)

)︄
n1(r′′, ω). (2.106)

The response function of the KS system can be expressed in terms of pairs of occupied (valence)
orbitals ϕv and unoccupied (conduction) orbitals ϕv from the ground state calculation,

χKS(r, r′, ω) = ∑
v,c

φv(r)φ∗
c (r)φ∗

v(r′)φc(r′)
ω − (εv − εc) + iη

, (2.107)

such that all necessary ingredients are on the table and optical spectra of molecules or clusters
can be calculated.
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In practice, the linear response of the density, as written in Equation 2.106, can be recast in
to an anti-hermitian eigenvalue problem, which is known as the Casida equation [174]. The
derivations that lead to this equation are beyond the scope of this thesis and we only present
its final form and refer to the literature [174, 206, 207, 208, 209, 210]. For a set of real-valued
occupied and unoccupied orbitals φv and φc, and neglecting the spin component, one can define

Bvc,v′c′(ω) = δvv′δcc′(εv − εc) + Kvc,v′c′(ω),

Kvc,v′c′(ω) =
∫︂

dr
∫︂

dr′ φ∗
v(r)φc(r) fxc(r′, r′′, ω)φv′(r

′)φ∗
c′(r

′), (2.108)

and obtain the resonance energies Ω and solutions X, Y from

(︃
B K
K B

)︃(︃
X
Y

)︃
= Ω

(︃
−1 0

0 1

)︃(︃
X
Y

)︃
. (2.109)

Finally, we want to address some aspects that are of relevance for the calculation of excita-
tion energies via the Casida formalism. First, the choice of the exchange-correlation functional
in the underlying DFT calculation for obtaining the set of occupied orbitals {φv} and unoc-
cupied orbitals {φc} will influence the associated energies εv and εc and therefore the peak
positions in the optical spectrum. It is known that the incorporation of a portion of exact ex-
change, as in hybrid functionals described in Paragraph 2.1.2, leads to a better agreement with
experimental values [121, 123] and excitation energies from many-body Green’s function ap-
proaches [215]. Second, the sum over unoccupied orbitals needs to be truncated, and it turns
out that the method is rather sensitive to this cutoff. In convergence tests related to this work,
we found that often times it can be necessary to incorporate a number of unoccupied orbitals
that exceeds the number of occupied orbitals by a factor of five or more to converge the en-
ergy positions of first few optical excitations within 0.1 eV. Third, we restrict ourselves to the
adiabatic approximation of the exchange-correlation kernel which also neglects the frequency-
dependency. This excludes the applicability to systems with strong excitonic effects [216] or
double excitations [217].

In comparison with the time-propagation method described in the preceding paragraph,
some differences are noteworthy. While both methods give very similar results for the (adi-
abatic) LDA, the time-progation method is often restricted to the ALDA as hybrid function-
als are very expensive. Therefore, the agreement with experimental data is usually superior
for molecules in the gas-phase or in solution when optical spectra are computed with the lin-
ear response Casida method, if hybrid functionals are used for the ground state calculation.
Moreover, excitations can be tracked down to the specific orbitals involved and give there-
fore generally more insight into the character of the excitation, for instance via natural tran-
sition orbitals [218], although a transition analysis is also possible for the time-propagation
method [219, 220]. The biggest general advantage of the time-propagation method is the scal-
ing with the number of electrons N: different implementations of the Casida equation scale
from O(N2) to O(N3) while real-time TDDFT achieves a scaling between linear to O(N2) and
can therefore be much more efficient for large systems [157]. Moreover, the dependency on a
large number of unoccupied orbitals in linear response TDDFT is also absent. It is the flexibility
of the time-propagation method that makes it possible to be combined with the numerical simu-
lation of the photoemission process, which will be described at the end of the following section
and which will then enable us to directly simulate pump-probe photoemission experiments.
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2.3 Simulation of Photoelectron Spectroscopy

In this section, we will briefly describe the photoemission experiment, which is the central mea-
surement we compare our theoretical results to. Subsequently, different methods for making the
connection between this experiment and electronic structure calculations are reviewed. Concep-
tually, in going from the plane wave approximation (PWA), to the scattered wave approxima-
tion (SWA), we incorporate important final state effects into the simulation of photoemission
experiments. Altering the applicability of photoemission orbital tomography (POT), we show
how the PWA can be extended to the description of bound electron-hole pairs, the excitons.
Finally, we review how photoemission from both the ground state, as well an excited state, can
be simulated within real-time time-dependent DFT (TDDFT).

2.3.1 The Photoemission Experiment

The observation that light of a certain wavelength can release electrons from a sample, i.e. the
photoelectric effect, was first made by Hertz [221] and later explained by Einstein [222]. This
explanation was one of the key corroborations of Planck’s postulation of an elementary quan-
tum of energy [223] and the reason for Einstein’s Nobel prize of the year 1921. For the first time,
light would be regarded as photons carrying the energy h̄ω (h̄ = 1 in our system of units). When
a sufficiently large photon energy is transferred to the electrons in a sample, they can leave the
system and carry the maximum kinetic energy

Ekin = ω − Eb − Φ. (2.110)

This energy conservation respects that a particular portion of the photon energy is neccesary to
break the binding of the electron to the rest of the system, i.e. the binding energy Eb, and that
while escaping the sample, the electron experiences electromagnetic attraction by the sample
that has to be overcome until it reaches the energy level of the vacuum. This energy is usually
called the work function Φ of the sample and the remainder is the kinetic energy of the photo-
electron, Ekin.

The first observation of the photoelectric effect by Hertz, as well as refined experiments
by Millikan [224]—who called energy quantization "a reckless hypothesis" despite confirming
it—were done with metal samples. Due to the high density of states at the Fermi level, the
binding energy played a minor role for the observation of the maximum kinetic energy. Decades
later, and most notably due to the work of Siegbahn (Nobel prize 1981) for energies in the x-
ray regime and Vilesov [225] and Turner [226] for UV energies, the observable of interest had
changed: when recording the kinetic energy, one could actually deduce the binding energy from
Equation 2.110 and thereby establish a spectroscopic technique. If not only energy conservation
but also momentum conservation is considered, this method can even be pushed further. While
the magnitude of the photoelectron momentum is given by the kinetic energy,

|k| =
√︁

2Ekin, (2.111)

different conservation laws for the individual components of k apply. It is commonly assumed
that the component parallel to the surface is conserved, while the momentum perpendicular to
the surface may be affected by the process itself. In order to further elucidate the momentum
conservation, in Figure 2.1 the geometry of the quantities of interest in the process is depicted.
The incoming photon impinges on the sample under the incidence angle ϑγ with respect to the
surface normal (the Cartesian z-direction). In the dipole approximation, as detailed in Para-
graph 2.2.5, the electromagnetic field is fully characterized by the photon energy ω and the
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Figure 2.1: Sketch of the photoemission process. An incoming photon is depicted by its inci-
dent direction (green), the angle ϑγ with respect to the surface normal (z) and the correspond-
ing polarization vector of the electromagnetic field vector A (red). The outgoing photoelectron
(blue) leaves the sample under the polar- and azimuthal angles θ and ϕ, respectively.

polarization vector A, which we consider as spatially constant over the atomistic dimensions
in the following. After the process, the photoelectron leaves the sample under the angles θ
and ϕ. These angles can be measured with different techniques and instruments, where we
focus on two generally different setups with different consequences for the simulation of the
experiment. Either, the sample is rotated around its azimuthal angle ϕ and photoelectrons are
recorded through a narrow slit that ranges from about θ = 0◦ to θ = 90◦. This setup is re-
ferred to as the toroid geometry, in reference to the toroidal electron analyzer developed at the
La Trobe University [227]. If, on the other hand, the sample orientation is at rest and the full
upper hemisphere can be recorded, we will refer to this setup as an hemispherical analyzer or
NanoESCA geometry, in reference to a commercially available electron microscope [228]. The
reason to discriminate between the two general setups is that in the toroid geometry, the plane
of incidence coincidences with the plane of emission, while this is not the case when the full
hemisphere is recorded at once.

From a condensed matter point of view, perfect surfaces of crystals, and in general also ori-
ented layers of molecules on such surfaces, show momentum conservation. This statement has
to be restricted to the conservation of momentum up to integer multiples of the crystal lattice,
as induced by the Bloch theorem, and to the periodic directions of the sample since the sur-
face obviously breaks the periodicity and therefore the momentum conservation. In an ARPES
experiment, it is therefore assumed that the initial momentum parallel to the surface, k∥, is
conserved in the process, while the momentum perpendicular, k⊥, is not conserved due to the
potential step at the surface [229]. This situation is occasionally compared to the diffraction
at the boundary of different media in optics [230] and can be mimicked in a phenomenolog-
ical way by the addition of an inner potential [231, 232]. From measuring the kinetic energy
and the angles θ and ϕ as denoted in Figure 2.1, the parallel components of the photoelectron
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momentum can be obtained from the relations

kx = |k| sin(θ) cos(ϕ),
ky = |k| sin(θ) sin(ϕ). (2.112)

Then, the measured photoelectron intensity I becomes a function of the kinetic energy Ekin, k∥
and, in principle, the photon energy ω:

I = I(k∥, Ekin, ω). (2.113)

For a fixed photon energy, the three dimensional data set I(kx, ky, Ekin) can be either analyzed
for a fixed kinetic energy, i.e. I(kx, ky), which is referred to as a momentum map, or along a one-
dimensional path in k∥ and the kinetic energy, which is called a band map. If the work function Φ
is known, the band map can be plotted versus the binding energy instead of the kinetic energy
and is then a visualization of the spectral function of the system. The reasons for this direct
connection will be further elaborated in the next paragraph, which is an introduction to the
theoretical description of the photoemission process.

2.3.2 Theory of Photoemission – Preliminaries

Even more than the theoretical description of the collective quantum nature of electrons in their
ground state, their interaction with light, as in the photoelectric effect, is a very complicated
task. Consequently, different levels of sophistication, from simple optical arguments down to
the microscopic description of quantum electrodynamics, exist. It is therefore expedient to start
the following introduction to the theoretical description of photoemission with its placement
within the literature and describe a number of restrictions.

Historically, photoemission from surfaces has partly been described in the three-step model,
where the process is divided into three independent steps: an electron in the crystal is excited
by light, transported to the surface and then escapes to the vacuum level and the detector [233].
In this work, however, we will only consider models that treat photoemission as a coherent
one-step process, with the only exception being the real-time TDDFT simulations described in
Paragraph 2.3.6, where no final state has is assumed. This restriction also excludes many-body
Green’s functions techniques [229, 234, 235, 83, 236, 237, 238, 239], where retardation effects in
the process and correlation effects between photoelectrons and the rest of the sample can be
considered. Neglecting the latter effect is usually referred to as the sudden approximation [44].
Without explicitly defining the nature of the initial many-body N electron state |ΨN

i ⟩, as well as
the final N − 1-electron state |ΨN−1

f ⟩, we can write the process in this approximation as

|ΨN
i ⟩ −→ |ΨN

f ⟩ = A|k⟩|ΨN−1
f ⟩, (2.114)

where |k⟩ denotes the wave function of the photoelectron and A anti-symmetrizes the product
wave function.

Adopting the approximations for light-matter interaction made in Paragraph 2.2.5, we as-
sume that the photon field varies only slowly on the length scale of our systems of interest.
Then we can ignore the spatial variation of the photon field, i.e.

A(r, t) = A0e−iωteipγr = A0e−iωt
(︂

1 + ipγr + . . .
)︂
≈ A0e−iωt = A(t). (2.115)

Here we have denoted the photon momentum with pγ and used the Taylor expansion of the
exponential function. While this is certainly a good approximation with the photon energies
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utilized in ultra-violet photoemission experiments (ω ≤ 100 eV), the spatial variation of the
photon field can become relevant for photon energies in the keV-regime, as used e.g. in core-
level photoemission spectroscopy, and additional terms in Taylor expansion of Equation 2.115
may become important [240, 241]. Assume now that the N-electron Hamiltonian H0 describes
the time-independent system and has the solutions |ΨN

i ⟩:

H0|ΨN
i ⟩ = Ei|ΨN

i ⟩. (2.116)

Adding light-matter interaction to H0 leads to the full Hamiltonian H for the electron-photon
system:

H = H0 + Hint. (2.117)

In the velocity gauge (see Paragraph 2.2.5), this is achieved by replacing the kinematic momen-
tum by the canonical momentum, i.e.

p → p − 1
c

A. (2.118)

Then the interaction Hamiltonian reads

Hint = −1
c

pA +
1

2c2 A2. (2.119)

For small enough field strengths, we ignore the term of O(A2) and view the electromagnetic
field as a small perturbation of the system. This allows us to use the Fermi golden rule from
time-dependent perturbation theory [242], where the probability that the system—under the
additional influence of Hint—undergoes a transition from its initial state |ΨN

i ⟩ to a final state
|ΨN

f ⟩ is given by

Γi→ f = 2π
⃓⃓
⃓⟨ΨN

f |Hint|ΨN
i ⟩
⃓⃓
⃓
2

δ
(︁
ω − (E f − Ei)

)︁
. (2.120)

Before elaborating on the energy conservation or simplifying this expression any further, we
need to specify the description of the N-electron system and clarify the approximations made
for the matrix element M in Equation 2.120, i.e.

M(k) = ⟨ΨN
f |Hint|ΨN

i ⟩. (2.121)

Writing M as a real space integral, and suppressing the spin degree of freedom once more, we
get (up to an irrelevant minus sign)

M(k) =
∫︂

dr1 . . . drN γ∗
k(r1)Ψ

N−1
f (r2, . . . , rN) AP ΨN

i (r1, . . . , rN), (2.122)

where we used γk(r) = ⟨r|k⟩ and P = ∑N
i pi. It can be shown [243] that this expression is

considerably simplified by the introduction of Dyson orbitals [244, 98, 245], which are defined
as

D(r) =
1√
N

∫︂
dr2 . . . drN ΨN−1

f (r2, . . . , rN)ΨN
i (r, r2, . . . , rN), (2.123)
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and which are therefore a measure of the overlap between the N- and the N − 1-electron system.
The matrix element then reads [243]

M(k) =
∫︂

dr γ∗
k(r)ApD(r). (2.124)

It should be stressed that this expression holds for the formally exact many-body wave func-
tion, albeit only neglecting the correlation between the photoelectron and ΨN−1

f . In principal,
Dyson orbitals are therefore the most appropriate way to describe the quantity that is actually
measured in photoemission experiments [246], and simulations based on multi-reference wave
function methods have been shown to yield accurate results for gas-phase molecules [247, 248].
For situations where electron correlation would play a greater role, as well as systems of interest
in this work, however, these calculations are prohibitively expensive and, in comparison to the
experiment, approximate Dyson orbitals calculated from DFT have shown to improve ARPES
simulations only slightly over Kohn-Sham orbitals [243]. In the following we will therefore re-
sort to KS orbitals as the basis for the initial state and identify the Dyson orbitals with solutions
from the effective, single-particle KS equation

HKS φjq(r) = ε jq φjq(r). (2.125)

In contrast to the discussion about the foundations of DFT in Section 2.1, we now add an ad-
ditional label q for the crystal momentum, in order to also describe Bloch electrons in periodic
systems, for which a direct correspondence to Dyson orbitals is not straightforward due to their
extension over the, in principle infinite, crystal. We will use Dyson orbitals, however, as a theo-
retical concept to derive a method for the simulation of ARPES from excitons in Paragraph 2.3.4.

Having obtained an expression for the matrix element from single-particle bands, i.e.

Mjq(k) =
∫︂

dr γ∗
k(r)Apφjq(r), (2.126)

we can now turn to the term which ensures energy conservation in the expression for the tran-
sition probability in Equation 2.120. The δ-function essentially states that the energy difference
between the final state and the initial state amounts to the photon energy. Note that this an
approximation and, in general, the δ-function is replaced by the spectral function if many-body
effects are properly taken into account [44]. Regarding this energy conservation, the difference
E f − Ei can be thought of being composed from three different parts, which is also illustrated
in Figure 2.2. First, the energy that was used to overcome the binding energy of the electron
in the system, EB = ε jq. This energy is negative and usually referenced to the Fermi level,
EF. At the Fermi level, however, the electron still feels the Coulomb attraction of the N − 1-
electron system. In our static description, we will treat the escaping of the photoelectron to
the vacuum level, Evac, as a phenomenological energy contribution, which is the work function
Φ. At the vacuum level, the rest of the photon energy ω results in the third contribution: the
kinetic energy of the photoelectron, Ekin. Summing over all initial states in Equation 2.120 and
ignoring possible scaling factors, we get the total photoelectron intensity I as a function of the
photoelectron momentum k [249]:

I(k) ∝
N

∑
j

BZ

∑
q

⃓⃓
⃓⃓
∫︂

dr γ∗
k(r)Apφjq(r)

⃓⃓
⃓⃓
2

δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
. (2.127)

Note that the summation over all occupied states N can be extended to unoccupied states and
smeared out at the Fermi edge, if, for instance, systems with metallic character are considered.
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DOS
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Φ

ω

Figure 2.2: Energy conservation in the photoemission process. Sketched is the density of states
(DOS) at the x-axis versus the energy on the y-axis. The photon energy ω results in shifting the
initial DOS to Ekin.

While the initial state, as well as the work function, can be obtained from a DFT calculation,
nothing has been said about the nature of the final state so far. In principle, γk can be seen
as an unbound scattering solution of the Hamiltonian H = HKS + Hint and several ways to
compute such scattering states have been used in regard to a description of the photoelectron.
These methods include an iterative solution of the Lippman-Schwinger equation [250, 251, 29]
or the incorporation of scattering effects via the Kohn-Korringa-Rostocker technique [252, 253,
254]. In what follows, we encompass a route that takes different levels of sophistication for the
description of the final state in photoemission. Starting from a simple plane wave, which is
ignorant to any scattering effects that the photoelectron may experience, we describe POT for
photoemission from the ground state in the following paragraph and, subsequently, extend this
method to photoemission from excitons in Paragraph 2.3.4. As an intermediate step, scattering
effects are taken into account in a phenomenological way in Paragraph 2.3.3 before we describe
photoemission with real-time TDDFT in Paragraph 2.3.6, which may also be seen as a full ab-
initio method for final state effects complementary to Greens function techniques.

2.3.3 The Plane Wave Final State

In an ARPES experiment the detector is far away from the system, as compared to the char-
acteristic length scale of bound electrons. It thus stands to reason that the influence of the
system on the photoelectron can be neglected and approximating such a quasi-free electron
by a plane wave might suffice. This description has, in fact, a long history in the theory of
photoemission [255, 256] but was considered too simplictic relative to more sophisticated de-
scriptions [229, 234, 83, 235, 83]. It then took until the new millennium that the plane wave
final state approximation was revived by Puschnig et. al. [46] for the theoretical description of
measured orbital signatures from organic molecules, which is the foundation of POT. Inserting
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a plane wave into Equation 2.127 and absorbing the normalization factor, we get

I(k) ∝
N

∑
j

BZ

∑
q

⃓⃓
⃓⃓
∫︂

dr e−ikr Apφjq(r)
⃓⃓
⃓⃓
2

δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
. (2.128)

With p = −i∇, we can integrate this expression by parts and drop the boundary term, assuming
that φjq vanishes at infinity [249]. Then we get

I(k) ∝ |Ak|2
N

∑
j

BZ

∑
q

⃓⃓
⃓⃓
∫︂

dr e−ikr φjq(r)
⃓⃓
⃓⃓
2

δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
=

= |Ak|2
N

∑
j

BZ

∑
q

⃓⃓
F [φjq](k)

⃓⃓2
δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
, (2.129)

such that the ARPES intensity is proportional to the absolute square of the Fourier-transformed
initial state, modulated by a factor |Ak|2 that is called the polarization factor.

If periodic systems are considered, it is common to calculate the initial state in terms of a
plane wave basis set,

φjq(r) = eiqrujq(r) =
|Gmax|

∑
G

cjq(G)ei(q+G)r , (2.130)

where ujq denotes the lattice-periodic part of the Bloch function such that ujq(r) = ujq(r + R)

for all lattice vectors R = ∑3
i niai ∀ ni ∈ Z. Then, the matrix element in the photoemission

intensity becomes a simple sum over the plane wave coefficients cjq(G):

I(k) ∝ |Ak|2
N

∑
j

BZ

∑
q

⃓⃓
⃓⃓
⃓
|Gmax|

∑
G

∫︂
dr e−i(q+G−k)rcjq(G)

⃓⃓
⃓⃓
⃓

2

δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
=

= |Ak|2
N

∑
j

BZ

∑
q

⃓⃓
⃓⃓
⃓
|Gmax|

∑
G

cjq(G)

⃓⃓
⃓⃓
⃓

2

δk,q+G δ
(︁
ω − |ε jq| − Ekin − Φ

)︁
. (2.131)

The latter expression weights contributions from all states equally, while in reality photoemis-
sion is restricted to electrons near the surface due to the decreased mean free path for states
deeper in the bulk. When simulating (molecular) adsorbates on several layers of substrate, this
can be accounted for in a phenomenological way by damping the plane wave in z-direction into
the substrate [257, 249].

Instead of the simulation of molecule-substrate interfaces as discussed above, often times
it can be sufficient to calculate the gas-phase orbitals of molecules only, in order to get a first
impression how the momentum space signatures of these orbitals might look like. Then, one can
benefit from the considerably lower computational cost in many quantum chemistry codes that
use local orbitals as basis sets (e.g. Refs. [258, 259]), especially when using hybrid functionals
for exchange-correlation effects. The resulting orbitals can be exported on a real-space grid
and momentum maps can be efficiently computed with the Fast Fourier Transform (FFT), for
instance with the software kmap.py [260]:

I(k) ∝ |Ak|2
N

∑
j

⃓⃓
FFT[φj](k)

⃓⃓2
δ
(︁
ω − |ε j| − Ekin

)︁
. (2.132)
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In addition, numerical algorithms allow for a fitting of experimental data to gas-phase mo-
mentum maps [260], which can be useful when measured momentum signatures are stemming
from multiple contributions of states that are too close in energy to resolve experimentally. In
the following paragraph, we will extend the method of POT to the description of excitons in
molecules.

2.3.4 Simulation of Photoemission from Excitons

DFT is very successful in describing properties of occupied electrons in terms of their density
while the method notoriously fails for unoccupied states. This holds especially true for the
energy position of these states and is related to the derivative discontinuity in Exc which is
absent in (semi-) local functionals, as also mentioned in Section 2.1. Nonetheless, orbitals of
unoccupied states can be interpreted in POT. In a photoemission experiment, however, one can
only observe occupied states. This may include formerly unoccupied states that become filled,
either through charge transfer from the substrate or through optical excitation. For the latter
case, an additional state of matter exists: if the material possesses a band gap, charge-neutral
states can form as bound electron-hole pairs below the band-gap. These bosonic quasi-particles
are then called excitons and the extension of POT to such systems is very desirable because of
their important role in organic semiconductors. The reason why this is not straightforward, lies
in the correlated nature of the electron-hole pair. As detailed in Chapter 7, we recapitulate the
ideas that led to a plane wave description of photoemission from excitons in the following.

In order to express the exciton wave function, we use a basis of occupied states, {ϕv}, as
well as unoccupied states {χc}, which need to be separated by a band-gap. Then the exciton
wave function can be written as [261]

ψm(rh, re) = ∑
v,c

X(m)
vc ϕ∗

v(rh)χc(re). (2.133)

Here, the label m states that we consider the m-th exciton, with excitation energy Ωm, and the
sum runs over all occupied (valence) and unoccupied (conduction) states ϕv and χc, depending
on spatial coordinates of the hole, rh, and the electron, re, respectively. The X(m)

vc mix the indi-
vidual contributions v, c of the m-th exciton and are called the transition density matrix elements.
They can be obtained from solving the Casida equation, as described in Paragraph 2.2.7, or from
the Bethe-Salpter equation (BSE) [261]. Both methods have their own advantages and disadvan-
tages [215] and in this work we will only consider Casida’s equation to obtain the X(m)

vc . From
Equation 2.133 it is obvious that, due to the correlation between electron- and hole-states, a di-
rect simulation of photoemission is not possible, with the exception of the trivial case when the
X(m)

vc vanish but for one transition v → c. This could be, for instance, the direct transition from
the HOMO to the lowest unoccupied molecular orbital (LUMO), which is often observed as the
dominant low-energy excitation in organic molecules [262]. Then the experimantally observed
mometum map equals the LUMO map and the kinetic energy equals the kinetic energy of the
HOMO emission, plus the excitation energy Ωm. In the general case, however, an exciton is
composed of multiple transitions and both the signatures in momentum space, as well as their
kinetic energy positions, are unknown.

In order to resolve this problem, we take a step back from a single-particle description of
the involved states and consider the N-electron system in a many-body description, this time in
Fock space to allow for the creation of holes (annihilation of electrons), as well as the population
of formally unoccupied states (creation of electrons) due to the optical excitation. With the
general N-electron many-body ground state |ΨN

0 ⟩ known, we might as well write the exciton
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wavefunction of Equation 2.133, together with rest of the system, as
⃓⃓
⃓ΨN

i,m

⟩︂
= ∑

v,c
X(m)

vc a†
c av

⃓⃓
⃓ΨN

0

⟩︂
, (2.134)

such that for each pair of {v, c} an electron is annihilated in the v-th state and created in the c-th
state. The additional label "i" denotes that this object will be the initial state for the photoemis-
sion matrix element. The final state can be written, in analogy to Equation 2.114, as

|ΨN
f,j,k⟩ = A|k⟩|ΨN−1

f,j ⟩ = A|k⟩aj|ΨN
0 ⟩, (2.135)

and is characterized by the photoelectron momentum k and the label j, which keeps track of the
state from which the electron is ejected. Next, we construct a Dyson orbital from these states,
hoping to get rid of the N − 1 passive electrons in the process. Owing to the splitting of the
basis set in {ϕv} and {χc}, the projection of the Dyson orbital on this basis contains two terms
(the projections are also called Dyson amplitudes [263, 248]):

Dj,m(r) = ∑
v′

⟨︂
ΨN

i,m

⃓⃓
⃓a†

v′

⃓⃓
⃓ΨN−1

f,j

⟩︂
ϕv′(r) + ∑

c′

⟨︂
ΨN

i,m

⃓⃓
⃓a†

c′

⃓⃓
⃓ΨN−1

f,j

⟩︂
χc′(r). (2.136)

Note that there exists a different Dyson orbital for each state j from which the electron has been
removed and that the summation over v′ runs over all occupied states, while the summation
over over c′ is, in principle, infinite and has to be truncated along with the basis set considered
for the calculation of the exciton properties. Inserting the initial state (Equation 2.134) and the
final state (Equation 2.135) into the Dyson orbital expression, we get

Dj,m(r) =∑
v′

∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
v′ aj

⃓⃓
⃓ΨN

i,0

⟩︂
ϕv′(r)+

+∑
c′

∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
c′ aj

⃓⃓
⃓ΨN

i,0

⟩︂
χc′(r). (2.137)

Here, the sum over v′ gives zero because of orthogonality relations, which also demand that
c = c′ in the second term. Exploiting those orthogonality relations requires an important as-
sumption that has not been discussed so far: while the final and initial states defined in Equa-
tions 2.134 and 2.135 are general many-body states, here we now explicitly assume that those
states are constructed from the same single-particle orbitals. This implies that no electronic re-
laxation effects are considered upon ionizing the N-electron system. We finally thus get (up to
normalization constants)

Dj,m(r) = ∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
c aj

⃓⃓
⃓ΨN

i,0

⟩︂
χc(r) =

= ∑
c

X(m)
jc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

j ajaca†
c

⃓⃓
⃓ΨN

i,0

⟩︂
χc(r) =

= ∑
c

X(m)
jc χc(r). (2.138)

We have therefore shown that the Dyson orbital for the electron missing in the j-th valence state
simplifies to a coherent sum over unoccupied orbitals, weighted by their contribution to the
j-th row of the transition density matrix. Note that this derivation implicitly assumes that the
many-body electron state can be simplified to a single Slater determinant, which is a restriction
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that may be problematic for static correlation effects but, in principle, the above construction
for the Dyson orbital could be also extended to multi-reference methods [264].

For the total photoelectron intensity originating from the m-th exciton, we have to sum over
all possible hole configurations j and insert the respective Dyson orbitals into Equation 2.132:

Im(k) ∝ |Ak|2
N

∑
j

⃓⃓
F [Dj,m](k)

⃓⃓2
δ
(︁
ω − (Ef − Ei)

)︁
=

= |Ak|2
N

∑
j

⃓⃓
⃓⃓
⃓F
[︄
∑

c
X(m)

jc χc

]︄
(k)

⃓⃓
⃓⃓
⃓

2

δ
(︁
ω − (EN

f − EN
i )
)︁
, (2.139)

where EN
i and EN

f denote the energy of the N-electron initial and final states, respectively. For
the initial state on the one hand, we identify its energy with the ground state energy of the N-
electron system, EN

0 , plus the excitation energy, such that EN
i = EN

0 +Ωm. The final state energy,
on the other other hand, is the energy of the N − 1-electron system, where the hole resides in
state j, plus the kinetic energy Ekin: EN

f = EN−1
f,j + Ekin. Inserting both energy expressions into

the energy conservation of Equation 2.139 leads to

ω = EN
f − EN

i = EN−1
f,j + Ekin − EN

0 − Ωm = Ekin + ε j − Ωm, (2.140)

where we have inserted the j-th ionization potential as ε j := EN−1
f,j − EN

0 (ε j > 0). Utilizing this
energy conservation, we arrive at the final result

Im(k) ∝ |Ak|2
N

∑
j

⃓⃓
⃓⃓
⃓∑c

X(m)
jc F [χc] (k)

⃓⃓
⃓⃓
⃓

2

δ
(︁
ω − Ekin − ε j + Ωm

)︁
, (2.141)

which renders an expression of the photoelectron intensity for the emission from the m-th exci-
ton and where all possible configurations that the electron and hole can take are respected.

The result for photoemission from excitons, originally presented in Chapter 7, has remark-
able consequences that are summarized in the following. For each possible configuration of
the hole left behind after the photoemission, energy conservation with the respective ioniza-
tion potential has to be obeyed. For excitons that are composed of transitions with multiple
contributions from different occupied states v, the measurement can therefore lead to photoe-
mission signatures at different kinetic energies. At each allowed kinetic energy, photoemission
momentum maps are proportional to the absolute squared Fourier transform of a coherent sum
over unoccupied orbitals, weighted by their transition density matrix elements. While for the
extension of POT to excitons we still relied on the plane wave final state approximation, in the
following paragraph we will lift this restriction and present a model for scattering effects in the
final state of photoemission.

2.3.5 The Scattered Wave Final State

Despite the success of the plane wave approximation, it is a very simplified model where the
photoelectron does not encounter any influence of the sample at all. As mentioned in Para-
graph 2.3.2, one way to incorporate some of the effects of the sample can be achieved with
quantum mechanical scattering theory. This ansatz has been used in the theoretical description
of photoemission for decades already, and was pioneered by Liebsch [265, 266, 267], Daven-
port [268, 269, 270] and others [271, 272, 273, 274, 275, 276, 277].
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For the subsequent incorporation of scattering effects on an intermediate level, we write the
initial state in terms of local, i.e. atom-centered, orbitals that are eigenstates of the angular mo-
mentum operator. In addition to the basis sets for DFT calculations discussed so far—namely
plane waves and real-space grids—we now represent the initial state of the photoemission ma-
trix element in terms of a local combination of atomic orbitals (LCAO) basis:

φj(r) =
Na

∑
a

N

∑
j

∞

∑
l

l

∑
m=−l

ca
jlmRjl(ra)Ylm(r̂a). (2.142)

In this expression we have a sum over all Na atoms, with each atom located at Ra, and we use
the shorthand notation ra := r − Ra. At each site a, the atomic contribution to the electronic
wave function in the j-th orbital is represented in a basis composed of radial functions Rjl and
the spherical harmonics Ylm. Here and in the following, we consider gas-phase molecules and
ignore the crystal momentum, but will extend the method to periodic systems at a later stage.
Inserting this initial state in the matrix element expression in the velocity gauge, e.g. as in Equa-
tion 7.10, leads to

Mj(k) =
∫︂

dr γ∗
k(r)Apφj(r) =

=
Na

∑
a

N

∑
j

∞

∑
l

l

∑
m=−l

∫︂
dr γ∗

k(r)Ap ca
jlmRjl(ra)Ylm(r̂a) =:

Na

∑
a
Ma

j (k). (2.143)

From the definition in the last step, it can be seen that the matrix element can now be expressed
as a sum of atomic matrix elements, which is referred to as the independent atomic center approx-
imation [271]. Next, we will consider the action of the nabla operator on the contribution from
one angular momentum channel {l, m} only:

∇aRjl(ra)Ylm(r̂a) =

= −N(hi)
l

(︃
d

dra
− l

ra

)︃
Rjl(ra)Ym

ll+1(r̂a)+

+ N(lo)
l

(︃
d

dra
− l + 1

ra

)︃
Rjl(ra)Ym

ll−1(r̂a) =

=:
[︂

f (hi)
lm (ra) + f (lo)lm (ra)

]︂
. (2.144)

Here we have made use of an analytical expression for the gradient acting on such functions in
terms of the vector spherical harmonics [278], which are defined as

YM
Jl (r̂) =

l

∑
m=−l

1

∑
µ=−1

cCG(l, 1, J; m, µ, M)Ylm(r̂)ξµ, (2.145)

using the Clebsch-Gordan coefficients cCG and

ξ−1 =
1√
2
(x̂ − iŷ) , ξ0 = ẑ, ξ1 = − 1√

2
(x̂ + iŷ) . (2.146)

For the sake of a more compact notation, we have also abbreviated l-dependent prefactors with

N(hi)
l =

[︃
l + 1

2l + 1

]︃1/2
and N(lo)

l =

[︃
l

2l + 1

]︃1/2
. (2.147)
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As shown in the last step of Equation 2.144, the action of the nabla operator results in two
angular momentum contributions for each l-channel in the initial state, which we subsume with
the functions f (hi)

lm (high) for raising or f (lo)lm (low) for lowering the angular momentum, which is,
essentially, the consequence of the optical selection rule in any matrix element within the dipole
approximation. As an example, for photoemission from a p orbital, the dipole matrix element
results in the combination of both an s and d channel, with m depending on the incidence field
due to its scalar product with the ξν, as well as on additional selection rules resulting from the
Clebsch-Gordan coefficients cCG.

Concerning the final state in the matrix element, we begin by writing a generic scattered
wave as

γk(r) =
4π

(2π)
3
2

∑
l′m′

eiδl′ (k)Rl′(kr)il′Y∗
l′m′(k̂)Yl′m′(r̂), (2.148)

where the radial functions, Rl′ , and the phase-shifts, δl′ , determine the scattering character. Such
a solution exists if it can be assumed that the atomic potentials at each site a are well-separated
and spherically-symmetric, which is the realm of the apparatus of quantum mechanical scat-
tering theory [279] and which is, strictly speaking, only valid for the Coulomb problem in the
hydrogen atom. In this case, the radial function is proportional to the confluent hypergeometric
function of the first kind and Equation 2.148 describes a Coulomb wave that is shaped by the
Sommerfeld parameter [279]. Despite the lack of formal justification, the Coulomb wave final
state has been successfully applied to small molecules [280] and even solid state systems [84].
In this work, we use the SWA in the generic sense and treat radial functions and phase-shifts
as model fit parameters. Note that when identifying Rl′ with the spherical Bessel functions of
the first kind and setting δl′ = 0 ∀ l′, we recast the Rayleigh expansion of the plane wave in
Equation 2.148 [281].

Inserting the SWA, as well as Equation 2.144, into the matrix element of Equation 2.143, we
get the following expression:

Mj(k) ∝
Na

∑
a

N

∑
j

∞

∑
l

l

∑
m=−l

∫︂
dr eiδl(k)Rl(kr)ilY∗

lm(k̂)Ylm(r̂)A ca
jlm

[︂
f (hi)

lm (ra) + f (lo)lm (ra)
]︂

, (2.149)

where the orthogonality relations between the spherical harmonics had demanded that l′ = l
and m′ = m. At the expense of more algebra, especially when we would insert the expressions
for the f (hi/lo)

lm as well, we have thus obtained a matrix element that serves as a model for final
state scattering. With the l-dependent phase-shifts, it is now possible that two photoemission
channels, with different l, can have different interference patterns, depending on the kinetic
energy of the final state. Especially when comparing photoemission from measurements with
different (orthogonal) light polarizations, this can lead to a dichroism and the described mech-
anism of l-channel interference has been used to explain the circular dichroism effect by Schön-
hense [282]. Moreover, the k- or Ekin-dependence of the phase-shifts can lead to an oscillation
of intensity when varying the energy of the incident light, which has been successfully used
to explain observed variations in the photoemission from C60 thin films [231]. In principle, the
phase-shifts could also be functions of the atom position a, thereby respecting different chemical
environments , or the m quantum number.

As shown in Chapter 6, this model can also be extended to periodic systems, where local or-
bitals can be obtained with the mapping on a tight-binding Hamiltonian [283]. If a well-defined
phase relation between nearest-neighbors exists, as in graphene, scattering of the photoelectron
wave function from the nearest-neighbors can also be included, as described in Chapter 6 where
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experimental data could be reproduced by fitting to the SWA model and thus confirming that
all relevant physics in the photoemission process of such a system is captured by the SWA. De-
spite this success, it should be mentioned that l-dependent phase-shifts for the description of
scattering effects are only well-defined for spherically-symmetric potentials and are therefore
not straight-forward to compute from full-potential DFT methods, such that tight-binding ap-
proximations [284] or muffin-tin potential descriptions may become neccesary [285, 286, 287].
This is in contrast to ab-initio simulations of photoemission from TDDFT, which is subject to
the following paragraph.

2.3.6 Simulation of Photoemission with Real-Time TDDFT

For the time being, the photoemission process has been described with Fermi’s golden rule as
a static, one-step process. In the following, we will recapitulate a formulation in which the
emission of photoelectrons is treated as an actual process in real time. With TDDFT, we have
a method where the time evolution of electrons, coupled to a photon field, is captured, as pre-
viously described for optical excitations in Paragraph 2.2.6. For the real-time simulation of the
ARPES experiment, however, we need to modify the setup in two regards. First, we want to use
monochromatic light and, second, we need to somehow detect the photoelectrons. The latter
can be achieved with a method that was initially developed when time-propagating the time-
dependent Schrödinger equation (TDSE) on a real-space real-time grid for recording photoelec-
trons as the flux integral through a detector surface [288]. In this way, the flux per unit area
can be interpreted as photoelectron intensity, given that the detector surface is positioned far
enough from the system, as to record only quasi-free electrons that are not part of the system’s
bound states. If the flux density is recorded with angular resolution, the same considerations as
for the experiment can be made (see Paragraph 2.3.1) and photoemission intensity from such a
simulation can be regarded as I(k, ω, T) = I(Ekin, k||, ω, T), i.e. as a function of kinetic energy,
parallel momentum, photon energy and, in principle, the time duration of the observation, T.

Subsequently, the surface-flux method was adopted to the KS formalism and integrated into
the OCTOPUS code [176, 177] by De Giovannini et. al. for excited states in small systems [289],
molecules [85] and periodic systems [86], where the former two kinds of systems require slightly
different computational setups than the latter one. For molecules or clusters in the gas-phase, a
spherical simulation box with radius R is used for the real-space grid, as depicted in Figure 2.3
(a). With the molecule in the center of the domain, the spherical detector surface is placed at the
distance RS from the center. For reasons that will become clear in the following, the detector
surface thus separates an inner region, A, from the outer region, B, of the simulation domain.
Suppose that the inner region A is well-described by the KS Hamiltonian for N electrons, cou-
pled with the light field:

HKS(t) =
1
2

(︃
p − A(t)

c

)︃2

+ vext(r, t) +
∫︂

dr′
n(r′, t)
|r − r′| + vxc[n](r, t). (2.150)

In region B, we assume that the photoelectrons are essentially free particles in the presence of
an electromagnetic field, which is described by the Volkov Hamiltonian of the form

HV(t) =
1
2

(︃
p − A(t)

c

)︃2

, (2.151)

and therefore also respects the imprint of (strong) fields on the photoelectron momentum, which
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(a) (b)

Figure 2.3: Overview of the geometry for photoemission simulations. In panel (a), the geome-
try for molecules is depicted (figure from Reference [290]), in panel (b) the corresponding setup
for (semi-) periodic systems is shown (figure from Reference [86]).

is in contrast to pure plane waves. The total system is then governed by the Hamiltonian

H(t) =

{︄
HKS(t) if r ∈ A
HV(t) if r ∈ B,

(2.152)

and we assume that—if the system has been subjected to the field for some time T—the charge
density associated with either region A or B is spatially separated at some later time t > T.
In other words: all photoelectrons have passed the detector and are far away from the system
whereas the electrons which are still bound to the system remain there and no charge density is
flowing in the interstitial region any longer. This condition can only be fulfilled if the detector is
placed far enough from the system, if the field strengths remain moderate and if the simulation
time exceeds T long enough that even the slowest photoelectrons have made it through the
detector.

Under the conditions just stated, we can propagate the system with the Hamiltonian HKS(t)
in order to get the solutions φA

j (r, t) of the subsystem A described with TDDFT. For subsystem
B, analytical solutions exist [85] that have the the form

γk(r, t) = (2π)−3/2 eiχ(k,t)eikr, (2.153)

which are thus plane waves with an additional time-dependent phase factor acquired by the
photon field,

χ(t) =
1
2

∫︂ t

0
dτ

(︃
k − A(t)

c

)︃2

. (2.154)

Since these Volkov states form a complete set, we can expand the KS states in region B in this
basis, which gives

φB
j (r, t) =

∫︂
dk bj(k, t)γk(r, t). (2.155)

The density in B, nB(r, t) = ∑N
j |φB

j (r, t)|2, is a measure of the photoelectrons that have escaped
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through the detector after time T:

Nphoto(T) =
N

∑
j

∫︂
dk |bj(k, T)|2, (2.156)

and the derivative with respect to k gives the momentum- and energy resolved photoemission
probability, and, directly related, the photoemission intensity

I(k) ∝
∂Nphoto(T)

∂k
. (2.157)

From the point of view of a continuity equation, we may also express Nphoto als the flux of
electrons through the detector surface S:

Nphoto(T) = −
∫︂ T

0
dt
∮︂

S
ds j(r, t), (2.158)

where j is the current density that can be obtained from the current denity operator J, defined
in Equation 2.48, as

j(r, t) =
N

∑
j
⟨φj(t)|J(t)|φj(t)⟩. (2.159)

With the projection defined in Equation 2.155, this can be written as

j(r, t) =
N

∑
j

∫︂
dk b∗j (k, t)⟨γk(t)|J(t)|φj(t)⟩. (2.160)

Expanding the ket instead of the bra in a similar fashion, inserting both results into Equa-
tion 2.158 and comparing with Equation 2.156 (see Ref. [85]), we get the final result that the
photoelectron intensity is proportional to a flux integral, integrated over time and summed
over all states:

I(k) ∝
N

∑
j

⃓⃓
⃓⃓
∫︂ T

0
dt
∮︂

S
ds⟨γk(t)|J(t)|φj(r, t)⟩

⃓⃓
⃓⃓
2

. (2.161)

For periodic systems, we have an additional dependence of the initial state on the crystal mo-
mentum, i.e. φj → φjq, and therefore an additional sum over the sampled points of the Brillouin
zone occurs in Equation 2.161. From a computational point of view, the simulation box is now
represented differently, as shown for a 2D system that is periodic in the x-y-plane in Figure 2.3
(b). The detector surface is then a plane, in general both above and below the sample, and
electron density on its way to the detector gets backfolded to the cell as a consequence of the
periodic boundary conditions, thereby reducing the size of the real-space grid for the simula-
tion box considerably. In momentum space, however, the resolution is limited by the sampling
of the Brillouin zone, which somewhat outweighs the advantages of the reduced simulation box
in the case of (semi-) periodic systems.

In the way described above, real-time TDDFT thus allows for the most direct way of simu-
lating ARPES: just as in the experiment, we detect the flux of electrons through a surface and by
resolving both the solid angle and the kinetic energy (trough the projection on Volkov states),
we obtain the photoelectron intensity I(k||, Ekin, ω). In stark contrast to the methods described
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before, here we do not have to assume a final state for the photoelectron and its movement
in time, under the influence of the the photon field and the remaining system, is governed by
the TDDFT Hamiltonian and scattering effects are therefore naturally accounted for. Moreover,
density originating from spatially different photoelectrons mutually interfere with each other,
at least on the mean field level, which is achieved by updating the Hartree potential during the
time-evolution. Consequently, photoemission simulations from real-time TDDFT were shown
to reproduce final state effects like circular dichroism [291] or, as demonstrated in Chapter 6 for
graphene, the correct variation of angle-resolved photoemission spectra with photon energy. In
addition, the method can also be combined with pump fields in the optical regime and thereby
gives access to photoelectron spectroscopy for exited systems [289, 292, 290, 293, 294, 295]. In
Chapter 7, we could show that the photoelectron momentum maps for excitons within the PWA,
as described in Paragraph 2.3.4, are in very good agreement with those from real-time TDDFT,
which could therefore serve as a reference method for pump-probe spectroscopy. We finally
remark that, despite the success in capturing final state effects and the possibility of simulating
excited states photoemission, this method is, by and large, restriced to the ALDA and to rather
small systems due to its great computational burden.
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Chapter 3

Charge-promoted Self-metalation of
Porphyrins on an Oxide Surface

Figure 3.1: Header of the article as published in Angewandte Chemie, International Edi-
tion [296].

Significance Statement

Porphyrin complexes occur in nature in haemoglobin, cytochromes, chlorophyll and in vita-
min B12 and their versatility to incorporate different metal ions has a multitude of possible
applications [77, 78]. Free-base porphyrins with H2 in their center were shown to self-metalate
when adsorbed on various metal surfaces [297, 298]. In addition to these metal surfaces, thin
films of oxides adsorbed on metal surfaces have recently gained interest, where especially the
2 ML MgO/Ag(001) interface has been shown to promote electron transfer into molecules ad-
sorbed on such surfaces, despite the isolating property of MgO [76, 299]. The self-metalation
of porphyrins on oxide surfaces had been observed [300, 301, 302, 303], but previous compu-
tational studies found that this self-metalation on MgO nano-cubes was limited to edges and
cornes [304, 305], while experimental evidence exists that self-metalation is indeed possible on
MgO(001) thin films [304, 306].

In this work we could confirm the self-metalation of tetra-phenyl-porphyrins on the 2 ML
MgO/Ag(001) surface. In contrast to previous work, we additionally varied the work function
of the MgO/Ag(001) surface, which enabled us to pinpoint the effect of self-metalation to the
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charge transfer from the surface into the molecules. While charge transfer occurred for stan-
dard preparations of MgO/Ag(001), we found that the self-metalation is suppressed on high
work function surfaces where no charge transfer occurs. The metalation of porphyrins was ex-
perimentally confirmed by x-ray photoemission spectroscopy and the characterization of the
geometric and electronic structure of the molecule-substrate interface was achieved with scan-
ning tunneling microscopy, low-energy electron diffraction and valence photoemission spec-
troscopy. For the latter techniques, our DFT simulations agreed very well, although the direct
verification of the metalation process in terms of energy preference could not unambiguously
be achieved for all different work function surfaces. This is due to the fact that the simulation of
the electronic structure is, in this case, especially sensitive to the treatment of van der Waals in-
teractions, which is a recognition that also helped to understand the discrepancies arising from
different previous studies.

Author Contributions

The sample preparation as well as the low-energy electron diffraction, XPS, STM and lab-based
ARPES experiments in this work were done by Larissa Egger, Michael Hollerer, Hannes Her-
mann, Georg Koller, Michael G. Ramsey and Martin Sterrer in Graz. Tomography ARPES mea-
surements were undertaken by Larissa Egger, Philipp Hurdax, Anja Haags and Xiaosheng Yang
at the Physikalisch-Technische Bundesanstalt Berlin, supervised by Serguei Soubatch, Alexan-
der Gottwald, Mathias Richter, F. Stefan Tautz, Georg Koller and Michael G. Ramsey. Calcula-
tions for structural and electronic properties were carried out by me, under the supervision of
Peter Puschnig. Martin Sterrer was responsible for overall project coordination and wrote the
initial draft of the manuscript, with contributions from all co-authors.

Abstract

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained
interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being
understood. Herein, we show by a combination of results obtained with scanning tunneling
microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of
2H-tetraphenyl-porphyrin on the surface of ultrathin MgO(001) films is promoted by charge
transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control
the charge and the metalation state of the porphyrin molecules on the surface.

3.1 Main Text

Due to their versatility, porphyrins and metalloporphyrins have attained major attention in all
aspects of organic-inorganic hybrid materials science. In particular, surface-mediated processes
of and with porphyrins have strongly contributed to the unbroken fascination of these materi-
als [77]. Surface science investigations of porphyrin self-assembly, on-surface synthesis of 2D
covalently linked metal-organic frameworks and building of 3D hetero-architectures [307], or
studies on directed metalation [298, 308] and ligation to control their magnetic, sensing and
catalytic properties, have provided fundamental insight into their chemical and physical prop-
erties [78].

The surface-confined porphyrin metalation is typically achieved by pre- or post-deposition
of metal adatoms, or by self-metalation, which occurs on specific metal substrates such as Cu,

46



3.1. Main Text

Ni, and Fe [298]. These redox-type reactions, which include conformational intermediates,
hydrogen-transfer processes and, finally, H2 release, are reasonably well understood [309, 310].
Recently, self-metalation reactions have also been observed on several single-crystalline oxide
surfaces, including TiO2[110] [300, 301, 302], CoxOy thin films [303] and MgO thin films [304].
In contrast to the metalation with metal adatoms, self-metalation on oxides can be viewed as
an ion exchange process, where the two protons of a free-base porphyrin are replaced by a
metal cation. Detailed mechanistic aspects of this reactions remain, however, still elusive. In
the present work, we provide compelling evidence that the self-metalation of 2H-tetraphenyl-
porphyrin (2H-TPP) is promoted by charge transfer on the surface of ultrathin MgO(001) films.
Furthermore, by controlling the support properties, we show that uncharged/unmetalated and
charged/metalated molecules can be deliberately formed.

The protons released from the free-base porphyrin during the self-metalation process on ox-
ides are suggested to contribute to hydroxylation of the surface [304, 306, 305]. In the case of
the self-metalation of 2H-TPP on bulk MgO the hydroxyl formation indeed provides a substan-
tial energy contribution that makes the metalation reaction thermodynamically feasible [304].
However, this process is strongly morphology-dependent and studies on MgO nanocubes show
that the reaction is limited to low-coordinated sites such as edges and corners, where the Mg2+

vacancy formation energy is lower and hydroxyls are more stable than on regular surface
sites [304, 305]. In contrast to this finding is the observation of self-metalation of a complete
2H-TPP monolayer on MgO(001) thin films [306]. While MgO thin film samples also exhibit
a certain concentration of surface defects [311], their limited abundance can, however, not ex-
plain the high degree of metalation occurring on the regular surface of the films, which remains
a mystery. This calls for a different mechanism of the self-metalation reaction on the thin film
surface that requires detailed knowledge and understanding of the morphology and electronic
properties of the combined molecule-substrate system to be unraveled. Herein, we tackle this
problem by a combination of experiments using scanning tunneling microscopy (STM) and
photoemission spectroscopy, and density function theory (DFT) computations (Supporting In-
formation in Paragraph 3.2.1 and Paragraph 3.2.2)

Figure 3.2: STM images of (a) 2 ML MgO(001)/Ag(001) (Ubias = 3.0 V, it = 29 pA), (b)
1 ML 2H-TPP adsorbed on 2 ML MgO(001)/Ag(001) at room temperature and annealed at 473 K
(Ubias = 2.0 V, it = 28 pA). Inset in (a): Atomically resolved image of MgO(001).

Large-scale STM images of the thin MgO(001) film before and after 2H-TPP adsorption are
shown in Figures 3.2 (a) and (b), respectively. As we discuss later, our x-ray photoelectron spec-
troscopy (XPS) results confirm the spontaneous metalation of a monolayer of 2H-TPP on the
films, such that it can be assumed that in the STM images most of the porphyrin molecules are
already in the metalated, Mg-TPP, state. The molecules are arranged in a highly ordered square
phase with two rotational domains. This is also evident from the low energy electron diffrac-
tion (LEED) pattern shown in Paragraph 3.2.1, which can straightforwardly be interpreted in
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terms of a
(︃

4 −2
2 4

)︃
superstructure with a square unit mesh with a unit vector of 13.3 Å. More

Figure 3.3: STM images of (a) a low-coverage 2H-TPP film adsorbed at 80 K on
2 ML MgO(001)/Ag(001) (Ubias = 1.2 V, it = 25 pA) and (b) its ordered monolayer (Ubias = 3.2 V,
it = 55 pA). (c) Tentative structural model of the monolayer phase derived from STM and LEED
(top view). (d) DFT-derived adsorption model of Mg-TPP on 2 ML MgO(001)/Ag(001) (3D
view). In this model calculation charge transfer occurs from the substrate into the molecule.

detailed STM images of isolated molecules and of the monolayer phase are presented in Fig-
ures 3.3 (a) and (b), respectively. The isolated molecules appeared as a 4-lobe structure with a
depression in the center (Figure 3.3 (a)). The four lobes are associated with the phenyl groups
and the axes connecting opposing phenyl groups point in the [110] directions. The identifica-
tion of the individual molecules is less straightforward in the case of the monolayer phase but
is aided by the appearance of a molecular vacancy, as in Figure 3.3 (b). This reveals that the
circularly arranged 4-lobe structure does not correspond to the four phenyl groups of a single
molecule, but to the phenyls of 4 neighboring molecules, as depicted in Figure 3.3 (b). The
STM of the monolayer phase is in perfect agreement with the LEED structure and leads to the
schematic surface model presented in Figure 3.3 (c). This arrangement clearly maximizes T-
type interaction between phenyl rings of neighboring molecules [312]. The 4-lobe appearance
of the TPP molecules in STM is in accordance with a tilting and twisting of the phenyl groups
of TPP in the adsorbed state due to the strong interaction of the macrocycle with the surface
(Figure 3.3 (d)) [51]. The upward-tilted phenyl groups dominate the image contrast and, thus,
prevent the observation of detailed orbital structure, which is mostly localized at the macro-
cycle. However, this information would be required to gain information about the electronic
structure of the adsorbed TPP molecules and their charge state. Therefore, we now turn to the
more detailed investigation of the occupied electronic states using angular-resolved ultraviolet
photoemission spectroscopy (ARUPS) and XPS.

The ARUPS and N 1s XP spectra of clean MgO(001)/Ag(001) and increasing doses of 2H-
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TPP on MgO(001)/Ag(001) are presented in Figure 3.4. Considering the XP spectra first, we

Figure 3.4: Top: real-space representation of the HOMO-1, HOMO, and the degenerate LU-
MOa and LUMOb of gas-phase Mg-TPP. ARUPS (bottom, left) and XPS (bottom, right) spectra
of clean 2 ML MgO(001)/Ag(001) and increasing doses of 2H-TPP (1, 2, and 4 ML) at room
temperature. Here, Φi is the work function of clean MgO(001)/Ag(001) and Φ f is the work
function after adsorption of 2H-TPP. Middle, left: comparison of experimental and simulated
momentum maps of 1 ML 2H-TPP on MgO(001)/Ag(001). The experimental maps were taken
at the peak maxima of the PE peaks at 0.75 eV, showing the pattern of the superposition of the
molecular LUMOa/b, and at 2.3 eV, showing the pattern of the superposition of the HOMO
and HOMO-1. Middle, right: schematic model of charging and metalation upon adsorption of
2H-TPP on MgO(001)/Ag(001).

observe a single N 1s peak at 399 eV binding energy (BE) upon adsorption of a monolayer 2H-
TPP, suggesting a similar chemical environment of the four N atoms as in metalated TPP [309].
This peak remains upon increasing the 2H-TPP dose beyond a monolayer, while a pair of addi-
tional N 1s peaks at 400.5 eV and 398 eV, corresponding to the aminic and iminic nitrogen pairs
in unmetalated 2H-TPP [309], grows in intensity upon further 2H-TPP adsorption. This con-
firms the results of previous investigations of the same system and indicates that the 2H-TPP
molecules in the monolayer are metalated to Mg-TPP, while the molecules in the second and all
subsequent layers remain unmetalated 2H-TPP [306]. At this point we note again that the large
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concentration of metalated TPP on the thin MgO films together with the rather flat terrace-like
morphology of the films (Figure 3.2) is not consistent with a defect-mediated self-metalation
reaction suggested in the literature (Paragraph 3.2.3) [304, 305]. Thus, another driving force for
the metalation must be present on the thin MgO films.

It is well established that the deposition of MgO films on Ag(001) significantly reduces the
Ag(001) work function, which leads to promotion of charge transfer into adsorbates with suffi-
ciently high electron affinity (EA) through electron tunneling [313, 314]. 2H-TPP has a similar
EA (1.6-1.8 eV) [315] as pentacene, which has been shown to become negatively charged on the
MgO(001)/Ag(001) substrate [76]. Proof for the charge transfer into the TPP molecules in the
present experiments comes from the ARUPS results presented in Figure 3.4, left. The deposi-
tion of 2H-TPP on 2 ML MgO(001)/Ag(001) thin films, which had an initial work function of
Φi = 2.6 eV, leads to new states in the MgO band gap region that can be associated with the
frontier orbitals of 2H-TPP. Two molecular emissions with BE’s of 0.75 eV and 2.3 eV are imme-
diately present after adsorption of a 2H-TPP monolayer at room temperature. Simultaneously,
the work function increased to 3.3 eV, which is a first indication that charge transfer into the TPP
molecules has occurred [299, 316]. Upon increasing the 2H-TPP coverage to 2 ML and 4 ML, the
0.75 eV emission is attenuated, while the intensity of the 2.3 eV emission increases with 2H-TPP
coverage, proving that the former is solely due to molecular species in the first monolayer. The
additional 2H-TPP layers do not lead to further work function changes, which indicates that
the charge transfer is restricted to the interfacial TPP monolayer.

Identification of the molecular orbitals from which the photoemitted electrons arise is possi-
ble with a technique known as photoemission tomography, where the angular intensity distri-
bution of the photoemitted electrons is recorded and converted into a momentum map, which,
approximately, corresponds to the reciprocal space image of the real-space electron density dis-
tribution [46]. For the two emissions observed in the MgO bandgap region, the experimental
momentum maps obtained at BE’s corresponding to the peak maxima are displayed in Fig-
ure 3.4 along with simulated maps of the degenerate TPP LUMO’s (for the 0.75 eV BE emis-
sion) and of the superposition of the HOMO and HOMO-1 (for the 2.3 eV BE emission). See
Figure 3.4, top, for the real-space representations of the orbitals. Note that the HOMO and
HOMO-1 are too close in energy to be resolved in the present experiments. Because of the per-
fect agreement, the peak at 0.75 eV BE can be identified as emission from an occupied state that
has the electron density distribution of the molecular LUMO. This unambiguously confirms the
charge transfer into the 2H-TPP molecules upon adsorption and the corresponding state will
henceforth be termed former LUMO (f-LUMO). Furthermore, since charge transfer through the
thin MgO film is accomplished by tunneling, this state is an integer charge transfer state, in
agreement with previous observations [76, 299, 316].

From the combined XPS/ARUPS data in Figure 3.4 we conclude that two processes simulta-
neously take place upon adsorption of 2H-TPP on ultrathin MgO(001) films: (i) integer charge
transfer into the molecules via electron tunneling and (ii) a self-metalation reaction to Mg-TPP.
Whether these processes are independent of each other, or if one process is the precondition for
the other to occur, cannot be answered with the information provided by the experimental data
of Figure 3.4 alone. To prove the interplay between charge transfer and metalation, we block the
charge transfer utilizing the recipe developed recently [299, 316]. It relies on chemical modifica-
tion of the MgO/Ag interface by introducing either oxygen or magnesium. With this, the work
function can be tuned over a wide range, from 2.3 eV to 4.4 eV (Paragraph 3.2.3). When charg-
ing occurs, the saturation sample work function reached after adsorption of the molecules is
equivalent to the critical work function that marks the transition from charging to non-charging
(Paragraph 3.2.4) [299, 316]. From the experiment shown in Figure 3.4 the critical work function
is at around Φcrit = 3.3 eV. Thus, we expect charge transfer into adsorbed 2H-TPP to be blocked
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when adsorbed on an MgO(001)/Ag(001) substrate with Φ > 3.3 eV.

Figure 3.5: (a,b) ARUPS (a) and N 1s XPS (b) for 2H-TPP adsorbed on 2 ML MgO(001)/Ag(001)
films with different initial work function, Φi. (c,d) STM of 2H-TPP on high work function
MgO(001)/Ag(001) at Ubias = +2.9 V (c) and Ubias = -2.6 V (d).

In Figure 3.5 (a) and (b) we compare the photoemission spectra of 2H-TPP monolayers ad-
sorbed on MgO(001)/Ag(001) with different initial work function, 2.6 eV and 3.9 eV, i.e., below
and above Φcrit for charging. The spectra for 2H-TPP on the low work function substrate resem-
ble the results reported in Figure 3.4, where both, charge transfer and self-metalation occur, as
shown by the observation of the occupied former LUMO in ARUPS and a single N 1s compo-
nent in the XPS spectrum. If 2H-TPP is instead adsorbed on the high work function substrate,
the band-gap state in the ARUPS is absent, confirming that the molecules are not charged.
In addition, we observe the typical signature of non-metalated 2H-TPP in the corresponding
XP spectrum.

The absence of charge transfer has also consequences for the appearance of the molecules in
STM. Instead of the phenyl-dominated 4-lobe appearance as in Figure 3.3, at similar tunneling
conditions both, the peripheral phenyls and the pyrrole groups of the macrocycle are imaged
(Figure 3.5 (c)). Furthermore, at negative tunneling voltage, submolecular contrast resembling
the electron density distribution of the HOMO-1 was achieved (Figure 3.5 (d)). In addition,
we find that, compared to the arrangement shown in Figure 3.3, the 2H-TPP molecules are
rotated by 45◦, i.e., the phenyl axis is now aligned with the [100] crystallographic direction.
The different STM contrast suggests that the 2H-TPP molecules are flatter, and the strong tilting
and twisting of the phenyl groups, as seen for the charged and metalated TPP, is absent. This
implies a weaker interaction of uncharged 2H-TPP with the surface compared to the charged
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and metalated molecule, which also affects the stability of the monolayer phases. While the
charged and metalated monolayer is stable up to at least 473 K (see Figure 3.2 (b)), a similar
thermal treatment led to the structural disintegration of the uncharged and unmetalated 2H-
TPP monolayer.

We could thus show that self-metalation of 2H-TPP on ultrathin MgO films is promoted by
integer charge transfer from the MgO/Ag interface into the 2H-TPP LUMO. Most remarkable,
this process is not restricted to defects such as low-coordinated sites at edges and corners but
occurs also on defect-free terrace sites. Previous computational studies revealed that the self-
metalation reaction is energetically unfavored on the terraces of bulk-like MgO [304]. There,
the energy gain due to the formation of hydroxyl groups next to the Mg2+ vacancy is too small
to compensate the high vacancy formation energy. It is obviously the charging of the 2H-TPP
molecules on the ultrathin MgO films that provides the energetic balance to make the metalation
reaction on terrace sites thermodynamically more favorable. This can be rationalized in terms
of the stronger interaction energy and the reduced surface-to-molecule distance for the charged
2H-TPP molecules. Moreover, the presence of a charged molecule on top of the MgO surface
leads to significant rumpling of the surface ions, which could further aid the self-metalation
reaction by lowering the vacancy formation energy. We note that our findings provide also
an explanation for the somewhat contradicting results of previous 2H-TPP monolayer adsorp-
tion studies on MgO thin films, where 50 % metalation has been reported on 10 ML thin MgO
films [304], whereas complete (100 %) metalation was observed on 2 ML thin MgO films [306].
The reason for this can be found in the electrostatics of the system. The charging is a conse-
quence of potential equilibration in the combined adsorbate-substrate system, which, for the
present case, can be explained with a simple capacitor model [299, 316]. In this model, an in-
crease of the dielectric thickness necessitates a decrease of transferred charge to keep a constant
potential. Thus, on thicker MgO films less molecules in the monolayer get charged and, con-
sequently, less molecules become metalated (Paragraph 3.2.4). It has to be noted that, while
our DFT simulations succeeded in describing the charging of 2H-TPP molecules and the asso-
ciated work function changes on MgO(001)/Ag(001), the results for the related self-metalation
reaction were not in good agreement with the experimental findings, even with inclusion of
various van-der-Waals corrections schemes (Paragraph 3.2.5). In general, the metalation reac-
tion of 2H-TPP on the MgO(001)/Ag(001) surface is a complicated process to simulate, since it
bridges ionic binding, weak physisorption and metal-organic charge transfer, all situations that
can be well described by ab-initio methods individually, but in combination impose a serious
challenge and an open task for further computational investigations.

In summary, we have unraveled the mystery of the high 2H-TPP self-metalation activity
on ultrathin MgO(001)/Ag(001) films by showing that the metalation is promoted by charge
transfer. This finding provides important hints for the mechanism of the self-metalation of por-
phyrins on oxide surfaces. The charge-induced conformational changes in the molecule, the
decrease of the molecule-substrate distance, and the enhanced surface rumpling may all be rel-
evant parameters that positively influence the reaction pathway. Remarkably, our results sug-
gest a method to control electric and chemical (charged/metalated vs uncharged/unmetalated)
states of porphyrins by tuning the work function of the substrate or thickness of the dielectric,
which opens the way for a selective surface functionalization.
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3.2 Supporting Information

3.2.1 Experimental Details

All experiments were performed under ultrahigh vacuum conditions in three separate prepa-
ration and analysis systems. All chambers were equipped with the tools necessary for sample
cleaning/preparation (electron beam heating, sputter gun, metal and molecule evaporators, gas
dosing) and basic characterization (low energy electron diffraction, quadrupole mass spectrom-
eter).

Sample preparation

The Ag(001) substrate was cleaned by repeated cycles of sputtering (Ar+ ions at 0.8-1 kV) and
annealing (773 K, 2 min). MgO(001) films were grown by Mg evaporation from an e-beam evap-
orator in an oxygen environment. Mg fluxes used were of the order of 1 Å/min as monitored by
a quartz microbalance. The MgO deposition was done at a substrate temperature of 553 K and
in an O2 pressure of 10−6 mbar, followed by slow cooling (roughly 2.5 ◦C/min), the accepted
procedure providing epitaxial MgO(100) films with high structural quality [317]. 2H-TPP was
deposited onto the MgO(001)/Ag(001) substrate either at room temperature or 80 K from a
Knudsen type molecular evaporator heated to 433 K. The molecular flux was calibrated using
a quartz microbalance. The low energy electron diffraction (LEED) pattern of a full monolayer

of 2H-TPP adsorbed on MgO(001)/Ag(001) thin films shows a
(︃

4 −2
2 4

)︃
superstructure with a

square unit mesh with a unit vector of 13.3 Å.

Figure 3.6: LEED image of the 2H-TPP monolayer on MgO(001)/Ag(001).

Scanning tunneling microscopy (STM)

STM measurements were performed at 77 K with a Createc low-temperature STM attached to an
ultrahigh-vacuum preparation chamber (base pressure 2 × 10−10 mbar) using electrochemically
etched tungsten tips. The bias was applied to the sample.
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Photoemission experiments

Photoemission experiments were performed at the Metrology Light Source of the Physikalisch-
Technische Bundesanstalt (Berlin, Germany) at the insertion device beamline using a toroidal
electron-energy analyzer. A photon energy of 35 eV and an incidence angle of χ = 40◦ with
respect to the surface normal were used. The polarization direction is in the specular plane,
which is also the measured photoelectron trajectory. The emitted electrons were simultaneously
recorded with polar angles of -80◦ to 80◦ with respect to the surface normal. For the shown mo-
mentum maps, the photoelectron intensity on the positive polar angle range was used. Note
that this direction corresponds to the maximal molecular emission relative to the substrate emis-
sion. To measure the momentum maps for a chosen binding energy, the sample was rotated in
the azimuthal direction in 1◦ steps, which results in a full photoelectron distribution in the (kx,
ky)-plane perpendicular to the sample normal. The energy distribution curves were obtained by
integration of photoemission intensity over the entire available k|| range. Coverage-dependent
UPS (He I) and XPS (Mg Kα) experiments were taken in-house with a hemispherical Scienta
SES-200 analyser in angular and spatial mode, respectively. ARUPS spectra were taken along
the [100] azimuthal direction at θ = 40◦ take-off angle. XP spectra were taken at normal emis-
sion.

3.2.2 Computational details

DFT calculations for the gas-phase orbitals of both 2H-TPP and Mg-TPP have been performed
with the ab-initio quantum chemistry software NWChem [318]. We have used a 6-31G* basis
set and the GGA-PBE approximation for exchange-correlation effects [319]. Theoretical mo-
mentum maps of the angular photoelectron distribution have been simulated within the plane
wave final state approximation, from the Fourier transform of the real space orbitals of the iso-
lated molecule, as described in Ref [46]. In order to shed light on the metalation of 2H-TPP, we
have additionally simulated the adsorption of 2H-TPP and Mg-TPP on the MgO/Ag-surface in
various configurations by means of DFT utilizing the VASP code and employing the projector-
augmented wave method [320, 321]. Using a repeated slab approach, with 5 Ag-layers, 2 MgO
layers and one molecule per unit cell, an inter-layer vacuum layer of 13 Å thickness and a
dipole-correction in z-direction, all investigated structures have been optimized using a van
der Waals corrected GGA functional for exchange and correlation effects [319, 137]. All atomic
positions except those of the lowest 3 layers of Ag have been relaxed, and we have used the ex-
perimental lattice parameter of Ag with a = 4.076 Å. Subsequent to the geometry optimization,
the electronic structure has been calculated using an energy cutoff of 400 eV, a Gaussian-type
smearing with a broadening of 0.2 eV and a Brillouin zone-sampling with 8x8x1 points centered
around the Gamma point.

3.2.3 Work function tuning and influence of defects

A typical MgO thin film preparation results in samples with an average work function of
2.8 ±0.2 eV, which is similar to the calculated work function for an MgO(001)/Ag(001) sys-
tem with ideal, i.e. stoichiometric, interface (see below and Ref. [322, 323]). Based on previ-
ous experimental reports [324] and theoretical predictions [323] we applied various treatments
to alter the work function. To reduce the WF, we typically mildly annealed the samples af-
ter preparation in UHV or evaporated additional Mg during annealing. To increase the WF, the
samples were exposed to oxygen (5×10−7 to 2×10−4 mbar) at elevated temperature after prepa-
ration. For the experiments presented in this paper, the MgO films were either used as obtained
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from a typical preparation (WF = 2.7 eV), or additionally exposed to oxygen to increase the WF
(WF = 3.9 eV). As shown below (Computational results 3.2.5), the work function variation can
be accomplished by inserting additional oxygen atoms in the interstitial sites of the topmost Ag
layer (WF increase), or be replacing Ag atoms in the topmost Ag layer by Mg (WF reduction).
Neither of these treatments changes the stoichiometry of the MgO film on top of the Ag(001)
substrate. (We mention that it is also possible to change the work function by introducing either
oxygen or magnesium vacancies in the interfacial MgO layer [299], but this is experimentally
less likely at the applied conditions.)

Of course, some defects can and will be formed during the MgO film growth and several
previous studies have reported on defect characterization on MgO thin films. The most obvious
surface defects on MgO thin films are low coordinated sites at step edges [325, 326]. Addition-
ally, color centers (oxygen vacancies) have attracted a lot of interest in the past [327]. They can
either exist with 0, 1, or 2 electrons trapped inside the vacancy. In particular, the F+ and F0 cen-
ters (1 and 2 trapped electrons, respectively) lie energetically above the MgO valence band and,
therefore, can influence the reactivity of the MgO surface. There are, however, no indications for
a large and countable abundance of color centers on freshly prepared MgO thin film samples,
neither from scanning tunneling microscopy [328], electron spin resonance [329, 328], UPS and
metastable impact electron spectroscopy [326, 330], and electron energy loss spectroscopy [331]
studies. It is known that color centers can be formed on thin MgO films by relatively harsh
measures such as electron bombardment [329, 328, 331]. It is, therefore, safe to say that for
the results presented in this manuscript, defects do not play a significant role for the observed
charge transfer into 2H-TPP on the ultrathin MgO films. This is supported by both the initial
work function dependence and the MgO layer thickness dependence of charging and metala-
tion, which follows the expectations of the capacitor model and relies only on charge transfer
from the MgO-Ag interface to the molecules on the surface. If surface defects would be respon-
sible for the charge transfer into the 2H-TPP molecules, the capacitor model would not be valid
anymore, which is not observed (see Paragraph 3.2.4).

3.2.4 Results of additional experiments

Adsorption of Mg-TPP on high work function MgO(001)/Ag(001)

To provide an additional proof that the state at 0.75 eV binding energy is due to charge transfer
into the LUMO of 2H-TPP, and is not related to an intrinsic electronic state of Mg-TPP, which
is formed by self-metalation on the MgO surface, we have deposited Mg-TPP on a high WF
2 ML MgO(001)/Ag(001) substrate. In Figure 3.7 we compare the UPS spectra of this prepa-
ration with the UPS spectra of 2H-TPP deposited on low WF and high WF 2 ML MgO(001)/-
Ag(001). As reported in Section 3.1, only on low WF MgO(001)/Ag(001) the state at 0.75 eV is
present, according to charge transfer from the substrate into the molecular LUMO. The depo-
sition of 1 ML Mg-TPP on a high WF substrate, where no charge transfer occurs, gives rise to
an UPS spectrum without any new features directly below the Fermi energy. The broad peak at
2 eV BE is related to the HOMO and HOMO-1 emissions of neutral Mg-TPP.

Work function and MgO film thickness dependence of charging and self-metalation

According to our previous findings [299, 299], if the work function is low enough for charge
transfer to occur into adsorbates on MgO(001)/Ag(001) thin films (Fermi level pinning regime),
the number of charged molecules on the surface is related to the potential difference ∆Φ (work

55



Chapter 3. Charge-promoted Self-metalation of Porphyrins on an Oxide Surface

Figure 3.7: Comparison of UPS spectra after adsorption of a monolayer 2H-TPP on
2 ML MgO(001)/Ag(001) films with different initial work function (bottom) and for a mono-
layer Mg-TPP on a high work function 2 ML MgO(001)/Ag(001) film.

function difference before and after adsorption) according to the capacitor model:

∆Φ =
σdcs

ε0εr
, (3.1)

where σ is the average charge density in the molecular film [C/m2], εr is the dielectric con-
stant of the thin film and dcs (charge separation distance) is the distance between the charge at
the molecule and the interface. Thus, for the same MgO film thickness (same dcs), the num-
ber of charged molecules depends on the initial work function and decreases as Φi increases.
We have tested this hypothesis by studying the charge transfer into and self-metalation of 2H-
TPP on 2 ML MgO(001)/Ag(001) preparations with different initial work function. As shown
in Figure 3.8, the experimental results are in agreement with the expectations from the capac-
itor model: as the initial work function is increased, the intensity of the state at 0.75 eV BE in
UPS (Figure 3.8, left), which is related to the occupied former LUMO of the TPP molecules, de-
creases until it is no longer present on samples with high initial work function, where no charge
transfer takes place. Concomitant with the decrease of the former LUMO intensity in UPS, the
N 1s XPS peak related to metalated TPP (Mg-TPP) decreases and the fraction of unmetalated
2H-TPP increases (Figure 3.8, right). Note that for an initial work function of 3.3 eV, which is the
same as the observed pinning work function that marks, in an ideal system, the transition from
charging to non-charging, there is still a large fraction of charged and metalated TPP present
on the surface. This result can be understood based on the creation of an additional dipole due
to a push-back effect of the adsorbed TPP molecules, which partly counterbalances the charge-
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Figure 3.8: ARUPS (left) and N 1s XPS (right) spectra of 2H-TPP adsorbed on 2ML
MgO(001)/Ag(001) samples with different initial work function (Φi). Increasing initial work
function reduces charge transfer (f-LUMO) and metalation.

induced dipole. The “true” pinning work function is therefore a few tenths of an eV above the
observed pinning work function (see also the discussion in Ref. [299]). From the relative intensi-
ties of the N 1s XP signals the fraction of charged/metalated and uncharged/unmetalated TPP
molecules in the monolayer can be calculated. For the Φ = 3.3 eV work function sample shown
in Figure 3.8, around 30% of the molecules in the monolayer are charged/metalated and 70% of
the molecules are uncharged/unmetalated. This is also consistent with the f-LUMO intensity
seen in the ARUPS.

Next, we have studied the MgO film thickness dependence of the charging and self-metalation
process. According to Equation 3.1, the number of charged molecules should decrease at con-
stant potential difference ∆Φ if the MgO film thickness (and thus dcs) is increased [299]. We
have prepared MgO films with the same initial work function (Φi = 2.7 eV) but different thick-
ness (nominally 2 ML, 4 ML and 8 ML) and show in Figure 3.9 the UPS (left) and N 1s XPS
(right) results for the adsorption of a monolayer 2H-TPP on these samples. For the 2 ML and
4 ML thin MgO(001) films the results are almost identical and suggest that only charged and
metalated TPP molecules are present on the surface. However, we observe a decrease of the
occupied former LUMO peak in UPS and, as a result, the co-presence of metalated (50%) and
non-metalated TPP (50%) molecules according to XPS, for the 8 ML thin MgO film, in perfect
agreement with the expectations from the capacitor model (Equation 3.1). The additional re-
sults presented here thus provide further proof for the direct relation between charge transfer
into and self-metalation of 2H-TPP on the surface of ultrathin MgO(001)/Ag(001) films.

3.2.5 Computational results

An overview over the simulated structures can be seen in Figure 3.10. Importantly, we have also
investigated the influence of the substrate’s work function (WF) on the electronic structure of
the adsorbed molecule. The DFT calculation for two stoichiometric layers of MgO on five lay-
ers of Ag results in an initial WF of 3.0 eV prior to the adsorption of the molecule (Figure 3.10,
middle row). When incorporating an additional 1/4 monolayer of oxygen atoms at interstitial
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Figure 3.9: ARUPS (left) and N 1s XPS (right) spectra of 2H-TPP adsorbed on
MgO(001)/Ag(001) samples with different MgO film thickness. Increasing MgO thickness (with
the same initial work function) reduces charge transfer (f-LUMO) and metalation (XPS).

sites in the topmost Ag-layer, the WF rises to 4.7 eV (Figure 3.10, top row) as has already been
described in Ref [323]. Conversely, substituting 1/4 of the Ag atoms in the topmost Ag layer by
Mg lowers the initial WF to 2.1 eV (Figure 3.10, bottom row) [324]. Using these three model sub-
strates, both the adsorption of 2H-TPP (Figure 3.10, middle column) and Mg-TPP (Figure 3.10,
right column) has been simulated. Note that for the adsorption of Mg-TPP, the metalation re-
action has been simulated as an exchange reaction consisting of the removal of a Mg2+ from
the topmost MgO layer and the concomitant creation of a hydroxyl group in the so-created Mg
vacancy. As can be seen from Figure 3.10, the preferred adsorption site of 2H-TPP is the center
of the molecule being on top of an oxygen ion (red balls) with the nitrogen atoms sitting on
top of Mg2+ (orange balls) resulting in an azimuthal orientation of the molecule in agreement
with experimental findings. When studying the exchange reaction for the metalation process
we have tested several relative positions of the hydroxyl groups (protons highlighted as green
balls) with respect to the molecule’s central Mg2+ ion (highlighted as dark blue ball). It turns
out that in the most favorable adsorption configuration, Mg-TPP’s center is again situated on
top of an oxygen atom and the hydroxl groups are located in the topmost MgO layer at the
position of the Mg2+ vacancy underneath a nitrogen atom of Mg-TPP.

The resulting electronic structures have been analyzed in Figure 3.10 in terms of their total
density of states (DOS, black lines) and the DOS projected onto the molecule (red lines). In all
cases one can clearly identify the energetic positions of the frontier molecular orbitals as indi-
cated in the figure. While for the high WF case no charge transfer into the LUMO takes place,
neither for the 2H-TPP nor the Mg-TPP case, the situation is markedly different for the initial
WF of 3.0 eV. Here the calculation results in the formerly doubly degenerate LUMO peak to be
centered at the Fermi energy, clearly indicating 1e charge transfer into the LUMO. It should be
noted that the energy of the LUMO peak truncated by EF must be taken as an artifact of the
computational treatment. As has been shown for other molecular systems adsorbed on thin
insulating layers on metals integer charge transfer leads to the singularly occupied molecu-
lar orbital (SOMO) appearing well below EF and the singularly unoccupied molecular orbital
(SOMO) well above it [316, 76]. The creation of supercells containing more than one molecule
and the usage of a hybrid functional with a substantial fraction of exact exchange [76, 332]
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would be necessary to realize conditions that allow for integer charge transfer. Unfortunately,
in the present case, such a theoretical treatment is prevented by the large number of atoms per
unit cell owing to computational reasons. Nevertheless, from our experience [76], we expect
that the electronic structure shown for the initial WF of 3.0 eV would lead to an integer charge
transfer corresponding to the experimentally observed situation of the f-LUMO (SOMO) 0.8 eV
below EF. Finally, when reducing the initial WF to 2.1 eV by incorporating additional Mg atoms
in the topmost Ag layer, the LUMO peak moves almost entirely below the Fermi energy thereby
further promoting the charge transfer into the molecule with the LUMO fully occupied (2 elec-
trons). In order to tackle the question of the relative energetic stability of the adsorption of intact
2H-TPP on MgO(001)/Ag(001) compared to the metalated Mg-TPP on MgO(001)/Ag(001) as
resulting from the exchange reaction described above, we now analyze the adsorption energies
resulting from our DFT total energy calculations. We define the adsorption energy as follows:

Eads = Etot − (Esurf + Emol). (3.2)

Here, Etot refers either to the total energy of 2H-TPP on MgO(001)/Ag(001) or the Mg-TPP
on MgO(001)/Ag(001) complex subsequent to the metalation reaction, and Esurf and Emol, re-
spectively, refer to the total energies of the uncovered MgO(001)/Ag(001) substrate prior to
the adsorption and the gas-phase 2H-TPP molecule’s total energy. With this definition of the
adsorption energy, negative values correspond to bonding to the surface while positive val-
ues suggest that adsorption is not favored. To investigate the role that van-der-Waals (vdW)
corrections play for the adsorption energies and to demonstrate possible complications inher-
ently present in state-of-the-art vdW-corrected DFT functionals when applied to mixed metal-
lic/ionic/molecular hybrid systems, we have evaluated the adsorption energies for four dif-
ferent functionals. First, we disregard vdW corrections entirely, that is, we employ the stan-
dard PBE-GGA functional (GGA) [319]. Second, we use Grimme’s empirical D3 method [137],
which we have already used for the electronic structure analysis discussed above. In addi-
tion, we have employed two more vdW-correction schemes, namely the SCAN+rVV10 method
(SCAN) [115, 173] and the Tkatchenko-Scheffler (TS) [140, 151, 152] method with parameters
obtained from the self-consistent screening equation. It should be noted that for each functional
all structures have been relaxed prior to the evaluation of Equation 3.2. The resulting adsorp-
tion energies as well as the final work function values are listed in Table 3.1. First, we note that
in a pure GGA calculation without vdW correction, neither 2H-TPP nor the metalated Mg-TPP
would bind at all, or at least only very lightly, on the high and medium WF substrates. This
finding is in agreement with earlier GGA calculations for Mg-TPP on bulk MgO cubes [304],
where the self-metalation reaction was found to be thermodynamically favorable at step edges
of MgO but not on a defect-free MgO surface. Only for the very low initial WF does PBE pre-
dict binding, which can be explained by the substantial electron transfer. Importantly, when
comparing the situation before and after the metalation, we observe that PBE predicts the met-
alation reaction to be favored except for the low WF substrate where PBE yields almost equal
adsorption energies for the two molecules. It is a well-known fact that vdW interactions, which
are not properly accounted for in a GGA functional, play an essential role in the adsorption
of organic molecules on all organic and inorganic substrates. When inspecting the adsorption
energies obtained for Grimme’s empirical DFT+D3 correction, we indeed notice the strong in-
fluence of dispersive long-range interactions on the energy balance for the adsorption. First,
the adsorption energies now clearly indicate that, both, 2H-TPP and Mg-TPP will stick to the
MgO(001)/Ag(001). Secondly, we observe that the binding becomes more favorable with the
increased charge transfer into the molecule on decreasing the substrate’s initial WF. However,
DFT+D3 predicts the metalation reaction to be endothermic except for the high WF substrate.
There are several reasons which might explain this theoretical outcome conflicting somewhat
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Initial WF (eV) Adsorbate Adsorption energy (eV) Final WF (eV)

GGA D3 SCAN TS GGA D3 SCAN TS
4.7 2H-TPP 0.42 -3.41 -5.01 -7.1 4.52 4.16 3.96 4.17
4.7 Mg-TPP -0.08 -3.61 -5.18 -6.62 4.55 4.43 4.32 4.46
3 2H-TPP 0.72 -4 -6.22 -7.76 3.17 3.2 3.36 3.19
3 Mg-TPP 0.44 -3.7 -5.9 -6.87 3.12 3.16 3.25 3.13

2.1 2H-TPP -1.84 -6.22 -8.55 -8.43 3.03 3.17 3.24 3.12
2.1 Mg-TPP -1.72 -5.71 -7.79 -6.42 3.06 3.07 3.11 2.98

Table 3.1: Adsorption energies according to Equation 3.2 and final work functions for 2H-TPP
and Mg-TPP for different initial WFs for four the different DFT functionals GGA, D3, SCAN
and TS, respectively. See text for more details.

with the experimental findings. First, it should be noted that, although we have tested several
configurations for the position of the hydroxyl group relative to the Mg-TPP adsorption posi-
tion, we may have missed the global energy minimum of the metalated Mg-TPP complex on
the surface. Secondly, it should be stressed that the present case of an organo-metallic complex
adsorbed on an ionic crystal double-layer residing on a metallic substrate challenges common
vdW correction schemes. For instance, while pure GGA is known to describe ionic crystals well,
it fails to correctly describe weak physisorption of molecules on surfaces [333]. Thus, the known
deficiencies of common vdW-correction schemes for ionic bonds may prevent the delicate inter-
play between bonding of Mg to the MgO-lattice and the Mg-N interaction inside Mg-TPP to be
correctly accounted for. We have indeed tested how other vdW-correction schemes perform for
the present systems. Summarizing the results listed in Table 3.1, we find quite a strong effect on
the absolute size of the adsorption energies, e.g., the adsorption energies from the SCAN and
TS schemes are significantly larger than those from the D3 approach. However, also the latter
approaches would predict the metalation to be less favored. As a third and final reason for
this discrepancy, it should be emphasized that the charge transfer into the molecule plays a key
role for the metalation. While the GGA+vdW approach captures the overall correct trend as a
function of the substrate’s WF (compare discussion above and results of Figure 3.10), it must be
noted that a more realistic description of the charge transfer would probably require the utiliza-
tion of hybrid DFT functionals [332]. Unfortunately, however, a full geometry relaxation using
hybrid functionals is presently computationally out of reach for such large unit cells.

In general, the metalation reaction of 2H-TPP on the MgO(001)/Ag(001) surface is a compli-
cated system to simulate, since it bridges ionic binding, weak physisorption and metal-organic
charge transfer, all situations that can be well described by ab-initio methods individually, but
in combination impose a serious challenge and an open task for further computational investi-
gations and developments.
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Figure 3.10: Overview of total DOS (black) and DOS projected on molecule (red) for 3 different
initial WF (rows) for 2H-TPP and Mg-TPP on MgO(001)/Ag(001) (columns). In the real space
models the red, orange and grey balls represent O, Mg and Ag atoms, respectively, while the
small green balls represent the displaced hydrogen.
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Chapter 4

Charge and Adsorption Height
Dependence of the Self-metalation
of Porphyrins on Ultrathin
MgO(001) Films

Figure 4.1: Header of the article as published in Journal of Physical Chemistry Chemical
Physics [334].

Significance Statement

This work is a follow-up project of the self-metalation of tetra-pehyl-porphyrins as described
in Chapter 3. Here we studied the adsorption of the smaller parent-molecule, porphin, instead
of tetra-pehyl-porphyrin, on the same surface of 2 ML MgO/Ag(100). In contrast to its larger
relative, porphin lacks the upstanding phenyl side-groups of tetra-pehyl-porphyrin and could
therfore serve for two tasks. Firstly, more extensive computational studies were possible due
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to the smaller unit cell of the molecule. This fact was especially important for resolving the
open questions about the incorporation of different treatments for van der Waals interaction in
such systems, as raised by the previous work. Secondly, the flat porphin molecules are believed
to adsorb closer to the surface, as the non-planar tetra-pehyl-porphyrin. This allowed us to
examine the self-metalation in a regime of stronger molecule-surface interaction where different
mechanisms for the metalation-process could become relevant.

Indeed, when varying the surface work function as in the previous study on tetra-pehyl-
porphyrins, we found that porphin self-metalates, irrespective of charge transfer from the sur-
face to the molecules, which could also be reproduced with DFT calculations by employing a
dedicated van der Waals functional.
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Abstract

We have experimentally determined the adsorption structure, charge state, and metalation state
of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported
MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported
by calculations based on density functional theory. By tuning the substrate work function to
values below and above the critical work function for charging, we succeeded in the prepa-
ration of 2H-P monolayers which contain negatively charged and uncharged molecules. It
is shown that the porphin molecules self-metalate at room temperature, forming the corre-
sponding Mg–porphin, irrespective of their charge state. This is in contrast to self-metalation
of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are
negatively charged. The different reactivity is explained by the reduced molecule-substrate dis-
tance of the planar porphin molecule compared to the bulkier TPP. The results of this study
shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of
the adsorption geometry on the chemical reactivity.

4.1 Introduction

Tailoring the properties of molecules of the tetrapyrrole family by metalation and functional-
ization is potentially useful for targeting specific applications, e.g., in the fields of catalysis,
sensing, and optoelectronics. To this end, on-surface preparation strategies, mostly carried out
on metal surfaces, for variously functionalized porphyrins and phthalocyanines have been de-
veloped, that provided detailed insight into their hierarchical organization and allowed their
structural, electronic and chemical properties to be studied in great detail [77, 78, 335]. How-
ever, for specific applications, e.g., if porphyrins are to be used in solar energy harvesting de-
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vices [336], it is desirable to switch to semiconducting substrates such as oxides. Compared to
metal surfaces, atomic-scale investigations into the interfacial properties of hybrid systems ox-
ide/porphyrin are just emerging. Herein, we present a study of the interface between the basic
tetrapyrrole macrocycle, the free-base porphin (2H-P), and welldefined MgO(001) surfaces, to
elucidate the role of the distance between the macrocycle and the surface, and of the charging
of the molecules, on its self-metalation activity.

The controlled synthesis of metal-tetrapyrrole complexes and assemblies is possible by sur-
face-confined methods such as post-metalation or self-metalation of adsorbed molecules [298].
It is established that free-base porphyrins self-metalate in a redox process on specific metal
substrates, e.g. Fe, Ni, Co, Pd, Cu, Ag, Au, where it often requires thermal activation or the aid
by adsorbed oxygen [337, 338, 308, 339, 340, 341]. Recent studies have also provided insight into
the anchoring and self-metalation of porphyrins, specifically of 2H-tetraphenyl-porphyrin (2H-
TPP) and its derivatives, on oxide surfaces such as MgO [304], TiO2 [300], or cobalt oxides [303].
In contrast to on metal surfaces, the self-metalation reaction on oxides can be viewed as an ion-
exchange process, where the two aminic protons in the macrocycle are replaced by a substrate
cation and either desorb, or form hydroxyls on the surface.

2H-TPP adsorbs flat, that is, with the macrocycle parallel to the surface, on most oxide sur-
faces. Its self-metalation has been shown to depend on the type of oxide. For example, TPP read-
ily metalates on CoO(111) and Co3O4(111) [339, 303] films at room temperature, but requires
thermal activation on TiO2(110) [300], where initially the diacid (4H-TPP) is formed and the met-
alation process might be triggered by the diffusion of interstitial Ti to the surface [342, 343, 344].
In addition, a strong dependence of the self-metalation activity on oxides on the adsorption
geometry has been noted. The introduction of specific anchor groups, e.g. carboxylic or phos-
phonic acid groups attached to the phenyls of TPP, can shift the preferred adsorption geometry
from flat-lying to upright standing, which generally leads to suppression of self-metalation,
depending on coverage and temperature [345, 346, 347, 348, 349, 350, 351, 352, 353, 354].

While for some flat oxides the high self-metalation yield points to a high activity of regular
surface sites in this process, the possible involvement of surface defects has to be considered as
well [355]. A specific case evolved for MgO, for which self-metalation of 2H-TPP was originally
demonstrated for MgO nanostructures on the edges of cubic nano-crystals, where the energy
needed to extract a magnesium ion is lower and the energy balance due to the formation of hy-
droxyls is favorable [305]. Subsequent experiments suggested that also on flat, single-crystalline
substrates it only occurs at undercoordinated sites [304]. In contrast, we have recently shown
that it can occur on the regular surface sites of a planar Ag(001)-supported MgO(001) ultrathin
film, where the metalation process is facilitated by charge transfer (CT) of electrons from the
metal substrate, through the MgO film, into the adsorbed porphyrins [296].

However, the underlying mechanism allowing or preventing self-metalation based on charge
transfer has not been fully understood. One possible explanation is suggested by our previous
observation that charge transfer leads to electrostatic attraction, pulling the porphyrin macro-
cycle of 2H-TPP closer to the MgO surface compared to the uncharged case, where the distance
to the surface is larger because of the steric effect of the bulky phenyl ligands [296]. By similar
arguments, the self-metalation activity of 2H-TPP on the edges and corners of nanoparticulate
MgO [305] could be explained by the macrocycle making a closer approach at corners and edges
without interference of the steric repulsion of the phenyls [356].

To provide support for this hypothesis, we present in this work an experimental and com-
putational study about the self-metalation of the free-base porphin (2H-P) on the surface of
ultrathin MgO(001) films. Compared to 2H-TPP, the porphin molecule is lacking the four exter-
nal phenyl ligands and is therefore completely planar, which should allow the macrocycle to get
closer to the surface even without the help of electrostatic attraction due to charging. In addi-
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tion, since the phenyl ligands contribute only little to the frontier molecular orbitals of 2H-TPP,
the electronic structures of 2H-TPP and 2H-P in the energy range of interest are almost identical
and should therefore not be accountable for any observed differences in self-metalation activity.

Experimentally, we follow a similar approach as previously reported for the study of the
self-metalation of 2H-TPP on ultrathin MgO(001) films on Ag(001) [296]. By variation of the
work function Φ of the MgO(001)/Ag(001) substrate, we are able to control the charge trans-
fer into the 2H-P molecular monolayer and, thus, can study the self-metalation of charged and
uncharged molecules. The basic structural characterization of the 2H-P monolayers was per-
formed with scanning tunneling microscopy (STM) and low energy electron diffraction (LEED).
The charge and the metalation state of the 2H-P molecules was determined using ultravio-
let photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS), respec-
tively. The result of these measurements, that the self-metalation of 2H-P on ultrathin Ag(001)-
supported MgO(001) films does not depend on the charge state of the molecules, is supported
by calculations based on density functional theory (DFT).

4.2 Methods

4.2.1 Experimental

The experiments were performed in two separate ultrahigh vacuum apparatuses, one specifi-
cally designed for low-temperature scanning tunneling microscopy studies, and the other one
for photoemission experiments. The Ag(001) crystal was cleaned by repeated sputtering (sam-
ple current IS = 4 µA, HV = 750 V) and annealing (T = 750 K) cycles. The ultrathin MgO films
were then grown via reactive Mg deposition, using slightly different growth conditions to ob-
tain films with either standard or high-Φ [299]. The growth rate was controlled by the Mg
deposition rate, which was calibrated with a quartz microbalance. To obtain a standard-Φ film,
Mg was evaporated in p = 1.0 × 10−6 mbar O2 onto the sample kept at T = 550 K; the O2 flow
was then promptly switched off together with the Mg flux and the sample was slowly cooled
to RT (10 K min−1). The high-Φ film was obtained likewise, however the O2 pressure was
slightly higher (p = 2.0 × 10−6 mbar); moreover, after interrupting the Mg flux the O2 flow was
left at the same pressure and the sample temperature was firstly kept constant for 10 minutes,
then slowly cooled at the same rate always in O2 flow, and the gas flow was only switched off
once the sample temperature reached below 400 K. 2H-P (95% purity) from Frontier Scientific
was used without further purification and was deposited onto the MgO film held at RT from a
home-built evaporator with the porphin powder contained in a crucible, which was heated to
430 K for sublimation. The calibration of the deposited amount was again based on the quartz
micro-balance and the Φ behavior during a dosing series was used to determine the dose cor-
responding to a monolayer (here we define 1 ML as the single layer completion coverage).

UPS measurements were performed using a NanoESCA system by ScientaOmicron, with a
custom-designed preparation chamber attached to it, which is equipped with a sputter gun, a
heating stage, the Mg (FOCUS EFM 3T) and molecule (resistively heated crucible) evaporators,
leak valves and an XPS setup from SPECS (Phoibos 150 analyzer and XR50 Al-Kα source). The
sample temperature during all photoemission experiments was room temperature. Ultravio-
let He I (hν = 21.22 eV) light was produced by a HIS 14 HD excitation source by Focus and
reflected onto the surface at an angle of 68◦ to the surface normal by a toroidal mirror. UPS
spectra were collected with a channeltron detector, and the work function Φ was determined
from the secondary electron cutoff in a sample bias configuration. LEED and STM measure-
ments were carried out in another set-up, also equipped with the necessary sample preparation
equipment. Since the electron beam can damage or even destroy molecular overlayer structures,
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LEED experiments were always performed after STM experiments. For 2H-P on standard-Φ
samples LEED images of reasonable quality could be obtained, while for 2H-P on high-Φ sam-
ples the diffuse pattern present disappeared too quickly. Therefore, no LEED images could be
obtained for the corresponding preparations. STM images were obtained at T = 77 K in a low-
temperature STM system from Createc. Electrochemically etched tungsten tips were used, and
the bias voltage was applied to the sample.

4.2.2 Theoretical

The geometric and electronic properties of adsorbed (Mg-)porphin molecules were computed
in the repeated slab-approach, using 5 layers of Ag plus 2 layers of MgO as a substrate and a
minimum of 18 Å vacuum between the slabs. We used the plane-wave code VASP [357, 320, 358]
with the projector-augmented wave method [321] and a dipole-correction in z-direction to avoid
spurious electric fields. Since systems with organic molecules on dielectric interlayers on metal
substrates have proven to be challenging [296], we used the explicit van der Waals-functional
optb86b-vdW [169, 170] for exchange-correlation effects, including long-range dispersion. All
geometries were relaxed to a total energy convergence of 0.001 eV, with the 3 lowest layers of
Ag held fixed (lattice constant: 4.092 Å). We sampled the Brillouin zone with a Monkhorst-
Pack [359] mesh of 4×4×1 and used a kinetic energy cutoff of 450 eV. For the simulation of the
electronic structure, refined settings with 8×8×1 k-point sampling and 500 eV energy cutoff
were used.

4.3 Results and Discussion

Charge transfer into adsorbates weakly interacting with MgO(001)/Ag(001) can be well de-
scribed by the parallel plate capacitor model. Within this model, the amount of transferred
charges depends on the work function (Φ) and on the thickness of the oxide film [299]. An im-
portant property for charge transfer is the pinning work function (Φpin), which is determined
by the electronic properties of the adsorbate and describes the highest substrate work function,
where charging can still be observed. The Φpin for the 2H-P/MgO(001)/Ag(001) system studied
here is 3.8 eV and thus similar to the one of 2H-TPP on the same substrate [296]. For samples
with an initial work function before molecule deposition (Φini) smaller than Φpin, charge trans-
fer into the molecules will occur, whereas for samples with Φini > Φpin no charging will occur.
In order to investigate the self-metalation of 2H-P molecules on ultrathin MgO(001) films and
its dependence on the charge state of 2H-P, we have prepared 2 monolayer (ML) thin MgO(001)
films on Ag(001) with different initial work functions: one, with a Φini < Φpin, will be denoted as
“standard-Φ” and has been obtained following the typical preparation procedure for flat MgO
films [360, 317]; the other, with Φini > Φpin, is denoted “high-Φ”. The high Φ is obtained by
treatment of the standard MgO(001)/Ag(001) thin film with oxygen at elevated temperature,
which introduces excess O at the MgO/Ag interface [323].

As shown by our LEED and STM results reported in Figure 4.2, monolayers of 2H-P form
a well-ordered overlayer structure on the MgO(001)/Ag(001) substrate. Figure 4.2 (a) shows
an STM image of 2H-P on the standard-Φ sample after deposition at room temperature (RT)
and mild heating to 400 K. The corresponding LEED pattern is displayed in Figure 4.2 (c). The
lattice formed by the adsorbates corresponds to a commensurate (1,4|4,1) super-structure. Two
90◦ rotated domains (indicated by the red and blue unit cells in Figure 4.2 (c)) are observed in
the LEED pattern. In STM, at the shown tunneling conditions, the molecules have a slight rhom-
bic appearance, i.e., with a 2-fold symmetry. It is interesting to note that, although 2H-P forms
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Figure 4.2: (a) and (b): STM images (12 nm × 12 nm) of a 2H-P monolayer on (a) standard-Φ,
and (b) high-Φ 2 ML MgO(001)/Ag(001), taken at 77 K. Tunneling conditions: (a) It = 58 pA,
Vbias = +0.1 V; (b) It = 53 pA, Vbias = +0.39 V. (c) LEED image (55 eV) of 2H-P on standard-Φ
MgO(001)/Ag(001). The unit cell vectors of the MgO substrate (black) and two mirror domains
of the 2H-P superstructure (red and blue) are indicated by arrows. (d) Schematic of the 2H-P
adsorption geometry on MgO(001) (green: Mg; red: O; black: C; blue: N; white: H).

a supercell not aligned with the high-symmetry directions of the MgO, the symmetry axes of
the individual molecules are closely aligned to a ⟨100⟩ direction of the substrate (as shown in
Figure 4.2 (d)). In Figure 4.2 (b) the STM image of 2H-P on a high-Φ sample is shown. The 2H-P
coverage here is slightly below full monolayer, and the sample has not been annealed to prevent
work function changes due to thermal-induced desorption of oxygen from the MgO/Ag inter-
face. Despite the slightly worse quality of the image, it can clearly be seen that the molecules
adsorb with the same orientational alignment as in the standard-Φ case and locally arrange in
the same superlattice.

To determine the degree of charge transfer into the 2H-P monolayer on the two substrates,
we have measured their ultraviolet photoemission spectra (UPS). The region between the Fermi
level (EF) and the strong MgO valence band (VB) emission differs significantly for the standard-
Φ and high-Φ samples, as can be appreciated in Figure 4.3 (a). For the case of the standard-Φ
sample, two distinct emissions are detected, at a binding energy (BE) of 2.8 eV and 1.0 eV,
respectively. In contrast, on the high-Φ sample only a single 2H-P-related emission is ap-
parent at 2.3 eV BE. The UPS spectra obtained here are similar to the ones of 2H-TPP on
MgO(001)/Ag(001) thin films of different Φini [296]. Following similar arguments as in our pre-
vious study, the emission at 1.0 eV on the standard-Φ sample is assigned to a former lowest un-
occupied molecular orbital (fLUMO) of the porphin, which is populated on charging. Note that
in an isolated porphin molecule the two lowest unoccupied MO’s (LUMO and LUMO+1) are
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Figure 4.3: (a) UPS spectra of the clean 2 ML MgO(001)/Ag(001) substrate (broken lines) and
of 1 ML 2H-P deposited at RT on a standard-Φ (red line, Φini = 2.73 eV) and a high-Φ (blue
line, Φini = 4.08 eV) sample, respectively. The Fermi energy (EF) and the major emissions cor-
responding to fLUMO and HOMO/-1 are indicated. (b) N 1s XP spectra of the same sample
preparations. Colored lines are raw data and black lines are the corresponding fits assuming
only a single N 1s component on each sample. N(M) indicates the BE of the N 1s peaks for
the metalated Mg-P, while N(1) and N(2) are the BE’s expected for unmetalated 2H-P (see Sec-
tion 4.5).

degenerate and no distinction between them is made at this point. The emissions between 1.5 eV
and 3 eV on both, the standard and high-Φ sample, are a superposition of the 2H-P HOMO and
HOMO-1, which are too close in energy to be resolved. Since no molecular emissions appear on
the high-Φ sample between EF and the HOMO/HOMO-1 emissions, we conclude that the 2H-P
molecules remain uncharged on this surface. This interpretation is supported by the observa-
tion of the work function change upon 2H-P adsorption. While the work function remained
constant in the case of the high-Φ sample, an increase of about 1 eV was noted for the standard-
Φ sample, which is consistent with the formation of a charge transfer dipole due to the presence
of negatively charged porphin molecules.

To determine if the different charge states of the molecules affect the self-metalation, N 1s XP
core level spectra have been acquired from the same samples. As shown in Figure 4.3 (b),
the corresponding spectra of 2H-P on high-Φ and standard-Φ MgO(001)/Ag(001) have a very
similar appearance and can both be fitted with a single component, N(M), which is centered
at a BE of 398.4 eV for the high-Φ sample and at 398.7 eV for the standard-Φ sample. The
larger width of the spectrum for the standard-Φ sample (full-width at half maximum of 2.1 eV
compared to 1.6 eV for high-Φ) arises from the presence of two species of metalated molecules,
namely charged and uncharged ones, which are too close in BE to be resolved. The presence of
both charged and uncharged species on an ultrathin MgO(001) film is not unexpected and has,
for example, previously been observed within an adsorbed pentacene monolayer [299].

The appearance of a single component in the N 1s spectrum of porphyrins is the accepted
fingerprint of their metalation: unmetalated molecules have two inequivalent nitrogen atoms,
as within each molecule two are protonated and two are not, whereas in the metalated case the
metal ion is equivalently bonded to all 4 nitrogen atoms, making them equivalent [309]. For
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comparison, the XPS of a sample with partially populated second (unmetalated) 2H-P layer is
shown in Section 4.5, from which we could identify the N 1s BE components originating from
unmetalated molecules (N(1) and N(2) in Figure 4.3 (b)), separated by 2 eV. In addition, the
appearance of a high-BE shoulder in the O 1s XP spectrum after 2H-P deposition, due to the
formation of hydroxyl groups, provides further confirmation of the metalation reaction (see
Section 4.5).

From the combined XPS and UPS results we can conclude that the porphin monolayers are
fully metalated on, both, high-Φ and standard-Φ MgO(001)/Ag(001) substrates. Thus, the self-
metalation reaction of 2H-P to Mg-P on the planar MgO(001) surface occurs irrespective of the
charge state of the molecules. This contrasts with the previously investigated 2H-TPP, which
remained unmetalated on a high-Φ substrate and was metalated only if charge transfer into the
molecules was possible [296]. Our suggestion that the charging of 2H-TPP is necessary to bring
the porphyrin macrocycle closer to the MgO surface, thereby facilitating the self-metalation, is
thus strongly supported by the experimental observations.

To corroborate the experimental findings, we performed DFT calculations for a standard-Φ
(3.1 eV) and a high-Φ (4.7 eV) system, respectively. The former is obtained with a stoichiometric
MgO(001) film on Ag(001), while the latter is achieved by adding 1/2 ML of oxygen in intersti-
tial sites at the MgO/Ag interface [299, 323]. We have performed the calculations for two unit
cell sizes, one resembling the full monolayer (high coverage, HC), and one with a larger unit
cell (low coverage, LC) to simulate the situation of a more or less isolated 2H-P(Mg-P) molecule.

Firstly, we discuss the adsorption configuration (side views and top views in Figure 4.4 (a))
for the low coverage case. The adsorption geometry was found to be the same regardless of
the work function (Figure 4.4, left panel: standard-Φ; right panel: high-Φ). The inner part
of the macrocycle is slightly bent towards the surface with an average height of 2.69 Å and
2.83 Å, respectively (Table 4.1). The pyrrolic nitrogen atoms are located on top of surface Mg2+

ions with the two aminic protons pointing towards a surface O2− ion below the center of the
molecule. The calculated density of states (DOS) is shown in Figure 4.4 (b). Here, a significant
difference is observed between the two systems: for high Φ, the DOS has a clear gap around the
Fermi level (EF), with the LUMO located about 0.5 eV above it, while for standard Φ the LUMO
crosses EF. These results agree qualitatively with the experimental data, showing that on the
high-Φ sample the molecules remain neutral, whereas on the standard-Φ sample the molecules
get negatively charged.

The self-metalation was simulated by exchanging an Mg2+ ion from the surface with the
aminic protons. The subsequent geometry relaxation shows that the protons bind with the O2−

in the Mg2+ vacancy forming hydroxyls, and that the exchanged Mg2+ is positioned slightly
below the molecular backbone. As shown in Figure 4.4 (a), the overall adsorption geometry
is hardly modified by metalation. For high Φ, there is a significant stabilization of the meta-
lated state over the unmetalated one by 0.83 eV, whereas for standard Φ the energy difference is
small (Table 4.1). This is most likely related to the fact that the unmetalated 2H-P, due to charg-
ing, adopts already an energetically favorable adsorption height for metalation. Indeed, on
the standard-Φ surface the N-surface distance is only marginally reduced upon metalation (Ta-
ble 4.1). Regardless of the work function, the Mg2+ ion in the macrocycle (MgP) is coordinated
to a surface O2−, which is significantly lifted from the surface plane (by 0.25 Å). The MgP-Osurf
distance is 2.06 Å, which is only slightly larger than the Mg–O distance in the film (2.04 Å in
our calculation) and shows that in the metalated case, the extracted Mg2+ ion adopts a position
that resembles the continuation of the Mg-O lattice in vertical direction. Qualitatively, the DOS
of the metalated molecules shows a similar charging behavior to that observed for 2H-P, with
the LUMO crossing EF in the case of standard Φ, and a clear HOMO-LUMO gap around EF for
high Φ (Figure 4.4 (b)).
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Figure 4.4: (a) Side views and top views of the DFT (optb86b)-optimized geometry for 2H-P and
Mg-P on standard-Φ (left panel) and high-Φ (right panel) 2 ML MgO(001)/Ag(001). Colors:
grey: Ag; pink: O; red: O of OH; green: Mg; black: C; blue: N; white: H. Note that the high Φ
was obtained by adding 1/2 ML O at interstitial sites of the interfacial Ag layer. (b) Calculated
density of states (DOS) for 2H-P (full lines) and Mg-P (dotted lines) on standard-Φ (left panel)
and high-Φ (right panel) 2 ML MgO(001)/Ag(001). The black and colored lines represent the
total DOS and the DOS projected onto the C atoms of 2H-P/Mg-P, respectively.

To investigate the role of lateral interactions between molecules in the adsorbed ML, we
repeated all calculations with a smaller unit cell (corresponding to the experimental ML). The
adsorption geometry and DOS obtained for these systems is shown in Section 4.5. Most signif-
icantly, the favorable adsorption site for the unmetalated molecules is with their center above
a surface Mg2+ ion, and they are further away from the surface than at lower coverage: the
d(N-surface) increases from 2.75 Å to about 3.1 Å for, both, high-Φ and standard-Φ. By con-
trast, for Mg-P a similar geometry and molecule-to-surface heights were obtained as in the low
coverage case (Table 4.1). Also the DOS shows some differences at quantitative level, but the
qualitative behavior is the same (see Section 4.5). For the high-Φ, the LUMO shifts up in en-
ergy. For standard-Φ, a similar upward shift results in a smaller area of the LUMO DOS being
below EF, representing a smaller CT. This is expected based on the capacitor model, as the same
charge must be distributed between more molecules to reach the same pinning work function.
The smaller CT can, however, not account for the increased d(N-surface) alone. This is clear by
comparing the d(N-surface) of the high and low coverage cases on the high-Φ system, where
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Table 4.1: Calculated distance d(N-surface) between the average position of the 4 nitrogen atoms
in the porphyrin macrocycle and the average position of the Mg ions in the topmost MgO layer,
and metalation energy, ∆Emet (= EMg−P/MgO(001)/Ag(001) - E2H−P/MgO(001)/Ag(001)), for 2H-P and
Mg-P on 2 ML MgO(001)/Ag(001) as a function of the initial work function, Φini. For compar-
ison, the d(N-surface) for 2H-TPP and Mg-TPP on 2 ML MgO(001)/Ag(001) are also shown.
Results for 2H-P are reported for calculations employing the optb86b vdW functional for the
high-coverage case (HC) and the low-coverage case (LC). All energies are given eV, all distances
in Å.

d(N-surface) d(N-surface) d(N-surface)b)

Φini 2H-P(LC) Mg-P(LC) ∆Emet 2H-P(HC) Mg-P(HC) ∆Emet 2H-TPP MgTPP

3.1 2.69 2.62 -0.04 3.09a) 2.74 -0.25 2.74 2.77
4.7 2.83 2.71 -0.83 3.10a) 2.74 0.68 3.08 2.97

a)The d(N-surface) of 2H-P provided for the HC case refers to adsorption with the center of
the molecule above an Mg ion, which is energetically slightly more favorable than adsorp-
tion above an O ion. b)The results for the TPP’s were computed with a different treatment
of van der Waals forces (see Supporting Material of Ref. [296]).

no charge transfer takes place. The difference of 0.27 Å (Table 4.1) results primarily from inter-
molecular interactions. Finally, also for the full ML case, metalation is, at least thermodynami-
cally, still favored, with a calculated energy gain of 0.25 eV (standard-Φ) and 0.68 eV (high-Φ),
respectively.

It is instructive to compare the N-surface heights for the 2H-P/Mg-P systems with those
of TPP, where metalation was strongly dependent on the charge state. For standard-Φ, where
significant CT into TPP takes place, the d(N-surface) is about 2.75 Å for 2H-TPP and Mg-TPP,
whereas for high-Φ, where no CT takes place and no metalation was observed in experiment,
it is around 3 Å (Table 4.1). By contrast, for 2H-P in the larger unit cell, the dependence of d(N-
surface) on Φ and thus CT is much weaker, with values of 2.62 Å (standard-Φ) and 2.73 Å (high-
Φ), respectively. This shows that in uncharged 2H-P, when isolated on the surface, the center
of the macrocycle can indeed approach closer to the surface than in uncharged 2H-TPP, which
substantiates our conclusion about the critical role of the distance between the macrocycle and
the surface for the self-metalation. Care has to be taken, however, when comparing the results
on oxides with those for the self-metalation on metal surfaces, where molecular hydrogen is
formed as byproduct of the redox reaction. For example, the self-metalation of 2H-TPP and
2H-P on copper surfaces requires elevated temperature, even though both molecules receive a
significant amount of charge on copper and the d(N-surface) is only 2.2 Å [361, 297, 362]. On
the other hand, the process proceeds readily at room temperature upon water formation in the
presence of additional oxygen [363], which highlights the decisive role of the reaction pathway
and the involved energetics.

4.4 Conclusions

Our experimental data, supported by DFT calculations, clearly shows that charge transfer in the
2H-P/MgO(001)/Ag(001) system is strongly affected by the work function of the MgO(001)/-
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Ag(001) substrate. By tuning the preparation conditions, we were able to prepare 2H-P mono-
layer films, which are either uncharged or charged, similar as previously reported for 2H- TPP
on the same substrate [296]. Compared to the latter, however, the metalation behavior is re-
markably different. Whereas 2H-TPPs were only able to self-metalate when charge transfer
occurred, a 2H-P monolayer can self-metalate completely, regardless of whether the molecules
are charged or not. This provides an important insight into the self-metalation process, as it
proves that charge transfer does not play a direct role in this reaction. Our results suggest in-
stead that the key factor enabling it is the distance between the macrocycle and the surface. In
the case of the bulkier 2H-TPP, electrostatic attraction induced by charging provides the force
that pulls the macrocycle so close to the surface that self-metalation is facilitated. On the other
hand, the planar 2H-P can reach this critical distance without the help of charging.

Since a MgO(001)/Ag(001) thin film substrate with a high work function can be considered
as bulk-like MgO in terms of its charge transfer properties, the results presented in this work
suggest that the self-metalation of 2H-P on planar MgO(001) faces is not restricted to thin film
substrates, but should be observable also on the (001) facets of, e.g. MgO nanocubes, where the
self-metalation of 2H-TPP is not possible [305].

4.5 Supporting Information

Figure 4.5: XP spectrum of 1.33 ML 2H-P on high-Φ 2 ML MgO(001)/Ag(001). The spectrum
has been fitted with three peaks, corresponding to the 4 equivalent N atoms in metalated MgP
(N(M), BE = 398.4 eV)) and the iminic (N(1), BE = 397.8 eV) and aminic (N(2), BE = 399.8 eV)
N atoms in unmetalated 2H-P, which grows on top of the metalated monolayer.
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Figure 4.6: O 1s XP spectrum of clean 2 ML MgO(001)/Ag(001) (black) and of the same surface
after deposition of 1 ML 2H-P (red). In addition to the attenuation of the main O 1s signal
from the MgO film (529.5 eV), a shoulder grows in at higher binding energy (532 eV), which is
associated with the formation of hydroxyl groups [306].
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Figure 4.7: (a) Side views and top views of the DFT (optb86b)-optimized geometry for 2H-P and
Mg-P on standard-Φ (left panel) and high-Φ (right panel) 2 ML MgO(001)/Ag(001). Colors:
grey: Ag; pink: O; red: O of OH; green: Mg; black: C; blue: N; white: H. Note that the high Φ
was obtained by adding 1/4 ML O at interstitial sites of the interfacial Ag layer. (b) Calculated
density of states (DOS) for 2H-P (full lines) and Mg-P (dotted lines) on standard-Φ (left panel)
and high-Φ (right panel) 2 ML MgO(001)/Ag(001). The black and colored lines represent the
total DOS and the DOS projected onto the C atoms of 2H-P/Mg-P (enhanced by a factor of 50),
respectively.
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Chapter 5

Large Distortion of Fused Aromatics
on Dielectric Interlayers Quantified
by Photoemission Orbital
Tomography

Figure 5.1: Header of the article as published in ACS Nano [49].

Significance Statement

Most flat, π-conjugated molecules also adsorb flat on pristine metal surfaces since their carbon
backbones are comprised of rather stiff sp2-bonds. If, in addition, inter- and intra-molecular
dispersion plays only a minor role, the momentum space signatures of their frontier pz-orbitals
are very robust, both in terms of a band picture and upon the variation of the photon energy
when probed with ARPES. The latter aspect is in contrast to organic molecules with a more
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three-dimensional carbon network, such as buckminsterfullerene for instance, where the or-
bitals in momentum space vary with kz and their momentum maps will therefore vary with
kinetic energy.

Continuing the work on MgO/Ag(100) surfaces, here, we detected a large distortion of the
dye molecule perylene-tetracarboxylic dianhydride with photoemission orbital tomography.
This extreme bending could be explained with a peculiar interplay between the molecule’s oxy-
gen atoms and the Mg2+-ions of the MgO surface. With measuring photoemission maps of the
HOMO and former LUMO at three different photon ergies, we were able to quantify the bend
in relation to simulations from DFT. In comparison, the molecular bends deduced from exper-
iment turned out to be slightly larger than those theoretically predicted from calculations with
different correction for van der Waals interaction. Therefore, we could establish photoemission
orbital tomography as a quantitative method to detect conformal changes via momentum space
signatures of orbitals and, furthermore, as a benchmark tool for electronic structure calculations.

Author Contributions

The experiments for the three different photon energies were carried out at different times and
places. Philipp Hurdax, Anja Haags, Larissa Egger and Xiaosheng Yang measured the data
with 35 eV photon energy under the supervision of François C. Bocquet, Serguei Soubatch,
Georg Koller, F. Stefan Tautz and Michael G. Ramsey. Those experiments were carried out
at the Physikalisch-Technische Bundesanstalt, Berlin, provided with support and supervision
from Hans Kirschner, Alexander Gottwald and Mathias Richter. Additional experiments with
He I and He II photon energy were carried out in Graz by Thomas G. Boné and Philipp Hur-
dax, with additional support for sample preparation and characterization by Michael Hollerer,
Georg Koller, Martin Sterrer and Michael G. Ramsey. Calculations with DFT, a model for the
extrapolation of the bend from those calculations, as well as additional control calculations with
TDDFT were done by me, supervised by Peter Puschnig. Philipp Hurdax and Michael G. Ram-
sey wrote the initial draft of the manuscript, with contributions from all co-authors. Michael G.
Ramsey was responsible for overall project coordination.

Abstract

Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as
next-generation organic semiconducting materials for nanoelectronics and optoelectronics due
to their tunable characteristics, including charge-carrier mobility and optical absorption. Non-
planarity can be an additional parameter to customize their electronic and optical properties
without changing the aromatic core. In this work, we report a combined experimental and
theoretical study in which we directly observe large, geometry-induced modifications in the
frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric
interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission
experiments, interpreted in the framework of the photoemission orbital tomography technique.
We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight
the role of the photon energy used in experiment for detecting such geometrical distortions.
Theoretically, we conduct density functional calculations to determine the geometric and elec-
tronic structure of the adsorbed molecule and simulate the photoemission angular distribution
patterns. While we found an overall good agreement between experimental and theoretical
data, our results also unveil limitations in current van der Waals corrected density functional
approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography
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provides a vital experimental benchmark for such systems. By comparison with the state of the
same molecule on a metallic substrate, we also offer an explanation why the adsorption on the
dielectric induces such large bends in the molecule.

5.1 Introduction

Fused aromatic molecules are shaped by sp2 hybridization, which results in a planar network of
bonds and an electronic structure characterized by a series of σ-orbitals and π-orbitals, the latter
having their electron densities on either side of the molecular plane. This electronic configura-
tion results in a stiffness of carbon skeletons ranging from small molecules such as benzene over
to one or two-dimensional structures such as linear acenes or coronene to graphene. Thus, those
structures are comparably resistant to geometric distortions, which actually may be desirable,
as distortion has profound effects on the optoelectronic [364, 365, 366, 367, 368, 369, 370, 371]
and chemical properties [372, 373, 374, 375] of various materials. Bonding on metal surfaces
is expected to soften the carbon backbone through hybridization, thereby allowing for bonds,
e.g., with functional groups, to induce geometric distortions. Indeed, molecular distortions
have been observed on metal surfaces, such as a bend of perylene-3,4,9,10-tetracarboxylic dian-
hydride (PTCDA) detected by X-ray standing waves (XSW) [376] or a corrugation of graphene
detected by atomic force microscopy (AFM) [377]. However, in these cases, the out-of-plane
distortion of the carbon backbone is small (≤0.1 Å). Here, we report a much larger distortion
of a π-conjugated planar molecule. Moreover, we observe it on a dielectric thin film, where
there is no hybridization between the substrate states and the π-system of the carbon core of
the molecule.

Geometric distortions can be inferred by several methods, such as dynamic low-energy elec-
tron diffraction, X-ray photoelectron diffraction, and XSW. These, however, pose strict require-
ments to the systems investigated. For instance, the XSW technique has been used successfully
to detect adsorption heights of constituent atoms [378, 379, 380, 381, 382, 383, 384, 385, 386],
but it requires atomic species to be energetically distinguishable in X-ray photoelectron spec-
troscopy (XPS) and therefore cannot discern between carbon atoms with the same local chemical
environment.

The photoemission orbital tomography (POT) technique essentially produces images of mo-
lecular orbitals in momentum space (k-space), which are related to the real space orbitals by
the square of their Fourier transform [46, 54]. Since orbitals are a direct result of the details
of the internal atomic structure, POT should be able to detect conformational changes on ad-
sorption directly. Indeed, POT has been demonstrated to shed light on subtle questions such as
the degree of aromaticity in kekulene [53]. POT has also been used successfully to detect and
quantify geometric changes of p-sexiphenyl, namely the planarization of the molecule upon ad-
sorption on metals and oxide thin films, when there is charge transfer to the molecule, thereby
removing the torsional angle between the phenyl rings around the nominal single bonds of the
molecule [46, 387, 316]. In this work, we show that POT can be used to detect and quantify even
more subtle geometric changes, namely the bend of the molecule PTCDA.

PTCDA has been studied on various substrates as a model molecule. POT of PTCDA has
been conducted on metals such as Ag(001) [388], Ag(110) [50, 389, 55, 390, 58], Ag(111) [391, 392],
Cu(100) [393], and oxidized Cu(100) [394, 262]. In all these cases, the patterns of the photoemis-
sion distribution from the frontier orbitals were in close agreement with the patterns calculated
for flat, oriented molecules in the gas phase (approximating the final state of photoemission by
a plane wave) [260] and showed no photon energy dependence [55, 57].

On oxide films, deviations of the orbitals on adsorption might be deemed even more un-
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likely, since the dielectric interlayer decouples the molecular wave function from the metallic
wave function, thereby preventing any hybridization [395]. Indeed, POT momentum maps of
the frontier orbitals of both pentacene [76] and p-sexiphenyl [316] on epitaxial MgO(001) films
on Ag(001) were in very good agreement with gas-phase simulations of planar molecules.

Here, we show that for PTCDA on MgO(001)/Ag(001), there are large differences between
the experimental momentum maps of the frontier orbitals and theoretical ones simulated for
the gas phase. Most notably, for this system, the momentum maps display a very strong photon
energy dependence. With the support of density functional theory (DFT) calculations, this is
identified as the result of a significant bend in the molecular backbone arising on adsorption.
By contrasting the situation to adsorption on Ag(001), with the same adsorption configuration,
we can understand the bend on MgO as arising from the higher electronic hardness of the
dielectric film compared to the metal surface.

5.2 Results and Discussion

MgO forms well-ordered (001)-oriented films on Ag(001) due to the close match of their lat-
tices [396, 360]. Adsorbed monolayers (MLs) of PTCDA on MgO(001)/Ag(001) are identical
to PTCDA on Ag(001) in terms of the superstructure. This is evident in the low-energy elec-
tron diffraction (LEED) image in Figure 5.2 (a), which reveals a PTCDA superlattice with the
epitaxial matrix: (︃

4 4
−4 4

)︃
.

The scanning tunneling microscopy (STM) image in Figure 5.2 (b) confirms this and shows
the orientation of the long molecular axes aligned alternatingly along the two principal crystal-
lographic directions, [110] and [110], of the substrate. Thus, PTCDA adopts the same structure
on MgO(001)/Ag(001) as on Ag(001) [376], as illustrated in Figure 5.2 (c).

Despite this close similarity, the POT momentum maps of the frontier molecular orbitals
are different on the two substrates. Figure 5.2 (d) shows momentum maps of the PTCDA low-
est unoccupied and highest occupied molecular orbitals (LUMO and HOMO), respectively, on
Ag(001) measured at a photon energy of 57 eV. Significantly, their appearance is in close agree-
ment with momentum maps measured at lower photon energy [388] and with that of the maps
simulated for two gas-phase planar molecules oriented 90◦ with respect to each other shown
in Figure 5.2 (e). In contrast, the measured momentum maps of PTCDA on MgO(001)/Ag(001)
displayed in Figure 5.2 (f), although recognizable from their nodal structures [394], are strik-
ingly different from the gas-phase maps simulated for the same photon energy (Figure 5.2 (e)).
Of note, for the LUMO, which is occupied by tunneling from the underlying metal, is the elon-
gation of the minor lobes and the appearance of emissions at (±0.5, ±0.5) Å−1. For the HOMO
the distinct “W” shape in each quadrant is replaced by a more diffuse emission pattern contain-
ing a number of maxima, the most intense one located at (±1.2, ±1.2) Å−1. We formulate the
hypothesis that these significant changes of the emission patterns of PTCDA adsorbed on MgO
are caused by a distortion of the molecular orbitals on adsorption due to a significant bend of
the backbone of PTCDA.

The presence of a bend can already be inferred, even without involved DFT calculations
of the PTCDA/MgO(001)/Ag(001) heterostructure, by considering momentum maps at dif-
ferent photon energies. This is illustrated in Figure 5.3 for a planar (Figure 5.3 (a)) and bent
(Figure 5.3 (b)) PTCDA molecule with the example of its HOMO. Momentum maps can be
viewed as spherical cuts through the square of the orbitals in k-space projected, in the case of
a flat-lying molecule, onto the molecular plane [46]. The radius of the sphere, representing the
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Figure 5.2: Identical structure but different momentum maps of PTCDA on Ag(001) and on
MgO(001)/Ag(001). (a) LEED pattern of the PTCDA monolayer on 2 ML MgO(001)/Ag(001) at
an energy of 50 eV. The substrate unit cell vectors are indicated by yellow arrows, and the unit
cell of the PTCDA overlayer is shown as an orange square. (b) Structure of the PTCDA mono-
layer measured by STM (Vbias = 1.35 V, It = 61 pA). (c) Schematic of the adsorption geometry. (d)
Experimental momentum maps of the LUMO and the HOMO of PTCDA/Ag(001) measured at
a photon energy of 57 eV. (e) Simulated maps for LUMO and HOMO of gas-phase PTCDA at
a photon energy of 35 eV with two orthogonal orientations. (f) Experimental momentum maps
of LUMO and HOMO of PTCDA/MgO(001)/Ag(001) measured at a photon energy of 35 eV.
The binding energies of the measured LUMO and HOMO with respect to the Fermi level are,
respectively, 0.5 and 1.7 eV in (d) and 1.6 and 2.8 eV in (f).

Ewald sphere of photoemission, increases with the square root of the photon energy. Changing
the photon energy therefore entails a change in the vertical component of the momentum (kz)
across the map. Planar π-systems as the PTCDA HOMO shown in Figure 5.3 (a) have practi-
cally no photon energy dependence of the (kx, ky) position of the main emissions, because the
periodicities of the wave function in the x,y plane do not depend on the z-coordinate. In other
words, their wave function can be approximated by the product of a part depending on the in-
plane coordinates and a part depending on the vertical coordinate z. In momentum space (Fig-
ure 5.3 (a)), this leads to lobes which are oriented perpendicular to the molecular plane. Thus, as
the Ewald sphere expands with increasing photon energy, it will always intersect the orbital at
the same (kx, ky) corresponding to a particular periodicity of the wave function. Experimentally,
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Figure 5.3: Momentum maps of PTCDA on MgO(001)/Ag(001) at different photon energies. (a,
b) Side view in real space and corresponding three-dimensional k-space density (square of the
Fourier transform of the real space orbital) of the HOMO of the PTCDA molecule in its planar
geometry (a) and in the bent geometry (b) as obtained by on-surface DFT calculations. The
bend across the carbon backbone (0.7 Å) and the total bend of the molecule (1.0 Å), including
the end oxygens, are indicated. The gray hemispheres represent the Ewald sphere for a photon
energy of 35 eV. (c-e) Symmetrized experimental momentum maps (upper panel) of the PTCDA
HOMO on MgO(001)/Ag(001) taken at photon energies of (c) 21.2 eV, (d) 35 eV, and (e) 40.8 eV,
and (lower panel) simulated momentum maps of the HOMO for isolated molecules in the bent
geometry at the experimental photon energies.

this has indeed been observed for PTCDA monolayers on the three facial Ag surfaces as well
as on bare and oxidized Cu(100) [55]. However, if the molecule adopts a nonplanar geometry,
such as the bent one shown in Figure 5.3 (b), the orbitals must be slightly deformed due to local
distortions of atomic orbitals constituting the molecular π-system. Thus, kz-dependent sub-
structures are introduced in the lobes of the three-dimensional k-space orbital (Figure 5.3 (b)),
which will result in a strong photon energy dependence of the momentum maps.

To investigate whether the emission patterns in the momentum maps of PTCDA-
/MgO(001)/Ag(001) are photon energy dependent, additional momentum maps were mea-
sured with a lab-based instrument using unpolarized He I and He II radiation of 21.2 and
40.8 eV, respectively. In Figure 5.3 (c-e) (upper panel), the symmetrized experimental maps of
the HOMO are shown together with the momentum map recorded at 35 eV with p-polarization
obtained with synchrotron radiation. At low photon energy (hν = 21.2 eV, Figure 5.3 (c)), the
measured momentum map is almost identical to the simulated map of the gas-phase planar
PTCDA molecule shown in Figure 5.2 (e). This is in contrast to the map recorded at 35 eV
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shown in Figure 5.3 (d), which exhibits notable differences as already mentioned. Further sig-
nificant changes in the number of emission maxima can be seen when increasing hν from 35 to
40.8 eV (Figure 5.3 (e)). Note that the map of the LUMO, which is available in Section 5.5 (Fig-
ure 5.6), also undergoes clear changes with photon energy. We can thus conclude that a photon
energy-dependent study of PTCDA momentum maps on MgO(001)/Ag(001) with POT indeed
supports the hypothesis of a nonplanar molecular geometry.

DFT calculations of PTCDA on MgO(001)/Ag(001) also suggest a significant bend of the
molecule. In order to separate the effect of the bend on the momentum maps from a possible
influence of the environment at the adsorption site, we first calculate the orbitals for an isolated
gas-phase molecule but in the geometry obtained from the calculation on the surface. Also note
that in the simulation, the structure of the molecular layer is taken into account by superimpos-
ing momentum maps of two perpendicularly oriented PTCDA molecules. The resulting HOMO
momentum maps simulated for the same photon energies as used in the experiment are shown
in Figure 5.3 (c-e) (lower panel, see Section 5.5, Figure 5.7, for the photon energy dependence of
the simulated LUMO maps). At a low photon energy of 21.2 eV (Figure 5.3 (c)), like the exper-
imental map, the simulated map resembles that of the planar molecule. As the photon energy
rises (Figure 5.3 (d-e)), the simulated maps show clear changes, which qualitatively reproduce
the trend seen in the experimental maps. However, the quantitative agreement is not perfect.
We notice that systematically a higher photon energy in the simulations would be required to
achieve a better match with the experimental maps. The theoretical map at a photon energy
of 35 eV is in closest agreement to the experimental map at 21.2 eV, and the theoretical map at
40.8 eV resembles the experimental map at 35 eV. This discrepancy between theoretical and ex-
perimental maps, also seen in the more subtle changes of the LUMO (see Section 5.5, Figure 5.6),
might be the consequence of a bend larger than this particular DFT calculation would suggest.

Figure 5.4: Dependence of the PTCDA HOMO momentum map on the bend. (a, b) Simulated
momentum maps of isolated PTCDA with the geometry obtained by on-surface calculations
using the van der Waals correction schemes vdW-DFT and PBE-TS, respectively. (c) Experi-
mental momentum map of PTCDA on MgO(001)/Ag(001). (d-f) Simulated momentum maps
of isolated PTCDA for bends extrapolated from the vdW-DFT geometries (see Section 5.5). All
simulated maps are shown at an energy corresponding to the experimental photon energy of
35 eV and for two orthogonal orientations of the molecule. The bends, Ccent-Ccarb height differ-
ences, are listed on top of the images.

To test if a different bend of the molecule can account for the remaining mismatch between
theory and experiment and to gain a better understanding of the effect of the bend on the emis-
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sion patterns, additional DFT calculations for the PTCDA/MgO(001)/Ag(001) heterostructure
have been carried out. These were performed for perfectly stoichiometric MgO interlayers and
MgO layers for which oxygen was introduced at the MgO/Ag interface in order to account for
a realistic range of work functions [397, 323, 299]. Moreover, as it is yet unclear which theoreti-
cal methodology is best suited for the complex dielectric/metal substrate system, two different
van der Waals correction schemes have been employed: the Tkatchenko-Scheffler method [140]
on top of Perdew-Burke-Ernzerhof DFT methodology (PBE-TS) and a van der Waals DFT func-
tional (vdW-DFT) [169, 170]. To quantify the degree of bending, we take the height difference
between the central carbon atoms of the molecule (Ccent) and the carbon atoms of the carboxyl
groups (Ccarb), as illustrated in Figure 5.3 (b). Using this definition, the calculated bends are
found to vary by 0.05 Å depending on the work function of the substrate (which controls the de-
gree of charge transfer into the LUMO) and by 0.1 Å depending on the van der Waals correction
scheme applied (see Section 5.5, Table 5.1). On a stochiometric MgO film, PBE-TS yields a bend
of 0.67 Å, while vdW-DFT leads to a bend of only 0.59 Å. Based on these geometries, we have
simulated maps of the HOMO for hν = 35 eV using the same procedure as described above, see
Figure 5.4 (a,b). Although the larger bend obtained with PBE-TS yields a slightly better agree-
ment, neither can be considered to well reproduce the experimental map shown in Figure 5.4 (c).
Thus, we have also simulated momentum maps for a larger range of bends by extrapolating to
smaller and larger values, respectively. When the bend is reduced to 0.48 Å (Figure 5.4 (d)), the
momentum map adopts the distinct W pattern in each of the four quadrants characteristic for
the planar molecule (cf. Figure 5.2 (e)). Conversely, increasing the bend slightly to 0.75 Å (Fig-
ure 5.4 (e)) leads to further significant changes: The former W shaped pattern has broken up
into four separate maxima, more similar to the experiment. A further increase in the bend to
0.81 Å (Figure 5.4 (f)) causes the simulation to diverge from the experiment: The region of high
intensity 45◦ to the principal azimuth becomes sharper and its dominant maximum changes
from the experimental (±1.2, ±1.2) Å−1 to (±0.9, ±0.9) Å−1. Therefore, a bend of 0.81 Å over-
shoots the experimental momentum map and the best match is achieved at a bend around
0.75 Å.

The fact that the momentum map at a bend of 0.48 Å is hardly distinguishable from the map
of the planar molecule suggests that the effect of the bend on photoemission patterns is nonlin-
ear and the method only becomes highly sensitive above a critical threshold of the distortion.
This also partly explains why the deviations from the planar conformation have not been ob-
served in POT on any metal despite the presence of a small bend [376]. Moreover, it needs to
be considered that while on MgO the molecular bend extends across the entire molecular back-
bone, on Ag(001), as on other Ag surfaces, most of the height difference arises from the oxygens
bending toward the substrate with the central carbon core of the molecule remaining essen-
tially flat (see side view in Figure 5.5 (a)) [376, 398]. The maximum atomic height difference
among carbon atoms amounts to only 0.1 Å for PTCDA on Ag(001) according to X-ray stand-
ing wave measurements and dispersion-corrected DFT [376]. This is shown in the top view of
Figure 5.5 (a), where atoms are colored according to their calculated heights. A bend restricted
to the oxygens at the edges of the molecule leaves the frontier π orbitals mostly unaffected,
since the latter are located predominantly in the region of the carbon backbone. In contrast, on
MgO(001)/Ag(001), the bend is calculated to extend over the whole range of the molecule, as
shown in Figure 5.5 (b).

To test if the discrepancy between experimental and simulated momentum maps might be
explained by factors other than an altered shape of the molecular backbone, additional calcula-
tions have been carried out. These comprised (i) a more accurate description of the final state
with time-dependent DFT (TD-DFT), (ii) accounting for intermolecular interactions in the free-
standing monolayer as well as (iii) including the substrate. An overview of all these calculations
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Figure 5.5: Comparing the atomic positions of PTCDA on Ag(001) and MgO(001)/Ag(001).
Side view and top view of PTCDA on Ag(001) (a) and on 2 ML MgO(001)/Ag(001) (b). Both
structures have been obtained from PBE-TS DFT calculations. In the side views, the O atoms
are shown in red, the C atoms in bronze, the Ag atoms in silver, and the Mg atoms in blue.
In the top views, atoms of both the substrate surface (Surf. h) and the molecule (Mol. h) are
color-coded according to their elevations relative to the average height of the top substrate layer
(atoms from smallest to largest are C, O, Ag, Mg).

can be found in Section 5.5 (Figures 5.8-5.10). Of the three factors, point (iii) has the most signif-
icant effect on the momentum maps. However, none of them leads to a clear improvement in
the agreement between theory and experiment. While the effects of these three factors impose
an uncertainty on a quantification of the bend using POT, their investigation still confirms that a
bend larger than suggested by DFT is required for theory to reproduce the experiment. Hence,
we conclude that momentum maps are very sensitive to the magnitude of the bend and POT
can thus serve as a benchmark to select the best computational approach for a given system.

To understand the origin of the strong bend of the molecular backbone when PTCDA ad-
sorbs on MgO(001)/Ag(001), it is instructive to compare the situation to the one on Ag(001),
where no significant bend occurs [376]. As depicted in Figure 5.5, on both substrates the princi-
ple bonding is effectuated by the interaction of the carboxylic oxygens (Ocarb) at the corners of
the molecule with the metal atoms underneath them. This leads to the latter being pulled above
the substrate surface plane on both substrates, albeit to a greater extent for MgO, with Ocarb-Ag
and Ocarb-Mg bond lengths of 2.35 and 2.2 Å, respectively. However, despite the carboxylic
oxygens having similar heights above the substrate surface planes (∼2.5 Å), on Ag the carbon
backbone is drawn close to the surface (2.7 Å) and remains essentially planar, while on MgO it
bends with its center calculated to be 3.2 Å above the surface. This large height is similar to that
obtained for a variety of aromatic molecules without functional anchor groups on MgO and can
be attributed to the pushback effect of Pauli exclusion. While the quasi-free electrons of the Ag
substrate can give way to create space for the electrons of the perylene core, the electrons of the
dielectric are confined and cannot retract, thus preventing a closer approach of the molecular
backbone. We suggest that the large bend of PTCDA on MgO/Ag expresses a more general
aspect of adsorption on dielectrics, whose electronic hardness can lead to significantly stronger
alterations of molecular geometries compared to metals.
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5.3 Conclusions

With the POT technique, we have shown that compared to metal surfaces, dielectric interlay-
ers have the capacity to lead to greatly increased geometric distortions of adsorbed molecules
containing anchor groups. POT can detect these structural modifications via the changes in the
orbital structure of the molecules. As such, it has advantages over diffraction techniques whose
requirement of long-range order can make them difficult to apply to heterogeneous systems
such as the MgO/Ag substrate considered here. A noticeable photon energy dependence of the
photoemission patterns of the frontier π-orbitals serves as a clear indication of a nonplanar ad-
sorption geometry. In combination with simulations of the photoemission patterns, our experi-
ments revealed the bend of the PTCDA backbone induced on adsorption on MgO(001)/Ag(001)
to be larger than that predicted by DFT calculations with different methodologies. This suggests
that POT can serve also as a benchmark for DFT.

We suggest that, as photoemission momentum maps reflect the orbital structure in k-space,
when combined with DFT, the POT technique has the potential to determine the exact shape
of nonplanar adsorbates by detailed studies of the photon energy dependence. Moreover, the
sensitivity of POT to the bending of adsorbed molecules in conjunction with the possibility to
combine POT with ultrafast time-resolved photoemission [262] in principle provides the oppor-
tunity to study the nuclear dynamics, e.g., in surface chemical reactions, through its influence
on molecular orbitals.

5.4 Methods

All sample preparations and photoemission orbital tomography (POT) experiments were per-
formed under ultrahigh-vacuum (UHV) conditions at a base pressure of about 3×10−10 mbar.
A clean Ag(001) surface was obtained by cycles of Ar+ ion sputtering and annealing at 500 ◦C.
MgO(001) films were grown by Mg evaporation in an oxygen environment (O2 pressure of
10−6 mbar) at a substrate temperature of 270 ◦C. Mg fluxes were of the order of 1 Å/min as
calibrated by a quartz microbalance. After the growth of MgO, the sample was slowly (ap-
proximately 2.5 ◦C/min) cooled to room temperature (RT). All MgO films grown for this study
had a nominal thickness of 2 ML. A monolayer of perylene-3,4,9,10-tetracarboxylic dianhydride
(PTCDA) on 2 ML MgO(001)/Ag(001) was prepared by sublimation of solid PTCDA from a
home-built evaporator with the substrate held at RT.

POT experiments were carried out at RT in two different UHV chambers. The experiments at
a photon energy of 35 eV were conducted at the Metrology Light Source insertion device beam-
line of the Physikalisch-Technische Bundesanstalt [399] using a toroidal electron analyzer [400].
The sample was illuminated by p-polarized light at an angle of 40◦ to the surface normal.
As momentum maps were acquired by recording the photoemission intensity in the incidence
plane while rotating the sample around its normal, the polarization factor |Ak|2 depends only
on the radial coordinate of the momentum maps.

For additional POT experiments at photon energies of 21.22 and 40.80 eV, we used a Na-
noESCA system by Scienta Omicron. The He I and II radiation from an unpolarized HIS 14 HD
excitation source (Focus GmbH) was incident at an angle of 68◦ to the surface normal. Due to
the focusing mirror, the sample was illuminated by 30.6% s-polarized and 69.4% p-polarized
light. This results in a decrease of intensity in the lower half of the momentum maps due to
the polarization factor |Ak|2 and a corresponding asymmetry of the momentum maps. In or-
der to obtain a symmetric appearance more easily comparable to the k maps obtained with the
toroidal electron analyzer, and to improve the signal-to-noise ratio, the data were subsequently
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symmetrized by mirroring the half of the map with more significant contributions of the orbitals
to the intensity and averaging the map over instances rotated by 0◦, 90◦, 180◦, and 270◦.

In POT, the momentum map of photoemission from a molecule is the projection of Ewald-
sphere cuts through the orbital distribution in k-space onto a plane representing the experimen-
tal geometry, e.g., the molecular plane in case of a molecule lying flat on a surface. The radius
of the Ewald sphere is related to the kinetic energy of photoelectrons and thus to the photon en-
ergy: It is given by the latter minus the orbital energy with respect to the vacuum level. Note the
common discrepancy between orbital energy as measured in experiment and calculated by the-
ory. To account for this, we adapted the theoretical photon energy so that it results in the same
kinetic energy for each experimental photon energy. However, for the sake of clarity and since
the photon energy is the free-to-choose experimental parameter, momentum maps of identical
kinetic energy are labeled according to the corresponding experimental photon energy.

Scanning tunneling microscopy (STM) measurements were performed at 77 K with a low-
temperature STM apparatus attached to an UHV preparation chamber. Electrochemically etched
tungsten tips were used.

The calculations for the molecular monolayer on three layers of Ag(001) and two layers of
MgO(001) were carried out with the Vienna Ab initio Simulation Package [357, 320, 358] plane
wave code in the repeated-slab approach, where an interlayer vacuum of 18 Å was inserted
alongside a dipole-correction in order to avoid spurious electric fields. We utilized the projector
augmented wave method [321] with an energy cutoff of 450 eV. The Brillouin zone was sam-
pled with a Γ-centered mesh of 4×4×1 points, and we used a Gaussian-type smearing of the
unoccupied states with 0.2 eV width.

In order to account for van der Waals (vdW) interactions, we have used two different ap-
proximations for the exchange-correlation treatment: PBE [319] and the Tkatchenko-Scheffler
method [140] with iterative Hirshfeld-partitioning [149, 147] (PBE-TS) as well as the vdW-
functional optb86b-vdw (vdW-DFT) [169, 170]. The respective geometries were relaxed such
that the maximum of the norm of the forces was lower than 0.005 eV/Å, while the 2 lowest
layers of Ag(001) were held fixed (lattice constant: 4.16 Å). After geometry relaxation, the elec-
tronic structure was computed with the same parameters, albeit with a plane-wave cutoff of
500 eV and a Brillouin zone sampling of 8×8×3 points. Photoemission momentum maps for
the full system as well as the molecular monolayer in the adsorbed geometry were simulated
in the plane-wave final-state approximation, as described, e.g., in Reference [401]. To calcu-
late momentum maps of a gas-phase molecule, we used the molecular geometries from the
aforementioned calculations and used the DFT module of the Gaussian orbitals based code
NWChem [259] to obtain the molecular orbitals. Here, the 6-31G** basis set and the B3LYP
exchange-correlation functional [116, 118] were used. The momentum maps were then simu-
lated from the real-space orbitals, as shown in Reference [260].

5.5 Supporting Information

Dependence of the Calculated PTCDA Bend on the Approach to Treat the
van der Waals Interaction and on the Work Function of the MgO(001)/Ag(001)
Substrate

Table 5.1 summarizes the values of the PTCDA bend obtained with different approaches for
treating the van-der-Waals forces and different densities of extra oxygen at the oxide-metal
interface, which strongly affects the work function of the MgO(001)/Ag(001) substrate. The
magnitude of the bend clearly depends on the type of calculation employed with the argueably
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Figure 5.6: LUMO (a, b, c) and HOMO (d, e, f) maps taken at photon energies of (a, d) 21.2 eV,
(b, e) 35 eV and (c, f) 40.8 eV. The symmetrized maps of (a), (c), (d) and (f) were measured with a
Scienta Omicron NanoESCA system, while (b) and (e) were measured at the Metrological Light
Source in Berlin with p polarized synchrotron radiation and a toroidal analyzer.

Figure 5.7: Displayed are (a) the LUMO and (b) the HOMO of PTCDA in the top and bottom
rows, respectively. The molecular geometry with a Ccent-Ccarb bend of 0.67 Å has been derived
by DFT calculations on MgO(001)/Ag(001) using the PBE-TS approach.

more objective vdW DFT methodology resulting in a ∼0.1 Å lower bend than that of the PBE-TS
calculations. The bend decreasing for lower substrate work functions is related to the increase
in charge transfer to the LUMO and concomitant increase in electrostatic attraction.
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Table 5.1: Calculated bends (Ccent-Ccarb) in the carbon backbone of PTCDA on 2 ML of
MgO(001) on Ag(001) for different oxygen content at the MgO-Ag interface resulting in dif-
ferent work functions calculated with two different van der Waals correction schemes.

vdW DFT PBE-TS

Substrate Φsub [eV] C-Bend [Å] Φsub [eV] C-Bend [Å]

MgO/Ag(001) 2.96 0.59 2.84 0.67
MgO/ 1

4 ML O/Ag(001) 3.67 0.62 3.42 0.72
MgO/ 1

2 ML O/Ag(001) 4.25 0.64 3.95 0.71
Ag(001) 4.23
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Figure 5.8: Momentum maps of PTCDA on MgO(001)/Ag(001) at different photon energies. (a,
b) Side view in real space and corresponding three-dimensional k-space density (square of the
Fourier transform of the real space orbital) of the HOMO of the PTCDA molecule in its planar
geometry (a) and in the bent geometry (b) as obtained by on-surface DFT calculations. The
bend across the carbon backbone (0.7 Å) and the total bend of the molecule (1.0 Å), including
the end oxygens, are indicated. The gray hemispheres represent the Ewald sphere for a photon
energy of 35 eV. (c-e) Symmetrized experimental momentum maps (upper panel) of the PTCDA
HOMO on MgO(001)/Ag(001) taken at photon energies of (c) 21.2 eV, (d) 35 eV, and (e) 40.8 eV,
and (lower panel) simulated momentum maps of the HOMO for isolated molecules in the bent
geometry at the experimental photon energies.
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Figure 5.9: Momentum maps of PTCDA on MgO(001)/Ag(001) at different photon energies. (a,
b) Side view in real space and corresponding three-dimensional k-space density (square of the
Fourier transform of the real space orbital) of the HOMO of the PTCDA molecule in its planar
geometry (a) and in the bent geometry (b) as obtained by on-surface DFT calculations. The
bend across the carbon backbone (0.7 Å) and the total bend of the molecule (1.0 Å), including
the end oxygens, are indicated. The gray hemispheres represent the Ewald sphere for a photon
energy of 35 eV. (c-e) Symmetrized experimental momentum maps (upper panel) of the PTCDA
HOMO on MgO(001)/Ag(001) taken at photon energies of (c) 21.2 eV, (d) 35 eV, and (e) 40.8 eV,
and (lower panel) simulated momentum maps of the HOMO for isolated molecules in the bent
geometry at the experimental photon energies.
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Figure 5.10: Momentum maps of PTCDA on MgO(001)/Ag(001) at different photon energies.
(a, b) Side view in real space and corresponding three-dimensional k-space density (square of
the Fourier transform of the real space orbital) of the HOMO of the PTCDA molecule in its pla-
nar geometry (a) and in the bent geometry (b) as obtained by on-surface DFT calculations. The
bend across the carbon backbone (0.7 Å) and the total bend of the molecule (1.0 Å), including
the end oxygens, are indicated. The gray hemispheres represent the Ewald sphere for a photon
energy of 35 eV. (c-e) Symmetrized experimental momentum maps (upper panel) of the PTCDA
HOMO on MgO(001)/Ag(001) taken at photon energies of (c) 21.2 eV, (d) 35 eV, and (e) 40.8 eV,
and (lower panel) simulated momentum maps of the HOMO for isolated molecules in the bent
geometry at the experimental photon energies.
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Chapter 6

Simple Extension of the Plane Wave
Final State in Photoemission:
Bringing Understanding to the
Photon-energy Dependence of
Two-dimensional Materials

Figure 6.1: Header of the article as published in Physical Review Research [402].

Significance Statement

ARPES is arguably the most important technique to experimentally extract the bandstructure
of crystalline solids. This direct connection arises from the interpretation of measured data as
the sample’s one-electron removal spectral function. In reality, however, the spectral function is
also modulated by so-called matrix-element effects, which are not stemming from the electronic
structure of the sample itself, but are a result of the photoemission process and depend, for
instance, on the polarization and the photon energy of the light field. To account for such effects,
the photoemission process has to be modeled with an appropriate final state that describes
the outgoing photoelectron accordingly. The most simple final state—a plane wave—does not
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account for these effects sufficiently and an extension that would allow to fully reproduce the
experimentally observed ARPES intensities is therefore desirable.

In this work, we studied the final-state effects in the prototypical 2D material graphene by
approaching the problem from three different angles. First, with the metrology beamline at
the Physikalisch-Technische Bundesanstalt Berlin, it was possible to extract calibrated ARPES
intensities when varying the photon energy of the incidence light over a wide range. Second,
sophisticated TDDFT simulations which naturally account for the final-state effects in question,
could reproduce the experimental data very well and thereby allowed to exclude possible in-
fluences of the substrate. Third, with extending a scattered wave approximation for the final
state to periodic systems, we could show that the physics in the process is essentially captured
by a model of two interacting, dipole-allowed emission channels of the photoelectron. Depend-
ing on the incidence light polarization, we could further show that it can be necessary to also
include nearest-neighbor scattering from the two invariant sublattices in graphene. Since 2D
quantum materials are a very active field of research, with ARPES being one of the most impor-
tant tool to investigate their electronic structure, our study therefore provides valuable insights
that will help to disentangle the contributions from the material and the measuring process.

Author Contributions

Following an initial idea from Simon Moser to study the photoemission distribution along the
graphene horse-shoe as a function of incident photon energy, the experiments were carried
out at the Physikalisch-Technische Bundesanstalt Berlin. The expertise for metrology, neces-
sary to extract calibrated ARPES data, came from Hans Kirschner, Alexander Gottwald and
Mathias Richter. The preparation of the graphene samples was done by Susanne Wolff and
Thomas Seyller and the sample characterization and ARPES measurements were carried out by
Anja Haags, Larissa Egger and Xiaosheng Yang, under the supervision of Michael G. Ramsey,
François C. Bocquet, Serguei Soubatch and F. Stefan Tautz. The experimental data was then pro-
cessed by Anja Haags, Simon Moser, Serguei Soubatch, Peter Puschnig and myself. The TDDFT
calculations were carried out by myself, with additional expertise from Umberto De Giovan-
nini, Angel Rubio and Peter Puschnig. Simon Moser developed the scattered wave model and
wrote the initial draft of the manuscript, with contributions from all co-authos. Overall project
coordination was shared between Peter Puschnig, F. Stefan Tautz and Simon Moser.

Abstract

Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and
band structure contrast through the momentum distribution of photoelectrons. Its simplest in-
terpretation is obtained in the plane-wave approximation, according to which photoelectrons
propagate freely to the detector. The photoelectron momentum distribution is then essentially
given by the Fourier transform of the real-space orbital. While the plane-wave approximation
is remarkably successful in describing the momentum distribution of aromatic compounds, it
generally fails to capture kinetic-energy-dependent final-state interference and dichroism ef-
fects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical
two-dimensional (2D) material, we observe an exemplary Ekin-dependent modulation of, and a
redistribution of spectral weight within, its characteristic horseshoe signature around the K and
K’ points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are,
however, in remarkable agreement with ab initio time-dependent density functional simulations
of a freestanding graphene layer and can be explained by a simple extension of the plane-wave
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final state, permitting the two dipole-allowed partial waves emitted from the C 2pz orbitals to
scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux
calibration of the Metrology Light Source, this scattered-wave approximation allows us to ex-
tract Ekin-dependent amplitudes and phases of both partial waves directly from photoemission
data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of
the plane-wave final state in photoemission of 2D materials and beyond.

6.1 Introduction.

Angle-resolved photoemission spectroscopy (ARPES) is a standard probe of the surface elec-
tronic structure of crystalline solids. Within the sudden approximation of the one-step model,
the differential photoemission cross section dσ/dΩ(k f , Ωk f

; hν, ϵ), i.e., the probability density
to observe after irradiation with photons of energy hν and polarization vector ϵ a photoelectron
of kinetic energy Ekin = h̄2k2

f /2m and wave vector k f at solid angle Ωk f
= (θ, ϕ), where θ is the

inclination and ϕ the azimuth, can be decomposed into a product of two terms [43, 44]: the one-
electron removal spectral function and the photoemission matrix element Mk f ,i. Usually, the
spectral function is of primary interest, because it provides access to band dispersions as well
as self-energies and many-body interactions [44, 45]. Often, however, the photoemission cross
section is strongly modulated by the matrix element Mk f ,i, given in the dipole approximation
and velocity gauge by

Mk f ,i =
⟨︂

ψk f
|ϵ ·∇|ψi

⟩︂
, (6.1)

through the latter’s dependence on the single-particle initial (ψi) and final state (ψk f
) wave

functions, as well as on the polarization ϵ of the incoming photon field. On the one hand, this
makes the experimental determination of the spectral function more difficult; on the other hand,
the matrix element itself is a rich source of additional experimental information—especially
regarding the initial-state wave function [46, 403].

A particularly simple connection with the initial state follows when approximating the final
state by a plane wave [83, 404]. Then, the matrix element becomes proportional to the Fourier
transform of the initial state times a momentum-dependent prefactor: ϵ · k f ×F [ψi(r)](k f ). In
the field of organic molecular films, this plane-wave approximation (PWA) turned out to be
particularly fruitful, and the ability to determine molecular orbital densities in momentum and
real space from ARPES on such films—becoming known as photoemission orbital tomography
[405, 403, 401]—has found wide-spread applications [46, 406, 389, 54, 407, 47, 51, 48, 262]. More-
over, the PWA has also been applied to extended solid-state systems [403, 408] and has provided
insights into orbital angular momentum [409, 410, 411] and its topological manifestation in the
Berry curvature [291, 412, 413].

Yet, one can rightly argue that the relationship between the initial state and the matrix ele-
ment is in fact more complex than the PWA suggests [79]. Examples where the limitations of
the PWA become evident are manifold and include photoelectron diffraction [414, 415], linear
and circular dichroism [403, 416, 411], and photon-energy-dependent photoemission intensity
modulations that have been tentatively attributed to final-state scattering effects [55, 417]. Theo-
retically, there is a long history of computational approaches aiming at a more exact description
of the photoemission process. These include sophisticated quantum-coherent one-step models
such as implemented, e.g., in the spin-polarized relativistic Korringa-Kohn-Rostoker technique
[252, 253, 254] and multiple-scattering approaches [418, 415, 287, 417], but also real-time simu-
lations in the framework of time-dependent density functional theory (TDDFT) [419, 86]. While
all these methods adequately capture the photoemission process on a microscopic level, they
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hide the underlying physical mechanisms in the computational complexity, thus rendering it
impractical to establish any simple and intuitive connection between the matrix element and
the initial state. Still, such a connection is vital for the physical understanding of photoemis-
sion, in particular in the context of orbital tomography.

In this paper, we present an economical extension of the plane-wave final state in photoemis-
sion from two-dimensional (2D) materials that takes into account all essential physical effects
while retaining an intuitive link to the initial state. We used the photoemission intensity close
to the K point of quasi-freestanding monolayer graphene (QFMLG) [420, 421, 422], prepared
on Si-terminated 6H-SiC(0001), as a benchmarking case (see Paragraph 6.4.1 for details of sam-
ple preparation). Varying the photon energy hν in small steps, we measured the influence of
the corresponding final state on the differential photoemission cross section of a constant initial
state within the Dirac bands. We found that real-time TDDFT calculations employing the sur-
face flux method [86] corroborate our benchmarking experiment. Crucially, we then introduce
an intuitive scattered-wave approximation (SWA) of the photoemission final state that involves the
interference of two dipole-allowed partial waves emitted from each C 2pz orbital, and option-
ally their nearest-neighbor scattering at both sublattices of graphene as well (SWANN). This
final state model describes the experimental results and the TDDFT calculations very well. Be-
cause of its generic nature, it can be readily used for a graphene-based determination of the
absolute photon flux for variable energies, arbitrary experimental geometries and light polar-
izations typical for synchrotron-radiation experiments. Ultimately, the model can be further
adapted to other (quasi-) 2D materials, such as films of π-conjugated molecules or (topological)
surface states, to correct for deficiencies of the PWA in the description of their circular dichro-
ism and photon-energy dependence, properties that in turn massively influence the extraction
of the quantum metric and the Berry curvature [291, 412, 413].

6.2 Results

In our ARPES experiment, we employ a toroidal electron analyzer to measure the photoelec-
tron intensity distribution I(k f , Ω0, φ; hν, ϵ) at the detector, with Ω0 = (θ, ϕ = 0) and k f =√︂

2mEkin/h̄2 =
√︂

2m(hν + εi − Φ)/h̄2, where Φ is the work function, and where φ is the az-
imuthal rotation of the sample (see Paragraph 6.4.2 for details). The index f denotes the final
state, as defined by the fixed initial-state energy εi 1.35 eV below the Dirac point, and by the
varying photon energy hν. Apart from an efficiency factor of the analyzer, I is proportional
to the differential photoemission cross section dσ/dΩ(k f , Ω0, φ; hν, ϵ) and the photon intensity
Iph(hν, ϵ) (see Paragraph 6.4.3 for details). Recovering dσ/dΩ from the photoelectron intensity
distribution thus requires a division by an absolutely calibrated Iph, which was readily provided
by the insertion device beam-line at the Metrology Light Source in Berlin [399] for photon ener-
gies from 15 to 110 eV (see Paragraph 6.4.2 for details). Converting (θ, φ) to (kx, ky) and plotting
the corresponding measured momentum maps in Figure 6.2 (a,b), we identify graphene’s char-
acteristic horseshoe signatures around the K and K’ points [423, 424]. They arise from the struc-
tural interference of the two sublattices in the initial-state Bloch wave function and are thus
characteristic for the honeycomb lattice. Specifically, the lattice sites’ relative geometric phases
ϑk = arg ∑2

j=0 einj ·k (Figure 6.2 (c) and Figure 6.3 (a)), where the nj connect neighboring carbon
atoms, produce a structure factor (1 + eiϑk) that suppresses valence band intensity along dark
corridors [424] in momentum space (Figure 6.2 (a) and Paragraph 6.4.4). While in the PWA, both
horseshoe and dark corridor are not expected to change, the experimental intensity around the
horseshoes clearly redistributes as a function of final-state kinetic energy [424], as illustrated
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dark corridor

Figure 6.2: Angle-resolved photoemission spectroscopy of graphene. Overview (a) and close-
up (b) of the typical horseshoe pattern arising in momentum maps close to the K and K’ points,
recorded at initial-state energy 1.35 eV below the Dirac point at Ekin = 30 eV. Panel (b) also
displays the contour (green line) and angle β along which the experimental data are plotted
in Figure 6.3 (c-e). (c) Amplitude (bottom) and phase (top) of the initial-state structure factor
that gives rise to the horseshoe. (d) Nearest-neighbor scattering factor that gives rise to inten-
sity redistributions around the horseshoe. (e) Experimental horseshoe patterns around K for
seven representative kinetic energies measured in normal incidence geometry (top), compared
to TDDFT calculations in precisely the same geometry (bottom).
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in Figure 6.2 (e). Importantly, similar intensity redistributions as in experiment are also ob-
served in our TDDFT simulations (Figure 6.2 (e), see Paragraph 6.4.5 for details), suggesting
their source to be found in the final state.

To aid the quantitative analysis of the momentum maps, we plotted the photoelectron inten-
sity as a function of the angle β around the green contour in Figure 6.2 (b) for Ekin between 15
and 80 eV (leftmost column of Figure 6.3 (c-e)), in normal light incidence (NI, Figure 6.3 (a)) and
oblique light incidence (OI, Figure 6.3 (b)) geometries, both with p polarization. In NI geometry
(Figure 6.3 (c)), the intensity appears predominantly below Ekin ≲ 50 eV, contracted along two
streaks at β ∼ ±π/3 and interrupted by homogeneous intensity distributions between these
angles at ∼ 44 eV and below 20 eV. Further, between 30 and 40 eV we find the intensity to shift
towards higher angles β = ±2π/3, an effect that we attribute to nearest-neighbor final-state
scattering, as shall be seen in the following. In contrast, the angular intensity distribution in the
OI geometry (Figure 6.3 (d,e)) is spread out more evenly between β = ±π/3, because in this
geometry nearest-neighbor scattering turns out to be less prevalent (see below). Moreover, the
intensity distribution reaches up to kinetic energies of about 60 eV, with a suppression around
44 eV in the backward emission direction (BWD, Figure 6.3 (d)) that is not observed in forward
emission (FWD, Figure 6.3 (e)).

As mentioned above, the PWA (second column in Figure 6.3 (c-e)) does not reproduce the
rich structure observed in experiment: it predicts a monotonous decay of intensity with increas-
ing kinetic energy, without any redistribution around the horseshoe. Also, the polarization fac-
tor |ϵ · k f |2 of the PWA incorrectly suppresses the overall intensity in the OI BWD geometry, in
which the photoemission occurs (nearly) perpendicular to the polarization vector of light (Fig-
ures 6.3 (b,d)). In contrast, our TDDFT results (third column in Figure 6.3 (c-e)) are in remarkable
agreement with the experiment in all three geometries, apart from an overall ∼ 3 eV kinetic en-
ergy shift with respect to the experiment. Because the TDDFT simulations were performed for
a freestanding and perfectly flat graphene layer, the pronounced structure must originate from
graphene itself, and thus alternative explanations for the experimentally observed features in
the photoemission cross section, such as hybridization with the substrate, photoelectron scat-
tering from the underlying substrate atoms, or buckling of the graphene layer, can be ruled
out. As TDDFT, however, accurately models graphene’s surface potential, it also fully accounts
for scattering of the outgoing photoelectron in the graphene lattice itself, apart from an overall
offset of the surface potential because of the missing SiC substrate, to which we attribute the
above-mentioned overall kinetic energy shift.

To clarify the physical origin of the kinetic energy and wave vector dependence of the dif-
ferential cross section, we developed an improved model for the final state, the scattered-wave
approximation (SWA). In this model, scattering effects are included via angular-momentum-
dependent and kinetic-energy-dependent amplitudes and phase shifts between partial waves
of the outgoing Coulomb wave (see Paragraph 6.4.6 and Reference [411]). As a result, k f -
dependent interference effects in the final state between the two dipole-allowed l ± 1 partial
waves become possible. While this description has in fact a long history in the simulation of
the photoemission process of gas-phase molecules [425, 426, 427, 282], we formally extended it
to a periodic system, including the Bloch nature of the initial state as well as on-site, and, in a
second step, nearest-neighbor scattering of the outgoing photoelectron.

Without nearest-neighbor scattering, the photoemission intensity from the C 2pz-derived
valence band of graphene becomes (Paragraph 6.4.6)

I(k f , Ωk f
hν, ϵ) ∝ |Mk f ,k|2 (6.2)

= δk,k f ∥

⃓⃓
ϵ · M210(k f )(1 + eiϑk)

⃓⃓2,
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Figure 6.3: Kinetic-energy-dependent photoemission intensities around the horseshoe. (a)
Normal incidence (NI) geometry. (b) Oblique incidence (OI) geometry. The incident light polar-
ization is shown by the yellow sine wave. Angle-resolved detection in dΩ around inclination
θ and azimuth ϕ is illustrated in green. The red lobes visualize the angular distributions of the
pure d channels, d2

NI and d2
OI, respectively (cf. Equations 6.4 and 6.5). In our experiment, only

photoelectrons emitted into the (x, z) plane, where ϕ = 0, are detected. To obtain the momen-
tum maps in Figure 6.2, the sample is rotated around the z axis by varying φ. (c-e) Experimental
photoemission intensities in three geometries as indicated, extracted along the green contour in
Figure 6.2 (b) and compiled for densely sampled kinetic energies between 15 and 80 eV (first
column), compared to predictions of the PWA (second column), TDDFT (third column, shifted
by 3 eV) and SWA without nearest-neighbor scattering (fourth column). Intensities in each col-
umn are plotted to scale, with dark red corresponding to high intensity. Between the columns
the scaling is arbitrary. The blue arrows mark an intensity minimum that arises from a node in
the d channel.
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where the Kronecker δk,k f ∥ describes momentum conservation (modulo reciprocal lattice trans-

lations) and (1 + eiϑk) is the initial-state structure factor. Remarkably, the term ϵ · Mnlm(k f )
now replaces ϵ · k f ×F [ϕnlm](k f ) in the PWA that we discussed in the introduction. For a 2pz
orbital with quantum numbers {nlm} = {210}, it is given by

M210(k f ) = ˜︁g(k f ) Y1,0,0(θ, ϕ)
⏞ ⏟⏟ ⏞

s channel

− ˜︁f (k f ) Y1,2,0(θ, ϕ)
⏞ ⏟⏟ ⏞

d channel

(6.3)

and therefore embodies the dipole selection rule and the corresponding angular distribution in
the differential cross section for photoemission from C 2pz orbitals. The complex-valued quanti-
ties ˜︁g(k f ) and ˜︁f (k f ) are determined by the effective on-site scattering potential and contain the
k f -dependent amplitude and phase of the s and d photoemission partial waves, respectively.
The photoemission angular distribution in these two channels is given by the vector spheri-
cal harmonics Y l,l∓1,m [278], whose components can be individually addressed by the principal
components of the light polarization vector ϵ.

In our experimental geometry (Figure 6.3 (a,b)), the NI and OI intensities simplify to (see
Paragraph 6.4.6)

INI ∝ | ˜︁f (k f )|2dNI(θ, ϕ)2|1 + e
iϑk f ∥ |2, (6.4)

IOI ∝
[︂
| ˜︁f (k f )|2dOI(θ, ϕ)2 + 8|˜︁g(k f )|2

+ 4
√

2| ˜︁f (k f )||˜︁g(k f )|dOI(θ, ϕ) cos ∆σ
]︂

× |1 + e
iϑk f ∥ |2,

(6.5)

where dNI(θ, ϕ) = sin 2θ cos ϕ and dOI(θ, ϕ) = 3 sin 2θ cos ϕ + 3 cos 2θ + 1 describe the angu-
lar intensity distributions of the pure d channel in the respective polarization geometries, and
where ∆σ = arg( ˜︁f /˜︁g) describes the relative phase between s and d partial waves. In the sym-
metric NI geometry, the s channel is suppressed and emission in the d channel is symmetric in
θ. In contrast, IOI is determined by the interference between the isotropic s and the anisotropic
d channels. We note that in our experiments the plane of light incidence (spanned by the wave
vector and light polarization) and the plane of detected photoemission coincide, i.e., ϕ = 0 al-
ways. Hence, for β = 0 the above equations apply directly to our experiment, while for β ̸= 0
(equivalent to ϕ ̸= 0 in Figure 6.3 (a,b) and Equation 6.4) the sample and with it the initial
state need to be rotated by changing φ away from 0 while keeping ϕ = 0. In contrast, both
the TDDFT and the SWA calculations in Figure 6.3 (c-e) vary ϕ and keep φ = 0. Because the
variations of φ (experiments) and ϕ (calculations) along the horseshoe trajectory β are small,
deviations between the two detection geometries are negligible, as is also illustrated by the
excellent agreement between experiment and theory in Figure 6.3 (c-e).

In analyzing the predictions of the SWA, we first focus on the kinetic energy (k f ) depen-
dence. Since dOI(ϕ = 0, θ)2 vanishes for backward emission at θ−0 ≈ −29.3◦, we expect a
minimum in IOI at this angle. Close to the K point of graphene we have k∥ ≈ 1.7 Å−1. Pho-
toelectrons with this k f ∥ will be emitted at the angle θ−0 if k f = k f ∥/ sin θ−0 , yielding a kinetic
energy Ekin ≈ 44 eV. This agrees with the observed intensity minimum in backward emission
displayed in Figure 6.3 (d) (blue arrows), which can therefore be assigned to a node in the d
channel (red lobe in Figure 6.3 (b)). Note that the second root of dOI(ϕ = 0, θ)2 appears in for-
ward direction at θ+0 ≈ 74.3◦, corresponding to a kinetic energy of only 11.4 eV for electrons
from the vicinity of the K point, which is outside our measurement range.
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Figure 6.4: Photoemission into s and d channels as a function of final-state kinetic energy. (a)
Amplitudes |˜︁g| and | ˜︁f | of the s and d channels, respectively; (b) their ratio in the OI geometry.
The curves were extracted from experimental data at β = 0 in NI and OI geometries as indi-
cated, using the SWA without nearest-neighbor scattering. Positive real values were obtained
only for in-phase photoemission in the s and d channels, i.e., ∆σ = 0.

With the help of Equations 6.4 and 6.5 it is in fact possible to reconstruct the functions |˜︁g(k f )|
and | ˜︁f (k f )|. To this end, we divided the NI experimental data in Figure 6.3 (c) at fixed angle
β = 0 by sin2 2θ and thereby extracted the amplitude | ˜︁f (k f )| of the d channel (at β = 0, we also
have ϕ = 0). The green curve in Figure 6.4 (a) displays the result. Similarly, the BWD and FWD
OI geometries (Figure 6.3 (d,e)) at β = 0 deliver two linearly independent equations for IOI(k f ).
Solving these for | ˜︁f (k f )| (orange in Figure 6.4 (a)) and |˜︁g(k f )| (red in Figure 6.4 (a)), we find
positive real values only if ∆σ = 0, i.e., for an in-phase emission in the s and d channels. Quite
remarkably, the | ˜︁f (k f )| obtained from the OI geometry matches the curve obtained from the
NI geometry absolutely, i.e., without any scaling correction, thereby underlining the excellent
photon intensity calibration provided by the Metrology Light Source. Plotting the ratio | ˜︁f |/|˜︁g|
in Figure 6.4 (b), we find the s channel to be the predominant photoelectron source throughout
the entire energy regime, except for regions around 43 eV and 63 eV, where the s and d channel
contributions are of the same order.

Inserting the so-obtained amplitudes | ˜︁f (k f )| and |˜︁g(k f )| as well as the phase shift ∆σ = 0
back into the model of Equation 6.2, we can calculate the expected intensity distribution in the
horseshoe for our three experimental configurations (varying θ and ϕ and keeping φ = 0).
The results are shown in the rightmost column of Figure 6.3 (c-e). Regarding the OI data (d,e),
which exhibit relatively little structure in β, the agreement between experiment and SWA is very
satisfactory and clearly much better than for the PWA. For the NI data, however, the SWA model
does not capture the distinctive redistribution of the intensity in k-space that is observed in
experiment. Specifically, the kinetic-energy-dependent modulation along β is not reproduced.

To amend this deficiency, we thus extended the model to include, in addition to on-site scat-
tering, also nearest-neighbor (NN) scattering in the final state, i.e., scattering of photoelectrons
emitted from sublattice A into the Coulomb partial waves centered at one of the neighboring B
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Figure 6.5: Influence of nearest-neighbor scattering. (a) Experimental photoemission intensity
in the NI geometry reproduced from Figure 6.3 (c) with a different contrast scaling. (b) Cor-
responding TDDFT simulations from Figure 6.3 (c). (c) SWANN prediction including nearest-
neighbor final-state scattering. (d) k f -dependent scattering amplitude and phase of u(k f ) that
best fits the data in (a). For a compact display we have plotted Abs ≡ |u| × sgn(arg u) and
Arg ≡ mod (arg u, π).

sites. Adapting Equation 6.2 accordingly, we find (see Paragraph 6.4.6)

I(k f , Ωk f
hν, ϵ) ∝

⃓⃓
ϵ · M210(k f )×

[︁
1 + eiϑk + (6.6)

+
(︁
e
−iϑk f ∥ + eiϑk e

iϑk f ∥
)︁
u(k f )

]︁⃓⃓2
δk,k f ∥ .

NN final-state scattering thus leads to an additional term (e
−iϑk f ∥ + eiϑk e

iϑk f ∥ )u(k f ), which col-

lapses to (e
−iϑk f ∥ + e

i2ϑk f ∥ )u(k f ) due to momentum conservation. Because u(k f ) varies only
slowly on the photoemission hemisphere Ωk f

, for a given k f it can be approximated in Equa-
tion 6.6 as a merely kinetic-energy-dependent (but not momentum-vector-dependent) fit pa-
rameter u(k f ) that is constant around the horseshoe, i.e., u(k f ) ≈ |u(k f )|ei arg u(k f ). Fitting
Equation 6.6 under this assumption to the experimental data of Figure 6.3 (c), we obtained the
intensity distribution shown in Figure 6.5 (c), with the corresponding u(k f ) displayed in Fig-
ure 6.5 (d). Given the simplicity of our scattering model, the agreement with the experiment
in Figure 6.5 (a) (and with TDDFT in Figure 6.5 (b)) is very satisfactory: In particular, the shift
of the intensity to β ≈ ±2π/3 in the kinetic energy range between 30 and 40 eV and also be-
low 20 eV, as well as the concurrent depletion of the intensity in the interval [−π/3,+π/3], are
well reproduced. As Figure 6.2 (d) reveals, these redistributions are a direct consequence of the

minima and maxima of |e−iϑk f ∥ + e
i2ϑk f ∥ | at β = ±π/3 and β = ±2π/3, respectively, and the

maxima of |u(k f )| in the respective kinetic energy ranges. This demonstrates that the SWA in
conjunction with nearest-neighbor final-state scattering (SWANN) captures the essence of the
observed intensity distribution, in both kinetic energy and k-space.

Looking back at the overall intensity distributions in β of the three experimental geometries
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in Figure 6.3 (c-e), we note that nearest-neighbor final-state scattering is most prevalent in the
NI geometry, to a much lesser extent also in the OI-FWD, but essentially absent in OI-BWD,
where the intensity is essentially confined in the interval [−π/3,+π/3], as predicted by the
bare initial-state structure factor |1 + eiϑk | (Figure 6.2 (c)). In other words, experimental geome-
tries that have significant d channel contributions (NI, OI-FWD, cf. Equations 6.4 and 6.5) show
NN scattering, while those with a dominant s channel (OI-BWD) do not. We rationalize this
observation by the emission channels’ k f dependences. Estimating the d and s wave resonances
in Figure 6.4 (a) to exhibit widths of ∆kd ≈ 0.3 Å−1 and ∆ks ≈ 1.5 Å−1, respectively, Heisen-
berg’s uncertainty principle ∆k∆r ≥ h̄/2 suggests real-space distributions of the corresponding
Coulomb partial waves of the order ∆rd ≈ 1.7 Å and ∆rs ≈ 0.3 Å around the carbon nucleus.
Taking into account a carbon-carbon distance of 1.42 Å, a significant overlap between partial
waves emanating from nearest neighbors is thus only expected for the d channel.

6.3 Conclusion

In summary, we measured angle-resolved photoemission intensities of the horseshoe of quasi-
freestanding monolayer graphene (QFMLG) for a wide range of photon energies using a cal-
ibrated photon flux. Varying the final-state kinetic energy for a fixed initial state, we found
a complex intensity modulation that is well reproduced by simulations using the surface-flux
method within the framework of TDDFT, but goes beyond the predictions of the plane-wave
final state approximation. In order to understand these findings in terms of an intuitive phys-
ical picture, we developed the scattered-wave approximation for the photoemission final state
which allows for the interference of the dipole-allowed s and d photoemission channels, where
the latter experiences also significant scattering from the neighboring carbon atoms. In this
way, we extracted the kinetic-energy-dependent amplitude and phase of both s and d partial
waves, which present a benchmark for ab initio theories that focus on a more sophisticated
description of the photoemission process and are pivotal for the understanding of dichroism.
Our wide-energy-range ˜︁f (k f ), ˜︁g(k f ) data provided in Figure 6.4 (a) (see Supplemental Material
Ref. [402]) along with Equations 6.2 and 6.3 also allow for an easy calculation of the horseshoe
intensities with arbitrary polarized light. A prospective application thereof could be an ab-
solute normalization of photon flux in any photoemission measurement with variable photon
energy and geometry purely based on the photoemission response of the robust 2D material
QFMLG. Going beyond graphene, our model further promises an intuitive description of com-
plex kinetic-energy-dependent intensity modulations and dichroism in layers of π conjugated
organic molecules, or even in (quasi-) 2D quantum materials with more complex orbital low-
energy electronic structures, including strong spin orbit coupling.

6.4 Appendix

6.4.1 Sample Preparation

The preparation of quasi-freestanding monolayer graphene (QFMLG) was performed in two
steps [428, 429, 420, 430]: First, a Si-terminated 6H-SiC(0001) surface was thermally decomposed
to create zero-layer graphene (ZLG). Subsequently, the ZLG is decoupled from the substrate by
annealing at 550◦ C in hydrogen atmosphere (880 mbar) to obtain QFMLG. The quality of the
QFMLG was controlled with low-energy electron diffraction (LEED) and x-ray photoemission
spectroscopy (XPS) with Al Kα radiation. After preparation, the sample was transferred through
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air to the synchrotron for ARPES experiments. Before the ARPES experiments, the sample was
cleaned by outgassing in ultrahigh vacuum (<10−9 mbar) at 350◦ C for 30 min. ARPES exper-
iments with 45 eV photon energy revealed band maps typical for p-doped graphene with the
Fermi level 0.1 eV below the Dirac point [420].

6.4.2 Photoemission Experiments

Photon-energy-dependent ARPES experiments were conducted at the calibrated insertion de-
vice beam-line [399] of the Metrology Light Source at the Physikalisch-Technische Bundesanstalt
(PTB), the German national metrology institute in Berlin. Measurements in two experimental
geometries were carried out, labeled as normal incidence (NI) and oblique incidence (OI), with
incidence angles of, respectively, 0◦ and 45◦ relative to the sample surface normal. In both
geometries, the incident light was p-polarized.

The photon energy was varied in small steps (1 eV for hν < 50 eV, 2 eV for hν > 50 eV) from
hν = 15 to 110 eV. To this end, several different undulator/monochromator/filter settings of the
beam-line were employed: (1) In the photon energy range from 15 to 31 eV, the third undulator
harmonic with normal incidence onto the grating monochromator was employed; (2) in the
range from 25 to 45 eV, the third harmonic with grazing incidence in combination with a Mg
filter was used; (3) from 45 to 60 eV, the sixth harmonic with grazing incidence in combination
with an Al filter was employed; (4) for 60 to 71 eV, the tenth harmonic with grazing incidence
in combination with an Al filter was used; (5) for 71 to 87 eV, the tenth harmonic with grazing
incidence in combination with a Be filter was employed; (6) and finally, for 87 to 110 eV the same
setting as in (5) but in wiggler operation mode was used. The filters served to suppress both
parasitic light from higher grating orders and stray light from the monochromator, reducing the
false-light contribution to below 1% of the total [399].

Special care was taken regarding the calibration of the photon intensity Iph. To this end,
we employed the drain current caused by photoemission at the beam-line mirror. This cur-
rent was referenced to an absolutely calibrated semiconductor photodiode, yielding an hν-
dependent photon intensity curve measured in photons per seconds and nanoampere mirror
current [55]. During the photoemission experiments from graphene, the mirror current was con-
stantly monitored, yielding the calibrated photon intensity Iph(hν, ϵ) which was further used
in Equation 6.14.

To detect the photoelectrons, a toroidal electron analyzer [400] was used. The instrument
simultaneously collects photoelectrons emitted into a wide angular range of −85◦ ≤ θ ≤ 85◦

within the plane of incidence, i.e., the plane spanned by the incident light beam and the sample
normal (see Figure 6.3 (a)), and an energy dispersion range of ≈ 1 eV. Additionally rotating the
sample around its azimuth φ in steps of 1◦, we obtained I(k f , Ω0, φ; hν, ϵ) with Ω0 ≡ (θ, ϕ =
0), and thus a complete experimental data cube, which was transformed into experimental
momentum maps of the photoemission intensity I(kx, ky). Note that unlike momentum maps
that would be obtained from the intensity I(k f , Ωk f

; hν, ϵ) by converting Ωk f
= (θ, ϕ) into

(kx, ky), the experimental momentum map in this paper was measured with constant azimuth
ϕ = 0. To obtain photoemission intensities deriving from the fixed initial-state energy of ϵi =
−1.25 eV, i.e., 1.35 eV below the Dirac point, the kinetic energy Ekin at which photoelectrons
were detected was varied with photon energy hν such that Ekin = hν − Ec. Ec was determined
by comparing the experimentally measured diameter of the horseshoe to the TDDFT-calculated
one. For Ec = 1.6 eV, the experimentally measured horseshoes had the same diameter as the
TDDFT-calculated horseshoes 1.35 eV below the Dirac point. While the absolute photoelectron-
to-counts conversion rate of the toroidal electron analyzer is unknown, we expect the response
χ(k f ) to be linear and independent of k f , i.e., of kinetic energy. The cross sections reported in
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this work are thus given apart from a constant factor χ, i.e., only in relative terms, and were
thus normalized arbitrarily in Figure 6.4.

6.4.3 Photoemission Differential Cross Section

In the sudden approximation of the one-step model of photoemission, the probability per unit
time (or transition rate) Wi,k f

that a photoelectron with wave vector k f is emitted from the
single-particle initial state i is given by Fermi’s golden rule

Wi,k f
=

2π

h̄

⃓⃓
⃓
⟨︂

ψk f

⃓⃓
⃓ e
m

A · p̂
⃓⃓
⃓ψi

⟩︂⃓⃓
⃓
2

δ
(︂

εi − εk f
− Φ + hν

)︂

=
2πe2h̄|A0|2

m2

⃓⃓
⃓
⟨︂

ψk f |ϵ · ∇|ψi

⟩︂⃓⃓
⃓
2

δ
(︂

εi − εk f
− Φ + hν

)︂
,

(6.7)

where |ψi⟩ is the initial (bound) state vector with energy εi < 0 and |ψk f
⟩ is the final (un-

bound) state vector with kinetic energy Ekin = εk f
, and Φ > 0 is the work function. A is the

vector potential of the photon field, ϵ its polarization vector, p̂ the momentum operator of the
(photo)electron, and e and m are the electron’s charge and mass, respectively. The perturbing
operator A · p̂ arises from the minimal coupling principle by taking into account that the mo-
mentum operator commutes with the vector potential in the Coulomb gauge.

The probability per unit time Pi,k f
that a photoelectron with kinetic energy Ekin = h̄2k2

f /2m
is emitted from initial state i into any direction Ωk f

= (θ, ϕ) can be calculated as

Pi,k f
=

1
vk f

∫︂

|k′
f |=k f

d3k′
f Wi,k′

f
, (6.8)

where vk f
= (2π)3/V is the k f -space volume per k f vector. V is the (illuminated) real-space

volume of the sample, in which
∫︁

V ψ∗
k f

ψk f
d3r = 1. Note that for a given initial state ψi with

energy εi and due to energy conservation enforced by the delta function in Equation 6.7, the
integration in Equation 6.8 projects out the angular dependence at a fixed absolute value k f , i.e.,
kinetic energy as described earlier [46]. Using Equation 6.7, this becomes

Pi,k f
=

V
(2π)2

e2h̄|A0|2
m2

∫︂

2π
dΩk′

f

∫︂
k′f

2dk′f
⃓⃓
⃓
⟨︂

ψk′
f
|ϵ · ∇|ψi

⟩︂⃓⃓
⃓
2

δ(k′f − k f )
1

|s′(k f )|

=
V

(2π)2

e2|A0|2k f

h̄m

∫︂

2π
dΩk f

⃓⃓
⃓
⟨︂

ψk f |ϵ · ∇|ψi

⟩︂⃓⃓
⃓
2
,

(6.9)

where s(k′f ) ≡ εi − h̄k′f
2/2m − Φ + hν.

The total cross section σi,k f
of the photoemission process from initial state i is related to Pi,k f

by
σi,k f

A□
≡ ni,k f

= Pi,k f
∆t, (6.10)

where A□ is the illuminated area on the sample and ni,k f
is the fraction of emitted photo-

electrons per photon hitting the area A□ in the time interval ∆t. Evidently, A□ is given by
Vph/(c∆t), where Vph is the volume in which the energy of the photon field amounts to hν and
c the velocity of light. After differentiation with respect to the solid angle Ω we thus find for the
differential cross section

dσi,k f

dΩ
=

Vph

c

dPi,k f

dΩ
. (6.11)
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Note that both
dσi,k f

dΩ and
dPi,k f

dΩ are functions not only of k f and Ωk f
= (θ, ϕ), but also of photon

energy hν (which—because of the delta function in Equation 6.7—selects possible initial states i
according to their εi) and light polarization ϵ. Hence, we write dσ

dΩ (k f , Ωk f
; hν, ϵ) from now on.

The normalization of the light field to the energy of one photon in the volume Vph fixes the
amplitude A0 of the vector field to

|A0|2 =
h̄

πVphϵ0ν
. (6.12)

According to Equations 6.9 and 6.11, this finally yields the differential photoemission cross
section

dσ

dΩ
(k f , Ωk f

; hν, ϵ) =
dσi,k f

dΩ
=

V
4π3

e2k f

cmϵ0ν

⃓⃓
⃓
⟨︂

ψk f |ϵ · ∇|ψi

⟩︂⃓⃓
⃓
2

. (6.13)

In experiment, we measure the photoelectron intensity I(k f , Ωk f
; hν, ϵ) at the detector in

a finite solid angle ∆Ω, originating from the area A□ on the sample which contains N pho-
toemitters. The calibrated beamline produces a known monochromatic photon flux Fph(hν, ϵ),
yielding a photon intensity Iph(hν, ϵ) = F(hν, ϵ)A□ on the area A□. Photoelectrons are detected
with efficiency χ(k f ). Therefore, the photoelectron intensity is given by

I(k f , Ωk f
; hν, ϵ) = χ(k f ) Iph(hν, ϵ) N

dσ
dΩ (k f , Ωk f

; hν, ϵ)

A□
∆Ω. (6.14)

Thus, the intensity ratio I(k f , Ωk f
; hν, ϵ)/Iph(hν, ϵ), if obtained at a carefully calibrated beam-

line with a carefully characterized linear response χ(k f ) of the analyzer, is a direct measure of
the differential photoemission cross section. If we assume that the volume density of the pho-
toemitters in the sample is ϱ, we can replace the ratio N/A□ in the above equation by ϱd, where
d is the effective sampling depth.

6.4.4 Photoemission Initial State

The unit cell of graphene contains two carbon atoms, one in each of the two sublattices A and
B. The respective atoms are located at RA = a

2
√

3
(0,−1)⊤ and RB = a

2
√

3
(0, 1)⊤ within the unit

cell (see Figure 6.6). Each of these carbon atoms contributes one 2pz orbital to the formation
of aromatic π bonds. The nearest neighbors of carbon atoms in sublattice A are atoms in sub-
lattice B; they are located at n0 = (0, a/

√
3)⊤ within the same unit cell and at n1 = C1

3n0 =

(−a/2,−a/2
√

3)⊤ and n2 = C2
3n0 = (a/2,−a/2

√
3)⊤ in adjacent unit cells, where C3 is a

threefold rotation around the sample normal. In the orbital basis {|RA, 2pz⟩, |RB, 2pz⟩}, the
tight-binding Hamiltonian with nearest-neighbor hopping reads

Ĥ = t
(︃

0 h(k)
h∗(k) 0

)︃
, (6.15)

where

h(k) =
2

∑
j=0

einj ·k ≡ |h(k)|eiϑk (6.16)
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Figure 6.6: Atomic structure of graphene. Carbon atoms of the two sublattices A and B are
displayed in red and orange, respectively. The primitive unit cell containing one atom each of
both sublattices is shown in black. The three vectors n0, n1 and n2 from an atom in sublattice
A to its nearest neighbors in sublattice B are indicated in green. Non primitive unit cells that
contain all nearest neighbors of a sublattice representative are shown in yellow. In the SWANN

including nearest-neighbor scattering, the total photoemission intensity is given by the sum of
identical contributions from the two yellow unit cells.

describes the coupling between sublattices A and B, and where t < 0 is the nearest-neighbor
hopping energy [283]. Diagonalizing Ĥ, one finds eigenvalues

ε±k = ±t|h(k)| (6.17)

= ±t
√︂

3 + 2 cos(akx) + 4 cos(akx/2) cos(a
√

3ky/2)

with eigenvectors c± = (c±A , c±B )
⊤ = 1√

2
(1,±eiϑk)⊤, where eiϑk = h(k)/|h(k)|, and where the

superscripts + and − label the negative and positive energy solutions, i.e., the valence and the
conduction band, respectively. The argument ϑk of h(k) is plotted in Figure 6.7. Hence, the
initial state of the photoemission process from the aromatic π bands of graphene is the Bloch
state

Ψ±
k (r) =

1√
V

∑
R

eik·R 1√
2

(︂
|RA, 2pz⟩ ± eiϑk |RB, 2pz⟩

)︂
, (6.18)

where the sum runs over all graphene lattice sites R, and k is defined within the first Brillouin
zone of graphene. Because in the experiment we measure only the horseshoe within the valence
band of graphene, we exclusively select the + and drop the − solution in the main text.

6.4.5 TDDFT Calculations

For the ab initio simulations of photoemission from graphene, we restricted ourselves to a single
layer with a carbon-carbon distance of nj = 1.421 Å, extended in the x, y plane. The TDDFT
simulations were carried out with the real-space real-time code OCTOPUS [177, 431, 432, 433],
using in-plane periodic boundary conditions and an out-of-plane simulation box of 70 Å (Dz) in
both directions. To avoid spurious reflections of electron density in both non-periodic directions
(±z directions), we inserted a complex absorbing potential [434] (CAP), starting at a distance
of ±15 Å from the graphene layer, with iξ sin2( zπ

2Dz
) behavior and ξ = −1 a.u. We used a grid

spacing in the simulation box of 0.18 Å and approximated the influence of the core electrons by
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Figure 6.7: Phase ϑk of graphene. The black hexagon indicates the first Brillouin zone. Γ, K and
K’ points are labeled.

norm-conserving Hartwigsen-Goedecker-Hutter pseudopotentials [435]. Exchange-correlation
effects were treated in the adiabatic local density approximation (ALDA) [101, 103].

After the electronic ground state had been calculated, the system was subjected to an electro-
magnetic field for 30 fs. It was coupled to the Hamiltonian in the velocity gauge. This pulse was
modeled by a cos(ωt) function and shaped by a sin2 hull function, thus ensuring gradual on-
and off-switching. Over all times, we recorded the flux of electron density through a surface
located at the onset of the CAP, which is a direct numerical simulation of the ARPES experi-
ment [85, 86]. In order to guarantee a normalized photon flux, the maximum amplitude of the
pulse was varied for each photon energy, corresponding to a laser with a constant intensity of
108 W/cm2.

6.4.6 Photoemission Final State

General Framework

Following Ref. [411], we write the photoelectron final state in terms of unbound solutions of the
Schrödinger equation in a central Coulomb potential (Coulomb wave equation), i.e., in terms
of unbound (positive energy) hydrogen-like atomic orbitals |Rj, ηlm⟩ centered at site Rj. These
orbitals are the partial waves in the expansion of the Coulomb wave |k f ⟩ with wave vector k f
and as such are characterized by quantum numbers l and m, as well as the dimensionless Som-
merfeld parameter η = Z/(a0k f ), which describes the distortion of the outgoing photoelectron
wave with spherical wave vector k f in the Coulomb field of the ion that is left behind. a0 is
the Bohr radius. Note that the Sommerfeld parameter takes the role of the principal quantum
number n that characterizes bound solutions.

The partial waves are given by [436, 437, 438, 439]

χηlm(r) = ⟨r|χηlm⟩ = Rηl(r)⟨r|lm⟩ = Rηl(r)Ym
l (Ωr). (6.19)
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In the far field, the radial functions k f rRηl(r) normalize to a sine wave of unit amplitude,

Rηl(r → ∞) →
sin[k f r − η ln(2k f r)− lπ/2 + σl ]

k f r
, (6.20)

where σl = arg Γ(l + 1 + iη) is the Coulomb phase. The sine wave is phase-shifted with respect
to the free electron wave, signifying the impact of the ionic Coulomb potential on the partial
electron wave with angular momentum l far away from the atomic site.

The Coulomb wave |k f ⟩ of the outgoing photoelectron emitted with wave vector k f from
an atomic site in a specific direction, expanded in terms of partial waves for all l and m, is given
by [279, 440]

|k f ⟩ = 4π
∞

∑
l=0

l

∑
m=−l

il eiσl ⟨lm|k f ⟩|χηlm⟩, (6.21)

yielding

χk f
(r) = ⟨r|k f ⟩

= 4π
∞

∑
l=0

l

∑
m=−l

il eiσl Rηl(r, k f )⟨r|lm⟩⟨lm|k f ⟩

= 4π
∞

∑
l=0

l

∑
m=−l

il eiσl Rηl(r, k f )Ym
l (Ωr)Ym∗

l (Ωk f
).

(6.22)

This expression should be compared to the partial-wave expansion of the plane-wave final state

eik f ·r = 4π
∞

∑
l=0

l

∑
m=−l

il jl(k f r)Ym∗
l (Ωr)Ym

l (Ωk f
) (6.23)

where the jl are spherical Bessel functions.
The final-state wave function of a photoelectron with wave vector k f from a lattice of atoms

is given by a coherent superposition of outgoing states |k f ⟩ emanating from all sites,

Ψk f
(r) =

1√
V

∑
R

eik f ·R ∑
Rj

eik f ·Rj χk f
(r − R − Rj), (6.24)

where the sums are carried out over all lattice vectors R and basis sites Rj within a unit cell of
the lattice, respectively. The prefactor involving the normalization volume (=sample volume) V
safeguards that ⟨Ψk f

|Ψk f
⟩ = 1. In the case of graphene, this becomes

Ψk f
(r) =

1√
V

∑
R

eik f ·R ∑
j={A,B}

eik f ·Rj χk f
(r − R − Rj), (6.25)

where all R, Rj are 2D vectors in the plane of graphene.
Before turning to the special case of photoemission from the C 2 pz orbitals of graphene, we

derive a general expression for the matrix element in Equation 6.13 between an initial Bloch
state with band index κ,

|Ψκ
k⟩ =

1√
V

∑
R

eik·R ∑
Rj

∑
nlm

cκ
jnlm(k)|R + Rj, nlm⟩, (6.26)

109



Chapter 6. Simple Extension of the Plane Wave Final State in Photoemission: Bringing. . .

and the final state as given in Equation 6.24. The initial-state Bloch state can be expanded in
terms of atomic states with quantum numbers {nlm} centered at sites R + Rj. The latter are
given by bound atomic orbitals (negative energy)

Φnlm(r) = ⟨r|0, nlm⟩ = Rnl(r)Ym
l (Ωr). (6.27)

Note that for graphene, the Bloch wave vectors in Equation 6.26 are 2D and oriented in the
surface plane, i.e., k = k∥. For the photoemission matrix element Mκ

k f k between the initial-state

wave function Ψκ
k(r) and the final-state wave function Ψk f

(r) we obtain from Equation 6.24 and
Equation 6.26

Mκ
k f k =

∫︂
d3r Ψ∗

k f
(r) ϵ · ∇Ψκ

k(r)

=
1
V ∑

R′
e−ik f ·R′

∑
R′

j

e−ik f ·R′
j ∑

R
eik·R ∑

Rj

∑
nlm

cκ
jnlm(k)

×
∫︂

d3r χ∗
k f
(r − R′ − R′

j) ϵ · ∇Φnlm(r − R − Rj)

=
1
V ∑

R′
e−ik f ·R′

∑
R′

j

e−ik f ·R′
j ∑

R
eik·R ∑

Rj

∑
nlm

cκ
jnlm(k)

×
∫︂

d3r χ∗
k f
(r − R′ − R′

j + R + Rj) ϵ · ∇Φnlm(r)

≈ 1
V ∑

R
ei(k−k f )·R ∑

Rj

∑
nlm

cκ
jnlm(k)e

−ik f ·Rj

∫︂
d3r χ∗

k f
(r) ϵ · ∇Φnlm(r)

=
N
V ∑

G
δ(k−k f )∥ ,G ∑

Rj

∑
nlm

cκ
jnlm(k)e

−ik f ·Rj ϵ · Mnlm(k f )

=
1

V0
∑
G

δ(k−k f )∥ ,G ϵ ·M · c

≈
δk,k f ∥

V0
ϵ ·M · c, (6.28)

where M is a 3 × dim(c) matrix that couples the polarization (row) vector ϵ of the incom-
ing light to the initial state (column) vector c(k) = (. . . , cκ

jnlm(k), . . . )⊤, and where the indices
{κ jnlm} run over all available coordinates and quantum numbers. From the second to the third
lines of Equation 6.28, a coordinate transformation r − R − Rj → r was carried out. Also, from
the third to the fourth lines we excluded transitions between initial-state orbitals at one site
Φnlm(r − R − Rj) and final-state waves χk f

(r − R′ − R′
j) emerging from another site, i.e., we

assumed R = R′ and Rj = R′
j. This amounts to an explicit exclusion of inter-site final-state

scattering (see below) and is commonly referred to as the independent center approximation. From
the fourth to the fifth lines, we further identified the Fourier series in R as Dirac comb with
2D reciprocal lattice periodicity G, and hence recover momentum conservation. Here, N is the
number of unit cells in the sample volume and V0 the unit cell volume.

The column 3-vectors Mnlm(k f ) in Equation 6.28 are defined as

Mnlm(k f ) ≡
∫︂

d3r χ∗
k f
(r)∇Φnlm(r), (6.29)
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where the gradient of atomic orbitals is given in Ref. [278] by

∇Φnlm(r) = ∇[Rnl(r)Ym
l (Ωr)]

= −
√︃

l + 1
2l + 1

[︃
∂

∂r
− l

r

]︃
Rnl(r)Y l,l+1,m(Ωr) +

+

√︃
l

2l + 1

[︃
∂

∂r
+

l + 1
r

]︃
Rnl(r)Y l,l−1,m(Ωr), (6.30)

and where Y J,L,M(Ωr) are the vector spherical harmonics defined as [278]

Y J,L,M(Ωr) =
L

∑
m=−L

1

∑
m′=−1

⟨L, m; 1, m′|J, M⟩Ym
L (Ωr) ϵm′ , (6.31)

with Clebsch-Gordon coefficients ⟨j1, m1; j2, m2|J, M⟩. Y J,L,M thus emerges from the angular-
momentum coupling of the ordinary spherical harmonic Ym

L with angular momentum quantum
number L to the complex vector u = xex + yey + zez, (x, y, z) ∈ C3, which has the angular
momentum quantum number 1. The eigenstates of the L̂z operator in the three-dimensional
complex space of u are the ϵm′ , given by ϵ+1 = (−1/

√
2,−i/

√
2, 0)⊤, ϵ0 = (0, 0, 1)⊤, and

ϵ−1 = (1/
√

2,−i/
√

2, 0)⊤ [278]. Defining

fnl(r) ≡
[︃

∂

∂r
− l

r

]︃
Rnl(r),

gnl(r) ≡
[︃

∂

∂r
+

l + 1
r

]︃
Rnl(r),

(6.32)

we obtain

∇Φnlm(r) = −
√︃

l + 1
2l + 1

fnl(r)Y l,l+1,m(Ωr) +

√︃
l

2l + 1
gnl(r)Y l,l−1,m(Ωr), (6.33)

which, if inserted into Equation 6.29, yields

Mnlm(k f ) =
∫︂

d3r χ∗
k f
(r)

(︄
−
√︃

l + 1
2l + 1

fnl(r)Y l,l+1,m(Ωr) +

√︃
l

2l + 1
gnl(r)Y l,l−1,m(Ωr)

)︄

= −
√︃

l + 1
2l + 1

e−iσl+1 ˜︁fn,l,l+1(k f )Y l,l+1,m(Ωk f
) +

+

√︃
l

2l + 1
e−iσl−1 ˜︁gn,l,l−1(k f )Y l,l−1,m(Ωk f

), (6.34)

where we exploited the orthogonality of spherical harmonics to resolve the spatial integral and
introduced

˜︁fn,l,l+1(k f ) ≡ 4π(−i)l+1
∫︂

dr r2R∗
ηl+1(r) fnl(r),

˜︁gn,l,l−1(k f ) ≡ 4π(−i)l−1
∫︂

dr r2R∗
ηl−1(r)gnl(r).

(6.35)

The two summands in Equation 6.34 correspond to the two dipole-allowed photoemission
channels l → l ± 1. The ˜︁fn,l,l+1(k f ) and ˜︁gn,l,l−1(k f ) are the kinetic-energy-dependent (through
k f ) amplitudes of the photoemission l + 1 and l − 1 channels, respectively, for photoemission
from an initial state with quantum numbers {nlm}. The σl+1 and σl−1 are their corresponding
Coulomb phases.
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Photoemission from C 2pz Orbitals Without Nearest-neighbor Scattering

We now focus on photoemission from the π band of graphene and calculate M±
k f k for this ex-

plicit case. Then, the matrix M is a 3× 2 matrix, and c is given by c± = 1√
2
(1,±eiϑk)⊤. Since the

orbitals in the two sublattices are identical, the two columns of M are also identical. Because a
specific choice of the basis in C3 is implicit in the definition of the vector spherical harmonics,
and thus also in Mnlm, we also need to express both the polarization vector ϵ of the light and
the initial state vector c in this basis. Since the π bands of graphene involve only C 2pz states,
this is trivial with regard to c; we consider only the M210 vector. Regarding the polarization
vector of the incoming light, we have to choose the basis of eigenstates of the complex vector u,
i.e., ϵ+, ϵ0 and ϵ− as defined above. In fact, this basis coincides with circular polarized light of
two opposite directions in the x, y plane (ϵ+ ≡ ϵ⟲ and ϵ− ≡ ϵ⟳) and linearly polarized light in
the z direction (ϵ0).

Applying Equation 6.34 to the C 2pz orbital with quantum numbers {nlm} = {210}, we find

M210(k f ) = −
√︃

2
3

e−iσ2 ˜︁f2,1,2(k f ) Y1,2,0(Ωk f
) +

√︃
1
3

e−iσ0 ˜︁g2,1,0(k f ) Y1,0,0(Ωk f
)

≡ − ˜︁f (k f ) Y1,2,0(Ωk f
) + ˜︁g(k f ) Y1,0,0(Ωk f

),
(6.36)

where for clarity we absorbed the constants as well as the k f -dependent amplitudes (˜︁g2,1,0 and
˜︁f2,1,2) and phases (e−iσ2 and e−iσ0 ) in the complex functions ˜︁f (k f ) and ˜︁g(k f ), respectively. Ac-
cording to Equation 6.28, M±

k f k then becomes

M±
k f k = δk,k f ∥ ϵ ·M(k f ) · c±

= δk,k f ∥

(︁
ϵ+ ϵ0 ϵ−

)︁
·
(︁

M210(k f ) M210(k f )
)︁
· 1√

2

(︃
1

±eiϑk

)︃

= δk,k f ∥

(︁
ϵ+ ϵ0 ϵ−

)︁
· M210(k f ) ·

(︁
1 1

)︁
·
(︃

1
±eiϑk

)︃

=

(︄
− ˜︁f (k f )

(︄√︃
3

10
ϵ−Y1

2 (Ωk f
)−

√︃
2
5

ϵ0Y0
2 (Ωk f

) +

√︃
3

10
ϵ+Y−1

2 (Ωk f
)

)︄

⏞ ⏟⏟ ⏞
d channel

+

+ ˜︁g(k f ) ϵ0Y0
0 (Ωk f

)
⏞ ⏟⏟ ⏞

s channel

)︄
× 1√

2
(1 ± e

iϑk f ∥ ), (6.37)

where we used the vector spherical harmonics,

Y1,2,0(Ωk f
) =

(︄√︃
3
10

Y−1
2 (Ωk f

),−
√︃

2
5

Y0
2 (Ωk f

),

√︃
3

10
Y1

2 (Ωk f
)

)︄⊤

, (6.38)

and
Y1,0,0(Ωk f

) = (0, Y0
0 (Ωk f

), 0)⊤, (6.39)

according to Equation 6.31.
First, we note that circular dichroism in this approximation vanishes, as

|Y1
2 (Ωk f

)| = |Y−1
2 (Ωk f

)|. (6.40)
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Next, we consider the two experimental geometries NI and OI that are employed in our work.
For NI and a vector potential along ϵx, we have ϵ+ = − 1√

2
, ϵ− = 1√

2
, and ϵ0 = 0. Using the

explicit expressions for the spherical harmonics,

Y0
0 (Ωk f

) =
1

2
√

π
,

Y0
2 (Ωk f

) =

√︃
5

4π
(

3
2

cos2 θ − 1
2
),

Y1
2 (Ωk f

) = −
√︃

15
8π

sin θ cos θe+iϕ and

Y−m
l = (−1)mYm∗

l , (6.41)

Equation 6.37 then becomes

M±
k f k, NI = δk,k f ∥

3
8
√

π
˜︁f (k f ) sin 2θ cos ϕ(1 ± eiϑk) (6.42)

and the corresponding photoemission intensity reads

I±(k f , θ, ϕ; hν, ϵNI) ∝ |M±
k f k, NI|

2 = δk,k f ∥

9
64π

| ˜︁f (k f )|2 sin2 2θ cos2 ϕ|1 ± eiϑk |2. (6.43)

This expression corresponds to Equation 6.4. Thus, we find that in the NI geometry with the
polarization vector in the surface plane, the photoemission is strictly suppressed in the s chan-
nel. This geometry can therefore be used to determine the (square) modulus of the complex,
kinetic-energy-dependent photoemission amplitude in the d channel.

In the OI geometry, with 45◦ angle of light incidence in the −x, z half plane, we have
(ϵ+, ϵ0, ϵ−) = (− 1

2 , 1√
2

, 1
2 ). Equation 6.37 then yields

M±
k f k, OI = δk,k f ∥

1
8
√

2π

(︂
˜︁f (k f ) (3 sin 2θ cos ϕ + 3 cos 2θ + 1) + 2

√
2˜︁g(k f )

)︂
× (1 ± eiϑk), (6.44)

and

I±(k f , θ, ϕ; hν, ϵOI) ∝ |M±
k f k, OI|

2

= δk,k f ∥

1
128π

(︂
| ˜︁f (k f )|2 (3 sin 2θ cos ϕ + 3 cos 2θ + 1)2 + 8|˜︁g(k f )|2

+4
√

2| ˜︁f (k f )||˜︁g(k f )| (3 sin 2θ cos ϕ + 3 cos 2θ + 1) cos ∆σ
)︂

×|1 ± eiϑk |2. (6.45)

which corresponds to Equation 6.5, and where ∆σ(k f ) ≡ arg
˜︁f (k f )

˜︁g(k f )
is the kinetic-energy-dependent

relative phase between the d and s photoemission channels.
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Photoemission from π Bands of Graphene Including Nearest-neighbor Scattering

To account for nearest-neighbor (NN) scattering, we reconsider the matrix element between the
full initial- and final-state Bloch functions (Equation 6.28)

Mκ
k f k =

∫︂
d3r Ψ∗

k f
(r) ϵ · ∇Ψκ

k(r)

=
1
V ∑

R′
e−ik f ·R′

∑
R′

j

e−ik f ·R′
j ∑

R
eik·R ∑

Rj

∑
nlm

cκ
jnlm(k) ·

·
∫︂

d3r χ∗
k f
(r − R′ − R′

j + R + Rj) ϵ · ∇Φnlm(r). (6.46)

In the previous section, we assumed R′ = R and R′
j = Rj before proceeding with this equation;

the initial-state orbital and final-state partial wave were required to be centered on the same
carbon atom, i.e., we employed the independent center approximation. Now we will relax this
condition and allow an electron originating from a certain basis atom to be emitted in a partial
wave centered on another basis atom (R′

j ̸= Rj) in the same unit cell (R′ = R). Clearly, this
allows for nearest-neighbor scattering within the unit cell during the photoemission process.
Then the above equation becomes

Mκ
k f k ≈ 1

V ∑
R

ei(k−k f )·R ∑
R′

j

e−ik f ·R′
j ∑

Rj

∑
nlm

cκ
jnlm(k)

∫︂
d3r χ∗

k f
(r − R′

j + Rj) ϵ · ∇Φnlm(r)

=
1

V0
∑
G

δ(k−k f )∥ ,G ∑
R′

j

e−ik f ·R′
j ∑

Rj

∑
nlm

cκ
jnlm(k)

∫︂
d3r χ∗

k f
(r − R′

j + Rj) ϵ · ∇Φnlm(r).
(6.47)

In the above equation the integral cannot any more be written as ϵ · Mnlm(k f ) for a single
set of quantum numbers {nlm} as in Equation 6.34. Rather, the shift ∆ = Rj − R′

j between
the centers of the χk f

and Φnlm requires the expansion of the integral in terms of angular mo-
mentum eigenfunctions for all quantum numbers {n′l′m′}, with so-called Shibuya-Wulfmann

integrals [441, 442] S
R′

jn
′ l′m′

Rjnlm as expansion coefficients,

∫︂
d3r χ∗

k f
(r − R′

j + Rj) ϵ · ∇Φnlm(r) = ∑
n′ l′m′

S
R′

jn
′ l′m′

Rjnlm ϵ · Mn′ l′m′(k f ) (6.48)

where Mn′ l′m′ is given by Equation 6.34. This expansion yields

Mκ
k f k ≈ 1

V0
∑
G

δ(k−k f )∥ ,G ∑
R′

j

e−ik f ·R′
j ∑

Rj

∑
nlm

cκ
jnlm(k) ∑

n′ l′m′
S

R′
jn

′ l′m′

Rjnlm ϵ · Mn′ l′m′(k f )

=
1

V0
∑
G

δ(k−k f )∥ ,G ∑
j∈{A,B}

c±j (k) ∑
j′∈{A,B}

2

∑
∀j′ ̸=j:i′=0

e−ik f ·nji′ ∑
n′ l′m′

Sj′n′ l′m′

j210 (nji′)ϵ · Mn′ l′m′(k f ),

(6.49)

where in the second line we have adjusted the nomenclature to the case of photoemission from
the π bands with band index κ = ± and quantum numbers {nlm} = {210} of graphene with its
two sublattices A and B. Note that in the case of graphene (Figure 6.6) we have to consider a non-
primitive (larger) unit cell to include all nearest neighbors of the two sublattice atoms into one
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unit cell. The nji′ are the vectors pointing from an atom in sublattice j to nearest neighbors i′ in

the other sublattice. Generally, Sjn′ l′m′

jnlm = δnn′δll′δmm′ . Moreover, since both sublattices host the

same C3-symmetric C pz orbitals, SBn′ l′m′
A210 = SAn′ l′m′

B210 for equivalent nji′ . We therefore leave out
the sublattice indices j, j′ in the Shibuya-Wulfmann integrals, which according to Equation 78
in Reference [442] are proportional to

Sn′ l′m′
210 (ni′) ∝ ∑

N,L

√︂
6n′N(2l′ + 1)⟨l′,−m′; 1, 0|L,−m′⟩ fNL(ni′)Y

−m′
L (Ωni′ ). (6.50)

The Shibuya-Wulfmann integrals perform a basis change between C 2pz orbitals centered at
sublattice B to a linear combination of orbitals {n′l′m′} centered at sublattice A and vice versa
[441, 442]. The radial contributions fNL decay exponentially with orbital distance, i.e., fNL ∝

e
− 2Z

a0n′ |ni′ |/2
with effective nuclear charge Z and Bohr radius a0, where |ni′ | in our nearest-

neighbor model is equivalent to the sublattice distance ni′ = 1.421 Å, which justifies our nearest-
neighbor scattering approximation.

Evaluating Equation 6.49 leads to

M±
k f k ≈

δk,k f ∥√
2V0

ϵ ·
[︄

(1 ± eiϑk)M210(k f ) + ∑2
i′=0 ∑n′ l′m′ Mn′ l′m′(k f ) ·

·
(︂

Sn′ l′m′
210 (ni′)e

−ik f ·ni′ ± eiϑk Sn′ l′m′
210 (−ni′)e

ik f ·ni′
)︂ ]︄

=
δk,k f ∥√

2V0
ϵ ·
[︄

(1 ± eiϑk)M210(k f ) + ∑n′ l′m′ Sn′ l′m′
210 (n0)Mn′ l′m′(k f ) ·

·∑2
i′=0 e−iπ 2i′

3 m′
(︂

e−ik f ·ni′ ± eiϑk e−iπm′
eik f ·ni′

)︂ ]︄
,

(6.51)

where we have employed c±A(k) =
1√
2

and c±B (k) = ± 1√
2

eiϑk . In the second line we have used

that the angular components Y−m′
L in Equation 6.50 transform as Ci′

ν Y−m′
L = e−i2π/νi′m′

Y−m′
L

under ν-fold rotation Cν, thus yielding Sn′ l′m′
210 (ni′) = Ci′

3 Sn′ l′m′
210 (n0) = e−iπ 2i′

3 m′
Sn′ l′m′

210 (n0) and
Sn′ l′m′

210 (−n0) = C2Sn′ l′m′
210 (n0) = e−iπm′

Sn′ l′m′
210 (n0). Further, since the 2 pz orbital possesses a node

in the graphene x, y plane and the vectors n′
i connecting the sublattices lie within this plane, the

Sn′ l′m′
210 are necessarily zero for l′ + m′ = 0 mod 2, i.e., for orbitals l′, m′ that are nonzero within

the x, y plane.

For electrons to effectively scatter into channels with angular momentum l′, they further
must overcome the centrifugal barrier, i.e., k2

f ≥ l′(l′ + 1)/a2, where a is the atomic radius.

With acarbon ∼ 0.7 Å and kmax
f ≤ 3 Å−1 in the energy region where we observe scattering, we

find only channels with l′ < 1.67 to significantly contribute to this process. The lowest orbital
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order contributions thus results from l′ = 1 and m′ = 0, and we find

M±
k f k ≈

δk,k f ∥√
2V0

ϵ ·
[︄
(1 ± eiϑk)M210(k f ) + ∑

n′
Sn′10

210 (n0)Mn′10(k f )
2

∑
i′=0

(︂
e−ik f ·ni′ ± eiϑk eik f ·ni′

)︂]︄

=
δk,k f ∥√

2V0
ϵ ·
[︄
(1 ± eiϑk)M210(k f ) +

(︂
h∗(k f ∥)± eiϑk h(k f ∥)

)︂
∑
n′

Sn′10
210 (n0)Mn′10(k f )

]︄

=
δk,k f ∥√

2V0
ϵ ·
[︄
(1 ± eiϑk)M210(k f ) +

(︃
e
−iϑk f ∥ ± eiϑk e

iϑk f ∥

)︃
|h∗(k f ∥)|∑

n′
Sn′10

210 (n0)Mn′10(k f )

]︄

=
δk,k f ∥√

2V0
ϵ · M210(k f )

[︃
(1 ± eiϑk) +

(︃
e
−iϑk f ∥ ± eiϑk e

iϑk f ∥

)︃
u(k f )

]︃

=
1√
2V0

ϵ · M210(k f )⏞ ⏟⏟ ⏞
dipole selection

⎡
⎢⎢⎢⎣(1 ± e

iϑk f ∥ )⏞ ⏟⏟ ⏞
horseshoe

+

(︃
e
−iϑk f ∥ ± e

i2ϑk f ∥

)︃
u(k f )

⏞ ⏟⏟ ⏞
NN scattering

⎤
⎥⎥⎥⎦ .

(6.52)

Here we absorbed the last sum into a complex function u(k f ) that essentially describes the over-
lap between initial-state 2pz orbitals and scattered Coulomb waves on neighboring sites. u(k f )
varies only slowly on the photoemission hemisphere Ωk f

if compared to h(k f ) and thus for a

given photoelectron momentum k f =
√︂

2mEkin/h̄2 can be approximated as a merely kinetic-

energy-dependent fit parameter that is constant across the horseshoe: u(k f ) ∼ |u(k f )|ei arg u(k f ).
The first term in the square brackets of this expression represents the structure factor produc-

ing a photoemission intensity that is proportional to | 1√
2
(1 ± eiϑk)|2 = 1 ± cos ϑk and gives rise

to the ubiquitous horseshoe pattern, reflecting the interference of the initial state Bloch wave
residing at the graphene sublattices A and B. The second term represents nearest-neighbor

scattering in the final state, essentially dictated by (e
−iϑk f ∥ ± eiϑk e

iϑk f ∥ ) that reflects the struc-
tural interference between initial and final state wave functions. We note that nearest-neighbor
final-state scattering now introduces interference terms between M210(k f ) and Mn′10(k f ), and
circular dichroism hence does not vanish any longer.
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Figure 7.1: Header of the article as published in PRB [443].

Significance Statement

POT is a very successful technique in which momentum space signatures from photoemission
experiments can be brought into relation with theoretical quantum mechanical wave functions
and thereby allows a precise characterization of, for instance, ordered organic molecules on
surfaces. In recent years, the experimental scope has been enlarged to the time domain by so-
called pump-probe photoemission spectroscopy. Here, systems are excited by an optical pulse
and, subsequently, those excited states can be probed by a second pulse. For excitations below
the band-gap of non-metallic systems, bound electron-hole pairs—the excitons—form, which
are not described by POT due to their entangled character.

In this work, we tackled this problem by a many-body formulation of the photoemission
matrix element in terms of Dyson orbitals. In this way, we could incorporate exciton wave
functions in a second quantization formalism and found that the photoemission from an exci-
ton can indeed be integrated into the formalism of POT. The resulting equation suggests that
the hole contribution of an exciton fixes the measured kinetic energy of the photoelectron. At
each allowed kinetic energy, the momentum distribution can be simulated by respecting the
entangled character of the exciton. To further validate our derivation, we also simulated the
photoemission from excitons by a TDDFT approach, which naturally allows for pump-probe
setups and where no assumptions on the final state need to be made. We found very good
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agreement for the two approaches and discussed the implications of the method for generic
exciton structures on the examples of three organic molecules in the gas-phase.

Author Contributions

Following an initial idea for this work that emerged in discussions between Andreas Windis-
chbacher, Peter Puschnig and me, real-time TDDFT calculations executed by myself could con-
firm the theoretical model. Subsequently, I wrote the code to simulate exciton photoemission
from Casida calculations, with the help of Andreas Windischbacher, who wrote a similar code
for the analysis of results from the Bethe-Salpeter Equation, which, however, were not used in
the final paper for consistency reasons. The manuscript of the paper was drafted by myself,
with significant contributions from Andreas Windischbacher and Peter Puschnig.

Abstract

Driven by recent developments in time-resolved photoemission spectroscopy, we extend the
successful method of photoemission orbital tomography (POT) to excitons. Our theory retains
the intuitive orbital picture of POT, while respecting both the entangled character of the exciton
wave function and the energy conservation in the photoemission process. Analyzing results
from three organic molecules, we classify generic exciton structures and give a simple interpre-
tation in terms of natural transition orbitals. We validate our findings by directly simulating
pump-probe experiments with time-dependent density functional theory.

7.1 Introduction

In the past decade, photoemission orbital tomography (POT) [46, 406, 407, 405, 401, 48] has
emerged as a powerful technique that relates the measured photoemission angular distribu-
tion (PAD) from oriented films of organic molecules with the orbitals from which the electron
has been emitted. This direct connection arises from modeling photoelectrons by plane waves.
While this plane wave assumption has been debated [79, 80] and, in fact, demonstrated to be
insufficient in certain circumstances [81, 82], POT has led to valuable insights, for instance,
into the hybridization between organic layers and the substrate [50, 51, 52], the geometry of
adsorbate layers [47, 48, 49], the nature of reaction products [53] or real space images of or-
bitals [?, 55, 56, 57, 58]. Particularly the latter aspect has also stimulated discussions on how
to build a formal bridge between quantum mechanical wave functions and the experimentally
observed momentum space distributions [246, 98].

Despite these numerous achievements, until very recently, POT could only be applied to
study occupied molecular orbitals by photoexciting electrons from the ground state. With
the advent of laser high-harmonic generation and free-electron lasers, it has become possi-
ble to study also the dynamics of excited states in time- and angle-resolved photoemission
spectroscopy (trARPES) experiments. On the one hand, band structure movies of crystalline
solids have shown the temporal evolution of the electron system over the complete Brillouin
zone [444, 445, 446]. On the other hand, for molecular systems, optically excited states, in-
volving transitions from HOMO to LUMO, have recently been observed with trARPES on their
intrinsic temporal and spatial scales [262, 447, 448]. In more complex systems however, the
simple HOMO-LUMO picture breaks down and excitons may involve multiple transitions as,
for instance, observed in van der Waals heterostructures [449, 450, 451, 452, 453, 454, 455] and
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defects therein [456, 457, 458]. In organic semiconductor crystals, the multi-orbital nature of ex-
citons is crucial [459] and also relevant for understanding singlet fission [448]. Thus, an exciton
must be generally treated as an entangled state composed of multiple electron-hole transitions
for which a theoretical foundation of POT is still lacking.

The aim of this work is to fill this gap and establish a consistent framework that allows
us to interpret measured PAD maps from excitons. Specifically, we assume that the exciton
wave function is represented in a product basis of valence and conduction states, as typically
done when solving the electron-hole Bethe-Salpeter equation (BSE) [261] or Casida’s equation in
time-dependent density functional theory (TDDFT) [174, 215]. Expanding the concept of Dyson
orbitals [244, 98, 245] to excited states, we arrive at the result that the PAD can be interpreted as
the Fourier-transformed coherent sum of the electronic part of the exciton wave function. These
relations, as well as the unexpected consequences of the photohole’s state for the measured
kinetic energy spectrum, are illustrated for generic cases of exciton compositions in a series
of organic molecules in the gas phase. We further show how exciton photoemission can be
interpreted in terms of the established concept of natural transition orbitals (NTOs)s [218] and,
underpinning our findings, the PAD is also simulated directly by means of a TDDFT approach
where no assumptions on the final state are made whatsoever.

7.2 Theory

Bound electron-hole pairs, excitons, are the fundamental optical excitations for energies below
the band gap in molecules and non-metallic solids. For such correlated electron-hole pairs, we
assume that the wave function of the m-th exciton, with excitation energy Ωm, can be expanded
in the single-particle electron {χc(re)} and hole basis {ϕv(rh)} as

ψm(rh, re) = ∑
v,c

X(m)
vc ϕ∗

v(rh)χc(re). (7.1)

Here, the sum runs over all pairs of valence and conduction states {v, c}, respectively, and X(m)
vc

is the transition density matrix that describes the character of the exciton. Note that here and in
the following derivations, we use the Tamm-Dancoff approximation [460] for better readability.
In the general case and in our calculations, however, we also consider de-excitations.

7.2.1 Photoemission from Excitons

Our goal is to find a consistent expression that connects the exciton wave function as defined
in Equation 7.1 with measured photoemission momentum maps. In the spirit of POT, we de-
scribe the photoelectron probability with Fermi’s golden rule as the transition from an initial
N-particle state ΨN

i to a final state ΨN
f , triggered by the photon field A with energy ω. We

couple this classical field to the electrons’ momenta P in the dipole approximation and use the
Coulomb gauge as well as Hartree atomic units unless stated otherwise. Denoting the energy
of the states ΨN

i and ΨN
f with Ei and E f respectively, the photoelectron probability is

Wi→f = 2π
⃓⃓
⃓
⟨︂

ΨN
f

⃓⃓
⃓ AP

⃓⃓
⃓ΨN

i

⟩︂⃓⃓
⃓
2

δ (ω + Ei − Ef) . (7.2)

In contrast to earlier work on photoemission from the electronic ground state ΨN
i,0, now the

initial state is given by the the m-th exciton which can also be expressed in a second quantization
formulation as ⃓⃓

⃓ΨN
i,m

⟩︂
= ∑

v,c
X(m)

vc a†
c av

⃓⃓
⃓ΨN

i,0

⟩︂
. (7.3)
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Here, av and a†
c create a hole and an electron in state v and c, respectively. Its energy EN

i,m is the
sum of the ground state energy EN

i,0 and the excitation energy Ωm.

For the final state ΨN
f , one commonly assumes the sudden approximation, in which the

correlation between the emitted electron γk and the remaining system can be neglected [44],
and ΨN

f can be written as the anti-symmetrized product of the (N − 1) electron state ΨN−1
f,j and

the photoemitted electron with momentum k in state γk:

ΨN
f,j,k = AΨN−1

f,j γk. (7.4)

Like the initial state, ΨN−1
f,j may be expressed in Fock space, i.e. as the N-electron ground state

from which the j-th electron has been removed:

⃓⃓
⃓ΨN−1

f,j

⟩︂
= aj

⃓⃓
⃓ΨN

i,0

⟩︂
. (7.5)

Under these assumptions, we can identify the total energy of this final state as the sum of EN−1
f,j

and the photoelectron’s kinetic energy, Ekin = k2/2. The energy conservation from Equation 7.2
then demands

Ekin = ω − (EN−1
f,j − EN

i,0) + Ωm = ω − ε j + Ωm, (7.6)

where we have introduced the j-th ionization potential ε j as the energy difference between the
j-th excited state of the (N − 1)-electron system and the N electron ground state. In taking the
overlap between the two wave functions for the N-electron and the (N − 1)-electron system,
we utilize the Dyson orbital for electron detachment Dj,m, in the usual way [244, 263, 98], with
the only modification that in our case the Dyson amplitudes have to be spanned over both the
basis sets {φv′} and {χc′}:

Dj,m(r) =∑
v′

⟨︂
ΨN

i,m

⃓⃓
⃓a†

v′

⃓⃓
⃓ΨN−1

f,j

⟩︂
ϕv′(r)+

+∑
c′

⟨︂
ΨN

i,m

⃓⃓
⃓a†

c′

⃓⃓
⃓ΨN−1

f,j

⟩︂
χc′(r). (7.7)

It is accepted that Dyson orbitals represent the most appropriate way to describe photoemission
in a single-orbital picture [263, 243, 280, 246, 98], however, their computation from correlated
wave functions in a multi-reference framework [247, 248] is often not feasible. Therefore, and
with weakly-correlated systems in mind, we approximate ΨN

i,0 by a single Slater determinant.
Inserting the N-electron wave function, Equation 7.3, and the (N − 1)-electron wave function,
Equation 7.5, into the expression for the Dyson orbital, we get

Dj,m(r) =∑
v′

∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
v′ aj

⃓⃓
⃓ΨN

i,0

⟩︂
ϕv′(r)+

+∑
c′

∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
c′ aj

⃓⃓
⃓ΨN

i,0

⟩︂
χc′(r), (7.8)

where all integrals in the sum over v′ vanish due to orthogonality. In the sum over c′, we get
no contributions for c ̸= c′ by the same argument and thus arrive at our final result for the j-th
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Dyson orbital (up to normalization constants):

Dj,m(r) = ∑
v,c

X(m)
vc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

vaca†
c aj

⃓⃓
⃓ΨN

i,0

⟩︂
χc(r) =

= ∑
c

X(m)
jc

⟨︂
ΨN

i,0

⃓⃓
⃓a†

j ajaca†
c

⃓⃓
⃓ΨN

i,0

⟩︂
χc(r) =

= ∑
c

X(m)
jc χc(r). (7.9)

Note that exploiting the orthogonality relations between many-body wave functions in different
states is possible here, since ΨN

i,0 is represented by a single Slater determinant only. However,
we remark that the above derivation could be extended to multi-configuration methods, albeit
at the expense of an additional summation over configuration space in Equation 7.9.

With the help of the Dyson orbitals, we can avoid the explicit treatment of the N − 1 passive
electrons in the process and thereby reduce the matrix element of Equation 7.2 to an integral
over a single coordinate only:

⟨︂
ΨN

f,j

⃓⃓
⃓ AP

⃓⃓
⃓ΨN

i,m

⟩︂
≈ A

∫︂
d3r γk(r) p Dj,m(r)

∝ (Ak)F
[︁
Dj,m

]︁
(k). (7.10)

In the second line, we make use of the plane wave approximation, γk(r) ∝ eikr , that is inherent
to POT [46, 401] and that naturally introduces the Fourier transform of the Dyson orbital, mod-
ulated by a weakly angle-dependent polarization factor Ak. Importantly, only the j-th row of
the transition density matrix X(m)

vc contributes to the j-th Dyson orbital in Equation 7.9, thereby
fixing the hole position in the orbital ϕj. Finally, the photoemission angular distribution arising
from the m-th exciton is obtained by summing over all possible final state hole configurations
as follows

Im(k) ∝ |Ak|2 ∑
j

⃓⃓
⃓⃓
⃓∑c

X(m)
jc F [χc] (k)

⃓⃓
⃓⃓
⃓

2

× δ
(︁
ω − Ekin − ε j + Ωm

)︁
. (7.11)

From this expression, which we refer to as ”exPOT” (exciton POT) in the remainder of this work,
we expect the photoemission signal from a general exciton to have contributions at multiple
kinetic energies that are in concordance with the energy conservation and thus depend on the
hole’s position after electron detachment described by the ionization energy ε j. At each allowed
kinetic energy, momentum maps take the form of a Fourier transform of the coherent sum over
unoccupied states, weighted by the corresponding transition density matrix elements.

7.2.2 Formulation with Natural Transition Orbitals

While the orbitals χc and the transition density matrix Xvc appearing in the photoemission
intensity expression for exPOT (Equation 7.11) can be readily computed from a BSE or Casida
calculation, physical intuition about the character of the exciton can be enhanced by introducing
natural transition orbitals (NTOs) [218, 98].

Let us assume that in the exciton calculation there are Nv occupied orbitals ϕv, and a number
of Nc unoccupied (or virtual) orbitals χc. Then, the transition density matrix Xvc is a matrix with
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Nv rows and Nc columns, whose singular value decomposition can be written in the following
way

X = V Λ CT . (7.12)

Here, V and C are quadratic matrices of sizes Nv × Nv and Nc × Nc, respectively, and the rect-
angular (Nv × Nc)-matrix Λ has only non-vanishing elements λ1, λ2, . . . λNv in the diagonal.
These singular values are ordered according to their magnitude, thus λ1 > λ2 > · · · > λNv , and
fulfill the normalization condition

Nv

∑
i=1

λ2
i = 1. (7.13)

Note that we have assumed that Nv < Nc as is typically the case in the calculation of optically
excited states. By making use of the transformations

˜︁ϕλ =
Nv

∑
v=1

VT
λvϕv (7.14)

˜︁χλ =
Nc

∑
c=1

CT
λcχc, (7.15)

we obtain a new set of orbitals, the NTOs ˜︁ϕλ and ˜︁χλ, respectively, which can be used to express
the exciton wave function in the electron-hole-basis (Equation 7.1):

ψ(rh, re) =
Nv

∑
λ=1

Λλ˜︁ϕ∗
λ(rh)˜︁χλ(re). (7.16)

Inserting Equation 7.12 into Equation 7.11—and by making use of the fact that the Fourier trans-
form F is a linear operator—we can rewrite the exPOT formula for the photoemission intensity
in the NTO basis as follows:

Im(k) ∝ |Ak|2 ∑
j

⃓⃓
⃓⃓
⃓∑

λ

VjλΛλF [˜︁χλ] (k)

⃓⃓
⃓⃓
⃓

2

× δ
(︁
ω + Ekin − ε j + Ωm

)︁
. (7.17)

At first sight, it seems that we have not gained much: we have just replaced the summation over
c with the summation over λ and replaced the prefactors. In practice, however, a given exciton
is often characterized by just a few NTOs and one can easily control the accuracy of the exci-
ton’s representation in terms of NTOs by introducing a threshold for the Λλ. Moreover, it is our
believe that NTOs are useful when dealing with excitons, since the character of the transition
is encoded in just a few single-particle orbitals and with introducing Equation 7.17, we can as-
sign physical meaning to these orbitals as actual observables of the excited-state photoemission
experiment.

7.2.3 Generic Exciton Structures

Before presenting our numerical results, we explain the implications of Equation 7.11 on the
example of four prototypical exciton structures that are collected in Table 7.1 and schematically
depicted in Figure 7.2. For educational reasons, here only Nv = 2 occupied and Nc = 2 unoc-
cupied orbitals are taken into account for setting up the transition density matrix such that all
matrices are simple 2 × 2 matrices.
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Table 7.1: Transition density matrices Xvc as well as their singular value decompositions X =
VΛCT for the four simple exciton structures defined in Figure 7.2. Additionally, the exciton
wave functions ψ are given in terms of the NTOs ˜︁ϕ and ˜︁χ, respectively.

Case (i) Case (ii) Case (iii) Case (iv)

X =

(︃
1 0
0 0

)︃ (︄
0 1√

2
1√
2

0

)︄ (︄ 1√
2

0
1√
2

0

)︄ (︄
1√
2

1√
2

0 0

)︄

Λ =

(︃
1 0
0 0

)︃ (︄ 1√
2

0

0 1√
2

)︄ (︃
1 0
0 0

)︃ (︃
1 0
0 0

)︃

V =

(︃
1 0
0 1

)︃ (︃
0 1
1 0

)︃ (︄ 1√
2

− 1√
2

1√
2

1√
2

)︄(︃
1 0
0 1

)︃

C =

(︃
1 0
0 1

)︃ (︃
1 0
0 1

)︃ (︃
1 0
0 1

)︃ (︄ 1√
2

− 1√
2

1√
2

1√
2

)︄

ψ = ˜︁ϕ1 ˜︁χ1
1√
2
˜︁ϕ1 ˜︁χ1

+ 1√
2
˜︁ϕ2 ˜︁χ2

˜︁ϕ1 ˜︁χ1 ˜︁ϕ1 ˜︁χ1

˜︁ϕ1 = ϕ1 ϕ2
1√
2
(ϕ1 + ϕ2) ϕ1

˜︁ϕ2 = — ϕ1 — —

˜︁χ1 = χ1 χ1 χ1
1√
2
(χ1 + χ2)

˜︁χ2 = — χ2 — —
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Figure 7.2: Four prototypical exciton structures and the corresponding predictions of exPOT for
the observed PAD maps as detailed in the text.

In case (i), the exciton involves only a single transition from the highest occupied orbital
ϕ1 to the lowest unoccupied orbital χ1, which is, in fact, a common case for the lowest exciton
in some organic molecules [262]. Evidently, exPOT predicts that the observed PAD is given
by the Fourier transform of χ1 appearing at the kinetic energy Ekin = ω − ε1 + Ω1, where ω
is the probe photon energy, ε1 the ionization potential corresponding to ϕ1, and Ω1 denotes
the exciton energy, i.e. the pump photon energy. This is also illustrated in the bottom part of
Figure 7.2, where the the square above the peak in the sketched kinetic energy spectrum should
represent the expected PAD map of χ1. Also note that the NTOs coincide with the original
orbitals in this case. For case (ii), we assume the exciton wave function as ψ = 1√

2
(ϕ2χ1 +

ϕ1χ2). Here, Equation 7.11 leads to PAD maps of both χ1 and χ2, however, appearing at kinetic
energies corresponding to the ionization levels of ϕ2 and ϕ1, respectively, as also illustrated in
Figure 7.2. Note that this exciton represents a truly entangled state [461] which can also be seen
after transforming to the NTO basis (see Table 7.1). The situation is somewhat different for case
(iii), where we assume ψ = 1√

2
(ϕ2χ1 + ϕ1χ1). Here, we expect to observe two identical PADs

appearing at two different kinetic energies, depending on whether, after the electron has been
emitted, the hole resides in state ϕ1 or ϕ2. While the unoccupied NTO ˜︁χ1 equals χ1, the two
occupied orbitals can now be represented by a single NTO. Finally in case (iv), the exciton is
described by ψ = 1√

2
(ϕ1χ1 + ϕ1χ2) and Equation 7.11 suggests that the PAD is proportional to

the Fourier transform of a coherent sum of the unoccupied orbitals χ1 and χ2, the NTO ˜︁χ1, which
appears at Ekin = ω − ε1 + Ω1. In the following, we want to give examples for the non-trivial
cases (ii)–(iv) by actual numerical simulations.
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7.3 Results and Discussion

Let us now compare the predictions of our exPOT approach for organic molecules with com-
putationally more demanding, but accurate TDDFT calculations as implemented in the real-
space code OCTOPUS [176, 177]. Here, photoemission spectra and PAD maps are obtained by
recording the flux of photoelectron density through a detector surface (t-SURFF) [85, 86], which
seamlessly allows for pump-probe setups and where no assumptions on the final state need to
be made.

For a better comparability of the two theoretical approaches, exPOT vs. t-SURFF, we take
several precautions. First, we focus on planar molecules for which the plane wave approxima-
tion has already been well tested [54, 48]. Second, we choose the probe field in z-direction, that
is perpendicular to the molecular plane, which is also known to minimize possible deficien-
cies of the PWA [81]. Third, we ensure that pump pulses are long enough to only excite the
specific exciton in question, since for ultrashort pulses considerable energy broadening needs
to be taken into account [462, 463]. Equivalently, we keep our probe pulses long enough for a
resonable kinetic energy resolution in the spectra and choose probe energies in the XUV regime
for the sake of the sudden approximation [464]. Fourth, we limit ourselves to the adiabatic local
density approximation (ALDA) since more advanced functionals, such as hybrids, would be
computationally too demanding for the real-time propagation utilized for the t-SURFF method.
We emphasize, however, that for the application of our exPOT formalism, the latter restriction
is not necessary and any method for excited states that provides a transition density matrix in
terms of single-particle orbitals can be used.

With the aim to find real-life examples for the cases (ii)–(iv) outlined above, we have selected
three prototypical π-conjugated molecules, namely tetracyanoquinodimethane (TCNQ), por-
phine and perylenetetracarboxylic dianhydride (PTCDA), and perform linear-response TDDFT
calculations within the Casida formalism in OCTOPUS. The details of those calulations are de-
scribed in Paragraph 7.5.1. For TCNQ, the solution reveals an exciton with Ωm = 6.76 eV which
is strongly allowed for y-polarization (molecular geometry and choice of axis are depicted in
Paragraph 7.5.1). Its exciton wave function has major contributions from ϕ3χ2 (0.44), ϕ2χ3 (0.35)
and ϕ1χ6 (0.07) (see Table 7.2 for more details). Thus it represents an entangled state as in case
(ii). In the t-SURFF calculations, we set the pump energy ωpump = Ωm and employ a probe
energy of ω = 35 eV (details in Paragraph 7.5.2). The resulting kinetic energy spectrum of the
emitted electrons is depicted in panel (a) of Figure 7.3. It is dominated by emissions from the
three highest occupied orbitals ϕ1, ϕ2 and ϕ3 indicated by the green, orange and blue dashed
vertical lines, respectively. Importantly, however, we also observe three emission peaks at ki-
netic energies larger by precisely ωpump. This behavior, already qualitatively illustrated in the
second column of Figure 7.2, is in perfect accordance with the energy conservation of Equa-
tion 7.11. Despite the orders of magnitude smaller peak heights for the exciton emission, we
obtain three distinct PAD maps (at the kinetic energies marked by vertical full lines), which are
displayed in panel (b). Comparing with our exPOT theory, indeed, the Fourier transforms of the
first three NTOs of this entangled exciton, as depicted in panel (c), are in very good agreement
with the PAD maps from t-SURFF.

Next, we present our results for the optical excitation in porphin at Ωm = 3.94 eV in x-
direction, which serves as an example for case (iii) defined in Figure 7.2. From the t-SURFF
calculation, we obtain two identical momentum maps at the kinetic energies corresponding to
the hole in state ϕ1 and ϕ4 (left and middle column of panel (a) in Figure 7.4). Note that here,
in contrast to the above PADs from TCNQ, we have projected the t-SURFF ARPES intensities
on the respective ground-state orbitals, since the total photoelectron yield is also affected by
other contributions which are not relevant for our case (see also Paragraph 7.5.2). The Casida
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Figure 7.3: Comparison of exPOT with results from t-SURFF for TCNQ. (a) total angle-
integrated photoelectron intensity from t-SURFF (grey) and its projection onto the HOMO (v=1,
green), HOMO-1 (v=2, orange) and HOMO-2 (v=3, blue) states, with corresponding kinetic en-
ergy positions ω − ε j indicated by the vertical dashed lines in the same colors. Red arrows mark
the energy of the pump pulse ωpump, full vertical lines ω − ε j + ωpump respectively. (b) PAD
maps from t-SURFF at the kinetic energies indicated by the full vertical lines in panel (a). (c)
PAD maps obtained from the exPOT approach with the first three NTOs.
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Figure 7.4: Comparison of exPOT with results from t-SURFF for porphin and PTCDA. (a)
PADs for porphin from t-SURFF at different kinetic energies (left and middle column) compared
to the exPOT map of the first NTO (right column). (b) Different methods for PTCDA, showing
contributions from v = 4 (top row) and v = 8 (bottom row), see text for details.

calculation leads to almost equal contributions of ϕ1χ2 (0.27) and ϕ4χ2 (0.25) to the exciton wave
function, which can be written as a single NTO ˜︁χ1 (see Table 7.2), resulting in the PAD depicted
in the rightmost column of panel (a) in Figure 7.4. The excellent agreement with the corre-
sponding t-SURFF maps further validates the exPOT predictions. Remarkably, while a single
NTO might be enough to explain photoemission from an excited state of such character, it can
be comprised of contributions from different valance states, which then lead to photoemission
signatures of the same conduction state at different kinetic energies.

Conversely, in case (iv), we consider an exciton structure with transitions involving only
a single hole state v but multiple conduction states c. For PTCDA at an excitation energy of
Ωm = 4.45 eV (polarized in y-direction), we encounter even two such transitions: ϕ8χ4 (0.29),
ϕ8χ3 (0.03) and ϕ4χ8 (0.06), ϕ4χ2 (0.06). The top row of panel (b) of Figure 7.4 is devoted to the
contribution from v = 8, with the state-projected result from t-SURFF in the left column agree-
ing very well with the exPOT result in the middle column, evaluated with the contribution from
˜︁χ2 only. Importantly, the computation of the latter implicitly involves a coherent sum over the
unoccupied states χ4 and χ3, while wrongly performing an incoherent summation worsens the
agreement for with the t-SURFF reference (see right panel labeled I. S.). The second major set of
contributions to this exciton, ϕ4χ8 and ϕ4χ2, leads to a PAD at the kinetic energy corresponding
to ε4 and is shown in the bottom row of Figure 7.4, panel (b). Again, the t-SURRF result (left
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column) agrees well with exPOT (middle column). This time however, we need to take into
account a sum over multiple NTOs (˜︁χλ) while the PAD from a single NTO (˜︁χ1, right column)
is not sufficiently accurate. This is due to the fact that, in general, the electron or hole contri-
butions can contribute to different NTOs and only the coherent sum over λ is equivalent to the
coherent sum of Equation 7.11 (see also comparison of PADs in Paragraph 7.5.3). In summary,
we have not only proven excellent agreement of the exPOT theory with ab-initio simulations for
case (iv), but could also emphasize the necessity of the coherent superposition of the electron
orbitals for such a case.

7.4 Conclusions

We demonstrate an extension of photoemission orbital tomography to excitons, termed exPOT,
and thereby provide the theoretical foundations to interpret photoemission angular distribu-
tions maps as measured in pump-probe ARPES experiments of oriented organic molecules in
terms of exciton wave functions. We illustrate the consequences of exPOT on the example
of three organic molecules, covering a range of prototypical exciton structures, and validate
our findings by real-time TDDFT calculations that directly incorporate the pump and probe
fields. In our method, the simplicity of the orbital interpretation can be retained by identifying
Fourier-transformed NTOs as the observables in photoemission of excitons. The evaluation of
the ARPES intensity, however, demands a coherent sum over electron contributions to reflect
the entangled character of an exciton wave function, as well as an incoherent sum over hole
contributions to fulfill energy conservation. While in this work, we have restricted ourselves to
organic molecules in the gas phase, the extension of exPOT to periodic systems and magnetic
materials is straight-forward. Moreover, our method can also be combined with any common
excited state description, e.g. including electron-hole correlations within the framework of the
Bethe-Salpeter equation.

7.5 Appendix

7.5.1 Ground state and linear response calculations

The structures of the three molecules TCNQ (C12H4N4), porphin (C20H14N4) and PTCDA
(C24H8O6) were optimized using the real-space mode of GPAW [465, 466] in conjunction with
the BGFS minimization routine from the Atomic Simulation Environment (ASE) [467].

We used a simulation box with 0.2 Å spacing, 8 Å vacuum around each molecule and set the
maximum force criterion to 0.02 eV/Å. These relaxed geometries were then used in all further
calculations and are depicted in Figure ?? together with the Cartesian coordinate system and
the direction of the pump field incidence.

In order to solve Casida’s equation and perform the NTO analysis, we employed the linear-
response TDDFT (LR-TDDFT) implementation of the real-space code OCTOPUS [176, 177]. For
the three molecules, we used a simulation domain with spheres of radius 8 Å around each atom
and a spacing of 0.2 Å. While the latter value for the spacing may not lead to fully converged
results for the geometry optimization described before, as well as for the optical spectra in the
following, we choose 0.2 Å none the less for all calculations to be consistent with the numerically
very demanding ARPES simulations. For the same reason, we used the local density approx-
imation (LDA) [101] for LR-TDDFT calculations with the Perdew-Zunger implementation of
correlation [103] and norm-conserving Troullier-Martins pseudopotentials [468]. Having com-
puted the respective groundstate of the three molecules this way, we solved Casida’s equation
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Figure 7.5: Geometries of the three molecules used in our investigation (TCNQ, porphin and
PTCDA), arrows mark the incident direction of the pump pulse in the photoemission simulation
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Table 7.2: Casida excitation energies, Ωm, their corresponding single particle contributions in
terms of the inital Kohn-Sham molecular orbitals, X2

vc, and the eigenvalues (magnitudes) of the
natural transition orbitals, Λ2

λ, for the three molecules presented in the main text. All contribu-
tions greater than 0.01 are shown, those referenced in our investigation are highlighted, with
the exception of the NTOs for PTCDA, since here a full sum over λ was necessary (see text for
details)

.

TCNQ porphin PTCDA
Ωm = 6.76 eV Ωm = 3.52 eV Ωm = 5.51 eV

ϕv → χc X2
vc ϕv → χc X2

vc ϕv → χc X2
vc

3 → 2 0.44 2 → 1 0.36 8 → 4 0.29
2 → 3 0.35 1 → 2 0.27 11 → 2 0.23
1 → 6 0.07 4 → 2 0.25 7 → 7 0.17
5 → 4 0.03 8 → 2 0.05 4 → 8 0.06

17 → 2 0.02 3 → 3 0.04 4 → 2 0.06
11 → 3 0.02 1 → 5 0.05

8 → 3 0.03
16 → 1 0.02
7 → 1 0.02
9 → 2 0.02

˜︁ϕλ → ˜︁χλ Λ2
λ

˜︁ϕλ → ˜︁χλ Λ2
λ

˜︁ϕλ → ˜︁χλ Λ2
λ

1 → 1 0.46 1 → 1 0.57 1 → 1 0.32
2 → 2 0.39 2 → 2 0.36 2 → 2 0.32
3 → 3 0.07 3 → 3 0.05 3 → 3 0.20
4 → 4 0.04 4 → 4 0.06
5 → 5 0.01 5 → 5 0.05

6 → 6 0.03

with the same numerical parameter and considered an energy window of 32 eV, 28 eV and 30 eV
for TCNQ, Porphin and PTCDA, respectively. In this range combinations of occupied and un-
occupied states were considered, thereby obtaining the transition density matrices X(m)

vc for the
m-th exciton. Note that our calculations also include de-excitations beyond the Tamm-Dancoff
approximation. For the NTOs, we computed the singular value decomposition of Equation 7.12
with python’s numpy package [469]. The results of the LR-TDDFT calculations are shown in
Table 7.2 and optical spectra are shown in Figure 7.6 for comparison with the real-time TDDFT
calculations of the next section.

7.5.2 Real-time TDDFT calculations

In this section, we describe the methods to obtain the ab-initio simulations of photoemission
from real-time TDDFT (RT-TDDFT) with OCTOPUS. While in the last section, the results for
linear-response calculations already delivered the desired excitation energies, we also employed
a RT-TDDFT method for optical spectra [175]. Using the ground state calculations with the
same parameter as described in the previous section, we perturbed the system at initial time
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Figure 7.6: Absorption spectra of the molecules TCNQ, porphin and PTCDA calculated with
OCTOPUS in RT-TDDFT (full curves) and within the linear-response Casida formalism (dashed
curves). Excitation energies used in the pump-probe photoemission simulations are marked
with an asterisk.

t = 0 with a Dirac-δ pulse (pulse strength: 0.01 Å−1) that equally excites all optically allowed
transitions. We then evolved the system for further 30 fs, with a time steps of 2 as, and Fourier
transformed the time-dependent dipole-moment to get the optical spectrum [202]. In Figure 7.6,
we compare the optical spectra from RT-TDDFT with those from the LR-TDDFT calculations of
the previous section. For all three molecules, we find very good agreement, thus assuring the
comparability of our methods. Since we also use TDDFT in the real-time fashion for the ARPES
simulations, we use the excitation energies (marked by ⋆ symbols) from RT-TDDFT.

Having obtained the excitation energies of interest, we now describe the method used for
the pump-probe ARPES simulations with t-SURFF [85, 86]. For all three molecules, we first
computed the ground state as described above, with the only difference that we used a spherical
simulation box around the center of the molecules with R = 35 Å radius. Then, the systems
were subjected to pump pulses with respective energies Ωm for tpump = 20 fs, followed by
tprobe = 15 fs of propagation time with the probe pulse. While the energy and direction of
the pump pulses were varied according to the excitations within the different molecules, we
always probed with z-polarized fields and a photon energy of ω = 35 eV. For both types of
pulses, we used a cos(ωt) function, shaped by a hull function of sin2-type to ensure gradual on-
and off-switching of the fields, thereby avoiding non-resonant excitations. The field amplitudes
were varied such that the radiation would correspond to a laser with intensity 108 W/cm2.
In order to avoid spurious effects of reflected electron density at the border of our simulation
region, we inserted a complex absorbing potential (CAP) [434] described by iξ sin2(Θ(r−R0)π

2R ),
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with magnitude ξ = −0.2 a.u. and onset at R0 = 20 Å. Over all times, we recorded the flux
of electron density through a spherical surface [85, 86] at R0 and thus obtained energy- and
angle-resolved photoemission intesities in an ab-inito way as a direct numerical simulation of
the experiment.

7.5.3 Complementing results

In the following, we give additional results that complement those of the main text for all three
molecules. For each molecule in Figure 7.7–7.9, we show the kinetic energy spectra from t-
SURFF (panels (a)) in conjunction with momentum maps from the different methods presented
for a series of orbitals that are relevant for the respective excitons (panels (b)). For TCNQ in
Figure 7.7, all results between the different theoretical descriptions agree well, with the excep-
tion of maps for v = 11, where the results from t-SURFF are different to exPOT. Interestingly, it
seems that the t-SURFF map for v = 11 depicts what seems to be missing for the exPOT map
for v = 2, i.e. the accentuation of the main feature at kx = 0 Å−1, ky ≥ 2 Å−1. The additional
results for porphin in Figure 7.8 show very good agreement as well, with the one exception of
v = 8, which does not agree at all. For the two pathological cases, v = 11 in TCNQ and v = 8
in porphin, we wish to remark that for both cases the contributions to the transition matrix are
alread quite small (1-2 %) such that better converged LR-TDDFT calculations might give other
results. The same argument is valid for the t-SURFF calculations, where it can be seen in the
kinetic energy-resolved spectra that the peaks stemming from these two transitions are by ap-
proximately an order of magnitude smaller than those of the main contributions and would
hardly be detectable in an actual experiment.
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Figure 7.7: Summary of results for TCNQ excited with 6.7 eV in y-direction. The kinetic en-
ergy spectrum from t-SURFF is shown in panel (a) with I(|k|) in grey, as well as the projection
on states v = {3, 2, 1, 5, 11}. In the same colors, we show Ev in dashed lines and Ev + ωpump in
full lines. In panel (b), the corresponding momentum maps of the state-projected photoemis-
sion intensities from t-SURFF are shown in each line of the leftmost column. In the left-middle
column, we show the results from exPOT for the sum over NTOs (Equation 7.17) and the equal
results from exPOT with the coherent sum over Xvcχc (Equation 7.11) in the middle-right col-
umn. For comparison, the results with a wrongly performed incoherent sum are shown in the
rightmost column (see text for details).
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Figure 7.8: Summary of results for porphin excited with 3.5 eV in x-direction. The kinetic en-
ergy spectrum from t-SURFF is shown in panel (a) with I(|k|) in grey, as well as the projection
on states v = {2, 1, 4, 8, 3}. In the same colors, we show Ev in dashed lines and Ev + ωpump in
full lines. In panel (b), the corresponding momentum maps of the state-projected photoemis-
sion intensities from t-SURFF are shown in each line of the leftmost column. In the left-middle
column, we show the results from exPOT for the sum over NTOs (Equation 7.17) and the equal
results from exPOT with the coherent sum over Xvcχc (Equation 7.11) in the middle-right col-
umn. For comparison, the results with a wrongly performed incoherent sum are shown in the
rightmost column (see text for details).
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Figure 7.9: Summary of results for PTCDA excited with 5.45 eV in y-direction. The kinetic
energy spectrum from t-SURFF is shown in panel (a) with I(|k|) in grey, as well as the projection
on states v = {8, 7, 4, 11, 1}. In the same colors, we show Ev in dashed lines and Ev + ωpump in
full lines. In panel (b), the corresponding momentum maps of the state-projected photoemis-
sion intensities from t-SURFF are shown in each line of the leftmost column. In the left-middle
column, we show the results from exPOT for the sum over NTOs (Equation 7.17) and the equal
results from exPOT with the coherent sum over Xvcχc (Equation 7.11) in the middle-right col-
umn. For comparison, the results with a wrongly performed incoherent sum are shown in the
rightmost column (see text for details).
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Chapter 8

Conclusions

In Chapters 3 and 4 it was shown that tetra-phenyl-porphyrine and porphin self-metalate when
adsorbed on 2 monolayers of MgO on Ag(100). This process was found to be irrespective of the
charge transfer to the molecule in case of the flat, closely-adsorbed porphin, but is mediated by
the charge transfer in case of tetra-phenyl-porphyrine, due to the larger adsorption height in
the latter case. In both cases the metalation reaction cannot be observed directly in POT, since
the experimentally accessible orbitals are not sensitive to the ion-exchange. The most appropri-
ate comparison for the electronic structure calculations to experimental findings was therefore
an analysis of the energy balance for the metalation reaction. It turned out that such mixed
metal-oxide-organic frameworks pose a serious challenge for van der Waals-correctedDFT cal-
culations and that the experimentally observed metalation could be reproduced only in the case
of porphin with a functional of the “vdW-DF” family. Since the MgO/Ag(100) interface offers
the unique possibility to tune the surface work function, and thereby control the charge transfer
into adsorbed molecules, this system is of great importance for POT but also challenging for
van der Waals-corrected DFT.

On the same surface and in Chapter 5, the adsorption of PTCDA showed a remarkable bend-
ing of the molecules that had not been observed on metal surfaces so far. This could be ex-
plained by the interplay between the surface Mg2+-ions and oxygen atoms in the molecule, and
is therefore a special characteristic of this system. For the general case, however, it was shown
that POT is sensitive to detect such conformal changes via the momentum space signatures of
the molecular orbitals. This capability is beyond other surface science methods for detecting
inter-atomic distances, since it is not restricted to chemically distinct atomic species within a
molecule, as, for instance, in the x-ray standing waves method. In comparison to theory, we
found that by varying the molecular bend in the simulations ad libidum, the experimental re-
sults could be well-reproduced and that the method is very sensitive to small changes above a
certain threshold. When simulating the molecular bend from first principles, however, it turned
out that the van der Waals corrections in DFT could not perfectly reproduce the experimentally
observed bending. It thus has to be concluded again that, for organic molecular layers on the
MgO/Ag(100) surface, the choice and assessment of van der Waals corrections is crucial in DFT
and, therefore, for the initial state of POT in these systems as well.

The previous results had shown that the frontiers of POT lie rather in its underlying elec-
tronic structure calculations and not in its formulation, at least as far as the initial state is con-
cerned. Conversely, this does not hold for the final state any longer. In Chapter 6 the plane wave
final state was put to test from different perspectives. With carefully calibrated synchrotron ra-
diation over a wide range of incident photon energies, strong modulations in the photoemission
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intensity from graphene’s Dirac bands could be experimentally observed. Using a plane wave
final state, on the other hand, one is not able to capture these observed intensity modulations,
but they are well rendered by simulations of photoemission from TDDFT. In developing an
additional model that describes the final state as spherical waves interfering from different,
dipole-allowed angular-momentum channels in the initial state, the experimental data could
be reproduced. With the comparison of data measured from different incidence directions, it
was furthermore shown that the scattering of the outgoing photoelectron from next-neighbors
must be included, in order to describe the correct physics of the photoemission process. In this
way, we could extend the realm of POT to cases that require a more sophisticated treatment of
the final state to fully reproduce experimental data. With the SWA, important matrix element
effects can thus be considered for the de-convolution of the material’s spectral function from
experimental measurements.

In the last part of this thesis (Chapter 7), we extended the formalism of POT to excited states.
This enabled the simulation of photoemission from excitons, as experimentally measured in re-
cent pump-probe experiments. From our theory, termed “exPOT”, we found remarkable con-
sequences for the photoemission from such bound electron-hole pairs. In particular and de-
pending on the transitions occurring in the exciton, its photoemission signatures can be found
at multiple kinetic energies. At each allowed kinetic energy, the momentum space signature
was found to respect the entangled character of the exciton by a coherent summation of con-
tributions from different unoccupied states. These consequences could be exemplified by the
simulation of photoemission from excitons in three different organic molecules and, moreover,
be confirmed by subsequent TDDFT calculations, which thus served as a numerical control ex-
periment. We could furthermore show that our formulation can also be expressed in terms of
NTOs, which allow for a more compact representation of the transitions that form an exciton.
This assignes a physical meaning to the NTOs as the actually observed quantities in a photoe-
mission experiment of excitons in the context of POT. With its extension to excited states, we
could therefore considerably enlarge the frontiers of POT.

With the heterogeneous record of topics touched in this thesis, future work in multiple direc-
tions seem possible and expedient. For the description of metal-ionic-organic frameworks with
DFT, more state-of-the art van der Waals corrections could be explored, such as many-body
dispersion [151], and a systematic comparison of theoretical methods for a variety of different
molecules on the MgO/Ag(100) surface would be helpful to deliver the best possible initial state
for the POT technique in such cases. For the final state in photoemission, the SWA is expected
to improve results in other areas where a correct final state is demanded, for instance in the
phenomenon of circular dichroism [282]. Regarding our exPOT theory, experimental validation
is already feasible, as e.g. in shown with experiments on excitons in buckminsterfullerene thin
films [459]. Especially in this direction, experimental effort is expected to increase in the next
decade and behind the current frontiers of photoemission orbital tomography, terra incognita is
still waiting to be explored.
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A: Additional Derivations

Equation of motion for the difference in current densities

In this paragraph, a detailed derivation for the difference in current densities in the equation
of motion, i.e. Equation 2.50, is given in order to complement the proof of the Runge-Gross
theorem. We first define the quantum mechanical current operator with the anti-commutator
[. , .]+ as

J(r) =
1
2i

N

∑
j

[︁
∇jδ(r − r j) + δ(r − r j)∇j

]︁

=
1
2i

N

∑
j

[︁
∇j, δ(r − r j)

]︁
+

,

and dΩ := dr1 . . . drN as the integral measure for the many-body wave function Ψ(r1, . . . , drN),
where we neglect spin degrees of freedom. Starting from Equation 2.50 times the imaginary
unit, and defining H(t0)− H ′(t0) =: ∆H0 we get

i∂t
{︁

j(r, t)− j′(r, t)
}︁⃓⃓
⃓
t=t0

= ⟨Ψ0| [J(r), ∆H0] |Ψ0⟩ =
1
2i

N

∑
j
⟨Ψ0|

[︂[︁
∇j, δ(r − r j)

]︁
+

, ∆H0

]︂
|Ψ0⟩

=
1
2i

N

∑
j

{︁
⟨Ψ0|

[︁
∇jδ(r − r j), ∆H0

]︁
|Ψ0⟩+ ⟨Ψ0|

[︁
δ(r − r j)∇j, ∆H0

]︁
|Ψ0⟩

}︁

=
1
2i

N

∑
j

{︁
⟨Ψ0|∇jδ(r − r j)∆H0|Ψ0⟩ − ⟨Ψ0|∆H0∇jδ(r − r j)|Ψ0⟩+

+⟨Ψ0|δ(r − r j)∇j∆H0|Ψ0⟩ − ⟨Ψ0|∆H0δ(r − r j)∇j|Ψ0⟩
}︁

.
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In the next step, we write the scalar products as real-space integrals and apply the product rule
for the nabla operator and collect terms, such that

i∂t
{︁

j(r, t)− j′(r, t)
}︁⃓⃓
⃓
t=t0

=
1
2i

N

∑
j

∫︂
dΩ

{︁
Ψ∗

0∆H0Ψ0∇jδ(r − r j) + Ψ∗
0δ(r − r j)Ψ0∇j∆H0+

+Ψ∗
0δ(r − r j)∆H0∇jΨ0 − Ψ∗

0∆H0Ψ0∇jδ(r − r j)+

−Ψ∗
0∆H0δ(r − r j)∇jΨ0 + Ψ∗

0δ(r − r j)Ψ0∇j∆H0+

+Ψ∗
0δ(r − r j)∆H0∇jΨ0 − Ψ∗

0∆H0δ(r − r j)∇jΨ0
}︁

=
1
i

N

∑
j

∫︂
dΩ Ψ∗

0δ(r − r j)Ψ0∇j∆H0.

Recall that ∆H0 means the difference between two Hamiltonians at time t0, which is only due
to different potentials, such that

∆H0 = v(r, t0)− v′(r, t0),

and therefore

i∂t
{︁

j(r, t)− j′(r, t)
}︁⃓⃓
⃓
t=t0

=
1
i

N

∑
j

∫︂
dΩ Ψ∗

0δ(r − r j)Ψ0∇j
{︁

v(r, t0)− v′(r, t0)
}︁

.
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List of Abbreviations

ACFD adiabatic connection fluctuation-dissipation.

AFM atomic force microscopy.

ALDA adiabatic local density approximation.

ARPES angular-resolved photoemission spectroscopy.

BSE Bethe-Salpter equation.

DFT density functional theory.

GGA generalized-gradient approximation.

HEG homogeneous electron gas.

HF Hartree-Fock.

HOMO highest occupied molecular orbital.

HSE Heyd, Scuseria and Ernzerhof.

KS Kohn-Sham.

LCAO local combination of atomic orbitals.

LDA local density approximation.

LSDA local spin density approximation.

LUMO lowest unoccupied molecular orbital.

MGGA Meta-GGA.

NTOs natural transition orbitals.

OT-RSH optimially-tuned range-separated hybrid.

PBE Perdew, Burke and Ernzerhof.
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List of Abbreviations

POT photoemission orbital tomography.

PTCDA perylene-tetracarboxylic dianhydride.

PWA plane wave approximation.

RPA random phase approximation.

RSH range-separated hybrid.

SE Schrödinger equation.

STM scanning tunneling microscopy.

STS scanning tunneling spectroscopy.

SWA scattered wave approximation.

TDDFT time-dependent DFT.

TDKS time-dependent Kohn-Sham.

TDSE time-dependent Schrödinger equation.

trARPES time- and angle-resolved photoemission spectroscopy.

vdW-DF van der Waals density functional.

XPS x-ray photoelectron spectroscopy.
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[169] Jiří Klimeš, David R Bowler, and Angelos Michaelides. Chemical accuracy for the van der
Waals density functional. Journal of Physics: Condensed Matter, 22(2):022201, 2009.
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