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Abstract

A recent study in photoemission orbital tomography [Science 371, 1056 (2021)]
has demonstrated that transiently excited electrons can be traced in time.
This has become possible through measuring their signature in the angle-
resolved momentum distribution of photoelectrons released by a high-energy
probe pulse. Further developing this exciting and powerful new technique,
dubbed orbital cinematography, is a desirable track for future experimental
development. In this work, we use time-dependent density functional the-
ory to scout ahead and perform an ab-initio simulation of a sub-femtosecond
pump-probe angle-resolved photoemission experiment. We investigate po-
tential issues and possible remedies in the description of ARPES within the
framework of TD-DFT and conclude with momentum maps of the frontier
orbitals.
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Zusammenfassung

In einer kürzlich erschienen Publikation zum Thema “Photoemission Or-
bital Tomography” [Science 371, 1056 (2021)] konnte gezeigt werden, dass es
möglich ist kurzlebig angeregte Elektronen zeitlich aufzulösen. Dies geschieht
durch Messung der winkelaufgelösten Impulsdistributionen der durch einen
Laser freigesetzten Photoelektronen. EineWeiterentwicklung dieser als “Obital
Cinematography” getauften Methode erscheint als eine erstrebenswerte Rich-
tung für zukünftige experimentelle Forschung. Diese Arbeit greift solchen Be-
strebungen durch Simulation eines sub-femtosekunden, “pump-probe”, winkel-
aufgelösten Photoemissionsexperiments mittels “Time-dependent Density Func-
tional Theory” vor. Untersucht werden potentielle Probleme die sich aus
der theoretischen Beschreibung von “ARPES” im Rahmen von “TD-DFT”
ergeben, und wie diese möglicherweise gelöst werden können. Am Ende dieser
Arbeit stehen Impulskarten im Grundzustand besetzter und unbesetzter Or-
bitale nahe der Fermikante.
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1 Introduction

With the advent of photoemission orbital tomography (POT)[1, 2, 3], pi-
oneered by Puschnig, Ramsey and Tautz, theoretical electronic structure
calculations have been shown to provide aid in the interpretation of angle-
resolved photoemission spectra (ARPES) in the form of momentum maps.
Relying on the plane-wave final state approximation, POT celebrated a num-
ber successful applications, e.g., in the clarification of the aromaticity of keku-
lene [4], imaging σ-orbitals in organic molecules [5] and demonstrating the
importance of charge transfer for the self-metalation of porphyrin [6], just to
list a few. Moreover, in a recent publication Wallauer et al. [7] were able to
showcase the possibility of tracing the momentum maps of frontier orbitals,
when pushed out of the groundstate with a pump laser, on a femtosecond
timescale. Following these lines, the next innovation could be on the hori-
zon: “orbital cinematography”. It promises to yield slow-motion videos of
the movement of electrons in the frontier orbitals of organic molecules.

A particularly challenging endeavour will be the investigation of sub-femto-
second electron dynamics in organic molecules, thereby answering fundamen-
tal questions on optical induced charge transfer and spatiotemporal super-
positions of molecular orbitals. On the example of a quarterphenyl molecule,
adding electron-pushing and -pulling substituents at the ends of the molecule
introduces a fundamental asymmetry in the frontier orbitals along the long
axis of the molecule. Specifically, the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) show an in-
creased localization on either side of the molecule and a transition between
them, induced by a pump pulse at a suitable energy, will drive an intra-
molecular charge transfer. This charge transfer will then be probed at various
stages in time with a second high-energy sub-femtosecond laser that releases
an electron form the molecule. The angular distribution of these emitted
electrons, the so-called momentum maps, allows the entire charge transfer
process to be tracked in time.
This, however, pushes the static theoretical description of the photoemission
process with POT to its limits. The time dependence introduced in the ex-
periment with a pump-probe laser setup is missing completely in POT, as
well as, in general, the interaction of the freed electrons with the remaining
electrons and with the electromagnetic field. At this point, time-dependent
density functional theory (TD-DFT) has been demonstrated to provide a
more advanced simulation of the entire process, from the excitation of the
groundstate to the propagation of the freed electrons to detector, in time [8].
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This thesis is an early attempt on predicting possible results, issues and
unaccounted physical (and numerical) phenomena that might be observed in
such sub-femtosecond charge-transfer dynamics by ab-initio simulations of
ARPES in time-dependent density functional theory.

Molecule
The molecule investigated here is 4-Amino-4’-nitrobiphenyl (see Figure 1), a
chemically close relative of the quarterphenyl derivative described above. In
the following we will refer to this molecule as “ANBP” as abbreviation. It

Figure 1: 4-Amino-4’-nitrobiphenyl, a chemically close relative of the molecule
above-mentioned, but with a shorter backbone to facilitate computations. The
electron pushing group (amine) is connected to the rightmost carbon labelled 4 by
standard chemical nomenclature, the electron pulling group (nitro) is attached to
the leftmost carbon 4′. The central inter-ring bond is the C1 − C1′ bond.

too shows the important asymmetry along the long axis between HOMO and
LUMO, as can be seen from a density functional calculation of the ground-
state Kohn-Sham orbitals in Figure 2. Its much reduced spatial extent in one
direction and lower overall number of states significantly reduces the com-
putational cost of all calculations, without sacrificing any core feature of the
original quarterphenyl derivative relevant for future experiments.
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(a) HOMO

(b) LUMO

Figure 2: The highest occupied molecular orbital (HOMO, top) and lowest unoccu-
pied molecular orbital (LUMO, bottom) as result of groundstate density functional
theory. The HOMO shows a localization of electrons on the amine group (right),
while the LUMO reverses this localization in favour of the nitro group.
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2 Theory

2.1 Density Functional Theory

In this chapter, a brief summary of density functional theory (DFT) will be
given to provide the reader with the basic vocabulary used throughout this
thesis. For a more thorough introduction please refer to Refs. [9, 10, 11].

Hohenberg-Kohn Theorems

One core task in solid state physics and modern quantum chemistry is to
describe the valence electrons in individual molecules, clusters of molecules
or solid phases of matter. This quantum mechanical many-body problem is
defined by the time-independent Schrödinger equation[

−1

2

N∑
i=1

∇2
i︸ ︷︷ ︸

T̂

+
N∑
i=1

∑
j<i

1

|ri − rj|︸ ︷︷ ︸
V̂ ee

+
N∑
i=1

v̂ext. (xi)
]
Ψ({xi}) = EΨ({xi}) (1)

for a system of N interacting electrons feeling the influence of the positively
charged nuclei. Here T̂ , V̂ ee and v̂ext. (x) are the operators for the kinetic
energy of the electrons, the Coulomb repulsion between individual electrons
and the electron-nucleus interaction, respectively, and xi = (ri, σi) denotes
the spatial and spin coordinate of the i-th electron. By asserting the exis-
tence of an electronic wavefunction Ψ ({xi}) with no functional dependence
on the nuclear coordinates, we implicitly applied the Born-Oppenheimer ap-
proximation. The electrons are assumed to move in the instantaneous field
of the nuclei frozen in time.
Not only is it not possible to solve this equation analytically for more than
one electron (i.e. Hydrogen atom), even the memory requirements for storing
the full many-body wavefunction |Ψ({xi})⟩ of a small molecule on a modest
numerical grid gets out of hand exponentially [9].
Density functional theory is one approach to simplify this problem by moving
away from the many-body wavefunction entirely and instead focusing on the
electron density, which is related to the many-electron wave function of in
the following way:

n (x) = N
∑
{σi}

∫
d3r

∫
d3r2 · · ·

∫
d3rN |Ψ(x,x2, · · · ,xN)|2 .

It can be easily interpreted as the as the number of electron dN = n (x) dx in
the coordinate interval dx. The usefulness of the electron density as a basic
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variable is guaranteed by the first theorem of Hohenberg and Kohn [12].
It states that the groundstate density uniquely determines all groundstate
properties of the system [9]. The individual terms in Equation (1) are now
functionals of the electron density.

Kohn-Sham Equations

Even though replacing the many-body wavefunction with the electron density
has simplified the problem of solving Equation (1), a completely orbital-
free approach is still not trivial to do. One main reason is the difficulty in
constructing a quantum mechanical kinetic energy functional T̂ [n] (r) solely
in terms of the electron density [13].
To circumvent the aforementioned difficulty, Kohn and Sham [14] proposed
the following: Consider the hypothetical case of N non-interacting electrons
in an effective single-particle “Kohn-Sham potential” v̂KS [n] (x) which we
call “Kohn-Sham system”. The Hamiltonian ĤKS, therefore, decomposes
into single particle Hamiltonians

ĥKSφKS
i (x) =

[
−1

2
∇2 + v̂KS [n] (x)

]
φKS
i (x) (2)

= ϵiφ
KS
i (x) ,

with single-electron eigenstates φKS
i (x) (“Kohn-Sham orbitals”) and eigen-

energies ϵi. This reintroduces orbitals into DFT, however, one has to be care-
ful with the interpretation of them as physical quantities. In practice, (oc-
cupied) Kohn-Sham orbitals often resemble molecular orbitals from Hartree-
Fock or Hückel models [15]. It should be noted that, Kohn-Sham energies
can be interpreted using Janak’s theorem [16].
The wavefunction for the entire system ΨKS ({xi}) is then a single Slater
determinant [10]

ΨKS ({xi}) =
1√
N !

∣∣∣∣∣∣
φKS
1 (x1) · · · φKS

1 (xN)
. . . . . .

φKS
N (x1) · · · φKS

N (xN)

∣∣∣∣∣∣ . (3)

To calculate the properties of the real system from the Kohn-Sham system,
v̂KS [n] (x) is constructed in such a way, that the resulting electron density
nKS (x) is identical to density of the real system n (x)

v̂KS [n] (x) := v̂H [n] (r) + v̂ext. [n] (x) + v̂xc [n] (x) (4)

⇒ nKS (x) =
N∑
i=1

∣∣φKS
i (x)

∣∣2 !
= n (x) (5)
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This includes known terms like the Hartree potential

v̂H [n] (r) =

∫
n (r′)

|r − r′|
d3r′,

accounting for the classical electron-electron interaction and the external
potential v̂ext. [n] (x). Equation (4) can also be seen as the definition of the
notorious “exchange-correlation functional” v̂xc [n] (x).
With the above scheme, we have reduced the many-body fully interacting
problem Equation (1) to solve a system of coupled single-electron Schrödinger
Equations (2). Because the Kohn-Sham potential, Equation (4), necessary to
solve the Kohn-Sham equations (KSE) depends, via the density (5), on the
solutions to the KSE, this has to be solved self-consistently (“SCF-cycle”)
with an initial guess and a convergence criteria depended on the property in
question (e.g. total energy, density, ...).

Exchange-correlation potential

The procedure to solve the KSE outlined in the previous paragraph relies on
the knowledge of the correct form of the xc-functional v̂xc [n] (x) introduced
in Equation (4). It is supposed to account for the “exchange energy” already
present in Hartree-Fock theory and all other effects yet to be added to recover
the fully interacting system, collectively dubbed “correlation energy”. Up to
this point, DFT is an exact reformulation of the time-independent quantum
mechanics of the electronic structure problem. For the xc-functional, whose
existence is guaranteed by the theorems of Kohn and Sham [9], however, only
approximations of different sophistication and intended use are available.
Note that, the xc-potential is spin-dependent and, in general, non-local in
nature.
Here we only mention the most simple, yet ubiquitous, approximation already
proposed by Kohn and Sham [17] called “local density approximation (LDA)”

v̂LDA [n] (r) =

∫
d3r′n (r′) v̂unif. (n (x′)) . (6)

Here v̂unif. (n (x)) is the exchange-correlation energy per electron in a homoge-
neous uniform electron gas (jellium model) with a constant density n (x) = n.
Results obtained with an LDA approximation are often in surprisingly good
agreement with more sophisticated functionals, even for non-metallic systems
with electronic structures more distant to the uniform electron model it is
based on.
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2.1.1 Geometry Optimization

Density functional theory, like many other electronic structure models, builds
upon the Born-Oppenheimer approach, separating the movement of the nu-
clei from the movement of the electrons by “freezing” the position of the
former. However, if the geometry of the system is not already in equilibrium,
forces on the individual atoms will occur trying to relax the structure. From
the full Hamiltonian of the system

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

∑
j<i

1

|ri − rj|
−

N∑
i=1

K∑
J=1

ZJ

|ri −RJ |
+

N∑
I=1

K∑
J<I

ZIZJ

|RI −RJ |
,

we can calculate the force FJ on the nuclei J as

FJ = −dE ({RI})
dRJ

= − d

dRJ

⟨Ψ| Ĥ ({RI}) |Ψ⟩

= −⟨Ψ| dĤ ({RI})
dRJ

|Ψ⟩

=

∫
d3rn (r)

ZJ (r −RJ)

|r −RJ |3
+
∑
J ̸=K

ZKZJ (RK −RJ)

|RK −RJ |3
,

where in the second to last step we used the Hellmann-Feynman theorem [10].
Thus, with the groundstate electron density n (r) from a converged DFT
calculation, one can calculate all the forces and iteratively relax the ionic
positions, until an energy minimum with respect to the nuclear coordinates is
reached. This approach is also sometimes called “damped Born-Oppenheimer
molecular dynamics” [18]. Damped refers to an added artificial damping
factor that prevents the ions from oscillating around the equilibrium position.
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2.2 Time-Dependent Density Functional Theory

In the following chapter, we show how density functional theory can be ex-
tended to the time-dependent case (Chapter 2.2.1). With time-dependent
external potentials one can model light-matter interaction (Chapter 2.2.2)
and the subsequent photoemission process (Chapter 2.2.3) directly, without
assuming a final state.

2.2.1 TD-DFT Basics

For details on the matter discussed below, refer to the References [11, 19, 20]
used throughout the following chapter. Starting from the many-electron
Hamiltonian Ĥ0 defined in Equation (1), we can add a time-dependent po-
tential v̂TD (x, t) to the previously static Hamiltonian Ĥ0

Ĥ = ︸ ︷︷ ︸
Ĥ0

T̂ + V̂ ee +

∑
i v̂

ext.(xi,t)︷ ︸︸ ︷
N∑
i=1

v̂ext. (xi) +
N∑
i=1

v̂TD (xi, t)︸ ︷︷ ︸
Ĥ′

.

Using this time-dependent Hamiltonian, we seek a solution of the time-
dependent Schrödinger equation

Ĥ |Ψ({xi} , t)⟩ = i∂t |Ψ({xi} , t)⟩ .

For the same reasons as in the static case, we would like to trade the many-
body wavefunction Ψ ({xi} , t) for the electron-density n (x, t) first and sub-
sequently introduce single-particle Kohn-Sham orbitals φKS

i (x, t), analogous
to groundstate DFT. The Hohenberg-Kohn theorems used to prove that the
density is in fact a valid replacement relies on the Rayleigh-Ritz variational
principle, in that the correct groundstate density will minimize the energy
functional. This no longer holds for the time-dependent case.

Runge-Gross Theorem
There is, however, an analogous theorem in TD-DFT, namely the Runge-
Gross theorem, which replaces the theorems by Hohenberg-Kohn. It states
that for a given initial state Ψ0 = Ψ({xi} , 0) there is a one-to-one map-
ping between the external potential v̂ext. (xi, t) and the density n (x, t), up
to a time-dependent additive term. This term will result only in a time-
dependent phase factor for the wavefunction, which has no consequence for
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the density [19]. Solutions to the Schrödinger equation are unique and, there-
fore, this relation is trivial in the direction v̂ext. → n, with the definition of
the density

n (x, t) = N
∑
{σi}

∫
d3r

∫
d3r2 · · ·

∫
d3rN |Ψ(x,x2, · · · ,xN , t)|2 .

The proof for the inverse direction is outlined as follows:
Consider the Heisenberg equation of motion for the expectation value j (x, t)
of the current-density operator ĵ (x)

j (x, t) = ⟨Ψ({xi} , t)| ĵ (x) |Ψ({xi} , t)⟩

ĵ (x) = − i

2

N∑
i=1

[∇iδ (r − ri) + δ (r − ri)∇i] (7)

⇒ ∂

∂t
j (x, t) = i ⟨Ψ({xi} , t)|

[
Ĥ, ĵ (x)

]
|Ψ({xi} , t)⟩ . (8)

We assume two external potentials v̂ext. (x, t), that differ by more than a
time-dependent term

ŵ (x, t) := v̂ext. (x, t)− ˜̂vext. (x, t) ̸= ŵ (t) , (9)

from a common (not necessarily groundstate) initial state |Ψ0⟩ = |Ψ({xi} , 0)⟩.
Because these two Kohn-Sham systems differ only in the external potential,
the following yields

∂

∂t

[
j (x, t)− j̃ (x, t)

]∣∣∣∣
t=0

= i ⟨Ψ0|
[
v̂ext. (x, 0)− ˜̂vext. (x, 0) , ĵ (x)

]
|Ψ0⟩

= n (x, 0)∇w (x, 0) . (10)

This means that if condition (9) is fulfilled, the two current densities will
evolve differently at t > 0.1 Using the continuity equation

∂

∂t
n (x, t) = −∇j (x, t) , (11)

we can reformulate the result of Equation (10) in terms of the electron density
by computing the gradient of Equation (10)

∂2

∂t2
[n (x, t)− ñ (x, t)]

∣∣∣∣
t=0

= −∇ [n (x, 0)∇w (x, 0)] . (12)

1By requiring Taylor-expandability and reformulating Equation (9), the original proof
from Reference [19] also covers the case where the first derivative of w (x, t) vanishes by
repeatedly applying Equation (8).
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In order to show that the right hand side of Equation (12) cannot vanish
under the assumption of Equation (9), we consider the following integral∫

d3r w (x, t)∇ · [n (x, 0)∇w (x, t)] =

∫
d3r ∇ · [w (x, t)n (x, 0)∇w (x, t)]

−
∫

d3r n (x, 0) [∇w (x, t)]2 .

First, we notice that the first term on the right hand side can be rewritten into
a surface integral using Gauss’s theorem and thus vanishes for any reasonable
density tending towards zero sufficiently fast. The integrand of the second
term on the right hand side is strictly positive and, thus, the right hand side
in Equation (12) cannot vanish either. This proves that the density for two
different external potentials will evolve differently and, therefore, also the
direction n → v̂ext. for the one-to-one mapping holds, as the Runge-Gross
theorem promised. Strictly speaking, this only proves the uniqueness of the
external potential for a given density, not its existence. The same is true for
the static case and is called “v-representability problem” [11]. In practice
this turns out not to be an issue.

Time-dependent Kohn-Sham Equations
In complete analogy to the static case, we again introduce a Kohn-Sham
system of N non-interacting electrons under the influence of a KS-potential
v̂KS [n,Φ0] (x, t) that will lead to an identical electron density nKS (x, t) as
the fully interacting one

nKS (x, t) =
N∑
i=1

∣∣φKS
k (x, t)

∣∣2 !
= n (x, t) .

The Kohn-Sham orbitals φKS
k (x, t) can then be shown to fulfil the time-

dependent Schrödinger equations

i
∂

∂t
φKS
k (x, t) =

[
−1

2
∇2 + v̂KS [n,Φ0] (x, t)

]
φKS
k (x, t) , (13)

where the KS-potential is now also a functional of the initial state Φ0, which
is usually constructed out of single-particle wavefunctions via a single Slater
determinate (see Equation (3)). As we have done in groundstate DFT, the
KS-potential is split into three parts

v̂KS [n,Ψ0,Φ0] (x, t) = v̂H [n,Ψ0] (r, t)+v̂ext. [n,Ψ0] (x, t)+v̂xc [n,Ψ0,Φ0] (x, t) .
(14)
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The Hartree potential v̂H [n,Ψ0] (r, t) describes the classical interaction of a
charge distribution with itself, which is now also time-dependent

v̂H [n,Ψ0] (r, t) =

∫
d3r′

n (r, t)

|r − r′|
.

Note, that the Hartree potential does not take any retardation effects into
account, as it depends on the instantaneous electron density only.
The external potential v̂ext. [n,Ψ0] (x, t) is usually given by the Coulomb field
from the nuclei and, therefore, has no explicit dependency on the initial state
wavefunction Ψ0. The exchange-correlation potential will be discussed in
more detail in the next paragraph.
In real-time TD-DFT, one uses the results of a converged DFT groundstate
calculation as initial state Φ0 and propagates the individual KS-orbitals ac-
cording to Equation (13) in time via a numerical scheme for the time deriva-
tive, thus removing the necessity for a self-consistency cycle.

Exchange-Correlation Potential
The exchange-correlation potential v̂xc [n,Ψ0,Φ0] (x, t) can only be approx-
imated as there is no known explicit form. In fact, contrary to the other
two potentials, it depends on the entire history of the electron density. This
“memory” makes it not only particularly hard to write down, but also any
computation would require an approximation anyhow.
It is this memory dependence that is neglected in almost all xc-functionals
available, which is referred to as the “adiabatic approximation”. The argu-
ment goes like this: At any point in time t, the instantaneous electron density
n (x, t) is the groundstate density of some other, unknown system. Thus, it
is justified to apply the static xc-functional

v̂xcadia. [n] (x, t) = v̂xcGS [n (t)] (x) .

This, however, is still a severe approximation and only really justified for
systems starting in the groundstate and varying only slowly in time. Even
if the density at the point t > t0 could be reproduced by some system in its
groundstate, the wavefunctions could not. Nevertheless, due to its simplicity,
the reuse of an already existing, large catalogue of static xc-functionals and,
last but not least, its success in most practical cases, the adiabatic approxi-
mation is ubiquitous in TD-DFT.
As a particularly simple and widely used approximation, we mention the
adiabatic local density approximation ALDA. In comparison with the LDA
for groundstate DFT defined in Equation (6), it is obtained by simply allow-
ing for a time-dependent density, but keeping the structure of the functional
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unchanged

v̂xc;ALDA [n] (r) = v̂LDA
GS [n (t)] (r) =

∫
d3r′n (r′, t) v̂unif. [n (t)] (r) .

2.2.2 Linear Response

Depending on the size of the basis set, the result of a ground state DFT calcu-
lation can include higher lying, unoccupied eigenstates with the eigenenergies
ϵi of the static Kohn-Sham Hamiltonian ĥKS (Equation (2)). However, they
cannot be identified with excited states of the fully interacting system [16].
Within the framework of linear-response theory, the simulation of the dynam-
ics of the many-body effects during an excitation allows TD-DFT to better
estimate the absorption spectrum of a system [21]. Here, we want to give a
short overview of linear-response time-dependent density functional theory
(LRTD-DFT) [21] and state Casida’s equation [21, 22], a formulation which
is implemented in many modern quantum chemistry packages.

We consider an external time-dependent potential of the following form

v̂ext. [n] (r, t) = v̂ext.0 [n0] (r) + v̂ext.1 [n] (r, t) θ (t− t0) .

Thus, for t < t0, the system experiences only a time-independent poten-
tial v̂ext.0 [n0] (r) which we identify with, in general, the electrostatic influ-
ence of the frozen nuclei. An additional time-dependent external potential
v̂ext.1 [n] (r, t), switched on at t = t0, induces an excitation in the system. The
Runge-Gross theorem, then, guarantees a one-to-one mapping between the
external potential v̂ext. [n] (r, t), and, therefore, also the Kohn-Sham poten-
tial v̂KS [n] (x, t), and the electron density n (x, t). We can, thus, formally
invert Equation (14)

n (x, t) = n
[
v̂KS
]
(x, t) .

For a sufficiently weak perturbing field, we can expand the electron density
n (x, t) in powers of v̂ext.1 [n] (r, t)

n (x, t) = n0 (x) + n1 (x, t) + n2 (x, t) + . . . .

The first-order density response n1 (x, t) can then be expressed as

n1 (x, t) =

∫
dt′
∫

d4x′χKS (x, t,x′, t′) v̂KS
1 (x′, t′) , (15)

where we have introduced the “linear density-density response function”

χKS [n0] (x, t,x
′, t′) =

δn (x, t)

δv̂KS (x′, t′)

∣∣∣∣
v̂KS[n0]

,
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a functional of the groundstate density n0. The integral
∫
d4x has to be

understood as the integration over all real space r and a summation over
the spin coordinate σ:

∑
σ

∫
d3r. According to Equation (14), the first order

Kohn-Sham potential can be expressed as

v̂KS
1 [n] (x, t) = v̂ext.1 [n] (r, t) +

∫
d3r′

n1 (r, t)

|r − r′|
+ v̂xc1 [n] (x, t) .

For the last term, the first-order xc-potential,

v̂xc1 [n] (x, t) =

∫
dt′
∫

d4x′ δv̂
xc [n] (x, t)

δn (x′, t′)

∣∣∣∣
n0︸ ︷︷ ︸

fxc[n0](x,t,x′,t′)

n1 (x
′, t′) , (16)

we introduce the important “time-dependent xc kernel” fxc [n0] (x, t,x
′, t′),

again a functional of the groundstate density n0. Note that the kernel, as well
as the response function χKS (x, t,x′, t′), only depend on the time difference
t − t′. Because we want to extract the excitation energies from the system,
we will now switch to frequency space by Fourier transform to replace space,
and replace the time difference t− t′ by the frequency ω as a basic variable.
Introducing the “Hartree-xc kernel”

fHxc [n0] (x,x
′, ω) =

1

|r − r′|
+

∫
d (t− t′) eiω(t−t′)fxc [n0] (x, t,x

′, t′) ,

and plugging Equation (16) into Equation (15)

n1 (x, ω) =

∫
d4x′χKS (x,x′, ω)[

v̂ext.1 [n] (r′, ω) +

∫
d4x′′fHxc [n0] (x

′,x′′, ω)n1 (x
′′, ω)

]
yields an equation that has be solved self-consistently in n1 (x, ω). The Kohn-
Sham response function in frequency space can be expressed as

χKS (x,x′, ω) = δσ,σ′

∑
j,k

(fkσ − fjσ)
φKS
0,j (x)φ

KS∗
0,k (x)φKS∗

0,j (x′)φKS
0,k (x

′)

ω − ωjkσ + iη
,

(17)
where ωjkσ = ϵjσ − ϵkσ are the excitation energies of the Kohn-Sham ground-
state, not to be confused with the excitation energies Ωn of the true system
given by the poles ω = Ωn in the density response n1 (x, ω).
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Casida’s Equation
First derived in 1995 [22], Casida’s equation is a very powerful formulation
of of LRTD-DFT for finite systems. In the sense of eigenmodes, the system
can show a finite response even with no external potential required. This
can be understood by a Dirac δ-shaped kick at t = −∞ and the system,
subsequently, sustaining a finite oscillation. For real groundstate orbitals
Casida’s equation is an eigenvalue equation(

A B
B A

)(
X
Y

)
= Ω

(
−1 0
0 1

)(
X
Y

)
, (18)

where the matrices A and B are defined by in the following way

Aiaσ,i′a′σ′ (Ω) = δii′δaa′δσσ′ωa′i′σ′ +Kiaσ,i′a′σ′ (Ω)

Biaσ,i′a′σ′ (Ω) = Kiaσ,i′a′σ′ (Ω)

Kiaσ,i′a′σ′ (Ω) =

∫
d4x

∫
d4x′φKS∗

0,i (x)φKS
0,a (x) f

Hxc [n0] (x,x
′,Ω)φKS

0,i′ (x
′)φKS∗

0,a′ (x
′) .

The indices i/i′ and a/a′ run over all occupied and unoccupied Kohn-Sham
states, respectively. This includes continuum states, and thus, in theory, this
poses an infinite-dimensional eigenvalue problem. In practice, only a finite
number of unoccupied states is taken into account.

Time Propagation
A different, arguably more direct, approach to calculating the linear-response
of the system to an external potential is to actually apply a perturbation of
the form vext.1 (r, ω) = −rjκ (ω) at time t > 0 and to propagate in time the
system numerically according to Equation (13) [23]. The linear-response of

the dipole moment
〈
X̂
〉
1
(ω) can then be expressed as〈

X̂i

〉
1
(ω) =

∫
d4x ri n1 (x, ω) .

The “polarizability” tensor αij of the system is defined as

αij =

〈
X̂i

〉
1
(ω)

κ (ω)
.

The full tensor αij is obtained by re-running the simulation for different ex-
citation direction rj, or using any symmetries the system might have [23]. It
can be shown, that the absorption cross-section tensor σ (ω) can be calculated
as imaginary part of α [23]

σ (ω) =
4πω

c
Im{α (ω)}.
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2.2.3 Description of Photoemission in TD-DFT

An incident light field of sufficient energy ℏω is capable of exciting a previ-
ously bound electron from a surface or molecule into an unbound state in the
vacuum. In this work we will exclusively focus on simulating the photoemis-
sion process for single, isolated molecules in the gas-phase. The momentum
p of the freed electron is fixed by the energy conservation during the emission
process

|p| =
√
2Ekin

Ekin = ω − |Eb| . (19)

We can describe the photoemission spectrum P (p) of a molecule, i.e., the
probability to measure an electron with momentum p at the detector sur-
face, normalized to the total number of escaped electron Nesc., as a function
P (θ, ϕ, Ekin) of the spherical coordinates θ, ϕ and the kinetic energy Ekin

of the escaping electron. The experimental technique called “angle-resolved
photoemission spectroscopy” (ARPES) is capable of measuring the angular
dependence of the photoemission data. Note that in principle also spin res-
olution can be achieved with spin-sensitive detectors [24], however, this is
outside the scope of this work and will not be considered in the following
theoretical description either.
The benefit of employing TD-DFT for the description of photoemission is,
that it allows for a real-time formulation of arbitrary time-dependent external
fields in both shape and strength. As a particularly attractive application,
also the simulation of “pump-probe” photoemission experiments becomes
possible. In a pump-probe setup, first a low energy pulse, the so-called
“pump” pulse, excites electrons in the molecule to higher energy levels. The
second pulse, now called “probe” pulse, then releases electrons from both
the excited states and lower lying states into the vacuum according to Equa-
tion (19). By varying the time delay ∆t between the two pulses, the temporal
evolution of the excitation dynamics can be studied, both, in experiment and
in the TD-DFT simulation.

There have been several attempts to simulate the angle-resolved photoemis-
sion current within the framework of TD-DFT [25, 26, 27]. This work uses the
“time-dependent surface flux method” (t-SURFF), first proposed for atoms
by Tao and Scrinzi [28], later formulated in the framework of TD-DFT and
implemented into the real-space real-time simulation code “Octopus” (see
Chapter 3.1.1) by Wopperer et al. [29] and further extended to semi-periodic
systems by De Giovannini et al. [8] (t-SURFFP).
In TD-DFT the light field is treated classically. We can, therefore, modify
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the Kohn-Sham Hamiltonian (13) in a minimal-coupling approach by cou-
pling the vector potential A (t) to the momentum operator using the velocity
gauge

ĤKS =
1

2
[i∇−A (t)]2 + v̂KS [n,Φ0] (r, t) .

Note that the electric field of the incident light beam is related to the vec-
tor potential by E (t) = ∂tA (t). The typical wavelength used in pump-
probe experiments (> 100 Å) is much larger than the typical dimension of
a single molecule (≈ 10 Å). This justifies our use of the dipole approx-
imation A (r, t) = A (t) and the absence of a magnetic field component
B (t) = ∇×A (t) = 0.
In order to compute the photocurrent using the t-SURFF method, the simu-
lation box is split into a region A close to the molecule and an adjacent region
B far enough from the molecule. We assume that the electronic structure
dynamics can be described with two separate Hamiltonians ĤA and ĤB

Ĥ =

{
ĤA r ∈ A

ĤB r ∈ B
(20)

In particular, the electrons in the outer region B will resemble free electrons
which are still under the influence of the incident light A (t)

ĤB = ĤV =
1

2
[i∇−A (t)]2 .

Thus, the electrons in region B can also be described by the exactly solvable
Volkov Hamiltonian ĤV [30], whose solutions χp (r, t) are plane waves with
a time- and momentum-dependent phase factor Φ (p, t)

χp (r, t) =
1√
V
e−iΦ(p,t)eipr

Φ (p, t) =
1

2

∫ t

0

[p+A (t)]2 dτ.

Because they form a complete and orthogonal basis set, the Kohn-Sham
orbitals φKS

i (r) can be expanded in terms of χp (r, t)

φKS
i (r, t) =

∫
bi (p)χp (r, t) d

3p. (21)

Using the continuity Equation (11), the total number freed electrons Nesc. at
the time T

Nesc. (T ) =
N∑
i=1

∫
|bi (p)|2 d3p (22)
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is connected to the flux of the charge density j (r, t) through the boundary
surface S between the region A and B

Nesc. (T ) = −
∫ T

0

dτ

∮
S

ds · j (r, τ) . (23)

For the Kohn-Sham system we can express the charge density as a sum of
expectation values of the hermitian, single-particle current-density operators
ĵi (r)

j (r, t) =
N∑
i=1

〈
φKS
i (r, t)

∣∣ ĵi (r) ∣∣φKS
i (r, t)

〉
, (24)

whose explicit form is the ith term of Equation (7) after a minimal-coupling
substitution ∇i → ∇i+ iA (t). We plug (24) into Equation (23) and expand
the dual vector

〈
φKS
i (r, t)

∣∣ in the Volkov basis (21)

Nesc. (T ) = −
N∑
i=1

∫ T

0

dτ

∮
S

ds

∫
d3p · b∗i (p) ⟨χp (r, τ)| ĵi (r)

∣∣φKS
i (r, τ)

〉
.

(25)
Comparing Equation (22) and Equation (25), we can give an explicit form
for the Volkov state expansion coefficients

bi (p) = −
∫ T

0

dτ

∮
S

ds ⟨χp (r, τ)| ĵi (r)
∣∣φKS

i (r, τ)
〉
.

The validity of this result depends on the assumption that the freed elec-
trons are spatially well separated from the bound electrons. Therefore, the
distance between the surface detector and the spatially localized bound elec-
tron density has to be sufficiently large.

2.2.4 Ehrenfest Dynamics

In Chapter 2.1.1 we have discussed Born-Oppenheimer dynamics, a way to
calculate the force on the nuclei in a not explicitly time-dependent electron
density n (r). There, the time-dependence in the nuclear motion arises from
the Hellman-Feynman forces calculated from static ground state densities
obtained from self-consistent DFT calculations. In TD-DFT, the electron
density has, however, an additional explicit time-dependence n = n (r, t)
due to an explicitly time-dependent external potential v̂ext. (r, t), e.g., due to
a light field. In this case, the force FJ on the core J can be calculated as [31]

FJ (t) = −
∫

d3r n (r, t)
∂

∂RJ

v̂ext. (r, t) .

This equation couples to the nuclear part of the external potential in Equa-
tion (14) and, therefore, has to be reevaluated at each time step.
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2.3 Rabi Oscillation

As a result of a converged DFT groundstate calculation, the Kohn-Sham
orbitals satisfy, by design, the time-independent Schrödinger equation

Ĥ0 |φn (r)⟩ = En |φn (r)⟩

When adding a time-dependent sinusoidal perturbation, Ĥ = Ĥ0 + Ĥ ′, with
a frequency close to a resonant frequency ω ≈ ω0 = |Em − En| the system
will undergo stimulated emission [32]. We assume, as is the case for the
molecule ANBP (see Figure 1), that the two energy levels in question are
non-degenerate. For the purpose of calculating the time-dependent excited
state occupation, this allows us to treat the system as a two-level system. It is
important to understand that although these two levels can be complicated
in nature, for the response to the periodic field this complexity is neither
relevant nor apparent. Treating the light field classically the entire system is
described by the minimal coupling Hamiltonian [33]

Ĥ |Ψ(r, t)⟩ = 1

2

[(
p̂− qÂ (r, t)

)2
+ qΦ̂ (r, t)

]
|Ψ(r, t)⟩ (26)

where q is the charge of the electron which we keep explicit for now and
Â (r, t) and Φ̂ (r, t) are the vector and scalar potentials, respectively. We
will employ the dipole approximation Â (r, t) = Â (t), i.e. neglect the spatial
dependence in the electric field (see Chapter 2.2.3). It still leaves us with a
gauge freedom for which we choose a special Coulomb gauge transformation
χ̂ (t) = −x̂Â′ (t) called “Göppert-Mayer gauge” [34] or sometimes called
“length gauge”

Â (t) := Â′ (t) +∇χ̂ (t) = 0

qΦ̂ (r, t) := Φ̂′ (r, t)− ∂tχ̂ (t) = qx̂Ê (t) ,

where Ê (t) = E0 cosωt is the electric field with an amplitude of E0 in the
dipole approximation.

23



Excited State Occupation

In order to solve Equation (26), we make an ansatz for the wavefunction of
the full system as a time-dependent superposition of the two unperturbed
levels

|Ψ(r, t)⟩ = c1 (t) e
−iE1t |φ1 (r)⟩+ c2 (t) e

−iE2t |φ2 (r)⟩ .
Note that we explicitly kept the time-dependent phase factor resulting from
the time-dependent Schrödinger equation for the unperturbed system. The

absolute square of the coefficients
∣∣c1/2 (t)∣∣2 then can be interpreted as the

occupation of the two levels respectively. Inserting this ansatz into the time-
dependent Schrödinger equation results in a coupled system of differential
equations for the coefficients

ċ1 (t) = −ic2 (t) e
−iω0tH ′

12

ċ2 (t) = −ic1 (t) e
iω0tH ′

21. (27)

Here, we have introduced the matrix elements

H ′
12 = ⟨φ1 (r)| Ĥ ′ |φ2 (r)⟩

= q ⟨φ1 (r)| x̂ |φ2 (r)⟩E0 cosωt

= d12E0 cosωt

= H ′
21 (28)

where d12 is the transition dipole moment. To arrive at Equation (27) we
have neglected the diagonal elements of the perturbation Hamiltonian [35].
For the solution of Equation (27) we could assume a weak field and ex-
pand the solution in terms of orders of E0 [35]. However, this means the
system would be residing in the groundstate mostly. Therefore, we will as-
sume instead a near-resonant, but not necessarily weak, driving field |δ| :=
|ω − ω0| ≪ ω + ω0. Rewriting the cosine in Equation (28) in terms of expo-
nentials yields

ċ2 (t) = −i
Ω

2
c1 (t)

[
e−i(ω−ω0)t + ei(ω+ω0)t

]
, (29)

where we have introduced the “Rabi frequency” Ω = d12E0. Because of the
(near) resonance condition we can neglect the fast oscillating second term in
Equation (29), which is called “rotating wave approximation” [36]. We can
then solve the system of differential Equations (27) analytically leading to

c1 (t) = e−i δt
2

[
cos

ΩR

2
t− i

δ

ΩR

sin
ΩR

2
t

]
c2 (t) = −i

Ω

ΩR

ei
δt
2 sin

ΩR

2
t,
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where ΩR :=
√
Ω2 + δ2 denotes the “Rabi flopping frequency”. The occupa-

tion of the excited state

|c2 (t)|2 =
[
Ω

ΩR

sin
ΩR

2
t

]2
(30)

shows an oscillation between 0 and [Ω/ΩR]
2 with the Rabi flopping frequency.

This phenomenon can be interpreted as the process of stimulated emission.
In the first half cycle, the system takes energy from the electric field. When
switching off the light field there after a so-called “π-pulse” [37], the sys-
tem is maximally excited and will, not taking any decoherence effects into
account, stay there indefinitely. However, when continuously applying the
perturbation, the system will relax back to the initial state because in the
second half cycle the system emits a photon with the same energy as the
laser pulse, provided there is perfect resonance.

Dipole Moment

Finally, we also want to calculate the expectation value of the dipole moment.
This will be important later on for the interpretation of the simulation results.
From the definition [36]

d := ⟨Ψ(r, t)| d̂ |Ψ(r, t)⟩ = d12 ·
[
c∗1 (t) c2 (t) e

−iω0t + c1 (t) c
∗
2 (t) e

iω0t
]

we get

d := d12Ω

[
δ cosωt cosΩRt

Ω2
R

− δ cosωt

Ω2
R

− sinωt sinΩRt

ΩR

]
(31)

where we used d21 = d12 and dii = 0. In Figure 3, the behaviour of the
dipole moment as well as the ground- and excited state population for a two-
level system is shown for a resonant, near-resonant and a non-resonant value
of δ. For specific simulation parameters please refer to the figure caption.
Moving away from resonance manifests itself in two clear observations: First,
the lower energy level never fully depletes and the higher energy state never
reaches full occupation. Second, the dipole moment for the fully resonant and
non-resonant setup look very similar. It is, therefore, not possible to distin-
guish between them on the basis of the dipole moment alone [38]. Together
with the excited state population we can, however, see a clear difference: the
nodes in the dipole moment seen in the fully resonant state align alternately
with the maxima respectively the minima of the excited state population.
As can be seen in panel (b), every odd node broadens as we move away from
resonance and eventually gives rise to a new maxima in the envelope of the
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(a) Resonant: δ = 0.00 eV

(b) Near-resonant: δ = 0.04 eV

(c) Non-resonant: δ = 0.30 eV

Figure 3: Simulation of the dipole moment dx12 (dashed dark blue line; Eq. (31)),
the groundstate population |c1 (t)|2 (solid light blue line with crosses) and the
excited state population |c2 (t)|2 (solid orange line with circles; Eq. (30)) for dif-
ferent values of δ. Other relevant parameters used in this figures are: Ω = 0.14 eV,
ω0 = 2.17 eV, dx12 = 7.76De.
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dipole moment. This has the consequence that now all the maxima in the
dipole moment align with the maxima in the excited state population, odd
and even. These two observations give us a clear way to distinguish possible
off-resonant behaviour in the Rabi cycle later on.

2.3.1 Mollow-(like) Triplets

In fluorescence spectra of a resonantly driven two-level system one can ob-
serve a splitting of the emission peaks in the energy domain into three distinct
peaks separated from the central emission line by ±ΩR [33]. This phenomena
is called “Mollow Triplet” after the physicist who first theoretically described
them in 1969 [39]. The derivation is a bit more involved, however, it can be
understood fairly easily and intuitively [32]: The emission of light by an elec-
tron can only occur via de-relaxation from the excited state back to ground
state. The emitted light will then carry the energy ω = ω0. Thus, using
Eq. (30), the emitted field will be

Eemitt. (t) ≈ Eemitt.
0 cosω0t sin

ΩR

2
t

which after Fourier transformation to the energy domain yields

Eemitt. (ν) ≈ Eemitt.
0

√
π

8

[
1

4
δ (ν − ω) +

1

4
δ (ν + ω)− δ (ν − (ω + ΩR))

+δ (ν − (ΩR − ω))− δ (ν − (ω − ΩR))− δ (ν − (−ω − ΩR))

]
The second, fourth and sixth term can be disregarded as all three quantities
ν, ω and ΩR have to positive. Thus we expect three peaks at ν = ω and
ν = ω ± ΩR.

A different but apparently very similar observation will be possible in the
TD-DFT simulation data later on (and in fact can already be seen here [40]):
Both, the dipole moment as well as the excited state population show a sim-
ilar splitting in the energy domain again by the term ±ΩR. For the dipole
moment, this is not too surprising as it can already be seen from Figure 3 a)
and c) by the same argument as before: It oscillates with a term proportional
to the laser frequency multiplied with an envelope function resembling a sin2

function with a periodicity identical to the occupation, i.e. ΩR.
Understanding the analogous effect for the occupation is, however, not at all
obvious from Eq. (30). Using the result (30) there is only a single (positive)
frequency at ΩR. This is a consequence of the rotating wave approximation
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Figure 4: Numerical integration of Equations (27) without the rotating wave ap-
proximation using the Runge-Kutta algorithm of 4th order (solid lines). Solutions
with the rotating wave approximation as comparison (dashed lines). The simu-
lation parameters are identical to Figure 3c, namely: δ = 0.30 eV, Ω = 0.14 eV,
ω0 = 2.17 eV and dx12 = 7.76De.

we used to obtain this results. In fact, going back to Eq. (27) and solving
the coupled system of differential equations numerically will yield the same
Mollow-like triplet structure for the excited state population as well. It is
noticeable by a fast oscillation with ω on top of the already depicted slower
oscillation ΩR (see Figure 4).2 In addition, we notice an increase in frequency
using the RWA.

2.3.2 Failure of TD-DFT

When studying the resonant pumping a molecular system between two non-
degenerate levels in the framework of TD-DFT, the results do not fully repli-
cate the analytically derived Rabi physics from Chapter 2.3. This short-
coming of TD-DFT has already been described in the literature for 1D toy
models [37, 38]. Its origin still is, however, contested. It is claimed to be
either of classical origin due an anharmonic potential [37] or an inherent is-
sue of all mean-field theories and only solvable by giving up the adiabatic
approximation of the xc-functional [38]. In this chapter the argument of the
second position [38] and possible remedies [40] will be presented briefly.

2It splits into a triplet not a duplet because the square of a sine wave gives an addi-
tional identical negative frequency ΩR shifted by the second oscillation ω into the positive
domain.
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Dynamical Detunement

The time-dependent Kohn-Sham Hamiltonian is given by the following ex-
pression

Ĥs = ︸ ︷︷ ︸
Ĥs

0

T̂ + V̂ nuc. +

V̂ xc︷ ︸︸ ︷
V̂ xc
0 + V̂ xc

dyn. +Ĥ ′,

where T̂ , V̂ nuc. and V̂ xc are the kinetic energy functional, the external poten-
tial functional resulting from the nuclei and the exchange-correlation func-
tional, respectively. The last one we split into a static part V̂ xc

0 depending
only on the electron density at t = 0 and a dynamic part V̂ xc

dyn. depending on

the full history of electron density. Ĥ ′ represents an external electromagnetic
field interacting with the system. In matrix notation the Equations (27) take
now the following form(

ċ1 (t)
ċ1 (t)

)
= −i

(
⟨φ1| V̂ xc

dyn. |φ1⟩ ⟨φ1| V̂ xc
dyn. |φ2⟩+ Ĥ ′

12

⟨φ2| V̂ xc
dyn. |φ1⟩+ Ĥ ′

21 ⟨φ2| V̂ xc
dyn. |φ2⟩

)
×
(
c1 (t)
c1 (t)

)
.

All four matrix elements have picked up an additional term ⟨φi| V̂ xc
dyn. |φj⟩

depending implicitly on the time. They have been explicitly calculated for
the adiabatic exact-exchange xc-functional AEXX in Ref. [38], where it is
shown that these terms lead to a dynamical shift of the resonant frequency
proportional to c2 (t). This implicit time-dependence makes it impossible to
drive the system resonantly for the duration of the whole Rabi cycle and
manifests itself in an omnipresent detunement δ, which, in turn, prohibits a
high percentage of excited level occupation.
Reference [38] argues that this shortcoming is an inherent consequence of all
adiabatic mean-field theories (e.g. Hartree-Fock) and can only be fully lifted
by inclusion of the full history of the xc-functional recovering the true form
of the xc-functional.

Possible Remedies

In her doctoral thesis [40], Jokar investigated the influence of different types
of static xc-functionals (ALDA, AEXX, ALDA-ADSIC and ALDA + full
SIC) on the dynamical detunement of a 1D toy model with two electrons.
She has found that for this Helium atom-like system in the singlet case, none
of the studied functional shows resonant Rabi physics, with only a slight
improvement going from ALDA (|c2 (t)|2 = 0.09%) to a more sophisticated
one (|c2 (t)|2 ≤ 0.15%). However, for the triplet case even ALDA achieves
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an excited state population of |c2 (t)|2 = 0.43% with an improvement up to
|c2 (t)|2 = 0.84% for the AEXX functional. Using an off-resonant frequency
ωbest = 0.984ωl.r. close to the frequency ωl.r., determined from a linear re-
sponse calculation, leads again to an improvement in the excited state pop-
ulation (|c2 (t)|2 = 0.95%) and near-resonant behaviour.
Further simulations confirmed that the most important aspect is the number
of electrons participating in the transition to the excited state, not the spin
directions. Resonant Rabi oscillation and high excited state population was
confirmed for a 1D three electron system (i.e. resembling Lithium) and for
a 3D Helium atom in a triplet groundstate using HGH pseudo-potentials as
well.
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3 Results

3.1 Computational Setup

To obtain the results presented in this work, the two ab-initio electronic
structure codes “Octopus” [41] and “GPAW” [42] have been employed on
the “Vienna Scientific Cluster 3” (VSC-3). Both codes are free and open-
source software packages publicly released under the GPLv3 license. In this
chapter, we want to briefly present both codes and what they have been used
for in this work. For example inputs demonstrating on how to use them in
more detail, we refer to the Appendices A and B, respectively.

3.1.1 Octopus

Octopus [41, 43, 44] is a real-space, real-time ab-initio pseudo-potential time-
dependent density functional theory code. All quantities, such as potentials
and densities, are expanded on a regular mesh in real-space, and the simu-
lations are performed in real-time [41]. In its current version 11.4, Octopus
provides a number of different features, including groundstate DFT, linear
response TD-DFT [45] in multiple different formalisms (Sternheimer [46],
time-propagation [23] and Casida [22]; see Chapter 2.2.2), periodic and non-
periodic boundary conditions in 1, 2 or 3 dimensions, absorbing boundary
conditions [47], molecular dynamics (Car-Parrinello [48] and Ehrenfest [31];
see Chapter 2.2.4), as well as a large number of xc-functionals via the “LIBXC”
library [49].
The software is written mostly in Fortran 90 and is highly parallelizable
on both CPU and GPU using MPI and CUDA, respectively. Furthermore,
although not optimized for the calculation of groundstate properties [41],
Octopus performs well on a large number of processors and time-dependent
calculations are highly parallelizable in individual Kohn-Sham states, grid
domain and k-points for extended systems [50].

Octopus was the main code used for most simulations shown in this work,
except for the initial geometry relaxation in the Born-Oppenheimer approach
and some additional linear response calculations. In particular, Octopus was
chosen for its implementation of the detection of photoelectrons [28] with
the t-SURFF method [29, 8] (see Chapter 2.2.3). The input is handled via
a dedicated input file named inp, resembling a configuration file. For an
example of such a file used to calculate the photoemission intensity, please
see Appendix A.
Unless otherwise stated, all simulations in this work done with Octopus used
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the pseudo-potential set by Hartwigsen-Goedecker-Hutter HGH [51] and the
local density xc-correlation functional. The former was chosen due to some
convergence issues in the self-consistency cycle for the groundstate calcu-
lations using the default standard set of pseudo-potentials provided by the
software. The propagator scheme used for time-dependent calculations is the
“approximated enforced time-reversal symmetry (aetrs)” [52].

3.1.2 GPAW

GPAW [42, 53] is Python module based on the “Atomic Simulation Envi-
ronment” ASE [54, 55] implementing the projector-augmented wave method
(PAW) [56, 57, 58] for (time-dependent) density functional theory. It can
use both a localized (LCAO) and non-localized (plane wave) basis sets, as
well as no basis set (real-space) [59] for the pseudo-wavefunction in periodic,
non-periodic or mixed boundary conditions. The feature set in its current re-
lease 22.1.0 includes groundstate and time-dependent real-time DFT, linear-
response TD-DFT, DFT+U [60], GW [61] and BSE [62].
Even though performance critical sections are implemented in C, the im-
plementation of the main body of the software in Python makes GPAW a
highly accessible electronic-structure code. Calculations can be parallelized
over bands, k-points and real-space domains using MPI.

In this work, GPAW was mainly used for the relaxation of the geometry in a
finite-difference scheme (real-space). Additionally, some optical responses in
the linear regime have been calculated with GPAW. As GPAW is a Python
module, the interaction with the program is structured like a Python script.
An example script for a structure relaxation is added in Appendix B.
Note that in calculations done with GPAW, for all parameters not specifi-
cally mentioned, the default value provided by the software has been used.
This includes the local density xc-functional and the corresponding projector-
augmented wave set provided by GPAW (gpaw-setups-0.9.20000.tar.gz).

3.1.3 VSC-3

The “Vienna Scientific Cluster” VSC is a family (VSC-3, VSC-4 and VSC-5)
of general-purpose supercomputers located in Vienna, Austria. The VSC-3 is
the oldest currently (July 2022) still active of the three and was installed 2014
by ClusterVision. At the time of installation (November 2014), it employed
2020 nodes with two Intel Xeon E5-2650v2 processors each and ranked 85
worldwide in terms of speed. After an extension in 2018 (VSC-3+; additional
864 nodes with two Xeon E5-2660v2 each) its designated EOL is 2022. The
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individual nodes come with either 64 GB or 256 GB memory and uses the
scheduler SLURM. Access to the cluster was funded by the Austrian Science
Fund (FWF) project I3731.
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Table 1: Geometry of 4-Amino-4’-nitrobiphenyl as result of a Born-Oppenheimer
relaxation procedure described in Chapter 2.1.1 and Chapter 3.2. Due to symmetry
reasons, the molecule is completely planar and all z-coordinates are 0.000 Å.

Atom x-Pos.
[
Å
]

y-Pos.
[
Å
]

Atom x-Pos.
[
Å
]

y-Pos.
[
Å
]

C −2.839 −1.204 H −3.418 −2.132
C −2.839 1.204 H −3.418 2.132
C −1.463 −1.195 H −0.939 −2.154
C −1.463 1.195 H −0.939 2.154
C 1.469 −1.187 H 0.954 −2.151
C 1.469 1.187 H 0.954 2.151
C 2.845 −1.196 H 3.383 −2.149
C 2.845 1.196 H 3.383 2.149
C −3.520 0.000 H 5.446 −0.870
C −0.730 0.000 H 5.446 0.870
C 0.730 0.000 O −5.534 −1.083
C 3.569 0.000 O −5.534 1.083
N −4.965 0.000 N 4.926 0.000

3.2 Geometry Optimization

The atomic structure of the molecule in question, 4-Amino-4’-nitrobiphenyl
ANBP (see Figure 1), has been relaxed using GPAW in finite-difference mode,
i.e. no basis set, with a grid spacing of 0.02 Å (see Table 1). The relaxation
was done in a quasi-Newton scheme with a convergence criteria for the in-

dividual atomic forces of < 0.02 eV Å
−1
. As input geometry, a force-field

calculation from the software Avogadro2 has been used and an additional
14 Å vacuum on each side has been added. From a stereochemical point of
view, a twist around the central C-C bond could be expected. However, by
not breaking the symmetry the molecule has been forced, intentionally, to
remain planar. The reason is that, even though in this work only the gas-
phase molecule has been studied, in an experiment the molecule would need
to be adsorbed onto a surface, preventing this twist.
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3.3 Optical Response

In order to induce near-resonant Rabi behaviour in the system, the laser fre-
quency needs to be tuned to the resonance energy of the system. As discussed
in Chapter 1, we are primarily interested in the HOMO-LUMO transition
(40 → 41) since it implies the intra-molecular charge transfer of interest.
Please note, the number 40 for the HOMO arises due to the use of a pseudo-
potential, which excludes core-bound electrons from the counting. Because
the energies of the unoccupied Kohn-Sham states cannot be directly identi-
fied with the eigenenergies of the fully-interacting system (Janak’s Theorem,
Chapter 2.1), the energy difference ∆E40→41 = 2.06 eV from the groundstate
calculation is only a crude first approximation to the transition energy. Much
better results are obtained from linear-response calculations, as described in
Chapter 2.2.2. To this end, three separate linear-response calculations have
been performed, with different codes and or methods. Important to note is,
that all three calculations explicitly exclude triplet excitations, i.e. they are
“spin-restricted”.

Time-propagation (TP)

First, a full time-propagation of the system for a period T = 13.16 fs with
a time step of ∆t = 0.0013 fs after an initial Dirac δ-shaped kick with a

wavevector kkick = 0.01 Å
−1

has been performed with the software Octo-
pus. The kick and the subsequent propagation have been repeated for each
Cartesian direction to obtain the full polarizability tensor αij. The resulting
optical absorption spectrum is plotted in Figure 5 (solid line). The mesh
grid spacing h = 0.17 Å and the box (“minimal”-shape) radius R = 5 Å have
been converged as individual separate parameters. As convergence criteria,
the position and shape of the first absorption peak have been used, however,
the spacing showed poor convergence behaviour (see Figure 6).

The resulting peak positions of the first two transitions are ETP
1 = 2.70 eV

and ETP
2 = 4.12 eV, respectively. In the time-propagation scheme these

peaks represent eigenmodes of the dipole moment of the system and no sim-
ple correspondence to transitions between Kohn-Sham states is possible. The
first absorption peak, however, aligns well with the results of the Casida’s
Equation and GPAW calculation discussed below.

Casida’s Equation

In Casida’s approach, the optical absorption spectrum is decomposed into
transitions from electron-hole pairs, which allows an identification with state
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transitions. For the linear-response calculation in the Casida formalism (see
Equation (18)), 40 (+100% of occupied states) additional, converged un-
occupied states have been calculated with a spacing h = 0.08 Å and a box
radius R = 6 Å (dashed line in Figure 5). The first two transition peaks are
EC

1 = 2.72 eV and EC
2 = 4.35 eV, respectively. A further decomposition of

each peak into individual single-particle transitions (see Table 2) shows that
the first peak is almost exclusively due to the HOMO→LUMO transition we
are interested in. Therefore, the pump laser frequency will be set close to
ω ≈ 2.7 eV for subsequent simulations. This value has to be compared to
the relative energy gap between the Kohn-Sham states ∆E40→41 = 2.1 eV,
a difference likely to produce a noticeable detunement the subsequent Rabi
(compare Figures 10 and 12.)

GPAW

As a third type of calculation to compare the previous results to, the linear-
response has been calculated with GPAW (see dash-dotted line in Figure 5).
GPAW uses an approach similar to Casida’s equation as it starts from the
Kohn-Sham density-density response χKS Equation (17) and obtains the fully
interacting response χ by solving Dyson’s equation

χ = χKS + χKSfHxcχ.

To this end, 50 additional unoccupied bands were considered, of which only
the first 40 have been sufficiently converged and further used in the calcula-
tion. The box was a rectangular box with a vacuum of Rv = 8 Å on each site
and a grid spacing of h = 0.24 Å. Due to the construction via electron-hole
pairs, it is again possible to decompose each absorption peak into individual
single-particle transitions (see Table 2). This shows that, even though there is
good agreement with the time-propagation for the first peak at EG

1 = 2.67 eV,
there is already a significant discrepancy of EG

2 −ETP
2 = 0.20 eV for the sec-

ond peak at EG
2 = 4.32 eV. This is not particularly relevant for this work,

as this absorption peak is not dominated by the HOMO→LUMO transition
we are interested in (see Table 2).
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Table 2: Relative contributions of the individual single-particle transitions for the
first two major absorption peaks in Figure 5. Note that the HOMO is state 40,
thus, the transition of interest HOMO→LUMO is denoted as 40 → 41. Any
residual percentage arises from a large number of comparatively weak non-listed
transitions or rounding.

Absorption Peak 1 at ≈ 2.7 eV Absorption Peak 2 at ≈ 4.3 eV
Transitions Octopus GPAW Octopus GPAW

32 → 41 0.00 0.00 0.02 0.02
36 → 41 0.05 0.04 0.40 0.42
36 → 43 0.00 0.00 0.04 0.04
38 → 42 0.00 0.00 0.02 0.02
40 → 41 0.90 0.90 0.08 0.07
40 → 43 0.05 0.05 0.43 0.41

Figure 5: Absorption spectrum of gas phase ANBP obtained from three different
linear-response calculations, two of which have been performed with Octopus and
one with GPAW. The most important peak, consisting to a large degree of the
HOMO-LUMO transition ∆E40→41 = 2.06 eV, occurs at ω0 = 2.70 eV for the time-
propagation (solid line), at ω0 = 2.72 eV for the Casdia formalism (dashed line)
and at ω0 = 2.67 eV for the GPAW calculation (dash-dotted line), respectively.
For details to each individual calculation please refer to Chapter 2.2.2.
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Figure 6: Absorption spectrum of gas phase ANBP obtained from a linear-response
calculation in the time-propagation scheme with Octopus for different mesh grid
spacings h. All calculations have been performed in a minimal box with radius
R = 3 Å for a propagation time of T = 6.58 fs with a time step of ∆t = 0.0013 fs.
The solid line represents the finest grid, which has been used for the calculations
in Figure 5 as well. However, there is no clear convergence towards a peak position
or shape with the grid spacing.
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Figure 7: Transition energy ω0, i.e., the position of the first peak in the absorp-
tion spectrum, of gas phase ANBP for different grid spacings in a linear-response
calculation in the time-propagation scheme.
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3.4 LUMO Occupation

In this section we investigate, to which extent TD-DFT is capable of ac-
counting for the Rabi physics described in Chapter 2.3. To this end, ANBP
is excited by a pump pulse close to the resonant frequency determined in
Chapter 3.3. First, however, we need to define a quantity which corresponds
to the excited state population |c2 (t)|2 (see Equation (30)) in the framework
of TD-DFT. Propagating the groundstate KS-orbitals φKS

k (x, t) according
to Equation (13) will not change the actual occupation of the individual
orbitals, but the orbitals themselves. Therefore, we define

pi→j (t) :=
∣∣〈φKS

i (x, t)
∣∣φKS

j (x, 0)
〉∣∣2 ,

the absolute square of the projection of the time-propagated orbital φKS
i (r, t)

onto the groundstate of the orbital φKS
j (r, 0). In theory, if the HOMO orbital

has been fully depleted by an excitation from the HOMO into the LUMO,
this quantity will assume the values p41→40 (t) ̸= p40→41 (t) = 1, p40→40 (t) = 1
and p41→41 (t) = 1, respectively. Of course, at the beginning of any simula-
tion pi→i (0) = 1.
These time-dependent projections cannot be identified with the occupation
number |c2 (t)|2 directly, as it only describes the excitation from a single or-
bital to another single orbital. Multiply propagated orbitals can have a non-
vanishing projection onto a common groundstate orbital. However, since we
are interested in the two-level dynamics described in Chapter 2.3, this quan-
tity suffices.

With the definition above, the HOMO→LUMO projection is studied for
ANBP under the influence of a resonant laser frequency (see Figure 8). The
pump pulse is tuned to the linear-response resonance frequency of the system
showing a dominate contribution of said transition in the time-propagation
scheme (ω = 2.70 eV). The light field has a polarization along the long axis
of molecule (x-direction) and its maximum field strength Ex

0 = 0.0017 au
∧
=

0.874V nm−1 is chosen such that the corresponding intensity I = 1011Wcm−2

is well within experimental reach [63]. To mitigate linear-response effects, the
laser pulse is multiplied by a trapezoidal envelope function ramping the first
and last τ = 2 fs linearly. As mesh grid a minimal-type box of radius R = 5 Å
and spacing h = 0.18 Å is used. The resulting projections HOMO→LUMO
and HOMO→HOMO show, compared to Figure 4, two full cycles of a de-
tuned Rabi-like oscillation. As is to be expected, the oscillation of both
projections evolve with the same frequency, suggesting a time-dependent
depletion of the HOMO by excitation into the LUMO in the first half of
the Rabi cycle (t ≤ 8.8 fs) followed by a de-excitation back to the HOMO
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Figure 8: Time-dependent Kohn-Sham state projections (lines with markers) in
ANBP under excitation by an resonant pump field. The laser (red dashed line) has
a frequency ω = 2.70 eV and a maximum electric field strength of Ex

0 = 0.0017 au
along the molecular axis (x-axis). The pulse is covered by an envelope function
(black dotted line) ramping the intensity linearly for the first and last τ = 2 fs.

for the second half (8.8 fs ≤ t ≤ 16.5 fs). Neither of the other two transi-
tions (HOMO-4→LUMO and HOMO→LUMO+2) predicted by the linear-
response calculation (see Table 2) show any significant excitation. However,
at t = 8.53 fs the HOMO displays a larger depletion of p40→40 = 0.71 than
there is excitation into the LUMO p40→41 = 0.21, suggesting an additional
transition from the HOMO into a different state. Most notably, even though
a perfectly resonantly tuned laser frequency has been chosen, the Rabi oscil-
lations appear to be highly detuned with a maximum HOMO-LUMO exci-
tation of p40→41 = 0.22. Comparing to Figure 3c, this is even more obvious
looking at the dipole moment of the system Figure 9, where the peaks of the
dipole moment envelope function align with the peaks of in LUMO occupa-
tion, which is characteristic for detuned Rabi physics.

From the linear-response calculation in the Casida formalism (see Chap-
ter 3.3), we also get the transition dipole moment in x-direction for the
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Figure 9: Identical calculation to Figure 8 but instead of the laser the dipole
moment in x-direction ⟨x⟩ (dashed blue) line is shown. The peaks in the envelope
of the dipole moment align with the peaks the envelope of the LUMO excitation,
characteristic for detuned Rabi oscillation (see Figure 3c).

absorption peak dx12 = 6.20De. For the laser pulse used here, this results
in a theoretical Rabi frequency Ωtheo. = dx12 · Ex

0 = 0.027 fs−1 compared to
the TD-DFT simulation Ω = 1/T = 0.06 fs−1, where T = 16.50 fs is the
minimum HOMO→HOMO projection after the first Rabi cycle.

Extended Time Propagation
As we have seen in the previous chapter, the Rabi frequency extracted from
the TD-DFT time-propagation of the HOMO→LUMO projection differs
from the theoretical Rabi frequency by more than a factor of two. For a
more accurate determination of the simulated oscillation frequencies, a simi-
lar calculation to the previous one has been performed with a total simulation
period of T = 200 fs (see Figure 10). Additionally, this simulation setup dif-
fers from the previous one in a shallower slope τ = 5 fs and a finer grid
spacing h = 0.15 Å.
From Figure 10, we see that the Rabi oscillation starts to break down af-
ter the first couple of cycles. Accordingly, the maximum HOMO→LUMO
excitation in the system decreases already after the first cycle. The latter
can be understood with our findings from Figure 8, where we noted that the
HOMO depletion in every cycle is greater than the amount of electrons being
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promoted to the LUMO from the HOMO. This suggests at least one more
transition out of the HOMO and, as can be seen in the HOMO→HOMO
projection in Figure 8, means that the HOMO does not revert back to its
groundstate completely after each cycle. The reduced HOMO occupation at
the start of the next cycle would explain the steady decrease in maximum
HOMO→LUMO projection observed in Figure 10. This could also be a pos-
sible reason for the breakdown of the oscillation after multiple cycles.

Figure 10: Calculation identical to Figure 8, except for a finer grid of h = 0.15 Å,
for an extended period of time showing the evolution of the oscillation over multiple
distinct Rabi cycles.

The spectral density |F (f)|2 of the resulting LUMO excitation p40→41 and
dipole moment ⟨x⟩ as a function of frequency can be seen in Figure 11. The
frequency resolution is ∆f = 1/T = 0.005 fs−1, where T = 200 fs is the total
simulation duration. The first large peak at Ωsim. = 0.068 fs−1 is close to the
value of the Rabi oscillation found in Figure 8. It differs significantly from
the theoretical value (shown with a dotted black line) of Ωtheo. = 0.027 fs−1

obtained from the transition dipole moment, a result of the linear-response
calculation, and the electric field strength. The most prominent peak in the
dipole moment ⟨x⟩ at f = 0.653 fs−1 is directly related to the pump pulse,
with an energy of ω = 2.70 eV

∧
= 0.653 fs−1. As was discussed in Chap-

ter 2.3.1, it is accompanied by two side peaks with a frequency difference
of ∆f = ±Ωsim., the observed Rabi frequency. At twice the laser frequency
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f = 1.374± 0.068 fs−1 the Mollow-like triplet repeats for the projection only,
showing a second order harmonic behaviour. Even though ANBP has no
inversion symmetry, the second order harmonic for dipole moment is still
suppressed [36].

Figure 11: Spectral density of the HOMO→LUMO transition p40→41 (solid orange
line) and dipole moment ⟨x⟩ (dashed blue line) from Figure 10. The black dotted
line shows the theoretical value for the Rabi physics.

The extended time simulation shown in Figure 10 has been repeated for
a pump pulse not tuned to the absorption peak at ω = 2.70 eV but to the
direct energy gap between the groundstate HOMO and LUMO orbitals at
∆E40→41 = 2.06 eV. As can be seen in Figure 12, this drastically decreases
the excitation from the HOMO into the LUMO and shows an even more
detuned Rabi physics than what was observed before. This, therefore, can
not explain the overall detunement found.

Dependence on Field Strength
In order to investigate the influence of the field strength on the Rabi physics,
the calculation described in the Chapter 3.4 has been repeated for Ex

0 =
0.0017 au/1.5 = 0.00113 au

∧
= 0.581V nm−1 and Ex

0 = 0.0017 au · 1.5 =
0.00255 au

∧
= 1.311V nm−1, with all other parameters identical. The re-

sulting time-dependent HOMO→LUMO projection p40→41 can be seen in
Figure 13, and the period and height of the first peak as a function of the
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Figure 12: Calculation identical to Figure 10 but with an pump pulse of ω =
∆E40→41 = 2.06 eV, the energy gap between the groundstate LUMO and HOMO
state.

field strength in Figure 14. From Equation (30), we expect an inverse linear

Figure 13: HOMO→LUMO projection for three different field strengths Ex
0 in

otherwise identical calculations. The solid line is the calculation shown in Figure 8.
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Figure 14: Period and maximum HOMO→LUMO projection as a function of field
strength Ex

0 from the calculations show in Figure (13). The height (solid line) is
taken as the maximum value in the first peak of the main oscillation (t ≤ 15 fs).
The period (dashed line) is measured as the difference in position of the central
dips between the highest two neighbouring peaks in the first peak and second peak
of the main oscillation.

relationship between the period of the Rabi oscillation and the field strength
used to induce it, but not necessarily a linear relationship between the max-
imum LUMO occupation and the field strength. Figure 14 shows that, both
the period and excitation behave highly linearly with variation in the field
strength. In our calculations, the maximum excitation as a function of the
field strength does differ more from the linear behaviour than the period, as
expected.

Charged Molecule
In her doctoral thesis, Jokar [40] describes the improvement towards in-tune
Rabi oscillations gained by considering the triplet state of the a toy model,
as was discussed in Chapter 2.3.2. Inspired by these findings, the goal of
this section is to investigate whether a similar trend can be seen also for
real systems. To this end, we repeat the simulations for a positively charged
molecule and, thus, remove one electron from the highest occupied state.
This leaves the HOMO with a single electron and, therefore, according to
Jokar [40], should get us to a higher HOMO→LUMO transition percentage.
To this end, we have repeated the linear-response calculations for the singly
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positively charged molecule in both the Casida formalism (spin-polarized)
and the time-propagation scheme (spin-polarized and spin-unpolarized). For
spin-polarized calculations the electron has been removed from the spin-down
channel.
The Casida calculation has been performed for a minimal-shaped simula-
tion box of radius R = 5 Å and a spacing h = 0.12 Å with an additional 40
converged unoccupied states. In spin-polarized calculations only, the ener-
getic order of some individual Kohn-Sham states changed due to the addi-
tional charge. Therefore, the former HOMO to LUMO transition (40→41)
is now the 39→41 transition. For an overview of the change in numbering
refer to Table 3. To check whether or not the charging of the molecule in-
fluences the individual Kohn-Sham states, the overlap between the neutral

and charged molecule S↑
ij =

〈
φcharged
i

∣∣∣φneutral
j

〉
has been calculated (trape-

zoidal integration rule) and summarized in Table 3. They show that the
HOMO and LUMO from the uncharged molecule can safely be identified
with the HOMO/HOMO-1 and LUMO of the charged molecule. This means
that the HOMO-1 to LUMO transition still resembles the HOMO to LUMO
transition for the uncharged molecule. Both time-propagation calculations,

Table 3: The change of the energetic order of the individual Kohn-Sham or-
bitals between the uncharged molecule and the two spin channels for the charged
molecule, determined qualitatively by visual comparison. In particular, for the
spin-up channel the HOMO and the HOMO-1 switch places compared to the un-
charged molecule, whereas the spin-down channel remains. Orbitals that take part
in the absorption peaks listed in Table 4 but not listed here remain unchanged.

Uncharged Charged Molecule
Molecule Spin ↑ Spin ↓

Orbital number Overlap Orbital number Overlap

HOMO-2 (38) 34 0.669 34 0.656
HOMO-8 (32) 35 0.162 35 0.123
HOMO-1 (39) 40 1.000 39 1.000
HOMO (40) 39 0.972 40 0.987
LUMO (41) 41 0.940 41 0.961

spin-polarized and spin-unpolarized, have been performed in the same simu-
lations box with 10 unoccupied states to guarantee convergence. The initial

kick has been a Dirac-δ with a wavevector of kkick = 0.01 Å
−1

and the to-
tal simulation time has been T = 70 fs. The results of all calculations are
shown in Figure 15. From the decomposition of the Casida calculation into
individual single-electron transitions, we can see that the second absorption
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Figure 15: Time-propagation linear-response calculations for singly positively
charged ANBP (solid lines) in a spin-restricted and spin-unrestricted calculation.
The same calculation for the uncharged molecule (dashed line) as a compari-
son, as well as a spin-unrestricted Casida formalism calculation for the charged
molecule. The first prominent peak is located at ωres. = 1.95 eV, ωunres. = 2.00 eV
and ωCasida = 2.18 eV, respectively. The second dominating peak is located at
ωres. = 3.10 eV, ωunres. = 3.25 eV and ωCasida = 3.44 eV, respectively.

peak at ω = 3.44 eV has a significant contribution from the desired HOMO-
1→LUMO (HOMO→LUMO in the uncharged case), however, it is much less
dominate as before and is even overpowered by an excitation in the spin-down
channel from the HOMO-8 into HOMO. The results for a close-to-resonance
driven, singly positively charged system can be seen in Figure 16 and Fig-
ure 17 for the spin-unpolarized and spin-polarized, respectively.
The spin-unpolarized calculation has been performed in a minimal-shaped
simulation box with a radius of R = 5 Å and a spacing of h = 0.15 Å. The
driving laser was tuned to a frequency of ω = 3.20 eV with a maximum field
strength of E = 0.0017 au and a ramp time at the start and end of τ = 2 fs.
The result shows a drastic improvement in terms of the amount of electrons
promoted from the HOMO to LUMO state with a maximum excitation rate
of p40→41 = 0.71. However, the results also show a complete breakdown of
the Rabi oscillation after the first half cycle with a sustained high and only
slowly decreasing LUMO excitation.
For the spin-polarized calculation the mesh grid density has been chosen with
a spacing of h = 0.12 Å. The laser pulse has been tuned to a frequency of
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Figure 16: Time-dependent Kohn-Sham state projections p40→41 (solid orange line)
and dipole moment ⟨x⟩ (dashed blue line) for a singly positively charged ANBP
in a spin-unpolarized calculation. The laser has been tuned close to the resonance
frequency with ω = 3.20 eV.

ω = 3.25 Å with a shallower slope of τ = 5 fs. The results in Figure 17 show a
very similar behaviour to the spin-unpolarized case, namely a relatively high
excitation rate now from the energetically shifted HOMO-1 to the LUMO
and a breakdown of the oscillatory structure with a sustained high excita-
tion. Both observations only hold for the spin-up channel, as we a see no
excitation for the spin-down channel at all. This is to be expected, since the
energetic order of the states for the spin-down channel, is unaffected by the
removal of one electron (see Table 3). For this spin channel the excitation in
question would still be the HOMO to LUMO (40→41), which is not possible
since the state 40 is unoccupied in the spin-down channel.
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Figure 17: Time-dependent Kohn-Sham state projections p39→41 (solid orange
lines; spin-up: filled markers; spin-down: unfilled markers) and dipole moment
⟨x⟩ (dashed blue line) for a singly positively charged ANBP in a spin-polarized
calculation. The laser has been tuned close to the resonance frequency with ω =
3.25 eV.

Table 4: Relative strength of the individual single-particle transitions for the first
two major absorption peaks in Figure 15. Please note that, due to the net charge
the energetic order of the Kohn-Sham orbital and thus the numbering changed
compared to Table 2. For an overview of the reordering please see Table 3.

Absorption Peak 1 at ≈ 2.2 eV Absorption Peak 2 at ≈ 3.4 eV
Transitions Spin ↑ [%] Spin ↓ [%] Spin ↑ [%] Spin ↓ [%]

29 → 40 0.00 0.00 0.00 0.02
32 → 40 0.00 0.00 0.00 0.42
34 → 42 0.00 0.00 0.01 0.00
35 → 40 0.00 0.82 0.00 0.06
35 → 41 0.00 0.00 0.02 0.05
39 → 41 0.16 0.00 0.36 0.00
39 → 43 0.00 0.00 0.15 0.00
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3.5 Photoemission Data

In this chapter we discuss the results of simulations of the angle-resolved
photoemission process (ARPES) of ANBP with TD-DFT and the t-SURFF
method. For a theoretical discussion of the method employed to record out-
wardly escaping photoelectrons, refer to Chapter 2.2.3.

Laser Setup
Photoelectrons are electrons excited from an occupied bound state into the
continuum by a sufficiently high energetic light field. Because the angular dis-
tribution and kinetic energies of these escaping electrons carries information
about the initial state of the electron, state-specific characteristic patterns
emerge.
It is possible to observe these patterns even for molecular orbitals unoccupied
in the groundstate in a so-called “pump-probe” setup. In this laser setup the
molecule or surface is hit by two different individual laser pulses, usually
separated in time. The “pump pulse” has a relatively low energy (≤ 10 eV)
but high intensity. Its energy is tuned to an intra-molecular transition from
an occupied state to an unoccupied state and, thus, no photoelectrons should
be freed at this stage. A second, high energetic, “probe pulse” delayed in
time then excites electrons from all occupied states inside the pulses energy
range to the continuum. The “base” pump-probe laser setup used in this
work is shown in Figure 18. For all presented pump-probe simulations, all
parameters not explicitly mentioned are identical to this setup. The peak
position of the sin2-envelope of the probe pulse has been chosen to coincide
with a peak in the HOMO→LUMO transition determined in the previous
chapter.

Energy Dependent Photoemission
Figure 19 shows the total angle-integrated photoemission intensity as a func-
tion of the kinetic energy of the escaping electron for multiple pump-probe
ARPES calculations. The calculations differ only in one aspect of the laser
setup, derived from the setup for the calculation called “Base” shown in Fig-
ure 18, to investigate how different parameters influence the photoemission
process. Common for all calculations are the spherical simulation box with
a radius of R = 25 Å and mesh grid of h = 0.22 Å, the detector surface

placement at Rd = 12.5 Å and the detector resolution of ∆p = 0.022 Å
−1
,

∆θ = 2◦ and ∆ϕ = 2◦, the complex absorbing potential boundary condition
with a height of −0.75 au in the entire region outside the detector and a time
step of ∆t = 0.0023 fs. Additionally, all calculations have been performed
within the independent particle approximation, i.e. freezing the Hartree and
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Figure 18: The “base” pump-probe laser setup used for photoemission simulations
in this work. A pump pulse (solid red line) with an energy of ωpu = 2.69 eV, a

maximum field strength of Ex
0 = 0.001 au

∧
= 0.514V nm−1 and a sin2-shaped ramp

(dashed black line) for the first and last τ = 1 fs. A second, delayed probe pulse
(solid purple line) with an energy of ωpr = 40 eV and a maximum field strength

of Ex
0 = 0.0001 au

∧
= 0.061V nm−1. The entire pulse is enveloped by one cycle of

a sin2-function with a total pulse duration of T = 3 fs. This envelope reaches its
peak at T = 12.19 fs. The downward slope of the envelope for the pump pulse
starts at the end of the probe pulse.

exchange-correlation potential of the groundstate for all time steps.
The calculation called “Base” uses the exact laser setup described in Fig-
ure 18. Compared to that, “No Pump” has only a probe field but no pump
pulse, “Large Ramp” has a swallower rise and fall of the pump field by in-
creasing the period of the envelope function to τ = 2 fs and “Half Pump”
reduces the maximum field strength of the pump field only by a factor of two.
For “Half Field” only the peak of the envelope of the probe pulse has been
pushed back to T = 18.40 fs, and the simulation period has been extended
accordingly, to take the delayed peak in HOMO→LUMO transition caused
by the weakened field into account.

Due to energy conservation, electrons escaping from a molecular state will
be released with a characteristic amount of kinetic energy. This direct link
between the kinetic energy of the released electron and the molecular orbital,
and the simple fact that electrons can only be freed from previously occupied
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Figure 19: Total angle-integrated photoemission intensity as a function of the
kinetic energy of the escaping electron. Four different calculations with slightly
different laser setups derived from the base laser setup used for the calculation
“Base” (solid dark green line) shown in Figure 18. For a more detailed description
of the individual calculation refer to the main text. The dotted black lines show
the kinetic energy of an electron escaping from the specific state labelled next to
the line.

states, allows us to interpret the energy-dependent, angle-integrated photoe-
mission intensity as density of states of the molecule.
We want distinguish between two regions in Figure 19 separated at Ekin. =
10.60 eV, the kinetic energy of the electrons escaping from lowest lying state
HOMO-39 (not counting the ones covered by the pseudo-potential). The in-
tensity of the low kinetic energy contributions are very high compared to the
emissions at higher energies, however, they decrease sharply in the vicinity
of the HOMO-39 emission and there is no significant contribution from them
at the energy of the frontier orbitals relevant for this work. This can be seen
from the “No Pump” calculation, which shows only very few low kinetic en-
ergy emissions at Ekin. = 0.7 eV. “No Field” is, however, virtually identical
to the other calculations at the energy of the HOMO. This means that, first,
these low kinetic energy contributions are caused by the pump field and not
the probe field and second, they have no significant influence on the transi-
tion under investigation between the high lying orbitals. Any photoemission
below the lowest state is either unphysical and numerical in origin or has to
be the result of multi-photon processes, or possibly both. While the latter
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explanation can account for the dependence on the pump field intensity, it
can not account for the residual emissions seen in the “No Pump” calcula-
tion. Additionally, such high intensities of many orders of magnitude larger
than the frontier orbitals seems unlikely to originate in excitations by mul-
tiple photons at once. In Appendix C the low kinetic energy contributions
have been investigated for methane and the photoemission intensity recorded
time-dependently. One core result this is the dependence of these low kinetic
energy contributions on size of the simulation box, with larger box sizes see-
ing these emissions eliminated completely, at least for methane. The true
nature of these emissions could not be determined conclusively.
Figure 19 also shows, that there is little to no influence of the ramp time for
the pump pulse on the photoemission intensity. The strength of the pump
field has, outside the low kinetic energy region, also little effect, except for a
significant decrease of the emissions at the LUMO energy by 70% that can
be seen between the “Base” and “Half Pump”. This is to be expected, as a
weak or no pump field results in a reduced HOMO→LUMO transition and,
therefore, lower LUMO occupation.

Figure 20 shows the same calculations as Figure 19 but the photoemission
intensity has been projected onto the electrons being freed from the HOMO
only. This, again, shows that the low kinetic energy contributions are not

Figure 20: Identical to Figure 19 but projected onto the electrons escaping from
the HOMO only.
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relevant for the discussion of HOMO→LUMO transition, as there are vir-
tually no emissions above Ekin. = 25 eV. Additionally, comparing Figure 19
and Figure 20, we observe that a majority (≈ 71%) of the intensity at the
HOMO energy are electrons from the HOMO. The residual intensity is bleed
over from the lower lying states caused by the energy broadening. Energy
broadening is a consequence of the short probe pulse duration necessary, due
to relatively fast Rabi oscillation. A decrease in pump field would linearly
decrease the Rabi period (see Figure 14), however, would postpone the peak
LUMO occupation and, thus, increase the computational cost.

Photoemission maps (k-maps)
The photoemission intensity P (p) can be thought of as a 3D data cube in
spherical coordinates with the radius p = |p| and the angular coordinates θ
and ϕ. The upper hemisphere of a 2D slice p =

√
2 · Ekin. of this data cube

at a constant kinetic energy Ekin. can then be projected onto a Cartesian
coordinate grid (kx, ky) by

kx =
px
ℏ

=
p

ℏ
· sin θ cosφ

ky =
py
ℏ

=
p

ℏ
· sin θ sinφ

The resulting flat representation of the angular distribution and intensity of
the photoelectron emission at a constant kinetic energy are called “momen-
tum maps” or “k-maps” [1]. The calculation of k-maps from ARPES sim-
ulations performed with Octopus, among many other post processing tools
for Octopus calculations, have been combined within a open-source software
package called “Octopost” (see Appendix D).

k-maps for “Base”, “No Pump” and “Half Pump” as well as a new calculation
called “z-Pol.”, at the kinetic energy for the HOMO EHOMO

kin. = 34.70 eV are
displayed in Figure 21. The “z-Pol.” calculation is identical to “Base”, except
for the polarisation direction of the probe pulse, which is now perpendicular
to the plane of the molecule (the z-direction) instead of along the long axis
of the molecule (x-direction). The k-maps for “Base”, “No Pump” and “Half
Pump” at the HOMO energy are very similar in both features, positions
of these features and relative intensities. The brightest feature centred at

(kx = 1.642 Å
−1
, ky = 0.000 Å

−1
) increases slightly in intensity from “Base”

(P = 2.819) to “Half Pump” (P = 2.893) to “No Pump” (P = 2.921). This
can be explained by a decrease in HOMO→LUMO transition and subsequent
increase in HOMO occupation due to the weaker or non-existent pump field.
The (kx, ky) position of this feature is completely unaffected. Further notice-
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Figure 21: k-maps at a kinetic energy EHOMO
kin. = 34.70 eV corresponding to the

HOMO state. Note that in order to increase the contrast in darker areas the colour
map is split into two separate linear regions, from 0 to 1.5 and from 1.5 to 5. This
highlights low intensity areas compared high intensity ones.

able is the asymmetry present along the kx direction, due to the asymmetry
of the initial state molecular orbital HOMO. The intensity at kx → −kx
is around one fourth of the maximum value and is not completely aligned

with the bright spot in this area at (kx = −1.556 Å
−1
, ky = 0.000 Å

−1
).

There is no asymmetry along the ky direction. The “z-Pol.” has only
some similarities with the other calculations. There also exists an asym-

metry between the brightest feature at (kx = 1.468 Å
−1
, ky = 0.000 Å

−1
) and

(kx = −1.468 Å
−1
, ky = 0.000 Å), but to much smaller degree (only 15%).

An additional asymmetry can be seen in the feature at kx = 0.000 Å, bending
slightly towards negative values of kx. While similar features at this position
can be found in the other three calculations, they do not show any bending.
The maximum photoemission intensity is also larger with a maximum val-
ues of P = 4.879 compared to the maximum of P = 2.921 in “No Pump”.
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Several other features like the pronounced double peak structure around the

bright spots discussed before and the feature at around kx = −3 Å
−1

are
missing or are significantly weaker in “z-Pol.”.

Figure 22 shows the same four calculations at the kinetic energy correspond-
ing to the LUMO at ELUMO

kin. = 36.87 eV.

Figure 22: k-maps at a kinetic energy ELUMO
kin. = 36.87 eV corresponding to the

LUMO state. Note that in order to increase the contrast in darker areas the colour
map is split into two separate linear regions, from 0 to 0.05 and from 0.05 to 0.14.
This highlights low intensity areas compared high intensity ones.

All four calculations show a large decrease in photoemission intensity for the
LUMO energy compared to the HOMO energy (less than 1/30), which is to
be expected as none of these calculations, as seen in the previous chapter,
reaches a full LUMO occupation. For the calculation “No Pump”, the k-map
at the LUMO energy looks more or less identical to the one at the HOMO
energy, barring the reduced intensity. This is to be expected, as the probe
pulse in the “No Pump” calculation meets the groundstate of the molecule
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unexcited by any previous laser pulse. The only photoemission possible in
this case is, therefore, photoelectrons released from the occupied orbitals
HOMO and below. With the HOMO being the closest to the LUMO energy,
we see only the bleed over from the HOMO at this energy.
Due to this leakage, we generally expect to see a mixture between HOMO
and LUMO emissions and going from “No Pump” to “Half Pump” to “Base”,
we expect a gradually increase in intensity for features related to the LUMO.
Indeed, there is an increase in intensity in features for negative kx, with even
an inversion of the asymmetry in “Base”. This inversion of asymmetry can
be explained by the inversion of asymmetry between the HOMO and LUMO
orbital. However, many of the features that increase in intensity from “Half
Pump” to “Base”, and could, therefore, possibly be attributed to the LUMO,
are also present in the “No Pump” k-map and the k-maps at the HOMO en-
ergy, although to a lesser extent. This means that, either they are at least
partly due to overlap with other orbitals, also inherent to the HOMO or the
probe pulse causes some LUMO occupation by excitation from an occupied
state.
Additionally, “Base” shows an relatively pronounced emission pattern out-

side at −1.5 Å
−1

< kx < 1.5 Å
−1

only hinted at in the “Half Pump” calcu-
lation. The origin of these pattern could be further, weaker emissions from
the LUMO or emissions of other orbitals.
“z-Pol.” shows a very similar pattern at the LUMO energy as it does for
the HOMO energy, suggesting the importance of the polarization direction
on the photoemission pattern. The bending of the straight emission lines

at kx = 0 Å
−1

are still present, and not replicated by any other calculation.
The asymmetry got weaker, but did not invert unlike in “Base”, the calcula-
tion with an identically strong pump pulse. However, minor features in the

regions −1 Å
−1

< kx < −0.2 Å
−1

and 0.2 Å
−1

< kx < 1 Å
−1

did reduce in
intensity relative to the main features discussed before. One possible expla-
nation could be, that these are bleed over emissions from lower lying orbitals,
decreasing in intensity as one moves further away towards higher kinetic en-
ergies.

One issue in interpreting k-maps this way is the fact, that we do not have a
pure LUMO or a pure HOMO map to compare it to in order to unequivocally
identify features associated with either. One way to mitigate this problem, is
to compare k-maps from TD-DFT with the results of other methods to iden-
tify common patterns. In particular, we want to compare the results shown
in Figure 21 and Figure 22 to the so called “plane-wave final state approach”
(PW) [1]. Figure 23 shows the k-maps at the HOMO and LUMO energy
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from the “Base” calculation on the top row compared to the corresponding
k-maps for the PW on the bottom row. The k-maps for PW have been gen-
erated using the groundstate DFT calculation from an online database (ID
473) for organic molecules [64] and the software kMap.py [65].

Figure 23: Comparison of k-maps at the energy for the HOMO (left column) and
LUMO (right column) from the TD-DFT calculation (top row) done in this work
with the plane-wave final state approach (PW; bottom row). The k-maps for the
PW have been generated from Kohn-Sham orbitals from an online database [64]
(ID 473) and the software kMap.py [65].

In this comparison, we first note the absence of any asymmetry along the
kx direction for the PW. In fact, for a molecule symmetric under (x, y, z) →
(x,−y,−z) inversion, k-maps generated with PW will always have a kx →
−kx symmetry. ANBP does have this symmetry and, therefore, we cannot
expect an asymmetry in PW k-maps. Additionally, we note the absence of

any feature at kx = 0 Å
−1

for PW k-maps. In the PW the polarisation enters
via a factor of the form |A · k|, where A is the vector potential of the elec-
tric field. Thus, any intensity in a momentum direction perpendicular to the
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polarisation of the probe field will be suppressed by this factor. For the x-
polarisation used here this means that, we cannot expect any emission along

the kx = 0 Å
−1

line. Keeping these two shortcomings of the PW in mind,
we observe an overall similarity between results of the computationally and
theoretically much more involved TD-DFT calculation and the PW for the
HOMO. The PW does reproduce the shape and position of the bright spot

at (kx = 1.6 Å
−1
, ky = 0.000 Å

−1
) and its double peak structure towards the

outer edge. It does not, however, capture the full feature at kx = −3 Å
−1
,

which is visible for the HOMO and pronounced for the LUMO, nor does it
show any finer structure in the central area that is hinted at in the HOMO.
For the latter, this could be an indication that they are, in fact, leakage
effects from other orbitals not possible in PW. The former, which we hoped
to identify as part of the LUMO emission due to its increase in intensity
with stronger pump fields, is only partly visible in the LUMO k-map in the
PW. We can, therefore, not be certain about the identification of this fea-
ture as part of the LUMO emission pattern. Also, noticeable absent is the
pronounced, fine structure observed in the TD-DFT calculation for “Base”,
hinting, again, at the possibility of leakage effects from other orbitals.

Charged Molecule
As a last step, we present the results of the photoemission simulation for the
singly positively charged molecule (“SE”). The computational details of the
simulation are identical to “Base”, with the exception of the removal of one
electron from HOMO and the consequences thereof, namely the change in
energy for the pump pulse to ωpu = 3.2 eV and the peak of the envelope of the
probe pulse at T = 18.13 fs, to capture the peak HOMO→LUMO excitation.
All calculation in this chapter have been done in a spin-unpolarized scheme
to reduce the computational cost. Figure 24 shows the total angle-integrated
photoemission intensity as a function of the kinetic energy of the released
photoelectron (“SE”) in comparison to the uncharged molecule (“Base”).
After a shift of around ∆E = 3.5 eV into account, the photoemission spec-
trum for the charged and uncharged molecule are relatively similar in peak
structure and shape. A stark contrast, however, is the much reduced inten-
sity of the low kinetic energy contribution in the charged case. Figure 25
compares the k-map for the charged (bottom row) and uncharged (top row)
molecule at the respective energies for the HOMO (left column) and LUMO
(right column). Even though the overall photoemission intensity for LUMO
went down, not up as one would expect from a higher LUMO occupation, the
k-map for the charged molecule does indeed resemble the one from the un-
charged molecule. Furthermore, it seems to highlight feature we previously
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Figure 24: Total angle-integrated photoemission intensity as a function of the ki-
netic energy of the photoelectron for the singly positively charged ANBP molecule
(dashed light green line) with the photoemission spectrum of the “Base” calcula-
tion (solid dark green line) as comparison. For the charged calculation the photoe-
mission intensity projected onto the electrons freed from the HOMO only is also
plotted (dotted light green line). Black lines show the position of emission from
the HOMO and LUMO for the charged molecule (dashed) and uncharged molecule
(solid), respectively.

(Figure 22) already tried to identify with the LUMO, namely the asymmetry

in favour of negative values of kx and the edge feature at that kx = −3 Å
−1
.

The finer structure that is so pronounced in “Base” compared to, for example,
“Half Pump” is also barely detectable. Overall, the clear prominence of the
former in “SE”, that comes with relatively a high LUMO occupation, gives
us confidence in identifying the them as a LUMO-related pattern, whereas,
the verdict on the finer structure is still less clear. Compared to that, the
k-map for charged case at the energy of the HOMO does not show any com-
monality with the uncharged case. This result is surprising, considering the
relatively good agreement of the k-map for the LUMO. However, comparing
the k-map at HOMO energy for “Base” with the k-map from “SE” at the ki-
netic energy Ekin. = 31.77 (see Figure 26), we can recognize distinct HOMO
related patterns. We want to emphasize that, the energy for the k-map of
the “SE” calculation in Figure 26 does not correspond to the binding energy
of any state at seems to be in between the energy Ekin. = 30.18 eV for the
HOMO and the energy Ekin. = 33.04 eV for the LUMO. Interpretation as the
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Figure 25: Comparison of k-maps between “Base” (top row) and “SE” (bottom
row) at the respective energies for the HOMO (left column) and LUMO (right
column).

k-map for the HOMO is not easily possible. A possible reason for this shift
in energy could be that, this charged open-shell system has been calculated
in a spin-restricted scheme.
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Figure 26: Comparison between the k-map at the kinetic energy associated with
the HOMO from “Base” with a k-map from “SE” at a particular kinetic energy
(Ekin. = 31.77 eV) between the HOMO and LUMO.
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3.6 Ehrenfest Dynamics

As a last step in this work, we investigate the influence of the nuclear motion
on the Rabi physics observed with TD-DFT. Outside geometry relaxation
procedures, density functional theory calculations are, in general, within the
clamped nuclei approximation, i.e. freezing the cores of the individual atoms
in place. However, after excitation by an external electric field, the elec-
tronic structure of the system is, in general, forced out of the groundstate
equilibrium. This, in turn, would induce nuclear motion, if not for the fact
that the nuclei are artificially fixed in space. This motion is, due to the mass
difference between electrons and nuclei, in general, much slower.
Using the Ehrenfest scheme described in Chapter 2.2.4, we can loosen this
restriction and allow vibrational modes in the atomic structure, which, in
turn, also influences the electronic structure and, therefore, the Rabi physics
observed. In particular, it will change the energy levels of the individual
orbitals. The influence of this on the Rabi oscillation is hard to predict, but
one might expect a further detunement due to a possible relative shift of
energy levels and subsequent change in transition energy. Another possible
outcome is the breakdown of the Rabi oscillation all together as a result of
decoherence.

Figure 27 shows the HOMO→LUMO projection squared and the C1 − C1′

bond length between the carbon atoms connecting the two aromatic rings.
This calculation was performed in a “minimal”-shaped box with radius of

R = 5 Å and a spacing of h = 0.10 Å, a time step of ∆t = 0.0005 fs and
Ehrenfest dynamics enabled. The external field consisted of a pump probe
only, tuned to the transition dominated by the HOMO→LUMO transition at
ω = 2.70 eV and with a maximum electric field strength of Ex

0 = 0.0017 au
∧
=

0.872V nm−1. The envelope of the laser pulse was trapezoidal with a ramp
time of τ = 5 fs at the beginning and end.
The bond length changes depicted in Figure 27 are not characteristic for an
excitation of a single dominant mode for the nuclear motion, but instead a
mixture of them resulting in a complicated behaviour in time. Experimen-
tal results yield a vibrational frequency of ν = 1608 cm−1 ∧

= 20.74 fs for the
bridging inter-ring C1C1′ bond stretch of biphenyl (without the functional
groups) [66]. This roughly coincides with the distance between the first and
second maxima indicated in the figure. As for the projection, no influence
on the Rabi physics can be observed for the first cycle. This likely due to
the relatively slow motion of the nuclei not yet showing any influence on
the electronic structure. After the first cycle, the next cycle is shortened
by ∆T = 3.1 fs. However, this shift stays constant for the third cycle and

64



Figure 27: Comparison between a clamped nuclei (“Frozen”) calculation and one
with nuclear motion allowed (“Ehrenfest”). The inter-ring C-C bond length r1−1′

between the phenyl rings (line with markers) and the HOMO→LUMO projection
squared (line without markers) are displayed. The experimentally determined
period TC1C1′ for the bond stretch in biphenyl are shown as well [66].

there is no further shortening, meaning that only the second cycle is short-
ened. Furthermore, we do not see any significant change in HOMO→LUMO
transition between the frozen nuclei calculation and the Ehrenfest dynamics.
Starting from cycle three, the oscillation seems to be breaking down for both
calculations. Again, there is no significant change by the introduction of
nuclear motion.
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4 Conclusion and Future Prospects

The research goal for this thesis, outlined in Chapter 1, was the theoret-
ical description of the photoemission process of 4-Amino-4’-nitrobiphenyl
using time-dependent functional theory. The motivation thereof, is a sub-
femtosecond pump-probe photoemission experiment currently in the plan-
ning stage, realizing the next step in our understanding of matter-light in-
teraction: orbital cinematography. This goal was achieved insofar that, mo-
mentum maps for both the groundstate HOMO and even the via excitation
partly occupied LUMO have been produced. Furthermore, issues of using
TD-DFT as the theoretical framework for the description of ARPES and
possible remedies have been investigated.

In this chapter, we recall the core results of this thesis and indicate po-
tential future directions for follow-up research projects.
After a fairly routine geometry optimization of the atomic structure of the
molecule in DFT, time-dependent density functional theory in three different
schemes has been used to calculate the absorption spectrum of the system.
This has revealed the resonant energies for a potential pump pulse, driving
the exact transition we are interested in between the HOMO and LUMO. Al-
though issues with the convergence with regards to the grid spacing occurred
(Figure 6), the transition energy has been determined successfully and with
good agreement between the individual schemes used.
A main effort was to investigate to which extent the Rabi physics for a
HOMO-LUMO transition can be simulated within the framework of TD-
DFT. However, this turned out to be difficult as adiabatic xc-functionals
used in time-dependent density functional struggle with this exact task. Al-
ready described in the literature for toy models, this has also been demon-
strated for a real system. Experiments, in general, do not achieve a full
population inversion between the HOMO and LUMO either. However, this
could nonetheless pose an issue for future research projects, as there is no
pure momentum map for the LUMO calculated in the framework of TD-DFT
available to compare the results to. This makes identifying or interpreting
individual features more difficult. Nevertheless, features in the momentum
maps were identified, which we associate with the LUMO to a high degree
of confidence. This was possible by removing an electron from the HOMO,
following the findings of Jokar [40].
The influence of the atomic movement on the Rabi physics has been inves-
tigated by releasing the otherwise clamped nuclei. It has been determined
to have little influence on the Rabi oscillation, only slightly decreasing the
period.
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Last, we outline potential goals for future research projects building on what
has been done here.
Without any experimental data it is difficult to conclude the exact nature of
the mismatch between the idealized two-level Rabi physics and the less-than-
resonant behaviour observed for the real system using TD-DFT. One possible
direction would be, to try to further improve the maximum LUMO occupa-
tion reached during a single Rabi cycle. This would allow for less ambiguous
momentum maps of the LUMO and subsequently an easier interpretation of
future experimental data. Possible ways to do that are, potentially costly,
spin-polarized calculations, changing the system in question to one with an
inherently odd number of electrons, higher kinetic energy resolutions around
the Fermi level for the ARPES calculations or a fine tuning of the pump
laser.
The probe pulse used in this work, although already quite short, is still too
large to provide the time-resolution needed in orbital cinematography. Go-
ing to shorter pulses has the consequence of reducing the energy-resolution
possible. Thus, a potential better way would be to try to slow the Rabi
oscillation instead. At an increased computational cost, this would possible
allow for a probing of the entire oscillation.
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A Example usage: Octopus

This appendix shows the input file used to calculate the momentum maps
for “Base” displayed in Figure 21 and Figure 22 and the relaxed geometry
relax.xyz (see Chapter 3.2) for ANBP referred to in the Octopus input file.
It serves as an example on how the software Octopus can be used to simulate
the photoemission process in the manner described throughout this thesis.
For details to the individual parameters, refer to Chapter 3.5.

inp

# Calculation ######################

CalculationMode = td

ExperimentalFeatures = yes

FromScratch = yes

TDFreezeHXC = yes # independent particle approximation

PseudopotentialSet = hgh_lda

####################################

# Parallelisation ##################

ParStates = 40

ParDomains = 6

####################################

# Photon Field #####################

c_light = 137.036 # atomic units

omega_pump = 0.098860981223 # a.u. = 2.69 eV

omega_probe = 40*eV

# Laser intensity

I_probe = 5e8 # W/cm^2

# Electric field strength

E_pump = 0.001 # a.u.

E_probe = sqrt(I_probe / 3.51 E16)

# Vector potential amplitude

A_pump = E_pump * c_light / omega_pump

A_probe = E_probe * c_light / omega_probe
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# Laser times

T_probe = 3*fs # total probe time

tau1 = 1*fs # ramp time for the pump pulse

peak_time = 12.19* fs # peak LUMO occupation

start_probe = peak_time - T_probe /2 # begin of probe pulse

end_probe = peak_time + T_probe /2 # end of probe pulse

tau0 = end_probe - tau1 # max. pump intensity duration

%TDExternalFields

vector_potential | 1 | 0 | 0 | omega_pump | "pump"

vector_potential | 1 | 0 | 0 | omega_probe | "probe"

%

%TDFunctions

"pump" | tdf_from_expr | "A_pump * (

sin((t/tau1)*pi /2)^2* step(tau1 -t)

+ step(t-tau1)*step(end_probe -t)

+ sin ((( end_probe+tau1 -t)/tau1)*pi /2)^2

* step(t-end_probe)

)"

"probe" | tdf_from_expr | "A_probe *

sin((t-start_probe )*pi/T_probe )^2

* step(end_probe -t)

* step(t-start_probe )"

%

####################################

# Molecule #########################

XYZCoordinates = ’relax_centered.xyz ’

####################################

# Simulation Box #############

BoxShape = sphere

Radius = 25* angstrom

Spacing = 0.22* angstrom

####################################

# Boundary Conditions ##############

AbsorbingBoundaries = cap

ABCapHeight = -0.75
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%ABShape

Radius / 2 | Radius

%

####################################

# Time Propagation #################

TDPropagator = aetrs

TDTimeStep = 0.0023* fs # 6387 steps

TDPropagationTime = end_probe + tau1 # 14.69 fs

####################################

# Photoelectron Spectrum #############

PhotoElectronSpectrum = pes_flux

PES_Flux_Radius = Radius / 2

N_k = 150

%PES_Flux_ThetaK

0 | pi/2 | 45

%

%PES_Flux_PhiK

0 | 2*pi | 180

%

PES_Flux_Kmax = sqrt (2* omega_probe)

PES_Flux_Kmin = 0

PES_Flux_DeltaK = (PES_Flux_Kmax - PES_Flux_Kmin) / N_k

PES_Flux_Parallelization = pf_time + pf_surface

####################################

# Output ###########################

PhotoelectronSpectrumOutput = velocity_map

PES_Flux_RuntimeOutput = yes

OutputFormat = vtk

RestartWriteInterval = 500

OutputInterval = 500

####################################
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relax.xyz

26

C -2.839273022700368188 -1.204165846862006006

0.000000000000000000

H -3.417560626105544230 -2.131646652826162835

0.000000000000000000

C -2.839273022700368188 1.204165846861986466

0.000000000000000000

H -3.417560626105544230 2.131646652826145072

0.000000000000000000

C -1.462828568088646364 -1.195246700438850951

0.000000000000000000

H -0.939477031434176269 -2.153967751726307611

0.000000000000000000

C -1.462828568088646364 1.195246700438886478

0.000000000000000000

H -0.939477031434176269 2.153967751726291624

0.000000000000000000

C 1.469190895589608914 -1.187289996631999855

0.000000000000000000

H 0.953654664515802608 -2.151327105893619418

0.000000000000000000

C 1.469190895589608914 1.187289996632031830

0.000000000000000000

H 0.953654664515802608 2.151327105893621194

0.000000000000000000

C 2.844617696953420705 -1.195952586181872945

0.000000000000000000

H 3.383228503074345639 -2.149475061696954015

0.000000000000000000

C 2.844617696953420705 1.195952586181896038

0.000000000000000000

H 3.383228503074345639 2.149475061696968226

0.000000000000000000

C -3.519905129229172758 0.000000000000000000

0.000000000000000000

C -0.730024256336132993 0.000000000000000000

0.000000000000000000
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C 0.730024256336129440 0.000000000000000000

0.000000000000000000

C 3.569398338866644593 0.000000000000000000

0.000000000000000000

N -4.965194823483431108 0.000000000000000000

0.000000000000000000

O -5.534207248425362380 -1.083227446386295867

0.000000000000000000

O -5.534207248425362380 1.083227446386288761

0.000000000000000000

N 4.925513190742847769 0.000000000000000000

0.000000000000000000

H 5.445810154378179391 0.869518483806725584

0.000000000000000000

H 5.445810154378179391 -0.869518483806716702

0.000000000000000000
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B Example usage: GPAW

This appendix shows the input file used to relax the geometry of ANBP (see
Chapter 3.2) with the software GPAW from the starting guess force_field.xyz,
obtained via force field calculation.

relax.py

from gpaw import GPAW

from ase.io import write , read

from ase.optimize import QuasiNewton

# Parameter

vacuum = 14 # distance between molecule and box in A

fmax = 0.02 # maximal atomic force in eV/A

spacing = 0.16 # meshgrid spacing in A

molecule = read(’force_field.xyz ’, format=’xyz ’)

calc = GPAW(mode=’fd’, xc=’LDA ’, txt=’relax.out ’,

h=spacing , parallel={’sl_auto ’: True ,

’use_elpa ’: False})

# Structure Optimization

molecule.set_calculator(calc)

molecule.center(vacuum=vacuum)

molecule.get_potential_energy ()

relax = QuasiNewton(molecule , logfile=’qn.log ’,

trajectory=’relax.traj ’)

relax.run(fmax=fmax)

molecule.get_potential_energy ()

calc.write(’relax.gpw ’, mode=’all ’)

write(’relax.xyz ’, molecule , format=’xyz ’)
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force_field.xyz

26

C -2.15579 -1.20626 0.00000

H -2.67624 -2.16204 0.00000

C -2.15579 1.20626 0.00000

H -2.67624 2.16204 0.00000

C -0.75214 -1.19611 0.00000

H -0.26715 -2.16832 0.00000

C -0.75214 1.19611 0.00000

H -0.26715 2.16832 0.00000

C 2.25667 -1.18938 0.00000

H 1.78220 -2.16536 0.00000

C 2.25667 1.18938 0.00000

H 1.78220 2.16536 0.00000

C 3.66190 -1.18984 0.00000

H 4.18570 -2.14221 0.00000

C 3.66190 1.18984 0.00000

H 4.18570 2.14221 0.00000

C -2.85368 0.00000 0.00000

C 0.00000 0.00000 0.00000

C 1.50140 0.00000 0.00000

C 4.37820 0.00000 0.00000

N -4.32069 0.00000 0.00000

O -4.89746 -1.09708 0.00000

O -4.89746 1.09708 0.00000

N 5.75762 0.00000 0.00000

H 6.27407 0.86827 0.00000

H 6.27407 -0.86827 0.00000
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C Low Kinetic Energy Emissions

For the energy-dependent photoemission (e.g. Figure 19) calculated in Chap-
ter 2.2.3 we noted a large contribution to the photoemission intensity in the
low kinetic energy region of the spectrum, which we deemed as either as un-
physical or originating from multi-photon processes. We also observed that,
the presence of these emissions being dependent the pump field, rather than
on the probe field.

Even though we concluded that, these emissions have no relevant influence
on the photoemission of the frontier orbitals of interest for us, in this chapter
we want to present further data on these low kinetic energy emissions ob-
tained. To this end, we chose methane as a test molecule, due to its smaller
size and, therefore, lower computational cost. The relaxed xyz-geometry for
this molecule, with a C-H bond length of rCH = 1.097 Å, is available on
the Octopus homepage. The total angle-integrated photoemission intensity
spectrum has been converged fully for the radius R = 8.5 Å (spherical box),
mesh grid spacing h = 0.24 Å and thickness of the absorbing boundary region
RABC = 3 Å (height of complex absorbing potential is −0.75). Positioning
the surface detector far enough from the molecule, none of these parameters
showed any influence on the low kinetic energy emissions. A convergence
test has also been performed for the detector distance and the results are
presented in Figure 28. First, we notice the considerable dependence of the
low the kinetic energy contributions on the detector distance. In fact, this
parameter seems to be the single most important factor when trying to con-
verge these emissions out of the spectrum. Considering the contributions at
the HOMO and HOMO-1 energies only, a detector distance of > 5 Å should
be sufficient for convergence. However, it takes at least 7 Å to largely sup-
press the low kinetic energy contributions. We define the border between
low kinetic energy emissions and emissions from the HOMO-1 and above at
ELK

kin. = 11 eV.

Suppose the orbital Kohn-Sham wavefunctions are not fully spatial contained
within the region inside the detector surface, due to a possibly too small
detector distance. Then, at the detector surface, there is still a not insignif-
icant part of the wavefunction being projected out at each point in time,
contributing unphysical emissions by this technically still bound electron
density. Pushing the surface detector further away from the molecule would
then, if this hypothesis is holds, drastically reduce the intensity of these emis-
sions as the orbital wavefunction falls off fast enough to be fully contained
inside the detector region. An oscillation in the wavefunction induced by
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Figure 28: Total angle-integrated photoemission intensity of methane for different
distances of the surface detector (solid and dashed green lines). Dotted lines
are the kinetic energies corresponding to the two upper most orbitals HOMO-
1 and HOMO. Computational details for this calculations: pump pulse energy
ωpu. = 2 eV, pump pulse maximum field strength Ex

0 = 0.5mau, pump pulse
period T = 3 fs, probe pulse energy ωpr. = 30 eV, probe pulse maximum field
strength Ex

0 = 0.38mau, probe pulse period T = 3 fs, box radius R = 14 Å, mesh
grid spacing h = 0.28 Å, width of absorbing boundary region RABC = 5 Å, time
step ∆t = 0.0038 fs. Both pump and probe pulse have been sin2-shaped with no
delay for the full simulation period of T = 3 fs.

an external electric field should then also be detectable as a oscillation in
the time-dependent photoemission intensity, as this oscillation periodically
changes the value of the wavefunction at the detector surface. This could also
explain the dependence of the emissions on the pump field strength observed
in Figure 19.
To test this hypothesis, we picked a detector distance of 5.5 Å, as we observe
both a converged spectrum for energies above the boundary and, also, still
significant low kinetic energy emissions at this distance. However, see the os-
cillations described above in the photoemission data, requires time-resolution
in the photoemission spectrum. The software package used for t-SURFF pho-
toemission simulations Octopus has no such option implemented as of version
11.4. Therefore, the full simulation period of T = 3 fs has been sub-divided
into 563 simulations with a simulation period of ∆T = 0.0054 fs. After each
simulation the angle- and energy-integrated photoemission intensity up to a
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kinetic energy of ELK
kin. = 11 eV has been calculated. The result is a time-

resolved photoemission intensity of the low kinetic energy contributions and
is displayed for different variations, together with the laser setup and the
HOMO→HOMO projections, in Figure 29. The radius of the simulation box

Figure 29: Angle-integrated photoemission intensity up to a kinetic energy of
ELK

kin. = 11 eV (solid green lines), laser setup (dashed red and purple dotted lines)
and HOMO→HOMO projection (dashed blue lines) for different variations on the
calculation “Int. PES” (no markers; see text). “No Pump” has no pump field,
“Far Detector” places the detector surface and begin of the absorbing boundary
region at 6 Å and “Far ABC” moves the absorbing boundary region to 7 Å while
keeping the detector distance fixed.

has been R = 8.5 Å with an increase to R = 9 Å and R = 10 Å for “Far
Detector” and “Far ABC” to accommodate for increased in distance of de-
tector surface and absorbing boundary condition, respectively. A mesh grid
spacing of h = 0.24 Å, a time step of ∆t = 0.0027 fs and identical laser setup
to the convergence tests has been used.
In the time-resolved photoemission data we observe, according to the expec-
tation resulting from the hypothesis, a damped periodic oscillation with a
single frequency of f = 2.3±0.3 fs−1 ∧

= 9±1 eV, where the uncertainty given
is the uncertainty from the discrete Fourier Transform. This frequency, con-
trary to our hypothesis, does not fit either of the laser frequencies ωpu. = 2 eV
and ωpr. = 30 eV. However, it is close to the eigenenergy EH = −9.5 eV of
the HOMO state, although the high uncertainty resulting from the relatively
short total simulation time does not allow for a very robust association. The
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oscillation seen could, then, be explained simply by the time-evolution oper-
ator

φH (t) = ÛφH (0) = e−iEHtφH (0) .

Even though the oscillation due to he time-dependent Schrödinger equation
for each orbital could still support the core of the hypothesis, that the or-
bital wavefunction is not fully contained inside the detector surface and is
therefore projected out at each time step, it does not explain the complete
absence of any dependence on the pump field we determined a consequence
of our hypothesis and was also observed in the “No Pump” calculation in
Figure 19. The only influence the photoemission intensity we observed here,
is the detector radius (“Far Detector”) and only on the intensity itself, not
the frequency of the oscillation. To determine the origin of the low kinetic
energy contribution, and with it maybe a way to mitigate them easily, fur-
ther simulations are needed. We suggest an increase in total simulation time
to decrease the uncertainty in the frequency of the oscillation. Although
costly, this should help to nail down or refute the link between the orbital
eigenenergy and the oscillation frequency. Furthermore, simulations with
highly non-spherical frontier orbitals and careful detector placement could
show, whether the bulk of these low kinetic energy emissions results from
where the orbital wavefunctions are closest to the detector surface.
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D Octopost

“Octopost” is an open-source and free Python module which has been de-
veloped in the course of this Masters’s thesis and which combines a number
of useful methods for routine tasks regarding data analysing after a (TD-
)DFT calculation with the open-source code Octopus (see Chapter 3.1.1).
This includes angle-resolved photoemission spectra and k-maps of periodic
and non-periodic systems, orbital, band or atom projected density of states
and bandstructures. The module is easy to use and allows for a quick first
post-processing with built-in visualization options. In particular, the ARPES
part of Octopost has been used extensively throughout this work, both in the
simulation work itself and for the creation of the plots in this thesis.
As part of thesis, I helped to create Octopost out of a collection of in
the working group pre-existing scripts and code fragments, predominately
written by Christian Kern, a PhD student in the electronic structure the-
ory group of Peter Puschnig. Octopost is available on GitLab (https:
//gitlab.com/ckern/octopost) and the PyPI index, includes a written
documentation (https://octopost.readthedocs.io) and comes with demo
scripts for most functionality provided by the module.
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