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Abstract

Orbital tomography is a new method of analysis in surface science, developed in
the last decade. It uses the data from angle-resolved photoemission spectroscopy
(ARPES) and density functional theory (DFT) to clarify or even reconstruct
orbitals of more complex organic molecules like bisanthene. The conservation
of momentum parallel to the surface for an escaping photoelectron provides a
basis for this. Using Fermi’s golden rule, it can be shown that the differential
cross-section is proportional to the Fourier transformation of the initial state of
the electron.
Thus, comparing experimental data and the data of a DFT-simulation, apply-
ing a ”plane wave” approximation for the final state of the electron, information
about the initial state can be gained.

The practical part of this thesis was concerned with the extension of the func-
tionality provided by a program written for said comparison. Besides imple-
menting a “brute-force” algorithm to find the optimal orientation of the molecule
in the simulation, multiple features to manipulate the data were added.
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Kurzzusammenfassung

Orbital-Tomographie ist eine neue Analysemethode der Oberflächenphysik, die
im letzten Jahrzehnt entwickelt wurde. Sie nutzt die Daten aus der winke-
laufgelösten Photoelektronenspektroskopie (ARPES) und die Dichtefunktion-
altheorie (DFT) zur Aufklärung oder gar Rekonstruktion der Orbitale auch
komplexerer organischer Moleküle wie Bisanthen. Grundlage bildet die Im-
pulserhaltung der Parallelkomponenten der im photoelektrischen Prozess aus-
gelösten Elektronen im Übergang an der Oberfläche. Es kann über Fermis gold-
ene Regel gezeigt werden, dass der differentielle Wirkungsquerschnitt propor-
tional zur Fouriertransformation des Ausgangszustands des Elektrons ist.
Aus dem Vergleich der experimentellen Daten mit denen aus einer DFT-Simulation,
unter der Approximation des Endzustands des Elektron als ebene Welle, können
Informationen über den Ausgangszustand gewonnen werden.

Diese Arbeit beschäftigt sich mit der Erweiterung an Funktionalität eines für
eben diesen Vergleich geschriebenen Programmes. Neben eines “brute-force”
Algorithmus, zum Anpassen der Orientierung des Moleküls in der Simulation
an die Messdaten, wurden einige Features zur Manipulation der Daten imple-
mentiert.
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Acronyms

ARPES angle-resolved photoemission spectroscopy

DFT density functional theory

GUI graphical user interface

HOMO highest occupied molecular orbital

IUPAC international union of pure and applied chemistry

LUMO lowest unoccupied molecular orbital

PES photoemission spectroscopy

UPS ultraviolet photoelectron spectroscopy

VCS version control systems

XPS X-ray photoelectron spectroscopy
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Chapter 1

Introduction

For this thesis, I was allowed to contribute to a project working on an emerging
technology labelled orbital tomography. Orbital tomography aims to utilise the
data from angle-resolved photoemission spectroscopy (ARPES) experiments to
clarify or even reconstruct orbitals of more complex organic molecules.

This thesis is split into two major parts.
In chapter “Theoretical Background” first, some background information and
the basics of orbital tomography will be clarified. Starting with a more general
summary of the photoelectric effect, the central process in question, we will work
our way up to a more detailed description for the special case of a hydrogen atom
using quantum mechanics and perturbation theory. In doing so, we will derive
the famous equation “Golden Rule No. 2”. This chapter will close with a quick
overview of the experimental side, namely ARPES.
In the second chapter “Practical Work”, a close look on what I was able to
contribute to this project will be given. This work revolves around extending
a program written to compare experimental and simulated momentum maps.
This part starts with a short description of the data used and general infor-
mation on the program itself. The principal portion, however, will focus on
individual features implemented during this thesis. As closure, we will briefly
discuss what key issues should be addressed in the future of this program.

To limit the scope, this thesis only aims to give a brief introduction to this
currently developing technology as far as is necessary to understand the work
done for this thesis. It does not claim to be a complete or even basic description
of the material. If one seeks more information on various subjects, please refer
to the following sources [1–6].
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Chapter 2

Theoretical Background

2.1 Photoelectric effect

In the centre of orbital tomography lies what is now known as the photoelec-
tric effect. First observed by Heinrich Hertz (1857-1894) 1887 and Wilhelm
Hallwachs (1859-1922) 1895 [7], it was Albert Einstein (1879-1955) who was
awarded the Nobel Prize in physics in 1921 for his “discovery of the law of
the photoelectric effect” [8]. He lay down his theory 1905 in one of his Annus
mirabilis papers titled “Über einen die Erzeugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt” [9].

Based on the work of Max Planck (1858-1947) just five years earlier [10, 11],
in his essay, Einstein proposed the quantisation of the electromagnetic field. He
introduced the idea that light consists of packets of energy, photons, which he
called quanta.
According to Einstein, the energy E of a photon, therefore, can be characterised
solely by its frequency ν using the Planck–Einstein relation

E = hν (2.1)

with h being a constant of proportionality called Planck’s constant [11].
Because a photon carries momentum, when it gets absorbed, it will transfer its
entire energy to the electron in the form of kinetic energy. Assuming a photon
hits an electron in a bound state inside a molecule (see figure 2.1), we can
express the maximum kinetic energy Ekin of the electron escaping a material
by applying the law of conservation of energy as such

Ekin = hν − EB − Φ (2.2)

The kinetic energy Ekin is reduced by the binding energy EB and what is called
the work function Φ. It represents the energy it takes the electron to escape the
surface of the material [1].
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Figure 2.1: A schematic depiction of the photoelectric effect in terms of energy
levels. A bound electron bound in the HOMO (Highest Occupied Molecular
Orbital) escapes past the Fermi energy EF and LUMO (Lowest Unoccupied
Molecular Orbital) to a free vacuum state. The energy hν from the incidental
photon, fully transferred to the electron in the form of kinetic energy by its
absorption, needs to exceed the binding energy EB and the work function Φ of
the material.
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2.2 Transition rate between electronic states

In this section, we want to determine the transition rate of an electron between
a bound eigenstate (|b〉 , εb) and a quasi-continuum of states {|f〉}, whose en-
ergy range encloses εb using time-dependent perturbation theory [2, 12]. As a
periodic perturbation potential V̂ , we will state an electromagnetic wave A(r, t)
to determine the simplified case of the photoelectric effect for a hydrogen atom
in the ground state in section 2.3.

Starting with a Hamiltonian Ĥ for our system

Ĥ = Ĥ0 + V̂ (t) (2.3)

consisting of a Hamiltonian Ĥ0 for an unperturbed, known system

Ĥ0 |n〉 = εn |n〉 (n = 1, 2, ...) (2.4)

and a in some sense “small”, time-dependent potential V̂ (t) we want to approx-
imate a solution for Ĥ. Because V̂ (t) is an operator, we introduce a parameter
λ in (2.3)

Ĥ = Ĥ0 + λV̂ (t) (2.5)

which allows us to expand the solution as a power series in λ. Setting λ = 1
later will give us back the system Ĥ to be solved (2.3), while λ = 0 would equal
the unperturbed system Ĥ0.
Because the solution |ψ(r, t;λ)〉 of the time-dependent Schrödinger equation
(2.6) [12]

ih̄
∂

∂t
|ψ(r, t;λ)〉 = Ĥ |ψ(r, t;λ)〉 (2.6)

now also depends on λ we can expand it into a power series

|ψ(r, t;λ)〉 =

∞∑
s=0

λs |ψs(r, t)〉 (2.7)

Plugging (2.7) into (2.6) and comparing coefficients of equal powers of λ on both
sides we find an iterative solvable system of equations as a solution of (2.3)

ih̄
∂

∂t
|ψ0(r, t)〉 = Ĥ0 |ψ0(r, t)〉 (2.8)

ih̄
∂

∂t
|ψs′(r, t)〉 = Ĥ0 |ψs′(r, t)〉+ V̂ (t) |ψs′−1(r, t)〉 (s′ = 1, 2, 3, ...) (2.9)

Using the zeroth-order (2.8), the unperturbed system (2.4), we can impose our
initial condition by assuming the system to be in an eigenstate |b〉 of Ĥ0 at t = 0.
Because we assumed a “small” perturbing potential V̂ , we restrict ourselves to
a first-order approximation s′ = 1.

|ψ0(r, 0)〉 = |b〉
|ψs′=1(r, 0)〉 = 0 (2.10)

Because the eigenstates |n〉 of Ĥ0 form a complete orthonormal system (2.4),
using the phase factor exp(− [iεnt] /h̄), we can express |ψ1(r, t)〉 as a linear

5



combination of time-evolving eigenstates. Using this we also find the time-
evolution of |b〉

|ψ0(r, t)〉 = exp(− iεbt
h̄

) |b〉 (2.11)

|ψ1(r, t)〉 =

∞∑
n=1

cn(t)exp(− iεnt
h̄

) |n〉 (2.12)

We plug (2.11) and (2.12) into the first-order approximation (2.9) and simplify
by evaluating the time derivative on the left side of the equation as well as
letting Ĥ0 act on its eigenstates on the right side. In the former, we have to
apply the product rule, since the coefficients cn(t) now also experience a time
dependence due to the time-dependent perturbation potential V̂ (t) [12, 13]. In
the latter Ĥ0 |n〉 = εn |n〉 and therefore cancels out the additional term on the
left.

ih̄
∂

∂t

∞∑
n=1

cn(t)exp(− iεnt
h̄

) |n〉 =

Ĥ0

∞∑
n=1

cn(t)exp(− iεnt
h̄

) |n〉+ V̂ (t)exp(− iεbt
h̄

) |b〉

ih̄

∞∑
n=1

∂cn(t)

∂t
exp(− iεnt

h̄
) |n〉 = V̂ (t)exp(− iεbt

h̄
) |b〉 (2.13)

Projecting one state |m〉 of the quasi-continuum of states {|f〉}, the electron
could end up on (2.13)

ih̄
∂cm(t)

∂t
= exp(iωmbt) 〈m| V̂ (t) |b〉 (2.14)

with

ωmb =
εm − εb

h̄
(2.15)

results in a linear inhomogeneous differential equation in cm(t) with an easily
obtainable solution

cm(t) =
1

ih̄

∫ t

0

exp(iωmbt
′) 〈m| V̂ (t′) |b〉 dt′ (2.16)

To evaluate (2.16) further, we need to specify the potential V̂ (t) in order to
calculate the matrix element 〈m| V̂ (t′) |b〉. Let V̂ (t) be a periodic potential (e.g.
an electromagnetic wave) [12]

V̂ (t) = V̂ −0 exp(−iωt) + V̂ +
0 exp(iωt), V̂ +

0 := (V −0 )† (2.17)

Here the complex conjugated term will ensure that V̂ (t) is hermitian. We plug
(2.17) into (2.16) and evaluate the integral

cm(t) =
1

ih̄
〈m| V̂ ±0 |b〉

∫ t

0

exp(i [ωmb ± ω] t′)dt′

cm(t) =
〈m| V̂ ±0 |b〉
h̄(ωmb ± ω)

{1− exp(i [ωmb ± ω] t)} (2.18)
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Here we neglected one of the integrals because of the quotient only ωmb = ω or
ωmb = −ω will contribute significantly. The absolute square of the coefficients
cm(t) (2.18) gives the probability for a transition |b〉 → |m〉 during a particular
time t. Dividing the probability by t results in the transition rateWb→m between
|b〉 and |m〉 [12]

Wb→m =
|cm(t)|2

t
=

∣∣∣〈m| V̂ ±0 |b〉∣∣∣2
h̄2 ×

4 sin2
(
t(ωmb±ω)

2

)
t (ωmb ± ω)2

(2.19)

In the limit t→∞ we can approximate the second term as a delta distribution
[12]

lim
t→∞

4 sin2
(
t(ωmb±ω)

2

)
t (ωmb ± ω)2

= 2πδ(ωmb ± ω) = 2h̄πδ(εmb ± ε) (2.20)

⇒Wb→m =
2π

h̄
∗
∣∣∣〈m| V̂ ±0 |b〉∣∣∣2 × δ(εmb ± ε) (2.21)

We arrived at what is known as Fermi’s Golden Rule (2.21). First derived by
Paul Dirac (1902-1984) 1927 [14, 15] and later dubbed “Golden Rule No. 2”
by Enrico Fermi (1901-1954) [16, 17], this equation is an indispensable tool in
quantum mechanics. It enables the estimation of transition rates between states,
initiated by a perturbation potential, by calculating the matrix elements of the
potential. The delta distribution ensures the law of conservation of energy [1].
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2.3 Photoelectric effect for the hydrogen atom

Applying Fermi’s Golden Rule (2.21), we now want to show that the photoe-
mission cross-section/differential cross-section dσ

dΩ , the infinitesimal probability
dσ of photoelectron emission occurring in the direction of an infinitesimal angle
element dΩ, is proportional to the Fourier transformation of the initial state of
the electron. For this, we will assume a photon of energy h̄ωγ freeing a hydrogen
electron in the |1s〉 ground state [18].

An electromagnetic wave can be characterised by the vector potential A(r̂, t)

A(r̂, t) = A0εcos(kγ r̂ − ωt) (2.22)

with a polarisation vector ε for which εk = 0 holds [12].
Using the Lagrange function for a charged particle in an electromagnetic field,
one can show that the Hamiltonian operator can be obtained by a substitution
p̂→ p̂− q

cA(r̂, t) for the unperturbed Hamiltonian [1, 12,19]

Ĥ =
1

2me

[
p̂+

e

c
A(r̂, t)

]2
− e2

r̂
(2.23)

The last term in (2.23) conforms to the Coulomb potential of a single electron in
a hydrogen atom. Expanding the brackets results in a term O(A(r̂, t)2) which
is small enough to be neglected in our case [1,12]. Utilising the Coulomb gauge
∇A(r̂, t) = 0 the cross terms in (2.23) can be simplified. One needs to be careful
though; an operator always acts on some function Ψ

{p̂, A(r̂, t)}Ψ = [(−ih̄∇A(r̂, t) +A(r̂, t)(−ih̄∇)] Ψ

= −ih̄ [∇(A(r̂, t)Ψ) +A(r̂, t)∇(Ψ)]

= −2ih̄A(r̂, t)∇(Ψ) = 2A(r̂, t)p̂ (2.24)

⇒ Ĥ =
1

2me

[
p̂2 + 2

e

c
A(r̂, t)p̂

]
− e2

r̂

=
1

2me
p̂2 − e2

r̂
+

e

mec
A(r̂, t)p̂ (2.25)

We identify the unperturbed Hamiltonian Ĥ0 and the perturbation potential V̂
in (2.25), by plugging in (2.22), as

Ĥ0 =
1

2me
p̂2 − e2

r̂

V̂ (t) =
e

mec
A(r̂, t)p̂ =

A0e

2mec

[
ei(kγ r̂−ωt) + e−i(kγ r̂−ωt)

]
εp̂ (2.26)

When comparing (2.26) and (2.17) we recognise

V̂ −0 =
A0e

2mec
eikγ r̂εp̂ (2.27)

To find the transition rate of an electron from an initial state |b〉 = |1s〉 to
a free state initiated by the excitation of a photon h̄ωγ , we will plug (2.27)
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into (2.21). Additionally, we approximate the photoelectron as a plane wave
|m〉 = |k〉 = exp(i [kr̂ − ωt]) [12]

Wb→m =
|cm(t)|2

t
=
|A0|2 πe2

2h̄m2
ec

2
×
∣∣eikγ r̂ε 〈k| p̂ |1s〉∣∣2 × δ(εk − ε1s − ε)

=
|cm(t)|2

t
=
|A0|2 πh̄e2

2m2
ec

2
×
∣∣eikγ r̂εk 〈k|1s〉∣∣2 × δ(εk − ε1s − ε)

=
|cm(t)|2

t
=
|A0|2 πh̄e2

2m2
ec

2
(εk)2 |〈q|1s〉|2 × δ(εk − ε1s − ε) (2.28)

〈q| = exp(−iqr̂), q = k − kγ (2.29)

Next, we will integrate over all possible final momentum states d3k′

Pb→m =

∫
Wb→md

3k′ (2.30)

The Delta distribution in (2.28) ensures the conservation of energy

εk′
!
= εk =

h̄2k2

2me
= ε1s + h̄ωγ (2.31)

and we can use it to get rid of one integration. Doing so requires a conversion of
our Cartesian coordinate system to a spherical one and another transformation
k′ → εk′ ⇒ dk′ → (me)/(h̄

2k′)dεk′

Pb→m =

∫
Wb→m(k′)k′2sin(ϑ′)dϕ′dϑ′dk′

=

∫
Wb→m(k′)k′2sin(ϑ′)

me

h̄2k′
dϕ′dϑ′dεk′

=

∫
|A0|2 πe2k

2mec2h̄
(εk)2 |〈q|1s〉|2 sin(ϑ′)dϕ′dϑ′

=
(2π)2e2k

V meωγ

∫
(εk)2 |〈q|1s〉|2 dΩ (2.32)

In the last step, we have substituted for |A0|2 → (8πh̄c2)/(V ωγ) using the fact
that inside the volume V is a photon with an energy h̄ωγ . Moreover, we identify
sin(ϑ′)dϕ′dϑ′ → dΩ as the infinitesimal solid angle element [20]. Shifting from
a single photon inside the volume V to a photon density c/V , in the derivation
of Pb→m with respect to dΩ, we find the differential cross-section.

dσ

dΩ
=

(
dPb→m
dΩ

)
/
( c
V

)
=

(2π)2e2k

mecωγ
(εk)2 |〈q|1s〉|2 (2.33)

What we have found in (2.33) is, that the differential cross-section is dσ
dΩ , describ-

ing the photoelectron intensity we expect to observe inside an angle element dΩ
during the photoelectric process, is proportional to the Fourier transformation
〈q|1s〉 of the initial state |1s〉 of the electron.
Employing this helpful relation theoretically estimated orbitals can be matched
by transformation into momentum space and comparison with experimentally
measured photoemission intensities. During this derivation, we assumed a hy-
drogen atom in ground state. However, this proportionality holds for more
complex organic molecules as well [1, 12].
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2.4 Methods of measurement

2.4.1 Photoemission spectroscopy

Photoemission spectroscopy (PES) is an umbrella term for several long-serving
methods of analysis based on the photoelectric effect (see section 2.1) [21, 22].
Photoelectrons which are escaping from a surface sample are detected energy-
resolved when irradiated by light resulting in a photoemission spectra as a func-
tion of the electron’s kinetic energy. Using the spectra, there is information
to be gained about the structure of electronic bands and their probability of
occupation. Various types of PES are classified, among other factors, by the
wavelength of the light employed, which in return determines the electrons that
can be freed by it. Examples are X-ray photoelectron spectroscopy (XPS) and
ultraviolet photoelectron spectroscopy (UPS). While the latter is used for va-
lence electrons only, the former is capable of freeing inner shell electrons [7].
1981 Kai Siegbahn (1918-2007) received half of the Nobel prize in physics for
his work on high-resolution electron spectroscopy in 1957 [23,24].

2.4.2 Angle-resolved photoemission spectroscopy

Based on PES, the so-called Angle-Resolved PhotoEmission Spectroscopy de-
veloped during the 1970s [25–27]. It allows the mapping of Fermi surfaces by
angle- and energy-resolved detection of photoelectrons. This is done by moving
an energy analyser in a semicircle above the surface sample [28].

Beyond determining the orientation of thin layers, a quantitative evaluation
of angle-dependent data resulting from ARPES measurements was considered
to be too complicated until now. Photoemission tomography (see section 2.4.3)
set out to solve this problem by matching experimental data with simulated data
resulting from calculations using density functional theory (DFT) in a ”plane
wave” approximation [1, 29].

2.4.3 Photoemission Tomography

In the last few years an analysis method named orbital tomography emerged
using the previously difficult to interpret data of ARPES.

A requirement for this method is the conservation of momentum components
k|| parallel to the surface. Because of translational symmetry, those momentum
components are preserved during the escaping process of the electron from the
surface. Changing to spherical coordinates, we can describe the momentum of
the electron inside the material as

|k| =
√

2εkinme

h̄2

kx =

√
2εkinme

h̄2 sin(θ)cos(ϕ)

ky =

√
2εkinme

h̄2 sin(θ)sin(ϕ) (2.34)
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Due to the potential step at the transition between surface and free vacuum
state, the normal component k⊥ is not conserved. The intensity distribution
I(εB , {kx,ky}) measured at a constant binding energy εB , called momentum
maps, is therefore a function of the binding energy εB and the parallel momen-
tum components {kx, ky} [1, 29].
First, the orbitals of the to-be analysed molecule will be calculated using DFT.
The electron state after escaping the surface is approximated as a plane wave
[1,3]. DFT reduces the computation time for a many-body system significantly
by representing all electrons as a single electron density n(r) [1]. For his work
on DFT, Walter Kohn (1923-2016) received 1998 part of the Nobel prize in
chemistry [30].
As was shown in section 2.3, momentum maps (2.34) are proportional to the
Fourier transform of the initial wavefunction of the electron before the photo-
electric process. However, the experimental maps are measured for a specific
energy at a time. Each map, therefore, represents a spherical “slice” in mo-
mentum space, hence the name orbital tomography. Likewise slicing through
simulated momentum maps allows a comparison between these two. Such a
comparison already yields valuable knowledge about the photoelectric process
as well as the material and its electronic structure itself [3].
Reconstructing orbitals from experimental data alone presents another chal-
lenge. From (2.33) we learn that the intensity measured is proportional to the
absolute square of the Fourier transformation. For an inverse Fourier trans-
formation, which would enable us to switch back to position space, we lack a
critical piece of information lost by absolute squaring the wavefunction, namely
its phase.

To objectively match simulated and experimental data, we define a least-square
cost function

χ2 =

∫
dkxdky

[
I(εB , kx, ky)−

∑
i

ai(εB)φi(kx, ky)

]2

(2.35)

For the parameter ai(εB), expressing the individual participation of each orbital
φi(kx, ky), this ansatz leads to a solvable system of linear equation with a unique
solution [3].
An additional set of parameters to be optimised gets introduced by the orienta-
tion of the molecules, characterised by Euler angles (ϕ, θ, ψ). There is no analyt-
ical solution of (2.35) for those parameters. Part of this work was implemented
a simple algorithm finding the angles for which simulation and experiment agree
best.
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Chapter 3

Practical Work

The practical part of this work is concerned with the extension of functionality,
improving the existing feature set as well as maintenance and troubleshooting a
Python program (see figure 3.2) used for comparison of experimentally measured
and simulated momentum maps.
In this chapter, we want to discuss various aspects of the practical side of this
work. This ranges from the data used (see section 3.1), information about the
already existing program (see section 3.2) and implementation done during this
thesis (see section 3.3).

Figure 3.1: Structural formula of bisanthene (IUPAC: phenanthro(1,10,9,8-
opqra)perylene).

3.1 Data

3.1.1 Simulation Data

The simulated data comes from a calculation using DFT (see section 2.4.3). For
more information see the following sources [1, 5].

3.1.2 Experimental Data

The experimental data used in this in work originates from a measurement
at the Metrology Light Source Insertion device beamline of the Physikalisch-
Technische Bundesanstalt (Berlin, Germany). 10,10’-dibromo-9,9’-bianthracene
has been polymerised to bisanthene (see figure 3.1) on a Cu(110) surface and
excited by a photon energy of 35 eV. Escaping photoelectrons were detected
by a toroidal energy analyser across a polar angle range of ±85◦. The analyser
was moved in 1◦ steps across an azimuthal angle range of 0◦ to 85◦. For more
information see the following source for this paragraph [5].
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3.2 Program Introduction

Figure 3.2: Screenshot of the Python program Map.py running under Linux
(Mint 19) right after startup with no data loaded.
To the left five panes allow loading simulated momentum maps from different
orbitals. Small ball and stick plots display the molecules loaded. QSpinBoxes
and QSlider adjust the rotational orientation and orbital participation. To the
right simulated and experimental momentum maps are displayed. Below are
various settings and features for either one.

3.2.1 General information

In 2018, Peter Puschnig and Daniel Lüftner originally developed an Open-Source
Python program (see section 3.2.2 and figure 3.2) under the GNU General Public
License at the University of Graz and this work predominantly revolves around
extending its functionality beyond the existing feature set (see section 3.3).
Its purpose lies in the presentation for and simplification of comparison between
simulated and experimental momentum maps.

3.2.2 Setup

The program has initially been developed in Linux (Ubuntu), and Mint 19
(Tara) has exclusively been used during this work; however, it should work
under different operating systems as well. It is entirely written in Python 3.7.1
utilising different third-party libraries (for a complete list see table 3.1). We
used Git 2.17.1 as a version control systems (VCS) with an already employed
remoted server hosted by GitLab. For the creation of graphical user interface
(GUI) elements, we used Qt Creator 4.5.2 based on Qt 5.9.5.
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Table 3.1: A complete list of third-party libraries used in the development
process (see section 3.2). Python libraries are not listed. The first column lists
the library name, the second column its version number and last column a short
description for what we used the library.

Library Version Describtion

NumPy 1.15.4
Wrapper for dealing with numbers

in N-dimensionals arrays.

SciPy 1.1.0
For interpolating momentum

maps (see section 3.3.5).
PyQt 5.9.2

Provides everything regarding GUI.
PyQtGraph 0.10.0

H5py 2.8.0
Used for interaction with

the HDF5 file format.
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3.3 Added Functionality

Hereafter functionality that has been added to the program within the scope of
this work will be presented — beginning with section 3.3.1, a general overview of
how the code is structured and the reasons behind it. Following sections ”Bind-
ing energy slider” to ”Fitting” address specific functionality in more detail.
Rationale and benefits behind every feature will be handled under the subsec-
tion ”Objective”, a thorough description of what it does and how to utilise it
is given under ”Description and Functionality”. Each section concludes with
an illustration of how it was implemented code-wise under ”Implementation”.
Section 3.3.9 addresses minor changes in less detail.

3.3.1 Structuring

At first, each method has been implemented by itself being called by, providing
the corresponding functionality for and enabling each GUI element respectively.
This simple approach came with hindrances as the feature set grew, and more
complex interactions between methods arose. Following is a brief outline of the
three most prominent difficulties this approach entailed:

• Enablement of GUI elements
The program relies heavily on GUI elements, and for ease of use, those
elements need to be disabled if their corresponding feature is unavailable
for any reason (e.g. necessary data has not been loaded yet). This ”state
of enablement” can change many times during a session. Each method
handling the state of its own GUI element, if it has one, is not only a clear
violation of the single responsibility principle but also redundant.

• Order of Execution
Different methods can influence each other and the order of execution
matters when using more than one

g (f (x)) 6= f (g (x))

As an example: if one changes the experimental momentum map by using
the binding energy slider (see section 3.3.2) after adjusting the scale using
the checkbox (see section 3.3.3), the slider will override the adjustment
of scale. Either the checkbox will remain falsely checked, throwing the
program into an unattainable state, or the user needs to redo his previous
actions. The latter can cause additional problems when more functions
are in use, and only one ”correct” sequence works.
Up to this point, it is the user’s responsibility to use the methods in the
correct order.

• Undoing of Changes
Suppose a user is applying a function f (x) and g (x) in this order but
undoes them in the reverse order. It cannot be guaranteed that the mo-
mentum map will be same afterwards

y = g (f (x))→ g−1
(
f−1 (y)

)
6= x

Within this approach, it is the user’s burden to remember the sequence of
features performed and undoing them correctly.
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Central to the features developed in this work are, therefore, the saving of data
on a class level and two meta-functions ”plot manager”/”enable manager” re-
sponsible for handling the order of execution as well as different cases (=”states”).

Saving Data

During this work, several new class member variables were introduced, mainly
to address the third problem mentioned above. Grouped by their belonging
to either the simulated or the experimental momentum maps, these variables
store specific information/data of or about the momentum maps to be used
by various methods. Besides the kx range and the ∆k step size needed by
different functions, the unchanged data is saved as well. This allows returning
to the unaltered maps anytime without running the risk to introduce artefacts by
undoing changes. There are additional benefits specific to certain functionality.
E.g. the binding energy slider does not need to reload the data file every time,
or the optimisation can change the variable holding the image without changing
the plot to save computation time.

States

Some methods newly introduced into the program during this work can be
passed an additional parameter when called. This parameter labelled ”state”
is optional and defaults to zero. Its primary purpose is to lower computation
time in the optimising process because specific steps can be skipped or altered
to speed up the process (e.g. simulated momentum map does not need to be
subject to any changes whatsoever). This was necessary because PyQt GUI
elements are not capable of distinguishing the interaction done by the computer
from ”normal” interaction. Furthermore, this approach is very versatile as it
allows for a multiple of ”states” denoted by an integer.

Plot Manager

To address the second issue mentioned above, this ”central hub” method was
implemented. It manages every time either the experimental or simulated maps
need to be refreshed by calling the responsible methods in order according to
the state the program is in (see above). In the default state, it will call all
functions in the default order:
The first method resets the simulated momentum map. Resetting the data en-
sures no artefacts get introduced by repeatedly applying certain features. This
is not necessary for the experimental maps, because the second call, the binding
energy slider, freshly loads the data corresponding to the position of the slider
regardless.
Following are methods that will change the momentum maps (e.g. scale ad-
justment; see section 3.3.3) and methods performing miscellaneous task (e.g.
linking plots; see section 3.3.4).
At this point the plot itself has not been updated. The last method to be called
displays the new image data, resulting in changes visible for the user.

While at first, this may seem like an unnecessary complication, this approach
offers significant benefits and, in fact, poses a simplification. As mentioned, it
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was implemented as a solution to the second problem of handling the order of
execution (see above). On top of that, it is a very future-proof way to organize
multiple interacting methods. New features added in the future can be easily
integrated by inserting a simple method call at the correct position in the or-
der. If needed, a new state can be introduced to reorder the current sequence
or make a new one altogether.

Enable Manager

To resolve the first problem listed above, a method named ”enable manager”
was implemented. Called by the ”plot manager”, it goes through all GUI ele-
ments and checks the requirements for each function individually. Using several
if-statements, it enables GUI elements for which the necessary prerequisites are
met, while it deactivates all others. These prerequisites are different for different
elements and are grouped if possible.

While this approach did remove the additional responsibility of managing their
respective GUI elements from each individual method, as is demanded by the
principle of single responsibility, it is not a perfect solution. The elaborate
lengthy tree of nested if-statements is ”messy” and somewhat tricky to main-
tain. For every new function, from possibly different programmers, this method
needs to be changed, not only added upon, as well.
Furthermore, within the implementation as it now stands, every function checks
its requirements to be performed as well. This is an artefact of the prior imple-
mentation as well as a safeguard against in theory now impossible circumstances
(function called without its requirements met). As is discussed in section 3.4,
this redundancy is to be avoided in the future.

3.3.2 Binding Energy Slider

Objective

Experimental data in the project is organized in individual momentum maps of
constant binding energy (”slices”) due to the nature of the measurement (see
section 2.4.2). To be able to go through all slices, a QSlider labelled ”BE Level”
has been added right beneath the loading button for the experimental data.

Description and Functionality

Loading (new) experimental data will update the slider to have as many discrete
possible positions as there are slices in the data file. The slider will be placed to
the far left, usually corresponding to the highest available binding energy, and
pulling the slider to the right decreases the binding energy up to a minimum on
the far right. The binding energy of the currently selected slice gets displayed
at the bottom (see section 3.3.9).

Implementation

After checking if an experimental map has been loaded, the current position of
the slider will be obtained by using a method provided by the QSlider class.
Using this value, the data for the corresponding slice gets extracted, and the
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variables (see section 3.3.1 get updated. Additionally, the kinetic energy of the
current slice and the mean kinetic energy of all slice are calculated and displayed
by subtracting the binding energy from the Fermi-level.

Figure 3.3: Example experimental momentum maps at different positions of
the binding energy slider (see section 3.3.2). Part of the bisanthene data set
(see section 3.1.2) for binding energies 0.99 eV (left), 0.50 eV (middle), 0.11 eV
(right). Each momentum map equals a slice through momentum space for a
specific wave number |k|.

3.3.3 Rescaling and Background

Objective

Both the simulated data Isim(kx, ky) as well as the experimental data Iexp(kx, ky)
have arbitrary units. However, for a reasonable comparison between the two,
one needs to adjust their scale. For this purpose, a QCheckBox labelled ”Adjust
Scale” has been added below the binding energy slider (see section 3.3.2).

Description and Functionality

The checkbox will be greyed out until both a simulated and an experimental
data set has been loaded. Checking it will first calculate a quotient of the
maximum intensity of both data sets

f =
max (Isim(kx, ky))

max (Iexp(kx, ky))
(3.1)

and then scale all experimental data by f

Iexp(kx, ky)← f × Iexp(kx, ky) (3.2)

resulting in a changed experimental data image which highest intensity now
matches the simulated highest intensity (still in arbitrary units). Additionally,
the experimental data gets stripped of background noise by subtracting the now
lowest intensity in the experimental data set from all values in this set

Iexp(kx, ky)← Iexp(kx, ky)−min (Iexp(kx, ky)) (3.3)
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Implementation

Subtracting the background and rescaling the experimental data has been im-
plemented as two separate methods called by the plot manager (see section
3.3.1). This division of functionality, following the single responsibility princi-
ple, has been made because while both methods verify that experimental data
has been loaded and the ”Adjust Scale”-checkbox has been checked, only the
rescale method checks additionally for loaded simulated data since subtracting
the background is possible without (see equation (3.3)). Currently, it is not
possible to subtract the background without also rescaling, and therefore, also
loading simulated data. However implementing this feature now requires little
effort, besides adding a new or changed QCheckBox.
Afterwards they apply (3.2) and (3.3) respectively.

3.3.4 Plot Linking

Objective

When looking at data sets, one may want to zoom in on finer details as well
panning around the image while being close up. Meaningfully comparing details
on both data sets requires to be on the same part of the image and at the same
zoom. Therefore, as a convenience feature, a QCheckBox ”Link Theoretical and
Experimental Plots” has been added.

Description and Functionality

Zooming and panning in one of both plots will automatically be done as well
in the other one when the checkbox is enabled. Enabling the checkbox is only
possible if both simulated as well as experimental data have been loaded before-
hand. Unchecking it will disconnect the plots again.

Implementation

It calls, when checked, the ”setXLink”/”setYLink” method provided by the
”ViewBox” class. Unchecking it will again call the same methods, however with
an argument ”None”, this will undo the linking.

3.3.5 Interpolation

Objective

An essential step for core functionality implemented thereafter (see sections
3.3.6, 3.3.7 and 3.3.8) is the interpolation (”regridding”) of data sets. This is
necessary because for optimising the angle, one needs to calculate the difference
of intensities between individual pixels when evaluating the cost function χ2

(see section 3.3.7). Equation (2.35) necessitates an identical grid in both data
sets, which is not necessarily the case.

Description and Functionality

If either one or both data sets get loaded the previously greyed out QCheckbox
”Interpolate Grid” activates itself. Checking it will interpolate all loaded data
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to a common grid. To make sure no information is lost, data sets get upscaled
meaning as a grid size ∆k the finer one is used

∆k ← min(∆kexp,∆ksim) (3.4)

Furthermore both data sets need to be cropped to the smaller of both ranges

kx ← min(kexp;x, ksim;x)

ky ← min(kexp;y, ksim;y)

{[−kexp;x, kexp;x], [−kexp;y, kexp;y]} ← {[−kx, kx], [−ky, ky]}
{[−ksim;x, ksim;x], [−ksim;y, ksim;y]} ← {[−kx, kx], [−ky, ky]} (3.5)

If only one data set has been loaded when activating this function, the program
will not change the data set, since it already has the finer grid and smaller
range. However this is a requirement for activating the ”Use Custom Grid”
QCheckBox to right. Checking this QCheckBox will enable the user to input a
custom resolution ∆k by using the QDoubleSpinBox to right. Until this point
this greyed out Spinbox displayed the resolution ∆k of the experimental data.
Changing it’s value overrides the previous behaviour of using the finer grid and
forces all loaded maps to be regridded using the value entered by the user

∆k ← ∆kcustom (3.6)

Implementation

The SciPy package (see table 3.1) provides a method called ”RegularGridInter-
polator” used to implement this functionality. First, an interpolation object for
each loaded map gets instanced by calling the method with the existing grids.
Cropping the data sets has been separated into a different method, following
the single responsibility principle. Using nested if statements, the method de-
termines the smaller range in each direction separately and the finer grid, as well
as adjusting the corresponding variables. If a custom value has been entered,
the determination part will be skipped and the variables changed directly. With
the NumPy package, a set of new grid points is generated using the new ranges
and step sizes. Using this new grid and the interpolation objects created at
the beginning, the data is interpolated at those grid points, and the images are
updated.
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Figure 3.4: Example experimental momentum maps from the bisanthene data
set (see section 3.1.2) for different interpolation scales (see section 3.3.5). Using
the custom grid QSpinBox, data can be upscaled (right) or downscaled (left).
The unaltered data (middle) is saved separately (see section 3.3.1) and can,
therefore, be restored anytime without artefacts.

3.3.6 Split View

Objective

When comparing data sets or composing illustrative images, it can be valuable
to view the data side by side.

Description and Functionality

Loading both a simulated and an experimental data set a QDoubleSpinBox
called ” Split View” becomes enabled. Checking this SpinBox will override the
left half of the experimental data with the left half of the simulated data for
side by side comparison (see figure 3.5).

Implementation

According to the ”Plot Manager” (see section 3.3.1) this change will be per-
formed after all necessary changes to the experimental data have been per-
formed (i.e. adjusting scale; see section 3.3.3). Therefore changing the exper-
imental data after activating split view will not impact the now left half (the
simulated data). Moreover, the number of columns and rows of each data set
need to be identical because the displaying method ”setImage” provided by the
”ImageView” class does not allow different sized images. Another possible solu-
tion would be padding the smaller image with ”NaN” values. Code-wise, after
checking that both momentum maps exist, the middle column is calculated by
casting the division of the number of columns by two into an integer. Every
column of the experiemental data set up to resulting index gets replaced by the
simulated data’s corresponding columns.
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Figure 3.5: Example momentum maps from the bisanthene data set (see sec-
tion 3.1.2) in split view (see section 3.3.6). Left half displays the simulated
momentum map, on the right the experimental one. Using the automatic fit-
ting function (see section 3.3.8) the optimal angle around the z-axes has been
found to be 78◦ (map already turned; for unrotated data see first image in figure
3.6).

3.3.7 Least Square Function

Objective

An essential step in fitting the simulated data to experimentally determined
momentum maps is comparing them objectively. The method of least squares
is the standard approach to such problems.

Description and Functionality

Because the data is not continuous but consists of discrete steps ∆k in the range
of {[−kx, kx], [−ky, ky]}, the cost function (2.35) for comparing both sets needs
to be discretized

χ2 =
∑
ky

∑
ky

[
I(εB , kx, ky)−

∑
i

ai(εB)φi(kx, ky)

]2

(3.7)

Equation (3.7) can only be meaningfully evaluated when both sets are of equal
size and resolution, therefore only after checking the ”Interpolate Grid” QCheck-
Box (see section 3.3.5) χ2 will be calculated and displayed to the left of the
”Optimize” button.

Implementation

Applying (3.7) is a straightforward matter using NumPy methods like ”square”
and ”subtract” to perform standard operations on data matrices. Two minor
issues quickly solved arise when doing so. First, one needs to catch potentially
occurring ”NaN” values in the data sets to avoid the entire sum becoming
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”NaN”. Again using a NumPy method called ”nansum” resolves this issue by
treating ”NaN” values as zero. Second, from (3.7) it follows that χ2 increases
when interpolating data sets to a finer grid. This is an artefact of discretizing
(2.35) into (3.7). It is impossible to fully avoid χ2 changing when changing the
step size ∆k; however, normalizing χ2 by dividing through the number of grid
points is sufficient.

3.3.8 Fitting

Objective

Minimizing χ2 (see section 3.3.7) now provides a straightforward method of
tweaking various simulation parameters in such a way, that the simulated data
maps agree with the experimental ones most. In principle, there are two sets of
parameters open for fitting this way: orientation of the molecule(s) and partic-
ipation of different orbitals. Only the former was part of this work and will be
this discussed here. For details on the latter, known as deconvolution, see [3].

Description and Functionality

A fitting process triggers when clicking the QPushButton ”Optimize” added for
this reason to right of the χ2 value. Until both simulated and experimental
data have been loaded, this button will stay greyed out. During the calculation,
the button’s face text will change to ”Wait”, indicating that the process did
not finish yet. Once it terminates, the face text will go back to ”Optimize”.
The experimental data plot will only update once the optimal angle has been
found to save unnecessary computation time. In theory, rotation around all
three axes for the first orbital is available. However, to save currently unneeded
computation time the code for rotating around the x and y axes have been
disabled.

Implementation

To allow a colleague to work on the deconvolution problem separately, and to
keep a maintainable code, three methods were introduced. Pushing the ”Op-
timize” button will call a more general optimise method, responsible for con-
trolling which parameters are fitted and in which order. It calls both methods
for actually fitting the deconvolution as well as the orientation. However, as
mentioned above, for this work, the deconvolution and two of three angles were
commented out.

Due to this work coming to an end, only a simple, brute force algorithm for
optimising the rotation has been implemented. Using a for loop, the cost func-
tion will be evaluated for each fixed step size between in a fixed range of values.
Each loop an if statement compares the result of (3.7) with a variable that per-
sists the for loop. If smaller, the variable will be overwritten with the result,
otherwise nothing happens. Saving the corresponding angle every time a smaller
χ2 was found makes sure the for loop ends with the optimal angle.

This approach has benefits and drawbacks.
Because this work was close to an end, this straightforward approach easily
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implemented was chosen to provide working functionality quickly and show a
proof of concept. Furthermore, this algorithm is very robust as it will always
terminate and has no issues with local minima.
Those benefits come at a cost. This strategy provides minimal accuracy for a
high computational cost and scales very steep with the number of evaluation
points. Furthermore, because (3.7) gets only evaluated at fixed, predefined step
sizes, there is no guarantee to find the absolute minima within a ±ε range.

Figure 3.6: Example experimental momentum maps from the bisanthene data
set (see section 3.1.2) at different orientations. The original data (left) was
rotated 90◦ around the z-axes (middle) and additionally 25◦ around the x- and
y-axes respectively (right). To automatize the finding of angles for which the
simulation fits the experiment best was the central part of this thesis (see section
3.3.8; see figure 3.5).
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3.3.9 Miscellaneous

Additionally, to the implemented features mentioned above, some smaller changes
and fixes were done. Those shall be listed here briefly:

• Displaying experimental data values
When loading experimental data the binding energy εB of the current
slice, the kinetic energy εkin of the current, as well as the mean of all
slices in [eV] will be displayed at the bottom right. The kinetic energy is
calculated by subtracting the binding energy εB from the fermi level εF .

• Matching energy levels
At the bottom right, a QPushButton labelled ”Match Energy Levels” will,
when experimental data has been loaded, take the mean kinetic energy of
all slices as input for the simulated data in the corresponding QDouble-
SpinBox.

• Implementation of various checkboxes for future use
A couple of currently unused QCheckBox were implemented for future
use. Checking them will select which values should be fixed in case of
automatic optimisation. Furthermore, tooltips for those QCheckBox were
implemented.

• Prohibited loading wrong file types to avoid crashing
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3.4 Future Tasks

In this section, a short preview regarding this program’s future shall serve us as
a conclusion of this thesis.

A problem already mentioned in section 3.3.1, regarding the redundancy of
requirement checks, is to be tackled. However, the expected gain of computa-
tional time by eliminating this redundancy should not be overestimated. Those
checks generally only consist of inexpensive if-statements.
The removal of the enable manager serves a different purpose nevertheless. It
is, as it stands now, a suboptimal solution violating core principles of clean
code (e.g. encapsulation). A reasonable approach would be to outsource the
requirement checks for each feature into a separate method returning a boolean
whether the requirements are met. This would increase the number of meth-
ods drastically; however, essential design principles for clean code would be met.

As was mentioned in section 3.3.8, only a rudimentary algorithm with hard-
coded angle range and angle steps was implemented up to this point. This
approach is not only costly and inefficient but also challenging to use.
More advanced algorithms (e.g. brent’s algorithm), a variable step size (auto-
matically decreasing the step size when near a minimum) or iterative approaches
(multiple searches with decreasing step size in regions containing a minimum)
could address the former issue.
To improve usability, a couple of QCheckBoxes were already implemented. They
can be used to fix individual values, dramatically decreasing the computational
time. Additionally, QSpinBoxes to specify search ranges, as well as step sizes,
are needed.

A core issue arising from all solutions mentioned above is that the entire GUI
necessitates a design overhaul. After its initial creation, several features have
been subject to change or have been newly implemented. To accommodate
those features, as well as the ones mentioned above (e.g. new QSpinBoxes for
each rotation) in a user-friendly and space-saving manner, a redesign would be
beneficial.
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