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Abstract
In this thesis, a quantum mechanical system is considered which is de-

scribed by N discrete energy levels. Starting with a system in the ground
state and coupling to an external electromagnetical field with a specific fre-
quency can result in the occupation of higher energy levels. If the external
field is periodic in time the occupation of the excited states is also excpected
to be periodic, leading to what is called a Rabi oscillation. The interac-
tion between the system and the driving field can be described using the
Schrödinger equation with the minimal coupling Hamiltonian. The time-
dependent Schrödinger equation is solved by using an ansatz for the wave
function consisting of a linear superposition of the N states of the unper-
turbed system. The absolute squares of their coefficients then represent the
occupation of the corresponding level. Finally, this ansatz leads to a system
of first order differential equations which are difficult to solve analytically.
Therefore, the focus of this thesis is to solve these differential equations nu-
merically using the Runge-Kutta-method of 4th order.
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1 Introduction

1.1 Units

In this work the atomic unit system is used. This implies in all equations ℏ = me =
e2

4πϵ0
= 1 a.u. (atomic unit) if not stated otherwise.

1.2 Rabi-Oscillations

Consider a quantum mechanical system with N energy levels. As energy levels in quan-
tum mechanics are discrete, in the case of a transition from an energy level Ek to an
energy level En the difference of the energies ∆E = En − Ek is absorbed/released. A
positive value of ∆E describes a transition of a lower energy level to a higher one. This
means the system has to absorb this energy to enable the transition. A negative value of
∆E describes a transition from a level with higher energy to a level with lower energy.
In this case the system releases energy to the surroundings.

So, assuming the system is in the ground state, an energy supply is needed to enable
the occupation of higher states. To supply this energy, we consider an external, periodic
driving field of the form E(t) = E0 · cos(ωt) [1]. If an excited state is occupied, the
system does not stay at this higher energy level for long. When it falls back to a lower
level, the energy ∆E is given back to the external field. This results in an oscillation of
the system between energy levels which is referred to as a Rabi-Oscillation.

The condition for the Rabi-Oscillation is that the energy provided by the driving field
is close to the energy difference ∆E between energy levels Ek and En. In other words,
the frequency ω of the driving field has to be close to the resonant frequency

ωnk = En − Ek. (1)

As a measure for the difference between the resonant frequency and the driving field
frequency, the detuning δ is introduced:

δnk := ω − ωnk, (2)

where it is commonly assumed that δnk ≪ ω + ωnk [8].
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2 Quantum-mechanical description of Rabi-oscillations

The derivation in this chapter largely follows Ref. [1]. However, in this work a N -
level-system instead of a two-level-system is considered. To describe an unperturbed
N-level-system, the time-independent Schrödinger equation

Ĥ0 |φn⟩ = En |φn⟩ (3)

is used, where the |φn⟩ are the states associated with the energy levels En, and Ĥ0 is the
unperturbed Hamiltonian. To represent the driving field the perturbation Hamiltonian
Ĥ ′ is added, which results in the minimal coupling Hamiltonian [4]

Ĥ = Ĥ0 + Ĥ ′ =
1

2m

(
p̂− qÂ(r, t)

)2
+ qΦ̂(r, t). (4)

Here, p̂ is the momentum, q is the charge, Â(r, t) the vector potential of the electro-
magnetic field and Φ̂(r, t) its scalar potential.

By using the dipole approximation, where we assume that the wavelength of the elec-
tromagnetic field is a lot bigger than an atom, the spatial component of the vector
potential can be neglected: Â(r, t) ≈ Â(t). Furthermore, the Göppert-Mayer-gauge [6]
is introduced. This gauge uses the transformation

χ̂(t) = −x̂Â′(t), (5)

where x̂ represents the position operator. The Göppert-Mayer-gauge results in

Â(t) = Â′(t) +∇χ̂(t) = 0 (6)

qΦ̂(r, t) = Φ̂′(r, t)− ∂tχ̂(t) = qx̂Ê(t). (7)

Finally, after using the dipole approximation and the Göppert-Mayer-gauge, the Hamil-
tonian of the system is given by

Ĥ =
1

2
p̂2 + qx̂ Ê0 cos(ωt). (8)

Next, we assume that the wave function describing the perturbed system is a superpo-
sition of the wave functions of the unperturbed system

|ψ(t)⟩ =
N∑

n=1

cn(t) e
−iEnt |φn⟩ . (9)

In this equation, the phase factor e−iEnt arises from the time evolution of the unperturbed
wave functions.
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Inserting this ansatz into the time-dependent Schrödinger equation

i ∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩ (10)

results in
N∑

n=1

i ċn(t) e
−iEnt |φn⟩ =

N∑
n=1

cn(t) e
−iEntĤ ′ |φn⟩ , (11)

where ċn(t) denotes the time derivative of the coefficients. Multiplying Eq. 11 from the
left by ⟨φk| with k = 1, 2, ..., N leads to

ċk(t) = −i
N∑

n=1

cn(t) e
−iωnktH ′

kn (12)

with the matrix elements of the Hamiltonian defined as

H ′
kn = ⟨φk| Ĥ ′ |φn⟩ . (13)

As suggested by Eq. 8, the perturbation Hamiltonian has the form

Ĥ ′ = qx̂ E0 cos(ωt). (14)

Substituting this Hamiltonian into Eq. 13 yields

Hkn = q ⟨φk| x̂ |φn⟩E0 cos(ωt)

= q xknE0 cos(ωt)

= dknE0 cos(ωt)

= Ωkn cos(ωt)

= H ′
nk.

(15)

In this equation the transition dipole moment dkn with the property dkn = dnk and dnn

= 0 [3] was introduced. Furthermore, the Rabi-frequency

Ωkn := dknE0 (16)

was defined. This frequency describes how fast the system oscillates between two energy
levels Ek and En. It is proportional to the amplitude of the electromagnetic field and
the interaction between the system and the field.

Finally, substituting the matrix elements from Eq. 13 into Eq. 12 results in

ċk(t) = −i
N∑

n=1

cn(t)
Ωnk

2
(ei(ω−ωnk)t + e−i(ω+ωnk)t)). (17)
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Note that here excluding n = k from the sum happens automatically as a result of the
definition of the dipole moment dnn = 0 and therefore Ωnn = 0. Eq. 17 now decribes
a system of homogenous, linear differential equations for the coefficients ck(t). Solving
these differential equations will be the central focus of this work, as the absolute square
of the coefficients |ck(t)|2 represents the probability of the system occupying a state with
energy Ek.

The second quantity that is of interest is the expectation value of the dipole moment

d = ⟨ψ| d̂ |ψ⟩ =
N∑

n,k=1

c∗n(t) ck(t) e
iωnkt dnk. (18)

From now on we assume the driving field E(t) is polarized in z-direction which, according
to Eq. 16, leaves only the z-component of d of concern. With that in mind, dz will be
referred to simply as d and Eq. 18 can be rewritten as

d(t) =
N∑

n,k=1

c∗n(t) ck(t) e
iωnkt dnk. (19)

3 Numerical solution

The objective of this chapter is to solve Eq. 17 numerically and then compute the dipole
moment from Eq. 19. Firstly, Eq. 17 will be treated as an initial value problem with the
initial values

ck(0) =

{
1 if k = 1

0 otherwise.
(20)

This means the system starts with a fully occupied ground state and no other state is
populated. To solve this initial value problem, a Runge-Kutta method of 4th order will
be used and therefore briefly be explained here. The differential equations in this case
have the form

ẏ = f(t,y), (21)

where y and ẏ are vectors with the components yk and ẏk with k = 1, 2,..., N respectively.
The time is discretised into equally spaced intervals with a width ∆t. The method then
starts with the initial values of y(0) = y0. Then, for each discrete timestep tn four
approximate values k1,k2,k3 and k4 for the derivative vector ẏ are calculated in the
following way with yn := y(tn) [7]:

k1 = f(tn,yn) (22)

7



k2 = f

(
tn +

∆t

2
,yn +

∆t

2
k1

)
(23)

k3 = f

(
tn +

∆t

2
,yn +

∆t

2
k2

)
(24)

k4 = f (tn +∆t,yn +∆t k3) (25)

These values are then weighted and summed over to achieve the best approximation for
the actual derivative. This derivative acts as the slope in a simple linear equation to
estimate the next value of y, as can be seen in Eq. 26 [7].

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (26)

The implementation of this method in Python is shown below and follows [7].

def rk4(f, tlist, y_0, Omega_nk, omega, omega_nk):

n = y_0.shape[0]

nr_steps = len(tlist)

dt = tlist[1] - tlist[0]

y = np.zeros((n, nr_steps), complex)

y[:, 0] = y_0

for i in range(0, nr_steps - 1):

k1 = f(tlist[i], y[:, i], Omega_nk, omega, omega_nk)

k2 = f(tlist[i] + 0.5 * dt, y[:, i] + 0.5 * dt * k1,

Omega_nk, omega, omega_nk)

k3 = f(tlist[i] + 0.5 * dt, y[:, i] + 0.5 * dt * k2,

Omega_nk, omega, omega_nk)

k4 = f(tlist[i] + dt, y[:, i] + dt * k3,

Omega_nk, omega, omega_nk)

y[:, i + 1] = y[:, i] + (dt/6.0) * (k1 + 2*k2 + 2*k3 + k4)

return y

Here, the input function f represents Eq. 17 and is implemented as a matrix multiplica-
tion as follows:

import numpy as np

def f(t, y, Omega_nk, omega, omega_nk):

c = y
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sum_exp_terms = np.exp(1j * (omega - omega_nk) * t) +

np.exp(-1j * (omega + omega_nk) * t)

M = Omega_nk / 2 * sum_exp_terms

dc = - 1j * np.matmul(M.T, c)

return dc

The parameters implemented as matrices are

• Omega_nk ... the Rabi-frequency Ωnk defined in Eq. 16

• omega_nk ... the resonant frequency ωnk defined in Eq. 1

• omega ... the frequency ω of the driving field E(t)

In this way, the implementation of the Runge-Kutta method rk4 uses the function f

to calculate the derivative for each time step and finally returns the solution matrix y
containing the coefficients ck for all time steps.

This leaves us with the task of calculating the expectation value of the dipole moment
d as defined in Eq. 19 which is realized below.

def calculate_dipole_moment(tlist, clist, omega_nk, d_nk):

c_list_conjugate = np.conj(c_list)

exp_matrix = np.exp(1j * omega_nk[:, :, np.newaxis] * tlist)

d_matrix = d_nk[:, :, np.newaxis]

c_matrix = c_list_conjugate[:, np.newaxis, :] *

c_list[np.newaxis, :, :]

d = np.sum(c_matrix * exp_matrix * d_matrix, axis=(0, 1))

# dipole moment is a real number

if np.all(np.isclose(d.imag, 0, atol=1e-13)):

d = d.real

else:

print("Warning: d is not real.")

return d

In this implementation clist is the output of the Runge-Kutta function rk4 and d_nk

is the dipole moment in matrix form. The calculated dipole moment is then returned as
an array for all time steps.
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4 Validation of numerical solution

To validate the numerical solution discussed in Chapter 3, we seek an analytical solu-
tion for Eq. 17 and compare the two solutions. To enable an analytical solution it is
necessary to simplify the differential equations by applying the so-called rotating wave
approximation. This approximation neglects the term e−i(ω+ωnk)t since we assumed that
δ = ω−ωnk ≪ ω+ωnk and therefore the term only represents a very fast oscillation with
no significant influence on the oscillation between two energy levels [8]. Next, we restrict
ourselves to a two-level system, thereby Eq. 17 reduces to the following expression:

ċ1(t) = −i c2(t)
Ω

2
eiδt (27)

ċ2(t) = −i c1(t)
Ω

2
e−iδt. (28)

Here, we used the fact that Ωnk = Ωkn and Ωnn = 0.

Next, we differentiate Eq. 27 again and substitute ċ1 in Eq. 28 leading to [8]

c̈1(t)− iδċ1(t) +
Ω2

4
c1(t) = 0. (29)

This differential equation can now easily be solved using the ansatz c1(t) = eλt resulting
in the general solution

c1(t) = ei
δ
2
t
(
K1e

i
ΩR
2

t +K2e
−i

ΩR
2

t
)
, (30)

where we have introduced the Rabi flopping frequency defined as follows [8]

ΩR =
√
δ2 +Ω2. (31)

Taking the time-derivative of Eq. 30 and substituting it into Eq. 27 yields the general
solution for the second coefficient

c2(t) = − 1

Ω
e−i δ

2
t
(
K1e

i
ΩR
2

t (δ +ΩR) +K2e
−i

ΩR
2

t (δ − ΩR)
)
. (32)

The specific solutions for the intitial conditions c1(0) = 1 and c2(0) = 0 are then given
by
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c1(t) = ei
δ
2
t

(
cos

(
ΩRt

2

)
− i

δ

ΩR
sin

(
ΩRt

2

))
(33)

c2(t) = −i Ω
ΩR

e−i δ
2
t sin

(
ΩRt

2

)
. (34)

Note that it is straight-forward to calculate the dipole moment from these expressions
using Eq. 19. For the actual numerical calculations, we use values obtained for the
molecule 4-amino-4’-nitrobiphenyl. These values are taken from [1] and shown in Tables 1
and 2. Note that the values are given in electron volts and Debye but the calculations
are performed in atomic units, since the equations were derived using atomic units. The
solutions can be found in Figs. 1-3.

Table 1: Parameters of the driving field.
E0...amplitude of the driving field
ω...frequency of the driving field

E0 / eV ω / eV

0.0866 2.17

Table 2: Simulation parameters for the molecule 4-amino-4’-nitrobiphenyl.
dnk...dipole moment between states |φn⟩ and |φk⟩
ωnk...resonance frequency between levels En and Ek

Ωnk...Rabi frequency between states |φn⟩ and |φk⟩
n, k...the row and column index of the matrices

dnk / D ωnk / eV Ωnk / eV[
0 7.76

7.76 0

] [
0 −2.17

2.17 0

] [
0 0.14

0.14 0

]

As demonstrated in Figs. 1-3, the numerically approximated solution matches the ana-
lytical one. The order of magnitude of the error determined using the l2-norm is 10−12.
Also, the numerically exact solution is very close to the other two. The deviation is the
result of the term e−i(ω+ωnk)t that is neglected in the rotating wave approximation but
not in the numerically exact solution. This term introduces an added high frequency to
the oscillation.

11



Fig. 1: Ground state occupation as a function of time. Numerical solution without ro-
tating wave approximation (black), numerical solution with rotating wave ap-
proximation (blue), analytical solution with rotating wave approximation (red).
The parameters used for these calculations can be seen in Tables 1 and 2.
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Fig. 2: Excited state occupation as a function of time. Numerical solution without rotat-
ing wave approximation (black), numerical solution with rotating wave approxi-
mation (blue), analytical solution with rotating wave approximation (red). The
parameters used for these calculations can be seen in Tables 1 and 2.
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Fig. 3: Dipole moment as a function of time. Numerical solution without rotating wave
approximation (black), numerical solution with rotating wave approximation
(blue), analytical solution with rotating wave approximation (red). The param-
eters used for these calculations can be seen in Tables 1 and 2.
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5 Results

For the main computations, we consider the molecule NH2-4P-NO2 with the chemical
formula C24H18O2N2 as an example. It is composed of an amino group (NH2), four
phenyl groups and a nitro group (NO2). For visualization the HOMO (highest occupied
molecular orbital) and LUMO (lowest unoccupied molecular orbital) of this molecule are
shown in Figs. 4 and 5.

Fig. 4: The HOMO (highest occupied molecular orbital) of NH2-4P-NO2 with the amino
group on the left connected to four benzene rings and the nitro group on the right.
The simulation is taken from [2] and visualized using the software VESTA 3 [5].

Fig. 5: The LUMO (lowest unoccupied molecular orbital) of NH2-4P-NO2 with the
amino group on the left connected to four benzene rings and the nitro group
on the right. The simulation is taken from [2] and visualized using the software
VESTA 3 [5].

First we consider a two-level-system consisting of the HOMO and LUMO of the molecule
NH2-4P-NO2. Later, higher energy levels will be added up to a five-level-system. The
parameters of the system for this molecule are taken from [2] and can be found in Table 3.
Note that for the computations only the relevant submatrix of the complete matrix is
considered. So for a N -level-system, only the N ×N submatrix is used.

The solution of the two-level-system for various detunings δ21 = ω − ω21 can be seen in
Figs. 6a-6c. In Fig. 6a the frequency ω of the driving field matches the resonance fre-
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Table 3: Simulation parameters for the molecule NH2-4P-NO2 for a 2- and 3-level-system
[2].
dnk...dipole moment between states |φn⟩ and |φk⟩
ωnk...resonance frequency between levels En and Ek

Ωnk...Rabi frequency between states |φn⟩ and |φk⟩
n, k...the row and column index of the matrices

dnk / D 0.00 −6.28 6.53
−6.28 0.00 −15.08
6.53 −15.08 0.00


ωnk / eV0.00 −2.69 −3.79

2.69 0.00 −1.10
3.79 1.10 0.00


Ωnk / eV 0.00 −0.11 0.12

−0.11 0.00 −0.27
0.12 −0.27 0.00


quency ω21 exactly, resulting in the maximum possible oscillation. When the frequency
is slightly off as in Fig. 6b, the excited state is never fully occupied and the ground
state never empty. In Fig. 6c the driving field frequency is far away from the resonant
frequency. The ground state is almost fully occupied and the excited state almost empty
with only slight oscillations.

What can be observed in Fig. 6a is that in the resonant case the frequency of the dipole
moments envelope is the same as the frequency at which the occupation of the states
oscillates. When moving away from resonance, the dipole moments envelope broadens
and eventually develops a new node between the previous nodes. This intermediate state
is depicted in Fig. 6b. The newly developed nodes half the period of the envelope, which
can be observed in Fig. 6c [1].

Next, we will look at systems with more than two levels going up to a five-level-system.
The solutions for those systems are shown in Figs. 7a-9b. In Figs. 7a and 7c one can
see the maximum possible excitation of the second and third level if the frequency of
the driving field matches the respective resonance frequency. Fig. 7b shows that if the
driving field frequency is the mean of the resonance frequencies ω21 and ω31, both levels
are approximately equally excited.
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Table 4: Simulation parameters for the molecule NH2-4P-NO2 for a 4- and 5-level-system
with E0 = 0.0866 V/Å and modified dipole moment [2].
dnk...dipole moment between states |φn⟩ and |φk⟩
ωnk...resonance frequency between levels En and Ek

Ωnk...Rabi frequency between states |φn⟩ and |φk⟩
n, k...the row and column index of the matrices

dnk / D
0.00 −6.28 6.53 2.54 2.54
−6.28 0.00 −15.08 0.00 0.00
6.53 −15.08 0.00 0.00 0.00
2.54 0.00 0.00 0.00 −12.60
2.54 0.00 0.00 −12.60 0.00


ωnk / eV

0.00 −2.69 −3.79 −4.41 −4.78
2.69 0.00 −1.10 −1.72 −2.09
3.79 1.10 0.00 −0.62 −1.00
4.41 1.72 0.62 0.00 −0.38
4.78 2.09 1.00 0.38 0.00


Ωnk / eV

0.00 −0.11 0.12 0.05 0.05
−0.11 0.00 −0.27 0.00 0.00
0.12 −0.27 0.00 0.00 0.00
0.05 0.00 0.00 0.00 −0.23
0.05 0.00 0.00 −0.23 0.00



For the 4- and 5-level-system the probabilities for the transition to level 4 and 5 are
zero. So, to achieve excitation in level 4 and 5, the dipole moments d14 and d15 have to
be set to non-zero artificially. Here, we choose d14 = d41 = d15 = d51 = 1 e ·a0 ≈ 2.54 D.
This can be seen from the results shown in Figs. 8a and 8b, where the driving field
oscillates at a frequency that is not near the resonant frequency ω41. At a driving field
amplitude of E0 = 0.0866 V/Å the system behaves as expected for the given frequency,
as can be seen in Fig. 8a. However, if the driving field is much stronger, an excitation in
level 4 is possible even outside the resonant frequency. This can be observed in Fig. 8b,
where the amplitude is five times the amplitude in Fig. 8a. The same phenomenon is
illustrated in Figs. 9a and 9b for a 5-level-system.
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Table 5: Simulation parameters for the molecule NH2-4P-NO2 for a 4- and 5-level-system
with E0 = 0.4332 V/Å and modified dipole moment [2].
dnk...dipole moment between states |φn⟩ and |φk⟩
ωnk...resonance frequency between levels En and Ek

Ωnk...Rabi frequency between states |φn⟩ and |φk⟩
n, k...the row and column index of the matrices

dnk / D
0.00 −6.28 6.53 2.54 2.54
−6.28 0.00 −15.08 0.00 0.00
6.53 −15.08 0.00 0.00 0.00
2.54 0.00 0.00 0.00 −12.60
2.54 0.00 0.00 −12.60 0.00


ωnk / eV

0.00 −2.69 −3.79 −4.41 −4.78
2.69 0.00 −1.10 −1.72 −2.09
3.79 1.10 0.00 −0.62 −1.00
4.41 1.72 0.62 0.00 −0.38
4.78 2.09 1.00 0.38 0.00


Ωnk / eV

0.00 −0.57 0.59 0.23 0.23
−0.57 0.00 −1.36 0.00 0.00
0.59 −1.36 0.00 0.00 0.00
0.23 0.00 0.00 0.00 −1.14
0.23 0.00 0.00 −1.14 0.00


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(a) δ21 = 0.00 eV, ω = 2.689 eV

(b) δ21 = 0.04 eV, ω = 2.729 eV

(c) δ21 = 0.30 eV, ω = 2.989 eV

Fig. 6: Rabi oscillations of a two-level-system with ground state occupation, excited state
occupation and dipole moment as a function of time. The simulation parameters
used for the calculation can be found in Table 3. The amplitude of the driving
field is E0 = 0.0866 V/Å.
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(a) ω = ω21 = 2.69 eV

(b) ω = (ω21+ω31)
2 = 3.24 eV

(c) ω = ω31 = 3.79 eV

Fig. 7: Rabi oscillations of a 3-level-system with ground state, first two excited states
and dipole moment as a function of time. The simulation parameters used for
the calculation can be found in Table 3. The amplitude of the driving field is E0

= 0.0866 V/Å.

20



(a) E0 = 0.0866 V/Å

(b) E0 = 0.4332 V/Å

Fig. 8: Rabi oscillations of a 4-level-system with ground state, first three excited states
and dipole moment as a function of time. The simulation parameters used for
the calculation for (a) can be found in Table 4, for (b) in Table 5. The frequency
of the driving field is ω = 3.58 eV.
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(a) E0 = 0.0866 V/Å

(b) E0 = 0.4332 V/Å

Fig. 9: Rabi oscillations of a 5-level-system with ground state, first four excited states
and dipole moment as a function time. The simulation parameters used for the
calculation for (a) can be found in Table 4, for (b) in Table 5. The frequency of
the driving field is ω = 4.20 eV.
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6 Summary

The focus of this work is to numerically predict the time evolution of the occupations
in a N -level-system that is driven by a periodic external electric field. The derivation
of the problem in Chapter 2 leads to the differential equations in Eq. 17. Furthermore
a formula for the dipole moment is derived (Eq. 19). The numerical solution using the
Runge-Kutta-method is explained in Chapter 3 and then validated in Chapter 4. This
validation involves solving the differential equations for a two-level-system analytically
using the rotating wave approximation. This solution is then compared to the numer-
ical solution with the same approximation. The comparison can be seen in Figs. 1-3,
demonstrating the numerical error to be indeed very small, thereby indicating that the
numerical solution can be trusted. The results are shown in Figs. 6-9 starting with a
2-level-system and ending at a 5-level-system. They show the occupation of the levels
together with the systems dipole moment over time.
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