
Bachelor Thesis

Numerical Solution of the
Time-Dependent

1D-Schrödinger Equation
using

Absorbing Boundary Conditions

Christoph Wachter

Supervisor: Assoc.-Prof. Dr. Peter Puschnig

University of Graz
Institute of Physics

September, 2017

Abstract

Using computational methods is an efficient way to solve the time-dependent Schrödinger
equation. But using such methods, one generally deals with unwanted reflections at
the boundaries, that necessarily constrain the computation area. To minimize these
reflections absorbing boundary conditions are introduced. We solve the time-dependent
Schrödinger equation with the Crank-Nicolson method and absorbing boundary condi-
tions and determine the effectiveness of the absorbing boundary conditions, as well as
calculate transmission coefficients for various shapes of potential barriers.

i

Contents

Abstract i

1 Introduction 2

2 Theory 3
2.1 Time-dependent Schrödinger Equation 3
2.2 Absorbing Boundary Conditions . 4

3 Computational Methods 7
3.1 Crank-Nicolson Method . 7
3.2 Implementation of Absorbing Boundary Conditions 9

4 Results 14
4.1 Reflection Properties of Absorbing Boundary Conditions 14
4.2 Potential Scattering and Transmission Coefficients 20

4.2.1 Rectangular Barrier . 21
4.2.2 Rectangular Double Barrier . 23
4.2.3 Smooth Double Barrier . 25

5 Conclusion 28

Bibliography 29

1

Chapter 1

Introduction

When first confronted with quantum mechanics, it is often difficult to visualize the
physical situation. While in classical mechanics, trajectories for particles can be easily
sketched and understood, even a free quantum mechanical particle is difficult to visualize.
Additionally, scattering is generally treated using plane waves instead of wave packets.
To describe these processes, one commonly uses the time-independent Schrödinger
equation, which is a stark contrast to the time-dependent nature of scattering processes.
For this and other reasons the plane wave approach has been criticized [1]. While
solving the time-dependent Schrödinger equation analytically is difficult, and for general
potentials, even impossible, numerical solutions are much easier to obtain. Moreover,
using computational methods animations of Gaussian wave packets and scattering
processes can be created [2] and transmission coefficients for nearly arbitrary potential
barriers can be calculated.

But when solving the time-dependent Schrödinger equation numerically a certain prob-
lem, aside from the numerical accuracy of the used scheme, arises. The spatial domain
has to be restricted by boundaries. These boundaries cause undesirable reflections
that disturb the solution. This is especially problematic when simulating a scattering
process, as the scattered wave function will reflect back at the potential barrier. While
the domain can be enlarged to fix this problem, doing so either reduces accuracy
or increases computation time. To solve this problem, many different methods have
been developed. These include the use of a negative imaginary potential near the
boundaries [3] and so called absorbing boundary conditions [4–6].

In this thesis we use absorbing boundary conditions, specifically those introduced in
Ref. [6], together with the Crank-Nicolson scheme [7] to solve the time-dependent
Schrödinger equation numerically with Python [8]. We will test the effectiveness of the
boundary conditions using a Gaussian wave packet and determine how changing certain
parameters affects the boundary conditions. Then we will use the absorbing boundary
conditions to calculate the transmission coefficient of a Gaussian for a rectangular
barrier, a rectangular double barrier and a smooth double barrier.

2

Chapter 2

Theory

In this chapter, a brief revision of the necessary quantum mechanics is given, and
absorbing boundary conditions for the time-dependant Schrödinger are derived.

2.1 Time-dependent Schrödinger Equation

The time-evolution in a one-dimensional quantum mechanical system is determined by
the time-dependent Schrödinger equation (TDSE)

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t) (2.1)

with the Hamilton operator

Ĥ = − ~2

2m

∂2

∂x2
+ V (x, t). (2.2)

Here, ~ is the reduced Planck constant, i =
√
−1, m the mass of the particle, V the

potential and ψ the wave function. If Ĥ is not time-dependent, the formal solution of
the TDSE is given by

ψ(x, t) = Û(t)ψ(x, 0) = e−
iĤt
~ ψ(x, 0), (2.3)

where Û(t) is called the propagator. Since Û is a unitary operator1, the time-evolution
operator Û conserves the norm of the wave function

|ψ(x, t)|2 = |ψ(x, 0)|2. (2.4)

Note that the norm squared of the wave function, |ψ(x, t)|2, describes the probability
density of the position of the particle.

1Û Û† = 1

3

Chapter 2 Theory

2.2 Absorbing Boundary Conditions

When using computational methods to solve the TDSE, the spatial domain is necessarily
restricted by the boundaries of the simulation domain. The boundaries generally cause
unwanted reflections, which can disrupt the results of the computer simulation. However,
simply enlarging the computation area to alleviate the problem is inefficient. Therefore,
here we construct absorbing boundary conditions (ABCs) to minimize reflections at
the borders. The derivations in this section follow Ref. [6].

First we consider the elementary solution of the TDSE for particles with definite energy,
higher than the potential V :

ψ(x, t) = ei(kx−ωt) (2.5)

By inserting the plane wave ansatz (2.5) back into the TSDE, we obtain the dispersion
relation

~2k2 = 2m(~ω − V), (2.6)

or in terms of ω

ω(k) =
~k2

2m
+
V

~
. (2.7)

Comparison of Eq. (2.7) with the TDSE leads to the the following correspondence:

k ←→ −i ∂
∂x
, ω ←→ i

∂

∂t
(2.8)

Next, we will assume that the potential V is either constant, or a slowly varying
function, near the boundaries. We can then calculate the group velocity from the
dispersion relation, (2.6):

vg =
∂ω(k)

∂k
=

~k
m
. (2.9)

A positive group velocity represents a wave travelling to the right, while a negative one
represents a wave travelling to the left. If we only want waves leaving the domain at the
left boundary, we need to restrict the group velocity to be positive. In mathematical
terms this means

~k
m

=

∣∣∣∣~km
∣∣∣∣. (2.10)

For the right boundary, k needs to be replaced with −k. But this boundary condition
is not rational, due to the absolute value function, and therefore cannot be converted
to a partial differential equation through (2.8). Thus we need to use an approximation.
We choose

~k
m
≡ q, (2.11)

4

Chapter 2 Theory

where q is positive and real. Using the correspondence (2.8) yields the following
differential equation: (

i
∂

∂x
+
mq

~

)
ψ = 0 (2.12)

If this differential equation is satisfied on the boundary, then no waves with group
velocity q are reflected, therefore waves with this group velocity are essentially absorbed.
Since waves, in general, consist of more than one component with different group
velocities, the operator in (2.12) can be generalized by considering more group velocities,
which are absorbed. This results in:

p∏
l=1

(
i
∂

∂x
+
mql
~

)
ψ = 0. (2.13)

The effect of (2.13) at the boundary differs depending on the choice of ql. If qk 6= ql for
k 6= l, then p different group velocities, of the computed wave solution, are absorbed
to the first order. If qk = ql for k 6= l, then the group velocity qk is absorbed to pth
order.

It should be noted that one can also derive ABCs for the TDSE by directly using the
dispersion relation [4, 5]. Nonetheless, it can be shown [6] that those ABCs are special
instances of Eq. (2.13).

Let us now derive some more specific ABCs from Eq. (2.13), starting with p = 2. Here
we use (2.8) again (

± k +
mq1

~

)(
± k +

mq2

~

)
= 0. (2.14)

In this equation the top sign applies at the right and the bottom sign at the left
boundary. If we multiply out (2.14) and use (2.6) to substitute for k2 we obtain

∓~k =
2

q1 + q2

(~ω − V) +
mq1q1

q1 + q2

. (2.15)

Continuing this process with p = 3(
± k +

mq1

~

)(
± k +

mq2

~

)(
± k +

mq3

~

)
= 0, (2.16)

leads to

∓~k =
2mh1(~ω − V) + h3

2m(~ω − V) + h2

, (2.17)

5

Chapter 2 Theory

where

h1 = m(q1 + q2 + q3),

h2 = m2q1q2q3

(
1

q1

+
1

q2

+
1

q3

)
,

h3 = m3q1q2q3.

Lastly, setting p = 4, we obtain the following equation

4m2(~ω − V)2 + 2m(±g1~k + g2)(~ω − V)± g3~k + g4 = 0, (2.18)

where

g1 = m(q1 + q2 + q3 + q4),

g2 = m2(q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4),

g3 = m3q1q2q3q4

(
1

q1

+
1

q2

+
1

q3

+
1

q4

)
,

g4 = m4q1q2q3q4.

This process can be repeated to derive ABCs of higher order in p.

6

Chapter 3

Computational Methods

In this chapter, the computational methods for solving the time-dependent Schrödinger
equation, as well as the numerical implementation of the ABC derived in Section 2.2
are given. Each section is followed by an implementation of the discussed schemes in
Python1.

3.1 Crank-Nicolson Method

In order to treat the TDSE numerically, we represent ψ(x, t) by its values at a set
of grid-points. For the spatial domain we choose x = xj = x0 + j∆x, with j ∈ [0, J],
where x0 represents the left boundary and ∆x is the grid spacing. Similarly, the time
domain has the range t = tn = n∆t, with n ∈ [0, N]. The values of the wave function
at the grid points will be abbreviated by

ψ(xj, tn) ≡ ψnj . (3.1)

After applying this discretization to the time-evolution given by Eq.(2.3), we obtain

ψn+1
j = e−iĤ∆tψnj = Û(∆t)ψnj . (3.2)

It is important to note that, since Û is unitary and preserves the norm of the wave
function, any approximations of Û(∆t) must be unitary as well. Therefore simply
expanding Û

ψn+1
j = (1− iĤ∆t)ψnj (3.3)

does not provide the desired result.

1In all the derivations and calculations in Chapters 3 and 4 ~ = 1 and m = 0.5, unless stated
otherwise.

7

Chapter 3 Computational Methods

To derive a unitary approximation, we start by splitting Û(∆t) as follows

ψn+1
j = e−

iĤ∆t
2 e−

iĤ∆t
2 ψnj , (3.4)

and multiply the equation from the left by Û †(∆t
2

) to obtain

e
iĤ∆t

2 ψn+1
j = e−

iĤ∆t
2 ψnj , (3.5)

or by expanding the exponential functions into a Taylor series and cutting off after the
second term (

1 +
iĤ∆t

2

)
ψn+1
j =

(
1− iĤ∆t

2

)
ψnj . (3.6)

Thus we have found a unitary method to approximate Û known as Cayley’s form

Û(∆t) = e−iĤ∆t '
(1− iĤ∆t

2
)

(1 + iĤ∆t
2

)
. (3.7)

By using the finite-difference representation [7] for the x derivative and Vj = V (xj),
Eq. (3.6) reads

ψn+1
j − i∆t

2

[
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2
−Vjψn+1

j

]
= ψnj +

i∆t

2

[
ψnj+1 − 2ψnj + ψnj−1

(∆x)2
−Vjψnj

]
.

(3.8)
It should be noted that (3.8) can also be obtained by applying the Crank-Nicolson
method to the TDSE (2.1).

Finally, following [9], we introduce the vector ψn = (ψn0 , · · · , ψnj , · · · , ψnJ), so we can
write (3.8) as a matrix equation:

U1ψ
n+1 = U2ψ

n. (3.9)

Here U1 and U2 represent two tridiagonal (J + 1)× (J + 1) matrices

U1 =


ξ0 −α
−α ξ1 −α

.

−α ξJ−1 −α
−α ξJ

 , U2 =


γ0 α
α γ1 α

.

α γJ−1 α
α γJ

 (3.10)

with

α =
i∆t

2∆x2
, ξj = 1 +

i∆t

2

(2

∆x2
+ Vj

)
, γj = 1− i∆t

2

(2

∆x2
+ Vj

)
. (3.11)

8

Chapter 3 Computational Methods

Python Implementation

Since the matrices (3.10) are tridiagonal, it is more efficient to only store the non-zero
entries. This can be accomplished through the usage of Pythons scipy.sparse package.
A code example for setting up U1 is given below2.

o = np.ones((J),complex)
alp = (1j)*dt/(2*dx**2)*o # alpha from (3.11)
xi = o + 1j*dt/2*(2/(dx**2)*o + V) # xi from (3.11)
diags = np.array([-1,0,+1]) # positions of the vectors in the matrix
vecs1 = np.array([-alp,xi,-alp])
U1 = scipy.sparse.spdiags(vecs1,diags,J,J) # create tridiagonal sparse matrix
U1 = U1.tocsc() # convert to different sparse format needed for further calculation

With an inital wave function ψ0 to start with, the linear system of equations (3.9) can
be solved for each time step using LU-Decompositon.

PSI = np.zeros((J,N),complex) # J times N array to store all solutions
PSI[:,0] = psi0 # psi(x,0)
LU = scipy.sparse.linalg.splu(U1) # compute LU-decomposition of U1
for n in range(0,N - 1): # loop over time-steps

b = U2.dot(PSI[:,n]) # right hand side of eq. (3.9)
PSI[:,n + 1] = LU.solve(b) # solve system of equations for each time step

Alternatively an analytical inversion of U1 as suggested in [9] can be used to easily
implement the Crank-Nicolson method into other computing languages and without
making use of packages.

3.2 Implementation of Absorbing Boundary

Conditions

The ABCs from Section 2.2 must be discretized before we can implement them into
the Crank-Nicholson method.

21j represents i =
√
−1.

9

Chapter 3 Computational Methods

p=2 ABC

Applying the correspondence relation to Eq. (2.15) we obtain

±i∂ψ
∂x
− ic1

∂ψ

∂t
+ (c1V − c2)ψ = 0, (3.12)

where

c1 =
2

q1 + q2

, c2 =
q1q2

2(q1 + q2)
. (3.13)

The top sign on the first term refers to the boundary condition applied to the xj = x0

boundary and the bottom sign refers to the xj = xJ boundary. This sign convention will
be used throughout this section. We will use the following finite-difference discretizations
[6] to approximate the derivatives in (3.12):

ψ ≈ 1

4

(
ψn+1
j±1 + ψn+1

j + ψnj±1 + ψnj
)
, (3.14)

∂ψ

∂x
≈ ± 1

2∆x

(
ψn+1
j±1 − ψn+1

j + ψnj±1 − ψnj
)
, (3.15)

∂ψ

∂t
≈ 1

2∆t

(
ψn+1
j±1 + ψn+1

j − ψnj±1 − ψnj
)
. (3.16)

Applying these discretizations to (3.12) results in the following ABC:

ζ1ψ
n+1
(0,J) + ζ2ψ

n+1
(1,J−1) = ζ3ψ

n
(0,J) + ζ4ψ

n
(1,J−1), (3.17)

where

ζ1 =

(
− i

2∆x
− ic1

2∆t
+

(c1V(0,J) − c2)

4

)
,

ζ2 =

(
i

2∆x
− ic1

2∆t
+

(c1V(0,J) − c2)

4

)
,

ζ3 =

(
i

2∆x
− ic1

2∆t
−

(c1V(0,J) − c2)

4

)
,

ζ4 =

(
− i

2∆x
− ic1

2∆t
−

(c1V(0,J) − c2)

4

)
.

(3.18)

Implementing Eq. (3.17) into the Crank-Nicolson scheme is straightforward, we simply
modify the matrices (3.10) as follows

U1 =


ζ1 ζ2

−α ξ1 −α
.

−α ξJ−1 −α
ζ2 ζ1

 , U2 =


ζ3 ζ4

α γ1 α
.

α γJ−1 α
ζ4 ζ3

 . (3.19)

10

Chapter 3 Computational Methods

p=3 ABC

Repeating this process with Eq. (2.17) leads to

±i(h2 − V)
∂ψ

∂x
∓ ∂2ψ

∂t∂x
− ih1

∂ψ

∂t
− (h3 − h1V)ψ = 0, (3.20)

where the hi are defined in Section 2.2. Eq. (3.20) contains an additional mixed
derivative, which we will approximate through [6]:

∂2ψ

∂t∂x
≈ ± 1

∆t∆x
(ψn+1

j±1 − ψn+1
j − ψnj±1 + ψnj). (3.21)

This discretization along with the ones given in (3.14) to (3.16) applied to (3.20) yields

ζp=3
1 ψn+1

(0,J) + ζp=3
2 ψn+1

(1,J−1) = ζp=3
3 ψn(0,J) + ζp=3

4 ψn(1,J−1), (3.22)

where

ζp=3
1 =

(
−
i(h2 − V(0,J))

2∆x
+

1

∆t∆x
− ih1

2∆t
−

(h3 − h2V(0,J))

4

)
,

ζp=3
2 =

(
i(h2 − V(0,J))

2∆x
− 1

∆t∆x
− ih1

2∆t
+

(h3 − h2V(0,J))

4

)
,

ζp=3
3 =

(
i(h2 − V(0,J))

2∆x
+

1

∆t∆x
− ih1

2∆t
+

(h3 − h2V(0,J))

4

)
,

ζp=3
4 =

(
−
i(h2 − V(0,J))

2∆x
− 1

∆t∆x
− ih1

2∆t
+

(h3 − h2V(0,J))

4

)
.

(3.23)

p=4 ABC

Rewriting Eq. (2.18) we obtain

p1
∂2ψ

∂t2
± p2

∂2ψ

∂t∂x
+ p3

∂ψ

∂t
± p4

∂ψ

∂x
+ p5ψ = 0, (3.24)

where p1 = −1, p2 = g1, p3 = i(g2 − 2V(0,J)), p4 = i(g1V(0,J) − g3), p5 = (V(0,J))
2 −

g2V(0,J) + g4 and the gi are defined in section 2.2. To discretize Eq. (3.24) we use the
following approximation for the second order time derivative

∂2ψ

∂t2
≈ 1

2∆t2
(ψn−1

j+1 − 2ψnj+1 + ψn+1
j+1 + ψn−1

j − 2ψnj + ψn+1
j), (3.25)

11

Chapter 3 Computational Methods

as well as the discretizations given in (3.14) to (3.16) and (3.21). Using these discretiza-
tions in (3.24) yields

ζp=4
1 ψn+1

(0,J) + ζp=4
2 ψn+1

(1,J−1) =

ζp=4
3 ψn(0,J) + ζp=4

4 ψn(1,J−1) + ζp=4
5 ψn−1

(0,J) + ζp=4
6 ψn−1

(1,J−1),
(3.26)

where

ζp=4
1 =

(
p1

2∆t2
− p2

∆t∆x
+

p3

2∆t
− p4

2∆x
+
p5

4

)
,

ζp=4
2 =

(
p1

2∆t2
+

p2

∆t∆x
+

p3

2∆t
+

p4

2∆x
+
p5

4

)
,

ζp=4
3 =

(
p1

∆t2
− p2

∆t∆x
+

p3

2∆t
+

p4

2∆x
− p5

4

)
,

ζp=4
4 =

(
p1

∆t2
+

p2

∆t∆x
+

p3

2∆t
− p4

2∆x
− p5

4

)
,

ζp=4
5 =

(
− p1

2∆t2

)
,

ζp=4
6 =

(
− p1

2∆t2

)
.

(3.27)

Note that Eq. (3.26) contains an additional time level, thus Eq. (3.9) must be modified

U1ψ
n+1 = U2ψ

n + Zψn−1 (3.28)

where

Z =


ζ5 ζ6

0
. . .

0
ζ6 ζ5

 . (3.29)

Python Implementation

To apply the ABCs, the sparse matrices used for the Crank-Nicolson method must be
modified as given in (3.19). This can be done as follows

zeta = np.array([0,zeta1,zeta2,zeta3,zeta4])
array containing zeta values from either (3.18) or (3.23)
o = np.ones((J),complex)

12

Chapter 3 Computational Methods

alp = (1j)*dt/(2*dx**2)*o # alpha from (3.11)
xi = o + 1j*dt/2*(2/(dx**2)*o + V) # xi from (3.11)
xi[0] = zeta[1] ; xi[J-1] = zeta[1] # insert zeta1 in the diagonal
up = -alp ; dn = -alp # off-diagonal elements
up[1] = zeta[2] ; dn[J-2]= zeta[2] # insert zeta2
vecs = np.array([dn,xi,up])
diags = np.array([-1,0,+1])
U1 = sparse.spdiags(vecs,diags,J,J)
U1 = U1.tocsc()

The p = 4 ABC needs two previous time levels to calculate the subsequent time level,
thus we need to alter the scheme discussed in the previous section.

LU = scipy.sparse.linalg.splu(U1)
LW = scipy.sparse.linalg.splu(W1)
for n in range(0,N - 1):

if n == 0:
b = W2.dot(PSI[:,n])
PSI[:,n+1] = LW.solve(b)

else:
b = U2.dot(PSI[:,n]) + Z.dot(PSI[:,n-1])
PSI[:,n+1] = LU.solve(b)

Here W1,W2 are the standard Crank-Nicolson matrices from Eq. (3.10). The reason for
this will be explained in Section 4.1.

13

Chapter 4

Results

In this chapter, first some general properties of the ABCs are tested and then the ABCs
are applied to one dimensional potential scattering in order to determine transmission
coefficients.

4.1 Reflection Properties of Absorbing Boundary

Conditions

To evaluate the effectiveness of the ABCs, we consider a Gaussian wave packet as our
initial condition

ψ(x, 0) = 4

√
1

σ2
0π

exp

[
ik0x−

(x− ξ0)2

2σ2
0

]
. (4.1)

This wave packet is centred at ξ0, has an average momentum of k0 and a initial width
of σ0. To prevent any disturbances inside the domain the potential V is set to zero. For
calculations throughout this section, the parameters listed in Table 4.1 will be used,
unless stated otherwise.

Table 4.1

Parameters J x0 xJ ∆t ξ0

Values 1024 −10 10 0.0001 0

The grid spacing ∆x can be calculated through ∆x = (xJ − x0)/J and the other
parameters k0 and σ0 will be specified in the corresponding figure captions or in the
text. For the ABCs we choose ql = q0, where q0 is positive and non-zero. If q0 would be
chosen negative, rather than absorbing the wave packet, the boundary condition would
increase the norm of the wave packet. A comparison to demonstrate the difference

14

Chapter 4 Results

between the Crank-Nicolson method with and without ABCs using (4.1) as initial
condition can be seen in Fig. 4.1 below.

t= 0.00

(e)

t= 0.25

(f)

t= 0.50

(g)

t= 0.75

(h)

t= 0.00

(a)

t= 0.25

(b)

t= 0.50

(c)

t= 0.75

(d)

Figure 4.1: Comparison between the standard Crank-Nicolson scheme (a)-(d) and the modified scheme
with ABCs (e)-(h). Parameters used: x0 = 0, xJ = 10, ξ0 = 5, k0 = 7, σ0 = 1.0 and
q0 = 2k0.

We will compare the relative reflective properties of the three different ABCs with
respect to each other. To do this we calculate the reflection ratio R at time tn through

R =

∑J
j=0 |ψnj |2∆x∑J
j=0 |ψ0

j |2∆x
. (4.2)

In this context, if R = 1, the wave packet is completely reflected, e.g. no ABCs are
used like in Fig. 4.1 (a)-(d), and if R = 0, the wave packet is completely absorbed,
representing perfect ABCs. Thus we aim for a reflection ratio as close to zero as possible.
According to Eq. (2.13), the following choice of q0 should give us the best results:

q0 =
~k0

m
= 2k0 (4.3)

15

Chapter 4 Results

Nonetheless, we will start our reflection test by calculating R as a function of q0/|k0| for
several fixed values of k0. Note that, since the ABCs are not perfect, a small fraction of
the wave packet is still reflected. We are interested in the reflection ratio after the wave
packet is absorbed at the xJ -boundary, but before the reflected wave packet reaches the
x0-boundary and is absorbed again, further decreasing R. Hence we need to evaluate
R at a time tN , when the reflected wave packet is near the centre of the domain. We
calculate tN through the (average) velocity of the wave packet v = 2k0 and the distance
travelled s:

tN =
s

v
(4.4)

We take s = 24, giving the ABCs enough time to absorb the wave packet.

Reflection ratios for all three orders of ABCs and for different values of k0 are shown
in Fig. 4.2 on page 17 and Fig. 4.3 on page 18. From these plots we can deduce the
following:

• For all three orders of absorbing boundary conditions R has a minimum. We will
from now on refer to the q0 where R is minimal as qmin.

• For k0 = 5, qmin is close to 2k0, except for p = 4, as predicted in Eq. (4.3), but
for higher values of k0, qmin changes. This change is more drastic for p = 3 and
p = 4.

• For higher values of k0 the reflection ratios for all three ABCs are about equal at
2k0.

The values of qmin and the corresponding reflection ratios from Fig. 4.2 and Fig. 4.3
are listed in Table 4.2 on page 17.

As stated above qmin shifts with increasing k0. This can be attributed to numerical
accuracy. We consider the average wavelength of a Gaussian wave packet λ0 = 2π/k0

and calculate the grid-points per wavelength

λ0

∆x
=

2π

k0∆x
. (4.5)

Increasing k0 result in less points per wavelength, thus we need to in turn decrease the
grid spacing to keep the ratio the same. We repeat the previous simulation with k0 = 15
and p = 2, but use different values for J (and therefore ∆x). The results are plotted in
Fig. 4.4. qmin changes with decreasing grid spacing and approaches 2k0. Additionally,
the minimal reflection ratio decreases as well. Similar results can be obtained for p = 3.
It is important to note that for Fig. 4.4 we chose ∆t = 0.001, to reduce computation
time. This, however, does not influence qmin or R(qmin) in any significant way.

The p = 4 ABC has some different properties in comparison to the p = 2 and p = 3
ABCs. Since the first step in the algorithm is different from the rest, placing the initial

16

Chapter 4 Results

wave packet near the boundary decreases the effectiveness of the ABC. Using the
Crank-Nicolson matrices (3.10) instead of the already modified matrices (3.19) for the
first step improves this somewhat, but does not negate it. Thus p = 2 or p = 3 ABCs
should be used in these situations. Additionally p = 4 depends more on the time step
∆t. Changing ∆t from 0.0001 to 0.001 increases the reflection ratio about an order of
magnitude.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
q0/|k0|

10-6

10-5

10-4

10-3

10-2

10-1

R

p= 2

p= 3

p= 4

Figure 4.2: Reflection ratio as a function of q0/|k0| evaluated at tN . Parameters used: k0 = 5, tN = 2.4
and σ0 = 1.5. q0 starts at k0 and is increased up to 4k0 with step size ∆q0 = 0.1.

Table 4.2

k0 Order qmin R(qmin) R(2k0)

5
p = 2 1.960 · |k0| 1.185 · 10−5 1.312 · 10−5

p = 3 2.000 · |k0| 5.893 · 10−7 5.893 · 10−7

p = 4 1.580 · |k0| 1.831 · 10−7 3.749 · 10−7

10
p = 2 1.870 · |k0| 2.696 · 10−6 4.106 · 10−6

p = 3 2.540 · |k0| 1.957 · 10−6 5.780 · 10−6

p = 4 1.300 · |k0| 9.698 · 10−7 5.884 · 10−6

15
p = 2 1.733 · |k0| 3.432 · 10−6 2.672 · 10−5

p = 3 2.813 · |k0| 2.949 · 10−6 2.915 · 10−5

p = 4 3.440 · |k0| 2.235 · 10−6 2.972 · 10−5

17

Chapter 4 Results

1.0 1.5 2.0 2.5 3.0 3.5 4.0
q0/|k0|

10-6

10-5

10-4

10-3

10-2

10-1

R

p= 2

p= 3

p= 4

(a) k0 = 10, tN = 1.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
q0/|k0|

10-5

10-4

10-3

10-2

10-1

R

p= 2

p= 3

p= 4

(b) k0 = 15, tN = 0.8

Figure 4.3: Reflection ratio as a function of q0/|k0| evaluated at tN . Parameters used: σ0 = 1.5.
q0 starts at k0 and is increased up to 4k0 with step size ∆q0 = 0.1.

18

Chapter 4 Results

.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
q0/|k0|

10-7

10-6

10-5

10-4

10-3

10-2

R

J= 1024

J= 2048

J= 3072

J= 6144

Figure 4.4: Reflection ratio for p = 2 as a function of q0/|k0| calculated for various choices of J .
Parameters used: k0 = 15, σ0 = 1.5 and ∆t = 0.001. q0 starts at k0 and is increased up to
3k0 with step size ∆q0 = 0.1.

Now we will determine how the initial width σ0 of the wave packet affects the reflection
ratio. To do this, we calculate the reflection ratio as a function of time. Before that,
it is important to note that the packet width does influence qmin. But this change in
qmin, at least for the values of σ0 used in this thesis, is negligible. For the parameters
we choose k0 = 15 and q0 = 2k0. The results of the calculations for p = 2 are shown in
Fig. 4.5 on page 20.

It is obvious from the plots in Fig. 4.5 that the absorption process takes longer for
wider wave packets. Furthermore the reflection ratio is lower for a wider spread. The
difference between the reflection ratios of σ0 = 0.25 and σ0 = 1.0 is multiple orders of
magnitude, as can be seen in Table 4.3. To explain this, we consider the momentum
uncertainty of a Gaussian wave packet:

∆k =
1

σ0

√
2

(4.6)

A wave packet with small momentum uncertainty represents a wave-like object, with
∆k = 0 simply being a plane wave, while a wave packet with large momentum

19

Chapter 4 Results

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
σ0 = 0.25

σ0 = 0.50

σ0 = 0.75

σ0 = 1.00

Figure 4.5: Reflection ratio as a function of time calculated for various choices of σ0.
Parameters used: x0 = 0, xJ = 10, J = 3072, ξ0 = 8, k0 = 15 and q0 = 2k0.

uncertainty represents a particle-like object. Since the ABCs are derived from the
plane wave ansatz (2.5), it is not surprising that the reflection ratio is lower for a
higher momentum uncertainty (and therefore lower initial width). Similar results can
be obtained for p = 3.

Table 4.3

σ0 t R

0.25 0.30 3.507 · 10−4

0.50 0.30 1.570 · 10−5

0.75 0.30 2.766 · 10−6

1.00 0.30 7.461 · 10−7

4.2 Potential Scattering and Transmission

Coefficients

We will now apply the ABCs to quantum mechanical potential scattering and calculate
the transmission coefficient for a Gaussian wave packet numerically. Due to the ABCs

20

Chapter 4 Results

there will be, for the most part, negligible back reflection at the boundaries. To
determine the transmission probability we use the following method

T =

∑N
n=0 JT (xJ−2, tn)∑N
n=0 JI(xJ−2, tn)

. (4.7)

Here JT and JI are the probability current at the third to last spacial grid point
calculated through

J (xJ−2, tn) =
1

i

(
ψ
n

J−2

ψnJ−3 − ψnJ−1

2∆x
− ψnJ−2

ψ
n

J−3 − ψ
n

J−1

2∆x

)
, (4.8)

where the bar denotes the complex conjugate. Note that to obtain the initial probability
current we perform a calculation with no barrier present, that is the potential set to
zero. For the calculations in this section we use the parameters listed in Table 4.4
unless stated otherwise. The average energy of the wave packet is 〈E〉 = 100. For the

Table 4.4

Parameters J x0 xJ ∆t ξ0 k0

Values 3072 −20 10 0.001 −10 10

ABCs we use p = 3 and set q0 = 2k0. To obtain the transmission curves we vary the
potential height V0 from 0 to 150 in integer steps.

Note that it is possible to analytically calculate the transmission coefficient for a
Gaussian wave packet through [1]

T =

∫ ∞
−∞

dkP (k)T (k) =

∫ ∞
−∞

dk|ϕ(k, 0)|2T (k) (4.9)

where ϕ(k, 0) is the initial wave function in momentum space and T (k) is the transmis-
sion coefficient of a plane waves through the barrier as a function of momentum. This
is of course only possible if T (k) can be calculated for the barrier in question.

4.2.1 Rectangular Barrier

We start with a basic rectangular barrier

VBarrier(x, a, w) =


0, x < a− w

2

V0, a− w
2
≤ x ≤ a+ w

2

0, x > a+ w
2

(4.10)

21

Chapter 4 Results

centred at a and with width w.

For this barrier, the plane wave transmission coefficient reads as follows (for a derivation
see for example Ref. [10])

T (k) =

{
4ρ2

(1+ρ2)2 sinh2(κw) + 4ρ2 , E < V0

4|ρ|2
(1−|ρ|2)2 sin2(|κ|w) + 4|ρ|2 , E ≥ V0

(4.11)

with k =
√
E, κ =

√
V0 − E, ρ = κ

k
and w the barrier width. We can therefore evaluate

Eq. (4.9) to obtain the analytic transmission values and compare them to the numerical
results obtained through Eq. (4.7).

0 50 100 150
V0

0

2

4

6

8

10

Er
ro

r(%
)

(a)

σ0 = 1.0

σ0 = 2.0

σ0 = 3.0

0 50 100 150
V0

(b)

σ0 = 1.0

σ0 = 2.0

σ0 = 3.0

Figure 4.6: (a) Percentage error as a function of potential strength. Parameters used: tN = 2.0, a = 5
and w = 0.5, (b) same as (a) but w = 1.0.

To this end we calculate the percentage error for a barrier with width 0.5 and a barrier
with width 1.0. The results are plotted in Fig. 4.6. From this Figure we see that
the percentage error is largest as 〈E〉 < V0. The error is also significantly larger for
the wider barrier. This happens since the transmission probability is already low for
these potential heights, as in T << 0.1. At this point the leftover wave packet that is
reflected at the boundary will start to contribute to the error. Additionally, it should
be noted that the transmitted wave packet has, in general, not the same velocity as
the initial wave packet (for further discussion of the phenomenon see Ref. [11]). This
could possibly influence the effectiveness of the ABCs.

22

Chapter 4 Results

In Fig. 4.7 the numerically calculated transmission curves for different initial widths
and two different barriers as a function of V0 are plotted. Here we can see the influence
of the momentum uncertainty from Eq. (4.6) on the transmission probability of the
wave packet. A Gaussian with high momentum uncertainty has a higher transmission
probability when 〈E〉 < V0. As ∆k becomes smaller, the transmission probability
approaches the the plane wave values, as should be expected.

0 50 100 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(a)

σ0 = 1.0

σ0 = 2.0

σ0 = 3.0

σ0 =∞

0 50 100 150
V0

(b)

σ0 = 1.0

σ0 = 2.0

σ0 = 3.0

σ0 =∞

Figure 4.7: Transmission coefficient as a function of potential strength. Parameters used: tN = 2.0,
a = 5 and (a) w = 0.5, (b) w = 1.0.

4.2.2 Rectangular Double Barrier

Next we consider a combination of two rectangular barriers with the same height

VDouble = VBarrier(x, a1, w1) + VBarrier(x, a2, w2). (4.12)

Different double barriers and the corresponding transmission curves are plotted in
Fig. 4.8 on page 24 and in Fig. 4.9 on page 25. For these transmission curves we set
tN = 3.0 and σ0 = 2.0. We note the following:

The transmission curves for two barriers with the same width have the same general
shape, as the curve for a single barrier. The transmission probability increases noticeable
if the same barriers are placed further from each other.

23

Chapter 4 Results

2 0 2 4 6
x

V

(a)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(b)

2 0 2 4 6
x

V

(c)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(d)

Figure 4.8: Plots of the potential barriers and the transmission probabilities. (a) a1=0, a2 = 1 and
w1 = w2 = 0.5, (b) transmission probability for the barrier in (a), (c) a1=0, a2 = 5 and
w1 = w2 = 0.5, (d) transmission probability for the barrier in (c).

24

Chapter 4 Results

2 0 2 4 6
x

V

(a)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(b)

2 0 2 4 6
x

V

(c)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(d)

Figure 4.9: Plots of the potential barriers and the transmission probabilities. (a) a1=0, a2 = 5 and
w1 = w2 = 1.0, (b) transmission probability for the barrier in (a), (c) a1=0, a2 = 5,
w1 = 1.0 and w2 = 1.5, (d) transmission probability for the barrier in (c).

4.2.3 Smooth Double Barrier

Lastly we consider a smooth double barrier, modelled through the following Gaussian
function

VSmooth = V0(e−(x−a1)2/σ2
1 + e−(x−a2)2/σ2

2). (4.13)

25

Chapter 4 Results

tN and σ0 are the same as in subsection 4.2.2. The barriers and the transmission curves
are plotted in Fig. 4.10 below and in Fig. 4.11 on page 27.

Compared to the rectangular barriers, the smooth barriers are almost completely trans-
parent up to a certain potential height. Furthermore, the transition from transparent
to nearly impenetrable is much sharper, especially for the wider barriers.

2 0 2 4 6
x

V

(a)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(b)

2 0 2 4 6
x

V

(c)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(d)

Figure 4.10: Plots of the potential barriers and the transmission probabilities. (a) a1=0, a2 = 1 and
σ1 = σ2 = 0.5, (b) transmission probability for the barrier in (a), (c) a1=0, a2 = 5 and
σ1 = σ2 = 0.5, (d) transmission probability for the barrier in (c).

26

Chapter 4 Results

2 0 2 4 6
x

V

(a)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(b)

2 0 2 4 6
x

V

(c)

0 25 50 75 100 125 150
V0

0.0

0.2

0.4

0.6

0.8

1.0

T

(d)

Figure 4.11: Plots of the potential barriers and the transmission probabilities. (a) a1=0, a2 = 5 and
σ1 = σ2 = 1.0, (b) transmission probability for the barrier in (a), (c) a1=0, a2 = 5,
σ1 = 1.0 and σ2 = 1.5, (d) transmission probability for the barrier in (c).

27

Chapter 5

Conclusion

In this thesis, we discussed a type of absorbing boundary conditions and tested their
efficiency with a Gaussian wave packet. From this we conclude that the absorbing
boundary conditions used in this thesis are very effective when using wave packets with
large initial width (σ0 > 1) and small average momentum (k0 < 15). When increasing
the momentum, the ratio of grid points per wavelength should be considered, in order
to keep the method accurate.

What is more we used the absorbing boundary conditions to calculate the transmission
coefficients for various shapes of potential barriers. The results for a rectangular barrier
are in good agreement with the analytical values, as long as the transmission coefficient
is not to small (T << 0.1).

The methods presented in this thesis can be used to calculate transmission coefficients
for other barrier structures, as well as to create animations of Gaussian wave packets
in one dimension.

28

Bibliography

[1] T. Norsen, J. Lande, and S. B. McKagan. How and why to think about scattering
in terms of wave packets instead of plane waves. arXiv:0808.3566 [quant-ph], 2008.

[2] A. Goldberg, H. M. Schey, and J. L. Schwartz. Computer-Generated Motion
Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection
Phenomena. Am. J. Phys., 35(3):177–186, 1967.

[3] D. Neuhasuer and M. Baer. The time-dependent Schrödinger equation: Application
of absorbing boundary conditions. J. Chem. Phys., 90(8):4351–4355, 1989.

[4] J.-P. Kuska. Absorbing boundary conditions for the Schrödinger equation on finite
intervals. Phys. Rev. B, 46(8):5000–5003, 1992.

[5] T. Shibata. Absorbing boundary conditions for the finite-difference time-domain
calculation of the one-dimensional Schrödinger equation. Phys. Rev. B, 43(8):6760–
6763, 1991.

[6] T. Fevens and H. Jiang. Absorbing Boundary Conditions for the Schrödinger
Equation. SIAM J. Sci. Comput., 21(1):255–282, 1999.

[7] P. Puschnig. Computerorientierte Physik. http://physik.uni-graz.at/∼pep/
CompOriPhys/CoP.pdf, 2016.

[8] Python Software Foundation. Python Language Reference, version 2.7. Available
at https://www.python.org/.

[9] F. L. Dubeibe. SOLVING THE TIME-DEPENDENT SCHRÖDINGER EQUA-
TION WITH ABSORBING BOUNDARY CONDITIONS AND SOURCE TERMS
IN MATHEMATICA 6.0. Int. J. Mod. Phys. C, 21(11):1391–1406, 2010.

[10] H. G. Evertz and W. von der Linden. Quantenmechanik. https://itp.tugraz.
at/∼evertz/QM/qm 2017.pdf, 2017.

[11] M. H. Bramhall and B. M. Casper. Reflections on a Wave Packet Approach to
Quantum Mechanical Barrier Penetration. Am. J. Phys., 38(9):1136–1145, 1970.

29

http://physik.uni-graz.at/~pep/CompOriPhys/CoP.pdf
http://physik.uni-graz.at/~pep/CompOriPhys/CoP.pdf
https://www.python.org/
https://itp.tugraz.at/~evertz/QM/qm_2017.pdf
https://itp.tugraz.at/~evertz/QM/qm_2017.pdf

	Abstract
	Introduction
	Theory
	Time-dependent Schrödinger Equation
	Absorbing Boundary Conditions

	Computational Methods
	Crank-Nicolson Method
	Implementation of Absorbing Boundary Conditions

	Results
	Reflection Properties of Absorbing Boundary Conditions
	Potential Scattering and Transmission Coefficients
	Rectangular Barrier
	Rectangular Double Barrier
	Smooth Double Barrier

	Conclusion
	Bibliography

