
Bachelor thesis

Numerical simulation of the planetary
motions in the solar system with Runge

Kutta Methods

by
Alexander Josef Seyr

supervised by
Assoc.- Prof. Dr. Peter Puschnig

University of Graz, Austria

Institute of Physics

Department of Theoretical Physics

November 6, 2020

Abstract

The origins of modern astronomy lie within the planetary system we call home, the Solar System.
It is located in an outer spiral arm of the Milky Way galaxy and consists of our star, the Sun, and
everything else bound to it by gravity [15],[18]. To unravel the dynamics and evolution of the Solar
System we must understand the law of gravitation, which in this sense was the key discovery of
Newton and explains the orbits of planets, satellites and comets, so their future position can be
predicted [2]. Newton’s theory of gravity has its limits and the current model of gravity is given by
Einstein’s general theory of relativity, which since its development withstood every experimental
test. However, for the purpose of this thesis, Newton’s theory of gravity is sufficient [8]. Observing,
exploring and ultimately understanding our solar system was the first step towards understanding
more of the universe. Many breakthroughs in the dynamics of the Solar System have resulted from
the use of computers [2]. Thus in this thesis, by utilizing the theory a set of differential equations
will be derived, which can then be solved numerically with given initial values. The resulting initial
value problem will be solved with the famous Runge Kutta methods to analyze their solutions and
to show how chosen methods fit this specific problem. In the beginning some background material
will be presented followed by the required theory and a discussion of the implementation. Finally
the results of the simulation will be discussed.
Here I would also like to point out that this thesis was inspired by a graduate project of the

Western Illinois University in mathematics and philosophy, ”The equations for planetary motion
and their numerical solution”, written by Jonathan Njeunje and Dinuka Sewwandi [11]. In their
project, using mainly Matlab, they focus on the 4th order Runge Kutta method, verify its order
of convergence and stability. Whereas this paper, using Python, will focus on a comparison of 4th
order Runge-Kutta method and the Runge-Kutta-Fehlberg method.

1

Contents

1 Introduction 3
1.1 Solar System . 3
1.2 Newton’s law of gravity . 3

2 Initial value problem 4

3 Runge Kutta Methods 7
3.1 The Runge-Kutta method 4th order . 9
3.2 The Runge-Kutta-Fehlberg method . 10

3.2.1 Stepsize Control . 10

4 Implementation 11
4.1 Verification of the initial value problem . 11
4.2 Implementation of the Runge-Kutta method 4th order 16
4.3 Implementation of the Runge-Kutta-Fehlberg method 16
4.4 Error estimation . 17

5 Results and discussion 18
5.1 Runge-Kutta method 4th order . 18
5.2 Runge-Kutta-Fehlberg method . 21
5.3 Performance . 24

6 Summary 25

A Python code 29
A.1 Initial value problem . 29
A.2 Implemented Runge-Kutta-Fehlberg method . 29

2

1 Introduction

1.1 Solar System

Our Solar System consists of our star, the Sun, the planets Mercury, Venus, Earth, Mars, Jupiter,
Saturn, Uranus and Neptune, dwarf planets such as Pluto (illustrated in Fig.1), dozens of moons
and millions of asteroids, comets and meteoroids [15].

Figure 1: Illustration of the Solar System [6]

All the planets move in stable elliptic trajectories around the sun, and the sun describes its own
motion with respect to the center of mass of the system [9]. Pluto is one of the planets classified as
a dwarf planet. This class includes all massive round objects, which orbit the Sun, but haven not
cleared their orbital path [15]. These motions are governed by Kepler’s Laws of planetary motion,
which are a result of Newton’s law of gravity and conservation of angular momentum and energy.
Even though the systems behavior is well understood, it still has chaotic characteristics. In the
sense, that in theory the system is perfectly predictable over time, but to solve it, initial conditions
are needed. Since these initial conditions have to be measured, they always contain a small error
which can accumulate to large errors in the long term behavior [18].

1.2 Newton’s law of gravity

The celestial mechanics for the purpose of this thesis are best described by Newton’s law of planetary
gravitation. To apply this law, the assumption of planet masses being approximated as point masses
needs to be made, which is perfectly viable due to the vast distances between all the bodies in the
Solar System. Via utilizing Newton’s law of gravitation the force F ik of the point mass mi acting
on another point mass mk located at ri and rk is given by

Fik = Gmimk
ri − rk
|ri − rk|3

, (1)

where G is the gravitational constant.

3

In Cartesian coordinates the components of Eq. 1 are:

Fikx = |Fik|
xi − xk
rik

(2)

Fiky = |Fik|
yi − yk
rik

(3)

Fikz = |Fik|
zi − zk
rik

(4)

rik =
√

(xi − xk)2 + (yi − yk)2 + (zi − zk) (5)

By applying Newton’s second law of dynamics, F = md2r
dt2

on Eqs. 2-4 we get:

d2xi
dt2

= Gmk
xi − xk
r3
ik

(6)

d2yi
dt2

= Gmk
yi − yk
r3
ik

(7)

d2zi
dt2

= Gmk
zi − zk
r3
ik

(8)

This set of coupled second order ordinary differential equations describes the motion of the
mass mi bound to the mass mk through gravity [8].

The next step will be to generalize this set of equations for our purpose of planetary motions of
the Solar System to define the initial value problem, on which we then can apply the chosen Runge-
Kutta methods. The goal is to create numerically stable methods and to analyze their behavior,
when applied on this problem.

2 Initial value problem

An initial value problem is defined by its differential equation,

y(n) = f(t, y(t), ..., y(n−1)(t)), t ε I (9)

and a set of n initial conditions,

y(t0) = y0, y′(t0) = y1, ..., y
(n−1)(t0) = yn−1 (10)

The number of initial conditions equals the order of the differential equation and therefore also the
number of integration constants of the solution. Since every n-th order differential equation can be
reformulated as a set of coupled first order differential equations we get a system with n equations
and n unknowns [19].

Due to the fact that every object in the solar system is interacting with each other, we have to
generalize Eqs. 2-4 for N objects with masses m1,m2...,mi, ...,mN acting on one chosen object k
with mass mk, which results in the following system of equations.

4

d2xk
dt2

=

N∑
i=1;i 6=k

Gmi
xi − xk
r3
i,k

(11)

d2yk
dt2

=

N∑
i=1;i 6=k

Gmi
yi − yk
r3
i,k

(12)

d2zk
dt2

=
N∑

i=1;i 6=k

Gmi
zi − zk
r3
i,k

(13)

rik =
√

(xi − xk)2 + (yi − yk)2 + (zi − zk)2 (14)

With rik being the distance between object i and object k [7]. Now we can reformulate Eqs. 11-
13 into a standard initial value problem [19].

Y ≡

x

y

z
dx
dt
dy
dt
dz
dt

≡

x

y

z

vx

vy

vz

(15)

dY

dt
=

d

dt

x

y

z

vx

vy

vz

=

vx

vy

vz∑N
i=1;i 6=kGmi

xi−xk

r3i,k∑N
i=1;i 6=kGmi

yi−yk
r3i,k∑N

i=1;i 6=kGmi
zi−zk
r3i,k

(16)

Finally for being able to solve our system of 2N coupled first order differential equations 16,
we need a set of initial conditions for all the objects of the solar system we want to include in our
calculations.
For this purpose the initial conditions were obtained by using ”JPL Horizons On-Line Ephemeris
System” accessed via the offered web-interface [1]. Chosen were the eight planets orbiting our sun
and the dwarf planet Pluto. All of their initial coordinates, velocities, mass and radii are listed in
Tab. 1, which represents the state of these objects on April 6, 2018.

5

Table 1: Initial conditions of the chosen objects from the April 6, 2018.
x, y, z ... Cartesian coordinates in meters
vx, vz, vz ... respective velocities in meters per second
m ... mass in kilograms
r ... radius in meters

OBJECT x / m y / m z / m vx / m
s vy / m

s vz / m
s m / kg r / m

1 SUN 1.81899e+08 9.83830e+08 -1.58778e+07 -1.12474e+01 7.54876e+00 2.68723e-01 1.98854e+30 6.95500e+8

2 MERCURY -5.67576e+10 -2.73592e+10 2.89173e+09 1.16497e+04 -4.14793e+04 -4.45952e+03 3.30200e+23 2.44000e+06

3 VENUS 4.28480e+10 1.00073e+11 -1.11872e+09 -3.22930e+04 1.36960e+04 2.05091e+03 4.86850e+24 6.05180e+06

4 EARTH -1.43778e+11 -4.00067e+10 -1.38875e+07 7.65151e+03 -2.87514e+04 2.08354e+00 5.97219e+24 6.37101e+06

5 MARS -1.14746e+11 -1.96294e+11 -1.32908e+09 2.18369e+04 -1.01132e+04 -7.47957e+02 6.41850e+23 3.38990e+06

6 JUPITER -5.66899e+11 -5.77495e+11 1.50755e+10 9.16793e+03 -8.53244e+03 -1.69767e+02 1.89813e+27 6.99110e+07

7 SATURN 8.20513e+10 -1.50241e+12 2.28565e+10 9.11312e+03 4.96372e+02 -3.71643e+02 5.68319e+26 5.82320e+07

8 URANUS 2.62506e+12 1.40273e+12 -2.87982e+10 -3.25937e+03 5.68878e+03 6.32569e+01 8.68103e+25 2.53620e+07

9 NEPTUNE 4.30300e+12 -1.24223e+12 -7.35857e+10 1.47132e+03 5.25363e+03 -1.42701e+02 1.02410e+26 2.46240e+07

10 PLUTO 1.65554e+12 -4.73503e+12 2.77962e+10 5.24541e+03 6.38510e+02 -1.60709e+03 1.30700e+22 1.19500e+06

6

3 Runge Kutta Methods

To solve the initial value problem, two methods were chosen, the classic Runge-Kutta method 4th
order and the Fehlberg method or Runge-Kutta 4(5) method. Before discussing these two methods
some general information about the family of Runge-Kutta methods will be covered.
For the purpose of illustrating the basic concept, n = 1 is used in Eq. 9 and 10. For reasons
explained in Sec. 2, we just have to look at one ordinary differential equation:

ẏ(t) = f(y, t) (17)

with an initial value:
y(0) = y0 (18)

By integrating Eq. 17 over the interval [tn, tn+1], we get:

yn+1 = yn +

∫ tn+1

tn

dt′f [y(t′), t′] (19)

Eq. 19 is still exact and the first step towards a numeric solver for initial value problems is to
approximate the included integral. The error made by such a local truncation in a single step
can be classified by the highest order of the Taylor series, where the approximation is still exact,
therefore the capital O notation will be used. For further information see, for instance Ref. [4]

Now the idea of the Runge Kutta methods is to improve the accuracy of the approximated
integral by calculating intermediate grid points within the interval [tn, tn+1] and therefore reduce
the local error by matching more terms with the Taylor series expansion of the function f(y, t). The
simplest method which illustrates this idea is the central rectangular rule, where the intermediate
grid point f(yn+ 1

2
, tn+ 1

2
), with tn+ 1

2
= tn + ∆t

2 , is taken into account. Then Eq. 19 results in the

approximation:
yn+1 = yn + f(yn+ 1

2
, tn+ 1

2
)∆t+O(∆t3) (20)

Due to its two− step characteristic we now have to find an approximation for yn+ 1
2
, which will be

done here with the explicit Euler method and the average function value. First, yn+ 1
2

is approxi-

mated with the explicit Euler method, which results in:

yn+ 1
2

= yn +
∆t

2
f(yn, tn) +O(∆t2) (21)

By inserting Eq. 21 into Eq. 20 we obtain:

yn+1 = yn + f(yn +
∆t

2
f(yn, tn), tn+ 1

2
)∆t+O(∆t2) (22)

Eq. 22 is also called the explicit midpoint rule.

Second, yn+ 1
2

is approximated with the average function value of the interval. This, when

inserted in Eq.20 gives us:

yn+1 = yn + f(
yn + yn+1

2
, tn +

∆t

2
)∆t+O(∆t2) (23)

Also referred to as implicit midpoint rule.

7

For building the bridge to a Runge-Kutta method of stage d, with our examples, an algorithmic
form of notation will be introduced. This will clarify the sequence of terms which should be
calculated in a specific order. It can be achieved by defining some variables Yi with i ≥ 1 to
which intermediate solutions are assigned. In the following this notation will be illustrated on our
examples discussed above.

First on the explicit Euler method Eq.21, which we obviously can also use to approximate the
integral in Eq.19, which then has the form,

yn+1 = yn + ∆tf(yn, tn) (24)

and with the described notation we get:

Y1 = yn

yn+1 = yn + ∆tf(Y1, tn) (25)

second on the explicit midpoint rule Eq.22:

Y1 = yn,

Y2 = yn +
∆t

2
f(Y1, tn +

∆t

2
),

yn+1 = yn +
∆t

2
f(Y2, tn +

∆t

2
) (26)

and third on the implicit midpoint rule Eq.23, which can then be written as:

Y1 = yn +
∆t

2
f(Y1, tn +

∆t

2
),

yn+1 = yn + ∆tf(Y1, tn +
∆t

2
) (27)

These representations Eq. 25, Eq.26 and Eq.27 are all specific cases of the general form of a d-stage
Runge Kutta method:

Yi = yn + ∆t

d∑
j=1

aijf(Yj , tn + cj∆t), i = 1, ..., d,

yn+1 = yn + ∆t

d∑
j=1

bjf(Yj , tn + cj∆t) (28)

Eq. 28 is fully determined by the coefficients aij , which forms a d×d matrix, whereas bj and cj are
d dimensional vectors. The conventional way to specify such methods is through Butcher tableau’s.

c1 a11 a12 · · · a1d

c2 a21 a22 · · · a2d
...

...
...

. . .
...

cd ad1 ad2 ... add
b1 b2 ... bd

(29)

8

The Butcher tableau’s for the above methods are:

explicit Euler
0 0

1
(30)

explicitmidpoint

0 0 0
1
2

1
2 0
1
2

1
2

(31)

implicitmidpoint
1
2

1
2

1
(32)

This also makes it easier to identify whether a Runge-Kutta method is explicit or implicit,
because if the matrix aij is zero on and above the diagonal, it is an explicit method, while otherwise
it is an implicit method. [3],[4],[20],[12]

3.1 The Runge-Kutta method 4th order

Probably the most popular scheme among the Runge-Kutta methods is the classical 4-stage Runge-
Kutta method. It is defined by the algorithm:

Y1 = yn

Y2 = yn +
∆t

2
f(Y1, tn)

Y3 = yn +
∆t

2
f(Y2, tn +

∆t

2
)

Y4 = yn + ∆tf(Y3, tn +
∆t

2
)

yn+1 = yn +
∆t

6
[f(Y1, tn) + 2f(Y2, tn +

∆t

2
) + 2f(Y3, tn +

∆t

2
) + f(Y4, tn)] (33)

or just by the Butcher tableau:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

(34)

Eq. 34 indicates, that it is an explicit Runge Kutta Method and due to its 4-stages it can be
shown to have an local truncation error of order O(∆t5). [3],[20]

9

3.2 The Runge-Kutta-Fehlberg method

The Fehlbergmethod or Runge Kutta Fehlberg 4(5) Method will be used for implementing a method
with adaptive step size or rather error control, which will be described in the next section.

The Butcher tableau describing this method is the following:

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 −7200/2197 7296/2197 0 0 0
1 439/216 −8 3680/513 −845/4104 0 0

1/2 −8/27 2 −3544/2565 1859/4104 −11/40 0

16/135 0 6656/12825 28561/56430 −9/50 2/55
25/216 0 1408/2565 2197/4104 −1/5 0

(35)

The algorithmic notation of this method will not be presented due to its complexity, but can
be written out by utilizing Eq. 28. This method gives two solutions for each step. Where the
penultimate row of the Butcher tableau, Eq. 35, represents a fifth order solution and the last row
represents a fourth order solution [5, 13, 20].

3.2.1 Stepsize Control

The common approach to create an algorithm with adaptive step size and therefore local error
control with the Fehlberg method is to introduce a scaling factor q, which is used to keep the local
error in a desired error tolerance ε. Since we get two approximations with different errors, where
ỹn+1 represents an approximation of 5-th order and yn+1 represents an approximation of 4-th order,
see Eq. 35, we can use them to calculate the error made each step. Both of these approximations
are of the form Eq. 28. Let us denote the exact function value as y(tn+1), then we can write the
local truncation error of these methods as:

τn+1(∆t) =
y(tn+1)− yn+1

∆t
(36)

τ̃n+1(∆t) =
y(tn+1)− ỹn+1

∆t
(37)

By subtracting Eq.36 from Eq. 37 we get

τn+1(∆t) = τ̃n+1(∆t) +
1

∆t
(ỹn+1 − yn+1), (38)

where τ̃n+1(∆t) can be neglected, because the significant portion of the error comes from τn+1.
This offers us an easy way to compute approximation for the local truncation error of the 4-stage
method:

τn+1 ≈
1

∆t
(ỹn+1 − yn+1) (39)

To find out how to modify ∆t that the local truncation error is approximately equal to a prescribed
tolerance ε, we first assume that since τn+1(∆t) is O(∆t4) a number K independent of ∆t exists,
with

τn+1(∆t) ≈ K∆t4 (40)

Then by replacing ∆t with q∆t, where q describes a scaling factor, we get:

10

τn+1(q∆t) ≈ K(q∆t)4 ≈ q4τn+1(∆t) ≈ q4

h
(ỹn+1 − yn+1) (41)

To bind τn+1(q∆t) by ε, we need to choose q so that

q4

h
(ỹn+1 − yn+1) ≈ τn+1(q∆t) ≤ ε (42)

and therefore

q ≤
(

ε∆t

|ỹn+1 − yn+1|

)1/4

(43)

Now we have the scaling factor which lets us control the time steps to stay near a desired error
tolerance ε, to implement the Fehlberg method with adaptive stepsize control. [13, 5]

4 Implementation

For a numerical implementation the programming language Python 3.7 was used with the scientific
virtual environment Spyder 4.1.1.

4.1 Verification of the initial value problem

Initially there had to be checked, if the initial value problem, Eq. 16 with the initial values Tab. 1,
was designed correctly. Therefore the function describing the initial value problem, for implemen-
tation see A.1, was tested with two built in methods, both are included within the SciPy (scientific
python) software package and part of the sub module Integration, which can be accessed via
scipy.integration.

The first built in method used for the verification, was a solver which is accessed through
scipy.integrate.odeint. It utilizes LSODA from the FORTRAN library odepack, which can
solve stiff and nonstiff systems [16]. By applying this method for a time span of 250 years, which
is roughly the orbital period of Pluto, we obtain the results shown in Fig.2 and 3. We see, that all
planets form stable orbits for this time span, which indicates that this method was able to solve
our initial value problem without any instabilities.

11

Figure 2: Orbits inner planets, using scipy.integrate.odeint for 250 years

Figure 3: Orbits outer planets, using scipy.integrate.odeint for 250 years

Fig. 4 shows the distances of all the planets to the center of gravity for the time span of 250
years and reflects the stability of the solution using this method.

12

(a) Inner planets (b) Outer planets

(c) Sun

Figure 4: Distance to center of gravity, using scipy.integrate.odeint for 250 years

For the second verification, the solver scipy.integrate.solve_ivp was used [17]. It utilizes
the explicit Runge-Kutta method of order 5(4) on default, which is based on the same idea as the
Runge-Kutta-Fehlberg method, but derived differently, which results in a different butcher table
and other properties, for further information see [10]. Fig. 5 and 6 show the results for 250 years
using this method. We see that, when applied the solution shows great instability, since it already
crashes after one year. Therefore this solver does not fit our problem. These results also indicate,
that our initial value problem is a stiff one, because this method does not take stiffness into account.

13

Figure 5: Orbits inner planets, using scipy.integrate.odeint for 250 years

Figure 6: Orbits outer planets, using scipy.integrate.odeint for 250 years

Fig. 7 shows the distances of all the planets to the center of gravity and displays the great
instability of mercury.

14

(a) Inner planets (b) Outer planets

(c) Sun

Figure 7: Distance to center of gravity, using scipy.integrate.solve_ivp for 250 years

As a result we validated our initial value problem and the next step is to implement the chosen
methods from scratch.

15

4.2 Implementation of the Runge-Kutta method 4th order

The Runge-Kutta method 4th order was implemented as follows. A function RK4(f,t,dt,initial)

was defined with the following inputs.
– f ... function describing our initial value problem A.1
– t ... time span starting from zero
– dt ... time step
– initial ... vector for the initial values

The size of the matrix y is defined through the size of the initial value vector, which describes
the rows m and by int(t/dt), which gives the columns n. Then the list of time steps tlist is
created and the matrix y is initialized. The final steps are a for loop of the calculations for each
time step, which basically is represented by the butcher tableau Eq. 34, and to save the calculated
values in the matrix y, see line 12.

1 de f RK4(f , t , dt , i n i t i a l) :
m = i n i t i a l . shape [0]

3 n = i n t (t /dt)
t l i s t = np . l i n s p a c e (0 , t , n)

5 y = np . z e r o s ((m, n) , f l o a t)
y [: , 0] = i n i t i a l

7 f o r i in range (0 , n−1) :
k1 = f (y [: , i])

9 k2 = f (y [: , i] + 0 .5∗ dt∗k1)
k3 = f (y [: , i] + 0 .5∗ dt∗k2)

11 k4 = f (y [: , i] + dt∗k3)
y [: , i +1] = y [: , i] + (dt / 6 . 0) ∗(k1 + 2∗k2 + 2∗k3 + k4)

13

r e turn t l i s t , y

4.3 Implementation of the Runge-Kutta-Fehlberg method

The whole implemented function of the Runge-Kutta-Fehlberg method can be found in the ap-
pendix A.2. Since the implementation of the butcher tableau Eq.35 is nearly the same as seen in
the previous chapter 4.2, here only the function inputs and the main difference, the adaptive step
size control, will be discussed. The function was defined as
RK45_scal(f , initial , t , dt_initial , n_max , tol , dt_min , dt_max)

with the following inputs.
– f ... function describing our initial value problem A.1
– initial ... vector for the initial values
– t ... time span starting from zero
– dt_initial ... initial time step
– n_max ... maximum columns of the matrix y containing computed steps
– tol ... tolerance for the local error
– dt_min ... minimum value for the step size
– dt_max ... maximum value for the step size

16

A derivation on how one could control the step size was done in chapter 3.2.1. The way this
was utilized in the implementation is shown below.

i f e r r <= t o l :
2 y [: , k+1] = y [: , k] + dt ∗ (0 .1157∗ k1 + 0.5489∗ k3 + 0.5353∗ k4 − 0 .2∗ k5)

t += dt
4 k += 1

e r r l i s t . append (e r r)
6 i f e r r == 0 : e r r = e r r l i s t [−1]

dt = dt ∗0 .84∗ (t o l / e r r) ∗∗0 .25
8 i f dt > dt max :

dt = dt max
10 e l i f dt < dt min :

dt = dt min

Starting with the first if-condition, which checks if the error err made in the current time step
is smaller than our predefined error tolerance tol. If that is False, our error err is bigger than
the error tolerance. Therefore the choice of dt is rejected and we jump to line 6, which prevents
zero division. Then we change the time step by multiplying it with q, see line 7. Since in this case
the calculation has to be repeated, it is common to choose q conservatively and include a factor of
2 [13].

q =

(
tol∆t

2|ỹn+1 − yn+1|

)1/4

= 0.84

(
tol

err

)1/4

(44)

Now all that is left to do is to check if the new time step does not exceeds the limits dt_min and
dt_max.

In the other case, where the first if-condition is True, dt is accepted and the values are computed
and saved in the matrix y. The used time step is added to the time t and we go on the next step
k += 1, see line 1-5. The other steps stay the same.

4.4 Error estimation

When using Runge-Kutta methods, we must differ between the local error made at every time
step, which is typically calculated with an embedded pair of methods, like in our case with the
Runge-Kutta-Fehlberg method, see Sec. 3.2, and the global error. The local error, Eq. 39, was
calculated in the following way.

1 e r r = max(abs (0 .00278 ∗ k1 −0.02994 ∗ k3 −0.02920 ∗ k4 +0.02000 ∗ k5 +0.03636 ∗ k6) / dt)

For each step six local errors are calculated for each planet, from which the maximum will be chosen
for the step size control.

There are different methods on how to estimate the global error, for further information see
[14]. Here none of those methods will be used, instead the property of time reversal symmetry of
our macroscopic physical system is utilized. Thus we can simply reverse our computation to get
another solution, which we then can use to estimate the global error made for the time span. This
can be done by changing the signs of the all planets velocities of the solution at the end of the
calculated time span. Then using these values as initial condition, we run the method again for
the same time span. When finished the method should have reached the original initial conditions,
see Tab. 1, with a preferably small discrepancy.

17

5 Results and discussion

With the implementations explained above, we now can analyze the results of our simulation. To
decrease the computational intensity of the simulation the dwarf planet Pluto will not be included.
The outer most planet now is Neptune, therefore the simulation will be done for 165 years, which
is roughly the orbital period of Neptune. To compare the solutions, the same amount of time steps
that the Runge-Kutta-Fehlberg method produced were used for the Runge-Kutta method of 4th
order. For simplicity the shortcut RK4 will be used for the Runge-Kutta 4th order and RKF will
be used for Runge-Kutta-Fehlberg.

5.1 Runge-Kutta method 4th order

First let us look at the results of the RK4 method. Fig. 8 and 9 show the orbits of the planets.
We see, with the amount of time steps from the RKF method we obtain a stable solution. This is
also indicated in Fig. 10, where the distances of the planets to the center of gravity over the time
span is shown.

The estimated global errors for the three most inner planets using the RK4 method described
in Sec. 4.4 are shown in Fig. 11. Since Mercury represents the inner most planet it has the highest
rate of change. Which means it is most sensible to step size changes. In the figures we see that
mercury has the biggest global error being proportional to 10−4, while the global errors of Venus
and Earth are already of much smaller magnitude, 10−8 and 10−9.

Figure 8: Orbits inner planets, using Runge-Kutta 4th order for 165 years

18

Figure 9: Orbits outer planets, using Runge-Kutta 4th order for 165 years

(a) Inner planets (b) Outer planets

(c) Sun

Figure 10: Distance to center of gravity, using Runge-Kutta 4th order for 165 years

19

Figure 11: Global error, using Runge-Kutta 4th order for 165 years

20

5.2 Runge-Kutta-Fehlberg method

For the RKF method an error tolerance tol of 10−5 was chosen. Fig. 12 and 13, show the orbits
calculated with the RKF method, which too created stable orbits for all the chosen planets, also
indicated in Fig. 14.

Figure 12: Orbits inner planets, using Runge-Kutta-Fehlberg method for 165 years

Figure 13: Orbits outer planets, using Runge-Kutta-Fehlberg method order for 165 years

21

(a) Inner planets (b) Outer planets

(c) Sun

Figure 14: Distance to center of gravity, using Runge-Kutta-Fehlberg method for 165 years

When looking at the global error of the RKF method, see Fig. 15, the first difference between
the methods is noticeable, because the global errors of the RKF method are one magnitude smaller
than the global errors of the RK4 method.

22

Figure 15: Global error, using Runge-Kutta-Fehlberg method for 165 years

Fig. 16 shows how our RKF method and therefore the step size reacts on the local error. The
local error always arises from the coordinates or velocities of Mercury, therefore it is sufficient to
look at one orbital period to analyze the pattern. We see that the error is always kept below our
tolerance of 10−5 and the step size increases when the error decreases and vice versa. It is also
noticeable, that the step size undergoes just one major change in one period of Mercury, right
between the interval of [0.15, 0.20] years. Reason being that the maximum local errors before and
after the peak, arise from the velocities of mercury, but the few points in the interval come from
the coordinates of mercury. The change in source of the local error can be explained through the
fact that the time span, where this peak arises is the time, where Mercury is closest to the center
of gravity and therefore has the highest velocity, see Fig. 16, also explained by Kepler’s second
law. As a result the change of coordinates at these points are higher than the change of velocities
and the coordinates produce a bigger local error. Eventually we can say, that our designed RKF
method is implemented correctly and that in case of the global error it is superior to the RK4
method.

23

Figure 16: In descending order the figure shows the local error, the time step size, the distance to
the center of gravity and the velocity of Mercury for the time span of one orbital period
of Mercury, all in astronomical units. Results from the Runge-Kutta-Fehlberg method

5.3 Performance

Now we have seen that the RKF method has the advantage of a lower global error. However the
trade off, that has to be made is the computational time. The implementations made are by no
means perfect and there is for sure a lot of room for improvements, but since the goal is rather
a functional comparison than an efficiency one, this will not be covered here. Nevertheless the
performances of our methods are still of interest. Overviews of the results for the time spans 10, 80
and 165 years, each for the tolerances 1e− 3, 1e− 4 and 1e− 5, are shown in Tabs. 2. For timing
our methods the time package was used. In each of the tables the same behavior can be observed.
For the RKF method, when the tolerance is decreased the needed time steps and the calculation
time nearly doubles, while the maximum global error shrinks one or two magnitudes. The RK4
methods behaves the same way just with lower computation times and with respect to the RKF
method, a one magnitude bigger maximum global error.

24

time span = 10 years

RKF

tol 1e-3 1e-4 1e-5

tsteps 5803 12461 26858

tcomp / min 0.4354238510131836 0.7224167784055074 1.551429855823517

Egmax/AU 6.324799326139882e-5 1.7776841022741093e-6 3.853183804063130e-8

RK4
tcalc / min 0.3022759437561035 0.47396289110183715 1.0209315538406372

Egmax / AU 7.687858820876831e-4 1.684447795079383e-5 3.621819116954409e-7

(a) Overview of the results for a time span of 10 years

time span = 80 years

RKF

tol 1e-3 1e-4 1e-5

tsteps 46446 99755 215036

tcomp / min 2.689369543393453 5.737075754006704 12.945734874407451

Egmax/AU 4.287113386273406e-3 1.2016676188255333e-4 2.603142799379255e-6

RK4
tcalc / min 1.7725736896197002 3.693226182460785 8.261975761254629

Egmax / AU 5.121549056708939e-2 1.1216901076631597e-3 2.409915858624199e-5

(b) Overview of the results for a time span of 80 years

time span = 165 years

RKF

tol 1e-3 1e-4 1e-5

tsteps 95787 205742 443519

tcomp / min 5.723070867856344 12.526648565133412 27.21232525507609

Egmax/AU 1.8221851939517184e-2 5.111876578374915e-4 1.1062562052375187e-5

RK4
tcalc / min 3.8809262911478677 7.784957464536031 17.630822185675303

Egmax / AU 2.146574141189477e-1 4.778121594349477e-3 1.0263975218689783e-4

(c) Overview of the results for a time a time of 165 years

Table 2: Overview of the results for the calculation of the Runge-Kutta-Fehlberg (RKF) method
and the Runge-Kutta method 4th order (RK4). Displayed for three different time spans
and three different error tolerances (tol) for the RKF step size control.
tsteps ... time steps calculated of the RKF method
tcomp ... computational time of the method in minutes
Egmax ... maximum global error of the method in astronomical length

6 Summary

Through Newton’s law of gravity, an initial value problem for our solar system was set up. With the
initial values Tab. 1, this problem can be solved. First the initial value problem was implemented
and validated with built in Runge-Kutta methods. Then a Runge-Kutta method 4th order and
a Runge-Kutta-Fehlberg method was implemented from scratch. Applied on our problem the
advantages and disadvantages of our implemented methods were analyzed. It was found, that both
methods form stable solutions. In conclusion, with the adaptive step size control of the Runge-
Kutta-Fehlberg method, we were able to achieve smaller global errors, at the cost of computational
time, with respect to the Runge-Kutta method 4th order.

25

List of Figures

1 Illustration of the Solar System [6] . 3
2 Orbits inner planets, using scipy.integrate.odeint for 250 years 12
3 Orbits outer planets, using scipy.integrate.odeint for 250 years 12
4 Distance to center of gravity, using scipy.integrate.odeint for 250 years 13
5 Orbits inner planets, using scipy.integrate.odeint for 250 years 14
6 Orbits outer planets, using scipy.integrate.odeint for 250 years 14
7 Distance to center of gravity, using scipy.integrate.solve_ivp for 250 years . . . 15
8 Orbits inner planets, using Runge-Kutta 4th order for 165 years 18
9 Orbits outer planets, using Runge-Kutta 4th order for 165 years 19
10 Distance to center of gravity, using Runge-Kutta 4th order for 165 years 19
11 Global error, using Runge-Kutta 4th order for 165 years 20
12 Orbits inner planets, using Runge-Kutta-Fehlberg method for 165 years 21
13 Orbits outer planets, using Runge-Kutta-Fehlberg method order for 165 years 21
14 Distance to center of gravity, using Runge-Kutta-Fehlberg method for 165 years . . . 22
15 Global error, using Runge-Kutta-Fehlberg method for 165 years 23
16 In descending order the figure shows the local error, the time step size, the distance

to the center of gravity and the velocity of Mercury for the time span of one orbital
period of Mercury, all in astronomical units. Results from the Runge-Kutta-Fehlberg
method . 24

26

References

[1] Alan B. Chamberlin. Jpl horizons on-line ephemeris system. https://ssd.jpl.nasa.gov/

horizons.cgi. Accessed: 2020-08-13.

[2] Carl D. Murray an Stanley F. Dermott. Solar System Dynamics. the press syndicate of the
university of cambridge, 1 edition, 1999.

[3] Ewald Schachinger Benjamin A. Stickler. Basic Concepts in Computational Physics. Springer,
2 edition, 2016.

[4] Dr. Lothar Collatz. The Numerical Treatment Of Differential Equations. Springer Verlag, 3
edition, 1960.

[5] Erwin Fehlberg. Low-order Classical Runge-Kutta Formulas with Stepsize Control and Their
Application to some Heat Transfer Problems. National Aeronautics and Space Administration,
1969.

[6] Figure:. Solar system illustration. https://taylorsciencegeeks.weebly.com/uploads/5/

9/2/0/59201005/127261592.jpg. Accessed: 2020-08-30.

[7] Thorsten Fließbach. Mechanik, Lehrbuch zur Theoretischen Physik I. Springer Sprektrum, 7
edition, 2015.

[8] Torsten Fließbach. Allgemeine Relativitätstheorie. Springer Sprektrum, 6 edition, 2012.

[9] Arnold Hanslmeier. Einführung in Astronomie und Astrophysik. Springer Sprektrum, 3 edition,
2014.

[10] P. J. Prince J. R. Dormand. A family of embedded Runge-Kutta formulae. Journal of Compu-
tational and Applied Mathematics, Vol. 6, No. 1, pp. 19-26, 1980.

[11] Jonathan Njeunje and Dinuka Sewwandi de Silva. the equations of planetary motion and their
numerical solution. http://www.wiu.edu/cas/mathematics_and_philosophy/graduate/.
Accessed: 2020-08-14.

[12] Assoz.-Prof. Peter Puschnig. Computerorientierte Physik. Lecture notes, Karl-Franzens-
Universität Graz, 2019.

[13] Annete M. Burden Richard L. Burden, Douglas J. Faires. Numerical Analysis. CENGAGE
Learning, 10 edition, 2016.

[14] Robert D. Skeel. Thirteen Ways to Estimate Global Error. University of Illinois at Urbana-
Champaign, Department of Computer Science, 1986.

[15] Solar System Exploration Public Engagement teams. Our Solar System in depth. https:

//solarsystem.nasa.gov/solar-system/our-solar-system/in-depth/. Accessed: 2020-
08-30.

[16] The SciPy community. SciPy method odeint. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.odeint.html. Accessed: 26.10.2020.

[17] The SciPy community. SciPy method solve˙ivp. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.solve_ivp.html. Accessed: 26.10.2020.

27

https://ssd.jpl.nasa.gov/horizons.cgi
https://ssd.jpl.nasa.gov/horizons.cgi
https://taylorsciencegeeks.weebly.com/uploads/5/9/2/0/59201005/127261592.jpg
https://taylorsciencegeeks.weebly.com/uploads/5/9/2/0/59201005/127261592.jpg
http://www.wiu.edu/cas/mathematics_and_philosophy/graduate/
https://solarsystem.nasa.gov/solar-system/our-solar-system/in-depth/
https://solarsystem.nasa.gov/solar-system/our-solar-system/in-depth/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

[18] Torrence V.Johnson Tilman Spohn, Doris Breuer. Encyclopedia of the Solar System. Elsevier,
3 edition, 2014.

[19] Frank Hettlich Christian Karpfinger Hellmuth Stachel Tilo Arens, Rolf Busam. Grundwissen
Mathematikstudium. Springer Sprektrum, 1 edition, 2013.

[20] Greg von Winckel. Numerical Methods For Differential Equation. Lecture notes, Karl-
Franzens-Universität Graz, 2012.

28

A Python code

A.1 Initial value problem

Implementation of the 2N coupled first order differential equations 16:

1 de f IVP SS ty (t , y) :
Np = 9

3 mAU = 1.98854 e+30
G = 4∗np . p i ∗∗2

5

planet masses
7 mj = np . array ([1 . 9 8 8 5 4 e+30, 3 .30200 e+23, 4 .86850 e+24, 5 .97219 e+24, 6 .41850 e+23,

1 .89813 e+27, 5 .68319 e+26, 8 .683119 e+26, 1 .02410 e+26, 1 .30700 e +22]) /mAU
9

dy = np . z e r o s ([Np∗6 ,] , dtype=f l o a t)
11

i n d i c e s f o r y
13 x i = np . arange (0 ,Np∗6 ,6)

y i = np . arange (1 ,Np∗6 ,6)
15 z i = np . arange (2 ,Np∗6 ,6)

vx i = np . arange (3 ,Np∗6 ,6)
17 vyi = np . arange (4 ,Np∗6 ,6)

vz i = np . arange (5 ,Np∗6 ,6)
19

i n d i c e s f o r dy
21 dvxi = x i

dvyi = y i
23 dvz i = z i

daxi = vxi
25 dayi = vyi

daz i = vz i
27

a s s i g n v e l o c i t i e s
29 dy [dvxi] = y [vx i]

dy [dvyi] = y [vy i]
31 dy [dvz i] = y [v z i]

33 ax = np . z e r o s (Np,)
ay = np . z e r o s (Np,)

35 az = np . z e r o s (Np,)

37 f o r a in range (Np) :
Gm = G∗np . d e l e t e (mj , a , 0)

39

xa = y [x i] [a]
41 ya = y [y i] [a]

za = y [z i] [a]
43

x l i s t = np . d e l e t e (y [x i] − xa , a , 0)
45 y l i s t = np . d e l e t e (y [y i] − ya , a , 0)

z l i s t = np . d e l e t e (y [z i] − za , a , 0)
47

r j a 3 = np . s q r t (np . square (x l i s t) + np . square (y l i s t) + np . square (z l i s t)) ∗∗3
49

ax [a] = np . sum(Gm∗ x l i s t / r j a 3)
51 ay [a] = np . sum(Gm∗ y l i s t / r j a 3)

az [a] = np . sum(Gm∗ z l i s t / r j a 3)
53 dy [daxi] = ax

dy [dayi] = ay
55 dy [daz i] = az

57 r e turn dy

A.2 Implemented Runge-Kutta-Fehlberg method

29

de f RK45 scal (f , i n i t i a l , t , d t i n i t i a l , n max , t o l , dt min , dt max) :
2

m = i n i t i a l . shape [0]
4 t = 0

dt = d t i n i t i a l
6 k = 0

8 d t l i s t = []
t l i s t = []

10 t l i s t . append (t)
e r r l i s t = []

12

y4 = np . z e r o s ((m, n max) , f l o a t)
14 y4 [: , 0] = i n i t i a l

whi l e k < n max and t < t f i n a l :
16 # check dt f o r l i m i t a t i o n s

i f t+dt > t f i n a l :
18 dt = t f i n a l − t

butcher tab leau
20 k1 = f (y4 [: , k])

k2 = f (y4 [: , k] + 0.25∗ dt∗k1)
22 k3 = f (y4 [: , k] + dt ∗ (0 .09375∗ k1 + 0.28125∗ k2))

k4 = f (y4 [: , k] + dt ∗(0.8793809740555303∗ k1 − 3.277196176604461∗ k2 +
3.3208921256258535∗ k3))

24 k5 = f (y4 [: , k] + dt ∗(2.0324074074074074∗ k1 − 8 .0∗ k2 + 7.173489278752436∗
k3 − 0.20589668615984405∗ k4))

k6 = f (y4 [: , k] + dt ∗(−0.2962962962962963∗k1 + 2.0∗ k2 −
1.3816764132553607∗ k3 + 0.4529727095516569∗ k4 − 0 .275∗ k5))

26

e r r = max(abs (0.002777777777777778 ∗ k1 − 0.02994152046783626 ∗ k3 −
0.029199893673577886 ∗ k4 + 0.02 ∗ k5 + 0.03636363636363636 ∗ k6) / dt)

28 # step s i z e c o n t r o l
i f e r r <= t o l :

30 t += dt
y4 [: , k+1] = y4 [: , k] + dt ∗(0 .11574074074074074∗ k1 + 0.5489278752436647∗ k3 +

0.5353313840155945∗ k4 − 0 .2∗ k5)
32 d t l i s t . append (dt)

t l i s t . append (t)
34 e r r l i s t . append (e r r)

k += 1
36 i f e r r == 0 : e r r = e r r l i s t [−1] # exc lude zero d i v i s i o n

dt = dt ∗0 .84∗ (t o l / e r r) ∗∗0 .25
38 i f dt > dt max :

dt = dt max
40 e l i f dt < dt min :

dt = dt min
42

r e turn e r r l i s t , d t l i s t , t l i s t , y4

30

	Introduction
	Solar System
	Newton's law of gravity

	Initial value problem
	Runge Kutta Methods
	The Runge-Kutta method 4th order
	The Runge-Kutta-Fehlberg method
	Stepsize Control

	Implementation
	Verification of the initial value problem
	Implementation of the Runge-Kutta method 4th order
	Implementation of the Runge-Kutta-Fehlberg method
	Error estimation

	Results and discussion
	Runge-Kutta method 4th order
	Runge-Kutta-Fehlberg method
	Performance

	Summary
	Python code
	Initial value problem
	Implemented Runge-Kutta-Fehlberg method

