Simulation of angle-Resolved photoemission CROSS-SECTIONS FOR ORGANIC/METAL INTERFACES

Dario Knebl, Daniel Lüftner, Bernd Kollmann, and Peter Puschnig

 Institute of physics, Karl-Franzens-University Graz, Universitätsplatz 5, A-8010 Graz, Austria
Abstract

Several combined experimental / theoretical investigations have demonstrated a close relation between the angle-resolved photoemission (ARPES) intensity of oriented organic molecular films and the Fourier transform of the molecular orbital $[1,2,3]$. So far, experimental ARPES data has been accounted for by neglecting the interaction of molecule with the underlying metal substrates. The remaining small differences have been tentatively attributed to modifications of the molecular states due to molecule-substrate hybridization $[4,5]$, though alternative explanations, e.g., light polarization effects or the failure of the simple plane-wave final state approximation could not be excluded. Here we calculate ARPES intensity maps for the prototypical PTCDA/ $\operatorname{Ag}(110)$ interface by explicitly considering molecule-substrate interactions within ab-inito density functional calculations. We perform careful convergence studies with respect to the number of metallic layers and the number of k-points, and compare our results to ARPES measurements.

ARPES-Intensity

Using the one-step model (depicted in Fig. 1) the intensity of the emitted electron current is given by a Fermi golden-rule-like formula
$\left.I\left(\vartheta, \varphi ; E_{k i n}\right) \propto \sum_{i}\left|\left\langle\psi_{f}^{*}\left(\vartheta, \varphi ; E_{k i n}\right)\right| \frac{e}{2 m c}(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A})\right| \psi_{i}\right\rangle\left.\right|^{2} \times \delta\left(E_{i}+\Phi+E_{k i n}-\hbar \omega\right) \quad$ (1) where $\left|\psi_{i}\right\rangle$ is the i-th molecule orbital of the sample and $\left|\psi_{f}\right\rangle$ describes the outgoing electron by a (damped) plane wave.

The tuple $\left(\vartheta, \varphi, E_{\text {kin }}\right)$ is just another representation of the wavevector \mathbf{k} of the emitted electron
$k_{x}=\sqrt{2 m_{e} E_{k i n} / \hbar^{2}} \sin \vartheta \cos \varphi$ $k_{y}=\sqrt{2 m_{e} E_{k i n} / \hbar^{2}} \sin \vartheta \sin \varphi$ $k_{z}=\sqrt{2 m_{e} E_{k i n} / \hbar^{2}} \cos \vartheta$
Within this work the electric dipole approximation is applied
$[\mathbf{p}, \mathbf{A}]=-i \hbar \nabla \cdot \mathbf{A} \approx 0$
which simplifies the term
$\frac{e}{2 m c}(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A}) \approx \frac{e}{m c} \mathbf{A} \cdot \mathbf{p}$ (4)

Density of States

Convergence studies with respect to
the number of k-points in the Brillouin zone and convergence studies w. the number of $\operatorname{Ag}(110)$ layers are performed in order to obtain converged
 density of states (DOS) curves.

The black dashed lines in Fig. 2-3 indicates the energy of the highest occupied molecule orbital (HOMO).

The red dashed lines indicates the energy of the lowest unoccupied molecule orbital (LUMO)

Fig. 3: pDOS of 5 layers Ag(110) covered with a PTCDA ML.

The convergence studies w. r. t. the number of $\operatorname{Ag}(110)$ layers highlight a parity dependence of the pDOS in the energy range of the (F)LUMO (Fig. 4 and Fig. 5).

Experiment vs. Theory
 [4], (2) HOMO and (4) LUMO map of a free PTCDA ML (left semi-circle: simulation, right semi-circle: experiment [2])

${ }^{-1} k_{| |}[1 / \AA]^{1}$

${ }^{-1} k_{| |}[1 / \AA \AA]^{1}$

ig. 8: From left to right: (1) Experimental energy-momentum map [2] of PTCDA on $\operatorname{Ag}(110)$ along the 32°-rotated $k_{[001]}$-axis, compared to simulated band maps of PTCDA ML on (2) $14-\operatorname{layer} \operatorname{Ag}(110)$ and (3) on 15- $\operatorname{layer} \operatorname{Ag}(110)$.
 compared to simulated band maps of PTCDA ML on (2) 14-layer $\mathrm{Ag}(110)$ and (3) on 15-layer $\mathrm{Ag}(110)$.

From left to right

In Figs. 7-10 the number of k-points is $6 x 6 x 1$. The blue line represents the pDOS of the PTCDA ML while the gray filled curve represents the pDOS of the $\operatorname{Ag}(110)$.

Methodology

The DFT (GGA) calculations of this work are performed by the Vienna Ab initio Simulation Package (VASP).

Reference

(1] Puschnig et. al. Science, 326:702-706, 2009. [2]]uschnig et. al. Phys. Rev. B. 84:235427, 2011. [2] Puschnig et. al. Phys. Rev. B, 84:235427, 2011 . (3) Dauth eet. al. Phys. Rev. Lett. $107: 193022,201$.

 (3] Dauth et. al. Phys. Rev. Lett. $107: 193002,2011$[4] Ziroff et. al. Phys. Rev. Lett., 104.233004,

$$
\text { [4] Ziroff et. al. Phys. Rev. Lett, } 104: 233004,2010 .
$$

