Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography

Ules Thomas

Surface Science Group, KFUni Graz

Outline

Angle Resolved UPS; Orbital Tomography

Influence of the substrate on the orbital structure ?

- Pentacene on Ag(110) vs. on Cu(110)

similar but different

Method

UV Photoemission Spectroscopy (UPS)

Method

Toroidal Electron Spectrometer for Angle Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

4dimensional dataset

The system: Substrates

The system: Molecule

Fermis Golden rule formula

$$I(\theta,\phi;E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_f^*(\theta,\phi;E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_i \rangle \right|^2 \times \delta \left(E_i + \Phi + E_{\rm kin} - \hbar \omega \right)$$

Assumption: Final state is a plane wave

 $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times \left| \tilde{\psi}_i(\mathbf{k}) \right|^2$ Fourier Transform of initial state

Berkebile S. Doctoral thesis, 2009

DFT of molecular orbitals

Fourier Transform of DFT orbitals

From momentum space to real space

Plane wave approximation for the final state is good!

5A on the two substrates

Momentum maps of 5A on Ag(110)

Theory

Experiment

-2

-1

0

1

2

+ substrate

Momentum maps of 5A on Ag(110)

HOMO-1

Theory

Experiment

0

1

2

5A on Ag(110)

 Momentum maps compare well to the theoretical maps of the isolated molecule

5A on Cu(110)

-3L -3

-2 -1 -3 -3

-2 -1

-1

-2

What is the origin of the structured LUMO ? Intermolecular Dispersion ?

Summary

- Simple FT of orbitals explains ARUPS very well
- Weakly bound: <u>5A on Ag(110)</u> orbitals are ~ as isolated molecule
- Strongly bound: <u>5A on Cu(110)</u>
 - modification in energy and momentum
 - intermolecular dispersion mediated through substrate interaction

Eva Reinisch Michael Ramsey Georg Koller Margareta Wagner Stephen Berkebile

Daniel Lüftner Peter Puschnigg

Markus Ostler Thomas Seyller FШF

Der Wissenschaftsfonds.

Thank you for your attention!!

