

Modellierung molekularer Prozesse beim Wachstum organischer Schichten

Motivation

OLED

OFET

Pentacene (5A) ($C_{22}H_{14}$)

para-Sexiphenyl (6P) (C₃₆H₂₆)

Methods and Materials

Cohesive, Surface, and Adsorption Energies

Growth of Chain-like Molecules on Mica

- Needle Growth and Orientations
- Critical Cluster Size
- Terraced Mounds and Step-Edge-Barrier

Ab-Initio Methods

Density Functional Theory in a Nutshell

Cohesive Energy of Molecular Crystals

Van der Waals Density Functional

Nonlocal Correlation Energy leading to van-der-Waals interaction

$$E_c^{\rm nl} = \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) \phi(\mathbf{r}, \mathbf{r}') n(\mathbf{r}')$$

Exchange-Correlation Energy $E_{xc}^{\text{vdWDF}} = E_x^{\text{GGA}} + E_c^{\text{LDA}} + E_c^{\text{nl}}$

Dion et al, Phys. Rev. Lett. 92, 246401 (2004).

Cohesive Energy of Molecular Crystals

Nabok, Puschnig, Ambrosch-Draxl, Phys. Rev. B 77, 245316 (2008).

Surface Energies of Molecular Crystals

Nabok et al. Phys. Rev. B 77, 245316 (2008); Ambrosch-Draxl et al., New J. Phys. 11, 125010 (2009).

Thiophene / Cu(110)

PTCDA@Cu,Ag,Au(111): Romaner et al., New. J. Phys. 11, 053010 (2009).

Methods and Materials

Cohesive, Surface, and Adsorption Energies

Growth of Chain-like Molecules on Mica

- Needle Growth and Orientations
- Critical Cluster Size
- Terraced Mounds and Step-Edge-Barrier

Nano-Needles on Mica

- Parallel alignment only for phenylenes
- Anisotropy for thiophenes and co-oligomers
- Macroscopic polarized light emission only for parallel alignment

Simbrunner et al., *JACS* **133**, 3056 (2011).

Mica Substrates

Phlogopite

higher symmetry 3-fold axis

ting)

Muscovite

grooves mirror plane

Sexiphenyl / Mica

AFM

Growth Models

(1) Electric fields of mica align molecules

F. Balzer et al., J. Vac. Sci. Technol. B, 26, 1619, (2008). L. Kankate et al., Thin Solid Films 518, 130, (2009).

(2) Alignment by geometry/symmetry of mica and molecule

Simbrunner et al., JACS 133, 3056 (2011).

Methodology

- Force-field simulations
- Adsorption energy as a function of adsorption position and orientation
- Substrates:
- muscovite \rightarrow phlogopite \rightarrow talc

pyrophyllite

No charges, but the same

surface corrugation

Re-Adjustment of Molecular Orientation

Methods and Materials

Cohesive, Surface, and Adsorption Energies

Growth of Chain-like Molecules on Mica

- Needle Growth and Orientations
- Critical Cluster Size
- Terraced Mounds and Step-Edge-Barrier

Island Growth on Amorphous Mica

AFM-image 10 x 10 μm² T = 300 K $\theta = 0.32 \text{ ML}$ F = 0.02 ML/min2.5 E 1.5 0.5 10 x [µm]

- Amorphous Mica (ion bombarded)
- Observation of islands consisting of standing p-6P
- What is the critical cluster size?
- Transistion from lying-to-standing p-6P?

Potocar et al., *PRB* **83**, 075423 (2011).

Peter Puschnig, 9. Leobener Werkstoffkongress, 28./29. März 2012

p-6P / p-6P(001)

p-6P(001) as model substrate with weak Interactions

Adsorption geometry:

p-6P / p-6P(001)

p-6P(001) as model substrate with weak Interactions

Adsorption geometry:

Energy landscape

Diffusion path:

Lying bs. Standing p-6P

Lying bs. Standing p-6P

Methods and Materials

Cohesive, Surface, and Adsorption Energies

Growth of Chain-like Molecules on Mica

- Needle Growth and Orientations
- Critical Cluster Size
- Terraced Mounds and Step-Edge-Barrier

Terraced Mounds

AFM image: Sexiphenyl grown on a disordered mica surface

Ehrlich-Schwoebel Barrier (ESB)

Sexiphenyl on Mica

AFM image: Film thickness = 30 nm

Ehrlich-Schwoebel Barrier = 0.67 eV

$$R_{top} \propto \left(\frac{\nu'}{F}\right)^{1/5} \approx 20 - 50nm$$

$$\omega = \frac{\tau}{\left(\Delta t\right)^2} = \frac{\text{residence time}}{(\text{deposition time})^2}$$

2nd layer nucleation rate

Step-Edge Barrier

Peter Puschnig, EMRS2011, Nice, May 9th - May 13th

Step-Edge Barrier

Layer-Dependent ESB

ESB

0.26 vs. 0.67

Layer-Dependent ESB

G. Hlawacek et al., Science 321, 108 (2008).

Summary

Van der Waals Interactions within DFT

Organic / organic works fine; organic / metal interactions still problematic Nabok et al., *PRB* **77**, 245316 (2008). Sony et al., *PRL.* **99**, 176401 (2007). Romaner et al., *NJP* **11**, 053010 (2009).

Nano-Needle Orientation on Mica

Alignment by geometry/symmetry of mica and molecule Simbrunner et al., JACS *133*, 3056 (2011).

Island Growth on Amorphous Mica

Critical cluster = 2-3, Transition lying \rightarrow standing p-6P about 15 molecules Potocar et al., PRB **83**, 075423 (2011).

Step-Edge Barriers

Some success in understanding certain kinetic barrieres, but still a lot of work to do ...

G. Hlawacek et al., *Science* **321**, 108 (2008); see also: Goose et al., *PRB* **81**, 205310 (2010).

Collaborations and Funding

Lehrstuhl für Atomistic Modelling and Design of Materials, MU Leoben Dmitrii Nabok, Priya Sony, Lorenz Romaner Claudia Ambrosch-Draxl

Institut für Physik, MU Leoben Quan Shen, Stefan Lorbek, Gregor Hlawacek Christian Teichert

Solid State Physics, JKU Linz, Austria Clemens Simbrunner Helmut Sitter

Institut für Festkörperphysik, TU Graz, Austria T. Potocar, Paul Frank Adolf Winkler Tatjana Djuric Roland Resel

The work is part of the National Research Network "Interface controlled and functionalized organic films"

Der Wissenschaftsfonds. Slide 28