

Orbital Tomography: Deconvoluting Photoemission Spectra of Organic Molecules

Collaborations and Funding

Lehrstuhl für Atomistic Modelling and Design of Materials – MU Leoben Daniel Lüftner, Matus Milko Claudia Ambrosch-Draxl

Experimental Surface Science Group – University Graz, Austria Thomas Ules, Eva-Maria Reinisch, Stephen Berkebile, Alexander Fleming Georg Koller, Mike Ramsey

Lehrstuhl für Technische Physik – University Erlangen-Nürnberg Thomas Seyller, Konstantin Emtsev, Markus Ostler

Experimentelle Physik VII – Universität Würzburg, Germany Sophia Huppmann, Johannes Ziroff, Michael Wießner, Frank Forster, Achim Schöll, Friedrich Reinert

Peter Grünberg Institut (PGI-3), JARA, Forschungszentrum Jülich, Sergey Soubatch Stefan Tautz

The work is part of the National Research Network **"Interface controlled and functionalized organic films"** and the single project P 23190-N16 "Understanding photoemission of organic thin films"

Slide 2

Angle-Resolved Photoemission

PTCDA / Ag(110)

Pentacene / Ag(110)

H2Pc and CuPc / Au(110)

Peter Puschnig, Jülich, Nov. 16th 2011

Angle-Resolved Photoemission

PTCDA / Ag(110)

Pentacene / Ag(110)

H2Pc and CuPc / Au(110)

Peter Puschnig, Jülich, Nov. 16th 2011

Photoemission Spectroscopy

[Hüfner, "Photoelectron Spectroscopy," (Springer, 1995), Damascelli, Phys. Scr., **T109**, 61-74 (2004).

Peter Puschnig, Jülich, Nov. 16th 2011

[Hüfner, "Photoelectron Spectroscopy," (Springer, 1995). Damascelli, Phys. Scr., **T109**, 61-74 (2004).

Peter Puschnig, Jülich, Nov. 16th 2011

One Step Model

$I(\theta,\phi;E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_f^*(\theta,\phi;E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_i \rangle \right|^2 \times \delta \left(E_i + \Phi + E_{\rm kin} - \hbar \omega \right)$

atomic dimensions, which holds

for the ultra-violet regime)

One Step Model

$$I(\theta, \phi; E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_{f}^{*}(\theta, \phi; E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_{i} \rangle \right|^{2} \times \delta \left(E_{i} + \Phi + E_{\rm kin} - \hbar \omega \right)$$

$$H_{int} = \frac{e}{2mc} (\mathbf{A} \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{A}) = \frac{e}{mc} \mathbf{A} \cdot \mathbf{p} \quad \text{Interaction with the photon field treated as perturbation}$$

$$\boxed{[\mathbf{p}, \mathbf{A}] = -i\hbar \nabla \cdot \mathbf{A} = 0} \quad \text{Electric dipole approximation}$$

One Step Model $I(\theta, \phi; E_{kin}) \propto \sum_{i} \left| \langle \psi_{f}^{*}(\theta, \phi; E_{kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_{i} \rangle \right|^{2} \times \delta \left(E_{i} + \Phi + E_{kin} - \hbar \omega \right)$

molecular orbital

One Step Model

Approximation: final state = plane wave $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times |\tilde{\psi}_i(\mathbf{k})|^2$

Fourier Transform of Initial State Orbital

[Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974).]

Peter Puschnig, Jülich, Nov. 16th 2011

Plane Wave Final State

The Independent Atomic Centre approximation (IAC) [W. D. Grobman, Phys. Rev. B 17, 4573 (1978).]

$$A(\mathbf{R}, E_{\rm kin}) = \sum_{\alpha} \sum_{nlm} C_{\alpha,nlm} e^{i\mathbf{k}\mathbf{R}_{\alpha}} \sum_{LM} M^{LM}_{\alpha,nlm}(E_{\rm kin}) Y_{LM}(\hat{R})$$

Reduces to the PW final state result, if

- All contributing atomic orbitals are of the same type (e.g. π -orbitals)
- The emission direction is close to the polarization vector of the incoming photon
- The molecule consists of only light atoms (C, N, O) with small scattering cross sections

[Goldberg et al, Solid State Commun. **28**, 459-463 (1978), Puschnig et al., supporting online material to Science **326**, 702 (2009)]

Comparison with DFT

Comparison with DFT

Comparison with DFT

ARPES of p-Sexiphenyl

G. Koller et al., Science 317, 351 (2007).

Toroidal Electron Energy Analyzer

θ Ζ E_{kin}, k hν A ψ; Х

The Toroidal Electron Spectrometer for Angle-Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

Sexiphenyl Monolayer on Cu(110)

2D-Momentum Maps

ARPES data for a monolayer of 6P / Cu(110)

2D-Momentum Maps

Peter Puschnig, Jülich, Nov. 16th 2011

Slide 16

Angle-Resolved Photoemission

PTCDA / Ag(110)

Peter Puschnig, Jülich, Nov. 16th 2011

Monolayer PTCDA / Ag(110)

Monolayer PTCDA / Ag(110)

STHM of Uniaxially aligned PTCDA/Ag(110)

Temirov et al., New J. Phys. 10, 053012 (2008)

Monolayer PTCDA / Ag(110)

PHYSICAL REVIEW B 73, 195208 (2006)

Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory

Navit Dori,^{1,*} Mahesh Menon,^{1,*} Lennart Kilian,² Moritz Sokolowski,^{2,3} Leeor Kronik,^{1,†} and Eberhard Umbach²

Slide 23

PE-Intensity: π vs. σ

π-"bands" of PTCDA

Peter Puschnig, Jülich, Nov. 16th 2011

PTCDA / Ag(110)

FLUMO (=M1) and HOMO (=M2)

What is the Origin of M3?

What is the Origin of M3?

What is the Origin of M3?

Projected DOS from ARPES!

Peter Puschnig, Jülich, Nov. 16th 2011

momentum maps Slide 31

Benchmark for Theory

Angle-Resolved Photoemission

Eb -3.00 -3.2 -3.4 -3.6 -3.8 ky 1 0 -1 -1 -1 0 kx

PTCDA / Ag(110)

Pentacene / Ag(110)

H2Pc and CuPc / Au(110)

Peter Puschnig, Jülich, Nov. 16th 2011

Pentacene Multilayer

Pentacene / Ag(110): FLUMO

Peter Puschnig, Jülich, Nov. 16th 2011

Slide 32

Pentacene / Ag(110): HOMO

Peter Puschnig, Jülich, Nov. 16th 2011

Slide 32

Pentacene / Ag(110): HOMO-1

Pentacene / Ag(110): HOMO-2

Peter Puschnig, Jülich, Nov. 16th 2011

Slide 32

Peter Puschnig, Jülich, Nov. 16th 2011

GGA (dashed) **vs.** G_0W_0 (full lines) Slide 32

Slide 32

Angle-Resolved Photoemission

PTCDA / Ag(110)

Pentacene / Ag(110)

H2Pc and CuPc / Au(110)

Peter Puschnig, Jülich, Nov. 16th 2011

CuPc – Isolated Molecule

Peter Puschnig, Jülich, Nov. 16th 2011

Slide 49

CuPc/Au(110) – HOMO

DFT

CuPc/Au(110)_(5x3)

CuPc/Au(110): Two Domains

DFT

ARPES

Summary

- Plane wave final state approximation works for ...
 - pi-orbitals of organic molecules
 - No heavy atoms
 - Electron emission direction close to electric field vector of incoming photon

Accurate determination of molecular tilt angles

- Pentacene thick film: Science 326, 702 (2009).
- Azimuthal orientation of tetraphenyl-porphyrine / Cu(110): in preparation
- Azimuthal orientation of CuPc / Au(110): in preparation
- Tilt angle of Cs-doped sexiphenyl / Cu(110) : in preparation

Orbital Reconstruction / Orbital Hybridization

- Real space images of p-6P HOMO and LUMO: Science 326, 702 (2009).
- Analysis of 6P / Cu(110) hybridization: PCCP 13, 3604 (2011)
- PTCDA / Ag(110): PRL 104, 233004 (2010).
- Coronene / Hexa-benzo-coronene ("graphene quantum well states"), submitted

- Orbital Tomography
 - Identification of molecular orbitals
 - Experimentally determined DOS projected onto MOs
 - Comprehensive experimental data to benchmark ab-initio calculations
 - PTCDA / Ag(110) submitted
 - pentacene / Ag(110), pentacene / Cu(110) in preparation

Peter Puschnig, Jülich, Nov. 16th 2011

Outlook

Electronic Structure Calculations

- Band structure: go beyond DFT
- Accurate band energies and band alignments from GW
- Van der Waals Interactions

Description of the Photoemission Intensity

- Take into account Molecule / Substrate Interactions
- More accurate description of final state

Experiment: Constant Initial State Scans

Thank You for Your Attention!

Mike Ramse

Georg

Koller

Stephen Berkebile

Peter Puschnig, Jülich, Nov. 16th 2011

Monolayer vs. Clean Ag(110)

Peter Puschnig, Jülich, Nov. 16th 2011

Monolayer vs. Clean Ag(110)

