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Chapter 1

Introduction

1.1 Quantum Mechanical Many-Electron Problem

We start with a quote from John P. Perdew [1] whose work on density functional theory has led to

him being one of the world’s most cited physicists. 1

”The material world of everyday experience, as studied by chemistry and condensed-matter physics, is

built up from electrons and a few (or at most a few hundred) kinds of nuclei. The basic interaction is

electrostatic or Coulombic: An electron at position r is attracted to a nucleus of charge Z at R by the

potential energy −Z/|r−R|, a pair of electrons at r and r′ repel one another by the potential energy

1/|r − r′|, and two nuclei at R and R′ repel one another as ZZ ′/|R − R′|. The electrons must be

described by quantum mechanics, while the more massive nuclei can sometimes be regarded as classical

particles. All of the electrons in the lighter elements, and the chemically important valence electrons

in most elements, move at speeds much less than the speed of light, and so are non-relativistic.

In essence, that is the simple story of practically everything. But there is still a long path from these

general principles to theoretical prediction of the structures and properties of atoms, molecules, and

solids, and eventually to the design of new chemicals or materials. If we restrict our focus to the

important class of ground-state properties, we can take a shortcut through density functional theory.”

Let us now consider the Hamiltonian of a system of N electrons with spatial and spin coordinates

ri and σi, respectively, and K atomic nuclei with coordinates Rk, charge numbers Zk and masses

Mk. Here, and throughout these lecture notes, we will use atomic units, thus formally we set Planck’s

reduced constant ~ = 1, the electron mass m = 1, and the term e2

4πε0
= 1. As a consequence, we

will measure units in the natural units for electrons, thus the length unit is the Bohr radius a0 =

0.52917721092(17) Å, the energy unit is called 1 Hartree (Ha) = 27.211385 eV, and the unit of time

1See, for instance, https://en.wikipedia.org/wiki/John_Perdew
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is t0 = 2.418884326505(16)× 10−17 seconds.2 Then, the non-relativistic Hamiltonian consisting of the

following five terms takes the form:

Ĥ = −1

2

N∑
i=1

∆i︸ ︷︷ ︸
T̂

+
1

2

∑
i,j 6=i

1

|ri − rj|︸ ︷︷ ︸
V̂ee

−
N∑
i=1

K∑
k=1

Zk
|ri −Rk|︸ ︷︷ ︸

V̂en

− 1

2Mk

K∑
k=1

∆k︸ ︷︷ ︸
T̂n

+
1

2

∑
k,l 6=k

ZkZl
|Rk −Rl|︸ ︷︷ ︸
V̂nn

. (1.1)

The first term, T̂ , denotes the kinetic energy of the electrons, the second one, V̂ee is the electron-

electron Coulomb repulsion. Note that with
∑

i,j 6=i we denote a double summation over all electrons

excluding i = j since a given electron obviously cannot interact with itself. To counterbalance the

double counting of interactions of electron i with j, and j with i, in the double sum, we introduce the

factor 1
2
. The third term, V̂en, is the attractive electron-nuclei interaction. The remaining two terms,

T̂n and V̂nn, respectively, are the kinetic energy of the atomic nuclei and the Coulombic nuclei-nuclei

interaction. Stationary states are obtained from the time-independent Schrödinger equation

ĤΨ ({ri}, {Rk}) = EΨ ({ri}, {Rk}) , (1.2)

where E is the energy of a stationary state and Ψ ({ri}, {Rk}) a wave function containing all electron

and nuclear degrees of freedom as coordinates. This is an immensely difficult problem, that can only

be solved for atoms or very simple molecules.

In order to simplify this complex many-electron / many-nuclei problem, we will introduce the Born-

Oppenheimer approximation (BO) [2]. The BO approximation is ubiquitous in quantum chemical

calculations of molecular wavefunctions and, even more so, for ”band structure calculations” in solid-

state physics. Due to the much larger mass of the atomic nuclei compared to the electron mass,

the nuclear kinetic energy T̂n can be neglected. In the remaining electronic Hamiltonian Ĥe, the

nuclear positions only enter as parameters. The electron-nucleus interactions are not removed, and

the electrons still ”feel” the Coulomb potential of the nuclei, however, the nuclei are clamped (fixed)

at certain positions in space. Therefore, this is often referred to as the clamped-nuclei approximation,

and the Hamiltonian takes the form

Ĥe = −1

2

N∑
i=1

∆i︸ ︷︷ ︸
T̂

+
1

2

∑
i,j 6=i

1

|ri − rj|︸ ︷︷ ︸
V̂ee

+
N∑
i=1

v(ri)︸ ︷︷ ︸
V̂ext

. (1.3)

Here we have renamed the electron-nucleus interaction as the ”external” potential V̂ext which can be

written as a sum over the local potential v(r) that is felt by a given electron in the electro-static field

2The speed of light in atomic units is c = 1/α ≈ 137.
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of all nuclei at the clamped positions Rk

v(r) = −
K∑
k=1

Zk
|r −Rk|

. (1.4)

The stationary Schrödinger equation for the electronic problem then reads

Ĥeψq ({riσi}; {Rk}) = Eq({Rk})ψq ({riσi}; {Rk}) . (1.5)

Here, ψq is the many-electron wave function with the set of quantum numbers abbreviated as q, which

depends on the N electron coordinates riσi and contains, as parameters, the fixed nuclear positions

Rk. Thus, also the energy Eq can be viewed as a function of the nuclear coordinates, which is referred

to as the 3K-dimensional Born-Oppenheimer surface.

The full solution of Eq. 1.5 leading to the N -electron wave function can, however, be only achieved

for sufficiently small molecules. This is because, as can be shown, the numerical complexity of the

problem scales exponentially with the number of electrons N . This has been nicely illustrated in the

Nobel Lecture of Walter Kohn and is also referred to as Van Vleck’s catastrophy [3]. On the other

hand, a theory based on the electron density nσ(r),

nσ(r) = N
∑
σ2···σN

∫
d3r2 · · ·

∫
d3rN |ψ(rσ, r2σ2, · · · , rNσN)|2 , (1.6)

rather than on the N -electron wave function does not encounter such an ”exponential wall”, but scales

only as N3. Because of the normalization of the wave function

〈ψ |ψ〉 =
∑

σ1σ2···σN

∫
d3r1

∫
d3r2 · · ·

∫
d3rN |ψ(r1σ1, r2σ2, · · · , rNσN)|2 = 1, (1.7)

it is easy to see that the integration over r and the summation over the spin channels σ for the spin

density nσ(r) yields the total number of electrons N :

∑
σ

∫
d3rnσ(r) = N. (1.8)

Based on the theorems by Hohenberg and Kohn to be discussed in detail in Chapter 3, it is indeed

possible to find an equivalent description of the electronic structure problem solely in terms on the

density. As always, there is no free lunch, and in this case the price to be paid is that the so-called

density functional theory (DFT) is a ground state theory. This means that, rather than having access

to all states Eq of the many-electron system, DFT only yields the energetically lowest possible state

E0, that is the electronic ground state.
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1.2 Density Functional Theory in a Nutshell

Applied scientific research depends on the existence of accurate theoretical models. In particular,

highly reliable ab-initio methods are in-dispensable for designing novel materials as well as for a de-

tailed understanding of their properties. The development of such theories describing the electronic

structure of atoms, molecules, and solids has been one of the success stories of physics in the 20th cen-

tury. Among these, density functional theory (DFT) [3–6] has proven to yield ground state properties

for a vast number of systems in a very precise manner.3

DFT [3–5, 7] provides a rigorous framework to reduce the interacting many-electron problem to an

effective system of non-interacting electrons which will be the topic of Chapter 3. There it will be shown

that the quantum-mechanical, i.e. ab-initio, treatment of materials properties becomes tractable by

solving the so-called Kohn-Sham equations. These equations are essentially single-particle Schrödinger

equations with an effective potential.[
−1

2
∆ + vs(r)

]
ϕj(r) = εjϕj(r). (1.9)

Here vs(r) is an effective potential, the Kohn-Sham potential,

vs(r) = v(r) + vH(r) + vxc(r), (1.10)

comprised of the external potential v(r) due to the atomic nuclei as defined in Eq. 1.4, the Hartree

potential vH(r) and the so-called exchange-correlation potential vxc(r). The eigenvalues εj of Eq. 1.9

are the Kohn-Sham energies, and the eigenfunctions ϕj(r) the Kohn-Sham orbitals. The density n(r)

is constructed from the single particle orbitals ϕj(r), as

n(r) =
N∑
j=1

|ϕj(r)|2 . (1.11)

It is important to note that Eqs. 1.9 and 1.11 have to be solved self-consistently, i.e. iteratively, since

the Hartree as well as the exchange-correlation potential depend on the density.

Recommended Literature. (i) A Primer in Density Functional Theory, Fiolhais et al. (Editors)

[1]; (ii) Electronic Structure: Basic Theory and Practical Methods, Richard M. Martin [8]; (iii) Density

Functional Theory: A Practical Introduction, Sholl and Steckel [9].

3The Nobel Prize in Chemistry 1998 was awarded to Walter Kohn for his development of the density-functional
theory.
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1.3 Typical Applications of DFT

Before we continue in Chapter 2 to review the theoretical foundations of density functional theory

and discuss in some detail the fundamental equations of DFT in Chapter 3, the remaining section of

the first introductory Chapter aims at presenting typical applications of actual DFT calculations for

molecules, surfaces and solids. Thus, this section serves as a motivation for what follows and may also

be skipped at this time.

year

year
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r

(a)

(b)

Figure 1.1: Citation report from August, 9th 2017 for two fundamental papers in the field of den-
sity functional theory, (a) the Kohn-Sham paper from 1965 [5], and (b) Perdew’s paper about the
generalized gradient approximation for exchange and correlation effects from 1996 [10].

To demonstrate the importance of DFT for theoretical solid state physics and quantum chemistry

(but indeed also for related fields such as materials science, biochemistry, ...) Fig. 1.1 shows recent

citation reports of two fundamental papers, namely the original Kohn-Sham paper from 1965 [5], and

Perdew’s famous paper about the generalized gradient paper for exchange-correlation effects from
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1996. Both citation reports demonstrate the steadily growing interest in DFT. On the one hand

this is due to the availability modern computer hardware which enables larger and larger systems

to be computed. Nowadays, structures containing a few hundred atoms, translating typically into a

few thousand electrons N , are routinely possible. On the other hand, the accuracy of the numerical

results and thereby the capability to predict materials properties with sufficient precision has also

grown owing to continuous improvements in theory (exchange-correlation functional) and numerics

(basis sets, parallelization).

1.3.1 Equilibrium Geometries and Hellmann-Feynman Theorem

The self-consistent solution of Eqs. 1.9 and 1.11 leads to the ground state electron density n(r) and

the corresponding ground state total energy E. Because the total energy depends on the coordinates

of the clamped nuclei

E = E(R1,R2, · · ·RK), (1.12)

one can determine the equilibrium geometry of molecules and solids by varying the coordinates

(R1,R2, · · ·RK) and searching for the minimum in the total energy. This is illustrated in Fig. 1.2 for

the most simple molecule, the H2 molecule.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
dH-H (Å)

-6.6

-6.4

-6.2

-6.0
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T
ot

al
 E

ne
rg

y 
(e

V
)

0.6 0.8 1.0
dH-H (Å)

-20
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-10

-5

0

5

F
or

ce
 (

eV
/Å

)

Figure 1.2: Total energy (black circles, left axis) and force on hydrogen atom (red triangles, right axis)
for the hydrogen molecule H2.

For the hydrogen molecule, there is only one internal degree of freedom, namely the bond distance

dH−H. In Fig. 1.2 results of a DFT calculation for the total energy is shown where dH−H has been
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varied between 0.55 and 1.10 Å in steps of 0.05 Å. Clearly, there is a minimum at 0.75 Å which

corresponds to the predicted equilibrium bond length of the H2 molecule. This value compares quite

well to the experimental value of 0.74144 Å as taken from the NISTChemistryWebBook. The remaining

difference between the DFT prediction and the experimental value is due to certain approximations

in the exchange correlation potential which will be discussed in detail in Sec. 3.5.

For molecules with more nuclear degrees of freedom, the search for the equilibrium geometry merely

based on the total energy would be quite cumbersome. Fortunately, one can make use of the Hellmann-

Feynman theorem (or equivalently the force theorem) which allows for much more efficient geometry

relaxations. Assuming that the Hamiltonian Ĥ of a quantum mechanical system depends on a param-

eter λ and obeys the eigenvalue equation

Ĥ(λ) |ψ(λ)〉 = E(λ) |ψ(λ)〉 , (1.13)

the Hellmann-Feynman theorem relates the derivative of the total energy with respect to λ, to the

expectation value of the derivative of the Hamiltonian with respect to that same parameter

dE(λ)

dλ
=

〈
ψ(λ)

∣∣∣∣∣ dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)

〉
. (1.14)

The proof of the Hellmann-Feynman theorem uses the fact that the wavefunction |ψ(λ)〉 is normalized,

thus

〈ψ(λ) |ψ(λ)〉 = 1 ⇒ d

dλ
〈ψ(λ) |ψ(λ)〉 = 0. (1.15)

Applying the product rule of for differentiation and making use of the eigenvalue equation 1.13, we

can proof the Hellmann-Feynman theorem

dE(λ)

dλ
=

d

dλ

〈
ψ(λ)

∣∣∣ Ĥ(λ)
∣∣∣ψ(λ)

〉
=

〈
dψ(λ)

dλ

∣∣∣∣ Ĥ(λ)

∣∣∣∣ψ(λ)

〉
+

〈
ψ(λ)

∣∣∣∣ Ĥ(λ)

∣∣∣∣ dψ(λ)

dλ

〉
+

〈
ψ(λ)

∣∣∣∣∣ dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)

〉

= E(λ)

〈
dψ(λ)

dλ

∣∣∣∣ψ(λ)

〉
+ E(λ)

〈
ψ(λ)

∣∣∣∣ dψ(λ)

dλ

〉
+

〈
ψ(λ)

∣∣∣∣∣ dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)

〉

= E(λ)
d

dλ
〈ψ(λ) |ψ(λ)〉︸ ︷︷ ︸

=0

+

〈
ψ(λ)

∣∣∣∣∣ dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)

〉

=

〈
ψ(λ)

∣∣∣∣∣ dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)

〉
.
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The general Hellmann-Feynman theorem stated above can be utilized to derive the electro-static force

theorem [1, 8]. Within the Born-Oppenheimer approximation, the electronic Hamilitonian depends

parametrically on the positions (R1,R2, · · ·RK) of the atomic nuclei

Ĥ(R1,R2, · · ·RK) = −1

2

N∑
i=1

∆i +
1

2

∑
i,j 6=i

1

|ri − rj|
−

N∑
i=1

K∑
k=1

Zk
|ri −Rk|

+
1

2

∑
k,l 6=k

ZkZl
|Rk −Rl|

. (1.16)

Thus, with the help of the Hellmann-Feynman theorem 1.14, we obtain for the force F k acting on the

k-th atomic nucleus

F k = − ∂E

∂Rk

=

〈
ψ

∣∣∣∣∣− ∂Ĥ

∂Rk

∣∣∣∣∣ψ
〉

=

∫
d3r n(r)

Zk(r −Rk)

|r −Rk|3
+
∑
l 6=k

ZkZl(Rk −Rl)

|Rk −Rl|3
. (1.17)

According to the electro-static force theorem, once the spatial distribution of the electrons n(r) has

been determined by solving Kohn-Sham equations, all the forces in the system can be calculated using

classical electrostatics. Note that for deriving the first term in 1.17 involving the integral, we have

made use of 1.6, and that the summation
∑

l 6=k in the second term denotes a single sum excluding

the case where l = k.

1 6 13 25

1

6

13

Figure 1.3: Snapshots of the geometry relaxation of a benzene ring making use of the Hellman-Feynman
forces (red arrows).

The calculation of the forces acting on atomic nuclei based on 1.17 proves extremely useful when

searching for the equilibrium geometry of structures such as a molecule. This is illustrated already in

Fig. 1.2 for the H2 molecule and in Fig. 1.3 for the more complicated benzene molecule with 3K = 36

nuclear degrees of freedom. In this example, it takes about 25 geometry steps to find the equilibrium

8



geometry. At each step, the Kohn-Sham equations need to be solved self-consistently leading to the

density n(r) from which, according to 1.17, the atomic forces (red arrows) can be obtained. The

snapshots of the relaxation procedure shown in Fig. 1.3 nicely demonstrate how forces are getting

smaller and smaller accompanied by a steady decrease in the total energy.

1.3.2 Equilibrium Lattice Parameters of Bulk Crystals

Similar to the bond length variation previously shown for the H2 molecules, we can apply an analogous

procedure to periodic structures, that is crystalline solids, and determine their so-called equation of

state. Thus, we solve the Kohn-Sham equations for a series of lattice parameters and plot the resulting

total energies as a function of the unit cell volume.

Figure 1.4: Equation of state for bulk copper in the face centered cubic (fcc) and body centered cubic
(bcc) structures.

This is illustrated in Fig. 1.4 for bulk copper assuming, on the one hand, a face centred cubic structure

(red color), or a body centred cubic structure (blue color), on the other. Without any empirical input,

the results thus suggest that copper prefers to crystallize in the fcc structure with an equilibrium

volume of about V0 = 11.85 Å3 per atom which translates into an equilibrium lattice parameter of

a0 = 3
√

4V0 ≈ 3.63 Å. This number compares quite well to the experimental value of 3.60 Å, the

deviation is again due to the specific approximation used for exchange-correlation effects (see Sec. 3.5

for more details).
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1.3.3 Bulk Modulus and Elastic Properties

Energy versus volume plots such as depicted in Fig. 1.4 also allow the bulk modulus to be determined

from the second derivative of E(V ). The bulk modulus B is defined as the derivative of pressure p

with respect to volume via

B = −V
(
∂p

∂V

)
T

, (1.18)

where in turn pressure is given the the volume derivative of the total energy as

p = −
(
∂E

∂V

)
S

. (1.19)

Combining these two equations shows that the bulk modulus can be obtained from the curvature of

the equation of state E(V ) multiplied by the volume

B = V

(
∂2E

∂V 2

)
. (1.20)

It is common to fit the numerically obtained points (V1, E1), (V2, E2), · · · to a functional form which

is based on some physical assumptions. One commonly used equation of state is the one suggested by

Murnaghan [11]. By assuming that the bulk modulus is a linear function of pressure

B(p) = B0 +B′0p (1.21)

one can derive the following expression4 for the total energy

E(V ) = E0 +
B0(V − V0)

B′0 − 1
+

B0V

B′0(B′0 − 1)

[(
V0

V

)B′0
− 1

]
. (1.22)

This equation of state contains four (fit) parameters, where B0 and V0, respectively, denote the zero

pressure bulk modulus and unit cell volume, B′0 is the pressure derivative of the bulk modulus, and

E0 is the energy at zero pressure. When fitting 1.22 to the data points for fcc Cu leading to the solid

red line, one obtains a value of B0 = 139 GPa which is only slightly smaller than the measured value

of 142 GPa.

The bulk modulus is only a particular example for one elastic modulus. Most generally, the linear

elastic properties of crystals are described by the generalization of Hooke’s law (F = −kx)

σij = Cijklεkl. (1.23)

4Although this is not the recommended practice, in this case wikipedia may be consulted for the derivation of the
Murnaghan_equation_of_state.
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Here, εkl is the strain tensor and σij denotes the stress tensor which are both symmetric tensors of

second rank. Therefore, the proportionality constant is a tensor of 4th rank and is called the elastic

tensor Cijkl, its elements are the elastic constants. The dimensionless strain tensor describes how a

point in space r, or specifically the unit cell of a crystal, is deformed under a given strain to yield the

point r′

r′i = (δij + εij)rj. (1.24)

The stress tensor can be defined as the derivative of the total energy with respect to the strain

σij =
1

V

∂E

∂εij
. (1.25)

Thus it has units of energy/volume or equivalently force/area representing a pressure. Numerically,

the components of the stress tensor can be obtained by choosing an appropriate type of strain and

computing the total energy for various magnitudes of the strain. Finally, the elastic constants are

related to the second derivative of the total energy with respect to strain in the following manner

Cijkl =
1

V

∂2E

∂εij∂εkl
. (1.26)

For technical details on how to obtain the elastic constant of crystals from density functional calcu-

lations in practice the following reference is recommended: Golesorkhtabar et al. [12].

1.3.4 Surfaces of Crystals and Adsorption of Molecules

DFT calculations cannot only be used to study the properties of bulk crystals, but also crystal defects

can be investigated. This includes point defects [14] as well as extended defects such as dislocations

[15], grain boundaries [16] and crystal surfaces [13]. Here we will give a brief example for DFT results

for crystal surfaces.

As will be described in detail in Chapter 4, most DFT implementations for solid state applications

utilize basis functions which describe Bloch waves, that is, there are periodic boundary conditions in

all three spatial directions. In order to perform calculations for a crystal surface, the so-called repeated

slab approach is commonly used. Thus, instead of a semi-infinite crystal terminated by a single crystal

surface, one approximates a surface by a crystal slab of finite thickness terminated by two planes at

top and bottom of the slab. A typical unit cell for such a repeated slab calculation is illustrated in

panel (a) of Fig. 1.5 for a (100) surface of an fcc crystal. It contains 15 atomic layers and an additional

vacuum layer which is used to decouple the slab from its periodic images in z-direction.

Using the Hellmann-Feynman forces and relaxing the geometry of the slab, one observes that the

topmost (and bottom most) atomic layers turn out to exhibit interlayer spacings dij which differ from

11
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Figure 1.5: (a) Unit cell in the repeated slab approach for surface calculations containing 15 atomic
layers. (b) Relaxation of the interlayer distances of the topmost atomic layers. (c) Convergence of the
surface energy with respect to the number of atomic layers in the slab for the (110), (100) and (111)
crystal faces of Cu and Al schematically depicted in panel (d). The figure is reproduced from the
Master Thesis of Dario Knebl [13].

the interlayer spacing calculated for a bulk crystal (Fig. 1.5b). This relaxation is most pronounced for

the first layers, d12, d23, · · · and approaches rather quickly the bulk value. Comparing the three crystal

planes (110), (100), (111) of copper, it is found that the most open (110) surface shows the largest

relaxations while the close-packed (111) surface retains interlayer spacings quite similar to the bulk

crystal.

Fig. 1.5c shows the surface energy Esurf of the (110), (100) and (111) crystal faces of Cu and Al which

is defined in the following way

Esurf = −1

2
(Eslab − n · Ebulk) . (1.27)

Here, Eslab is the total energy of the slab containing n atomic layers and Ebulk is the energy of the bulk
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d

Figure 1.6: Adsorption energy Ead of a thiophene molecule (C4H4S) on a Cu(110) surface as a func-
tion of the adsorption height d for various exchange-correlation functionals (see text for details) and
comparison with equilibrium geometry from experiment. Data is reproduced from Ref. [17].

crystal. Note that the factor 1
2

arises because of the two surfaces in the repeated slab approach, and

the minus sign is convention to yield a positive number for the surface energy. Fig. 1.5c illustrates how

the computed values for the surface energy converges towards a given value when adding more and

more layers to the slab. It also demonstrates that the (111) surfaces have the lowest surface energies

followed by the (100) and finally by the (110) face which can be explained by the bonding coordination

of atoms on the respective surfaces.

An important application of DFT calculations for surfaces regards the question of how molecules

interact with surfaces which is important in fields ranging from organic electronics to catalysis. Here,

we briefly present a study of the adsorption of the organic molecule thiophene, C4H4S, on the (110)

surface of copper (see Fig. 1.6). Of particular interest here is the precise adsorption geometry (height

of the molecule above the surface, lateral position of the molecule with respect to the substrate atoms)

and the interaction strength, the adsorption energy, which is defined in the following way:

Ead = Efull − (Esurface + Emolecule). (1.28)

Thus one needs to perform DFT calculations for three structures: (i) for the full system containing

the molecule interacting with the surface, (ii) for the surface without the molecule, and (iii) for the

molecule without the surface. The result of such calculations is shown in Fig. 1.6 where this adsorption

energy Ead has been plotted as a function of the Cu–S distance [17].
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As already mentioned earlier, the exchange-correlation potential appearing as one term in the effective

Kohn-Sham potential (see Eq. 1.10) needs to be approximated in some way. Now, it turns out that

the most common approximations, namely the local density approximation (LDA) to be discussed in

Sec. 3.5.3 as well as the generalized gradient approximation (GGA) to be discussed in Sec. 3.5.4, are

both severely in error when compared to experiment when it comes to such molecule/metal interfaces.

The reason is that so-called van der Waals dispersion forces, which are due to non-local quantum-

mechanical electron correlations are absent in LDA and GGA. This can be seen by the red curve in

Fig. 1.6 where a so-called van-der-Waals density functional has been employed. The development and

further improvement of exchange-correlation functionals to accurately account for such van der Waals

forces has in fact been an extremely active field of research in the past decade [18, 19], and we will

briefly touch this issue in Section 3.5.6.

1.3.5 Vibrational Frequencies and Phonons

Density functional calculations can also be used to compute vibrational frequencies of molecules and

the phonon dispersion relation of crystals within the so-called frozen phonon approach. Basically,

starting from the equilibrium geometry of a molecule or solid (see above), the atomic nuclei are

displaced and the total energy and the atomic forces are computed. The second derivative of the total

energy with respect to a displacement then leads to the spring constant, or for systems with many

degrees of freedom, to the dynamical matrix whose eigenvalues are the vibrational frequencies for the

normal modes of vibration. Below we review the derivation of the dynamical matrix describing nuclear

motion in a crystal.

Let us assume a perfect crystal with periodic boundary conditions at 0 Kelvin. We define Rα as the

position vectors to the α-th atom within an arbitrarily chosen ”zero” unit cell, and the position vector

to the n-th unit cell is denoted by Rn. Hence the equilibrium position of atom α in unit cell n can

be written as Rnα = Rn + Rα. If we denote the Cartesian components of the displacement vector

of atom α in unit cell n with snαi, where i takes the three values x, y, z, we can write for the kinetic

energy of the nuclear motion:

T =
N∑
n=1

r∑
α=1

3∑
i=1

Mα

2

(
dsnα i (t)

dt

)2

. (1.29)

Here, Mα is the mass of atom α, and N is the number of unit cells in the crystal, r the number of

atoms per unit cell, and i stands for the three Cartesian coordinates x, y, z. Hence the total number

of degrees of freedom is 3rN . The potential energy W can be expanded into a Taylor series in the
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atomic coordinates.

W (snαi) = W (0) +
∑
nαi

∂W

∂snαi︸ ︷︷ ︸
=0

snαi +
1

2

∑
nαi

∑
n′α′i′

∂2W

∂snαi∂sn′α′i′︸ ︷︷ ︸
Φn
′α′i′
nαi

snαisn′α′i′ + · · · (1.30)

The linear terms in s vanish since we expand around the equilibrium configuration (vanishing forces),

and we have introduced the force constant matrix Φn′α′i′
nαi . They can be interpreted as the i-th Cartesian

component of the force on atom α in unit cell n, when atom α′ in unit cell n′ is displaced a unit distance

in i′-direction. Note also that we have neglected higher terms than the harmonic ones. The equations

of motion can be derived from the the Euler–Lagrange equations

d

dt

∂£

∂
.
snαi
− ∂£

∂snαi
= 0. (1.31)

Inserting £ = T −W and taking account of the symmetry of the force constants Φn′α′i′
nαi = Φnαi

n′α′i′ leads

to:

Mα
d2snαi

dt2
= −

∑
n′α′i′

Φn′α′i′

nαi sn′α′i′ . (1.32)

This can be solved with the harmonic ansatz

snαi (t) =
1√
Mα

unαi e
−iωt (1.33)

we obtain

ω2unαi =
∑
n′α′i′

Φn′α′i′
nαi√
MαMα′

un′α′i′ (1.34)

which is an eigenvalue equation for the 3rN normal frequencies ω. On account of the translational

symmetry in a periodic crystal, Φn′α′i′
nαi only depend on the difference n−n′, i.e. Φn′α′i′

nαi = Φα′i′
αi (n−n′).

The translational symmetry is taken into account by the Fourier ansatz:

unαi = cαie
iqRn , (1.35)

where q is a momentum vector inside the first Brillouin zone. It leads to

∑
α′i′

Dα′i′

αi (q)cα′i′ = ω2(q)cαi with Dα′i′

αi (q) =
∑
n

Φα′i′
αi (n)√
MαMα′

eiqRn , (1.36)

where we have introduced the dynamical matrix Dα′i′
αi (q). We thus have arrived at an eigenvalue

equation (1.36) which is only 3r–dimensional. The phonon frequencies ω are functions of the wave

vector q and are the square roots of the eigenvalue of the dynamical matrix.
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Figure 1.7: (a) 6×6 supercell of graphene with the central atom displaced in y direction, atomic forces
are shown by the red arrows. (b) Brillouin zone of graphene with high symmetry points and reciprocal
lattice vectors indicated. (c) Phonon band structure and (d) phonon density of states for graphene.

Fig. 1.7 depicts a frozen phonon calculation for graphene which is a two-dimensional layer of carbon

atoms arranged in a honey-comb structure with a hexagonal unit cell containing r = 2 carbon atoms.

In the finite-displacement supercell approach, a superstructure containing 6 × 6 unit cells, thus 72

carbon atoms, is formed as illustrated in Fig. 1.7a. The force constant matrix Φα′i′
αi (n) is computed by

displacing one atom of this supercell and analyzing the Hellmann-Feynman forces on all atoms in the

supercell indicated by the red arrows. According to 1.36, the 2r × 2r = 6× 6 dimensional dynamical

matrix Dα′i′
αi (q) is set up for a given wave vector q and its eigenvalues are calculated. Sampling the

Brillouin zone (BZ) depicted in panel (b) along high symmetry directions (green lines) leads to the

phonon band structure plot presented in Fig. 1.7c. Due to the two inequivalent atoms in the graphene

unit cell, there are three acoustic phonon branches (ω → 0 for |q| → 0) and three optical phonon

bands (ω > 0 for |q| → 0). They are further distinguished into in-plane and out-of-plane modes which

becomes evident when analyzing the eigenvectors of the dynamical matrix. We also show the phonon

density of states in panel (d) which can be obtained by densely sampling the entire BZ with a q-grid

and counting the number of frequencies ω(q) in a certain frequency interval (ω, ω + ∆ω).
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Chapter 2

Theoretical Background

2.1 Periodic Solids and Electron Bands

Within this lecture, we will mainly deal with crystalline solids. In this section we will briefly introduce

our nomenclature and review the most important relations for solids with translational symmetry.

For more information we refer to standard text books on this topic such as the book by Ashcroft and

Mermin [20].

We denote the primitive lattice vectors which span the unit cell of volume Ω0 as

a1, a2, a3, Ω0 = (a1 × a2) · a3. (2.1)

Any direct lattice vector R is then given as a linear combination of the basis vectors

R = n1a1 + n2a2 + n3a3, (2.2)

with integer numbers n1, n2 and n3. The reciprocal lattice is defined by the three vectors

b1 =
2π

Ω0

a2 × a3, b2 =
2π

Ω0

a3 × a1, b3 =
2π

Ω0

a1 × a2. (2.3)

Thus, the relation between the direct and the reciprocal basis vectors can be summarized as follows

ai · bj = 2πδij. (2.4)

In analogy to the direct lattice vectors R, the reciprocal basis vectors b1, b2, and b3 span the reciprocal
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lattice vectors which we denote by G as

G = m1b1 +m2b2 +m3b3, (2.5)

with integer numbers m1, m2 and m3. Thus, we have the important relation

G ·R =
3∑
i=1

3∑
j=1

nimjai · bj = 2π
3∑
i=1

nimi ⇒ eiG·R = 1. (2.6)

2.1.1 Bloch Theorem

Consider the eigenstates and eigenvalues of an effective one-electron Schrödinger equation, such as

the Kohn-Sham equations 1.9, for a periodic solid

Ĥϕj(r) =

[
−1

2
∆ + vs(r)

]
ϕj(r) = εjϕj(r). (2.7)

Because the effective potential is invariant under lattice translations

T̂Rvs(r) ≡ vs(r + R) = vs(r) (2.8)

and also the kinetic energy operator −1
2
∆ is translationally invariant, the Hamilton operator Ĥ com-

mutes with the translation operator T̂R. Note that the action of the translation operator T̂R on a

function f(r) is given by T̂Rf(r) = f(r + R).[
Ĥ, T̂R

]
= 0 ⇒ ĤT̂R = T̂RĤ. (2.9)

Thus, the eigenstates of Ĥ can be chosen to be also eigenstates of all T̂R simultaneously. The eigenstates

of the translation operator can be readily determined, independent of any details of the crystal, thereby

rigorously classifying the states of the Hamiltonian Ĥ by the eigenvalues of the translation operator.

This, in essence, leads to the Bloch theorem.

The key point to derive the Bloch theorem (see e.g. Ref. [21]) is to notice that the product of any two

translation operators corresponding to the translations R1 and R2, respectively, corresponds to the

translation R1 + R2. Thus, we can write

T̂R1T̂R2 = T̂R1+R2 . (2.10)
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and the eigenvalue equation of the translation operator T̂R demands

T̂Rψ(r) = αRψ(r) ⇒ T̂R1T̂R2ψ(r) = αR1αR2ψ(r) = αR1+R2ψ(r) ⇒ αR1+R2 = αR1αR2 .

(2.11)

On the other hand, because the charge density associated with the wave function must be transla-

tionally invariant

|ψ(r)|2 = |ψ(r + R)|2 ⇒ |αR|2 = 1. (2.12)

Eqs. 2.11 and 2.12 can be fulfilled by the following ansatz

αR = eik·R, (2.13)

where k is a real-valued vector of reciprocal space that can be restricted to the first Brillouin zone

because ei(k+G)·R = eik·R. This directly leads to the Bloch ansatz for the wave function

ψk(r) = eik·ruk(r) with uk(r + R) = uk(r), (2.14)

where the wave function ψk(r) as well as the lattice periodic part of the wave function uk(r) obtain

the quantum number k, the Bloch vector, as an index. Thus, the Bloch function obeys the desired

property upon translation about the lattice vector R:

ψk(r + R) = eik·Rψk(r). (2.15)

To put Bloch’s equation 2.14 in Felix Bloch’s own words from 1936: When I started to think about it,

I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal ...

By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free

electrons only by a periodic modulation.

2.1.2 Electronic Band Structure

Here, we briefly review important consequences of the Bloch theorem 2.14 for the solution of one-

electron Schrödinger equation of type 2.7. First of all, Bloch functions belonging to different vectors

k and k′ are orthogonal to each other,〈
ψk′,ν′(r)

∣∣ψk,ν(r)
〉

= δk,k′δν,ν′ , (2.16)

where we have introduced the band index ν. Therefore, one can solve the Schrödinger equation sep-

arately for each Bloch vector k, thus with the help of the translational symmetry, the Hamiltonian

matrix is Block-diagonalized. Insertion of 2.14 into 2.7 leads to an eigenvalue equation for the periodic
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part of the wave function: [
−1

2
(∇+ ik)2 + vs(r)

]
uk,ν(r) = εk,νuk,ν(r). (2.17)

The eigenvalues εν(k) ≡ εk,ν are termed the electronic band structure of the solid, where ν labels the

individual bands and k is a vector within the first Brillouin zone. Using 2.6 it is easy to show that the

band structure as well as the Bloch functions are periodic with respect to reciprocal lattice vectors G:

εν(k + G) = εν(k) and ψk+G,ν(r) = ψk,ν(r). (2.18)

Another important property which relies on the time-reversal symmetry of the Hamiltonian is the

so-called Kramer’s theorem. It can be shown that time-inversion symmetry requires that

εν(−k) = εν(k) and ψ∗−k,ν(r) = ψk,ν(r). (2.19)

2.1.3 Fourier Series for Local Functions

In this and the following subsections, we briefly state a number of important relations regarding the

Fourier expansion of functions typically appearing in the context of periodic solids. Note that, Ω0

denotes the volume of one unit cell, whereas Ω is the whole crystal volume. Thus Ω = N ·Ω0, where N

is the number of unit cells within the crystal for which we assume periodic boundary conditions (Born-

van-Karmann boundary conditions). Hence the number of Bloch vectors k within the first Brillouin

zone also equals N = Ω
Ω0

.

First, we consider a function f(r) which has the lattice periodicity of the crystal, such as the electron

density or the crystal potential

f(r + R) = f(r), (2.20)

where R denotes as usual any direct lattice vector. Then, the function f may be expanded in the

Fourier series

f(r) =
1

Ω

∑
G

fGe
iGr, (2.21)

with the Fourier coefficients given by

fG =

∫
Ω

d3rf(r)e−iGr. (2.22)

The summation runs over all reciprocal lattice vectors G, and the integration is over the crystal

volume Ω.
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If the function f , however, does not have the periodicity of the lattice, such as an external perturbation,

or indeed the Bloch wave function ψk(r), we have to include a sum over the a vector q from the first

Brillouin zone, and write the Fourier expansion of f in the way

f(r) =
1

Ω

BZ∑
q

∑
G

fG(q)ei(q+G)r (2.23)

fG(q) =

∫
Ω

d3rf(r)e−i(q+G)r. (2.24)

2.1.4 Fourier Series for Nonlocal Functions

Response functions for crystalline systems are in general non-local functions of r and r′ that are

invariant, if both space variables are translated by a direct lattice vector R, thus

f(r + R, r′ + R) = f(r, r′). (2.25)

We use the following convention for the Fourier expansions of functions f(r, r′) with the property

(2.25)

f(r, r′) =
1

Ω

BZ∑
q

∑
GG′

ei(q+G)rfGG′(q)e−i(q+G′)r′ (2.26)

fGG′(q) =
1

Ω

∫
Ω

d3r

∫
Ω

d3r′e−i(q+G)rf(r, r′)e−i(q+G′)r′ . (2.27)

The quantity fGG′(q) for a given q from the first Brillouin zone can be interpreted as a matrix where

the matrix indices are reciprocal lattice vectors G and G′.

2.1.5 Crystal Lattice Integrals and Summations

In this section, some useful integrals over the crystal volume or unit cell, and some relations involving

summations over lattice vectors will be given.∫
Ω

d3reiqr = Ω δq,0 (2.28)∫
Ω0

d3reiGr = Ω0 δG,0. (2.29)

Here, Ω and Ω0, respectively, denote the crystal and the unit cell volume, and q and G are vectors

from the first Brillouin zone, and reciprocal lattice vectors, respectively. The summation over direct
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lattice vectors R of the plane wave eiqR is given by

∑
R

eiqR =
Ω

Ω0

∑
G

δq,G, (2.30)

where the factor Ω/Ω0 is just the number of unit cells in the crystal. Note that the summation over

G is only non-zero if q is equal to zero, provided that q is from the first Brillouin zone.

2.2 Independent-Electron Approximations

2.2.1 The Variational Principle

The variational principle, often also called the Rayleigh-Ritz variational principle, gives us a way of

constructing upper bounds for the total energy of an electron system. We will use it to derive the

Hartree and Hartree-Fock equations in Secs. 2.2.2 and 2.2.3, and later also make use to develop density

functional theory in the next Chapter.

Let Ĥ be an Hermitian operator, for instance the Hamiltonian of the N -electron system, with the

eigenvalues En and eigenstates |Φn〉. Let us further denote the ground state energy and state as E0

and |Φ0〉, respectively. Then, the Rayleigh-Ritz variational principle states that for any state |Ψ〉,
which need not necessarily be normalized, the following relation holds

E[Ψ] =

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉
〈Ψ |Ψ〉

≥ E0. (2.31)

Equation 2.31 forms the foundation of the variational principle. Suppose |Φη〉 is a trial wave function

with some variable parameter η. If we are interested in the ground state, then the best approximation

to the ground state will be characterized by a minimum of the E[Ψ], thus

∂E

∂η
= 0. (2.32)

By successively more sophisticated trial wave functions with more variable parameters, we can get as

close to E0 as desired. E[Ψ] = E0 exactly only if |Ψ〉 is the exact ground state wave function.

2.2.2 Hartree Approximation

As a first application of the variational principle, we consider the so-called Hartree approximation.

To this end, we consider the Hamiltonian of an N -electron system already introduced in Eq. 1.3 and
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rewrite it as a sum over the one-particle operator ĥ and the two-particle operator V̂ee

Ĥ =
N∑
i=1

(
−1

2
∆i + v(ri)

)
+

1

2

∑
i,j 6=i

1

|ri − rj|
=

N∑
i=1

ĥ(ri) +
1

2

∑
i,j 6=i

V (ri, rj). (2.33)

In the Hartree approximation, the wave function |Ψ〉 is approximated by a simple product ansatz

Ψ(x1, x2, · · ·xN) = ϕ1(x1)ϕ2(x2) · · ·ϕN(xN). (2.34)

Here, the N single-particle functions ϕ1, ϕ2, · · ·ϕN are assumed to be normalized, which thereby results

also in a normalized wave function Ψ. Also note that the coordinates xi are meant to contain a spatial

as well as a spin coordinate xi = (ri, ζi). We can now apply the Rayleigh-Ritz variational principle

and demand that the variation of
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 under the constraint that all single-particle functions

ϕi remain normalized vanishes

δϕi

[〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉− N∑

i=1

εi

∫
dxi ϕ

∗
i (xi)ϕi(xi)

]
= 0. (2.35)

Thus, we are varying the N single-particle functions ϕi to minimize the energy, where the Lagrange

multipliers εi are introduced to satisfy the normalization of the wave function. Note that
∫

dxi involves

an integration over the spatial coordinate and a summation of spin coordinate. To evaluate 2.35, we

first calculate the total energy E =
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 inserting the product ansatz

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 =

∫
dx1 · · · dxN ϕ∗1(x1) · · ·ϕ∗N(xN)

[
N∑
i=1

ĥ(ri) +
1

2

∑
i,j 6=i

V (ri, rj)

]
ϕ1(x1) · · ·ϕN(xN)

=
N∑
i=1

∫
dxϕ∗i (x)ĥ(r)ϕi(x) +

1

2

∑
i,j 6=i

∫
dxdx′ϕ∗i (x)ϕ∗j(x

′)V (r, r′)ϕi(x)ϕj(x
′). (2.36)

For the variation, we choose to vary expression 2.36 with respect to ϕ∗i which yields

∫
dx

[
ĥ(r)ϕi(x) +

∑
j 6=i

∫
dx′ϕ∗j(x

′)V (r, r′)ϕi(x)ϕj(x
′)− εiϕi(x)

]
= 0. (2.37)

Here, we have made use of the fact that V (r, r′) = V (r′, r) and by changing the dummy integration

variables have combined terms. By noting that Eq. 2.37 must hold for arbitrary variations, we see
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that the integrand in square brackets must vanish which leads us to the Hartree Equations[
ĥ(r) +

∑
j 6=i

∫
dx′ϕ∗j(x

′)V (r, r′)ϕj(x
′)

]
ϕi(x) = εiϕi(x). (2.38)

Several observations can be made about these Hartree equations 2.38. First, instead of having of one

Schrödinger equation for the N -electron wave function, we now have N Schrödinger equations for the

N one-electron orbitals ϕi. For a given orbital ϕi, the second term in square brackets, the Hartree-

potential, depends on all other orbitals ϕj. Thus, the way to solve 2.38 is to start with a guess for

the set of orbitals ϕi, and then use 2.38 to calculate a new set. This process is continued until the

ϕi that are put into 2.38 are the same as (or numerically very close to) the ϕi that result from 2.38.

This is called self-consistent solution, a term that we will come across also in the framework of density

functional theory. Last but not least, the interpretation of the Hartree potential vH(r) has an intuitive

interpretation:

vH,i(r) =
∑
j 6=i

∫
dx′ϕ∗j(x

′)V (r, r′)ϕj(x
′) =

∫
d3r′

∑
j 6=i |ϕj(r′)|2

|r − r′|
N�1
≈
∫

d3r′
n(r′)

|r − r′|
= vH(r). (2.39)

Here, we have used the fact that the electron-electron interaction V (r, r′) does not depend on the spin

coordinates. In the last step, we have noted that for the case of a large electron number N , the i = j

term may be included and the sum over all orbitals is equal to the electron density
∑

j 6=i |ϕj(r′)|2 ≈∑N
j=1 |ϕj(r′)|2 = n(r′). This shows that the Hartree potential vH(r) can be interpreted as the classical

electrostatic potential due to the total electron charge density n(r′). It is clear in including the i = j

term in the summation, one introduces a spurious interaction of the electron in orbital ϕi with itself,

the so-called self-interaction.

2.2.3 Hartree-Fock Approximation

One problem with the Hartree approximation is that the underlying wave function, as defined by

the product ansatz 2.34, does not satisfy the Pauli principle, that is the wave function is not anti-

symmetric with respect to the interchange of two particles. A natural way to fulfil the anti-symmetry

of the wave function is to write |Ψ〉 as a Slater determinant in the following way

Ψ(x1, x2, · · ·xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) · · · ϕN(x1)

ϕ1(x2) ϕ2(x2) · · · ϕN(x2)
...

...
...

ϕ1(xN) ϕ2(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣∣∣∣
. (2.40)
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Applying the same variational procedure as before by using the Slater determinant 2.40 as ansatz for

the wave function with normalized orbitals ϕi leads to the Hartree-Fock equations. The derivation is

a bit more cumbersome [22] than before for the Hartree-equations, and we will only show the results

here. The so-called Hartree-Fock equations are given by:

ĥ(r)ϕi(x) +
N∑
j=1

[∫
dx′ϕ∗j(x

′)V (r, r′)ϕi(x)ϕj(x
′)−

∫
dx′ϕ∗j(x

′)V (r, r′)ϕj(x)ϕi(x
′)

]
= εiϕi(x).

(2.41)

These are again N single-particle Schrödinger equations for i = 1, 2 · · ·N . Compared to the Hartree

equations 2.38, an additional term appears which is the so-called Fock exchange potential which is

attractive (minus sign) and thereby lowers the energy compared to the Hartree solution. It should also

be noted that the summation can now be extended over all j = 1, 2 · · ·N including the j = i term

since the spurious self-interaction term in the first term (Hartree potential) is exactly compensated

by the second term (exchange potential). The total energy E =
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 in the Hartree-Fock

approximation turns out to be

E =
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 =

N∑
i=1

∫
dxϕ∗i (x)ĥ(r)ϕi(x) (2.42)

+
1

2

∑
i,j

∫
dxdx′

[
ϕ∗i (x)ϕ∗j(x

′)V (r, r′)ϕi(x)ϕj(x
′)− ϕ∗i (x)ϕ∗j(x

′)V (r, r′)ϕj(x)ϕi(x
′)
]

To make the structure of the Hartree-Fock equations 2.41 clearer, we can rewrite them in the following

form ĥ(r) +

∫
d3r′

n(r′)

|r − r′|︸ ︷︷ ︸
=vH(r)

−
N∑
j=1

∫
dx′

ϕ∗j(x
′)V (r, r′)ϕj(x)ϕi(x

′)

ϕi(x)︸ ︷︷ ︸
=viF (x)

ϕi(x) = εiϕi(x), (2.43)

where we have introduced in addition to the already known Hartree potential, vH(r), also the orbital-

dependent Fock exchange potential viF (x). Similarly to the Hartree equations, also the Hartree-Fock

equations 2.43 need to be solved self-consistently.

In order to analyse the Fock exchange potential further, we now explicitly re-introduce spatial and

spin coordinates according to the following scheme

i = (k, α), j = (k′, α′), x = (r, ζ), x′ = (r′, ζ ′),

∫
dx′ =

∑
ζ′

∫
d3r′ (2.44)
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Thus the quantum number i is split into a quantum number for the spatial part, the Bloch vector k,

and the spin quantum number α, and the coordinate x contains the spatial coordinate r and the spin

coordinate ζ. Since the Hartree-Fock Hamiltonian does not have an explicit spin-dependence, we can

also assume the following product ansatz for the single-particle orbitals

ϕi(x) = φk(r)χα(ζ), (2.45)

where φk(r) denotes the spatial and χα(ζ) the spin part of the orbital, respectively. Using 2.44 and

2.45 in the Fock exchange potential viF (x) as defined in 2.43, we find

viF (x) = −
N∑
j=1

∫
dx′

ϕ∗j(x
′)V (r, r′)ϕj(x)ϕi(x

′)

ϕi(x)

vk,αF (r, ζ) = −
occ∑
k′

∑
α′

∑
ζ′

∫
d3r′

φ∗k′(r
′)χ∗α′(ζ

′)V (r, r′)φk′(r)χα′(ζ)φk(r′)χα(ζ ′)

φk(r)χα(ζ)

= − 1

χα(ζ)

∑
α′

χα′(ζ)
∑
ζ′

χ∗α′(ζ
′)χα(ζ ′)︸ ︷︷ ︸

δα,α′

occ∑
k′

∫
d3r′

φ∗k′(r
′)V (r, r′)φk′(r)φk(r′)

φk(r)
.

Due to the appearance of the Kronecker-δα,α′ , the spin indices α and α′ need to be equal, thus the

exchange potential is only acting on electrons with parallel spin. This is of course due to the fact that

it expresses the Pauli-exclusion principle that does not allow electrons of parallel spin to occupy the

same orbital. We can thus write for the Fock-exchange potential

vk,↑↑F (r) = −
occ∑
k′

∫
d3r′

1

|r − r′|
φ∗k′(r

′)φk(r′)φk′(r)

φk(r)
(2.46)

This potential can be thought of arising from the following charge density

ρk,↑↑F (r, r′) =
occ∑
k′

φ∗k′(r
′)φk(r′)φk′(r)

φk(r)
(2.47)

However, this charge density associated with the exchange potential is non-local since it depends on

r and r′ and it is also a function of k. This demonstrates that, in contrast to the Hartree potential,

the Fock exchange potential is a purely quantum-mechanical effect arising from the Fermion statistics

and has no classical analogue.

Before we conclude this section about the Hartree-Fock method, we return to Equation 2.43 and ask

ourselves, if there is any physical interpretation of the Lagrangian multipliers εi. Indeed, according

26



to Koopmans’ theorem the εi can be interpreted as the negative of the energy required to remove an

electron in the state i from the system. The proof of Koopmans’ theorem is quite simple. First we see

from 2.41 that by multiplying from the left with
∫

dxϕ∗k(x) we get for the orbital i = k

εk =

∫
dxϕ∗k(x)ĥ(r)ϕk(x)

+
N∑
j=1

∫
dxdx′

[
ϕ∗k(x)ϕ∗j(x

′)V (r, r′)ϕk(x)ϕj(x
′)− ϕ∗k(x)ϕ∗j(x

′)V (r, r′)ϕj(x)ϕk(x
′)
]

(2.48)

The comparison of 2.48 with a total energy expression 2.42 for a system where the electron in state k

has been removed, thus the terms i = k and j = k omitted in the sums appearing in 2.42, shows that

indeed

εk = − (Ewithout k − E) , (2.49)

where E denotes the energy of the N electron system, and Ewithout k is the energy of the N−1 electron

system where one electron from state k has been removed.

2.3 Uniform Electron Gas

The uniform electron gas, also known as homogeneous electron gas or jellium model, is a quantum

mechanical model of interacting electrons in a model solid where the positive charges (i.e. the atomic

nuclei) are assumed to be uniformly distributed in space forming a ”jellium” of a positively charged

background. As a consequence the electron density as well is a uniform quantity in space. The jellium

model allows one to focus on the effects in solids that occur due to the quantum nature of electrons

and their mutual repulsive interactions (due to like charge) without explicit introduction of the atomic

lattice and structure making up a real material. The uniform electron gas is also at the heart of the

local density approximation which forms the basis of exchange-correlation functionals to be used in

density functional theory for systems with an homogeneous electron distribution.

At zero temperature, the properties of jellium depend solely upon the constant electronic density

n =
N

Ω
, (2.50)

where N is the number of electrons in the crystal volume Ω. Equivalently one can express the electron

density in terms of the Fermi wave vector

kF =
(
3π2n

) 1
3 , (2.51)
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or the Seitz radius rs which is the radius of a sphere which on average contains one electron

4

3
πr3

s =
Ω

N
=

1

n
⇒ rs =

(
3

4π

) 1
3

n−
1
3 =

(
9π

4

) 1
3 1

kF
. (2.52)

2.3.1 Hartree-Fock Equations for the Jellium

For the uniform electron gas, the Hartree-Fock equations can be solved analytically. We will show

that – as for a system of non-interacting electrons – the eigenfunctions turn out to be plane waves

φk(r) =
1√
Ω
eik·r (2.53)

Insertion of 2.53 into 2.43 and using ĥ(r) = −1
2
∆−n

∫
d3r′ 1

|r−r′| for the kinetic energy and attractive

potential of the positive jellium background leads to[
ĥ(r) + n

∫
d3r′

1

|r − r′|
−

occ∑
k′

∫
d3r′

1

|r − r′|
φ∗k′(r

′)φk(r′)φk′(r)

φk(r)

]
φk(r) = εkφk(r)[

k2

2
− 1

Ω

occ∑
k′

∫
d3r′

1

|r − r′|
ei(k

′−k)(r−r′)

]
eik·r = εke

ik·r.

By noting that due to the uniformity of the electron gas, the result will not depend on a chosen point

r, but only on the relative coordinate u = r′−r, we find for the band energy εHF
k in the Hartree-Fock

approximation

εHF
k =

k2

2︸︷︷︸
εkink

+
(−1)

Ω

occ∑
k′

∫
d3u

u
e−i(k

′−k)u

︸ ︷︷ ︸
εxk

, (2.54)

where the first term arises from the kinetic energy and the second term is due to the Fock exchange.

2.3.2 Kinetic Energy

We first evaluate the kinetic energy per particle t = T
N

in the usual manner by replacing
∑occ

k →
Ω

(2π)3

∫
d3k where the factor of 2 arises from spin degeneracy

t =
1

N
2
occ∑
k

k2

2
=

2

N

Ω

(2π)3

∫
k≤kF

d3k
k2

2
=

2 · 3π2 · 4π
8π3k3

F · 2
k5
F

5
=

3

5

k2
F

2
. (2.55)
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Here we have used the relation 3π2n = k3
F and have obtained the well-known result that the kinetic

energy per particle is 3
5

of the Fermi energy, i.e., the kinetic energy at the Fermi surface. Alternatively,

we can also express t in terms of n or rs,

t(kF ) =
3

5

k2
F

2
∝ k2

F , t(n) =
3

10
(3π2n)

2
3 ∝ n

2
3 , t(rs) =

3

10

(9π/4)
2
3

r2
s

∝ 1

r2
s

. (2.56)

2.3.3 Exchange Energy

Next we evaluate the exchange energy per particle ex = Ex
N

. To this end, we first evaluate εxk defined

in 2.54 and insert the Fourier series of

1

u
=

1

Ω

∑
q

4π

q2
eiqu. (2.57)

This leads to

εxk = − 1

Ω

occ∑
k′

∫
d3u

u
e−i(k

′−k)u

= − 1

Ω2

occ∑
k′

∑
q

4π

q2

∫
d3u ei(q−k

′+k)u︸ ︷︷ ︸
=Ω·δq,k−k′

= − 1

Ω

occ∑
k′

4π

|k − k′|2

= − 1

(2π)3

∫
k′≤kF

d3k′
4π

|k − k′|2
= − 1

(2π)2

kF∫
k′=0

dk′ k′2
+1∫

ξ=−1

dξ
4π

k2 + k′2 − 2kk′ξ
= · · ·

= −kF
2π

[
2 +

k2
F − k2

k · kF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣] . (2.58)

The final result shows that εxk is actually only a function of the magnitude of k, as expected from the

isotropy of the jellium model, thus εx|k|, and all occupied states are within a Fermi sphere of radius

kF . Next, we can compute the exchange energy per electron as ex = 1
N

∑occ
k εx|k|. Note that here, in

contrast to the kinetic energy, in the sum
∑occ

k only spin-parallel electrons have to be considered and

hence no factor of 2 needs to be added. The resulting integral can be evaluated analytically and one

finds

ex(kF ) = − 3

4π
kF ∝ −kF , ex(n) = − 3

4π
(3π2n)

1
3 ∝ −n

1
3 , ex(rs) = − 3

4π

(9π/4)
1
3

rs
∝ − 1

rs
.

(2.59)

Note that these results will be used later on within the local density approximation (LDA) also for

the inhomogeneous electrons gas by allowing for a spatially dependent electron gas parameters, e.g.,
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Figure 2.1: Illustration of the exchange hole n − ρx(u) for Na (kF ≈ 0.487 Bohr−1) (left) and for
Al (kF ≈ 0.926 Bohr−1) (right). Note that the corresponding Wigner-Seitz radii (in Bohr unit) are
rS ≈ 3.94 and rS ≈ 2.07 for Na and Al, respectively, as indicated by the vertical dashed line.

n = n(r) or equivalently rs = rs(r).

In order to interpret the physical meaning of the exchange energy further, we also evaluate the non-

local exchange charge density defined in 2.47 now for the uniform electron gas

ρk,↑↑F (r, r′) =
1

Ω

occ∑
k′

ei(k
′−k)(r−r′) = · · ·

ρk,↑↑F (u) =
2

(2π)2
e−ik·u

sin(kFu)− kFu cos(kFu)

u3
, (2.60)

where u = r − r′ is the relative coordinate of the two interacting electrons. Note that this charge

density is not spherical symmetric, depends on k and is complex-valued. Therefore, it is common to

consider a charge density which is an average over all occupied states defined as

ρx(u) =
2

N

occ∑
k

ρk,↑↑F (u) = · · · = k3
F

2π2

sin(kFu)− kFu cos(kFu)

(kFu)3
. (2.61)

Subtracting this exchange density ρx(u) from the overall electron density n =
k3F
3π2 we see (Fig. 2.1)

that the charge density around a given electron at r is depleted. For u = 0, that is for r = r′, the

density is reduced by exactly a factor 1
2

which is a direct consequence of the Pauli exclusion principle

which does not allow electrons of the same spin to be present at the same point in space, and is thus

a purely quantum mechanical phenomenon with no classical analogue. Intuitively, each electron is
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thus surrounded by a sphere of radius ∝ rs (vertical dashed line in Fig. 2.1), where no spin-parallel

electron is present. Since this depletion arises from the exchange-term in the Hartree-Fock equations,

this sphere is called exchange hole. Also note that there are oscillations around the overall density

with a wave length set by the Fermi wave vector kF which are called Friedel oscillations.

2.3.4 Correlation Energy

Summing up the results of the previous two sections, within the Hartree-Fock approximation the

energy eHF = EHF/N per electron in the uniform electron gas is given by (using atomic units, i.e.,

Hartree for the energy and Bohr for rs)

eHF(rs) = t(rs) + ex(rs) =
3

10

(9π/4)
2
3

r2
s

− 3

4π

(9π/4)
1
3

rs
≈ 1.10495

r2
s

− 0.458165

rs
(2.62)

We remember that the Hartree-Fock approximation has been obtained by applying the variational

principle to a wave function in the form of a single Slater determinant. If one attempts to further

improve the description of the wave function, and thereby find an even better approximation for the

energy, one can use a linear combination of N -electron Slater determinants which include excitations

from occupied states to unoccupied states. All effects that go beyond the Hartree-Fock description are

termed correlations and lead to a lowering of the total energy. Even for the uniform electron gas, the

computation of the correlation energy can no longer be accomplished in an analytic form except for

the hight density, rs → 0, and the low-density, rs →∞, limits. For intermediate rs, typically numerical

results are obtained from quantum Monte-Carlo simulations. The derivations of the expressions for

the limiting cases and the detailed description of the quantum Monte-Carlo method is beyond the

scope this lecture, and we here only give the results since they will prove important later on in the

context of the local density approximation (LDA) within the framework of DFT.

The high-density limit rs → 0

Inspection of 2.62 shows that in the limit rs → 0, the kinetic energy dominates over the exchanges

energy since the former grows faster than the latter. Thus, for high densities, the electron-electron

interaction can be regarded as a small perturbation. In other words, the high density limit can also

be called the weak coupling limit. This may be somewhat counter-intuitive since in the limit rs → 0,

also the distance between electrons approaches zero, however, the kinetic energy grows faster than

the Coulomb interactions. Therefore, in the rs → 0 limit expressions for the correlation energy can

be derived with the help of many-body perturbation theory with the following result expressed as an
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perturbation expansion in terms Wigner-Seitz radius rs:

ec(rs → 0) = c0 ln rs − c1 + c2rs ln rs + · · · (2.63)

The coefficients c0 and c1 have already been obtained by Gell-Mann and Brückner [23] and Onsager

et al. [24], respectively, while an accurate value of c2 is due to Perdew [25] (values in Hartree)

c0 =
1

π2
(1− ln 2) ≈ 0.031091, c1 ≈ 0.046644, c2 ≈ 0.006644. (2.64)

The low-density limit rs →∞

Contrary, in the limit rs →∞ the kinetic energy contribution vanishes faster than the energy contri-

butions arising from Coulomb interactions, thus the low-density limit can also be termed the strong

coupling limit. In the low-density limit the uniform electron gas is unstable against the formation of

the so-called Wigner lattice which can be thought of as a crystallization of electrons on a close-packed

lattice. Because the energies of the uniform phase and the Wigner lattice are almost degenerate,

the energy in this limit follows from electro-static arguments and by taking into account zero-point

vibrations of the electrons around their lattice points [1, 26]

ec(rs →∞) = −d0

rs
+

d1

r
3/2
s

· · · (2.65)

An interpolating expression for general rs values

For general values of rs no analytic expressions can be derived. However, Perdew and Wang [25] have

suggested an analytic expression which encompasses both limits

ec(rs) = −2c0(1 + α1rs) ln

1 +
1

2c0

(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)
 . (2.66)

In order to have the correct limits, β1 and β2 are already determined by the high-density expansion

rs → 0 as follows:

β1 =
1

2c0

exp

(
− c1

2c0

)
, β2 = 2c0β

2
1 . (2.67)

The coefficients α1, β3 and β4, on the other hand, are found by fitting the the expression 2.66 to

accurate correlations energies from Quantum Monte-Carlo simulations [27, 28]. Thereby, Perdew and

Wang found the following values [25]

α1 = 0.21370, β3 = 1.6382, β4 = 0.49294. (2.68)
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Figure 2.2: Left panel: Correlation energy per electron for the uniform electron gas according to
Eq. 2.66 (sold line) and the two limiting expression for rs → 0 (long dashed) and rs → ∞ (short
dashed). Right panel: Kinetic energy (t), exchange energy (ex), correlation energy (ec) as well as the
sum of all contributions for the uniform electron gas compared to numerical results (yellow dots) from
Quantum Monte-Carlo simulations [27].

The correlation energy 2.66 together with the limiting expressions for rs → 0 and rs →∞ is depicted

in the left panel of Fig. 2.2. The right panel of the figure shows the kinetic energy (t), the exchange

energy (ex), the correlation energy (ec) as well as the sum of all contributions for the uniform electron

gas compared to numerical results (yellow dots) from Quantum Monte-Carlo simulations [27]. Note

that Fig. 2.2 has been obtained with the Mathematica Notebook jellium.nb.
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Figure 2.3: Relative contributions of kinetic energy (t), exchange energy (ex) and correlation energy
(ec) to the total energy of the uniform electron gas as a function of rs.
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Chapter 3

Density Functional Theory

In the very first section of these lecture notes 1.1, we have already introduced the many-electron

Hamiltonian, Eq. 1.3, in the following form

Ĥ = T̂ + V̂ext + V̂ee = −1

2

N∑
i=1

∆i +
N∑
i=1

v(ri) +
1

2

∑
i,j 6=i

1

|ri − rj|
. (3.1)

We have also already introduced the electron density in Eq. 1.6 which can be obtained from the N -

electron wave function by integrating over all but one spatial coordinate and summing over all but

one spin coordinate:

nσ(r) = N
∑
σ2···σN

∫
d3r2 · · ·

∫
d3rN |ψ(rσ, r2σ2, · · · , rNσN)|2 . (3.2)

In this Chapter, we will show that ground state energy of a system of interacting electrons can be

expressed as a functional of the electron density nσ(r). We will first review the foundations of density

functional theory (DFT) and then derive the Kohn-Sham equations. In the second half of this chapter,

we will focus on the so-called exchange-correlation functional and derive some of its exact properties

before we discuss the most widely used approximations for it. Finally, we will also introduce Janak’s

theorem which allows us to interpret the Kohn-Sham energies.
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3.1 Density as Basic Variable

The basic lemma of Hohenberg and Kohn states that the ground state density n(r) of a bound

system of interacting electrons in some external potential v(r) determines this potential uniquely (up

to an additive constant) [4]. The proof is very simple: Let n(r) be the non-degenerate ground-state

density of N electrons in the external potential v1(r), corresponding to the ground state characterized

by the many-electron wave function Ψ1 and its total energy E1. Then, we can write

E1 = 〈Ψ1|Ĥ1|Ψ1〉

=

∫
d3r v1(r)n(r) + 〈Ψ1|T̂ + V̂ee|Ψ1〉, (3.3)

where Ĥ1 is the total Hamiltonian corresponding to the external potential v1(r), and T̂ and V̂ee are the

kinetic and electron-electron interaction energy operators, respectively, as defined in 3.1. Note that

first term arises because the expectation value of the local and spin-independent external potential

can be simplified as follows

〈
Ψ
∣∣∣ V̂ext

∣∣∣Ψ〉 =

〈
Ψ

∣∣∣∣∣
N∑
i=1

v(ri)

∣∣∣∣∣Ψ
〉

=
∑
σ1···σN

∫
d3r1 · · ·

∫
d3rNΨ∗(r1σ1, · · · , rNσN)

N∑
i=1

v(ri)Ψ(r1σ1, · · · , rNσN)

=
N∑
i=1

∑
σ

∫
d3r v(r)

∑
σ2···σN

∫
d3r2 · · ·

∫
d3rN |Ψ(rσ, r2σ2, · · · , rNσN)|2︸ ︷︷ ︸

= 1
N
nσ(r)

= N · 1

N

∫
d3r v(r)n(r) =

∫
d3r v(r)n(r), (3.4)

where

n(r) =
∑
σ

nσ(r) = n↑(r) + n↓(r). (3.5)

Now suppose that there exists a second external potential v2(r), which differs from v1(r) not just by

a constant, leading to the same density n(r). If we denote its ground state wave function and energy

with Ψ2 and E2, respectively, we obtain in complete analogy to 3.3

E2 =

∫
d3r v2(r)n(r) + 〈Ψ2|T̂ + V̂ee|Ψ2〉. (3.6)

The Rayleigh-Ritz minimal principle discussed in Sec. 2.2.1 applied to the ground state Ψ1 with energy
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E1 gives the following inequality

E1 < 〈Ψ2|Ĥ1|Ψ2〉 =

∫
d3r v1(r)n(r) + 〈Ψ2|T̂ + V̂ee|Ψ2〉 = E2 +

∫
[v1(r)− v2(r)]n(r)d3r. (3.7)

On the other hand, the analogous argument for the ground state of Ψ2 leads to the expression

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = E1 +

∫
[v2(r)− v1(r)]n(r)d3r. (3.8)

Adding Eqs. (3.7) and (3.8) leads to the contradiction

E1 + E2 < E1 + E2. (3.9)

Thus, our initial assumption of the existence of a second external potential v2(r) leading to the

identical density n(r) must be wrong, and the Hohenberg-Kohn lemma is proven. We note that

the proof presented above is based on the assumption of the non-degeneracy of the ground state.

This requirement, however, can be lifted as shown by Kohn [29]. Moreover, we have assumed that

any well-behaved positive function n(r), which integrates to the number of electrons N , is a possible

ground-state density corresponding to some v(r) (v-representability). Levy [30] and Lieb have shown

that there are indeed examples of well-behaved densities that are not v-representable, but these cases

do not appear to limit the practical application of DFT. Thus, the important message of this section is,

that the total electron density n(r) of a system of interacting electrons determines both, the number

of electrons N and the external potential v(r). Moreover, the many-body wave function Ψ is also a

functional of the electron density n(r) [4]. Consequently, the density gives us the full Hamiltonian

Ĥ for the electronic system, and n(r) implicitly contains all properties derivable from Ĥ through

solution of the Schrödinger equation.

3.2 Hohenberg-Kohn Theorem

The ground state energy E of a system of interacting electrons can be obtained from the solution of

the many-body Schrödinger equation ĤΨ = EΨ. Another approach is provided by the Rayleigh-Ritz

minimal principle

E = min
Ψ

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 , (3.10)

where Ψ is a normalized trial function for the N electron system. Equivalently, the minimal principle

can be formulated in terms of trial densities n(r), rather than trial wave functions Ψ, as was first

shown by Hohenberg and Kohn [4], and later in the form of the constrained search method by Levy

[30]. By integrating the trial wave function Ψ over all space variables except the first, one obtains the
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corresponding density n(r). Thus, the minimization of Eq. (3.10) may be achieved in two steps: First,

fix a trial density n(r), where we denote all wave functions resulting in this density by Ψ → n. We

define an energy functional of the density n(r) in the way

E[n(r)] = min
Ψ→n

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 = min

Ψ→n

〈
Ψ
∣∣∣ T̂ + V̂ee

∣∣∣Ψ〉+

∫
d3r v(r)n(r) = F [n(r)] +

∫
d3r v(r)n(r),

(3.11)

where we have introduced the universal functional F [n(r)] which is independent of the external

potential v(r) and given by

F [n(r)] = min
Ψ→n

〈
Ψ
∣∣∣ T̂ + V̂ee

∣∣∣Ψ〉 . (3.12)

In a second step, minimize Eq. (3.11) over all densities n(r) resulting in the ground state energy E

E = min
n(r)

E[n(r)] = min
n(r)

{
F [n(r)] +

∫
d3r v(r)n(r)

}
. (3.13)

This is the Hohenberg-Kohn minimum principle [4] stating that the total energy is a functional of

the density, and that the ground state density n(r) minimizes this functional resulting in the ground

state energy E = E[n(r)].

Searching for the minimum of Eq. 3.13 under the constraint of a fixed electron number N =
∫

d3r n(r)

with the help of the Lagrangian multiplier N leads to

δ

{
F [n(r)] +

∫
d3r v(r)n(r)− µ

∫
d3r n(r)

}
= 0 ⇒ δF [n(r)]

δn(r)
+ v(r) = µ. (3.14)

This equation shows that the potential v(r) is uniquely determines by the ground state density (up

to the constant µ, the Lagrangian parameter).

3.3 Excursion to Functional Derivatives

At this point, we want to make a small excursion to functional derivatives such as δF [n(r)]
δn(r)

and remind

the reader about their meaning and how they can be calculated. Consider a simple example for a

density functional that we will alter encounter as the exchange functional within the local density

approximation:

Ex[n(r)] = Ax

∫
d3r [n(r)]

4
3 . (3.15)

38



What do we mean by the functional derivative δEx[n(r)]
δn(r)

or the variation δEx[n(r)]. To see this, we

make the analogy to a function f of several variables and consider its total derivative df :

f = f(x1, x2, · · · , xN) ⇒ df =
N∑
i=1

∂f

∂xi
dxi. (3.16)

Now consider a functional F [n(r)]. The functional derivative tells us how the functional changes under

a small variation δn(r) of the function n(r):

F = F [n(r)] ⇒ δF =

∫
d3r

δF

δn(r)
δn(r) =

∫
d3r {F [n(r) + δn(r)]− F [n(r)]} δn(r).

(3.17)

Thus, for our example 3.15, we have1

δEx[n(r)] = Ax

∫
d3r

{
[n(r) + δn(r)]

4
3 − [n(r)]

4
3

}
δn(r)

=

∫
d3r Ax

4

3
[n(r)]

1
3︸ ︷︷ ︸

=
δEx[n(r)]
δn(r)

δn(r).

As another example for a density functional consider the Hartree energy U [n(r)] given by the following

electrostatic integral

U [n(r)] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
. (3.18)

Now, let us compute the functional derivative

δU [n(r)] =
1

2

∫
d3r

∫
d3r′

{
[n(r) + δn(r)]n(r′)

|r − r′|
− n(r)n(r′)

|r − r′|

}
= 2

1

2

∫
d3r

[∫
d3r′

n(r′)

|r − r′|

]
︸ ︷︷ ︸

=vH([n],r)

δn(r).

Thus, we see that the functional derivative of the Hartree energy U [n(r)] leads to the Hartree potential

vH([n], r) which, in mathematical terms, is a functional of the density n(r) and a function of r.

1(n+ δn)a = na + ana−1δn+O(δn2)
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3.4 Kohn-Sham Equations

While the Hohenberg-Kohn theorem in the form of the minimization condition 3.14 in principle allows

to determine the ground state density – provided the functional form of the universal functional

F [n(r)] is known – in practice a different approach has been proposed by Kohn and Sham to obtain

the ground state density [5]. They have suggested to consider an auxiliary (a fictitious) system of N

non-interacting electrons. Thus compared to the true physical Hamiltonian defined in Eq. 3.1, the

electron-electron interaction V̂ee ≡ 0

Ĥs = T̂ + V̂s,ext = −1

2

N∑
i=1

∆i +
N∑
i=1

vs(ri) =
N∑
i=1

ĥs(ri). (3.19)

Thus, the Hamiltonian can be written as the sum over single-particle Hamiltonians ĥs, where we have

introduced the subscript s to indicate that we are considering our auxiliary system of non-interacting

particles. It is important to note that we allow the external potential vs(ri) to be different from the

interacting case with the potential v(ri). In fact, the idea of Kohn and Sham was to choose the potential

vs(ri) in such a way that the resulting electron density n(r) equals the true, physical density! Thus, we

do not need to introduce any subscript on the density of the auxiliary system since, by construction,

it yields the same density. Because the Hamiltonian 3.19 is just a sum of single-particle contributions

without any coupling, the resulting N -electron wave functions can be exactly written as a single Slater

determinant which we denote by |Φ〉 obeying the following eigenvalue equation

Ĥs |Φ〉 = E |Φ〉 . (3.20)

To calculate the total energy, we apply the same two-step constrained-search minimum principle which

we have already used earlier in Sec. 3.2 with the difference that the minimization only has to consider

single Slater determinants and that the electron-electron interaction is set to zero.

E[n(r)] = min
Φ→n

〈
Φ
∣∣∣ Ĥs

∣∣∣Φ〉 = min
Φ→n

〈
Φ
∣∣∣ T̂ ∣∣∣Φ〉︸ ︷︷ ︸

Ts[n(r)]

+

∫
d3r vs(r)n(r) = Ts[n(r)] +

∫
d3r vs(r)n(r).

(3.21)

Here, we have introduced the functional Ts[n(r)] which describes the kinetic energy for a system

of non-interacting electrons. The ground state energy can now be obtained by minimizing over all

densities corresponding to a fixed electron number N , thus

δ

{
Ts[n(r)] +

∫
d3r vs(r)n(r)− µs

∫
d3r n(r)

}
= 0 ⇒ δTs[n(r)]

δn(r)
+ vs(r) = µs. (3.22)
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We can now equate 3.14 and 3.22 since any possible difference in the value of the constants µ and µs

(the Lagrangian multipliers) can be adsorbed in the potential vs(r)

δF [n(r)]

δn(r)
+ v(r) =

δTs[n(r)]

δn(r)
+ vs(r). (3.23)

Implicitly this equation assumes that the electron density n(r) is both, interacting and non-interacting

v-representable, in other words, that the electron density is of such a form that it results from the

solution of the Hamiltonians Ĥ and Ĥs containing the external potentials v(r) and vs(r), respectively.

In practical applications, this requirement turns out to be no restriction.

In order to proceed, Kohn and Sham further suggested to write the universal functional F [n(r)] in

the following form by splitting off terms that are known and putting yet unknown terms into a new

functional, the exchange-correlation functional Exc[n(r)]:

F [n(r)] = Ts[n(r)] + U [n(r)] + Exc[n(r)]. (3.24)

Here, U [n(r)] is the Hartree energy already introduced in Eq. 3.18 and describes the classical electro-

static self-repulsion of the charge density n(r). Note that 3.24 can be viewed as the definition of

the exchange-correlation functional within DFT. Inserting of 3.24 into 3.23 then directly leads to an

expression for the yet unknown potential vs(r), the so-called Kohn-Sham potential

vs(r) = v(r) +
δU [n(r)]

δn(r)
+
δExc[n(r)]

δn(r)
= v(r) + vH([n], r) + vxc([n], r). (3.25)

Using the Kohn-Sham potential defined above 1.10, the desired ground state electron density can be

constructed from the single-particle orbitals ϕi(r), the Kohn-Sham orbitals, which are the eigenstates

of the Kohn-Sham equations [
−1

2
∆ + vs(r)

]
ϕi(r) = εiϕi(r), (3.26)

by summing over all occupied Kohn-Sham orbital densities

n(r) =
N∑
i=1

|ϕi(r)|2. (3.27)

Finally, the total ground state energy can be obtained from the following expression

E[n] = Ts[n] + U [n] + Exc[n] +

∫
d3r v(r)n(r) with Ts[n] =

N∑
i=1

〈ϕi| −
1

2
∆|ϕi〉 . (3.28)

There are several things that should not be noted regarding the Kohn-Sham scheme defined by the

41



three Eqs. 3.25, 3.26 and 3.27. First, the Kohn-Sham method introduces the orbitals of the auxiliary

non-interacting system in order to construct the density. Second, the simple form of 3.27 is due to

the non-interacting character of the Hamiltoian which allows one to write the wave function of the

the auxiliary system as single Slater determinant. Third, the Eqs. 3.25, 3.26 and 3.27 need to be

solved in a self-consistent manner because two terms of the effective potential, that is the Hartree

potential vH([n], r) as well as the exchange-correlation potential vxc([n], r), depend on the electron

density. In practice, this means the Kohn-Sham equations are solved iteratively: one starts with an

electron density n1(r) from which the effective potential vs(r) is calculated. Second, the Kohn-Sham

equations 3.26 are solved leading to the Kohn-Sham orbitals ϕi(r) and Kohn-Sham energies εi. Third,

a new electron density ñ2(r) is obtained from these orbitals following Eq. 3.27. The iterative loop,

the self-consistent loop, is closed by computing a new effective potential vs(r) from the new density.

In practice, some sort of mixing of old and new densities is used in order to damp oscillation in the

convergence, such as n2 = αñ2 + (1− α)n1, where α is a mixing parameter.

In summary, by splitting the univeral functional F [n] as in 3.24, the Kohn-Sham method treats the

kinetic energy Ts exactly, while the exchange-correlation energy Exc needs to be approximated in some

way. This turns out to be extremely successful in practical applications, because (i) Ts is usually a

large part of the total energy while Exc is usually smaller (see also Fig. 2.3). (ii) The kinetic energy

Ts is responsible for density oscillations (e.g. shell structure in atoms) which is difficult to reproduce

in schemes where a desnity dfunctional for the kinetic energy is used such as in the Thomas-Fermi

method. (iii) It turns out that Exc is better suited for local (or semi-local) approximations than Ts. A

drawback of the Kohn-Sham scheme is that it introduces auxiliary orbitals into a density functional

theory.

3.5 Exchange and Correlation

The usefulness of the Kohn-Sham scheme defined by the Eqs. 3.25, 3.26 and 3.27 for practical appli-

cations entirely depends on the availability of accurate and numerically tractable approximations for

the exchange correlation energy. In this section, we will first derive a number of exact properties of the

exchange-correlation functional, before we review the most-widely used approximations, namely the

local density approximation (LDA) and the generalized gradient approximation (GGA). We will also

outline more recent developments organized in a hierarchy of approximations called ”Jacob’s Ladder

of DFT” and briefly mention how fully non-local correlations, which are important of the treatment

of van-der-Waals interaction, can be incorporated into the exchange-correlation functional.
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3.5.1 Exact Properties of Exc

We begin by splitting the exchange-correlation energy into an exchange part and into a correlation

part

Exc[n] = Ex[n] + Ec[n]. (3.29)

We complete the above equation by defining what we mean by exchange energy in the context of

density functional theory where we use the following definition:

Ex[n] =
〈

Φmin
n

∣∣∣ V̂ee ∣∣∣Φmin
n

〉
− U [n]. (3.30)

Here, we have introduced the short-hand notation
∣∣Φmin

n

〉
for the single Slater determinant which leads

to the density n and minimizes the kinetic energy as introduced in Eq. 3.21, and U [n] is the Hartree

energy. It is noteworthy that the exchange energy defined above in Eq. 3.30 differs from the exchange

energy introduced in the framework of Hartree-Fock theory, because the former is computed from

Kohn-Sham orbitals while the latter is obtained from Hartree-Fock orbitals.

With the definition 3.30, we can now analyze the correlation energy further

Ec[n] = Exc[n]− Ex[n]

= F [n]− Ts[n]− U [n]−
〈

Φmin
n

∣∣∣ V̂ee ∣∣∣Φmin
n

〉
+ U [n]

=
〈

Ψmin
n

∣∣∣ T̂ + V̂ee

∣∣∣Ψmin
n

〉
−
〈

Φmin
n

∣∣∣ T̂ + V̂ee

∣∣∣Φmin
n

〉
. (3.31)

Here,
∣∣Φmin

n

〉
is the single Slater determiant leading to the density n which minimizes T̂ as above, and∣∣Ψmin

n

〉
is the interacting wave function leading to the density n which minimizes T̂ + V̂ee as used in

in the definition of the universal functional in Eq. 3.12. Therefore, the first expectation value in 3.31

must necessarily by smaller then the second one, and we conclude that

Ec[n] < 0, (3.32)

as expected since correlation lower the total energy. We can also use 3.31 to separate the correlation

energy into a kinetic and a potential part in the following way

Ec[n] = Ekin
c [n] + Epot

c [n] (3.33)

=
〈

Ψmin
n

∣∣∣ T̂ ∣∣∣Ψmin
n

〉
−
〈

Φmin
n

∣∣∣ T̂ ∣∣∣Φmin
n

〉
︸ ︷︷ ︸

Ekin
c [n]>0

+
〈

Ψmin
n

∣∣∣ V̂ee ∣∣∣Ψmin
n

〉
−
〈

Φmin
n

∣∣∣ V̂ee ∣∣∣Φmin
n

〉
︸ ︷︷ ︸

Epot
c [n]<0

.

From what was said above, the kinetic contribution must be a positive contribution, while the potential

contribution will a negative quantity.
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We can also investigate what will happen to the exchange and correlation energy in the limit of only

one electron, that is N = 1. Since in the one-electron limit, there is no electron-electron interaction,

V̂ee = 0, we have from Eq. 3.30

Ex[n] = −U [n] (N = 1), (3.34)

and from 3.31

Ec[n] = 0 (N = 1). (3.35)

The exchange energy exactly cancels the unphysical self-interaction present in the Hartree energy, and

the correlation-energy exactly vanishes. Thus, starting from the exact definition of Ex[n] and Ec[n],

the Kohn-Sham equations will lead to a proper description also in the one-electron limit, a property

that will get lost to some extent once approximations to Exc[n] are undertaken.

3.5.2 Coupling Constant Integration

We have seen in Sec. 3.4 that the Kohn-Sham scheme considers an auxiliary system in which the

electrons are assumed to be non-interacting but which is constructed in such a way that it leads to

the same ground state electron density as the physical system of interacting electrons. We will now

consider a smooth, an adiabatic, connection between the non-interacting and the interacting system.

To this end, we consider an N -electron Hamiltonian in which we scale the electron-electron interaction

with the coupling constant λ

Ĥλ = T̂ + λ · V̂ee + V̂ext,λ where λ ∈ [0, 1]. (3.36)

It is important to note that for each value of λ, the external potential is adjusted in such a way

that the resulting ground state density is identical to the ground state density of the fully interacting

system. Thus, for λ = 1, the external potential is only due to the atomic nuclei while for λ = 0, the

external potential V̂ext,λ=0 equals the Kohn-Sham potential. In complete analogy to the definition of

the universal functional F [n] in Eq. 3.12, we now define a functional Fλ[n] for each value of λ in the

following way

Fλ[n] = min
Ψλ→n

〈
Ψλ

∣∣∣ T̂ + λ · V̂ee
∣∣∣Ψλ

〉
≡
〈

Ψmin,λ
n

∣∣∣ T̂ + λ · V̂ee
∣∣∣Ψmin,λ

n

〉
. (3.37)

Here we have introduced the short-hand notation Ψmin,λ
n for the wave function which minimizes T̂ +

λ · V̂ee and yields the density n. Once again, the density n is kept constant over the entire adiabatic

connection by adjusting the external potential.

We will now make use of this adiabatic connection in order to rewrite the exchange-correlation func-

tional in a form that is better suited for deriving approximations and also allows an easier physical
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interpretation. We start with the expression 3.31 for the correlation energy and combine it with the

definition of the exchange energy 3.30 to arrive at

Exc[n] =
〈

Ψmin
n

∣∣∣ T̂ + V̂ee

∣∣∣Ψmin
n

〉
−
〈

Φmin
n

∣∣∣ T̂ + 0 · V̂ee
∣∣∣Φmin

n

〉
− U [n]

=
〈

Ψmin,λ
n

∣∣∣ T̂ + λV̂ee

∣∣∣Ψmin,λ
n

〉∣∣∣
λ=1
−
〈

Ψmin,λ
n

∣∣∣ T̂ + λV̂ee

∣∣∣Ψmin,λ
n

〉∣∣∣
λ=0
− U [n]

=

∫ 1

0

dλ
d

dλ

〈
Ψmin,λ
n

∣∣∣ T̂ + λV̂ee

∣∣∣Ψmin,λ
n

〉
− U [n]. (3.38)

We can simplify this expression further by recalling the Hellmann-Feynman theorem, Eq. 1.14, for

expectation values of a Hamiltonian which depend on a parameter. Thus, we have

Exc[n] =

∫ 1

0

dλ
〈

Ψmin,λ
n

∣∣∣ V̂ee ∣∣∣Ψmin,λ
n

〉
− U [n]. (3.39)

This is the adiabatic connection formula for the exchange-correlation functional which involves an

integration over the coupling constant.

We will now evaluate the matrix element of the electron-electron interaction 〈V̂ee〉 further. Similar to

the derivation of Eq. 3.4 for the local external potential which led us to the appearance of the electron

density n(r), the evaluation of the matrix element for the non-local, two-point operator V̂ee, will lead

us to the two-electron density matrix ρ2(r′, r) which is defined in the following way [1]

ρ2(r′, r) = N(N − 1)
∑
σ1···σN

∫
d3r3 · · · d3rN |Ψ(r′σ1, rσ2, r3σ3, · · · , rNσN)|2 . (3.40)

What is the interpretation of this quantity? Remember that nσ(r)d3r is the average number of elec-

trons of spin σ in volume element d3r. Similarly, we interpret ρ2(r′, r)d3r′d3r as the joint probability

of finding an electron in volume element d3r′ at r′, and an electron in d3r at r. We now evaluate

〈
Ψ
∣∣∣ V̂ee ∣∣∣Ψ〉 =

〈
Ψ

∣∣∣∣∣ 1

2

∑
i,j 6=i

1

|ri − rj|

∣∣∣∣∣Ψ
〉

=
∑
σ1···σN

∫
d3r1 · · ·

∫
d3rN |Ψ(σ1r1, · · · , σiri, · · · , σjrj, · · · , σNrN)|2 1

2

∑
i,j 6=i

1

|ri − rj|

=
1

2
N(N − 1)

∫
d3r

∫
d3r′

1

|r − r′|
∑
σ1···σN

∫
d3r3 · · · d3rN |Ψ(r′σ1, rσ2, r3σ3, · · · , rNσN)|2

=
1

2

∫
d3r

∫
d3r′

ρ2(r′, r)

|r − r′|
. (3.41)

We now use this result in the expression in the adiabatic connection formula for the exchange-
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correlation functional 3.39, where we introduce the coupling-constant averaged density matrix

ρ2(r′, r) =

∫ 1

0

dλ ρλ2(r′, r), (3.42)

and obtain

Exc[n] =
1

2

∫
d3r

∫
d3r′

ρ2(r′, r)− n(r)n(r′)

|r − r′|

=
1

2

∫
d3r

∫
d3r′

n(r)nxc(r, r
′)

|r − r′|
. (3.43)

In the last step, we have brought in the coupling-constant-averaged exchange-correlation hole defined

as

nxc(r, r
′) =

ρ2(r′, r)

n(r)
− n(r′). (3.44)

The exchange-correlation hole nxc(r, r
′) describes the effect of the interelectronic repulsions, i.e.,

the fact that an electron present at point r reduces the probability of finding one at r′. Eq. 3.43

demonstrates that the exchange-correlation energy is then the electrostatic interaction energy between

each electron and the coupling-constant-averaged hole which surrounds it. The exchange-correlation

hole is created by three effects [1]. (i) Self-interaction correction, which guarantees that an electron

cannot interact with itself and therefore cancels the self-interaction present in the Hartree energy. (ii)

The Pauli exclusion principle, which tends to keep two electrons with parallel spins apart in space.

(iii) Coulomb repulsion, which tends to keep any two electrons apart in space. Effects (i) and (ii) are

responsible for the exchange energy, which is present even at λ = 0, while effect (iii) is responsible

for the correlation energy, and arises only for λ 6= 0. One can show [1] that the exchange-correlation

hole, respectively the exchange hole nx(r, r
′) and the correlation hole nλc (r, r

′), satisfy the following

sum rules : ∫
d3r′ nλxc(r, r

′) = −1,

∫
d3r′ nx(r, r

′) = −1,

∫
d3r′ nλc (r, r

′) = 0. (3.45)

The first of the above sum rules says that, if an electron is definitely at r, then it is missing from

the rest of the system. The same sum rule also applies to the exchange-hole alone which means that

Coulomb repulsion changes the shape of the hole but not its integral. It can be shown that Coulomb

correlations make the hole deeper but more short-ranged.

Before we conclude this section, we mention one more important consequence of Eq. 3.43. Because

the Coulomb interaction 1
|r−r′| is isotropic in space, the exchange-correlation energy only depends on
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the spherical average of the exchange-correlation hole around r

Exc[n] =
1

2

∫
d3r n(r)

∫ ∞
0

duu

∫
dΩunxc(r, r + u) =

1

2

∫
d3r n(r)

∫ ∞
0

duunxc(r, u), (3.46)

where we have introduced the u = r′ − r. This means that approximations for Exc[n] can give an

exact value even if the description of the nonspherical parts of the exchange-correlation hole is quite

inaccurate. This is illustrated for the exchange hole in a nitrogen atom in Fig. 3.1. For a discussion and

illustration of the exchange-hole (also called Fermi-hole), the correlation hole (also called Coulomb

hole) in the H2 molecule at various values of the internuclear distance see Ref. [31].

Figure 3.1: Reproduced from [7, 8]: Exchange hole in a Ne atom. Left: nx(r, r
′) plotted for two values

of |r| as a function of |u| = |r′− r| along a line through the nucleus. Right: The spherically averaged
exchange hole as a function of the relative distance |u|. Exact results (solid lines) are compared to
the local density approximation (dashed lines).
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3.5.3 Local Density Approximation

While the expressions for Exc[n] derived in the previous section, 3.43 or 3.46, are important to gain

fundamental insights, in practice approximations have to be made. The most simple and still widely

used approximation is the local density approximation (LDA), or indeed the local spin density ap-

proximation (LSDA). It has already been proposed in the original work by Kohn and Sham [5]

ELDA
xc [n] =

∫
d3r n(r)eunif

xc (n(r)) (3.47)

ELSDA
xc [n↑, n↓] =

∫
d3r n(r)eunif

xc (n↑(r), n↓(r)) . (3.48)

Here n(r) and n↑(r), n↓(r) are the density and spin densities of the inhomogeneous system, and eunif
xc

is the exchange-correlation energy per particle of a uniform electron gas of charge density n. Thus, the

local (spin) density approximation means that the total exchange-correlation energy of some density

distribution n(r) is the sum of local contributions of an electron gas with density n(r) at r assumed

to have the same exchange-correlation energy as the uniform electron gas of the same density.

The exchange and correlation energy of the uniform electron gas, for the non spin-polarized case with

n↑ = n↓ = 1
2
n has already been discussed in Sec. 2.3. Combining Eqs. 2.59 for the exchange and 2.66

for the correlation contribution, we have2

eunif
xc (rs) = − 3

4π

(9π/4)
1
3

rs
− 2c0(1 + α1rs) ln

1 +
1

2c0

(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)
 , (3.49)

while for the spin-polarized case characterized by the spin polarization ζ

ζ =
n↑ − n↓
n↑ + n↓

, (3.50)

generalized expressions for eunif
xc (rs, ζ) have been summarized by Perdew and Wang [25].

In order to perform self-consistent Kohn-Sham calculations, one has to compute the exchange-correlation

potential by performing the functional derivative of 3.48 with respect to the density

vLSDA
xc,σ (r) =

δELSDA
xc [n↑, n↓]

δnσ(r)
=

∂

∂nσ

[
(n↑ + n↓)e

unif
xc (n↑, n↓)

]
. (3.51)

2For an alternative derivation of the exchange energy of the uniform electron gas based on Ex[n] in terms of the
exchange-hole, the interested reader is referred to Ref. [1].
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For instance, with ELDA
x [n] = −

∫
d3r n(r) 3

4π
(3π2n)1/3 the exchange potential is given by

vLDA
x (r) =

δELDA
x [n]

δn(r)
=

∂

∂n
[

3

4π
(3π2)

1
3n

4
3 ] =

[3π2n(r)]
1
3

π
=
kF (r)

π
. (3.52)

In a similar manner, the correlation potential can be obtained

vLDA
c (r) =

δELDA
c [n]

δn(r)
=

∂

∂n
[n · ec(n)] = ec(n(r)) + n

∂ec(n)

∂n
. (3.53)

As an example of how the local Fermi wave vector kF (r) or the local Wigner-Seitz radius rs(r) looks

like, in Fig. 3.2 we show results of a self-consistent DFT calculation for the H2 molecule and bulk Na in

the bcc structure. In the case of the H2 molecule, kF and rs is depicted in the xy-plane containing the

H2 bond. The two local maxima in kF (x, y, z = z0) correspond to the positions of the two hydrogen

atoms. For bcc-Na, we plot kF and rs for a plane which is parallel to the basal plane of the cube and

goes through the Na atom in the body-centred position. Here, the shell-structure of the inner two

shells (1s and 2s/2p) becomes visible. In the interstitial region between the atoms (corners of the plot

region), fairly constant values for kF and rs, respectively, are found indicating the free-electron like

behaviour of the 3s valence electron.

Regardless of the fact that the L(S)DA neglects any dependence on the gradient of the density, it

has proved to be remarkably accurate, useful, and hard to improve upon. Ref [1] lists a number of

reasons for this success of which we here mention the most important ones: By construction, the LDA

is exact for a uniform density and nearly-exact for slowly varying densities, features that make LDA

well suited to the description of simple metals (such as Na). It satisfies Ex < 0 and Ec < 0 and the

so-called coordinate-scaling relations, and it has the correct low-density behavior for Ec [1]. Moreover,

the LDA approximation to the exchange and correlation holes obey the correct sum rules although

the shape of the hole may be in error (see also Fig. 3.1).

However, there is certainly room for improvement because there are also a number of deficiencies

of the LDA. (i) Obviously, the LDA does not incorporate inhomogeneity or gradient corrections to

the exchange-correlation hole near the electron. (ii) It does not obey the correct coordinate-scaling

relation of Ec[n] at high densities (rs → 0), because the uniform electron gas shows a ln rs divergence.

Among others, (iii) the LDA is also not exact in the one-electron limit, thus the correlation does

not vanish and the exchange does not compensate for the self-interaction. The so-called generalized

gradient approximation (GGA), to be derived in the next Section 3.5.4, will preserve all the good

properties of the LDA and eliminate the bad features (i) and (ii) listed above.
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Figure 3.2: The Fermi wave vector kF (x, y, z = z0) (top) and the Wigner-Seitz radius rs(x, y, z = z0)
(bottom) for the H2 molecule (left) and bulk Na (right). A planar cut through the H–H bond and
through the central Na atom of the bcc-unit cell is shown, respectively.

3.5.4 Generalized Gradient Approximation

The basic idea of gradient corrections to Exc[n] is to introduce a dependence on the gradient of

the density ∇n(r). Instead of using the density gradient ∇n(r) directly as a measure for density

inhomogeneity, one defines the dimensionless quantity s, the reduced density gradient, which is a

measure for the relative change of the density on the scale of the Fermi wave length λF = 2π
kF

s =

∣∣∣∣∣∣ 1

4π

∂n

∂
(

r
λF

)/n

∣∣∣∣∣∣ =
|∇n|
2kFn

= · · · = 3

2

(
4

9π

)1/3

|∇rs|. (3.54)

In the last step of the above equation, we have expressed the reduced density gradient in terms of a

gradient of the Wigner-Seitz parameter rs. When calculated for real systems, that is atoms, molecules

or solids, the most important range of s is 0 ≤ s ≤ 1, the range 1 ≤ s ≤ 3 is already less prominent,
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while s > 3 only applies to the exponential tail of the density is therefore unimportant with respect

to the total energy of the system. In order to illustrate how this reduced density gradient appears in

a real system, in Fig. 3.3 we show the gradient s(r) for the two same systems as above, namely the

hydrogen molecule and bulk Na, respectively. As noted above, for a bulk system such as Na, s does

not increase above 2 or so, and clearly approaches zero in the interstitial region with almost constant

electron density. For a finite system, such as the H2 molecule, the s attains large values in the density

tail. But because for total energy considerations these regions are weighted by the electron density,

such regions of large s (cut-off in the figure) do not contribute significantly.

Figure 3.3: The reduced density gradient parameter s(x, y, z = z0) as defined in Eq. 3.54 for the H2

molecule (left) and bulk Na (right). A planar cut through the H–H bond and through the central Na
atom of the bcc-unit cell is shown, respectively.

Apart from the length scale kF which introduces a length scale on which density variations are mea-

sured and which is relevant for the exchange-hole, Thomas-Fermi screening, characterized by the

Thomas-Fermi wave vector ks, introduces a second length scale which is in fact the important length

scale for the correlation hole. For instance, the potential φ of a point charge inside an electron gas

with a Fermi wave vector kF can be shown to be screened as

φ(r) =
e−ksr

r
with ks =

(
4kF
πa0

) 1
2

= · · · =
(

4

π

) 1
2
(

9π

4

) 1
6 1

r
1/2
s

. (3.55)

In the first expression for ks, we have re-introduced the Bohr radius a0, which is actually 1 in atomic

units, to better illustrate that ks indeed is an inverse length. Using ks in place of kF , we can define a
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second reduced gradient in an analogous way as above which is commonly denoted as t:

t =

∣∣∣∣∣∣ 1

4π

∂n

∂
(

r
λs

)/n

∣∣∣∣∣∣ =
|∇n|
2ksn

= · · · =
(π

4

) 1
2

(
9π

4

) 1
6 s

r
1/2
s

. (3.56)

Naively, one could use the reduced gradients s and t to construct a Taylor-like expansion of the

exchange and correlation energies, respectively. However, such an approach, termed gradient expansion

approximation (GEA), turns out to be not successful and in fact worsens numerical results compared

to the LDA as is explained in more detail in Ref. [1]. The reason is that for actual systems, s � 1

and t � 1 is not fulfilled (compare Fig. 3.3), such high order terms of s and t would be required to

reach a proper description, while taking into account only low-order terms in the expansion may lead

to improperly positive correlation energies for atoms. As a remedy for this problem, the generalized

gradient approximation (GGA) has been developed. While there is only one way to do a local density

approximation (because there is only one uniform electron gas), there are numerous ways to devise a

GGA. One strategy is to develop GGA’s by fitting it to a test set of calculations. Another approach,

the one that we briefly explain here, is to devise a GGA in a way as to fulfil as many as possible

constraints of the exact exchange-correlation functional and at the same time maintain all the good

properties of the LDA. In particular, we want to follow the work of Perdew, Burke, Ernzerhof entitled

”Generalized Gradient Approximation Made Simple” [10] which has already been mentioned in Fig. 1.1

as the currently most cited paper in Physical Review Letters. Their exchange-correlation functional,

commonly abbreviated as PBE-GGA or simply PBE, is probably the most-widely used one among

physicists3 and is defined as follows

EGGA
x [n] =

∫
d3r n eunif

x (n)Fx(s) (3.57)

EGGA
c [n↑, n↓] =

∫
d3r n

[
eunif
c (n) +H(rs, ζ, t)

]
(3.58)

EGGA
xc [n↑, n↓] =

∫
d3r n eunif

x (n)Fxc(rs, ζ, s). (3.59)

Here, ζ is the spin polarization as defined in 3.50, and the quantities n, rs, s, and t are assumed

to be functions of r. The functions Fx(s), H(rs, ζ, t) and Fxc(rs, ζ, t) are drawn in Fig. 3.4 for the

non-spinpolarized case of ζ = 0. Without going into the details of the derivations that led Perdew,

Burke and Ernzerhof to the form of these enhancement functions Fx, H, and Fxc, we briefly outline

their reasoning which was driven by their credo of (1) a non-empirical derivation, (2) universality, (3)

simplicity and (4) accuracy [10].

3DFT practitioners which are by training chemists tend to use functionals which have been developed by fitting to
a test set of molecules.
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Figure 3.4: Enhancement factors Fx(s), H(rs, ζ, t) and Fxc(rs, ζ, s) for ζ = 0 for the GGA functionals
defined in Eqs. 3.57–3.59 according to Perdew, Burke and Ernzerhof [10].

The enhancement function for the correlation energy, H(rs, t), should obey the following limits. In

the slowly varying limit, t→ 0, it should behave as H = βt2, where β ≈ 0.066725 derived by Ma and

Brückner [1]. In the rapidly varying limit, t→∞, correlations are expected to vanish since this is the

only way the correct sum rule for the correlation hole can be satisfied, thus H(rs, t→∞) = −eunif
c (rs)

to enable a cancellation of the terms in Eq. 3.58. Moreover, the uniform scaling relation for the exact

correlation energy functional requires that Ec[rs → 0] stays finite. Thus, the function H(rs → 0, t) is

constructed such that it cancels the logarithmic singularity of the correlation energy of the uniform

electron gas mention in Sec. 2.3.4.

The enhancement factor for exchange, Fx(s), is constructed from further exact requirements. The form

of 3.57 as well as the correct uniform gas limit s = 0 is demanded by the exact scaling relations of

the exchange energy and the requirement Fx(0) = 1. In the slowly varying limit, s→ 0, the function

should behave as Fx(s) = 1 + µs2. PBE makes the choice of µ = π2

3
β ≈ 0.21951 in order to cancel

the corresponding t2 expansion coefficient for the correlation part in order to retain the good linear

response property of the LDA. Finally, the so-called Lieb-Oxford bound, and equality for the exact
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exchange and correlation energy functionals, demands that Fx(s) ≤ 1.804.

It should be noted that the Eq. 3.59 defining Exc in terms of the exchange-correlation enhancement

factor Fxc(rs, ζ, s) is in fact redundant. E.g. for ζ = 0, it is easy to verify that

Fxc(rs, s) = Fx(s) +
eunif
c (rs)

eunif
x (rs)

+
H(rs, t)

eunif
x (rs)

. (3.60)
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Figure 3.5: Relative error in the equilibrium lattice parameter as obtained within the LDA, the PBE-
GGA [10] and the PBEsol-GGA [32] for 28 elemental and 32 binary bulk crystals. The data is repro-
duced from Ref. [33].

Before we conclude this section about the GGA, it may be interesting to see how it performs for typical

solid state applications. In Figure 3.5 we have reproduced results from Ref. [33] and have plotted the

relative error in the equilibrium lattice parameter for 28 elemental and 32 binary bulk crystals. For

comparison, we also show the corresponding LDA results which consistently underestimate the lattice

parameters of solids and typically also underestimate the bond lengths in molecules. In other words,

LDA overbinds. Overall, the PBE-GGA presents an improvement over the LDA, however, in many
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cases it overshoots and produces too large lattice parameters, respectively, bond lengths of molecules.

Figure 3.5 also shows the results of another variant of the GGA, the so-called PBEsol [32], a slight

modification of the original PBE presented above especially designed for solids.4 In terms of the lattice

parameters for the 60 bulk systems shown in Fig. 3.5, it clearly outperforms the PBE-GGA.

3.5.5 Jacob’s Ladder

We have seen in the previous section how the GGA exchange-correlation functional can lead to an

improvement of DFT results over conceptually simpler LDA results. As you may imagine, the GGA

is not the end of the story, and even though the exact form of Exc[n] may remain unknown forever,

there exists a hierarchy of more advanced approximations for the exchange-correlation functional.

Figure 3.6: Reproduced from [34]: Jacob’s ladder of density functional approximations to the exchange-
correlation energy (as put forward by John P. Perdew [35]).

In her perspective article in Science entitled ”In Pursuit of the ”Divine” Functional” [36], Ann E.

Mattsson describes a strategy for developing improved functionals commonly known as ”Jacob’s lad-

der” (see Fig. 3.6): The first rung is the LDA, using only the electron density. The next rung holds

the GGAs, where the gradient of the density adds refinement. The community is now [2002] working

on the third rung, so-called meta-GGAs, where the kinetic energy density is introduced, thus the sec-

ond derivative of the density. The fourth rung approaches the divine functional by treating exchange

4In the PBEsol, the s → 0 behaviour of Fx(s) is determined by fixing µ = 10
81 , thus using an exact value which has

been derived for the slowly varying density. The value for β ≈ 0.046 is guided by considerations for a jellium surface at
the cost of violating the t2 gradient expansion coefficient and, to a lesser extent, the exact cancellation of the exchange
and correlation gradient corrections in the slowly varying limit [32].
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exactly. For this to work, the exact exchange must be combined with a compatible correlation. The last

rung retains the exact exchange and refines correlation by evaluating part of it exactly. The divine

functional must have both exact exchange and exact correlation. The Jacob’s ladder scheme, advanced

by Perdew and co-workers, is the traditional strategy in the physics community and is an extension of

the strategy that led to the GGAs. The philosophy is to keep everything that works in old functionals

while adding capability. The strategy can be viewed as a ladder with five rungs, leading up to the

divine functional, the ultimate goal in functional development. In the previous two Sections 3.5.3 and

3.5.4 we have already discussed the first two rungs, here we briefly describe the rungs three, four and

five.

Third Rung: Meta-GGA

While the first and second rung of the ladder involve the density and its gradient, respectively, the

third rung also includes the kinetic energy density which is related to the second derivative of the

density. In its most general form, any so-called meta-GGA can be written in the following way [37]

Exc[n↑, n↓] =

∫
d3r n exc(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓), (3.61)

where n(r) = n↑(r) + n↓(r) is the total density, and

τσ =

occup∑
i

1

2
|∇ϕiσ(r)|2 (3.62)

is the kinetic energy density for the occupied Kohn-Sham orbitals ϕiσ(r), which are nonlocal function-

als of the density nσ(r). There are various strategies to define the form of the function exc inside the

integral. Here, we only mention a recently developed functional of the meta-GGA type, the ”strongly

constrained and appropriately normed” (SCAN) meta-GGA which has been constructed based on all

17 known exact constraints appropriate for a semilocal functional, and a set of ”appropriate norms”

for which a semilocal function can be exact or nearly exact [38]. A benchmark test of this functional

is summarized in Table 3.5.5. It suggests that SCAN is a major improvement over PBE (and much

more so over LSDA), at nearly the same computational cost [38].

Fourth Rung: Hybrid Functionals

In Sec. 3.5.1, we have defined the exchange energy in Eq. 3.30 as

Ex[n] =
〈

Φmin
n

∣∣∣ V̂ee ∣∣∣Φmin
n

〉
− U [n], (3.63)
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Table 3.1: Reproduced from [38]: Mean error (ME) and mean absolute error (MAE) of SCAN and
other semilocal functionals for the G3 set of molecules, the BH76 set of chemical barrier heights, the
S22 set of weakly bonded complexes, and the LC20 set of solid lattice constants. (1 kcal/mol = 0.0434
eV). Further details can be found in Ref. [38].

where Φmin
n is the Slater determinant constructed from all occupied Kohn-Sham orbitals, V̂ee is the

electron-electron interaction operator, and U [n] is the Hartree energy. The idea of hybrid functionals

is to incorporate some fraction of this exact exchange, as given by the above expression, into the

exchange-correlation functional. It turns out that such hybrid functionals provide improved accuracy

in the description of the atomization energies, bond lengths, and vibrational frequencies of most

molecules.

To understand why it is more reasonable to add only some fraction of exact exchange rather than

using 3.63 entirely, we start with the coupling-constant expression given in Eq. 3.39 which we rewrite

in the following way [39]

Exc =

∫ 1

0

dλExc,λ with Exc,λ =
〈

Ψmin,λ
n

∣∣∣ V̂ee ∣∣∣Ψmin,λ
n

〉
− U [n]. (3.64)

A simple two-point approximation to this integral over the coupling-constant would give

Exc ≈
1

2
(Exc,λ=0 + Exc,λ=1) =

1

2
(Ex + Exc,λ=1), (3.65)

where we have used the fact that in the non-interacting case (λ = 0), there is no correlation and the

Exc,λ=0 reduces to the exchange given by 3.63. Becke, Perdew and co-worker have now reasoned [39]

that local or semilocal density functionals are more accurate at the fully-interacting case (λ = 1),

where the exchange-correlation hole is deeper and thus more localized around its electron than at

the non-interacting case (λ = 0). Therefore, the unknown Exc,λ=1 may be approximated by some

semi-local approximation (sl) which could be, for instance, the LDA or a GGA. This reasoning leads
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to Becke’s half-half hybrid functional

Exc =
1

2
(Ex + Esl

xc,λ=1) = Esl
xc +

1

2
(Ex − Esl

x ). (3.66)

In the last step we have assumed that density functional approximation also has a coupling-constant

decomposition for which we approximate the integrand by a straight line as above

Esl
xc =

∫ 1

0

dλEsl
xc,λ ≈

1

2
(Esl

x + Esl
xc,λ=1). (3.67)

Now it has been argued that in many cases the linear λ-dependence of Esl
xc,λ=1 and Exc,λ close to λ = 1

is not the best approximation, rather a more rapid decay is realistic as described by the following

function describing the λ-dependence of the hybrid functional [39]

Ehyb
xc,λ = Esl

xc,λ + (Ex − Esl
x )(1− λ)m−1, (3.68)

where m ≥ 1 is a number controlling the how rapidly the correction to the sl-approximation vanishes

as λ approaches 1. When performing the integral over λ, we obtain the expression

Ehyb
xc =

∫ 1

0

dλEhyb
xc,λ = Esl

xc +
1

m
(Ex − Esl

x ). (3.69)

We see that with m = 2 we recover the half-half expression 3.66, and with m = 4, the value put

forward by Perdew and co-workers, we obtain the so-called PBE0 hybrid functional defined as

EPBE0
xc = EPBE

xc +
1

4
(Ex − EPBE

x ) =
3

4
EPBE
x +

1

4
Ex + EPBE

c . (3.70)

where we have also specified the semi-local approximation to be the PBE-GGA discussed previously.

PBE0 presents a significant improvement over the GGA description of molecular properties but it

has also been used for solid state applications [40]. This can be attributed to the fact that the use of

a fixed portion of the Fock exchange reduces the self-interaction error of the density functional (the

unphysical self-interaction built into the Hartree energy is at least partially compensated for).

Apart from the global hybrid functionals discussed above, another possibility of incorporating a frac-

tion of exact exchange is to use so-called range-separated hybrid functionals where the description of

the exchange interaction is separated into a short- and a long-range part. In its most general form,

the decomposition of the Coulomb kernel can be obtained using the construction

1

r
= Sγ(r) + Lγ(r) =

1− [α + β erf(γ r)]

r︸ ︷︷ ︸
short range

+
α + β erf(γ r)

r︸ ︷︷ ︸
long range

, (3.71)
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where r = |r− r′| and γ is the parameter that defines the range separation related to a characteristic

distance 2
γ

at which the short-range interactions become negligible. The functions Sγ(r) and Lγ(r),

which sum to 1
r
, are introduced to enable different expressions for the exchange in the short-range and

long-range, respectively. The error function, erf(x) enables a smooth switching between short- and

long-range Coulomb expressions. The exchange-correlation energy is then calculated as follows:

Exc = (1− α)ESR
x,sl + αESR

x,HF︸ ︷︷ ︸
short range

+ (1− α− β)ELR
x,sl + (α + β)ELR

x,HF︸ ︷︷ ︸
long range

+Ec,sl. (3.72)

We see that in the short range, the fraction of Hartree-Fock exchange is given by the parameter

α ∈ [0, 1], while the semi-local expression (typically the LDA or GGA) is weighted by 1 − α. In the

long range, on the other hand, a different weight of Hartree-Fock and semi-local exchange is allowed

for by introducing the parameter β. Thus, here the weight of Hartree-Fock exchange is α + β, while

the semi-local exchange expression gets the weight 1 − α − β. For the correlation part, Ec,sl, a semi-

local expression is used, both, in short and long-range. Any range-separated hybrid functional on the

”market of DFT-functionals” can be expressed by the Eqs. 3.71 and 3.72 and are defined by specifying

the three parameters α, β and γ as well as the particular semi-local expression to be used.

There are different strategies to determine the parameter values for α, β and γ. One possibility is to

fit the parameters α, β and γ such that a given test set of systems (mostly molecular test systems) are

described as accurately as possible compared to reference value obtained from wave-function based

quantum chemical methods.5 Another possibility is to tune the parameters α, β and γ in such a

way that the resulting functional fulfils as many exact properties as possible. This leads to the so-

called optimally-tuned range-separated hybrids (OT-RSH) [41–43]. Here, α and γ are determined by

enforcing the so-called ”ionization potential theorem” and the ”piece-wise linearity” to be discussed in

Secs. 3.6.1 and 3.6.2, respectively. Because, the third parameter β governs the asymptotic behaviour

for r →∞ , it is chosen as

α + β erf(γ r)

r
−→r→∞

α + β

r
≡ 1

ε r
⇒ α + β =

1

ε
. (3.73)

To guarantee the correct asymptotic behaviour of the exchange interaction, β should be chosen ac-

cording to the dielectric constant of the medium, thus ε = 1 for isolated molecules, or ε = εbulk for

bulk crystals [42, 43].

5Wave-function-based post-Hartree Fock methods will be discussed in the lecture ”Modelling of Molecular Systems”.
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Fifth Rung: Random Phase Approximation

While the fourth rung of Jacob’s ladder was dealing with systematic improvements of the exchange

energy, the fifth rung aims at improvements of the correlation energy over the semi-local expressions,

LDA, GGA or meta-GGA, discussed previously. In terms of computational complexity, we will see

that while the calculation of the Hartree-Fock exchange energy requires occupied Kohn-Sham orbitals,

the fifth rung expressions for the correlation energy will also involve unoccupied Kohn-Sham orbitals

to account for effects such as polarization.

The starting point for the correlation energy is the adiabatic connection formula 3.43 discussed earlier,

which is rewritten with the help of the fluctuation-dissipation theorem, which allows one to express

the density fluctuation 〈δn(r)δn(r′)〉 in terms of a density-density response χ at imaginary frequency

[44, 45]

ρ2(r′, r) ≡ 〈δn(r)δn(r′)〉 = − 1

π

∫ ∞
0

χ(r, r′, ω = iu)du. (3.74)

Here χ is the density-density response function (susceptibility) defined as the linear density re-

sponse δn(r) exp(ut) of the electrons to an externally applied electron potential energy perturbation

δVext exp(ut),

δn(r) =

∫
d3r′ χ(r, r′, iu)δVext(r

′), (3.75)

where u is defined to be an imaginary frequency u = iω. Combining the 3.74 with 3.43 leads to the

adiabatic-connection fluctuation-dissipation (ACFD) formula for the correlation energy [45]

Ec = − 1

2π

∫ 1

0

dλ

∫
d3r

∫
d3r′

1

|r − r′|

∫ ∞
0

du
[
χλ(r, r′, iu)− χ0(r, r′, iu)

]
= − 1

2π

∫ 1

0

dλ

∫ ∞
0

duTr
[
v · (χλ(iu)− χ0(iu))

]
. (3.76)

Here, χλ and χ0 are the response functions for the interacting system with coupling strength λ and

for the non-interacting case λ = 0, respectively. In the second line of the above equation we have used

a short-hand notation for the ”matrix-matrix” multiplication of the Coulomb-interaction, v(r, r′) =
1

|r−r′| with the response function and the subsequent ”trace” of the matrix.

Without any further approximation the still exact expression 3.76 cannot be evaluated. The most

common and simple approximation, which is tractable for real systems, is the so-called random phase

approximation (RPA). Here, the exchange-correlation kernel

fλxc(r, r
′) =

δEλ
xc

δn(r)δn(r′)
, (3.77)

which connects the interacting with the non-interacting response function via the following Dyson-like
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Lattice parameter Bulk modulus

Figure 3.7: Reproduced from Ref. [46]: Relative error % of the theoretical lattice constants (left) and
the theoretical bulk moduli (right) with respect to experiment.

equation [
χλ
]−1

=
[
χ0
]−1 −

[
λv + fλxc

]
≈
[
χ0
]−1 − λv. (3.78)

is neglected. Note that here
[
χλ
]−1

denotes the inverse of the matrix χλ. After some algebra, one

obtains

ERPA
c =

1

2π

∫ ∞
0

duTr
[
ln(1− χ0v) + vχ0

]
, (3.79)

where the non-interacting response function can be obtained from the Kohn-Sham orbitals [46].

To conclude this section and to show the performance of RPA calculations for real bulk systems, in

Fig. 3.7 we show the relative error % of the theoretical lattice constants (left panel) and the theoretical

bulk moduli (right panel) with respect to experiment. These results are reproduced from the work of

Harl and Kresse [46].
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3.5.6 Van der Waals Interactions

We begin this section with a quote from a recent review by Berland and co-workers [18]:

”Identified in 1873, there is a force that today attracts more interest than ever. It was first introduced

in a doctoral thesis by Johannes Diderik van der Waals (vdW) ... It is present everywhere, but its

variation from one environment to another and its complex manifestations still pose challenging ques-

tions nearly one hundred years after van der Waals was awarded the Nobel Prize in physics. These

questions are relevant for such varied systems as soft matter, surfaces, and DNA, and in phenomena

as different as supramolecular binding, surface reactions, and the dynamic properties of water. The

term vdW includes the following forces between molecules: (i) two permanent dipoles (Keesom force),

(ii) a permanent dipole and a corresponding induced dipole (Debye force), and (iii) two instantaneously

induced dipoles (London dispersion force). In the condensed-matter community, typically just the lat-

ter, which has a nonclassical, true quantum mechanical, origin, is referred to as the vdW force. Like

all non-relativistic electronic effects, the vdW interactions are present in the exact DFT functional.

However, by construction, LDA and GGA neglect the long-range, nonlocal correlations that give rise

to the vdW forces. Proper inclusion of vdW interactions in DFT calculations requires that the total

energy functional depends on the electron density in a manner that reflects both the long-ranged and

medium-ranged nature of vdW interactions.”

The inclusion of vdW interactions within a first-principles DFT treatment can be achieved with the

so-called Rutgers-Chalmers van der Waals density functional (vdW-DF) method which includes vdW

forces by using a nonlocal exchange-correlation functional [18, 47]. We will restrict ourselves to briefly

introduce this vdW-DF approach while alternative schemes, such as the Tkatchenko-Scheffler methods

[19] or the popular semi-empirical methods due to Grimme [48] are outside the scope of these lecture

notes.

The key to the vdW-DF method is the inclusion of a longrange piece of the correlation energy,

Enl
c [n], a fully nonlocal functional of the density n. This piece is evaluated using a ”plasmon” pole

approximation for the inverse dielectric function, which satisfies known conservation laws, limits, sum

rules, and invariances [49, 50]. Since the nonlocal dispersion forces are usually considered to arise from

non-overlapping densities, the total correlation energy is divided into two contributions,

Ec[n] = E0
c [n] + Enl

c [n] (3.80)

where Enl
c [n] accounts for the long-ranged dispersive interactions. The first term, E0

c [n], is, in principle,

semi-local, but is treated by the LDA. This appears to be a reasonable approximation since it is exact

in the limit of slowly varying densities. Hence, the recipe for treating correlation effects within the

vdW-DF is

E0
c [n] ≈ ELDA

c [n], (3.81)
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ensuring that no double-counting of non-local effects will occur. The non-local term can be considerably

simplified by noting that the long-range interactions are less sensitive to the details of the system’s

dielectric response than the short-range terms, and it can be cat into the form [18]

Enl
c =

1

2

∫
d3rd3r′n(r)φ(r, r′)n(r′). (3.82)

The details of the interaction between the electron density at point r and r′ are hidden in the non-local

kernel φ, which is, by construction, a generalized function of space coordinates, the electron densities

n and their gradients, i.e., φ = φ(|r − r′|, n(r), n(r′),∇n(r),∇n(r′)). Introducing the quantities

d = |r − r′| q0(r) (3.83)

d′ = |r − r′| q0(r′), (3.84)

where q0 also depends on the density and its gradients, the kernel φ thus depends on r and r′ only

through d and d′, so that it can be tabulated in advance in terms of these two variables, or better, in

terms of the sum and difference of these two, i.e., D and δ defined by

D =
1

2
(d+ d′) 0 ≤ D ≤ ∞, (3.85)

δ =
d− d′

d+ d′
0 ≤ |δ| ≤ 1. (3.86)

When both, d and d′ are large, the asymptotic form of φ(d, d′) is

φ→ − C

d2 d′2 (d2 + d′2)
, (3.87)

with C = 12(4π/9)3me4. Thus, the interaction energy has the correct r−6 dependence for large dis-

tances. Another important feature of the kernel function is that Enl
c is strictly zero for systems with

a uniform electron density, as was initially imposed by Eq. 3.80. Moreover, the form of Eq. 3.82 keeps

the spirit of DFT in the sense that the total energy requires only the knowledge of the electron density

and does not depend on any adjustable input parameter.

The theory of the van der Waals density functional discussed above is an approximation for the

correlation energy only. In practice, one needs to approximate the exchange energy as well. The

standard scheme is to use a GGA for exchange, where it is important to choose a flavor, the exchange

part of which does not produce a binding that is not present when the exchange is treated exactly. In

fact, such a spurious binding from exchange has been found for rare gas dimers, a feature absent for

the exact Hartree-Fock exchange. Since revPBE [51] does not exhibit this property, it was suggested

to use this functional in numerical calculations.
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Summarizing, the total xc energy in vdW-DF theory is defined as

Exc = ErevPBE
x + ELDA

c + Enl
c . (3.88)

Sometimes, the vdW-DF is carried out in a post-scf manner. First, the electron density is obtained

self-consistently by using some GGA, and, in the second step, the nonlocal correlation energy Enl
c is

evaluated using this density as an input. We note, however, that self-consistency has little effect on

the atomic interaction energy as shown by Thonhauser et al. [52] for the systems investigated so far.

This should be particularly true for weakly interacting systems where one does not expect significant

charge redistributions arising through the nonlocal interactions.

3.6 Interpretation of Kohn-Sham Energies

When deriving the Kohn-Sham equations 3.26 in Sec. 3.4, we have introduced the auxiliary system of

non-interacting electrons with the purpose of enabling the calculation of the charge density n(r) using

3.27, and in turn, of the total ground state energy, E[n(r)], which is a functional of the density. The

Kohn-Sham energies εi as well as the Kohn-Sham orbitals ϕi(r), on the other hand, have not (yet)

received any physical interpretation. It is of course tempting to interpret – similarly as Koopmans’

theorem dictates for the Hartree-Fock method – as excitation energies. Thus, for a periodic system

with i→ (nk), the Kohn-Sham energies could be interpreted as the band structure εnk of the crystal.

This is indeed regularly done in many practical applications of DFT, however, it may also lead to severe

problems. The most prominent example is the underestimation of the band gap of semiconductors

or insulators by as much as 50% whose origin will be discussed in Sec. 3.6.3. Before, we review in

the next section, the so-called Janak’s Theorem which can be viewed as the analogue of Koopmans’

theorem for density functional theory.

3.6.1 Janak’s Theorem

In his seminal paper from 1978 [53], Janak has derived a relation between the highest occupied Kohn-

Sham orbital and the change in total energy with respect to orbital occupation which we will review

here.

The formal extension of density functional theory to the case of fractional occupations has been

demonstrated by Perdew an co-workers [54]. Denoting the fractional occupation of orbital ϕi as fi ∈
[0, 1], the charge density can be obtained from the following generalized expression

n(r) =
∑
j

fj|ϕj(r)|2. (3.89)
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The generalization of the total energy functional 3.28 for the case of fractional occupations is then

given by

Ẽ[n] = T̃s[n] + U [n] + Exc[n] +

∫
d3r v(r)n(r) (3.90)

Here the ”tilde” above E and Ts indicates that the definitions for these quantities need to be adjusted

when allowing for fractional occupations. Similarly as for the charge density, we define the kinetic

energy functional T̃s[n] as

T̃s[n] =
∑
j

fjtj with tj =

∫
d3rϕ∗j(r)

(
−1

2
∆

)
ϕj(r). (3.91)

We now want to prove Janak’s theorem which states that the partial derivative of the total energy

with respect to the occupation fi of the i-th orbital equals the Kohn-Sham energy εi of the respective

orbital, thus
∂Ẽ

∂fi
= εi. (3.92)

We begin with the derivative with respect to the kinetic energy which gives

∂T̃s
∂fi

= ti +
∑
j

fj
∂tj
∂fi

. (3.93)

The second term in the above equation arises because a change of occupation in orbital i will obviously

change the electron density and thus also alter all other orbitals j and thereby modify the kinetic

energy tj of orbital j. This term,
∂tj
∂fi

, will be evaluated further below. Before doing so, we consider

how the Hartree energy U and the exchange-correlation energy Exc change with fi by applying the

chain rule of differentiation

∂U

∂fi
=

∫
d3r

δU

δn(r)︸ ︷︷ ︸
=vH(r)

·∂n(r)

∂fi
=

∫
d3r vH(r)

[
|ϕi(r)|2 +

∑
j

fj
∂|ϕj(r)|2

∂fi

]
. (3.94)

Here, we have made use of the definition of the Hartree potential vH(r) as the functional derivative

of the Hartree energy with respect to the density, and applied the product rule to the derivative of

the density as defined in 3.89. Again, because the occupation of orbital i changes the density, also the

orbital j will be affected. Using the same arguments, also the derivative of the exchange-correlation

energy and the external energy Vext[n] =
∫

d3r v(r)n(r) with respect to the occupation number fi can
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be obtained:

∂Exc
∂fi

=

∫
d3r

δExc
δn(r)︸ ︷︷ ︸
=vxc(r)

·∂n(r)

∂fi
=

∫
d3r vxc(r)

[
|ϕi(r)|2 +

∑
j

fj
∂|ϕj(r)|2

∂fi

]
, (3.95)

∂Vext

∂fi
=

∫
d3r

δVext

δn(r)︸ ︷︷ ︸
=v(r)

·∂n(r)

∂fi
=

∫
d3r v(r)

[
|ϕi(r)|2 +

∑
j

fj
∂|ϕj(r)|2

∂fi

]
. (3.96)

In order to evaluate Eq. 3.93 further, we first rewrite ti with the help of the Kohn-Sham equations as

ti =

∫
d3rϕ∗i (r)

(
−1

2
∆

)
ϕi(r) = εi −

∫
d3r [vH(r) + vxc(r) + v(r)]︸ ︷︷ ︸

=vs(r)

|ϕi(r)|2, (3.97)

and then find for the derivative

∂tj
∂fi

=

∫
d3r

∂ϕ∗j
∂fi

(
−1

2
∆

)
ϕj + c.c., (3.98)

where c.c. indicates the complex conjugate of the preceding terms. By adding the contributions to-

gether, we obtain

∂Ẽ

∂fi
=

∂T̃s
∂fi

+
∂U

∂fi
+
∂Exc
∂fi

+
∂Vext

∂fi

= εi −
∫

d3r vs(r)|ϕi(r)|2 +
∑
j

fj
∂tj
∂fi

+

∫
d3r vs(r)

[
|ϕi(r)|2 +

∑
j

fj
∂|ϕj(r)|2

∂fi

]

= εi +
∑
j

fj

[
∂tj
∂fi

+

∫
d3r vs(r)

∂|ϕj(r)|2

∂fi

]
. (3.99)

When inserting 3.98 into 3.99 and using the product rule for
∂|ϕj |2
∂fi

=
∂ϕ∗j
∂fi
ϕj + c.c., we find

∂Ẽ

∂fi
= εi +

∑
j

fj


∫

d3r
∂ϕ∗j
∂fi

(
−1

2
∆ + vs

)
ϕj︸ ︷︷ ︸

=εjϕj

+c.c.


= εi +

∑
j

fjεj
∂

∂fi

∫
d3r|ϕj(r)|2︸ ︷︷ ︸

=1

= εi. (3.100)
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Thus, by using the Kohn-Sham equations once more and noting that the orbitals are normalized, we

have proven Janak’s theorem.

In the mathematical derivations outlined above we did not make assumptions on which orbital’s

occupation we were changing. It appears that 3.100 is correct for any orbital i. However, to remain in

the electronic ground state, there are only two possibilities when starting from an M -electron ground

state where M is an integer number: (i) removal of an electron from the highest occupied orbital ϕM

with the orbital energy εM , thus altering fM , or (ii) addition of an electron to the lowest unoccupied

orbital ϕM+1 with the orbital energy εM+1, thus altering fM+1. All other possibilities, would lead to a

system which is no longer in its electronic ground state but rather represent an excited state. In the

latter situation density functional theory can no longer be applied.

3.6.2 Picewise Linearity of E(N)

We can now use Janak’s theorem to connect the M -electron system with the M + 1 electron system,

and respectively, the M -electron system with the M − 1 electron system. Let us start with the former

and denote the fractional charge that we put into the orbital M + 1 as fM+1 = ω. Denoting the

total energy of the M -electron system as E(M) and the total energy of the M + 1-electron system as

E(M + 1), we have

− A(M) ≡ E(M + 1)− E(M) =

∫ 1

0

dfM+1
∂Ẽ

∂fM+1

=

∫ 1

0

dω εM+1(M + ω) = εM+1(M + δ). (3.101)

Here, we have introduced the electron affinity which is defined to be the negative of the total energy

difference of the M + 1 and the M -electron systems, and we have made use of Janak’s theorem. In

the last step of the above equation, we have used the fact that – from very general arguments to

be outlined below – the total energy E(N) as a function of electron number, where N is allowed to

be non-integer, is a piece-wise linear function as illustrated in Fig. 3.8. As a consequence, it does

not matter where in the interval (M,M + 1) we take the derivative, and the orbital energy εM+1(N)

remains constant over the open interval N ∈ (M,M+1). In analogy to Eq. 3.101, we can also gradually

remove an electron from the highest occupied orbital which leads us to the definition of the ionization

potential of the M -electron system denoted as I(M):

− I(M) ≡ E(M)− E(M − 1) =

∫ 1

0

dfM
∂Ẽ

∂fM
=

∫ 1

0

dω εM(M − 1 + ω) = εM(M − δ). (3.102)

In the last step of the above equation we have again used the fact that E(N) is a piecewise linear
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E(N)

M M+1 M+2M–1 M–2 

E(M–2)

E(M–1)

E(M)

E(M+1)

E(M+2)

I(M)

A(M)

Figure 3.8: Principal behaviour of the total energy E as a function of the non-integer electron number
N . The energies at the integer particle numbers M−2, M−1, M , M +1 and M +2 are indicated and
the definitions of the electron affinity, A(M) and ionization potential I(M) of the M -electron system
are given.

function. This fact is a consequence of the convex condition of E(N) which can be expressed as follows:

E(M) <
1

2
[E(M + 1) + E(M − 1)] . (3.103)

In other words, this means that for a given system of M interacting electrons, the ionization potential

I(M) is always larger than the electron affinity. The cost of removing an electron from the M -electron

system is larger than the energy gain of adding an additional electron to the system, because the

added electron experiences an enhanced Coulomb repulsion.

In order to understand the piecewise linear behaviour of E(N) depicted in Fig. 3.8, we have to recall

how a system of a non-integer number of electrons can be treated. For an integer number of electrons,

M , the ground state wave function is a pure state denoted as ΨM , while for a non-integer number

the system has to be described by a statistical mixture of several pure states with some probabilities.

For instance, take the two pure states ΨM and ΨM+1 corresponding to the ground state of the M

and M + 1 electron systems with the weights (1 − ω) and ω, respectively. Then the corresponding

electron densities, denoted as nM(r) and nM+1(r) and computed in the usual manner 3.2, integrate
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to N = M + ω electrons

N = (1− ω)

∫
d3r nM(r) + ω

∫
d3r n+1(r) = (1− ω)M + ω(M + 1) = M + ω. (3.104)

Thus, we see that such a statistical mixture with the weights given above and ω ∈ [0, 1] indeed

describes a system containing M + ω electrons. In a similar manner, the total energy of the M + ω

system is given by

E(N) = (1− ω)E[nM ] + ωE[nM+1] = (1− ω)E(M) + ωE(M + 1). (3.105)

This equation describes a linear interpolation between the total energy values at the integer numbers

M and M + 1, respectively. If one were to include more pure states, such as ΨM+2 or ΨM−1, in order

to describe the M +ω system, one would always end up with larger energies, thus not find the ground

state. Expressed in mathematical terms, a linear interpolation always overestimates a convex function.

Thus, the ground state of the M+ω system is indeed described only by the pure states ΨM and ΨM+1

with weights (1 − ω) and ω, respectively, leading to the piecewise linear dependence of E(N) with

derivative discontinuities at integer values.

It should be noted that most approximate exchange-correlation functionals used in practice have a

non-linear behaviour between integers and lack the derivative discontinuities in the energy. This is

illustrated in Fig. 3.9 for the C atom and the H2O molecule. For instance, the PBE-GGA functional

leads to a smooth convex function E(N) for the C atom with a positive curvature C = d2E
dN2 , while the

Hartree-Fock calculation (HF) yields a concave function with a negative curvature. There is a class of

functionals, so-called range-separated hybrid functionals, where the range-separation parameter γ can

be tuned such to yield an almost vanishing curvature, thereby restoring the piecewise linear behaviour

expected for the exact functional. This is illustrated in the right panel of Fig. 3.9 for the H2O molecule.

We conclude this section by noting that deviations from the perfect linear E(N) behaviour, which

most approximate functionals show, have profound consequences, for instance, it leads to too small

chemical barriers, problems in the description of long-range charge transfer excitations or dissociating

molecules, and to an underestimation of band gaps which will be explained in the next section.

3.6.3 The Band Gap Problem

The fundamental energy gap, Egap, of a system of M electrons and the center of the gap, Ecenter, can

be defined in terms of the ionization potential I(M) and the electron affinity A(M) (see e.g. Perdew
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Figure 3.9: Left from Ref. [55]: Total energy of the C atom as a function of the electron number
N computed for various functionals. Right from Ref. [41]: Total energy difference with respect to
the neutral, N = 10 electron system as a function of the particle number N for the H2O molecule,
calculated with the Baer-Neuhauser (BN) functional with γ = 0, γ → ∞, and the optimally tuned
γ = 0.87. The average curvature, C = d2E

dN2 , is indicated for each functional.

and Levy [56])

Egap = I(M)− A(M) (3.106)

Ecenter = −1

2
[I(M) + A(M)] . (3.107)

Using the Eqs. 3.101 and 3.102 to express Egap and Ecenter in terms of Kohn-Sham energies instead of

total-energy-derived quantities, we thus find

Egap = εM+1(M + δ)− εM(M − δ) (3.108)

Ecenter =
1

2
[εM+1(M + δ) + εM(M − δ)] . (3.109)

The appearance of the infinitesimal charge δ in the above equations is crucial because of a derivative

discontinuity of the potential as illustrated below

δ ←→ δn(r) ←→ δvs(r) + ∆xc (3.110)
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The infinitesimal charge δ results in an infinitesimal change in the electron density δn(r) which in

turn is connected with an infinitesimal change in the Kohn-Sham potential δvs(r). Because, according

to the Hohenberg-Kohn theorem, the density determines the potential uniquely only up to an additive

constant, we also must allow for the constant ∆xc. This is the so-called derivative discontinuity of the

exchange-correlation potential which can be defined in the following way

∆xc =
δExc
δn(r)

∣∣∣∣
M+δ

− δExc
δn(r)

∣∣∣∣
M−δ

(3.111)

Thus, the band gap can be written as the sum of the Kohn-Sham band gap, εgap, and the derivative

discontinuity

Egap = εM+1(M)− εM(M)︸ ︷︷ ︸
εgap

+∆xc. (3.112)

Experience shows that ∆xc is a substantial part of the band gap. As a result the Kohn-Sham band

gap εgap calculated with approximate functionals such as the LDA or the GGA amounts to only about

50% of the true band gap. This is illustrated in Fig. 3.10 for a number of bulk semiconductors and

insulators. Note that in this figure, MBJLDA refers to a meta-GGA functional (third rung of Jacob’s

ladder), the so-called modified Becke-Johnson LDA functional as proposed by Tran and Blaha [57] and

HSE is the range-separated hybrid functional (fourth rung of the ladder) according Heyd, Scuseria and

Ernzerhof [58]. The data points labelled as G0W0 and GW are results from many-body perturbation

theory whose description is beyond the scope of this lecture [59, 60].

The center of the gap, on the other hand, can be obtained exactly from the Kohn-Sham band structure

Ecenter =
1

2
[εM+1(M) + εM(M)] ≡ µ. (3.113)

This is because the definition of the gap center coincides with the chemical potential µ which, by

construction, is equal for the auxiliary Kohn-Sham system and the physical system of interacting elec-

trons. Therefore, the exchange-correlation potential at the integer electron number M is the average

of the right and left functional derivatives of Exc

δExc
δn(r)

∣∣∣∣
M

=
1

2

[
δExc
δn(r)

∣∣∣∣
M+δ

+
δExc
δn(r)

∣∣∣∣
M−δ

]
(3.114)

Note that for a metal (no gap), by definition I(M) = A(M) and there is also no derivative disconti-

nuity. Hence, the highest occupied Kohn-Sham orbital, µ = εM(M), equals the negative of the work

function Φ [53]

µ = −Φ. (3.115)
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Figure 3.10: Left from Ref. [57]: Theoretical versus experimental band gaps for various bulk semicon-
ductors and insulators obtained with various DFT functionals (LDA, MBJLDA, HSE) and many-body
perturbation theory (G0W0, GW).
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Chapter 4

Density Functional Theory in Practice

4.1 Introduction

As already highlighted in the introductory Section 1.3, the popularity of density functional methods

in theoretical solid state physics and quantum chemistry (but indeed also for related fields such as

materials science, biochemistry, ...) is ever growing (compare Fig. 1.1). Not least this is due to the

availability of numerically efficient software packages for DFT applications. The mere number of

available DFT software packages is truly overwhelming. This can be appreciated from this impressive

list: DFT-packages. A characteristic feature of a given DFT software package is the type of basis

functions it uses for solving the Kohn-Sham equations 1.9. Principally, the solution of the Kohn-Sham

equations is accomplished by expanding the Kohn-Sham orbitals ψj(r) into known basis functions

φi(r):

ψj(r) =
∑
i

c
(j)
i φi(r). (4.1)

A major distinction arises from the type of boundary conditions which the basis functions are designed

to fulfill, specifically, whether periodic boundary conditions, which are suitable for crystalline solids,

are imposed or not. In these lecture notes, we only cover such basis sets, and in particular we briefly

describe the main ideas behind a plane wave basis set (Sec. 4.2) and an augmented plane wave basis

set (Sec. 4.3).

As a side note, we refer to a recent publication [61], which compares the calculated values for the

equation of states for 71 elemental crystals from 15 different widely used DFT codes employing 40

different potentials. Although there were variations in the calculated values, most recent codes and

methods converged toward a single value, with errors comparable to those of experiment.
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4.2 Plane Wave Basis

As outlined in Sec. 2.1.1, in the case of translational symmetry, the Kohn-Sham potential is transla-

tionally invariantvs(r + R) = vs(r), and the Kohn-Sham orbitals ψk(r) are Bloch-waves. Thus, they

can be written as a product of a plane wave and a lattice periodic function uk(r) with k denoting a

wave vector within the first Brillouin zone

ψk(r) = eik·ruk(r) with uk(r + R) = uk(r). (4.2)

A natural choice of basis functions φ(r) is to use the plane waves eiGr, thus

φG(r) =
1√
Ω
eiGr, (4.3)

where G is a reciprocal lattice vector. Then, according to Eq. 2.21, the Kohn-Sham orbitals are

expanded in the following way

ψk(r) = eikr
∑
G

cG(k)φG(r) =
∑
G

cG(k)φk+G(r) =
1√
Ω

∑
G

cG(k)ei(k+G)r, (4.4)

where the expansion coefficients cG(k) are the Fourier coefficients for a particular Bloch wave at a

given wave vector k. Similarly, also the electron density n(r) and the Kohn-Sham potential vs(r) may

be expanded in a Fourier series owing to the lattice periodicity, n(r+R) = n(r) and vs(r+R) = vs(r),

respectively. Thus we have (compare Eq. 2.21):

n(r) =
1

Ω

∑
G

ñ(G)eiGr (4.5)

vs(r) =
1

Ω

∑
G

ṽs(G)eiGr. (4.6)

4.2.1 Secular equation

When inserting the plane wave expansion 4.4 into the Kohn-Sham equations

Ĥψk(r) = εkψk(r), (4.7)

we transform the differential eigenvalue problem into a matrix eigenvalue equation which is also termed

the secular equation: ∑
G′

HGG′(k)cG′(k) = εk cG(k). (4.8)
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Here we have introduced the Hamiltonian matrix HGG′(k) with the matrix indices G and G′

HGG′(k) =
1

Ω

∫
d3r e−i(k+G)rĤei(k+G′)r, (4.9)

and used the fact that the plane waves are orthonormal, thus the overlap matrix is given by the

identity matrix

SGG′(k) =
1

Ω

∫
d3r e−i(k+G)rei(k+G′)r =

1

Ω

∫
d3r e−i(G−G

′)r = δGG′ . (4.10)

We can further split the Hamilton matrix 4.9 into a kinetic energy matrix and a potential energy

matrix HGG′(k) = TGG′(k) + VGG′ , where

TGG′(k) =
1

Ω

∫
d3r e−i(k+G)r

(
−1

2
∆

)
ei(k+G′)r

=
|k + G′|2

2Ω

∫
d3r e−i(k+G)rei(k+G′)r

=
|k + G′|2

2
δGG′ , (4.11)

and

VGG′ =
1

Ω

∫
d3r e−i(k+G)rvs(r)ei(k+G′)r =

1

Ω

∫
d3r e−i(G−G

′)rvs(r)

=
1

Ω2

∫
d3r e−i(G−G

′)r
∑
G′′

ṽs(G
′′)eiG

′′r

=
1

Ω2

∑
G′′

ṽs(G
′′)

∫
d3r e−i(G−G

′−G′′)r =
1

Ω

∑
G′′

ṽs(G
′′)δG−G′,G′′

=
1

Ω
ṽs(G−G′). (4.12)

Thus, we notice that the kinetic energy matrix TGG′(k) is already diagonal and the diagonal elements

are given by the kinetic energy associated with the plane wave ei(k+G′)r. This is of course to be

expected since plane waves are the eigenfunctions of the kinetic energy operator. Also the potential

energy matrix VGG′ acquires a simple form in the plane wave representation. Its matrix elements

turn out to be independent of the Bloch vector k and are given by the Fourier coefficients ṽs of the

Kohn-Sham potential, which can be computed numerically in an efficient manner by employing fast

Fourier transform (FFT) algorithms.
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4.2.2 Plane wave cut-off and convergence

The real space representation of the Kohn-Sham equations 4.7 are entirely equivalent to the momentum

space representation 4.8 provided that the summation over G′ includes all (infinite) reciprocal space

vectors. In practice, however, one has to truncate the sum at a cut-off wave number Gcut

|G′|≤Gcut∑
G′

HGG′(k)cG′(k) = εk cG(k). (4.13)

Thus, the summation runs over all reciprocal space vectors G′ which lie within a sphere of radius Gcut

in momentum space, and the Hamiltonian matrix only needs to be calculated for those G vectors. It

is common practice to characterize this plane wave cut-off with the cut-off energy Ecut =
G2

cut

2
which is

the kinetic energy associated with the cut-off wave vector. For a given unit cell volume Ω0 and a given

cut-off vector Gcut we can estimate the number of reciprocal space vectors inside the cut-off sphere

NG and thus the size of the Hamiltonian matrix according to

NG ≈
4
3
πG3

cut

(2π)3

Ω0

=
1

6π2
Ω0G

3
cut =

1

6π2
Ω0(2Ecut)

3
2 . (4.14)

Since the computational time (CPU) for determining the eigenvalues of a dense (=not sparse) NG×NG

matrix scales with the third power of the matrix size, we can estimate the computational time as

CPU ∼ Ω3
0G

9
cut ∼ Ω3

0E
9
2
cut. (4.15)

Thus, for a fixed unit cell volume which is determined by the system under study, the convergence

of the results with respect to the plane wave cut-off is crucial. If the convergence with the plain

wave cut-off would be easy and straight forward, then the lecture notes could end here, and in fact,

there would be no need for the various electronic structure methods and the numerous software

packages mentioned earlier: DFT-packages. However, life is not that simple. There are two reasons

why the convergence with respect to the plane wave cut-off is slow, in fact so slow, that no meaningful

calculation is possible even for the most simple crystalline solids such as the simple free-electron-like

metal Na. First, core electrons, i.e. those electrons which are spatially localized close to the atomic

nucleus, for instance the 1s electrons of Na, are difficult to describe with plane waves which are more

suitable for delocalized (=extended) states. Second, also the convergence for valence electrons, such

as the 3s electron forming the conduction band in Na, turns out to be problematic. This is because of

the nodal structure of the radial part of the 3s-like wave functions close to the atomic nucleus. Only

in the regions approximately half-way between the atomic nuclei (the so called interstitial region)

the potential landscape is comparably flat and hence plane wave are a good description for the wave
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functions. Close to the atomic nuclei, on the other hand, the potential felt by the electron remains

∼ 1
r
-like and the resulting nodal structure, which is necessary to remain the orthogonality to the core

sates, would require an impractically large plane wave cut-off. One solution to this problem is the

so-called pseudo-potential concept to be presented in the next section.

4.2.3 The pseudo-potential concept

A pseudopotential is an effective potential constructed to replace the all-electron potential (full-

potential) such that core states are eliminated and the valence electrons are described by pseudo-

wavefunctions with significantly fewer nodes close to the atomic nuclei (compare Fig. 4.1). This allows

these pseudo-wavefunctions to be described with far fewer plane waves, thus making a plane-wave

basis set practical to use. In this approach usually only the chemically active valence electrons are

dealt with explicitly, while the core electrons are ”frozen”, being considered together with the nuclei

as rigid non-polarizable ion cores.

Figure 4.1: Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to the one
in the pseudopotential (red). The real and the pseudo wavefunction and potentials match above a
certain cutoff radius rc.

Popular DFT software packages which are using a plane wave basis and employing the pseudo-potential

concept and/or the more modern and accurate projector augmented wave (PAW) scheme are ABINIT,

Quantum-Espresso or VASP.
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There are various schemes to construct such pseudo-potentials from first-principles including so-called

norm-conserving pseudo-potentials [62], ultra-soft pseudo-potentials [63] or the now widely used po-

tentials based on the projector augmented wave (PAW) method [64]. In these lecture notes, however,

we restrict ourselves to demonstrate only the main principle of the pseudo-potential concept.

To this end, let us consider the Kohn-Sham equations for a free atom

Ĥ |ψi〉 = Ei |ψi〉 . (4.16)

Here i comprises the set of quantum numbers i = (nlm), thus the principal quantum number n, the

angular quantum number l and the magnetic quantum number m. Because of the Hermiticity of the

Hamiltonian, the orbitals are orthonormal

〈ψi |ψj〉 = δij. (4.17)

In a next step, we must decide which if the states |ψi〉 we want to treat as valence (v) electrons

and which we considers as core (c) electrons which are assumed not to participate in the bonding to

neighboring atoms. For instance, in the case of an Aluminum atom with a total number of Z = 13

electrons and the electron configuration 1s22s22p63s23p1, it is reasonable to choose Nc = 10 core

electrons (1s22s22p6) and Nv = 3 valence electrons (3s23p1). We then attempt to decompose the true,

physical wave function of a valence state |ψv〉 with its full nodal structure into a smooth pseudo wave

function |φv〉 and terms which should recover the nodal structure close to the atomic nucleus,

|ψv〉 = |φv〉+
∑
c′

αc′v |ψc′〉 (4.18)

where the summation runs over all core states c′. We can determine the yet unknown coefficients αc′v

by acting on this equation with 〈ψc| and using the orthonormality of 〈ψc| with |ψv〉 and |ψc′〉, we find

αcv = −〈ψc |φv〉 . (4.19)

We can thus rewrite the connection between the physical wave valence state |ψv〉 and the pseudo

valence state |φv〉 in the following way

|ψv〉 =

(
1−

∑
c

|φc〉 〈φc|

)
|φv〉 (4.20)

By inserting this expression into the Kohn-Sham eigenvalue equation 4.16, we can derive an eigenvalue
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equation for the pseudo-wave function |φv〉[
Ĥ −

∑
c

(Ec − Ev) |φc〉 〈φc|

]
|φv〉 = Ev |φv〉 (4.21)[

−1

2
∆ + vPP

s

]
|φv〉 = Ev |φv〉 . (4.22)

In the latter equation, we have introduced the pseudo potential vPP
s which we have defined as the

sum of the all-electron (AE) Kohn-Sham potential vAE
s and a term, which is spatially confined to the

region of the core-electrons. It smoothens the potential in the vicinity of the atomic nucleus such that

the rapid oscillations of the wave function close to the nucleus are removed

vPP
s = vAE

s −
∑
c

(Ec − Ev) |φc〉 〈φc| . (4.23)

While this form of the pseudo potential illustrates main idea behind the pseudo potential concept, for

practical use it is still not convenient enough since Eq. 4.23 defines a non-local and energy-dependent

form of a pseudo-potential. For details on how to construct more efficient versions of pseudo-potentials,

which is outside the scope of this lecture, we refer to the literature [62].

4.3 Augmented Basis Functions

We have seen in the previous section, that plane waves are not a suitable choice of basis functions to

account for the rapid oscillations of the wave functions close to the atomic nuclei. It was the idea of

Slater [65] to augment the plane waves by atomic-like functions in the vicinity of the atomic nuclei.

Since Slater first proposed the method in 1937, the augmented plane wave (APW) method and its

descendents has been among the most popular schemes for solving the electronic structure problem for

crystalline systems within the framework of density-functional theory. In part, this popularity arose

from the fact that the APW method in its modern general potential, and linearized forms combines

a conceptual simplicity with high accuracy for a general system.

In particular, the full-potential Linearized Augmented Plane Wave (FP-LAPW) method is one of the

most accurate methods used for the solution of the Kohn-Sham equations for crystalline systems.

This section gives a short introduction into the LAPW formalism. A more detailed description of the

LAPW method can be found elsewhere [66]. Popular DFT software packages which are utilizing the

LAPW method are WIEN2k or exciting.

The idea of the LAPW method is to divide the unit cell into two different regions: non-overlapping

spheres around the positions of the nuclei, and the remaining interstitial region, schematically depicted
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in Fig. (4.2). In the two regions, different sets of basis functions are used for the wave functions as

well as for the electron density and the crystal potential. The choice of these basis functions is guided

by the observation that near the nuclei the wave functions remain atomic-like even in a crystalline

environment, whereas they are more plane-wave like between the atoms. The same argument also

applies for the density as well as for the potential.
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Figure 4.2: Splitting of the unit cell volume into the interstitial and the spheres region, which is also
often referred to as the muffin–tin region.

4.3.1 The LAPW Basis

In the LAPW method, normalized plane waves are used as basis functions within the interstitial region

(I),

φk+G(r) =
1√
Ω
ei(k+G)r r ∈ I, (4.24)

On the other hand, atomic radial functions and spherical harmonics are used to represent the wave

function inside the atomic sphere α

φk+G(r) =
lmax∑
l=0

+l∑
m=−l

[Aαlm(k + G)ul(rα, El) +Bα
lm(k + G)u̇l(rα, El)]Ylm(r̂α). (4.25)

Here, rα denotes the position vector shifted by the position Rα of atom α with the sphere radius Rα

rα = r −Rα, |rα| ≤ Rα. (4.26)

The radial wave functions ul(rα, El) and their energy derivatives u̇l(rα, El) are determined from a

numerical integration of the radial part of the Schrödinger equation (4.27) and its energy derivative

(4.28)

[T̂ + veff(rα)]ul(rα, El)Ylm(r̂α) = Elul(rα, El)Ylm(r̂α), (4.27)

[T̂ + veff(rα)]u̇l(rα, El)Ylm(r̂α) = [Elu̇l(rα, El) + ul(rα, El)]Ylm(r̂α). (4.28)
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In this context, the energies El are not eigenvalues, but chosen, fixed expansion energies, the lineariza-

tion energies. The radial functions fulfill the following normalization conditions∫ Rα

0

r2u2
l (r)dr = 1, (4.29)∫ Rα

0

r2ul(r)u̇l(r)dr = 0. (4.30)

In addition we define the following integral

Nl ≡
∫ Rα

0

r2u̇l(r)dr. (4.31)

The coefficients Aαlm(k + G) and Bα
lm(k + G) entering the expression (4.25) are chosen such, that the

basis functions are continuous up to the first derivative at the sphere boundaries. These two conditions

determine the coefficients Alm and Blm

Aαlm(k + G) =
4π√

Ω
ilY ∗lm(k̂ + G)cαl (k + G)R2

αe
i(k+G)Rα , (4.32)

Bα
lm(k + G) =

4π√
Ω
ilY ∗lm(k̂ + G)dαl (k + G)R2

αe
i(k+G)Rα , (4.33)

with the abbreviations

cαl (k + G) = j′l(|k + G|Rα)u̇l(Rα)− jl(|k + G|Rα)u̇′l(Rα), (4.34)

dαl (k + G) = jl(|k + G|Rα)u′l(Rα)− j′l(|k + G|Rα)ul(Rα). (4.35)

Here, jl is the spherical Bessel function, and the primes (dots) denote partial derivatives with respect to

the radius r (expansion energy El). Thus, the basis functions and their first derivatives are continuous

in the whole unit cell. The second derivative, however, is discontinuous at the sphere boundary.

4.3.2 The secular equation

By expanding the Kohn-Sham orbitals in terms of LAPW basis functions φk+G(r) with their dual

representation introduced in the previous subsection, the Kohn-Sham equations are transformed into

a generalized matrix eigenvalue problem (Ritz’s variational principle).

HGG′(k)CveG′(k) = εSGG′(k)CveG′(k). (4.36)
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Here, HGG′(k) are the matrix elements of the Kohn-Sham Hamiltonian with the basis functions

φk+G(r)

HGG′(k) =

∫
d3rφ∗k+G(r)h(r)φk+G′(r), (4.37)

and SGG′(k) denotes the overlap matrix which is no longer diagonal

SGG′(k) =

∫
d3rφ∗k+G(r)φk+G′(r). (4.38)

Similar to the treatment of wave functions in the full-potential LAPW method, also the valence

electron density as well as the Kohn-Sham potential is expanded in a dual representation in the full-

potential LAPW method: spherical harmonics are used inside the muffin-tin spheres and plane waves

are taken in the interstitial.

It is important to note that also in the FP-LAPW method there is a difference in the mathematical

description of valence and core electrons. Valence electrons are characterized by the fact that their wave

function is de-localized over the whole unit cell, in particular there is a non-vanishing probability for

them to be located in the interstitial region. Energetically, valence electron states lie close to the Fermi

level. On the other hand, core electrons are energetically much deeper an can therefore be assumed to

be confined within one atomic sphere. Thus in the LAPW method, which is an all -electron method,

core electrons are treated only inside the muffin-tin spheres, by solving the Schrödinger equation, or

indeed the relativistic Dirac equation. More detailed information can be found in the book by David

Singh [66].
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