
Computerorientierte Physik
(PHY.J10)

WS 2017/18

Assoz.-Prof. Peter Puschnig
Institut für Physik, Fachbereich Theoretische Physik

Karl-Franzens-Universität Graz

Universitätsplatz 5, A-8010 Graz

peter.puschnig@uni-graz.at

http://physik.uni-graz.at/~pep

Graz, September 28, 2019

http://physik.uni-graz.at/~pep

ii

Contents

1 Introduction 1

1.1 The nature of computational physics . 1

1.2 Representing numbers on computers . 3

1.2.1 Integers . 3

1.2.2 Floating numbers . 4

1.2.3 Machine precision . 6

1.3 Errors and Stability . 7

1.3.1 Round-off errors . 7

1.3.2 Methodological errors . 10

1.3.3 Stability . 13

2 Numerical Integration and Differentiation 17

2.1 Numerical Integration . 17

2.1.1 Trapezoidal rule . 18

2.1.2 The Simpson rule . 19

2.1.3 The Romberg method . 22

2.1.4 Gauss-Legendre quadrature . 23

2.1.5 Improper integrals . 26

2.2 Numerical Differentiation . 28

2.2.1 First derivative . 29

2.2.2 Second derivative . 32

3 Numerical Methods for Linear Algebra 35

3.1 Linear systems of equations . 35

3.1.1 Matrix operations . 36

3.1.2 The LU Decomposition . 38

3.1.3 Iterative Methods . 44

3.2 Eigenvalue problems . 48

iii

3.2.1 Power iteration (Von Mises Method) . 49

3.2.2 Jacobi-Method . 51

3.2.3 Applications in Physics . 55

4 Interpolation and Least Squares Approximation 59

4.1 Interpolation of data . 59

4.1.1 Definition of the problem . 59

4.1.2 Spline interpolation . 60

4.1.3 Fourier interpolation . 62

4.2 Least-squares approximation of data . 66

4.2.1 Linear model functions . 68

4.2.2 Nonlinear model functions . 70

5 Numerical Treatment of Differential Equations 73

5.1 Ordinary differential equations . 73

5.1.1 Initial value problems . 74

5.1.2 Boundary value problems . 81

5.2 Partial differential equations . 85

5.2.1 Classification of PDEs . 85

5.2.2 Static problems in two dimensions . 87

5.2.3 Initial value problems . 90

5.2.4 Time dependent Schrödinger equation . 93

6 Monte Carlo Calculations 97

6.1 Generation of random numbers . 97

6.1.1 Linear congruential generator . 97

6.1.2 Assessment of randomness and uniformity . 98

6.1.3 Generation of non-uniformly distributed random numbers 100

6.2 Monte Carlo integration . 103

6.2.1 Introductory example . 103

6.2.2 Multidimensional integrals . 104

A Solutions to Exercises 107

Solution to Exercise 1: Roots of a quadratic equation . 107

Solution to Exercise 2: Romberg integration method . 107

Solution to Exercise 3: Numerical differentiation . 108

Solution to Exercise 4: Implementation of the LU-decomposition 109

Solution to Exercise 5: Matrix inversion for tridiagonal matrices 110

iv

Solution to Exercise 6: Finite difference solution of the stationary heat equation 112

Solution to Exercise 7: Von Mises Method . 112

Solution to Exercise 8: Jacobi Method . 113

Solution to Exercise 9: Eigenvalues of the stationary Schrödinger equation 114

Solution to Exercise 10: Spline interpolation . 115

Solution to Exercise 11: Fast Fourier Transform . 116

Solution to Exercise 12: Linear fit problem . 116

Solution to Exercise 13: Non-linear fit problem . 117

Solution to Exercise 14: Kepler problem – part I . 118

Solution to Exercise 15: Kepler problem – Runge-Kutta . 118

Solution to Exercise 16: Double pendulum . 118

Solution to Exercise 17: Schrödinger equation – shooting method 118

Solution to Exercise 18: Solution of Poisson’s Equation in 2D 118

Solution to Exercise 19: Time-dependent Schrödinger equation 118

Bibliography 131

v

vi

Exercises

1 Roots of a quadratic equation . 15

2 Romberg integration method . 23

3 Numerical differentiation . 33

4 Implementation of the LU-decomposition . 41

5 Matrix inversion for tridiagonal matrices . 46

6 Finite difference solution of the stationary heat equation 47

7 Von Mises Method . 51

8 Jacobi Method . 54

9 Eigenvalues of the stationary Schrödinger equation . 56

10 Spline interpolation . 61

11 Fast Fourier Transform . 65

12 Linear fit problem . 69

13 Non-linear fit problem . 72

14 Kepler problem – part I . 76

15 Kepler problem – Runge-Kutta . 79

16 Double pendulum . 81

17 Schrödinger equation – shooting method . 85

18 Solution of Poisson’s Equation in 2D . 89

19 Time-dependent Schrödinger equation . 95

vii

viii

Chapter 1

Introduction

1.1 The nature of computational physics

The following definition of ”computational physics” is taken from Ref. [1]:

Computational physics is physics done by means of computational methods. Computers do not enter

into this tentative definition. A number of fundamental techniques of our craft were introduced by

Newton, Gauss, Jacobi, and other pioneers who lived quite some time before the invention of workable

calculating machines. To be sure, nobody in his right state of mind would apply stochastic methods by

throwing dice, and the iterative solution of differential equations is feasible only in conjunction with

the high computing speed of electronic calculators. Nevertheless, computational physics is much more

than Physics Using Computers.

The essential point in computational physics is not the use of machines, but the systematic application

of numerical techniques in place of, and in addition to, analytical methods, in order to render accessible

to computation as large a part of physical reality as possible.

In all quantifying sciences the advent of computers rapidly extended the applicability of such numerical

methods. In the case of physics, however, it triggered the evolution of an entirely new field with its

own goals, its own problems, and its own heroes. Since the late forties, computational physicists have

developed new numerical techniques (Monte Carlo and molecular dynamics simulation, fast Fourier

transformation), discovered unexpected physical phenomena, and posed new questions to theory and

experiment (chaos, strange attractors, cellular automata, neural nets, spin glasses, ...).”

Computational Physics is currently actively used to answer research questions in almost all areas of

physics. A possibly not complete list of such applications is given below:

• quantum field theory / lattice gauge theory: study of strong interactions in quantum chromo

dynamics

1

• astrophysics and cosmology: e.g. dynamics of galaxies or indeed the whole universe

• computational fluid dynamics: e.g. simulation of air flow in aircraft research

• statistical physics: e.g. magnetic phase transitions

• plasma physics: e.g. dynamics of plasma for fusion research

• solid state physics: e.g. quantum-mechanical electronic structure calculations for novel materials

or electro-dynamical simulations of plasmonic nano-particles

• meteorology and climate physics: e.g. weather and climate simulations

• biophysics: e.g. simulations of protein folding

• ...

Because computational physics comprises a broad class of problems, it is generally divided amongst

the different mathematical problems it numerically solves, or the methods it applies. Between them,

one can distinguish the following classes of mathematical problems.

• ordinary differential equations: e.g. Runge-Kutta methods

• partial differential equations: for example the finite difference method, the finite element method

• eigenvalue problems: finding eigenvalues and their corresponding eigenvectors of very large ma-

trices, (which, for instance, correspond to eigenenergies and eigenstates in quantum physics)

• multi-dimensional integrals: Monte-Carlo intergration techniques

In this introductory course on computational physics, naturally only an overview of the most impor-

tant computational techniques can be given together with a few examples of applications in physics. In

Chapter 1, some basic concepts about the representation of numbers on computers and the associated

problems of round-off errors, methodological errors and stability of numerical algorithms are intro-

duced. Chapter 2 deals with the numerical integration and differentiation of functions, while Chapter

3 presents numerical methods for solving linear systems of equations and matrix eigenvalue problems.

These methods are in fact used in Chapter 4 which presents methods for interpolating functions, and

for fitting functions to data points by the least squares approximation. The Chapter 5 deals with two

very important classes of problems, namely the numerical solution of ordinary differential equations

and gives also a glimpse on methods for solving partial differential equations. Finally, Chapter 6 gives

and introduction into Monte-Carlo simulations, thus the application of stochastic methods which can,

for instance, be used to compute multi-dimensional integrals. Note that throughout the lecture not

only the numerical tools are presented and their implementation is discussed, but typical applications

in physics are also demonstrated.

2

Table 1.1: The IEEE 754 Standard for Primitive Data Types taken from Ref. [2].

1.2 Representing numbers on computers

”Computers may be powerful, but they are finite. A problem in computer design is how to represent

an arbitrary number using a finite amount of memory space and then how to deal with the limitations

arising from this representation. As a consequence of computer memories being based on the magnetic

or electronic realization of a spin pointing up or down, the most elementary units of computer memory

are the two binary integers (bits) 0 and 1. This means that all numbers are stored in memory in binary

form, that is, as long strings of zeros and ones.” [2]

1.2.1 Integers

On computers, different data types are available for integer numbers (∈ Z) and real numbers (∈ R). An

overview over common data types is given in Table 1.1. Although integer numbers can be represented

exactly in computers, that is without loss of accuracy, integer data types can only represent a subset

of all integers, since practical computers are of finite capacity. N bits can store integers in the range

[0; 2N], yet because the sign of the integer is represented by the first bit (a zero bit for positive

numbers), the actual range decreases to [0; 2N−1]. A short integer uses 16 bits (2 Bytes) and can thus

represent numbers z between −215 ≤ z < +215, while the data type int uses 32 bits (4 Bytes) and

can thus represent numbers between −231 ≤ z < +231.

3

Table 1.2: Representation Scheme for IEEE single precision numbers [2].

1.2.2 Floating numbers

In contrast to integer numbers, real numbers can only be stored up to a certain precision (see Sec. 1.2.3

below). In particular, so called floating-point numbers are stored on the computer as a concatenation

of the sign bit, the exponent, and the mantissa. Because only a finite number of bits are stored, the

set of floating-point numbers that the computer can store exactly, machine numbers, is much smaller

than the set of real numbers. In particular, machine numbers have a maximum and a minimum. If you

exceed the maximum, an error condition known as overflow occurs; if you fall below the minimum, an

error condition known as underflow occurs. In the latter case, the software and hardware may be set

up so that underflows are set to zero without your even being told. In contrast, overflows usually halt

execution.

In the IEEE standard, a floating-point number x is stored as

xfloat = (−1)s × 0.f × 2e+bias (1.1)

that is, with separate entities for the sign s, the fractional part of the mantissa f , and the exponential

field e. All parts are stored in binary form and occupy adjacent segments of a single 32-bit word for

single precision or two adjacent 32-bit words for double precision floating point numbers. The sign s

is stored as a single bit, with s = 0 or 1 for a positive or a negative sign. In single precision, eight bits

are used to store the exponent e, where usually a ”bias” is added to obtain a positive number. For

single precision floats, the bias is set to 127, which means that e can be in the range −127 ≤ e ≤ 128.

The endpoints, e = −127 and e = 128, are special cases. The remaining bits are reserved for the

mantissa, where only the fractional part after the binary point is stored.

There are two basic, IEEE floating-point formats, singles and doubles. Singles or floats is shorthand

for single-precision floating-point numbers, and doubles is shorthand for double precision floating-point

4

Table 1.3: Representation Scheme for IEEE double precision numbers [2].

numbers. Singles occupy 32 bits overall, with 1 bit for the sign, 8 bits for the exponent, and 23 bits

for the fractional mantissa. Doubles occupy 64 bits overall, with 1 bit for the sign, 10 bits for the

exponent, and 53 bits for the fractional mantissa. This means that the exponents and mantissas for

doubles are not simply double those of floats.

As an example, the real number π, represented in binary as an infinite sequence of bits is

11.0010010000111111011010101000100010000101101000110000100011010011...

but is

11.0010010000111111011011 = 1× 21 + 1× 20 + 0× 2−1 + 0× 2−2 + 1× 2−3 + · · ·

when approximated by rounding to a precision of 24 bits. In binary single-precision floating-point,

this is represented as 1.f = 1.100 100 100 001 111 110 110 11 with e = 1.

π ≈ 0︸︷︷︸
s=0

1000 0000︸ ︷︷ ︸
e+bias=1+127

100 100 100 001 111 110 110 11︸ ︷︷ ︸
=f

This has a decimal value of

3.1415927410125732421875,

whereas a more accurate approximation of the true value of π = 3.14159265358979323846264338327950...

The result of rounding differs from the true value by about 0.03 parts per million, and matches the

decimal representation of π in the first 7 digits. The difference is the discretization error and is limited

by the machine precision.

5

1.2.3 Machine precision

A major concern of computational scientists is that the floating-point representation used to store

numbers is of limited precision. In general for a 32-bit-word machine, single precision numbers are

good to 6-7 decimal places, while doubles are good to 15-16 places. To see how limited precision affects

calculations, consider the simple computer addition of two single-precision numbers [2]:

7 + 1.0× 10−7 =?

The computer fetches these numbers from memory and stores the following bit patterns

7 = 0︸︷︷︸
=s

1000 0001︸ ︷︷ ︸
e+b=2+127

1100 0000 0000 0000 0000 000︸ ︷︷ ︸
1.f=1.7510

10−7 = 0︸︷︷︸
=s

0110 0111︸ ︷︷ ︸
e+b=−24+127

1010 1101 0111 1111 0010 101︸ ︷︷ ︸
1.f=1.677721610

in working registers.

Because the exponents are different, it would be incorrect to add the mantissas, and so the exponent

of the smaller number is made larger while progressively decreasing the mantissa by shifting bits to

the right (inserting zeros) until both numbers have the same exponent:

10−7 = 0︸︷︷︸
=s

0110 0111︸ ︷︷ ︸
e+b=−24+127

1010 1101 0111 1111 0010 101︸ ︷︷ ︸
1.f=1.677721610

= 0︸︷︷︸
=s

0110 1000︸ ︷︷ ︸
e+b=−23+127

0 1010 1101 0111 1111 0010 10︸ ︷︷ ︸
1.f=0.838860810

(1)

= 0︸︷︷︸
=s

0110 1001︸ ︷︷ ︸
e+b=−22+127

00 1010 1101 0111 1111 0010 1︸ ︷︷ ︸
1.f=0.419430410

(01)

...

= 0︸︷︷︸
=s

1000 0001︸ ︷︷ ︸
e+b=2+127

0000 0000 0000 0000 0000 000︸ ︷︷ ︸
1.f=0.00000002510

(1010 · · ·)

As a consequence, in single precision floating point arithmetic, we have

⇒ 7.0 + 1.0× 10−7 = 7.0

Because there is no room left to store the last digits, they are lost, and after all this hard work the

addition just gives 7 as the answer. In other words, because a 32-bit computer stores only 6 or 7

decimal places, it effectively ignores any changes beyond the sixth decimal place.

6

Below there is a code machineprec.py written in Python 3.6 language1 which looks like the following

1 tau = 1 .0

2 x = 1 .0

3 while (x + tau) > x :

4 tau = tau /2

5 print (”machine p r e c i s i o n = ” , tau)

and yields:

machine precision = 1.11022302463e-16

showing that Python uses by default double precision floating point numbers.

1.3 Errors and Stability

We classify errors following the structure of every numerical routine into input-errors, algorithmic-

errors, and output-errors [3]. This structural classification can be refined: input-errors are divided into

round-off errors which are related to the machine precision, and measurement errors on the input

data, which – as a computational physicist – we cannot control; algorithmic-errors consist of round-off

errors during evaluation and of methodological errors due to mathematical approximations; finally,

output errors are, in fact, again round-off errors. Here, we will concentrate on round-off errors and

methodological errors, and we will also discuss the stability of numerical routines, i.e. the influence of

slight modifications of the input parameters on the outcome of a particular algorithm.

1.3.1 Round-off errors

Round-off errors are due to the imprecision arising from the finite number of digits used to store

floating-point numbers [2]. These ”errors” are analogous to the uncertainty in the measurement of

a physical quantity encountered in an elementary physics laboratory. The overall round-off error

accumulates as the computer handles more numbers, that is, as the number of steps in a computation

increases, and may cause some algorithms to become unstable with a rapid increase in error. In some

cases, round-off error may become the major component in your answer, leading to what computer

experts call garbage. For example, if your computer kept four decimal places, then it will store 1
3

as

0.3333 and 2
3

as 0.6667, where the computer has ”rounded off” the last digit in 2
3
. Accordingly, if we

1For a language reference of Python 3.6 check out https://docs.python.org/3/ or do tutorials at http://www.

learnpython.org/en/

7

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/machineprec.py
https://docs.python.org/3/
http://www.learnpython.org/en/
http://www.learnpython.org/en/

ask the computer to do as simple a calculation as 2
(

1
3

)
− 2

3
, it produces

2

(
1

3

)
− 2

3
= 0.6666− 0.6667 = −0.0001 6= 0.

So even though the result is small, it is not 0, and if we repeat this type of calculation millions of

times, the final answer might not even be small (garbage begets garbage).

The following example roundofferror1.py demonstrates this issue

1 import numpy as np # import numpy package (numeric python)

2

3 x = np . f l o a t 3 2 (123456 .789)

4 y = np . f l o a t 3 2 (9 . 876543)

5 z = x+y

6 x2 = np . f l o a t 6 4 (123456 .789)

7 y2 = np . f l o a t 6 4 (9 . 876543)

8 z2 = x2+y2

9 print (’ s i n g l e p r e c i s i o n : x+y = %12.7 f ’ % z)

10 print (’ double p r e c i s i o n : x+y = %12.7 f ’ % z2)

The resulting output is:

single precision: x+y = 123466.6640625

double precision: x+y = 123466.6655430

Here, the round-off error arises because we are adding two numbers which differ by a factor of ≈ 105,

but only 7 significant digits are available in single precision. Here, the problem can be cured by using

double precison floating point numbers.

Also in the following example roundofferror2.py, where 50 times the value 0.1 is added up, not the

correct result of 5.0 is obtained, but a numerical value of 4.9999976 is produced. Why?

1 import numpy as np # import numpy package (numeric python)

2 x = np . f l o a t 3 2 (0 . 1)

3 s = np . f l o a t 3 2 (0 . 0)

4 for i in range (50) :

5 s = s + x

6 print (’ s = %12.7 f ’ % s)

Of special importance here is to observe that the error increases when we subtract two nearly equal

numbers because then we are subtracting off the most significant parts of both numbers and leaving

the error-prone least-significant parts. Assume, we want to evaluate the following function f of a

variable x

f(x) =

√
1 + x−

√
1− x

x

8

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/roundofferror1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/roundofferror2.py

for small numbers of x → 0. Then, we have to subtract two almost identical numbers and, even

worse, divide by a small number, which amplifies the round-off errors produced in the numerator. As

a consequence, the numerical result does not converge to 1 for x → 0 as it should be, it becomes

unpredictable! In this simple example, the problem can be solved, by rearranging the expression for

f(x) in the following way:

f2(x) =

√
1 + x−

√
1− x

x
·
√

1 + x+
√

1− x√
1 + x+

√
1− x

=
2√

1 + x+
√

1− x
.

In this expression, there is no longer the problem of subtractive cancellation and the computer produces

the correct result for arbitrarily small values of x. This is demonstrated in the following small Python

program roundofferror3.py

1 # de f i n e f unc t i on s

2 def f 1 (x) :

3 import math

4 return (math . s q r t (1+x) − math . s q r t (1−x)) /x

5 def f 2 (x) :

6 import math

7 return 2 . 0 / (math . s q r t (1.0+x) + math . s q r t (1.0−x))

8 # main program

9 for i in range (0 , 18 , 1) :

10 x = 10∗∗(− i)

11 print (’ %12.3 e %20.15 f %20.15 f ’ % (x , f 1 (x) , f 2 (x)))

which produces the output:

1.000e+00 1.414213562373095 1.414213562373095

1.000e-01 1.001255501196379 1.001255501196378

1.000e-02 1.000012500546898 1.000012500546907

1.000e-03 1.000000125000011 1.000000125000055

1.000e-04 1.000000001248891 1.000000001250000

1.000e-05 1.000000000006551 1.000000000012500

1.000e-06 1.000000000028756 1.000000000000125

1.000e-07 1.000000000583867 1.000000000000001

1.000e-08 1.000000005024759 1.000000000000000

1.000e-09 1.000000082740371 1.000000000000000

1.000e-10 1.000000082740371 1.000000000000000

1.000e-11 1.000000082740371 1.000000000000000

1.000e-12 1.000088900582341 1.000000000000000

1.000e-13 1.000310945187266 1.000000000000000

9

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/roundofferror3.py

1.000e-14 0.988098491916389 1.000000000000000

1.000e-15 0.999200722162641 1.000000000000000

1.000e-16 1.110223024625157 1.000000000000000

1.3.2 Methodological errors

While the last example has demonstrated the fact that there are some algorithms (here: mathematical

expressions) which are more prone to round-off errors than others, there is a different type of impreci-

sion arising from simplifying the mathematics so that a problem can be solved on the computer. We

call such errors methodological errors. They include, for instance, the replacement of infinite series by

finite sums, infinitesimal intervals by finite ones, and variable functions by constants. Consider the

following example:

erf(x) =
2√
π

∫ x

0

dξ e−ξ
2

=
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)

Here, our intention is to calculate the so-called error function (the area under the Gaussian bell curve)

by using a Taylor series for the exponential function. In practical computations, however, we have to

truncate the infinite series at some finite value nmax

erf(x) ≈ 2√
π

nmax∑
n=0

(−1)nx2n+1

n!(2n+ 1)
=

2√
π

nmax∑
n=0

an, (1.2)

which leads to a systematic error which is called a methodological error of the numerical algorithm.

In this example, we can give an easy estimate of the methodological error εm by noting that for an

alternating series, the truncation error is given by the Term anmax+1, thus

εm .
|x|2n+3

(n+ 1)!(2n+ 3)
.

However, for x > 1 the convergence of the Taylor expansion gets increasingly slow such that using

Eq. 1.2 becomes increasingly problematic since the methodological error increases dramatically for a

fixed nmax. This is illustrated in the following Python program errfun.py:

1 # de f i n e f unc t i on s

2 def an (x , n) :

3 import math

4 a = x∗∗(2∗n+1)/(math . f a c t o r i a l (n) ∗(2∗n+1))

5 i f (n % 2 == 1) :

6 a = −a

7 return a

8 # use Taylor expansion f o r error func t i on

10

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/errfun.py

9 import math

10 for i in range (0 , 15) :

11 x = 0 .0 +i ∗0 .2

12 e r f f = 0 .0

13 nmax = 10

14 for n in range (nmax) :

15 e r f f = e r f f + an (x , n)

16 e r f f = (2/math . s q r t (math . p i)) ∗ e r f f

17 print (’ %12.7 f %12.7 f %12.7 f %12.7 f ’ % (x , an (x , nmax) , e r f f , math . e r f (x)))

which leads to the output where we have also included a numerically exact value of the error function

in the last column:

x a_nmax+1 erf-Taylor erf-true-value

0.0000000 0.0000000 0.0000000 0.0000000

0.2000000 0.0000000 0.2227026 0.2227026

0.4000000 0.0000000 0.4283924 0.4283924

0.6000000 0.0000000 0.6038561 0.6038561

0.8000000 0.0000000 0.7421010 0.7421010

1.0000000 0.0000000 0.8427008 0.8427008

1.2000000 0.0000006 0.9103134 0.9103140

1.4000000 0.0000154 0.9522702 0.9522851

1.6000000 0.0002538 0.9761127 0.9763484

1.8000000 0.0030112 0.9864225 0.9890905

2.0000000 0.0275199 0.9721271 0.9953223

2.2000000 0.2036545 0.8352996 0.9981372

2.4000000 1.2660584 0.0411316 0.9993115

2.6000000 6.7992026 -3.8621637 0.9997640

2.8000000 32.2356425 -20.7498098 0.9999250

For large values of x & 1, another method for calculating the error function is needed. For instance,

the following continued fraction expression can be used

erf(x) = 1− e−x
2

√
π

x+ 1
2x+ 2

x+ 3

2x+ 4
x+···

 . (1.3)

From the output of the corresponding Python implementation errfun2.py:

11

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/errfun2.py

1 # use cont inued f r a c t i o n f o r error func t i on

2 import math

3 nmax = 10

4 for i in range (16) :

5 x = 0 .2 +i ∗0 .2

6 e r r f = 1 .0 e−7

7 for n in range (nmax,0 ,−1) :

8 i f (n % 2 == 0) :

9 k = 1

10 else :

11 k = 2

12 e r r f = n/(k∗x + e r r f)

13 e r r f = 1 − math . exp(−x∗∗2) /(math . s q r t (math . p i) ∗(x + e r r f))

14 print (’ %12.7 f %12.7 f %12.7 f ’ % (x , e r r f , math . e r f (x)))

we see that this method works fine for large x while it converges badly for x < 1

x erf-cont.frac. erf-true-value

--

0.2000000 -0.1209684 0.2227026

0.4000000 0.3845908 0.4283924

0.6000000 0.5976135 0.6038561

0.8000000 0.7412059 0.7421010

1.0000000 0.8425739 0.8427008

1.2000000 0.9102963 0.9103140

1.4000000 0.9522827 0.9522851

1.6000000 0.9763481 0.9763484

1.8000000 0.9890905 0.9890905

2.0000000 0.9953223 0.9953223

2.2000000 0.9981372 0.9981372

2.4000000 0.9993115 0.9993115

2.6000000 0.9997640 0.9997640

2.8000000 0.9999250 0.9999250

3.0000000 0.9999779 0.9999779

3.2000000 0.9999940 0.9999940

In practice, one could combine the two methods, the Taylor expansion 1.2 for x . 1 and the continued

fraction expression 1.3 for x & 1, to minimize the methodological error for all values of x.

12

1.3.3 Stability

In addition to round-off errors and methodological errors, another crucial aspect of any numerical

method is its stability. We define stability by its opposite in the following way: An algorithm, equation

or, even more general, a problem is referred to as unstable (ill-conditioned) if errors at a given step n

of the numerical algorithm are amplified at the subsequent steps of the computation.

A very instructive example for an unstable algorithm is the seemingly straight-forward evaluation of

the spherical Bessel functions using a forward recursion using the definitions for the spherical Bessel

functions of order 0 and 1, j0(x) and j1(x), respectively,

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, (1.4)

and the recursion relation

jl(x) =
2l − 1

x
jl−1(x)− jl−2(x), l = 2, 3, · · · (1.5)

Note that Eqs. 1.4 and 1.5 are exact relations, thus their implementation results in no methodolog-

ical errors, any possible error must therefore arise from round-off errors which can be estimated by

comparing implementations in single and double precision, for instance as in the following Python

implementation besselforward.py

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3

4 lmax = 9 ;

5 nx = 200 ;

6 x = np . l i n s p a c e (0 . 0001 , 5 . 0 , nx)

7 j = np . z e r o s ((lmax , nx) ,np . f l o a t 6 4) # swi t ch between s i n g l e or doub le p r e c i s i on

8 #j = np . ze ros ((lmax , nx)) # swi t ch between s i n g l e or doub le p r e c i s i on

9 j [0 , :] = np . s i n (x) /x

10 j [1 , :] = np . s i n (x) /(x∗x) − np . cos (x) /x

11 # do forward recur s ion

12 for l in range (2 , lmax) :

13 j [l , :] = j [l −1 , :]∗ (2∗ l −1)/x − j [l −2 , :]

14

15 # make p l o t

16 l a b l i s t = [’ $ j 0 =\\ f r a c {\ s i n x}{x}$ ’ , ’ $ j 1 $ ’ , ’ $ j 2 $ ’ , ’ $ j 3 $ ’ , ’ $ j 4 $ ’ , ’ $ j 5 $ ’ , ’ $ j 6 $ ’ ,

’ $ j 7 $ ’ , ’ $ j 8 $ ’]

17 s t y l l i s t = [’ k ’ , ’ k−− ’ , ’ k : ’ , ’ r ’ , ’ r−− ’ , ’ r : ’ , ’ b ’ , ’b−− ’ , ’ b : ’]

18 for l in range (0 , lmax) :

19 p l t . p l o t (x , j [l , :] , s t y l l i s t [l] , l a b e l=l a b l i s t [l])

20 legend = p l t . l egend (l o c=’ upper r i g h t ’ , shadow=False , f o n t s i z e =20)

13

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/besselforward.py

21 p l t . x l a b e l (’ x ’)

22 p l t . y l a b e l (’ S p h e r i c a l Be s s e l f u n c t i o n s $ j l $ ’)

23 p l t . yl im (−0.5 ,+1.1)

24 p l t . s a v e f i g (” sp forward . pdf ”)

25 p l t . show ()

Note that here the numpy and matplotlib modules are used.

0 1 2 3 4 5
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sp
he

ric
al

 B
es

se
l f

un
ct

io
ns

 j l

j0 = sinx
x

j1
j2
j3
j4
j5
j6
j7
j8

Figure 1.1: Spherical Bessel functions jl(x) for l = 0, 1, . . . 8 computed from the forward iteration
formula 1.5 using single precision floating point calculations.

From the results plotted in Fig. 1.1, we see that the forward iteration according to Eq. 1.5 becomes

increasingly unstable for small x values. The instability is somewhat mediated when going from single

precision to double precision, but nevertheless, the forward iteration becomes unstable and produces

completely unpredictable values also in this case. At the heart of the problem is again subtractive

cancellation in 1.5, where for small x, two large and almost identical numbers are subtracted from

each other which leads to an amplification of errors in the course of the iteration.

To circumvent this problem occurring for small values of x, instead of a forward iteration scheme a

backward iteration should be used. Rearranging 1.5 leads to

jl(x) =
2l + 3

x
jl+1(x)− jl+2(x), l = L− 1, L− 2, · · · , lmax, lmax − 1, · · · , 0 (1.6)

14

http://www.numpy.org/
http://matplotlib.org/

Of course, we need to start the iteration at some large values L and L+1. It turns out that the choice

jL+1 = 0, jL = δ, (1.7)

where δ is an arbitrary (small) number leads to the correct results, if at the end of the iteration at

l = 0 the results are normalized to the known value of j0(x) = sinx
x

. Looking at the recursion formula

1.7, we recognize that for small number x � 1, we are subtracting a small number from a large

number (division by a small x leads to a large number). So in contrast to the forward recursion 1.4,

the backward recursion 1.7 does not suffer from subtractive cancellation and thus leads to a stable

algorithm for small x. However, the backward iteration introduces a methodological error since the

accuracy of the iteration will the depend on which L we start the iteration. The larger, the L > lmax

is chosen, the more accurate the desired results for l = lmax, · · · , 1 will get. An implementation of this

backward recursion scheme is left as an exercise.

Exercise 1. Roots of a quadratic equation

The roots of the quadratic equation

ax2 + bx+ c = 0 (1.8)

are well known and can be written in the following form

x1,2 =
−b±

√
b2 − 4ac

2a
(1.9)

(a) Why can a direct implementation of 1.9 lead to numerical problems?

(b) Show that the following set of equations is equivalent to 1.9, and argue why it is the preferred way

for a numerical implementation

x1 =
q

a
, x2 =

c

q
, with q = −1

2

(
b+ sgn(b)

√
b2 − 4ac

)
(1.10)

(c) Implement both expressions 1.9 and 1.10 and find parameters a, b, c which illustrate the numerical

problems occurring in Eq. 1.9.

15

16

Chapter 2

Numerical Integration and Differentiation

2.1 Numerical Integration

In this section, we deal with the numerical integration of definite integrals of the type

I =

∫ b

a

f(x) dx, (2.1)

where a and b are – for the moment being – finite real numbers and the function f(x) is known to be

regular in the interval [a, b]. Later in 2.1.5, we will investigate how we can also treat improper integrals,

where either the integral borders tend to ∞ or the function f(x) has an integrable singularity inside

the integration range. Numerical integration becomes necessary if no analytic form of the integral is

known. A simple example could the integral over the Gaussian bell curve

I =

∫ 1

0

e−x
2

dx (2.2)

The goal is to find a numerical approximation to I which is as accurately as possible and can be ob-

tained with the least possible numerical effort. In general one can distinguish between methods which

use an equidistant set of grid points in the interval [a, b], and approaches which divide the interval [a, b]

in non-equidistant subintervals. In this lecture, we will discuss the so-called trapezoidal rule (Sec. 2.1.1)

and Simpson rule (Sec. 2.1.2) which use equidistant grids, while the so-called Gauss-Legendre quadra-

ture discussed in Sec. 2.1.4 uses an optimzed set of grid-points which is non-equidistant. A completely

different approach are Monte-Carlo sampling techniques because they are based on a stochastic ap-

proach. Such a random sampling approach which is a powerful method for multi-dimensional integrals

will be presented in Chapter 6.

17

2.1.1 Trapezoidal rule

In the trapezoidal rule, the integration interval [a, b] is divided into N equidistant subintervals [xi, xi+1]

of width h = xi+1 − xi, where

xi = a+ ih, i = 0, 1, · · · , N, h =
b− a
N

. (2.3)

Thus, x0 = a and xN = b. In the trapezoidal rule, the integral over one subinterval [xi, xi+1] is

approximated by the area of a trapezoid

Ii =

∫ xi+1

xi

f(x) dx ≈ h

2
[f(xi) + f(xi+1)] =

h

2
(fi + fi+1) = IT

i . (2.4)

Here, we have introduced the shorthand notation fi ≡ f(xi) and fi+1 = f(xi+1). For later reference,

we use the symbol Ii for the exact value of the integral over the interval [xi, xi+1], while with IT
i we

denote its approximate value according to the trapezoidal rule. The integral over the entire interval

[a, b] is then given by summing over the N subintervals

I =

∫ b

a

f(x) dx ≈
N−1∑
i=0

h

2
(fi + fi+1) =

h

2
(f0 + fN) + h

N−1∑
i=1

fi ≡ IT
N . (2.5)

We see that the end points of the interval, a = x0 and b = xN , enter with the weight h
2
, while all

other points xi inside the interval enter with twice the weight, h, since these points are counted in

two trapezoids each. It is clear that the numerical approximation for the integral IT
N will be the more

accurate, the more subintervals N we choose. A straight-forward implementation of the trapezoidal

rule in Python could look like the following:

1 # t r a p e z o i d a l r u l e

2 def t r apezo id (f , a , b ,N) :

3 h = (b−a) /N

4 x i = np . l i n s p a c e (a , b ,N+1)

5 f i = f (x i)

6 s = (h/2) ∗(f i [0] + f i [N])

7 for i in range (1 ,N) :

8 s = s + h∗ f i [i]

9 return s

We want to estimate the error that the trapezoidal rule produces for a given step size h. Let us first

analyze the error for a single subinterval [xi, xi+1]. To this end, we write the Taylor series of f(x)

18

around the point xi

f(x) = f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)2 +

1

3!
f ′′′(xi)(x− xi)3 + · · · (2.6)

In particular, at x = xi+1, we have

fi+1 = fi + hf ′i +
h2

2
f ′′i +

h3

6
f ′′′i + · · · , (2.7)

where we have introduced the notation f ′i ≡ f ′(xi), f
′′
i ≡ f ′′(xi), f

′′′
i ≡ f ′′′(xi). When inserting 2.7

into 2.4, we obtain

IT
i =

h

2
(fi + fi+1) = hfi +

h2

2
f ′i +

h3

4
f ′′i + · · · (2.8)

On the other hand, we can also insert the Taylor expansion 2.6 into the integral in 2.4 and obtain

Ii =

∫ xi+1

xi

f(x) dx

=

∫ xi+1

xi

[
fi + f ′i(x− xi) +

f ′′i
2

(x− xi)2 +
f ′′′i
6

(x− xi)3 + · · ·
]
dx

= hfi +
h2

2
f ′i +

h3

6
f ′′i +

h4

24
f ′′′i + · · · (2.9)

The comparison between 2.8 and 2.9 shows that the error of the trapezoidal rule is of order O(h3)

since we have

IT
i =

∫ xi+1

xi

f(x) dx︸ ︷︷ ︸
Ii

+
h3

12
f ′′i +O(h4). (2.10)

This result shows that the overall error of the trapezoidal rule for the integration over the entire

interval [a, b] is of order O(h2) since each of the N = b−a
h

subintervals contributes with an error in

the order of O(h3). This result can also be verified by the numerical tests shown in Fig. 2.1. There,

the left panel shows the error of trapezoidal integrations of several test functions depending on the

step size h. As expected, the slope of the curves is 2 in this double-logarithmic plot. Note that in the

example of the linear integrand f(x) in
∫ 1

0
x dx, the trapezoidal gives the exact result independent of

the step size.

2.1.2 The Simpson rule

The basic idea of the Simpson rule is to include higher order derivatives into the expansion of the

integrand. Let us discuss this procedure in greater detail. To this purpose we will study the integral

of f(x) within the interval [xi−1, xi+1] and expand the integrand around the midpoint xi. Using the

19

10 4 10 3 10 2 10 1

step size h

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

ab
so

lu
te

 e
rro

r o
f i

nt
eg

ra
l

Trapezoidal Rule

10 4 10 3 10 2 10 1

step size h

ab
so

lu
te

 e
rro

r o
f i

nt
eg

ra
l

Simpsons Rule
1
0 xdx
1
0 x2dx
1
0 x3dx
1
0 x4dx
1
0 e x2dx

Figure 2.1: Errors of the trapezoidal rule (left panel) and Simpson’s rule versus step size h in a
double-logarithmic plot.

same notation introduced in the previous section, we have∫ xi+1

xi−1

f(x) dx =

∫ xi+1

xi−1

[
fi + f ′i(x− xi) +

f ′′i
2

(x− xi)2 +
f ′′′i
6

(x− xi)3 + · · ·
]
dx

= 2hfi +
h3

3
f ′′i +O(h5) (2.11)

As a result of expanding the integrand around the midpoint xi and the symmetric integration interval,

all odd powers of (x− xi) do not contribute to the integral, and the first non-vanishing derivative for

Ii is f ′′i . Instead of calculating the second derivative of the function exactly – which would of course

be possible but may be cumbersome in a given application – we use a finite difference approximation

for f ′′i . We will learn more about finite difference approximations of derivatives in Sec. 2.2, for now,

20

we simply use the result for the central difference derivative for f ′′i ,

f ′′i =
fi+1 − 2fi + fi−1

h2
+O(h2), (2.12)

and insert it into Eq. 2.11 leading to∫ xi+1

xi−1

f(x) dx = h

(
1

3
fi−1 +

4

3
fi +

1

3
fi+1

)
+O(h3). (2.13)

We see that the Simpson rule is a three-point method, while the trapezoidal rule led to a two-point

method. When assuming an even number N of subintervals and using Eq. 2.13, we can easily obtain

an expression for the integral over the entire interval [a, b] in the form∫ b

a

f(x) dx =

∫ x2

x0

f(x) dx+

∫ x4

x2

f(x) dx+ · · ·+
∫ xN

xN−2

f(x) dx

=
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·+ 2fN−2 + 4fN−1 + fN) . (2.14)

Thus, in the Simpson rule, the weight of the end points, i = 0 and i = N , is 1
3
, the odd grid points

obtain a weight of 4
3
, and the even grid points a weight of 2

3
. A Python implementation of the Simpson

rule could look like the following:

1 # Simpson ’ s r u l e

2 def simpson (f , a , b ,N) :

3 h = (b−a) /N

4 x i = np . l i n s p a c e (a , b ,N+1)

5 f i = f (x i)

6 sd = f i [0] + f i [N] # boundary po in t s

7 so = 0 .0 # sum up odd i ’ s

8 for i in range (1 ,N, 2) :

9 so = so + f i [i]

10 se = 0 .0 # sum up even i ’ s

11 for i in range (2 ,N, 2) :

12 se = se + f i [i]

13 s = h ∗ (1 . 0 / 3 . 0) ∗(sd + 2∗ se + 4∗ so)

14 return s

We note without proof [3] that the error of the Simpson rule scales as O(h5) for a single subinterval

[xi−1, xi+1], and thus a scaling of O(h4) for the entire interval [a, b] can be expected. This is also

illustrated in the right panel of Fig. 2.1 which clearly demonstrates the superior performance of the

Simpson method when compared to the trapezoidal rule. We also see that the Simpson rule leads to

exact results for polynomials up to order 3. Note that the data and the plot shown in Fig. 2.1 have

been created with the Python program trap_simp.py.

21

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/trap_simp.py

2.1.3 The Romberg method

To conclude the topic about the trapezoidal and Simpson rules, let us briefly discuss an idea which is

referred to as Romberg’s method. So far, we approximated all integrals in the form

I = IN +O(hm), (2.15)

where I is the exact, unknown, value of the integral, IN is the estimate obtained from an integration

scheme using N grid-points and m is the leading order of the error. The leading error of the trapezoidal

rule (a two-point method) was found to be O(h2) thus m = 2, and the leading error of the Simpson rule

(a three-point method) is given by O(h4) thus m = 4. We assume that this trend can be generalized

and conclude that an n-point method has a leading order m = 2n− 2, thus O(h2n−2). Since, the step

size h is inversely proportional to the number of intervals N , we expect the following behavior of the

integral estimate INn of an n-point method using N subintervals:

I = INn +
CN
N2n−2

. (2.16)

Here CN depends on the number of intervals N . If we evaluate 2.16 for the twice as many intervals,

2N ,

I = I2N
n +

C2N

(2N)2n−2
, (2.17)

and assume that the constants can be assumed to be the same, C ≡ CN ≈ C2N , Eqs. 2.16 and 2.17

can be regarded as a linear system of equations for the two unknowns I and C, which can be solved

to give [3]

I ≈ 1

4n−1 − 1

(
4n−1I2N

n − INn
)
≡ I2N

n+1 (2.18)

It has to be emphasized that in the above expression, I is no longer the exact value because of the

approximation C ≡ CN ≈ C2N that we have assumed. However, it is certainly an improvement of the

solution, and it is possible to demonstrate that this new estimate is exactly the value I2N
n+1 one would

have obtained with an integral approximation of order n + 1 and 2N grid-points! Equation 2.18 is

at the heart of Romberg’s method which can be illustrated as follows. For instance, we compute an

estimate of the integral with N = 2 intervals and N = 4 intervals using the trapezoidal rule leading to

values I2
2 and I4

2 , respectively. Then according to Eq. 2.18, we can simply obtain an integral estimate

I4
3 of order 2 + 1, that is a Simpson rule, with N = 4 according to

I4
3 =

1

42−1 − 1

(
42−1I4

2 − I2
2

)
=

1

3

(
4I4

2 − I2
2

)
. (2.19)

22

Accordingly, if we also calculate I8
2 , that is the N = 8 estimate using the trapezoidal rule, we can

obtain from Eq. 2.18 also

I8
3 =

1

3

(
4I8

2 − I4
2

)
. (2.20)

Now, we can apply the Romberg procedure again to the order-three estimates I4
3 and I8

3 to obtain the

even better order-four estimate I8
4

I8
4 =

1

43−1 − 1

(
43−1I8

3 − I4
3

)
=

1

15

(
16I8

3 − I4
3

)
. (2.21)

This pyramid-like procedure can be continued until convergence is achieved, that is |INn − INn+1| < ε,

where ε is a small number representing the desired accuracy of the computation.

Exercise 2. Romberg integration method

(a) Implement the Romberg integration method as described in Sec. 2.1.3 starting from an order n = 2

method, that is the trapezoidal rule, and successively apply Eq. 2.18 until convergence of the integral,

|INn − INn+1| < ε, has been achieved up to a given accuracy ε.

(b) Test your implementation with the following integrals.

∫ 1

0

x4 dx,

∫ 1

0

e−x
2

dx,

∫ 20π

0

sinx

x
dx

2.1.4 Gauss-Legendre quadrature

The approximation used by the trapezoidal and Simpson’s rules may be regarded as methods to

replace the integrand in each subinterval by, respectively, second- and third-order polynomials. The

idea of polynomial approximation may also be applied to the interval [a, b] as a whole. This leads us

to the idea behind Gaussian quadrature. There are several variants of this method which differ by

the choice of polynomial expansion. A commonly-used one is the Gauss-Legendre integration scheme

which is presented in this subsection [3, 4].

In general, a function f(x) in a given interval [a, b] may be expanded in terms of a complete set of

polynomials Pl(x)

f(x) =
n∑
l=0

αlPl(x), (2.22)

where the αl are the expansion coefficients. For our purpose, we shall take Legendre polynomials which

23

are solutions of Legendre’s differential equation

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0. (2.23)

They can be obtained from the following recursion relation

P0(x) = 1, P1(x) = x, (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (2.24)

and they form an orthogonal set of functions on the interval [−1, 1] fulfilling the following orthogonality

relations ∫ +1

−1

Pk(x)Pl(x) dx =
2

2l + 1
δkl. (2.25)

Since Legendre polynomials are defined only in the interval [−1,+1], it is necessary to change the

interval of integration for an arbitrary integral from [a, b], for a and b both finite, to [−1,+1] by

making the substitution

x −→ b+ a

2
+
b− a

2
x. (2.26)

From now on we limit ourselves to integrals of the form

I =

∫ +1

−1

f(x) dx. (2.27)

Let us further consider the case that the integrand may be approximated by a polynomial of order

2n− 1,

f(x) ≈ p2n−1(x) = a0 + a1x+ a2x
2 + · · · a2n−1x

2n−1. (2.28)

In the Gauss quadrature, the integral is represented as

I =
n∑
i=1

ωif(xi), (2.29)

where both the n weight factors ωi as well as the n abscissas xi are determined in such a way that

the sum 2.29 agrees exactly with the integral 2.27 given that the integrand is a polynomial of degree

2n− 1 as defined in 2.28. It can be shown [4] that this condition is fulfilled if the xi are the zeros of

the n-th Legendre polynomial Pn(xi) = 0, and the weight factors are determined from

ωi =
2

(1− x2
i) [P ′n(xi)]

2 , (2.30)

where P ′n(xi) is the first derivative of the Legendre polynomial Pn(x) evaluated at the zero xi. It is

24

important to note that the numerical values for xi and ωi for a given order n of the Legendre poly-

nomial do not depend on the function which one aims to integrate. So one can use tabulated values

(standard textbooks on numerical mathematics) or use program packages such as Mathematica, Mat-

lab, or the NumPy-package of Python to generate these numbers. Below you find the Python program

gausslegendre.py which implements the Gauss-Legendre quadrature and which generates the zeros

xi and weight factors ωi by using the numpy function numpy.polynomial.legendre.leggauss.

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3

4 def f 1 (x) :

5 # f1 = np . exp(−x)
6 f1 = x∗∗8
7 return f 1 ;

8

9 def gaus s l e g (fun , xi , omi) :

10 f i = fun (x i)

11 s = np .sum(omi∗ f i)

12 return s

13

14 # main program

15 a = −1.0;

16 b = +1.0;

17

18 #Iexac t = (np . exp(−a)−np . exp(−b))
19 I exac t = 2 . 0 / 9 . 0

20 print (’ n Int e r r o r ’)

21 for n in range (1 , 10) :

22 xi , omi = np . polynomial . l e gendre . l e ggaus s (n)

23 s = gaus s l e g (f1 , xi , omi)

24 e r r = (s−I exac t)

25 print (’%5i ’%n , ’ %15.12 f ’%s , ’ %15.6 e ’%e r r)

We test the Gauss-Legendre method for two integrals,
∫ +1

−1
x8dx and

∫ +1

−1
e−xdx and use orders n from

1 to 9, see output below.

n Int (x**8)dx error Int exp(-x) dx error

1 0.000000000000 -2.222222e-01 2.000000000000 -3.504024e-01

2 0.024691358025 -1.975309e-01 2.342696087910 -7.706299e-03

3 0.144000000000 -7.822222e-02 2.342696087910 -7.706299e-03

4 0.210612244898 -1.160998e-02 2.350402092156 -2.951312e-07

5 0.222222222222 -1.665335e-16 2.350402386463 -8.247771e-10

25

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/gausslegendre.py

6 0.222222222222 -5.273559e-16 2.350402387286 -1.568079e-12

7 0.222222222222 -7.771561e-16 2.350402387288 -2.220446e-15

8 0.222222222222 -1.082467e-15 2.350402387288 -4.440892e-16

9 0.222222222222 1.554312e-15 2.350402387288 0.000000e+00

An interesting aspect of these results is that, for instance, for the integral
∫ +1

−1
x8dx with n = 4 the

result is 0.210612244898 which is a 5% difference compared to the exact values of 2
9
. The reason for this

relatively large error is quite obvious since the method approximates the integrand by a polynomial

of degree 2n − 1 = 7 (see Eq. 2.28). By increasing the order to 5, the essentially exact value of the

integral is obtained since now the order of the polynomial 2n − 1 = 9 is higher than the degree of

our integrand. This simple example illustrates an important limitation of the Gaussian quadrature:

the order of the polynomial required to achieve a given accuracy depends very much on the nature of

the integrand. And in general, it is not easy to know what is the order of polynomial approximation

required for a given function or accuracy of the integral.

2.1.5 Improper integrals

Improper integrals are integrals where either at least one of the integral borders tends to infinity or

the integrand has a singularity. Typical examples for these two kinds of improper integrals would be

I1 =

∫ ∞
0

e−x
2

dx (2.31)

I2 =

∫ 1

0

dx√
1− x2

. (2.32)

Let us first consider integrals of type 1 (Eq. 2.31). A practical approach is to simply replace the

integration limit which tends to ∞ by a finite number b. Then, we successively increase b until the

contributions to the integral are smaller then a pre-defined small quantity ε. Such a procedure works

well for an integral such as 2.31. However, this simple method is not always practicable. For instance,

in order to compute the integral

I =

∫ ∞
0

dx

(1 + x2)
4
3

(2.33)

with an accuracy of 5 decimals places, an upper bound b & 1000 would be required. Here, a non-linear

transformation of the integration variable is recommended. In this example, the transformation

t =
1

1 + x

26

converts the integral 2.33 into the form

I =

∫ 1

0

dt
1

t2
[
2 + 1

t2
− 2

t

]4/3 =

∫ 1

0

dt
t2/3

[t2 + (1− t)2]4/3
. (2.34)

In this form, the integral can be evaluated with high precision as can be seen, for instance, in the

Python implementation improper1.py.

For improper integrals of type 2.32, we use the example

I =

∫ 1

0

dx
ex√
x

= 2.9253034918143632176... (2.35)

where the integrand has a singularity in the integration interval. Here, several possibilities are available

to handle the singularity:

(1) We can simply ignore the singularity. This is, however, only possible if we make use of an open

quadrature formula, where the integral borders containing the singularity (here: x = 0) are not

part of the quadrature formula. The Gauss-Legendre quadrature would be a possibility.

(2) Sometimes it is possible to eliminate the singularity in the integrand by applying an appropriate

analytical transformation of the integral, for instance, by variable substitution. In this example

2.35, the substitution x = t2 leads to the integral

I = 2

∫ 1

0

dt et
2

,

which has no singularity in the integrand and exhibits an excellent convergence behavior.

(3) Another possibility is to transform the integral by integration by parts which in this case leads

to

I = 2e− 2

∫ 1

0

dx
√
xex.

In this example, method (2) is the most efficient one as demonstrated in the Python program

improper2.py which uses the Gauss-Legendre quadrature:

n Int-(1) error-(1) Int-(2) error-(2) Int-(3) error-(3)

2 2.582511498838 -3.43e-01 2.908335778478 -1.70e-02 2.914500992719 -1.08e-02

4 2.732783089612 -1.93e-01 2.925293631313 -9.86e-06 2.923075544692 -2.23e-03

6 2.791671280043 -1.34e-01 2.925303489808 -2.01e-09 2.924558510364 -7.45e-04

8 2.823012408044 -1.02e-01 2.925303491814 -2.04e-13 2.924969433189 -3.34e-04

27

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/improper1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/improper2.py

10 2.842456483274 -8.28e-02 2.925303491814 -1.33e-15 2.925126042628 -1.77e-04

12 2.855693235252 -6.96e-02 2.925303491814 -1.33e-15 2.925198241896 -1.05e-04

14 2.865284692938 -6.00e-02 2.925303491814 8.88e-16 2.925236033296 -6.75e-05

16 2.872553934224 -5.27e-02 2.925303491814 2.66e-15 2.925257697372 -4.58e-05

18 2.878253023591 -4.71e-02 2.925303491814 4.44e-16 2.925270995437 -3.25e-05

20 2.882840990693 -4.25e-02 2.925303491814 1.78e-15 2.925279605447 -2.39e-05

22 2.886613858086 -3.87e-02 2.925303491814 2.22e-15 2.925285423821 -1.81e-05

24 2.889771087201 -3.55e-02 2.925303491814 0.00e+00 2.925289496128 -1.40e-05

26 2.892451976590 -3.29e-02 2.925303491814 -4.44e-16 2.925292431125 -1.11e-05

28 2.894756752145 -3.05e-02 2.925303491814 -8.88e-16 2.925294599660 -8.89e-06

30 2.896759367622 -2.85e-02 2.925303491814 6.66e-15 2.925296236443 -7.26e-06

32 2.898515582796 -2.68e-02 2.925303491814 8.88e-16 2.925297494959 -6.00e-06

34 2.900068233900 -2.52e-02 2.925303491814 3.11e-15 2.925298478461 -5.01e-06

36 2.901450772427 -2.39e-02 2.925303491814 1.78e-15 2.925299258143 -4.23e-06

38 2.902689701571 -2.26e-02 2.925303491814 0.00e+00 2.925299884184 -3.61e-06

We will now leave the topic of numerical evaluation of integrals but come back to the topic once more

in Chapter 6 where we deal with the so-called Monte-Carlo method which becomes particularly useful

for multi-dimensional integrals.

2.2 Numerical Differentiation

The derivative f ′(x) of a function f(x) at a point x is commonly defined as the differential quotient,

so a limit where h tends to zero

f ′(x) =
df

dx
= lim

h→0

f(x+ h)− f(x)

h
. (2.36)

In contrast to integration, there are in principle no difficulties in calculating a derivative of a given

function analytically. Nevertheless, the numerical differentiation of functions becomes important at

least for two reasons. First, if a function only exists only as tabulated values at discrete points along

the abscissa, such as data from some kind of measurement. Then the derivative of that function must

be computed numerically. A second, and probably even more important, application of numerical

differentiation is in solving differential equations, to which we will devote the whole Chapter 5 later

in the lecture.

28

2.2.1 First derivative

In numerical differentiation, instead of taking the limit h → 0 in Eq. 2.36, we use finite differences,

meaning small differences in the function at nearby points. The straightforward generalization of

Eq. 2.36 is

D+fi =
∆fi
h

=
fi+1 − fi

h
. (2.37)

The quantity ∆fi = fi+1−fi is known as the forward difference of f(x) at x = xi, as it is the difference

of f(x) at x and a point ahead. We can also define the backward difference derivative which we denote

in the following way:

D−fi =
∇fi
h

=
fi − fi−1

h
. (2.38)

Finally we could also define a finite difference derivative in the central difference form

Dfi =
δfi
h

=
fi+ 1

2
− fi− 1

2

h
. (2.39)

Since this central difference form 2.39 involves function evaluations at half integer grid points, in

practice a different variant of the central difference derivative is used which involves only grid points

at integer values of i and uses as step size 2h:

Dfi =
δfi
h

=
fi+1 − fi−1

2h
. (2.40)

What is the geometric meaning of these three variants of the finite difference form of the first deriva-

tive? You may want to sketch it by hand for a given function or perhaps visualize it using some

computer program of your choice (Mathematica, Matlab, Python, ...)

In Fig. 2.2, we apply the finite difference Eqs. 2.37, 2.38 and 2.40 to the function f(x) = ex and

compute the derivative at x = 1. What is plotted is the absolute error as a function of the step size h

in a double-logarithmic plot.1 Clearly, the error of the forward and backward finite difference forms,

D+fi and D−fi, respectively, is larger than the error of the central difference form Dfi for a given

step size h. Closer inspection reveals that the error of the forward and backward forms scales as ∼ h,

while the error of the central difference form reduces as ∼ h2 when decreasing h. We also see that

making the step size h in Dfi smaller than ≈ 10−5 does not further reduce the error due to subtractive

cancellation in the numerator of 2.40.

In order to understand the different errors of Eqs. 2.37, 2.38 and 2.40, we consider the Taylor expansions

1Note the data shown in Fig. 2.2 and the plot has been created with the Python program finitedifference.py

29

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/finitedifference.py

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

finite difference h

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

a
b
so

lu
te

 e
rr

o
r

o
f

d
e
ri

v
a
ti

v
e

Finite Difference Derivatives of ex

D+fi

D− fi

Dfi

five-point

Figure 2.2: Absolute errors of the first derivative of f(x) = ex at x = 1 obtained with various finite
difference schemes as a function of the step size h in a double-logarithmic plot.

of f(x) and f(x± h),

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + · · · (2.41)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + · · · (2.42)

Denoting as usual, f(x) = fi, f(x+ h) = fi+1, ... we can rewrite these expansions as

fi+1 = fi + f ′ih+
1

2
f ′′i h

2 +
1

6
f ′′′i h

3 + · · · (2.43)

fi−1 = fi − f ′ih+
1

2
f ′′i h

2 − 1

6
f ′′′i h

3 + · · · (2.44)

30

If we now bring the term fi to the left of Eq. 2.43 and divide by h, we obtain

D+fi ≡
fi+1 − fi

h
= f ′i +

1

2
f ′′i h+O(h2), (2.45)

which explains the observed scaling of the error as shown in Fig. 2.2. Similarly, if we rearrange Eq. 2.44,

we obtain

D−fi ≡
fi − fi−1

h
= f ′i −

1

2
f ′′i h+O(h2), (2.46)

demonstrating the equivalent error of the backward finite difference form. In order to arrive at the

error of the central difference expression, we subtract 2.44 from 2.43 and divide by 2h leading to

Dfi ≡
fi+1 − fi−1

2h
= f ′i +

1

6
f ′′′i h

2 +O(h3). (2.47)

This shows that the error of the central difference form scales as ∼ h2. We also see why the forward

and backward finite difference expressions are also called two-point forms since they both involve two

function points at i and i+ 1 or at i and i− 1, respectively. The central difference expression, on the

other hand, is a three-point expression since it involves the function at i− 1, i and i+ 1 although the

function value at i drops out in the end.

We can also further improve the three-point expression by including also function values at x ± 2h

which leads to the so-called five-point finite difference expression for the first derivative. To this end,

we write down the Taylor expansion for f(x± 2h), that is fi+2 and fi−2,

fi+2 = fi + 2f ′ih+
1

2
f ′′i (2h)2 +

1

6
f ′′′i (2h)3 +

1

24
f

(4)
i (2h)4 +

1

120
f

(5)
i (2h)5 · · · (2.48)

fi−2 = fi − 2f ′ih+
1

2
f ′′i (2h)2 − 1

6
f ′′′i (2h)3 +

1

24
f

(4)
i (2h)4 − 1

120
f

(5)
i (2h)5 · · · (2.49)

We can now take the difference of Eqs. 2.43 and 2.44 as well as the difference of Eqs. 2.48 and 2.49 to

yield

fi+1 − fi−1 = 2hf ′i +
1

3
f ′′′i h

3 +
1

60
f (5)h5 + · · · (2.50)

fi+2 − fi−2 = 4hf ′i +
8

3
f ′′′i h

3 +
8

15
f (5)h5 + · · · (2.51)

In order to arrive at the five-point expression for the first derivative, we must eliminate f ′′′i . To this

end, we multiply Eq. 2.50 by 8, subtract from it Eq. 2.51 and divide by 12h

−fi+2 + 8fi+1 − 8fi−1 + fi−2

12h
= f ′i −

1

30
f (5)h4. (2.52)

Eq. 2.52 is the five-point finite difference form for the first derivative. It shows that the error scales

31

as ∼ h4. This is also demonstrated in Fig. 2.2 where the performance of the five-point formula is

compared to that of the two- and three point forms.

2.2.2 Second derivative

In order to arrive at finite difference expressions for the second derivative, we can start with the Taylor

expansions for fi+1 and fi−1 given by Eqs. 2.43 and 2.44, respectively. Our goal is to eliminate f ′i from

the two equations. So, we simply add the equations and divide by h2 leading to the central difference

form of the second derivative which is a three-point stencil.2

f ′′i =
fi+1 − 2fi + fi−1

h2
− 1

12
f

(4)
i h2, (2.53)

which shows that the error scales as ∼ h2. Note that we have encountered this expression earlier when

discussing the Simpson integration method in Sec. 2.1.2.

Similar to what we have done for the first derivative, we can also improve the accuracy of the numerical

second derivative by including more points in the finite difference equation. The five-point formula

which can be obtained by taking into account the Taylor expansions for fi+2 and fi−2 from 2.48 and

2.49. It is given by

f ′′i =
−fi+2 + 16fi+1 − 30fi + 16fi−1 − fi−2

12h2
+

1

90
f

(6)
i h4. (2.54)

In Fig. 2.3, we apply the three-point expression Eq. 2.53 and the five-point formula 2.54 for the second

derivative to the function f(x) = ex and compute its second derivative at x = 1. What is plotted

is the absolute error as a function of the step size h in a double-logarithmic plot.3 We can clearly

see the improved accuracy of the five-point formula compared to the three-point central difference

expression. We can also see that, in this example, the five-point formula can be used down to steps

sizes of ≈ 10−2. For smaller step sizes, subtractive cancellation prevents a further improvement of the

result obtain by numerical differentiation. The three-point formula is somewhat less sensitive to these

numerical problems and can be used down to steps sizes of ≈ 10−4. Overall, the maximal attainable

accuracy of the three-point form (≈ 10−8) is about two orders of magnitude worse than that of the

five-point form.

2The term ”stencil” meaning ”Schablone” is commonly used to characterize a particular finite difference form.
3Note the data shown in Fig. 2.3 and the plot has been created with the Python program finitedifference2.py

32

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/finitedifference2.py

10-6 10-5 10-4 10-3 10-2 10-1 100

finite difference h

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
a
b
so

lu
te

 e
rr

o
r

o
f

2
n
d
 d

e
ri

v
a
ti

v
e

Finite Difference 2nd Derivatives of ex

three-point

five-point

Figure 2.3: Absolute errors of the second derivative of f(x) = ex at x = 1 obtained with the three-
and five-point forms as a function of the step size h in a double-logarithmic plot.

Exercise 3. Numerical differentiation

Consider the function

f(x) = e−x
2

(a) Plot the function f(x) as well as its analytic first and second derivatives in the interval [a, b] =

[−1,+5
2
] by using a grid of N + 1 points defined as usual by:

h =
b− a
N

, xi = a+ i h, i = 0, 1, · · · , N.

(b) Calculate and plot the first derivative of f(x) on the grid defined in (a) using various finite difference

forms: forward difference, backward difference, central difference, and the five-point form.

(c) Calculate and plot the second derivative of f(x) on the grid defined in (a) using the three- and

five-point central difference expressions.

(d) Experiment with the number of grid points N and monitor how the results are changing.

33

34

Chapter 3

Numerical Methods for Linear Algebra

3.1 Linear systems of equations

In this section we will learn about numerical methods for solving a linear system of equations consisting

of n equations for the n unknown variables xi.

a11x1 + a12x2 + · · ·+ a1n = b1 (3.1)

a21x1 + a22x2 + · · ·+ a2n = b2

... =
...

an1x1 + an2x2 + · · ·+ ann = bn

We will assume that the coefficient matrix aij as well as the vector bi consist of real numbers, and

furthermore we require

|b1|+ |b2|+ . . .+ |bn| > 0.

Under these assumptions, the Eqs. 3.1 constitute a real-valued, linear, inhomogeneous system of equa-

tions of n-th order. The numbers x1, x2, · · · , xn are called the solutions of the system of equations.

Conveniently, we can write Eqs. 3.1 as a matrix equation

A · x = b. (3.2)

The solution of such a system is a central problem of computational physics since a number of numerical

methods lead such a system of linear equations. For instance, numerical interpolations such as spline-

interpolations (Sec. 4.1), linear least-square fitting problems (Sec. 4.2), as well as finite difference

approaches to the solution of differential equations (Sec. 5.2) result in an equation system of type

3.2.

35

From a mathematical point of view, the solution of Eq. 3.2 poses no problem. As long as the deter-

minant of the coefficient matrix A does not vanish

detA 6= 0,

i.e., the problem is not singular, the solution can be obtained by applying the well-known Cramer’s

Rule. However, Cramer’s rule turns out to be rather impracticable for implementing it in a computer

code for n & 4. Moreover, it is computationally inefficient for large matrices. In this section, we will

therefore discuss various methods which can be implemented in an efficient way and also work in a

satisfactory manner for very large problem sizes n. Generally we can distinguish between direct and

iterative methods. Direct methods lead, in principle, to the exact solution, while iterative methods

only lead to an approximate solution. However, due to inevitable round-off errors in the numerical

treatment on a computer, the usage of an iterative method may prove superior over a direct method, in

particular for very large or ill-conditioned coefficient matrices. In this lecture, we will learn about one

direct method, the so-called LU -decomposition according to Doolittle and Crout (see Section 3.1.2)

which is the most widely used direct method. In Sec. 3.1.3 we will then outline two iterative procedures,

namely the Gauss-Seidel method (GS) and the successive overrelaxation (SOR) method.

The presentation of the above two classes of methods within this lecture notes will be kept to a mini-

mum. For further reading, the standard text book ’Numerical Recipes’ by Press et al. is recommended

[5]. A detailed description of various numerical methods can also be found in the book by Törnig and

Spellucci [6]. A description of the LU -decomposition and the Gauss-Seidel method can also be found

in the book by Stickler and Schachinger [3], and also in the lecture notes of Sormann [7].

3.1.1 Matrix operations

Before we start with the description of the LU -decomposition, it will be a good exercise to look

at how a matrix-matrix product is implemented efficiently on a computer. Here we will discuss two

programming languages. The code below is a Fortran implementation of the matrix productC = A·B
using a simple triple loop:

1 do i = 1 ,n

2 do j = 1 ,m

3 C(i , j) = 0 .0

4 do k = 1 , l

5 C(i , j) = C(i , j) + A(i , k) ∗B(k , j)

6 end do

7 end do

8 end do

36

The outer two loops run over the i = 1, · · · , n rows and j = 1, · · · ,m columns of the matrix product

C, while the innermost loop, k = 1, · · · , l performs the scalar product of the i-th row of A with the

j-th column of B. This straight-forward implementation of the matrix product has the advantage that

the code is easy to read. However, for large matrices (n & 1000), it becomes numerically inefficient.

Due to the importance of matrix operations in numerical applications, optimized subroutines for

linear algebra operations exist. The most-widely used BLAS (Basic Linear Algebra Subprograms) and

LAPACK (Linear Algebra Package) libraries exist as optimized libraries for various operation systems

and hardware architectures. A more detailed discussion of these routines is beyond the scope of this

lecture. Some information can be found in the lecture notes for ComputationalPhysics2.

When using Python to implement the matrix product, one can of course also use triple loops such as the

one listed above, however, the numpy extension of Python also offers the simplified treatment of matrix-

matrix or matrix-vector operations as briefly described, for instance, in this Pythonnumpycourse.

Below you find the Python program matmul.py which compares three methods on how to perform a

matrix-matrix multiplication using Python language.

1 import numpy as np

2 # f i n i t e d i f f e r e n c e e xp r e s s i on s f o r f i r s t d e r i v a t i v e

3 def matmul (A,B) : # t r i p l e −l oop f o r matrix mu l t i p l i c a t i o n

4 n = A. shape [0]

5 l 1= A. shape [1]

6 l 2= B. shape [0]

7 m = B. shape [1]

8 i f (l 1 != l 2) :

9 C = 0

10 return −1

11 C = np . z e ro s ((n ,m) , f loat)

12 l = l 1

13 for i in range (0 , n) :

14 for j in range (0 ,m) :

15 for k in range (0 , l) :

16 C[i , j] = C[i , j] + A[i , k]∗B[k , j]

17 return C

18 # MAIN PROGRAM

19 # read in A and B matr ices

20 A = np . l oadtx t (’ a . dat ’) # A i s a numpy−array
21 B = np . l oadtx t (’b . dat ’) # B i s a numpy−array
22 # method−1: matrix mu l t i p l i c a t i o n v ia t r i p l e loop func t i on ’matmul ’

23 C = matmul (A,B) ; print (”Home−made matmul func t i on :\n” ,C)

24 # method−2: use ” dot”− f unc t i on o f numpy

25 C = np . dot (A,B) ; print (”numpy . dot func t i on :\n” ,C)

26 # method−3: use matrix−c l a s s and ’∗ ’− opera tor o f numpy

27 A = np . asmatr ix (A)

37

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
http://physik.uni-graz.at/~pep/CompPhys2_WS1516.html
http://www.python-kurs.eu/matrix_arithmetik.php
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/matmul.py

28 B = np . asmatr ix (B)

29 C = A∗B; print (”numpy . matrix and ’∗ ’− operator :\n” ,C)

In method 1, the home-made function matmul is called which uses the triple-loop already introduced

in the Fortran implementation. Methods 2 and 3 both use functions of the NumPy package for scientific

computing with Python. In method 2, the matrices are defined as numpy.array and the numpy.dot

function is used to compute the matrix product. Method 3 uses the matrix class of NumPy. Here, the

operator ’*’ denotes the matrix multiplication when applied to objects of the matrix class.

3.1.2 The LU Decomposition

The so-called LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers

usually solve square systems of linear equations using this LU decomposition, and it is also a key step

when inverting a matrix, or computing the determinant of a matrix. The LU -decomposition is a

direct method, first discussed by Doolittle and Crout, and is based on the Gauss’s elimination method

[3, 5, 7]. This in turn is possible due to the following property of a system of linear equations: The

solution of a linear system of equation is not altered if a linear combination of equations is added to

another equation. Now, Doolittle and Crout have shown that any matrix A can be decomposed into

the product of a lower and upper triangular matrix L and U , respectively:

A = L ·U , (3.3)

where

L =


1 0 0 · · · 0

l21 1 0 · · · 0

l31 l32 1 · · · 0
...

...

ln1 ln2 ln3 · · · 1

 and U =


u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

0 0 0 · · · unn

 (3.4)

Once such a decomposition has been found, it can be used to obtain the solution vector x by simple

forward- and backward substitution. We can write

A · x = L ·U · x = L · y = b,

where we have introduced the new vector y as U ·x = y, and see that due the lower triangle form of

L, the auxiliary vector y is obtained from forward substitution, that is

yi = bi −
i−1∑
j=1

lijyj, i = 1, 2, · · · , n. (3.5)

38

Using this result for y, the solution vector x can be obtained via backward substitution, i.e. starting

with the index i = n, due to the upper triangle form of the matrix U :

xi =
1

uii

[
yi −

n∑
j=i+1

uijxj

]
, i = n, n− 1, · · · , 1. (3.6)

Of course now the crucial point is how the decomposition of the matrix A into the triangular matrices

L and U can be accomplished. This will be shown in the next two subsections, first for a general

matrix, and second for a so-called tridiagonal matrix, a form which is often encountered when solving

differential equations by the finite difference approach.

LU decomposition for general matrices

Here, we simply state the surprisingly simple formulae by Doolittle and Crout for achieving the LU -

decomposition of a general matrix A. More details and a brief derivation of the equations below can

be found in Ref. [5] and an illustration of the algorithm can be found here: LU.nb.

uij = aij −
i−1∑
k=1

likukj, i = 1, · · · , j − 1 (3.7)

γij = aij −
j−1∑
k=1

likukj, i = j, · · · , n (3.8)

ujj = γjj (3.9)

lij =
γij
γjj

, i = j + 1, · · · , n (3.10)

Note that the evaluation of the above equations proceeds column-wise. Also note that in the code

Fortran example below, we have used the fact that both matrices L and U can be stored in only one

two-dimensional array LU due to the special shape of the matrices.

39

http://physik.uni-graz.at/~pep/CompOriPhys/Mathematica/LU.nb

1 ! A Fortran implementat ion o f the LU−decomposi t ion

2

3 do j = 1 ,n ! l oop over columns

4 do i = 1 , j−1 ! Eq . (3 . 7)

5 s = A(i , j)

6 do k = 1 , i−1

7 s = s − LU(i , k) ∗LU(k , j)

8 end do

9 LU(i , j) = s

10 end do

11 do i = j , n ! Eq . (3 . 8)

12 s = a (i , j)

13 do k = 1 , j−1

14 s = s − LU(i , k) ∗LU(k , j)

15 end do

16 g (i , j) = s

17 end do

18 LU(j , j) = g (j , j) ! Eq . (3 . 9)

19 i f (g (j , j) . eq . 0 . 0 d0) then

20 g (j , j) = 1 .0 d−30

21 end i f

22 i f (j . l t . n) then ! Eq . (3 . 10)

23 do i = j +1,n

24 LU(i , j) = g (i , j) /g (j , j)

25 end do

26 end i f

27 end do ! end loop over columns

40

Exercise 4. Implementation of the LU-decomposition

In this exercise, subroutines for solving a linear system of equations will be developed and applied to a

simple test system of linear equations.

(a) Write a subroutine that performs the LU -decomposition of a matrix A according to Eqs. 3.7–3.10.

(b) Write a subroutine that performs the forward- and backward substitution according to Eqs. 3.5 and

3.6.

(c) Combine the subroutines of (a) and (b) to solve the linear system of equations A ·x = b, where the

matrix A and the vector b are read from the following text files, respectively.

A =

1 5923181 1608

5923181 337116 -7

6114 2 9101372

b =

5924790

6260290

9107488

(d) Compare the numerical results for the solution x obtained in (c) when using either single

precision or double precision arrays in the calculation. What happens to the solution vec-

tor if you change the order of the equations (rows in A and b) when using single precision or

double precision computations?

Pivoting

As has been demonstrated in the previous exercise, round-off errors in the simple procedure for LU -

decomposition may severely depend on the order of the equation rows. Thus, without a proper ordering

or permutations in the matrix, the factorization may fail. For instance, if a11 happens to be zero, then

the factorization demands a11 = l11u11. But since a11 = 0, then at least one of l11 and u11 has to be

zero, which would imply either being L or U singular. This, however, is impossible if A is nonsingular.

The problem arises only from the specific procedure. It can be removed by simply reordering the

rows of A so that the first element of the permuted matrix is nonzero. This is called pivoting. Using

such a LU factorization with partial pivoting, that is with row permutations, analogous problems in

subsequent factorization steps can be removed as well.

41

When analyzing the origin of possible round-off errors (or indeed the complete failure of the simple

algorithm without pivoting), it turns out that a simple recipe to overcome these problems is to require

that the absolute values of lij are kept as small as possible. When looking at Eq. 3.10, this in turn

means that the γii values must be large in absolute value. According to Eq. 3.8, this can be achieved

by searching for the row in which the largest |γij| appears and swapping this row with the j−row.

Only then, Eqs. 3.9 and 3.10 are evaluated. It is clear that such a strategy, partial pivoting, also avoids

the above mentioned problem that a diagonal element γjj may turn zero.

If it turns out that all γij for i = j, j + 1, · · · , n are zero simultaneously, then the coefficient matrix

Aij is indeed singular and the system of equations can not be solved with the present method.

Error estimation and condition number

While pivoting greatly improves the numerical stability of the LU -factorization, some matrices may

still be ill-conditioned. This means that the solution vector is very sensitive to numerical errors in

the matrix and vectors elements of A and b. Knowing about this property for a given matrix is of

course very important. To this end, a condition number is defined, which is a measure for how much

the solution vector x changes for small modifications in the inhomogeneous vector b. With the help

of this condition number, the relative error in the solution vector can be expressed as follows1

‖δx‖
‖x‖

≤ cond(A)
‖δb‖
‖b‖

, (3.11)

where the condition number of the matrix A is given by

cond(A) = ‖A−1‖ · ‖A‖. (3.12)

For calculating the matrix norm, the Euclidean norm is rather difficult to calculate since it would

require the full eigenvalue spectrum. Instead, one can use as operator norm either the maximum

absolute column sum (1-norm) or the maximum absolute row sum (∞-norm) of the matrix which are

easy to compute [8]

‖A‖1 = max
1≤j≤n

{
n∑
i=1

|aij|

}
, ‖A‖∞ = max

1≤i≤n

{
n∑
j=1

|aij|

}
. (3.13)

A prototypical example for an ill-conditioned matrix is the so-called Hilbert matrix defined as hij =
1

i+j−1
. This is demonstrated in the following Mathematica notebook: illconditioned.nb.

1See for instance lecture notes ComputationalPhysics2.

42

http://physik.uni-graz.at/~pep/CompOriPhys/Mathematica/illconditioned.nb
http://physik.uni-graz.at/~pep/CompPhys2_WS1516.html

LU decomposition for tridiagonal matrices

For very large problem sizes, it is a advantageous to make use of possible special forms of the co-

efficient matrix. One such example are symmetric matrices where a simplifying variant of the LU -

decomposition leads to the so-called Cholesky-procedure [5, 7]. In this section, we will focus on another

important class of matrices, so-called tridiagonal matrices which have the following shape

b1 c1 0 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

· ·
· ·
· cn−1

0 0 0 0 · · · bn


·



x1

x2

x3

·
·
·
xn


=



r1

r2

r3

·
·
·
rn


. (3.14)

Such tridiagonal matrices arise, for instance, when performing spline-interpolations (see Sec. 4.1.2) or

after the application of a finite-difference approach to differential equations. From Eq. 3.14 it is clear

that the tridiagonal matrix is uniquely characterized by three vectors, namely b the main diagonal,

and a and c defining the upper and lower secondary diagonal, respectively. The application of the

LU -factorization without pivoting leads to the following matrix structure

1 0 0 0 · · · 0

l2 1 0 0 · · · 0

0 l3 1 0 · · · 0

· ·
· ·
· 0

0 0 0 0 · · · 1


·



u1 c1 0 0 · · · 0

0 u2 c2 0 · · · 0

0 0 u3 c3 · · · 0

· ·
· ·
· cn−1

0 0 0 0 · · · un


·



x1

x2

x3

·
·
·
xn


=



r1

r2

r3

·
·
·
rn


(3.15)

Specialization of the general formulas for LU -decomposition Eqs. 3.7–3.10 lead to the following simple

set of equations which can be implemented in a straight-forward manner. Starting with u1 = b1 and

y1 = r1, we have

lj = aj/uj−1, uj = bj − ljcj−1, yj = rj − ljyj−1, j = 2, · · · , n. (3.16)

The solution vector follows from back-substitution:

xn = yn/un, xj = (yj − cjxj+1)/uj for j = n− 1, · · · , 1. (3.17)

43

3.1.3 Iterative Methods

In certain cases, for instance for large sparse matrices2 arising from a finite difference approach to

partial differential equations, it turns out to be advantageous to apply iterative procedures to solve

the linear equation system.

A · x = b (3.18)

In this section, we learn about two simple methods for iteratively solving a linear system of equation.

The Jacobi Method

The iterative procedure of the Jacobi method is defined in the following way

x
(t+1)
i = (1− ω)x

(t)
i −

ω

aii

 n∑
j=1(j 6=i)

aijx
(t)
j − bi

 . (3.19)

Note that setting ω = 1 results in the original Jacobi Method, while for values ω 6= 1, the method is

referred to as Jacobi over-relaxation method (JOR). Starting from an arbitrary trial vector x
(0)
i , the

repeated application of Eq. 3.19 leads to a series of solution vectors x
(1)
i , x

(2)
i , · · · , x(t)

i , x
(t+1)
i , · · · . It

can be shown that the Jacobi-method converges if the matrix A is strictly diagonally dominant [6].

For values 0 < ω ≤ 1, the JOR-method also converges for strictly diagonally dominant matrices. 3

Moreover, for symmetric and positive-definite matrices A, the JOR-method can be shown to converge

for

0 < ω <
2

1− µmin

≤ 2, (3.20)

where µmin is the smallest eigenvalue of the fix-point matrix G [6].

Note that we can derive the Jacobi-method by starting directly with Eq. 3.1. Again we require that all

diagonal elements of A are non-zero and then formally solve each row of 3.1 separately for xi yielding

xi = − 1

aii

 n∑
j=1(j 6=i)

aijxj − bi

 (3.21)

We can easily turn this equation into an iterative prescription by inserting t−th iteration of the

solution on the right-hand side while the left hand side yields the improved solution at iteration step

t+ 1. This is identical to Eq. 3.19 for the case of ω = 1.

2In numerical analysis, a sparse matrix is a matrix in which most of the elements are zero.
3A matrix is said to be (strictly) diagonally dominant if for every row of the matrix, the magnitude of the diagonal

entry in a row is larger than (or equal) to the sum of the magnitudes of all the other (non-diagonal) entries in that row.

44

As with all iterative procedures, also the Jacobi and JOR methods require a termination criterion.

One obvious exit condition would be to demand component-wise

max
i=1,··· ,n

(∣∣∣x(t+1)
i − x(t)

i

∣∣∣) < ε. (3.22)

Alternatively, also the vector norm of the difference between two consecutive iterative solution vectors

can be used to define convergence: ∣∣x(t+1) − x(t)
∣∣ < ε. (3.23)

It is clear that the iterative loop must also include another exit condition (maximum number of

iterations reached) to prevent endless loops in cases when the iteration does not converge.

Gauss-Seidel and Successive Over-Relaxation Method

In the Jacobi and JOR methods discussed in the previous section, the iteration defined in Eq. 3.19

requires the knowledge of all vector components x
(t)
i at iteration step (t) in order to obtain the solution

vector of the next iteration step (t+ 1). In the so-called Gauss-Seidel (ω = 1) and the successive over-

relaxation (SOR) (ω 6= 1) methods, the solution vectors of the next iteration step are successively

created from the old iteration. This leads to the following iterative prescription [6]:

x
(t+1)
i = (1− ω)x

(t)
i −

ω

aii

(
i−1∑
j=1

aijx
(t+1)
j +

n∑
j=i+1

aijx
(t)
j − bi

)
. (3.24)

Setting ω = 1 in Eq. 3.24 results in the Gauss-Seidel method, while for values ω 6= 1, the method

is referred to as successive over-relaxation method. Thus, the formula takes the form of a weighted

average between the previous iterate and the computed Gauss-Seidel iterate successively for each

component, where the parameter ω is the relaxation factor. The value of ω influences the speed of

the convergence. Its choice is not necessarily easy, and depends upon the properties of the coefficient

matrix. IfA is symmetric and positive-definite, then convergence of the iteration process can be shown

for ω ∈ (0, 2). In order to speed up the convergence with respect to the Gauss-Seidel method (ω = 1),

one typically uses values between 1.5 and 2. The optimal choice depends on the properties of the

matrix [3]. Values ω < 1 can be used to stabilize a solution which would otherwise diverge [6].

45

Exercise 5. Matrix inversion for tridiagonal matrices

In this exercise, we will implement a direct and an iterative linear equation solver for tridiagonal matrices.

A test matrix for a tridiagonal matrix as defined by three vectors a, b and c according to Eq. 3.14 can be

obtained from this link: abc.at

(a) Write a subroutine which performs the LU -decomposition for a tridiagonal matrix and solves a cor-

responding linear system of equations according to Eqs. 3.16 and 3.17. Test your code by calculating

the inverse of the matrix and computing the matrix product of the original band tridiagonal matrix

and its inverse.

(b) Write two subroutines which implement the method of successive over-relaxation (SOR) according

to Eq. 3.24. In the first subroutine, a general matrix form aij is assumed, while in the second version

the tridiagonal form of the matrix is taken into account. Test your routines by calculating the inverse

of the matrix abc.at and computing the matrix product as in (a).

(c) Vary the relaxation parameter in your SOR-routine ω from 0.1 to 1.9 in steps of 0.05 and monitor

the number of iterations required for a given accuracy goal.

(d) Optional: Set up a random matrix with matrix elements in the range [0, 1]. Does the SOR-method

converge? Check whether your random matrix is diagonally dominant defined in the following way:

A matrix is said to be diagonally dominant if for every row of the matrix, the magnitude of the diagonal

entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries

in that row. More precisely, the matrix A is diagonally dominant if ∀i

|aii| ≥
∑
j 6=i

|aij| (3.25)

The term strictly diagonally dominant applies to the case when the diagonal elements are strictly larger than

(>) the sum of all other row elements. We note that the Gauss–Seidel and SOR methods can be shown to

converge if the matrix is strictly (or irreducibly) diagonally dominant. Also note that many matrices that

arise in finite element methods turn out to be diagonally dominant.

46

http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/abc.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/abc.dat

Exercise 6. Finite difference solution of the stationary heat equation

In this exercise we will numerically solve the stationary, one-dimensional heat equation as a boundary value

problem

0 = κ
d2T (x)

dx2
+ Γ(x), with T (a) = Ta and T (b) = Tb. (3.26)

Here, T (x) is the temperature distribution in the interval x ∈ [a, b], κ is the thermal diffusivity, and Γ(x)

describes is a heat source term. The temperature values at the boundaries of the left and right ends of the

interval are fixed and are given by Ta and Tb, respectively. As described in more detail in Chapters 8 and 9

of Ref. [3], we discretize the interval a ≤ x ≤ b in N equidistant subintervals. Thus, the positions of the

grid points xk are given by

xk = a+ k · h, h =
b− a
N

(3.27)

The grid-spacing is h and the number of grid points is N + 1. The first and last grid points coincide with

a and b, respectively, hence x0 = a and xN = b. We will abbreviate the function values T (xk) and Γ(xk)

at the grid point xk simply by Tk and Γk, respectively.

The differential quotient in Eq. 3.26 is replaced by the three-point central difference form for the second

derivative (see Eq. 2.53)

T ′′k =
Tk+1 − 2Tk + Tk−1

h2
(3.28)

(a) Insert Eq. 3.28 into the differential equation 3.26 and derive a system of N − 1 linear equations.

What form does the coefficient matrix have?

(b) Make use of the subroutines developed in previous exercises, and write a program which solves the

system of equations for the N −1 temperature values. For this purpose assume the heat source Γ(x)

to be of Gaussian shape

Γ(x) =
Γ0

σ
exp

(
−(x− xs)2

2σ2

)
(3.29)

(c) Test your program by reading in the following parameters from a file

inputfile:

0.0 10.0 ! [x0 xN] interval

0.0 2.0 ! T0, TN = temperatures at boundaries

10 ! N = number of grid points

1.0 ! kappa = thermal diffusivity

4.0 0.5 0.5 ! xS, sigma, Gamma0 (heat source parameters)

(d) Write out xk, Tk and finite difference expressions for dT/dx and d2T/dx2 at the grid points for four

different grids, N = 10, N = 20, N = 50 and N = 100, and plot the results.

47

3.2 Eigenvalue problems

In the previous Section 3.1, we were dealing with inhomogeneous linear systems of equations. In this

section we will discuss homogeneous problems of the form

A · x = 0. (3.30)

We distinguish two cases: First, the determinant of A does not vanish, detA 6= 0, then Eq. 3.30 only

has the trivial solution x = 0. If, on the other hand, detA = 0, then Eq. 3.30 also has a non-trivial

solution. Of particular importance are problems where the matrix A depends on a parameter λ

A(λ) · x = 0, (3.31)

which is called a general eigenvalue problem. Non-trivial solutions are characterized by the zeros of

the function detA(λ) = 0, λ1, λ2, · · · , which are called the eigenvalues of the system Eq. 3.31, the

corresponding vectors, x1,x2, · · · the eigenvectors of Eq. 3.31. A special, but very important case of

eigenvalue problems is the so-called regular eigenvalue problem

A(λ) = A0 − λI, (3.32)

A0 not depending λ and I denoting the identity matrix. This is called the regular eigenvalue equation

A · x = λx. (3.33)

The requirement that the determinant of Eq. 3.32 has to vanish leads to a polynomial of rank n,

Pn(λ), which is called the characteristic polynomial. The n zeros of this polynomial (not necessarily

all of them have to be distinct) determine the n eigenvalues

det(A− λI) = Pn(λ) = λn +
n∑
i=1

piλ
n−i ≡ 0 ⇒ {λ1, λ2, · · · , λn} . (3.34)

For each eigenvalue λk, there is an eigenvector xk which can be obtained by inserting λk into Eq. 3.33

and solving the resulting linear system of equations. Since eigenvectors are only determined up to

an arbitrary multiplicative constant, one component of the eigenvector can be freely chosen and the

remaining n− 1 equations can be solved with the methods presented in the previous chapter.

The numerical determination of regular eigenvalue problems are of great importance in many physical

applications. For instance, the stationary Schrödinger equation is an eigenvalue equation whose eigen-

values are the stationary energies of the system and whose eigenvector correspond to the eigenstates of

the quantum mechanical system. Another example would the normal modes of vibration of a system

48

of coupled masses which can be obtained as the eigenvalues of a dynamical matrix. Mathematically,

the eigenvalues can be obtained from the zeros of the characteristic polynomial. However, such an

approach becomes numerically problematic for large problem sizes. Therefore, a number of numerical

algorithms have been developed which are also applicable for large matrices which may be divided

into two main classes. First, so-called subspace methods which aim at calculating selected eigenvalues

of the problem, and second transformation methods. Here, we will discuss one representative from

each class, namely the power iteration method, and the Jacobi-method.4

3.2.1 Power iteration (Von Mises Method)

The power iteration – or von Mises procedure – is a simple iterative algorithm which leads to the largest

eigenvalue (in magnitude) of a real matrix. A prerequisite for its application is that the eigenvalue

spectrum of the real symmetric (or complex Hermitian) matrix are of the form

|λ1| > |λ2| > · · · > |λn−1| > |λn|. (3.35)

In particular, we require that the largest eigenvalue is not degenerate. In this case, the corresponding

eigenvectors x1,x2, · · · ,xn are linearly independent and any vector v0 ∈ Rn may be written as a

linear combination of these eigenvectors

v(0) =
n∑
i=1

αixi where |α1|+ |α2|+ · · ·+ |αn| 6= 0. (3.36)

We can now use this arbitrary vector v(0) as a starting point for an iteration in which we multiply

v(0) from the left with the matrix A.

v(1) ≡ A · v(0) =
n∑
i=1

αiA · xi =
n∑
i=1

αiλi · xi (3.37)

The last step in the above equation follows from the eigenvalue equation 3.33 of the matrix A. If we

now act on the above equation by repeatedly multiplying from the left with the matrix A, we obtain

v(2) = A · v(1) =
n∑
i=1

αiλiA · xi =
n∑
i=1

αiλ
2
i · xi (3.38)

v(t) = A · v(t−1) =
n∑
i=1

αiλ
t−1
i A · xi =

n∑
i=1

αiλ
t
i · xi (3.39)

4More information can be found in the books by Press et al. [5] and Törnig and Spellucci [6]. Comprehensive lecture
notes on solving large scale eigenvalue problems are given by Arbenz and Kressner [9].

49

Now, because of our assumption 3.35, the first term in the above sums start to dominate for increas-

ing values of t. This means that after a given number of iterations, the vectors v(t) and v(t+1) are

approximately given by

v(t) ≈ α1λ
t
1 · x1 and v(t+1) ≈ α1λ

t+1
1 · x1 (3.40)

Since these are vector equations, we see that for any chosen component i, we have

λ1 ≈
v

(t+1)
i

v
(t)
i

, lim
t→∞

v
(t+1)
i

v
(t)
i

= λ1, lim
t→∞

v(t) ∝ x1. (3.41)

Instead of choosing one arbitrary i one takes the average over all n′ components of the vector v(t) for

which v
(t)
i 6= 0,

λ1 =
1

n′

∑
i

v
(t+1)
i

v
(t)
i

. (3.42)

In many applications, it is not the largest but the smallest eigenvalue which is of primary interest,

for instance, the ground state energy of of a quantum mechanical system. It is easy to see that the

smallest eigenvalue of A is the inverse of the largest eigenvalue of A−1 since we have

A · xi = λixi ⇒ xi = λiA
−1 · xi ⇒ A−1 · xi =

1

λi
xi. (3.43)

So we can simply apply the power iteration method A as described above to the inverse of the matrix

A−1. Instead of calculating the inverse of A explicitly, we can simply rewrite the iterative procedure

3.37–3.39 as

A · v(1) = v(0), v(1) =
n∑
i=1

αiA
−1 · xi =

n∑
i=1

αi
1

λi
· xi (3.44)

A · v(2) = v(1), v(2) =
n∑
i=1

αi
1

λi
A−1 · xi =

n∑
i=1

αi
1

λ2
i

· xi (3.45)

...

A · v(t) = v(t−1), v(t) =
n∑
i=1

αi
1

λt−1
i

A−1 · xi =
n∑
i=1

αi
1

λti
· xi. (3.46)

So at every iteration step, we have to solve a linear system of equations which can be performed quite

efficiently once a LU -factorization of A has been computed before starting the power iteration.

50

Exercise 7. Von Mises Method

Implement the power iteration method to determine the largest and smallest eigenvalue and corresponding

eigenvectors of a real symmetric matrix.

(a) Write a program which implements the Von Mises Method according to Eqs. 3.39 and 3.42. Test

your program with the following symmetric matrices A5.dat and A10.dat in order to compute their

largest eigenvalue and the corresponding eigenvector.

(b) Experiment with different initial vectors v(0) and check whether there is any influence on the resulting

eigenvalue and eigenvector.

(c) Compare your results with those from the eig routine in Matlab or Octave or an equivalent routine

numpy.linalg.eig in Python.

3.2.2 Jacobi-Method

The Jacobi method is the classical method to solve the complete eigenvalue problem of real symmetric

or complex Hermitian matrices leading to all eigenvalues and eigenvectors. It is based on the fact that

any such matrix can be transformed into diagonal form D = dij = λiδij by the application of an

orthogonal (or unitary) transformation matrix U

D = UT ·A ·U . (3.47)

A similarity transform, which does not alter the eigenvalue spectrum of the matrix A, is characterized

by the fact that U is an orthogonal matrix,5 that is

UT = U−1 ⇒ UT ·U = I, (3.48)

where I denotes the identity matrix. It is clear from Eq. 3.47 that the diagonal elements of the diagonal

matrix D are identical to the eigenvalues of A. Multiplication of 3.47 from the left with U also shows

that the columns of U are the corresponding n eigenvectors (u1,u2, · · · ,un)

U =


u11 u12 u13 · · · u1n

u21 u22 u23 · · · u2n

u31 u32 u33 · · · u3n

...
...

un1 un2 un3 · · · unn

 ≡ (u1,u2, · · · ,un) . (3.49)

5We will restrict ourselves to real symmetric matrices. In this case the matrix U is a real, orthogonal matrix. In the
more general case of Hermitian matrices A, the matrix U is a unitary matrix.

51

http://physik.uni-graz.at/~pep/CompOriPhys/Python/A5.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python/A10.dat

Thus, Eq. 3.47 can be written as

A · (u1,u2, · · · ,un) = (λ1u1, λ2u2, · · · , λnun) , (3.50)

which shows that the j-th column of the transformation matrix U corresponds to the j-th eigenvector

of the matrix A with the eigenvalue λj.

The Jacobi method is an iterative algorithm which successively applies similarity transformations with

the goal to finally acquire the desired diagonal form.

A(1) = UT
0 ·A ·U 0

A(2) = UT
1 ·A(1) ·U 1 = UT

1 ·UT
0 ·A ·U 0 ·U 1

...

A(t+1) = UT
t ·A(t) ·U t = UT

t ·UT
t−1 · · ·UT

0 ·A ·U 0 · · ·U t−1 ·U t. (3.51)

These stepwise similarity transformations should have the property that for large t the transformed

matrix approaches diagonal form

lim
t→∞

A(t) = D and lim
t→∞

U 0 ·U 1 · · ·U t−1 ·U t = U . (3.52)

The matrices U t have the form of a general orthogonal rotation matrix which performs a rotation

around the angle ϕ in the ij-plane, that is in a two-dimensional subspace of the of the n-dimensional

space

U t(i, j, ϕ) =



1 0 0 0
. . .

...
...

0 · · · cosϕ · · · − sinϕ · · · 0
...

. . .
...

0 · · · sinϕ · · · cosϕ · · · 0
...

...
. . .

0 0 0 1


. (3.53)

It is easy to show that such a transformation matrix, which is uniquely characterized by the two

indices i and j and the rotation angle ϕ, is indeed an orthogonal matrix. Before we discuss how an

optimal choice for these three parameters can be made, we have a closer look on what such a similarity

transform does to the matrix A.

To this end, we write out the transformation A(t+1) = UT
t ·A(t) · U t component-wise and explicitly

52

take into account the special form of U t from Eq. 3.53,

a
(t+1)
kl =

n∑
m=1

n∑
m′=1

uTkma
(t)
mm′um′l =

n∑
m=1

n∑
m′=1

umkum′la
(t)
mm′ . (3.54)

In case the indices of k and l of the transformed matrix A(t+1) are neither i nor j (the indices

determining the rotation plane), then the transformation matrices reduce to Kronecker deltas and we

have

a
(t+1)
kl =

n∑
m=1

n∑
m′=1

δmkδm′la
(t)
mm′ = a

(t)
kl for (kl) 6= (ij). (3.55)

Thus, the transformation leaves all elements which do not belong to the i-th or j-th row or column,

respectively, unaltered. Similarly, we can use Eq. 3.54 to determine the components of the i-th and

j-th column and row, respectively, leading to the following expressions

a
(t+1)
ki = a

(t)
ki cosϕ+ a

(t)
kj sinϕ for k = 1, · · · , n with k 6= i, j (3.56)

a
(t+1)
kj = a

(t)
kj cosϕ− a(t)

ki sinϕ for k = 1, · · · , n with k 6= i, j (3.57)

a
(t+1)
ii = a

(t)
ii cos2 ϕ+ 2a

(t)
ij cosϕ sinϕ+ a

(t)
jj sin2 ϕ (3.58)

a
(t+1)
jj = a

(t)
jj cos2 ϕ− 2a

(t)
ij cosϕ sinϕ+ a

(t)
ii sin2 ϕ (3.59)

a
(t+1)
ij = a

(t)
ij

(
cos2 ϕ− sin2 ϕ

)
+
(
a

(t)
jj − a

(t)
ii

)
cosϕ sinϕ. (3.60)

Note that the symmetry of the original matrix aij = aji is preserved in the transformation, that is

a
(t+1)
kl = a

(t+1)
lk .

Now, how do we choose a particular index i and j and the rotation angle ϕ? Remember that we intend

to bring the matrix A into a diagonal form by successively applying similarity transforms defined by

the orthogonal matrix 3.53 leading to the component-wise changes listed above. Thus, if we choose

an off-diagonal element a
(t)
ij which is as large as possible in absolute value, |a(t)

ij |, and make sure that

it vanishes after the transformations has been applied, that is a
(t+1)
ij = 0, we are certainly on the right

way. This can be achieved, by setting Eq. 3.60 zero which defines the best rotation angle ϕ

tan 2ϕ =
2a

(t)
ij

a
(t)
ii − a

(t)
jj

(3.61)

ϕ =
π

4
, if a

(t)
ii = a

(t)
jj . (3.62)

It can be shown that with this strategy, the sequence S(t) of sums over the off-diagonal elements is

monotonically decreasing

S(0) > S(1) > · · · > S(t) > S(t+1) > · · · ≥ 0 (3.63)

53

where, the off-diagonal element sum is defined as

S(t) = 2
n−1∑
m=1

n∑
m′=m+1

∣∣∣a(t)
mm′

∣∣∣ . (3.64)

In practice one does not search for the largest element |a(t)
ij | in the whole matrix in order to determine

the indices i and j since this is already a major task for large matrices, but one looks, for instance,

for the first element which is larger than the average over all off-diagonal elements. After succes-

sively applying such Jacobi-rotations, the transformed matrix necessarily approaches diagonal form

since the sum over the off-diagonal elements approaches zero. As a consequence, after the successive

transformations the diagonal elements contain the desired eigenvalues of the matrix.

Last but not least, we can also retrieve the eigenvectors ofA by computing the product of all successive

rotations,

V (t−1) = U 0 ·U 1 · · ·U t−2 ·U t−1. (3.65)

Starting with an identity matrix for U 0, one can show that the application of the rotation matrix

U t(i, j, ϕ) only affects the elements of the i-th and j-th column of U . Thus, we can write for k =

1, · · · , n (
V (t−1) ·U t(i, j, ϕ)

)
ki

= vki cosϕ+ vkj sinϕ (3.66)(
V (t−1) ·U t(i, j, ϕ)

)
kj

= vkj cosϕ− vki sinϕ, (3.67)

and thereby obtain also all eigenvectors as columns of the matrix V (t) in the limit t→∞ where the

off-diagonal elements of the transformed matrix vanish.

Exercise 8. Jacobi Method

Implement the Jacobi method for determining all eigenvalues and eigenvectors of a real symmetric matrix.

(a) Write a subprogram which implements the Jacobi Method according to Eqs. 3.56–3.60, 3.61 and

3.66. Test your program with the following symmetric matrices A5.dat and A10.dat in order to

compute all eigenvalues and the corresponding eigenvectors.

(b) Make a performance test of your Jacobi routine for real, symmetric random matrices for matrix sizes

starting from 10 to 500 in steps of 20. Compare your results and the CPU time with those from the

LAPACK routine dsyev or by using the eig function of Matlab (or Octave) or using an appropriate

function from Python’s NumPy numpy.linalg. Plot the timing results in a double logarithmic plot.

What is the scaling with system size?

54

http://physik.uni-graz.at/~pep/CompOriPhys/Python/A5.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python/A10.dat
http://www.netlib.org/lapack/explore-html/dd/d4c/dsyev_8f.html
http://docs.scipy.org/doc/numpy/reference/routines.linalg.html

3.2.3 Applications in Physics

Normal modes of vibration

One typical application where are vibrational frequencies which can be obtained from the eigenvalues

of a dynamical matrix Dij

Dij =
φij√
MiMj

, (3.68)

where φij is a force constant matrix (the Hessian matrix of second derivatives of the total energy

with respect to atomic displacements), and where Mi and Mj are the atomic masses associated with

coordinate i and j, respectively. The eigenvalues and eigenvectors of Dij are the squares of the eigen-

frequencies of vibration ω and the corresponding eigenmodes ui.

One-dimensional Boundary Value Problems

As another example, we apply the finite difference approach to the solution of the stationary Schrödinger

equation in one dimension [
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (3.69)

where m is the mass of the particle which is trapped in the potential V (x). We assume that the

potential for large |x| approaches ∞, thus the wave function approaches 0 for large |x| leading to the

boundary conditions

lim
|x|→∞

ψ(x) = 0. (3.70)

Such a boundary problem could be solved by integrating the differential equation and applying the

so-called shooting method, we will, however, apply a finite difference approach which lead to a matrix

eigenvalue problem.

To this end, we define an integration interval [a, b] which we discretize by equidistant intervals of

length ∆x = b−a
N

in the following way

xi = a+ ∆x · i. (3.71)

Thus, the integer number i runs from i = 0 to i = N , where x0 = a and xN = b, respectively. Since we

assume hard (that is infinitely high) walls at the boundaries, a and b, the wave functions will vanish

ψ(a) ≡ ψ0 = 0 and ψ(b) ≡ ψN = 0. Using the short notation, ψ(xi) = ψi, we write down a finite

difference expression for the second derivative

ψ′′i =
ψi+1 − 2ψi + ψi−1

(∆x)2 , (3.72)

55

which we insert into the stationary Schrödinger equation 3.69. There are N − 1 unknown function

values ψ1, ψ2, · · · , ψN−1 which can be obtained from the following eigenvalue equation

1
(∆x)2 + V1 − 1

2(∆x)2 0 0 · · · 0

− 1
2(∆x)2

1
(∆x)2 + V2 − 1

2(∆x)2 0 · · · 0

0 − 1
2(∆x)2

1
(∆x)2 + V3 − 1

2(∆x)2 · · · 0
. . .

0 0 0 0 · · · 1
(∆x)2 + VN−1


·


ψ1

ψ2

ψ3

...

ψN−1

 = E


ψ1

ψ2

ψ3

...

ψN−1

 .

(3.73)

Note that we set ~ = m = 1. We end up with a symmetric, tridiagonal matrix whose eigenvalues are

the stationary energy states, and whose eigenvectors constitute the corresponding wave functions on

a finite grid.

Exercise 9. Eigenvalues of the stationary Schrödinger equation

In this exercise, we will apply a finite difference approach to the one-dimensional, stationary Schrödinger

equation [
−1

2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (3.74)

where we have set the particle mass m = 1 and Planck’s constant ~ = 1.

(a) Harmonic oscillator: Set V (x) = x2/2 and numerically determine the eigenvalues and eigenfunctions

by applying the finite difference approach according to Eqs. 3.73. Compare your results with the

analytic solutions. How large do you have to make the interval [−a, a] and how many grid points are

needed to compute the 5 lowest lying eigenvalues with an accuracy better 0.001?

(b) Consider the double-well potential V (x) = −3x2 + x4/2 and compute the 5 lowest lying eigenvalues

and the corresponding normalized eigenvectors, and plot the solutions.

Secular equation of Schrödinger equation

We can solve the stationary Schrödinger equation[
−1

2
∆ + V (r)

]
ψ(r) = Eψ(r), (3.75)

by expanding the solutions for the wave function ψ(r) into a linear combination of known basis

functions φj(r).

ψ(r) =
n∑
j=1

cjφj(r). (3.76)

56

Inserting Eq. 3.76 into 3.75, multiplying from the left with the basis function φ∗i (r), and integrating

over space
∫
d3r yields the so-called secular equation.

[Tij + Vij] cj = ESijcj. (3.77)

Here, Tij and Vij are the matrix elements of the kinetic and potential energy, respectively,

Tij =

∫
d3r φ∗i (r)

(
−1

2
∆

)
φj(r) = 〈i| T̂ |j〉 (3.78)

Vij =

∫
d3r φ∗i (r)V (r)φj(r) = 〈i| V̂ |j〉 (3.79)

(3.80)

and Sij is the overlap matrix

Sij =

∫
d3r φ∗i (r)φj(r) = 〈i| j〉 . (3.81)

Eq. 3.77 reduces to a standard matrix eigenvalue problem for the case when the basis functions are

orthonormal, that is, 〈i| j〉 = δij.

One-dimensional problem

As in Exercise 9, we solve the stationary Schrödinger equation in one dimension[
−1

2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (3.82)

however, not by employing a finite difference approach, but by expanding the wave function into basis

functions for which we choose the eigenfunctions of the particle-in-a-box problem with infinitely high

walls at x = −L
2

and x = +L
2
.

φj(x) =

√
2

L
sin

[
jπ

L

(
x− L

2

)]
, j = 1, 2, · · · , n (3.83)

It is easy to see that the basis functions 3.83 are orthonormal,

Sij =

∫ +L/2

−L/2
dx φi(x)∗φj(x) = δij. (3.84)

57

Also, the matrix elements of the kinetic energy operator are diagonal,

Tij =

∫ +L/2

−L/2
dx φi(x)∗

(
−1

2

d2

dx2

)
φj(x) =

i2π2

2L2
δij. (3.85)

For an harmonic potential V (x) = 1
2
x2, we can evaluate the matrix elements of the potential, Vij,

analytically yielding

Vij =

{
L2

24

(
1− 6

i2π2

)
, i = j

L2

π2

2ij[1+(−1)i+j]
(i−j)2(i+j)2 , i 6= j.

(3.86)

Below, there is a Matlab (octave) implementation which shows that only a few (≈ 10 − 15) basis

functions are sufficient to obtain the first few eigenvalues with high accuracy.

1 L = 10 ; % se t up and s o l v e s e cu l a r equat ion f o r harmonic o s c i l l a t o r

2 compare = [0 . 5 ; 1 . 5 ; 2 . 5 ; 3 . 5 ; 4 . 5] ; nc = length (compare) ; r e l e r r o r = [] ;

3 for n = nc :50 % use up to 50 b a s i s f unc t i on s o f type Eq . (2 . 80)

4 T= [] ;V= [] ;H= [] ;

5 for i = 1 : n

6 for j = 1 : n

7 i f (i == j)

8 T(i , j) = i ˆ2∗pi ˆ2/(2∗Lˆ2) ;

9 V(i , j) = Lˆ2/24∗(1 − 6/(i ˆ2∗pi ˆ2)) ;

10 else

11 T(i , j) = 0 ;

12 V(i , j) = (Lˆ2/pi ˆ2) ∗(2∗ i ∗ j ∗ (1 + (−1) ˆ(i+j))) /((i−j) ˆ2∗(i+j) ˆ2) ;

13 end

14 end

15 end

16 H = T + V;

17 e = eig (H) ;

18 r e l e r r o r (n−nc +1 , :) = real (log ((e (1 : nc) − compare) . / compare)) ;

19 end

20 plot (r e l e r r o r) % p l o t l ogar i thm of r e l a t i v e error o f f i r s t 5 e i g enva l u e s

Similarly, we can also compute the matrix elements for the double-well potential V (x) = −3x2 +x4/2

already treated in Exercise 9. With a little help from Mathematica (secularequation.nb), we find

Vij =


L2(2π5i5(L2−40)−40π3i3(L2−12)+240πiL2)

320π5i5
, i = j

ijL2((−1)i+j+1)(π2i4(L2−12)−2i2((π2j2+24)L2−12π2j2)+π2j4(L2−12)−48j2L2)
π4(i−j)4(i+j)4 , i 6= j.

(3.87)

When used together with the expression 3.85 for the kinetic energy matrix elements, we can obtain

the lowest eigenvalues (and corresponding eigenvectors) of this double-well potential by using again

only a few (10–15) basis functions.

58

http://physik.uni-graz.at/~pep/Lehre/CP2/secularequation.nb

Chapter 4

Interpolation and Least Squares

Approximation

4.1 Interpolation of data

4.1.1 Definition of the problem

Interpolation is a method of constructing new data points within the range of a discrete set of known

data points. For example, suppose we have a table like this, which gives some values (xi, fi) of an

unknown function y = f(x).

xi fi

0 0.0

1 0.8415

2 0.9093

3 0.1411

4 -0.7568

5 -0.9589

6 -0.2794

Interpolation provides a means of estimating the function at intermediate points, such as x = 2.5.

Let us assume, we have a set of n points (xi, fi) where we regard the points xi as ordered but not

necessarily equally spaced as in the example above. An interpolating function I(x) is defined by the

following requirement

I(xi) = fi. (4.1)

Thus, the function I(x) should pass exactly through all given points (xi, fi). Moreover, the function

I(x) should connect, that is interpolate between, the given points as smoothly as possible. In this

59

lecture, we will discuss two important interpolation schemes. In Sec. 4.1.2, we will present the piecewise

interpolation by cubic polynomials, so-called cubic splines, while in Sec. 4.1.3 we will discuss the

Fourier interpolation of data which is most efficiently implemented by using the fast Fourier transform

(FFT) algorithm.

4.1.2 Spline interpolation

The starting point for the so-called cubic spline1 interpolations are polynomials of degree 3

P i(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3, (4.2)

where the index i means that the polynomial P i(x) is only valid in the interval [xi, xi+1]. Thus, the

interpolating function I(x) consists of n− 1 polynomials in the following manner

I(x) =


P 1(x) for x ∈ [x1, x2]

P 2(x) for x ∈ [x2, x3]
...

P n−1(x) for x ∈ [xn−1, xn]

(4.3)

In total, there are 4(n − 1) polynomial coefficients ai, bi, ci and di which are determined by the

following conditions

P i(xi) = fi, for i = 1, · · · , n− 1 (4.4)

P i(xi+1) = fi+1, for i = 1, · · · , n− 1 (4.5)

d

dx
P i(xi+1) =

d

dx
P i+1(xi+1), for i = 1, · · · , n− 2 (4.6)

d2

dx2
P i(xi+1) =

d2

dx2
P i+1(xi+1), for i = 1, · · · , n− 2 (4.7)

Eqs. 4.4 and 4.5 are necessary conditions for I(x) being an interpolation of the set of points (xi, fi),

while Eqs. 4.6 and 4.7, demanding the first and second derivatives of adjacent polynomials to be equal

at a point xi+1, are the characteristic features of a cubic spline interpolation. Note that Eqs. 4.4–4.7

constitute a set of only 4n− 6 equations while there are 2 more, that is 4n− 4, unknown polynomial

coefficients. In order to solve the, otherwise under-determined, system of equations two more conditions

on the polynomials must be introduced. In so-called natural splines, these two conditions are expressed

by demanding the second derivative of the interpolating function to vanish at the first and last points

1Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points
(”knots”). These were used to make technical drawings for shipbuilding and construction by hand

60

x1 and xn, respectively
d2

dx2
P 1(x1) = 0,

d2

dx2
P n−1(xn) = 0. (4.8)

Note, however, that this choice is somewhat arbitrary and could be replaced by another condition

which may be more suitable for a given problem.

Eqs. 4.4–4.7 together with 4.8 constitute a set of 4n − 4 linear equations for the 4n − 4 unknowns,

the polynomial coefficients ai, bi, ci and di. It can be shown [4, 5] that this set of linear equations can

be cast in the form of a tridiagonal matrix which can be solved by using the methods described in

Sec. 3.1.2. When introducing the abbreviations hi = xi+1 − xi and ri = fi+1 − fi, the tridiagonal set

of (n− 1) equations for the coefficients ci is of the following form

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3ri
hi
− 3ri−1

hi−1

, for i = 2, · · · , n− 1. (4.9)

Owing to the requirement 4.8, we have c1 = 0 and cn−1 = 0, and because of 4.4 ai = fi. Finally, the

remaining coefficients bi and di can be shown to be given by

bi =
ri
hi
− hi

3
(ci+1 + 2ci) (4.10)

di =
1

3hi
(ci+1 − ci) . (4.11)

Exercise 10. Spline interpolation

In this exercise, we will implement Eqs. 4.9–4.11 to determine the cubic spline polynomial coefficients ai,

bi, ci and di for a given set of n data points [xi, fi].

(a) Implement Eqs. 4.9–4.11 by solving the tridiagonal linear system of equations. For this purpose, make

use of the routines already developed in Exercise 5 (a).

(b) Apply your program to find the spline interpolation through the following five points: xi =

{1.0, 1.6, 1.9, 2.3, 2.7} and fi = {0.2,−0.1,−0.6, 0.0, 0.5}. Plot the interpolating function I(x) on

a dense mesh (≈ 100 equidistant grid points) in the interval [1.0, 2.7] together with the original data

points [xi, fi]. Plot also the first and second derivatives of the interpolating function I ′(x) and I ′′(x),

respectively, on the same dense mesh.

61

4.1.3 Fourier interpolation

A trigonometric, or Fourier, interpolation of data points is based on the trigonometric functions sin kx

and cos kx. Written as complex exponentials, the interpolation function I(x) has thus the form

I(x) =
1

n

n−1∑
k=0

hke
−iαkx (4.12)

Here, we assume the data points are equally spaced by the width ∆ = xj+1 − xj

xj = x0 + j∆, (4.13)

and further consider the n given data points [xj, fj] to be periodically replicated with the period n ·∆,

we also demand for the interpolating function

I(x+ n ·∆) = I(x). (4.14)

The latter condition determines the constant α

α =
2π

n∆
. (4.15)

Thus, the interpolating function takes the form

I(x) =
1

n

n−1∑
k=0

hke
−i2πkx/n∆. (4.16)

When applying the interpolating condition 4.1 and setting x0 = 0, thus xj = j∆, we obtain the set of

n linear equations for the unknown coefficients hk as

fj =
1

n

n−1∑
k=0

hke
−i2πkxj/n∆ =

1

n

n−1∑
k=0

hke
−i2πkj/n. (4.17)

Equation 4.17 constitutes the discrete Fourier transform (DFT) of the n data points [xj = j∆|fj,
and hk are the Fourier coefficients of the data. Of course, the linear system of equations 4.17 could

be solved by the standard methods discussed in Sec. 3.1.2. However, due to the orthogonality relation

of the basis functions, a direct inversion of 4.17 is possible. This can be achieved by multiplying both

sides of Eq. 4.17 with ei2πk
′j/n and summing over

∑n−1
j=0 · · · . This leads to a closed form for the Fourier

62

coefficients hk:

fj =
1

n

n−1∑
k=0

hke
−i2πkj/n

∣∣∣∣∣
n−1∑
j=0

ei2πk
′j/n

n−1∑
j=0

fje
i2πk′j/n =

1

n

n−1∑
k=0

hk

n−1∑
j=0

ei2π(k′−k)j/n

︸ ︷︷ ︸
=n·δk,k′

n−1∑
j=0

fje
i2πk′j/n = hk′ . (4.18)

An important consequence of 4.17 is that the Fourier coefficients are periodic,

hk+n = hk, (4.19)

which is easy to see by replacing k by k + n in Eq. 4.18. In practical applications, the numerical

data points fj are often real numbers. In such a case, the corresponding Fourier coefficients have the

following property

hk = h∗n−k for fj ∈ R, (4.20)

where h∗n−k denotes the complex conjugate of hn−k. This relation can be easily derived from 4.18.

The numerical complexity of Eq. 4.18 is of the order n2 since for each of the n Fourier coefficients hk′ a

sum over n terms has to be performed. For large n, this results in a time-consuming procedure which

can be considerably reduced by employing a recursive procedure known as the fast Fourier transform

algorithm.

Fast Fourier Transform (FFT)

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT)

of a sequence (Eq. 4.18), or its inverse (Eq. 4.17). The FFT algorithm reduces the complexity of

computing the DFT fromO(n2), which arises if one simply applies the definition of DFT, toO(n log n),

where n is the data size. Fast Fourier transforms are widely used for many applications in engineering,

science, and mathematics. The basic ideas were popularized in 1965. FFT has been described as ”the

most important numerical algorithm of our lifetime” 2 and has been included in Top 10 Algorithms

of the 20th Century by the IEEE journal Computing in Science & Engineering.3

2See article by Gilbert Strang in AmericanScientist
3Computing in Science & Engineering (Volume:2,Issue:1)

63

http://www.jstor.org/stable/29775194
http://dx.doi.org/10.1109/MCISE.2000.814652

Here, we will only illustrate the main working principle of the so-called Cooley-Tukey algorithm. In

its most simple form, the algorithm works best if the data size n is a power of 2, thus n = 2k, though

more general forms of algorithm have also been developed. In our example, we choose n = 23 = 8 and

start with the sum of Eq. 4.18 which we split into two parts

hk =
7∑
j=0

fje
i·2πkj/8 =

6∑
j=0(2)

fje
i·2πkj/8 +

7∑
j=1(2)

fje
i·2πkj/8. (4.21)

The first sum runs over the even indices i = 0, 2, 4, 6, while the second sum contains the odd indices

i = 1, 3, 5, 7. When changing the summation index of the first sum as j → 2j, and for the second sum

as j → 2j + 1, we obtain

hk =
3∑
j=0

f2je
i·2πkj/4 + ei·2πk/8

3∑
j=0

f2j+1e
i·2πkj/4. (4.22)

In order to make the algorithm appear more transparent, we simplify the notation of the above result

by introducing the abbreviation Wn = exp(i · 2π/n). This leads to

hk =
7∑
j=0

fjW
j·k
8 =

3∑
j=0

f2jW
j·k
4︸ ︷︷ ︸

h0
k

+W k
8

3∑
j=0

f2j+1W
j·k
4︸ ︷︷ ︸

h1
k

. (4.23)

Because the quantities h0
k and h1

k introduced above both represent discrete Fourier transforms for a

set of data of length n
2

= 4, they are periodic with the period n
2
,

h0
k+n

2
= h0

k and h1
k+n

2
= h1

k. (4.24)

As a consequence, the numbers h0
k and h1

k only have to be computed for 0 ≤ k < n
2
, according to

hk = h0
k +W k

8 h
1
k for 0 ≤ k <

n

2
(4.25)

thus for half of values, while for the remaining indices the following relation is employed

hk+n
2

= h0
k −W k

8 h
1
k for

n

2
≤ k < n, (4.26)

thereby reusing already computed quantities.

The procedure of splitting the Fourier sum into contributions from even and odd indices, respectively,

which was the starting point for the arguments above, can now be repeated recursively also for h0
k and

64

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

h1
k. Thus, the Fourier sums h0

k and h1
k can be split once more by applying the analogous procedure as

follows

h0
k =

1∑
j=0

f4jW
j·k
2︸ ︷︷ ︸

h00
k

+W k
4

1∑
j=0

f4j+2W
j·k
2︸ ︷︷ ︸

h01
k

(4.27)

h1
k =

1∑
j=0

f4j+1W
j·k
2︸ ︷︷ ︸

h10
k

+W k
4

1∑
j=0

f4j+3W
j·k
2︸ ︷︷ ︸

h11
k

. (4.28)

Finally, the four quantities h00
k , h01

k , h10
k , and h11

k are obtained from

h00
k = f0 + f4W

k
2 , h01

k = f2 + f6W
k
2 , h10

k = f1 + f5W
k
2 , h11

k = f3 + f7W
k
2 (4.29)

Thus, we have reduced the calculation of the Fourier coefficients to the level of the function values fk.

Starting from 4.29, the desired Fourier coefficient hk can be obtained step by step. As already men-

tioned above, the great advantage of this FFT algorithm is the dramatic reduction of computational

time for large data sizes n. Compared to the straight-forward evaluation of Eq. 4.18 which requires n2

operations, the FFT scheme according to Eqs. 4.23–4.29 can be shown to need only n · lnn operations.

Already for moderate amount of data points, for instance n = 10000, the FFT leads to a reduction in

computing time in the order of 1000.

Exercise 11. Fast Fourier Transform

In this exercise, we will apply a Fast Fourier Transform (FFT) algorithm to analyze the solar cycle of our

Sun by computing the discrete Fourier transform of the measured number of sunspots from the year 1749

until today. The data file can be downloaded from here: SN_m_tot_V2.0.txta

(a) Read in and plot the data from the file SN_m_tot_V2.0.txt. Note column 3 is the time in years

and column 4 contains the sunspot number.

(b) Compute the discrete Fourier transform the data using the FFT algorithm. For this purpose, you can

use an appropriate library routine as available in Matlab / Octave / Python / C / ...

(c) Plot and interpret the Fourier transformed data.

aThis file contains the monthly mean total sunspot number from 01/1749 – now and has been downloaded from
http://www.sidc.be/silso/datafiles

Note that the FFT algorithm can be straight-forwardly extended from 1 dimension (see e.g. exerciseFFT1.

65

http://physik.uni-graz.at/~pep/CompOriPhys/Python/SN_m_tot_V2.0.txt
http://physik.uni-graz.at/~pep/CompOriPhys/Python/SN_m_tot_V2.0.txt
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT1.py

py or exerciseFFT_sound.py with Purple_Haze.wav as sound input file) to data sets of two or more

dimensions, for instance some set of data ψ(xi, yj) may be spatially Fourier transformed to yield the dis-

crete Fourier transform ψ̃(kx, ky). An simple demonstration for can be found here: exerciseFFT2.py

4.2 Least-squares approximation of data

0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(
x
)

Interpolation of data

data points

spline interpolation

0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

f(
x
)

fit = -1.916 + 0.966 x

Fitting of data

data points

linear fit

Figure 4.1: Illustration of the difference between interpolating data (left panel) and fitting data (right
panel).

The difference between interpolating a set data and fitting a function to a set of data is illustrated in

Fig. 4.1.4 The figure shows a set of data points (xk; yk) which may represent measurements. The cubic

spline interpolation shown as red line in the left panel passes through every data point, but does not

4The plot shown in Fig. 4.1 has been created with the Python program interp_vs_fit.py

66

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT_sound.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Purple_Haze.wav
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exerciseFFT2.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/interp_vs_fit.py

capture the main trend of the data points. In contrast, the linear fit shown as blue line in the right

panel of the figure follows the main trend of the data points, but does not necessarily pass exactly

through the data points. Rather the two parameters of the straight line y = kx+ d, namely the slope

k and the constant offset d, are determined by requiring the best possible fit of a model function, here

y = kx + d, to the data points. The model parameters k and d are determined such the sum of the

squared differences between the model function and the data points acquires a minimum. This process

is referred to as least squares approximation of data and will be discussed in this section.

In numerous applications in physics, one seeks to describe a set of n data points (xk; yk), either from

a measurement or from a calculation, by a model function f(xk; {aj}). The model function contains

m fit parameters a1, a2, · · · am which are to be determined in such a way that

χ2 =
n∑
k=1

wk [yk − f(xk; {aj})]2 −→ min (4.30)

This is referred to as a least squares fit problem and the quantity χ2 (chi-squared) is the sum of the

squared differences between the data values yk and the values of the model function at the point xk.

The quantities wk are weights indicating the relevance of a certain data point (xk; yk) and are given

by the inverse square of the standard deviation σk of the measurement at the point yk [3]

wk =
1

σ2
k

(4.31)

While according to Eq. 4.30 the best fit parameters a1, a2, · · · am can be determined by requiring

∂(χ2)

∂aj
= 0, (4.32)

the statistical uncertainties in the fit parameters, denoted as σai , are derived from the so-called normal

matrix Nij, which is computed from the second partial derivatives of χ2 with respect to the model

parameters [4]

Nij =
1

2

∂2(χ2)

∂ai∂aj
. (4.33)

The matrix inverse of Nij is called the covariance matrix

C = N−1. (4.34)

Its diagonal elements are the squares of the standard deviations of the fit parameters

σai =
√
Cii, (4.35)

67

and its off-diagonal elements contain information about how strongly the model parameter ai is

correlated with the model parameter aj,

rij =
Cij√
CiiCjj

. (4.36)

The correlation coefficients rij are in the range between [−1,+1], where values close to 0 indicate no

correlation, while values approaching either +1 or −1 indicate a significant correlation between the

model parameters.

In terms of model functions, we must distinguish between two different cases: (i) the function f(x; {aj})
is a linear function of the parameters {aj}, and, (ii), the function f(x; {aj}) is nonlinear in its

parameters {aj}. An example for a linear model function would be

f(x; a1, a2, a3) = a1 + a2x
2 + a3e

x,

while an example of a non-linear model function would be the following expression

f(x; a1, a2, a3) = a1 sin(a2x− a3)

In the following two subsections, we will discuss numerical methods for these two types of model

functions.

4.2.1 Linear model functions

First, we restrict ourselves to the linear fit problem since in this case the requirement of the minimiza-

tion of the least squares sum χ2 leads to a system of linear equations which can be solved by methods

presented in the previous sections.

In the linear case, we can always express the model function f(xk; {αj}) as

f(x; {aj}) =
m∑
j=1

ajϕj(x) = a1ϕ1(x) + a2ϕ2(x) + · · · amϕm(x), (4.37)

where ϕj(x) are linearly independent basis functions. Insertion into Eq. 4.30 and requiring that ∂χ2

∂aj
= 0

leads to a system of linear equations for the unknown fit parameters aj

M · a = β. (4.38)

Here, the coefficient matrix M and the inhomogeneous vector β are given by the following expression

68

[3]

Mij =
n∑
k=1

wkϕi(xk)ϕj(xk), (4.39)

βi =
n∑
k=1

wkykϕi(xk). (4.40)

Note that k runs over all n data points while the size of the matrix Mij is given by the number of fit

parameters m. For linear model functions, the calculation of the normal matrix is also easy since it is

identical to the matrix M defined above

Nij =
1

2

∂2(χ2)

∂ai∂aj
=

n∑
k=1

wkϕi(xk)ϕj(xk) ≡Mij. (4.41)

Exercise 12. Linear fit problem

At low temperatures close to the absolute zero (T = 0 K), the specific heat cV of a metal as a function of

temperature T can be described by the following relationship

cV (T) = γT + αT 3, (4.42)

where α and γ are material-specific constants. The term ∼ T arises from the specific heat of the conduction

electrons, while the ∼ T 3 term is due to lattice vibrations of the atomic nuclei (phonons).

(a) Read in and plot the specific heat data of a silver sample from the data file exercise12.dat. The

first column contains the temperature T in Kelvin, the second column is cV in mJ/(mol K), and the

third column is the standard deviation σcV of the specific heat measurement.

(b) Implement the least squares fitting procedure for a linear model function according to Eqs. 4.38–4.41.

(c) Use your function from (b) to fit the function 4.42 to the data, determine the best fit parameters α

and γ, estimate their their standard deviations using Eq. 4.35, and plot the best fit function together

with the data points.

69

http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise12.dat

4.2.2 Nonlinear model functions

When the model function is not a linear function in all model parameters ai, we encounter a non-linear

least-squares problem. For instance, consider the model function

f(x; a1, a2, a3) = a1
1

a3

√
2π

exp

{
−1

2

(
x− a2

a3

)2
}
, (4.43)

which is a Gaussian normal distribution curve where the fit parameters a1, a2, and a3 are the height,

mean and standard deviation, respectively. The condition for a linear model function can be formulated

as
∂2f

∂ai∂aj
= 0 (for a linear model function), (4.44)

which is clearly satisfied by the linear model functions used in the previous section but not by the

function defined in Eq. 4.43. As a consequence of ∂2f
∂ai∂aj

6= 0 for a non-linear model function, the

least-squares condition
∂(χ2)

∂ai
= 0,

no longer leads to a linear system of equations, but to a nonlinear system of equations. In other words,

the goal is to find the minimum of the non-linear function χ2(a1, a2, · · · am)→ min.

There are a number of numerical methods which have been designed to solve such a minimization

problem. Common to all methods is that the search for the minimum is an iterative one with the need

to specify an initial guess for the fitting parameters. In this lecture, we will only briefly discuss the

so-called Levenberg-Marquardt algorithm (LMA) which is commonly used in the context of non-linear

least squares problems [5]. It must be noted that, the LMA finds only a local minimum, which is not

necessarily the global minimum. The LMA interpolates between the Gauss-Newton algorithm (GNA)

and the method of gradient descent. The LMA is more robust than the GNA, which means that in

many cases it finds a solution even if the initial guess for the model parameters starts very far off the

final minimum.

Starting from an initial a0 = (a0
1, a

0
2, · · · a0

m) for the m model parameters, at the next iteration step,

the sum of least squares χ2 is evaluated at a somewhat different set of model parameters a = a0 + δa

by approximating the model function by a Taylor-polynomial up to first order

f(x;a) ≈ f(x;a0) +
m∑
l=1

(
∂f(x;a)

∂al

)
a=a0

· (al − a0
l). (4.45)

70

This approximation is then used to evaluate χ2 which according to Eq. 4.30 reads

χ2 =
n∑
k=1

wk

yk − f(xk;a
0)︸ ︷︷ ︸

≡fk

−
m∑
l=1

(
∂f(xk;a)

∂al

)
a=a0︸ ︷︷ ︸

≡dfk,l

·(al − a0
l)


2

. (4.46)

In analogy to what we have done in case of a linear model function, we demand that ∂(χ2)
∂aj

= 0, which

leads to
∂(χ2)

∂aj
= −2

n∑
k=1

wk

[
yk − fk −

m∑
l=1

dfk,l(al − a0
l)

]
· dfk,j = 0. (4.47)

Due to the linearization which we have achieved through the linear approximation 4.45, Eq. 4.47 is a

linear system of equations which may be written in the form

M · δa = β, (4.48)

where the coefficient matrixM and the inhomogeneous vector β are given by the following expressions

Mij =
n∑
k=1

wkdfk,idfk,j (4.49)

βi =
n∑
k=1

wk(yk − fk)dfk,i. (4.50)

The solutions δa of 4.48 can be used to obtain an improved vector of model parameters starting from

the initial guess

a1 = a0 + δa. (4.51)

With this new vector a1 one could update the quantities fk and dfk,l defined above and iterate until

convergence is reach. Such an algorithm is referred to as the Gauss-Newton method. It is problematic

because its convergence to a local minimum of χ2 is not guaranteed and may depend sensitively on the

starting guess a0. In order to overcome these difficulties Levenberg and Marquardt have suggested a

modification of the Gauss-Newton procedure in the following way. Instead of solving the linear system

of equations 4.48, the following linear equation system is solved

(M + λD) · δa = β. (4.52)

Here D is a diagonal matrix whose diagonal entries Dii are equal to the diagonal entries of M . The

quantity λ is a parameter which governs the speed of the convergence. If we set λ = 0, the Levenberg-

Marquard algorithm reduces to the Gauss-Newton method with its known convergence problems.

71

However, when setting λ to a finite, positive value, it can be shown that this leads to a reduction in

the resulting step size δa for a given iteration. A possible strategy to choose an appropriate value for

λ in the course of the iteration would be the following: assume, at the t-th iteration step, the sum of

least squares is denoted as χ2
t and the subsequent iteration leads to a sum of least squares χ2

t+1. If

χ2
t+1 > χ2

t , (4.53)

thus, χ turns out to increase during the iteration, the t-th iteration step is repeated with an increased

λ. If, on the other hand, it turns out that the

χ2
t+1 < χ2

t , (4.54)

the t-th iteration step can be regarded as successful and the iteration can be proceed by updating

4.49 and 4.50 and solving for Eq. 4.52. In order to speed up the convergence, the value of λ is reduced

by a predefined factor after each successful iteration step. It turns out that the Levenberg-Marquard

algorithm is indeed a stable algorithm that leads to the desired minimum of χ2 largely independent of

the initial guess for the model parameters. Therefore this algorithm has been implemented in many

program packages for non-linear curve fitting.

Exercise 13. Non-linear fit problem

We consider the radio-active decay of two nuclear species A and B. Initially at time t = 0, there are NA

nuclei of type A and NB nuclei of type B with decay constants λA and λB, respectively. The total number

of nuclei as a function of time t is thus given by

N(t) = NAe
−λAt +NBe

−λBt. (4.55)

The total activity, A, is the number of decays per unit time of the radioactive sample, and is given by

A(t) = −dN
dt

= λANAe
−λAt + λBNBe

−λBt. (4.56)

(a) Read in and plot the data from the data file exercise13.dat. The first column contains the time

t in minutes, the second column the total activity A, and the third column is the standard deviation

σA of the activity.

(b) Fit the non-linear model function Eq. 4.56 with the four model parameters NA, NB, λA, and λB to the

data from exercise13.dat and determine the best fit parameters as well as their respective standard

deviations. For this purpose you may use, for instance, the function scipy.optimize.curve_fit

from Python or similar functions implemented in Matlab or Mathematica.

72

http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise13.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise13.dat
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Chapter 5

Numerical Treatment of Differential

Equations

Solving differential equations by numerical methods is one of the most important and developed areas

of computational physics. This arises from the fact that many problems in physics and engineering

are expressed as differential equations or as a set of differential equations. Fundamentally, we must

distinguish between ordinary differential equations, that is the desired function(s) depend on one

independent variable, and partial differential equations, where the solution is a function several in-

dependent variables. In these lecture notes, we will mainly focus on solution methods for ordinary

differential equations (Sec. 5.1), and only briefly touch the topic of partial differential equations by

applying a finite difference approach in Sec. 5.2.

5.1 Ordinary differential equations

In the following we will only deal with so-called explicit ordinary differential equations, that is, dif-

ferential equations which can be expressed as

y′(x) = f(x; y(x)). (5.1)

An example for an implicit differential equation - which will not be treated here - would be

y′(x) + ln y′(x) = 1.

Eq. 5.1 is a first order differential equation, and in the following we will only deal with (coupled)

systems of first order differential equations. This is no restriction since any higher order differential

73

equation can be rewritten as a system of first-order differential equations. Consider, for instance, the

following differential equation of n-th order

y(n) = F (x; y, y′, y′′, · · · , y(n−1)).

We can reformulate this equation as the following set of coupled first-order differential equations by

introducing a set of n unknown functions (y1, y2, · · · , yn) which are defined by

y1(x) ≡ y(x), y2(x) ≡ y′(x), y3(x) ≡ y′′(x), · · · , yn(x) ≡ y(n−1)(x).

Thus, we obtain the following set of n equations

y′1 = y2 ≡ f1(x; y1, y2, · · · , yn)

y′2 = y3 ≡ f2(x; y1, y2, · · · , yn)
...

y′n−1 = yn ≡ fn−1(x; y1, y2, · · · , yn)

y′n = F (x; y1, y2, · · · , yn) ≡ fn(x; y1, y2, · · · , yn). (5.2)

When introducing a vector notation for the unknown function y ≡ (y1, y2, · · · , yn), its first derivatives,

y′ ≡ (y′1, y
′
2, · · · , y′n), and the functions f = (f1, f2, · · · , fn) we can write this set of equation in a

compact notation

y′ = f(x;y). (5.3)

In order to completely characterize the differential equation of type 5.3, it has to be complemented by n

integration constants. In contrast to analytical solution methods, any numerical method naturally does

not lead to a generic solution with general integration constants. Rather, these integration constants

have to be defined before the numerical solution method can be started. Here, we distinguish between

initial value problems and boundary value problems which will be discussed in Secs. 5.1.1 and 5.1.2,

respectively. These two types of problems ask for quite distinct numerical approaches.

5.1.1 Initial value problems

To simplify the notation for the following discussion, we will assume a single first order differential

equation of the form y′(t) = f(t; y(t)) and the initial condition y(0) = y0. Note that we have denoted

the independent variable now t indicating a time variable which represents a common case. Also note

that the generalization of the subsequent discussion to a set of differential equations y′ = f(t;y) with

the initial condition y(0) = y0 is straight forward.

74

Simple integrators

We start by introducing the best-known simple integration methods for initial value problems, which

– as we will shortly learn – however suffer from poor accuracy. We discretize the time coordinate t

via the relation tn = t0 + n∆t and define yn ≡ y(tn) and fn ≡ f(tn, yn) as we have done previously

(Chap. 2). Thus, we can write the differential equation at the discrete times tn as

ẏn = f(tn, yn) (5.4)

Integrating both sides of 5.4 over the time interval tn, tn+1 gives

yn+1 = yn +

∫ tn+1

tn

dt′ f [t′, y(t′)]. (5.5)

Note that Eq. 5.5 is still exact and will serve as the starting point for our discussion. We can approx-

imate the integral appearing in 5.5 in various ways:

(i) The forward rectangular rule,
∫ tn+1

tn
f [t′, y(t′)]dt′ ≈ f(tn, yn)∆t, gives rise to the explicit Euler or

forward Euler method

yn+1 = yn + f(tn, yn)∆t+O(∆t2) (5.6)

(ii) The backward rectangular rule,
∫ tn+1

tn
f [t′, y(t′)]dt′ ≈ f(tn+1, yn+1)∆t, gives rise to the implicit

Euler or backward Euler method

yn+1 = yn + f(tn+1, yn+1)∆t+O(∆t2) (5.7)

Note that here in order to compute the function yn+1 at time a step tn+1 one has to solve Eq. 5.7

numerically for yn+1.

(iii) The central rectangular rule,
∫ tn+1

tn
f [t′, y(t′)]dt′ ≈ f(tn+ 1

2
, yn+ 1

2
)∆t, gives rise to the so-called

leap frog or Störmer-Verlet method, which can be written in the form

yn+1 = yn−1 + 2f(tn, yn)∆t+O(∆t3) (5.8)

Note that in contrast to methods (i) and (ii) which are one-step methods, the leap frog method

is a two-step method: in order to obtain the function at time tn+1 function values at the two

previous times steps tn and tn−1 are required. Also note that the truncation error of the method

is O(∆t3).

(iv) According to Eq. 2.4, the trapezoidal rule,
∫ tn+1

tn
f [t′, y(t′)]dt′ ≈ ∆t

2
[f(tn, yn)+f(tn+1, yn+1)], gives

rise to the so-called trapezoidal method or Crank-Nicholson method, which can be written in the

75

form

yn+1 = yn +
∆t

2
[f(tn, yn) + f(tn+1, yn+1)] +O(∆t3) (5.9)

Similar to the implicit Euler scheme, The Crank-Nicholson method is also an implicit method

which has to be solved for yn+1.

Exercise 14. Kepler problem – part I

We consider the motion of a planet around the sun in the xy-plane which according to the Newtonian

equations of motion as described by the following coupled set of second order differential equations

ẍ = −γ x

(x2 + y2)
3
2

(5.10)

ÿ = −γ y

(x2 + y2)
3
2

. (5.11)

Here γ is the product of Newton’s gravitational constant G and the mass of the sun M which has the

value

γ = 4π2(AU)2(yr)−2

when using astronomical units, that is 1 AU = 149 597 870 700 meters (the average distance between sun

and earth) and 1 yr = 8760× 3600 seconds. As initial conditions we take

x(0) = 1, y(0) = 0, ẋ(0) = 0, ẏ(0) = 2π. (5.12)

(a) Rewrite Eqs. 5.10 and 5.11 as a set of first order differential equations according to Eq. 5.3.

(b) Implement the explicit Euler scheme (i) and the leap frog scheme (iii) and numerically solve Eqs. 5.10

and 5.11 with the initial condition 5.12 starting from t0 = 0 to t = 5 years.

(c) For the various integration schemes, how small do you have to choose the time step ∆t to obtain

a stable orbit? What happens if you choose a too large time step? Hint: The exact solution for the

given initial conditions is a circular motion with radius r = 1.

(d) Monitor also the total energy E(t) during the calculation. Is it conserved as it should be?

E(t) =
1

2
(ẋ2 + ẏ2)− γ√

x2 + y2
. (5.13)

There are various strategies on how to improve the simple integration schemes discussed above. In

this lecture, we will only discuss the so-called Runge-Kutta methods. Further information can, for

instance, be found in Ref. [3].

76

Runge-Kutta methods

The local accuracy of an integrator is measured by how high terms are matched with the Taylor

expansion of the solution. For instance, the explicit Euler method 5.6 is first-order accurate, so that

errors occur one order higher starting at powers of O(∆t2). The idea of Runge-Kutta methods is to

take successive (weighted) explicit Euler steps to approximate a Taylor series. In this way function

evaluations (and not derivatives) are used. For example, consider the one-step formulation of the

midpoint method

k1 = f(tn, yn), k2 = f

(
tn +

1

2
∆t, yn +

1

2
∆tk1

)
, yn+1 = yn + ∆t k2. (5.14)

We compare Eq. 5.14 with the Taylor expansion

yn+1 = yn + ẏn∆t+
1

2
ÿn∆t2 +O(∆t3)

= yn + f(tn, yn)∆t+
1

2

d

dt
f(t, y)

∣∣∣∣
tn,yn

∆t2 +O(∆t3)

= yn + f(tn, yn)∆t+

[
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

]
∆t2

2
+O(∆t3), (5.15)

where we have used the differential equation ẏ = f(t, y). When we also compute the Taylor expansion

of the term k2 of Eq. 5.14 up to linear order in ∆

k2 = f

(
tn +

1

2
∆t, yn +

1

2
∆tk1

)
= f(tn, yn) +

∂f

∂t

1

2
∆t+

∂f

∂y

1

2
∆tf(tn, yn), (5.16)

and insert it into Eq. 5.14, we obtain

yn+1 = yn + ∆t k2

= yn + f(tn, yn)∆t+

[
∂f

∂t
+
∂f

∂y
f(tn, yn)

]
∆t2

2
+O(∆t3). (5.17)

Thus, we see that the midpoint method Eq. 5.14, which is an explicit Runge-Kutta method of stage

2, agrees with the Taylor expansion 5.15 up to second order in the integration step ∆t.

The family of higher-stage explicit Runge-Kutta methods is a generalization of this midpoint method.

A Runge-Kutta method of stage s is defined by the following set of equations:

yn+1 = yn + ∆t
s∑
i=1

biki, (5.18)

77

where

k1 = f(tn, yn) (5.19)

k2 = f(tn + c2∆t, yn + ∆t(a21k1)) (5.20)

k3 = f(tn + c3∆t, yn + ∆t(a31k1 + a32k2)) (5.21)
...

ks = f(tn + cs∆t, yn + ∆t(as1k1 + as2k2 + · · ·+ as,s−1ks−1)). (5.22)

To specify a particular method, one needs to provide the integer s (the number of stages), and the

coefficients aij (for 1 ≤ j < i ≤ s), bi (for i = 1, 2, · · · , s) and ci (for i = 2, 3, · · · , s). The matrix aij

is called the Runge-Kutta matrix, while the bi and ci are known as the weights and the nodes. These

data are usually arranged in a mnemonic device, known as a Butcher tableau (after John C. Butcher).

0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

The Runge-Kutta method is consistent if

i−1∑
j=1

aij = ci for i = 2, . . . , s. (5.23)

There are also accompanying constraints if one requires the method to have a certain order p, meaning

that the local truncation error is O(∆tp+1). These can be derived from the definition of the truncation

error of a Taylor expansion as demonstrated above for the midpoint method. For example, a two-stage

method (s = 2) has order p = 2 if b1 +b2 = 1, b2c2 = 1/2, and a21 = c2. Thus, we see that the midpoint

method defined in Eq. 5.14 indeed fulfils these conditions and is characterized by the Butcher tableau

0

1/2 1/2

0 1

The classical RK4 method

One of the most popular members of the family of Runge-Kutta methods is often referred to as RK4,

or the ”classical Runge-Kutta method” or simply as ”the Runge-Kutta method”. It is a Runge-Kutta

78

method of stage s = 4 meaning that the local truncation error is on the order of O(∆t5), while the

total accumulated error for n steps is of order O(∆t4). It is characterized by the following Butcher

tableau

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

Thus, according to the general formulas 5.18–5.22, the RK4 method is given by the following set of

equations [3]

yn+1 = yn + ∆t
6

(k1 + 2k2 + 2k3 + k4) (5.24)

k1 = f(tn, yn) (5.25)

k2 = f(tn + ∆t
2
, yn + ∆t

2
k1) (5.26)

k3 = f(tn + ∆t
2
, yn + ∆t

2
k2) (5.27)

k4 = f(tn + ∆t, yn + ∆tk3). (5.28)

Exercise 15. Kepler problem – Runge-Kutta

We return to the Kepler problem of Exercise 14 which we now solve by the classical Runge-Kutta method

RK4 as defined by Eqs. 5.24–5.28.

(a) Implement Eqs. 5.24–5.28 and numerically solve Eqs. 5.10 and 5.11 with the initial condition 5.12

starting from t0 = 0 to t = 5 years.

(b) Use times steps of ∆t = 0.1, ∆t = 0.05, ∆t = 0.01, and ∆t = 0.001 and plot the trajectories in

the xy-plane. Also plot the absolute error in the total energy at t = 5 versus the time step in a

double-logarithmic plot. (Remember, the energy is conserved and should be given by Eexact = −2π2.

Step size control

As exercise 15 has demonstrated, the choice of the step size ∆t is crucial for achieving accurate results.

In particular it would be desirable to have an efficient means of obtaining local error estimates which

allow for an adaptive step-size control. One common way is to consider two Runge-Kutta methods

of different orders p and p̂, respectively, that share the same coefficient matrix and hence function

values thereby minimizing the computational effort. Then, according to the general definition of a

79

Runge-Kutta step in Eq. 5.18, we can write

yn+1 = yn + ∆t
s∑
i=1

biki (5.29)

ŷn+1 = yn + ∆t
s∑
i=1

b̂iki. (5.30)

If we denote the exact function value as Yn+1, we can write

Yn+1 = yn+1 + Chp, Yn+1 = ŷn+1 + Ĉhp̂, (5.31)

where ε = Chp is the methodological error of the p-order method. Assuming that the constants C and

Ĉ are similar, and choosing the order of the second method to be p̂ = p− 1 as is usually done, we can

estimate the necessary step size to achieve a local accuracy goal τ by the following formula

∆t0 =

(
τ

|yn+1 − ŷn+1|

)1/p

∆t. (5.32)

Here, a trial time step ∆t leading to the estimates yn+1 and ŷn+1, respectively, is used to determine

an optimal time step to reach the desired local accuracy τ . Eq. 5.32 or variants of it are the basis for

an adaptive step size control, where the optimal step size for achieving a predefined local truncation

error is determined and adapted during the integration of the differential equations. Typical choices for

such Runge-Kutta pairs which allow for an adaptive step control are the Bogacki-Shampine method

which is a Runge-Kutta pair with p = 3 and p̂ = 2, or the Fehlberg method which is as Runge-Kutta

(45)-pair, that is p = 5 and p̂ = 4.

Program packages for ode’s

These Runge-Kutta methods are implemented in many popular numerical packages. For instance,

in Matlab the above mentioned Runge-Kutta (23) and (45) pairs are available as ode23 and ode45

solvers: Matlab-ode-solvers. Also in Mathematica, a number of explicit Runge-Kutta pairs of orders

2(1) through 9(8) have been implemented: Runge-Kutta-methods.

It should be noted that Runge-Kutta methods are by far not the only way to solve initial value

problems in ordinary differential equations. For instance, there are so-called predictor-corrector

methods whose description is, however, beyond the scope of this lecture. It should be noted that

the popular Fortran 77 package odepack is based on these type of methods. Also the Python solver

scipy.integrate.odeint uses this Fortran package.

Last but not least, the term stiffness of a differential equation should be mentioned. While a precise

80

https://en.wikipedia.org/wiki/Bogacki-Shampine_method
https://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
http://de.mathworks.com/help/matlab/math/ordinary-differential-equations.html
https://reference.wolfram.com/language/tutorial/NDSolveExplicitRungeKutta.html
https://en.wikipedia.org/wiki/Predictor-corrector_method
https://computation.llnl.gov/casc/odepack/
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.odeint.html

definition of this phenomenon is indeed difficult, stiffness refers to problems which are numerically

unstable, unless the step size is taken to be extremely small although the solution function shows a

smooth behavior. For such stiff problems, specially designed algorithms have been designed which,

generally speaking, always include some implicit formulation of the finite difference equation. A brief

introduction and an illustration of the problem of stiff equations can be found here: stiff-equation.

Exercise 16. Double pendulum

We consider a double pendulum, that is a pendulum with another pendulum attached to its end. For

certain energies its motion is known to be chaotic. In terms of the angles θ1 and θ2 of the upper and lower

pendulum, the kinetic energy T and the potential energy V is given by

T =
1

2

[
(m1 +m2)l1

2θ̇2
1 + 2m2l1l2 cos (θ1 − θ2) θ̇1θ̇2 +m2l2

2θ̇2
2

]
(5.33)

V = −g [(m1 +m2)l1 cos (θ1) +m2l2 cos (θ2)] (5.34)

Here, g is the gravitational constant, m1 and m2 are the pendulum masses (we assume a mathematical

pendulum with massless rods), and l1 and l2 are the lengths of the rods, respectively.

(a) Derive the equations of motion by setting up the Lagrangian L = T−V and using the Euler-Lagrange

equations

d

dt

(
∂L

∂θ̇j

)
=
∂L

∂θj
, j = 1, 2 (5.35)

(b) Bring the equation of motion into the standard form of Eq. 5.3 and use your favourite numerical

software package (Mathematica, Matlab, python, C, Fortran, ...) to numerically solve the differential

equations in the time interval t ∈ [0, 50]. Use the following parameters: g = 9.81, m1 = m2 = 1 and

l1 = l2 = 1 and the initial conditions: θ1(0) = 2π/3, θ2(0) = 0, θ̇1(0) = 0, θ̇2(0) = 0.

(c) Plot the (x, y) positions of the two masses given by

x1 = l1 sin θ1, y1 = −l1 cos θ1, x2 = x1 + l2 sin θ2, y2 = y1 − l2 cos θ2, (5.36)

and also plot the deviations of the total energy ∆E(t) = E(t)− E(0) as a function of time.

5.1.2 Boundary value problems

Generally speaking, it is more complicated to find the numerical solution of a boundary value problem

than that of an initial value problem. Therefore in this introductory course, we will focus only on linear

boundary value problems defined on a finite interval [a, b] ⊂ R. A boundary value problem is referred

81

https://en.wikipedia.org/wiki/Stiff_equation

to as linear if both the differential equation as well as the boundary condition are linear. Such a

problem of order n is of the form [3]

L[y] = f(x) x ∈ [a, b]

Uν [y] = λν ν = 1, 2, · · ·n. (5.37)

Here, L[y] and Uν [y] are linear operators defined as

L[y] =
n∑
k=0

ak(x)y(k)(x) (5.38)

Uν [y] =
n−1∑
k=0

[
ανky

(k)(a) + βνky
(k)(b)

]
. (5.39)

Here, we will further restrict the discussion to homogeneous1 boundary value problems of second order

(n = 2) with decoupled boundary conditions. 2 A typical example for such a problem arises from the

stationary Schrödinger equation in one dimension

− ~2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x), ψ(a) = 0 and ψ(b) = 0. (5.40)

Note that we have already encountered this equation in Sec. 3.2.3 where we have solved it by a finite

difference approach which led us to a matrix eigenvalue problem. This type of boundary condition is

also referred to as boundary condition of the first kind or Dirichlet boundary condition. 3 Here, we

learn a different approach which is known as the shooting method.

The shooting method

The essential idea of the shooting method is to treat the boundary value problem as an initial value

problem! The resulting equations can then be solved with the methods discussed in the previous

Section 5.1.1. The trick is that one initial condition is chosen such that it satisfies the given boundary

condition at one end of the interval, say a, and that, by an iterative procedure, the other initial

condition is modified such that the obtained solution approaches also the boundary condition at the

other end of the interval, say b.

We illustrate the shooting method by applying it to the particle in a box problem of quantum me-

1For homogeneous problems f(x) = 0 as well as λν = 0.
2The term ”decoupled” refers to boundary conditions that do not combine function values from both ends of the

interval.
3Boundary conditions of the second kind or Neumann boundary conditions result from specifying the first derivative

of the function at the boundary, that is ψ′(a) = α and ψ′(b) = β.

82

chanics. Here, we have a particle of mass m between infinitely high potential walls at a = 0 and b = L,

and a vanishing potential V (x) = 0 between the walls 0 < x < L. Since the particle can not penetrate

into these infinitely high potential barriers, the wave function at the boundary must vanish and the

problem is described as the following eigenvalue problem

− 1

2
ψ′′(x) = Eψ(x), ψ(0) = 0 and ψ(L) = 0. (5.41)

Note that we have set m = ~ = 1 which means we are using atomic units where the length unit is 1

Bohr = 0.529177 Å, and the energy unit is 1 Hartree = 27.11 eV. The well-known solutions are

En =
k2
n

2
, ψn(x) = An sin(knx), with kn = n

π

L
, n = 1, 2, 3 · · · (5.42)

Here, En are the discrete, allowed energies, and ψn(x) are the corresponding eigenstates where An

is a normalization constant, and kn are the discrete momenta values corresponding to the quantum

number n.

0 L

x

0.5

0.0

0.5

1.0

1.5

2.0

ψ
(x

)

E=E1 = π2

2L2

Elo<E1

Ehi>E1

Figure 5.1: Illustration of the shooting method for the boundary value problem defined by Eq. 5.41. If
the chosen energy E is not an eigenvalue, then the boundary condition at x = L will not be satisfied.

In Fig. 5.1, the working principle of the shooting method is illustrated for the particle in a box

83

problem.4 The energy E appearing in Eq. 5.41 is treated as a parameter. The boundary condition

ψ(0) = 0 is used as the first initial condition, while as second initial condition an arbitrary, but

non-zero, value for the first derivative at x = 0 is chosen, ψ′(0) = δ. Then, the solution is integrated

starting from x = 0 to x = L using, for instance, a Runge-Kutta method presented in the previous

section. Depending on the parameter E, the resulting solution at x = L will be either larger or smaller

than the desired boundary value ψ(L) = 0. Only for the stationary solution E = E1 will the solution

vanish also at the other boundary. From Fig. 5.1 we see that the condition

ψ(x = L;Elo) · ψ(x = L;Ehi) < 0, (5.43)

can be used to bracket the eigenvalue E1: if the solutions corresponding to the parameters Elo and Ehi,

respectively, have different signs at x = L, then there must be at least one eigenvalue in the interval

[Elo, Ehi] which can be subdivided successively until the eigenvalue is determined up to a predefined

accuracy. Using a linear approximation the next estimate for the energy E is given by

E = Elo −
Ehi − Elo

ψ(L;Ehi)− ψ(L;Elo)
ψ(L;Elo), (5.44)

for which the solution at ψ(x = L;E) is obtained by integrating the differential equation. If it does

not yet satisfy the boundary condition ψ(x = L;E) = 0, the condition 5.43 is tested for the new

energy value and if necessary the search interval is further refined by applying 5.44 once more. This

procedure is repeat until the boundary condition ψ(L) = 0 is satisfied up to a desired accuracy. At

the end of the procedure, the wave solution can be normalized using the condition∫ b

a

dx |ψ(x)|2 = 1, (5.45)

thereby also getting rid of the arbitrary initial value ψ′(0) = δ we had to introduce in the beginning.

4The plot shown in Fig. 5.1 has been created with the Python program shootingmethod.py

84

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/shootingmethod.py

Exercise 17. Schrödinger equation – shooting method

Determine the eigenvalues E and eigenfunctions ψ(x) for the stationary Schrödinger equation

− 1

2
ψ′′(x) + V (x)ψ(x) = Eψ(x), ψ(a) = 0 and ψ(b) = 0, (5.46)

by applying the shooting method. The potential V (x) is given by the following function

V (x) = −2
(
e−(x−2)2

+ e−(x+2)2
)
, (5.47)

and the boundaries of integration should be set to a = −6 and b = +6.

(a) Implement the shooting method as described in Sec. 5.1.2. Test your implementation by computing

the known eigenvalues and eigenfunctions of the particle-in-a-box problem by setting V (x) = 0.

(b) Determine all bound states (E < 0) for the potential function V (x) defined in Eq. 5.47 and plot the

corresponding eigenfunctions as well as the potential V (x).

5.2 Partial differential equations

Many problems in physics can be formulated as partial differential equations (PDEs): the heat equation

(or diffusion equation), the wave equation in elastic media, or Maxwell’s equation, time-dependent

Schrödinger equation, or the Navier-Stokes equation describing the viscous flow of fluids to name a

few well-known examples. Except for very rare cases, no analytical solutions exist, thus methods for

numerically solving PDEs are required, and the numerical treatment of PDEs is, by itself, a vast

subject. The intent of this section is to give a very brief introduction into the subject. For a more

detailed description it is referred to Refs. [5, 10] and references therein.

5.2.1 Classification of PDEs

In most mathematics books, partial differential equations are classified into three categories, hyperbolic,

parabolic, and elliptic, on the basis of their characteristics, or curves of information propagation.

Assume a linear PDE of second order for the function u which depends on two variables x and y

Auxx + 2Buxy + Cuyy +Dux + Eux + Fu+G = 0, (5.48)

where A, B, ... denote some coefficients which may depend on x and y, and uxx, are the partial

derivatives of the function u. If A2 + B2 + C2 > 0 over a region of the xy plane, the PDE is second-

85

order in that region. This form is analogous to the equation for a conic section

Ax2 + 2Bxy + Cy2 + · · · = 0.

More precisely, replacing ∂x by x, and likewise for other variables (formally this is done by a Fourier

transform), converts a constant-coefficient PDE into a polynomial of the same degree, with the top

degree (a homogeneous polynomial, here a quadratic form) being most significant for the classification.

Just as one classifies conic sections and quadratic forms into parabolic, hyperbolic, and elliptic based

on the discriminant B2 − 4AC, the same can be done for a second-order PDE at a given point.

However, the discriminant in a PDE is given by B2−AC, due to the convention of the xy term being

2B rather than B.

• B2 − AC < 0: solutions of elliptic PDEs are as smooth as the coefficients allow, within the

interior of the region where the equation and solutions are defined. For example, solutions of

Laplace’s equation are analytic within the domain where they are defined, but solutions may

assume boundary values that are not smooth.

• B2 − AC = 0: equations that are parabolic at every point can be transformed into a form

analogous to the heat equation by a change of independent variables. Solutions smooth out as

the transformed time variable increases.

• B2 − AC > 0: hyperbolic equations retain any discontinuities of functions or derivatives in the

initial data. A typical example is the wave equation. Also, the motion of a fluid at supersonic

speeds can be approximated with hyperbolic PDEs.

The prototypical example for an elliptic equation is Poisson’s equation

uxx + uyy = ρ(x, y), (A = 1, B = 0, C = 1), (5.49)

where u denotes the electrostatic potential and ρ is a charge distribution. The prototypical parabolic

equation is the heat equation

ut = κuxx, (A = −κ,B = 0, C = 0), (5.50)

where u is the temperature, and κ > 0 is the diffusion coefficient. Finally, the typical example of a

hyperbolic equation is the wave equation

utt = v2uxx, (A = 1, B = 0, C = −v2). (5.51)

Here, u is the property which is propagated with velocity v.

86

From a computational point of view, classifying partial differential equations according to type of

boundary conditions proves even more important. For instance, the Poisson equation 5.49 is the

prototypical example of a boundary value or static problem. Here, boundary values of the function

u(x, y) or its gradient must be supplied at the edge of a region of interest. Then, an iterative process is

employed to find the function values in the interior of the region of interest. In contrast, the heat and

wave equations 5.50 and 5.51, respectively, represent prototypical examples of initial value or time

evolution problems. Here, a quantity is propagated forward in time starting from some initial values

u(x, t = 0) with additional boundary conditions at the edges of the spatial region of interest.

The main concern for the latter type of problem, the static case, is to devise numerical algorithms

which are efficient, both, in terms of computational load as well as in storage requirements. As we

will see in the next Sec. 5.2.2, one usually ends up with a large set of algebraic equations, or more

specifically for linear PDEs, with a large system of linear equations with a sparse coefficient matrix.

In time evolution problems, on the other hand, the main concern is about the stability of the numerical

algorithm. This issue will briefly be discussed in Sec. 5.2.3. More information on this topic will, for

instance, be discussed in a separate lecture: ComputationalPhyics2

5.2.2 Static problems in two dimensions

As our model problem, we consider the numerical solution of Poisson’s equation 5.49 in two dimensions.

We represent the function u(x, y) by its values at the discrete set of points

xj = x0 + jδ, j = 0, 1, · · · , J, (5.52)

yl = y0 + lδ, l = 0, 1, · · · , L. (5.53)

Here, δ is the grid spacing. Instead of writing u(xj, yl) and ρ(xj, yl) for the potential and charge

density, respectively, we abbreviate these function values at the grid points by uj,l and ρj,l. When

using the same finite difference representation of the second derivative as already introduced earlier

(see Eq. 3.72), Poisson’s equation 5.49 turns into

uj+1,l − 2uj,l + uj−1,l

δ2
+
uj,l+1 − 2uj,l + uj,l−1

δ2
= ρj,l, (5.54)

which can be simplified into the following form

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = δ2ρj,l. (5.55)

This equation represents a system of linear equations. In order to write it in the conventional form,

A · x = b, we have to put all unknown function values uj,l inside the two-dimensional domain of

87

http://physik.uni-graz.at/~pep/CompPhys2_WS1516.html

interest into a vector. This can be achieved by numbering all grid points on the two-dimensional grid

in a single one-dimensional sequence by defining the new index i in the following way

i = 1 + (j − 1)(L− 1) + l − 1 for j = 0, 1, · · · , J, l = 0, 1, · · · , L. (5.56)

If we assume that the values of u at the boundary defined by j = 0, j = J , l = 0, and l = L are

fixed (Dirichlet boundary conditions), then only the function variables at the interior grid points,

j = 1, 2, · · · J − 1 and l = 1, 2, · · ·L − 1, are unknown. Then the new index i numbers all interior

points from i = 1, 2, · · · , (J − 1)(L− 1)) in the following way (J=L=4)

u1,1 → u1

u1,2 → u2

u1,3 → u3

u2,1 → u4

u2,2 → u5

u2,3 → u6

u3,1 → u7

u3,2 → u8

u3,3 → u9


,



ρ1,1 → ρ1

ρ1,2 → ρ2

ρ1,3 → ρ3

ρ2,1 → ρ4

ρ2,2 → ρ5

ρ2,3 → ρ6

ρ3,1 → ρ7

ρ3,2 → ρ8

ρ3,3 → ρ9


. (5.57)

Thereby, we can transform Eq. 5.55 into the standard form

−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4


·



u1

u2

u3

u4

u5

u6

u7

u8

u9


=



δ2ρ1 − u0,1 − u1,0

δ2ρ2 − u0,2

δ2ρ3 − u0,3 − u1,4

δ2ρ4 − u2,0

δ2ρ5

δ2ρ6 − u2,4

δ2ρ7 − u3,0 − u4,1

δ2ρ8 − u4,2

δ2ρ9 − u3,4 − u4,3


. (5.58)

Hereby, we have pulled all known function values at the boundary to right hand side of 5.55. Thus, the

inhomogeneous vector b of Eq. 5.58 contains not only the values of the charge density in the interior

but also the boundary values of u.

We note that the resulting coefficient matrix is a real, symmetric and sparse, more precisely, it may

be termed tridiagonal with additional fringes. The matrix consists of (J − 1)× (L− 1) = 3× 3 blocks.

Along the diagonal these blocks are tridiagonal, and the super- and sub-diagonal blocks are themselves

88

diagonal. Such a sparse matrix should not be stored in its full form as shown in Eq. 5.58 given the

fact that realistic grid sizes in the order of 100 × 100 grid points along x and y, respectively, result

in a matrix sizes 10000 × 10000. The matrix is diagonally dominant as defined in Eq. 3.25 and all

its eigenvalues are negative, so −A is positive definite. Therefore both, the successive over-relaxation

(SOR) (see Sec. 3.1.3) as well as the conjugate gradient (CG) iterative methods (not treated in this

lecture) for solving linear systems of equation may be applied. In addition, also a direct method

based on Cholesky-decomposition (the analog of the LU-factorization for the symmetric case) may be

employed. For instance the LAPACK routine pbsv could be used.

Exercise 18. Solution of Poisson’s Equation in 2D

We solve the Poisson equation in 2D by finite differencing as described by the system of linear equations

5.58. We use a simulation box defined by x ∈ [−10, 10] and y ∈ [−10, 10]. At the boundary of the box,

that is at x = −10, x = +10, y = −10 and y = +10, we apply Dirichlet boundary conditions and set the

potential u = 0. Inside the box, we assume a charge distribution given by the following expression

ρ(x, y) =
1√
2πσ

{
exp

[
−
x2 +

(
y − d

2

)2

2σ2

]
− exp

[
−
x2 +

(
y + d

2

)2

2σ2

]}
. (5.59)

This charge density consists of two Gaussian-shaped charge distributions of equal strength but opposite

sign with the width σ located at
(
0,+d

2

)
and

(
0,−d

2

)
, respectively.

(a) Set up the matrix A of Eq. 5.58 for N ≡ L = J equidistant grid points. Make use of the sparsity of

this matrix. For instance, use the sparse function of Matlab or use a banded matrix storage scheme

if you employ LAPACK functions, or make use of Python’s sparse matrix package scipy.sparse.

(b) Solve the linear system of equations 5.58 taking into account the boundary values u|boundary = 0.

Choose σ = 0.5 and d = 5 and plot the resulting potential u(x, y), for instance with Matlab’s or

Octave’s function: surf(X,Y,u,’LineStyle’,’none’). or with Python’s MatPlotLib

(c) Experiment with different grid densities, i.e., vary N between 9, 19, 29, ... and 499 or so and monitor

how the solution changes. In particular evaluate the potential u(x = 2, y = 0) and plot how it

changes when increasing the number of grid points.

(d) Experiment with different solution algorithms: direct vs. iterative schemes. Which one is the best in

terms of computational speed for this problem? See, for instance, Python’s scipy.sparse.linalg

89

https://software.intel.com/en-us/node/520987
http://docs.scipy.org/doc/scipy/reference/sparse.html
http://matplotlib.org/examples/mplot3d/contourf3d_demo2.html
http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html

5.2.3 Initial value problems

In numerical analysis, von Neumann stability analysis (also known as Fourier stability analysis) is a

procedure used to check the stability of finite difference schemes as applied to linear partial differential

equations. The analysis is based on the Fourier decomposition of numerical error [11]. A finite difference

scheme is stable if the errors made at one time step of the calculation do not cause the errors to increase

as the computations are continued. If the errors decay and eventually damp out, the numerical scheme

is said to be stable. If, on the contrary, the errors grow with time the numerical scheme is said to be

unstable.

Illustration with heat equation

The von Neumann method is based on the decomposition of the errors into Fourier series. To illustrate

the procedure, consider the time-dependent heat equation for one spatial coordinate

∂u

∂t
= κ

∂2u

∂x2
. (5.60)

We discretize it on the spatial interval L using the so-called explicit Forward Time Centered Space

(FTCS) scheme. Thus, we use a first-order approximation for the time derivative and the already

well-known expression for the second derivative with respect to x.

∂u(xj, tn)

∂t
≈ u(xj, tn+1)− u(xj, tn)

∆t
≡
un+1
j − unj

∆t
(5.61)

∂2u(xj, tn)

∂x2
≈ u(xj+1, tn)− 2u(xj, tn) + u(xj−1, tn)

∆x2
≡
unj+1 − 2unj + unj−1

(∆x)2
(5.62)

Inserting these expressions, where we have introduced the short-hand notation that spatial grid-points

are indicated by subscripts j and temporal grid points by superscripts t, the FTCS version of the heat

equation reads:

un+1
j = unj + r

(
unj+1 − 2unj + unj−1

)
, where r =

κ∆t

(∆x)2
. (5.63)

The question is how to choose ∆x and ∆t such that a stable algorithm results (check out HeatEquation.

py for a simple illustration). To this end, we introduce the difference εnj between the exact solution to

the problem unj , that is in the absence of round-off errors, and the numerical version of it, ũnj which

contains round-off errors due to finite precision arithmetic.

εnj = ũnj − unj . (5.64)

90

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/HeatEquation.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/HeatEquation.py

Since the exact solution unj must satisfy the discretized equation exactly, the error εnj must also satisfy

the discretized equation. Thus

εn+1
j = εnj + r

(
εnj+1 − 2εnj + εnj−1

)
(5.65)

is a recurrence relation for the error. It shows that both the error and the numerical solution have the

same growth or decay behavior with respect to time. For linear differential equations with periodic

boundary condition, the spatial variation of the error may be expanded in a finite Fourier series, in

the interval L, and the time dependence follows an exponential form

ε(x, t) =
M∑
m=1

eamteikmx. (5.66)

Here, the wavenumber km = πm
L

with m = 1, 2, . . . ,M and M = L/∆x. The time dependence of

the error is included by assuming that the amplitude of the error Am = eamt tends to grow or decay

exponentially with time.

Since the heat equation is linear, it is enough to consider the growth of error of a typical term

εm(x, t) = eamteikmx. To find out how the error varies in steps of time we note that

εnj = eateikmx (5.67)

εn+1
j = ea(t+∆t)eikmx (5.68)

εnj+1 = eateikm(x+∆x) (5.69)

εnj−1 = eateikm(x−∆x), (5.70)

and insert these expressions into Eq. 5.65

ea∆t = 1 +
κ∆t

∆x2

(
eikm∆x + e−ikm∆x − 2

)
. (5.71)

We can simplify this formula by using the identities

cos(km∆x) =
eikm∆x + e−ikm∆x

2
and sin2 km∆x

2
=

1− cos(km∆x)

2
(5.72)

to give

ea∆t = 1− 4κ∆t

(∆x)2
sin2(km∆x/2) (5.73)

91

If we define the amplification factor G as the ratio of the error at time n+ 1 and time n

G ≡
εn+1
j

εnj
=
ea(t+∆t)eikmx

eateikmx
= ea∆t, (5.74)

we see that the necessary and sufficient condition for the error to remain bounded is that |G| ≤ 1.

Thus, we arrive at the stability criterion for the FTSC discretization of the heat equation∣∣∣∣1− 4κ∆t

(∆x)2
sin2(km∆x/2)

∣∣∣∣ ≤ 1. (5.75)

For the above condition to hold at all spatial modes km appearing in sin2(km∆x/2), we finally can

write down the simple stability requirement

κ∆t

(∆x)2
≤ 1

2
. (5.76)

It says that for a given ∆x, the allowed value of ∆t must be small enough to satisfy equation the

above inequality.

Fully implicit method

We consider a slight modification of the FTCS Eq. 5.63

un+1
j − unj

∆t
= κ

unj+1 − 2unj + unj−1

(∆x)2
, (5.77)

and instead evaluate the u at time step n+1 when computing the spatial derivative on the right hand

side:
un+1
j − unj

∆t
= κ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
. (5.78)

We see that in order to obtain the solution at time step n + 1, we have to solve a linear system of

equations. In contrast to the original FTCS scheme which is called an explicit method since the values

at n+ 1 explicitly depend on previous time values, the scheme defined by Eq. 5.78 is called backward

time or fully implicit. For one spatial dimension and assuming Dirichlet boundary conditions at j = 0

and j = J , the resulting system of equations is tridiagonal as can be easily seen when rewriting

Eq. 5.78

− run+1
j−1 + (1 + 2r)un+1

j − run+1
j+1 = unj where r =

κ∆t

(∆x)2
. (5.79)

Note that for more than one spatial dimensions, the structure of the equation system will be no longer

tridiagonal, but remain highly sparse as we have already seen when discussing the solution of the

92

Poisson equation in 2 and 3 spatial dimensions in Sec. 5.2.2. We can now analyze the stability of

the implicit finite difference form 5.79 by computing the amplification factor according to the von

Neumann stability criterion, and find

G =
1

1 + 4r sin2
(
k∆x

2

) . (5.80)

It is clear that |G| < 1 for any time step ∆t. Thus, the fully implicit method is unconditionally stable.

Naturally, if the time step is chosen to be quite large, then the details of the time evolution are not

described very accurately, but a feature of the fully implicit scheme is that it leads to the correct

equilibrium solution, that is for t→∞.

Crank-Nicholson method

One can combine the accuracy of the explicit scheme for small time steps with the stability of the

implicit scheme by simply forming the average of the explicit and implicit FTCS schemes. This

approach is called the Crank-Nicholson scheme:

un+1
j − unj

∆t
=
κ

2

[
(unj+1 − 2unj + unj−1) + (un+1

j+1 − 2un+1
j + un+1

j−1)

(∆x)2

]
. (5.81)

Here, both the left- and right-hand sides are centered at time step n + 1
2
, so the method can be

viewed as second-order accurate in space and time. The von Neumann stability analysis gives the

amplification factor

G =
1− 2r sin2

(
k∆x

2

)
1 + 2r sin2

(
k∆x

2

) . (5.82)

We see that |G| ≤ 1 for any ∆t, so gain, the algorithm is unconditionally stable. It is the recommended

method for diffusive problems and has another nice property which will be shown in the next section

dealing the solution of the time-dependent Schrödinger equation.

5.2.4 Time dependent Schrödinger equation

In order to derive a discretization of the Schrödinger equation which preserves the Hermiticity of the

Hamiltonian operator and thereby maintains the normalization of the wave function, we recall that

the time evolution of the wave function ψ(x, t) may be expressed as

ψ(x, t) = e−iHtψ(x, 0). (5.83)

93

Here, the exponential of the Hamilton operator H = − ∂2

∂x2 + V (x) is defined by its power series

expansion. We can now write down expressions of explicit and implicit schemes in terms of expansion

of the operator e−iHt. We obtain the explicit FTCS scheme by

ψn+1
j = (1− iH∆t)ψnj . (5.84)

The implicit (or backward time) scheme, on the other hand, results from

(1 + iH∆t)ψn+1
j = ψnj , (5.85)

when replacing H by its finite difference form space. However, neither the operator in Eq. 5.84 nor

the one in Eq. 5.85 is unitary as would be required to preserve the normalization of the wave function.

Thus, the proper way to proceed is to find a finite-difference approximation of e−iHt which is unitary.

Such a form was first suggested by Cayley :

e−iHt '
1− 1

2
iH∆t

1 + 1
2
iH∆t

. (5.86)

Thus, we have (
1 +

1

2
iH∆t

)
ψn+1
j =

(
1− 1

2
iH∆t

)
ψnj , (5.87)

which turns out to be just the Crank-Nicholson scheme discussed already earlier. Writing out Eq. 5.87,

we have

ψn+1
j − i∆t

2

[
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2
− Vjψn+1

j

]
= ψnj +

i∆t

2

[
ψnj+1 − 2ψnj + ψnj−1

(∆x)2
− Vjψnj

]
. (5.88)

This is a tridiagonal linear system of equations for the J − 1 unknown wave function values at time

step n+ 1 which we can write in the form

b1 c1

.

aj−1 bj−1 cj−1

aj bj cj

aj+1 bj+1 cj+1

.

aJ−1 bJ−1


·



ψn+1
1
...

ψn+1
j−1

ψn+1
j

ψn+1
j+1
...

ψn+1
J−1


=



rn1
...

rnj−1

rnj
rnj+1

...

rnJ−1


(5.89)

94

Here, the vectors a, b, and c are defined as

aj = cj = − i∆t

2(∆x)2
and bj = 1 +

i∆t

2

[
2

(∆x)2
+ Vj

]
, (5.90)

and the right hand side vector r is given by the right-hand-side of Eq. 5.88, thus it is calculated from

wave function values at the previous time step. Since the form of the matrix in Eq. 5.89 remains

unaltered for all time steps, and efficient way to solve 5.89 is to perform an LU -factorization of the

matrix and then solve the equation system by forward- and back-substitution for a series of different

right-hand sides corresponding to each time step as described in Sec. 3.1.2.

Exercise 19. Time-dependent Schrödinger equation

We solve the time-dependent Schrödinger equation in 1D by applying the Crank-Nicholson scheme as

expressed in Eqs. 5.88–5.90. We use a simulation box defined by x ∈ [−5, 25] and assume that the wave

function ψ(x, t) vanishes at x = −5 and x = +25. Initially, the wave function is given by a Gaussian wave

packet of the form

ψ(x, 0) = ψ0(x) =

√
∆k

π
1
4

e−
x2(∆k)2

2 eik0x. (5.91)

Thus, it is characterized by the group velocity k0 and the initial spread ∆k in momentum space.

(a) Compute the free propagation of a wave packet given by k0 = 10 and ∆k = 1 for times t0 = 0

to t = 1, that is, set V (x) ≡ 0. Visualize the result, for instance, by plotting |ψ(x, t)|2 and check

whether the wave packet stays normalized, thus approximate the integral as

∫ +∞

−∞
dx|ψ(x, t)|2 ≈

J∑
j=1

∆x|ψnj |2

(b) For the same wave packet as in (a), that is k0 = 10 and ∆k = 1, consider scattering at a potential

of the form V (x) = V0e
− (x−10)2

σ2 . Thus a Gaussian-shaped barrier of height V0 centered at position

x = 10 and with a width proportional to σ. Vary the parameters V0 and σ such that you obtain the

typical scenarios for reflection at and tunneling through the barrier, respectively. Again, check the

normalization of the wave function throughout your simulations and visualize your results.

95

96

Chapter 6

Monte Carlo Calculations

These lecture notes only give a very brief introduction into the topic of stochastic numerical methods,

that is, numerical methods which are based on random numbers. More information on this vast topic

can, for instance, be found in the book by Stickler and Schachinger [3]. In particular, in these lecture

notes, we will restrict ourselves to only two topics: the principles of how to generate random numbers,

actually pseudo-random numbers, will be explained in Sec. 6.1. As an example for a Monte-Carlo

method, Sec. 6.2 discusses how random numbers can be used to compute integrals, a method which

is particularly useful for multi-dimensional integrals.

6.1 Generation of random numbers

We start with a quote from The Numerical Recipes nicely illustrating the problem [5]: It may seem

perverse to use a computer, that most precise and deterministic of all machines conceived by the

human mind, to produce ”random” numbers. More than perverse, it may seem to be a conceptual

impossibility. Any program, after all, will produce output that is entirely predictable, hence not truly

”random”. Therefore, computer algorithms can only generate so-called pseudo-random numbers. Thus,

we are seeking an algorithm for generating a sequence of numbers whose properties approximate the

properties of sequences of true random numbers as close as possible.

6.1.1 Linear congruential generator

A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized

numbers calculated with a discontinuous piecewise linear equation [2, 3]. The method represents one

of the oldest and best-known pseudo-random number generator algorithms (a demonstration is given

here: WolframDemonstrations). The theory behind them is relatively easy to understand, and they are

97

http://demonstrations.wolfram.com/LinearCongruentialGenerators/

easily implemented and fast, especially on computer hardware which can provide modulo arithmetic

by storage-bit truncation.

The generation of a pseudo-random number ri is defined by the recurrence relation

ri = (a ri−1 + c) mod m, (6.1)

where a, c and m are integer numbers and the operation mod refers to the modulus by m. The

initial value r1, the so called random seed, is also frequently supplied by the user. As an example, let

us choose a = 106, c = 1283 and m = 6075. Initializing our random number generator with the seed

r1 = 11, the above recurrence relation leads to

r1 = 11

r2 = (106× 11 + 1283) mod 6075 = 2049

r3 = (106× 2049 + 1283) mod 6075 = 5852

r4 = (106× 5852 + 1283) mod 6075 = 1945
...

When dividing these integer random numbers ri by m one obtains pseudo-random numbers in the

interval [0, 1). It is clear that the above choice of parameters for a, c and m is by far not optimal.

In particular, the magnitude of m determines the maximum possible length of a sequence of pseudo-

random numbers after which the entire sequence repeats. A better choice for the parameters in such

a linear congruential generator is, for instance, a = 75, c = 0 and m = 231 − 1 according to Park and

Miller [3].

6.1.2 Assessment of randomness and uniformity

As a general operating procedure in the context of pseudo-random numbers generated by any computer

algorithm, we quote a sentence from Landau’s book [2]: Before using any random number generator in

your programs, you may check its range and that it is producing numbers that ”look” random. There

are a number of tests to decide whether a given set of pseudo-random numbers is indeed random and

uniformly distributed over the interval [0, 1) [2]:

1. One simple test of uniformity evaluates the k-th moment of the random-number distribution:

〈
xk
〉

=
1

N

N∑
i=1

xki '
∫ 1

0

dx xkpu(x) +O
(

1/
√
N
)

=
1

k + 1
+O

(
1/
√
N
)
. (6.2)

98

Here, we have used the fact that the probability density function (pdf) of a uniformly distributed

random numbers of the interval [0, 1) is given by

pu(x) =

{
1, x ∈ [0, 1)

0, elsewhere
(6.3)

If Eq. 6.2 holds for your generator, then you know that the distribution is uniform. If the

deviation from 6.2 varies as 1/
√
N , then you also know that the distribution is random. You

can check out the following Python script which analyses the uniformity of random numbers

obtained from the linear congruential generator discussed above for various parameters a, c and

m: LCG_histogram.py

2. Another simple test determines the near-neighbour correlation in your random sequence by

taking sums of products for various neighbour distances k

C(k) =
1

N

N∑
i=1

xixi+k, k = 1, 2, · · · (6.4)

If your random numbers xi and xi+k are distributed with the joint probability distribution

p(xi, xi+k) = pu(xi)pu(xi+k), thus if they are independent and uniform, then the correlation

function C(k) is given by

C(k) =
1

N

N∑
i=1

xixi+k '
∫ 1

0

dx

∫ 1

0

dy x y p(x, y) =
1

4
+O

(
1/
√
N
)
. (6.5)

If Eq. 6.5 holds for your random numbers, then you know that they are not correlated. If the

deviation from 6.5 varies as 1/
√
N , then you also know that the distribution is random. You

can check out the following Python script which analyses the correlation of random numbers

according to Eq. 6.5 generated by the linear congruential generator discussed above for various

parameters a, c and m: LCG_correlations.py

3. Another effective test for randomness is performed visually by making a scatter-plot of pairs of

random numbers (xi = r2i, yi = r2i+1) for many i values. If the plotted points have noticeable

regularity, the sequence is not random. If the points are random, they should uniformly fill a

square without any discernible pattern. 1 Such a test, which is sometimes also termed spectral

test, is made in the Python script LCG_spectral_test.py.

1The human mind is very well trained in recognizing patterns.

99

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/LCG_histogram.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/LCG_correlations.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/LCG_spectral_test.py

6.1.3 Generation of non-uniformly distributed random numbers

In many applications random numbers are required which follow a certain probability density function

(pdf) which is not a uniform distribution on the interval [0, 1]. Within this section, we give two

examples how to obtain such random numbers. The first one uses the inverse transformation method,

and the second one is a quite elegant way to obtain a normal distribution. More details about these

methods and additional information on alternative methods such as the rejection method can, for

instance, be found in the book by Stickler and Schachinger [3].

Inverse transformation method

The inverse transformation method is one of the simplest and most useful methods to sample random

variables from an arbitrary pdf denoted as p(x) starting from a a uniform pdf pu(ξ) defined in Eq. 6.3.

The starting point for the mapping between the random variable x and the random variable ξ is the

conservation of probabilities

p(x)dx = pu(ξ)dξ ⇒ p(x) =

∣∣∣∣dξdx
∣∣∣∣ pu(ξ). (6.6)

The crucial part is to find the mapping between x and ξ. This can be achieved by defining the

cumulative distribution function (cdf) P (x) according to the pdf p(x) in the following way

P (x) =

∫ x

a

dx′ p(x′). (6.7)

If we can find the inverse ξ = P (x) ⇒ x = P−1(ξ) of this function resulting from the integration of

Eq. 6.6 where we make use of the properties of the cdf of the uniform pu(ξ)

P (x) =

∫ x

a

dx′ p(x′) =

∫ ξ

0

dξ′ pu(ξ
′) = ξ, (6.8)

then we have succeeded.

Exponential distribution function

Let us illustrate this technique with a concrete example by generating random numbers of the following

exponential distribution function by means of the inverse transformation method.

p(x) =

{
1
λ
e−x/λ , x > 0

0 , x ≤ 0
(6.9)

100

Such a distribution function could, for instance, describe the free path x of a particle between two

successive interactions, where λ is the mean free path. The cumulative distribution function P (x) is

then given by

P (x) =

∫ x

0

dx′ p(x′) =

∫ x

0

dx′
1

λ
e−x/λ = 1− e−x/λ. (6.10)

We can now invert this relation to yield

ξ ≡ P (x) ⇒ x = −λ ln(1− ξ). (6.11)

Starting from uniformly distributed random numbers ξi, Eq. 6.11 creates random numbers xi which are

distributed according to the exponential distribution function 6.9. A python script which illustrates

this method can be downloaded from the following link: Random_Inverse_Transformation.py.

Normal distribution function

Very often, one requires random numbers which follow a normal (Gaussian) distribution

p(x) =
1√
2πσ

e−(x−x)2/2σ2

, (6.12)

where x is the mean and σ the standard deviation. We simplify the problem by first obtaining a

normal distribution for x = 0 and σ = 1

p(x) =
1√
2π
e−x

2/2. (6.13)

In a second step, we only need to scale the variable according to x → σx + x in order to obtain the

more general normal distribution.

A direct application of the inverse transformation method to the pdf of Eq. 6.13 does not work since

its corresponding cdf has no analytic function which can be inverted

ξ = P (x) =

∫ x

−∞
dx′

1√
2π
e−x

′2/2 ⇒ x =?P−1(ξ)? (6.14)

However, we can generalize the statement of probability conservation to two dimensions and thereby

we will be able to solve the problem [2, 3]. Assume we have two random variables (variates) r1 and r2

which are both uniformly distributed over [0, 1] and two other variates x and y which follow the joint

probability density function p(x, y). Then, the conservation of probability can be expressed as

p(x, y)dxdy = pu(r1, r2)dr1dr2 ⇒ p(x, y) =

∣∣∣∣∂(r1, r2)

∂(x, y)

∣∣∣∣ pu(r1, r2). (6.15)

101

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Random_Inverse_Transformation.py

Here, the term in vertical bars is the determinant of the Jacobian matrix

J =

∣∣∣∣∂(r1, r2)

∂(x, y)

∣∣∣∣ =

∣∣∣∣∣ ∂r1
∂x

∂r1
∂y

∂r2
∂x

∂r2
∂y

∣∣∣∣∣ =
∂r1

∂x

∂r2

∂y
− ∂r2

∂x

∂r1

∂y
. (6.16)

We can now use Eq. 6.15 together with 6.16 to obtain normal distributed x and y variates from the

uniformly distributed r1 and r2. To this end, we choose [2, 3]

x =
√
−2 ln r1 cos 2πr2, y =

√
−2 ln r1 sin 2πr2, (6.17)

which can be easily inverted to give

r1 = e−(x2+y2)/2, r2 =
1

2π
tan−1 y

x
. (6.18)

We can now calculate the partial derivatives

∂r1

∂x
= −xe−(x2+y2)/2,

∂r1

∂y
= −ye−(x2+y2)/2,

∂r2

∂x
= − 1

2π

y
x2

1 + y2

x2

,
∂r2

∂y
=

1

2π

1
x

1 + y2

x2

,

from which we obtain the determinant of the Jacobian

J = − 1

2π
e−(x2+y2)/2 (6.19)

Thus, from Eq. 6.15 we can compute

p(x, y) = |J |pu(r1, r2) = |J | pu(r1)︸ ︷︷ ︸
=1

pu(r2)︸ ︷︷ ︸
=1

=
1

2π
e−(x2+y2)/2 =

1√
2π
e−x

2/2︸ ︷︷ ︸
=p(x)

· 1√
2π
e−y

2/2︸ ︷︷ ︸
=p(y)

. (6.20)

Hence, we have demonstrated that the transformation defined by Eq. 6.17 results in two normal

distributions p(x) and p(y). A numerical implementation of this so-called Box-Muller method to

compute normal distributed random numbers can be found in the following Python script: Random_

Normal_Distribution.py.

We conclude this section by noting that due the appearance of the trigonometric functions and

the logarithm in Eq. 6.17, the Box-Muller method is computationally not optimal. One alterna-

tive method that is superior to Box-Muller transform in that respect is the so-called polar method

(attributed to George Marsaglia, 1964, http://www.jstor.org/stable/2027592), and also the so-

called ziggurat algorithm belonging to the class of rejection sampling algorithms is widely used

(http://www.jstatsoft.org/v05/i08/paper).

102

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Random_Normal_Distribution.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Random_Normal_Distribution.py
http://www.jstor.org/stable/2027592
http://www.jstatsoft.org/v05/i08/paper

6.2 Monte Carlo integration

6.2.1 Introductory example

One of the earliest and most impressive illustrations of the principle of Monte-Carlo techniques in

general, and of Monte-Carlo integration in particular is the Monte-Carlo approximation of π [3].

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 6.1: Illustration of the ”throwing stones in a pond” technique. A set of N uniformly distributed
pairs of random numbers (xi, yi) are created in the square interval [0, 1]⊗ [0, 1]. Counting the number
of points Nin inside the quater-circle of radius r = 1, thus x2

i + y2
i ≤ 1, leads to an estimate for the

area of the quarter circle and thus to the number π/4 ' Nin/N .

Imagine that we generate a set of N uniformly distributed pairs of random numbers (xi, yi) in the

square interval [0, 1]⊗ [0, 1]. These numbers fill the area A = 1× 1 = 1. If we now count those points

(xi, yi) which lie inside a quater-circular region (Nin) defined by x2
i +y2

i ≤ 1, we will obtain an estimate

for the area Ain as follows
π

4
=
Ain
A
' Nin

N
, (6.21)

and thereby obtain an estimate for the number π. This procedure is illustrated in Fig. 6.1 for a total

number of N = 10000 points (you can check out the corresponding Python script Random_Pi_a.py).

103

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Random_Pi_a.py

100 101 102 103 104 105 106 107 108 109

N

10-4

10-3

10-2

10-1

100
|π
a
−
π
|

Figure 6.2: Absolute error in the Monte-Carlo estimate πa for the number π as a function of the
sampling points N in a double logarithmic plot.

Figure 6.2 shows how the absolute error in the Monte-Carlo estimate of π varies with number of

sampling points N . We can observe the overall∼ 1√
N

behaviour which is typical for stochastic methods,

that is algorithms based on random numbers. Note that the Python script corresponding to Fig. 6.2

can be downloaded from the following link: Random_Pi_b.py

6.2.2 Multidimensional integrals

You may now ask yourself what benefit a Monte-Carlo integration technique has to offer compared

to the methods discussed earlier during this lecture in Sec. 2.1? For instance, we have learned that

the error of trapezoidal rule reduces as ∼ 1
N2 , or the error of the Simpson rule even faster as ∼ 1

N4

where N is the number of function evaluations, while the Monte-Carlo determination of π in the

previous section exhibited a rather poor scaling with ∼ 1√
N

. The answer is that for low-dimensional

integrals, Monte-Carlo techniques are indeed inferior compared to traditional integration techniques

(Trapezoidal, Simpson), but for multi-dimensional integrals they win over other sampling techniques

as the number of dimensions in the integral exceeds a certain value.

104

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/Random_Pi_b.py

In order to demonstrate this statement we consider the following multi-dimensional integrals

Im =

∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dxm (x1 + x2 + · · ·+ xm)2 (6.22)

These integrals over a hyper-cube of edge length 1 have been chosen such that also an analytic

computation is possible which allows for an assessment of the accuracy of the various numerical

approaches outlined below. A Mathematica notebook computing the integrals 6.22 in a symbolic way

can be downloaded from this link: MonteCarloIntegration.nb. It yields the values

I1 =
1

3
, I2 =

7

6
, I3 =

5

2
, I4 =

13

3
, I5 =

20

3
, I6 =

19

2
, I7 =

77

6
, I8 =

50

3
, I9 = 21, I10 =

155

6
, · · ·

For the numerical evaluation of 6.22, we compare the midpoint rule with a MonteCarlo sampling

(compare Fig. 6.3 which has been obtained with the Python script MonteCarloIntegration.py). We

observe that Monte-Carlo integration becomes indeed superior over the mid-point rule above m ' 6

dimensions, that is, for the same number of function evaluations N , the Monte-Carlo estimate can be

expected to be more accurate than the numerical result from the mid-point rule.

In order to understand this observation, let us first analyse the expected error of the midpoint rule.

In one dimension, m = 1, an interval width h = 1
N

and N function evaluations at the mid points

of the intervals, xi = (2i − 1)h
2

=
{
h
2
, 3h

2
, · · · , 1− h

2

}
, leads to an error which reduces as ∼ 1

N2 .2

For a two-dimensional integral (m = 2), the square area [0, 1] ⊗ [0, 1] is sampled with N points.

Thus, in each direction Nx1 = Nx2 = N
1
2 intervals are used leading to an error which now scales as

∼ 1
N2
x1

= 1
N

. This scaling is indeed observed in the right panel of Fig. 6.3 for m = 2 (blue line). From

what was said, it is also clear how the scaling of the mid-point rule will behave for higher dimensional

problems. Since N function evaluations of the m-dimensional hypercube [0, 1] ⊗ [0, 1] ⊗ · · · lead to

Nx1 = Nx2 = · · · = Nxm = N
1
m grid points for each coordinate direction, we expect the error scaling

of the midpoint method to behave as

εmidpoint
m ∼ 1

N
2
m

. (6.23)

This has to be compared with the error estimate of a random sampling, that is the Monte-Carlo

integration technique, which is expected to scale as

εMonte-Carlo ∼ 1

N
1
2

(6.24)

independent of the dimensionality of the integral. The comparison of these two equations shows that

the Monte-Carlo sampling of the integral is expected to be favourable compared to the mid-point rule

2The error of the midpoint rule is identical to that of the trapezoidal rule, but the midpoint rule has the advantage
that all points have the same weight which is beneficial for a generalization to higher dimensional integrals.

105

http://physik.uni-graz.at/~pep/CompOriPhys/Python/MonteCarloIntegration.nb
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/MonteCarloIntegration.py

100 101 102 103 104 105 106 107

N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

a
b
so

lu
te

 e
rr

o
r

Monte-Carlo Integration

m=2

m=4

m=6

m=8

m=10

100 101 102 103 104 105 106 107

N

Mid-Point Rule

m=2

m=4

m=6

m=8

m=10

Figure 6.3: Left panel: Absolute error as a function of the number N of function evaluations for the
integral 6.22 with dimensions 2,4,6,8 and 10 using a Monte-Carlo sampling. Right panel: same as left
but by using the multi-dimensional mid-point rule.

for m & 4. This is indeed what is found also numerically (Fig. 6.3).

Similar arguments could also be applied to a generalization of Simpson’s rule to higher dimensional

integrals. Since for m = 1 the error scales as ∼ 1
N4 (compare Sec. 2.1.2), the Monte-Carlo method

starts to become superior over the Simpson method for integrals with more than 8 dimensions (m & 8).

As a typical example for such integrals, consider the expectation value of a n-particle wave function in

quantum mechanics. Already a three electron wave function ψ(r1, r2, r3) would lead to a 9-dimensional

integral of the sort

〈ψ| Ĥ |ψ〉 =

∫
d3r1

∫
d3r2

∫
d3r3 ψ

∗(r1, r2, r3)Ĥψ(r1, r2, r3)

Other examples of high-dimensional integrals arising in physics, are thermodynamic averages. This is,

however, outside the scope of this lecture and will be treated with great detail in the separate lecture

”Computational Physics 1” (653.424).

106

Appendix A

Solutions to Exercises

Solution to Exercise 1

A Python code solving this exercise can be found here: exercise1.py. It requires the data file

exercise1.dat from which it reads the coefficients a, b and c of the quadratic equation, and produces

the output:

a = 1e-10

b = 2.5

c = 0.001

Eq. 1.10: x1 = -25000000000.0 x2 = -0.000399680288865

Eq. 1.11: x1 = -25000000000.0 x2 = -0.0004

Solution to Exercise 2

A Python implementation of this exercise can be found here: exercise2.py. The main functions of

the program are the Romberg scheme

1 def romberg (f , a , b , eps , nmax) :

2 # f . . . f unc t i on to be i n t e g r a t e d

3 # [a , b] . . . i n t e g r a t i o n i n t e r v a l

4 # eps . . . d e s i r e d accuracy

5 # nmax . . . maximal order o f Romberg method

6 Q = np . z e r o s ((nmax , nmax) , f loat)

7 converged = 0

8 for i in range (0 ,nmax) :

107

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise1.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise1.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise2.py

9 N = 2∗∗ i

10 Q[i , 0] = t rapezo id (f , a , b ,N)

11 for k in range (0 , i) :

12 n = k + 2

13 Q[i , k+1] = 1 .0/ (4∗∗ (n−1)−1)∗ (4∗∗ (n−1)∗Q[i , k] − Q[i −1,k])

14 i f (i > 0) :

15 i f (abs (Q[i , k+1] − Q[i , k]) < eps) :

16 converged = 1

17 break

18 print (Q[i , k+1] ,N, converged)

19 return Q[i , k+1] ,N, converged

and the trapezoidal rule

1 def t r apezo id (f , a , b ,N) :

2 h = (b−a) /N

3 x i = np . l i n s p a c e (a , b ,N+1)

4 f i = f (x i)

5 s = 0 .0

6 for i in range (1 ,N) :

7 s = s + f i [i]

8 s = (h/2) ∗(f i [0] + f i [N]) + h∗ s

9 return s

When applied to the integrals and using a target accuracy of 1.0× 10−12, the integrals are (numbers

is brackets is the number of intervals N)∫ 1

0

x4 dx = 0.2 (N = 8) (A.1)∫ 1

0

e−x
2

dx = 0.746824132812 (N = 32) (A.2)∫ 20π

0

sinx

x
dx = 1.55488887105 (N = 512). (A.3)

Solution to Exercise 3

A Python implementation of this exercise can be found here: exercise3.py. It leads to the plot shown

in Fig. A.1

108

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise3.py

0.0

0.2

0.4

0.6

0.8

1.0
f(

x
)

1.0

0.5

0.0

0.5

1.0

1
st

 d
e
ri

v
a
ti

v
e df/dx

D+f

D− f

Df

five-point

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0

2
n
d
 d

e
ri

v
a
ti

v
e

d2 f/dx2

three-point

five-point

Figure A.1: Using a grid of N = 10 points, the function f(x) = e−x
2

is plotted (top panel) as well as
its first derivative (middle panel) and second derivative (bottom panel) using various finite difference
schemes which are also compared to the exact values from an analytic expression.

Solution to Exercise 4

A Python implementation of this exercise can be found here: exercise4.py. It leads to the following

output1

Single precision - original order of equations:

LU = [[1.00000000e+00 5.92318100e+06 1.60800000e+03]

[5.92318100e+06 -3.50840737e+13 -9.52447488e+09]

[6.11400000e+03 1.03221566e-03 9.10137200e+06]]

x = [1.36682129 1. 0.99977189]

Double precision - original order of equations:

LU = [[1.00000000e+00 5.92318100e+06 1.60800000e+03]

1Note that the exact solution vector is x = (1, 1, 1).

109

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise4.py

[5.92318100e+06 -3.50840728e+13 -9.52447506e+09]

[6.11400000e+03 1.03221564e-03 9.10137210e+06]]

x = [1. 1. 1.]

Single precision - Eqs. 1 and 2 interchanged

LU = [[5.92318100e+06 3.37116000e+05 -7.00000000e+00]

[1.68828208e-07 5.92318100e+06 1.60800000e+03]

[1.03221566e-03 -5.84105765e-05 9.10137200e+06]]

x = [1. 1. 1.]

Solution to Exercise 5

A Python implementation of this exercise can be found here: exercise5.py. It produces the following

output for the tridiagonal matrix abc.dat

1 LU−DECOMPOSITION:

2 Mˆ(−1) :

3 [[0 . 9 −0 . 515 0 . 112 −0 . 002 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 .]

4 [−0 . 296 0 . 804 −0 . 174 0 . 003 −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 .]

5 [0 . 035 −0 . 096 0 . 59 −0 . 009 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 .]

6 [−0 . 009 0 . 026 −0 . 158 0 . 66 −0 . 03 0 . 01 −0 . 006 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 .]

7 [0 . 006 −0 . 017 0 . 108 −0 . 45 1 . 005 −0 . 322 0 . 201 −0 . 015 0 . 006 −0 . 004 0 . 001 −0 . 001 0 . −0 . 0 . −0 .]

8 [−0 . 005 0 . 014 −0 . 088 0 . 369 −0 . 824 1 . 228 −0 . 766 0 . 057 −0 . 024 0 . 015 −0 . 003 0 . 002 −0 . 001 0 . 001 −0 . 0 .]

9 [0 . 001 −0 . 002 0 . 012 −0 . 049 0 . 11 −0 . 163 0 . 773 −0 . 058 0 . 024 −0 . 015 0 . 003 −0 . 002 0 . 001 −0 . 001 0 . −0 .]

10 [−0 . 0 . −0 . 003 0 . 012 −0 . 027 0 . 04 −0 . 188 0 . 67 −0 . 283 0 . 177 −0 . 038 0 . 023 −0 . 016 0 . 01 −0 . 002 0 . 001]

11 [0 . −0 . 0 . 001 −0 . 005 0 . 011 −0 . 017 0 . 078 −0 . 278 1 . 203 −0 . 752 0 . 16 −0 . 098 0 . 066 −0 . 041 0 . 007 −0 . 002]

12 [−0 . 0 . −0 . 0 . 002 −0 . 003 0 . 005 −0 . 024 0 . 086 −0 . 374 0 . 868 −0 . 184 0 . 114 −0 . 076 0 . 047 −0 . 008 0 . 003]

13 [0 . −0 . 0 . −0 . 001 0 . 003 −0 . 005 0 . 023 −0 . 084 0 . 362 −0 . 839 1 . 35 −0 . 831 0 . 56 −0 . 344 0 . 058 −0 . 019]

14 [−0 . 0 . −0 . 0 . −0 . 001 0 . 001 −0 . 006 0 . 021 −0 . 089 0 . 207 −0 . 333 1 . 184 −0 . 798 0 . 491 −0 . 082 0 . 027]

15 [0 . −0 . 0 . −0 . 0 . −0 . 0 . 002 −0 . 007 0 . 029 −0 . 068 0 . 11 −0 . 39 1 . 15 −0 . 707 0 . 118 −0 . 039]

16 [−0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . 002 −0 . 007 0 . 016 −0 . 025 0 . 089 −0 . 262 0 . 846 −0 . 141 0 . 046]

17 [0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 001 0 . 003 −0 . 006 0 . 01 −0 . 036 0 . 105 −0 . 339 0 . 918 −0 . 301]

18 [−0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 001 0 . 002 −0 . 004 0 . 013 −0 . 039 0 . 125 −0 . 337 0 . 793]]

19 M∗Mˆ(−1) :

20 [[1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . −0 . 0 .]

21 [0 . 1 . 0 . 0 . 0 . −0 . 0 . 0 . 0 . 0 . 0 . 0 . −0 . 0 . 0 . −0 .]

22 [0 . −0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . −0 . 0 . 0 . 0 . 0 . 0 .]

23 [−0 . 0 . −0 . 1 . 0 . 0 . −0 . 0 . 0 . 0 . 0 . 0 . −0 . 0 . −0 . 0 .]

24 [0 . −0 . −0 . −0 . 1 . 0 . 0 . 0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . 0 .]

25 [0 . −0 . −0 . 0 . −0 . 1 . 0 . 0 . 0 . −0 . 0 . 0 . 0 . −0 . 0 . −0 .]

26 [0 . 0 . −0 . 0 . 0 . 0 . 1 . 0 . 0 . −0 . 0 . 0 . 0 . 0 . 0 . 0 .]

27 [0 . −0 . 0 . −0 . 0 . −0 . 0 . 1 . 0 . 0 . 0 . 0 . 0 . −0 . 0 . −0 .]

28 [−0 . 0 . 0 . 0 . −0 . 0 . −0 . 0 . 1 . 0 . −0 . 0 . 0 . 0 . −0 . 0 .]

29 [0 . 0 . 0 . 0 . 0 . 0 . −0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . −0 . 0 .]

30 [−0 . 0 . 0 . 0 . −0 . 0 . −0 . −0 . −0 . 0 . 1 . 0 . −0 . 0 . 0 . 0 .]

31 [−0 . 0 . 0 . 0 . −0 . −0 . −0 . 0 . −0 . 0 . −0 . 1 . −0 . 0 . 0 . 0 .]

32 [−0 . 0 . −0 . −0 . 0 . 0 . −0 . 0 . 0 . 0 . −0 . −0 . 1 . −0 . 0 . 0 .]

33 [0 . 0 . 0 . 0 . −0 . −0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 1 . 0 . 0 .]

34 [0 . −0 . 0 . 0 . 0 . −0 . −0 . 0 . 0 . 0 . 0 . −0 . −0 . −0 . 1 . 0 .]

35 [0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . 0 . 0 . −0 . 0 . 0 . 0 . −0 . 1 .]]

36
37
38

110

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise5.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python/abc.dat

39 SOR (omega = 1)

40 Mˆ(−1) :

41 [[0 . 9 −0 . 515 0 . 112 −0 . 002 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 .]

42 [−0 . 296 0 . 804 −0 . 174 0 . 003 −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 .]

43 [0 . 035 −0 . 096 0 . 59 −0 . 009 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 .]

44 [−0 . 009 0 . 026 −0 . 158 0 . 66 −0 . 03 0 . 01 −0 . 006 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 .]

45 [0 . 006 −0 . 017 0 . 108 −0 . 45 1 . 005 −0 . 322 0 . 201 −0 . 015 0 . 006 −0 . 004 0 . 001 −0 . 001 0 . −0 . 0 . −0 .]

46 [−0 . 005 0 . 014 −0 . 088 0 . 369 −0 . 824 1 . 228 −0 . 766 0 . 057 −0 . 024 0 . 015 −0 . 003 0 . 002 −0 . 001 0 . 001 −0 . 0 .]

47 [0 . 001 −0 . 002 0 . 012 −0 . 049 0 . 11 −0 . 163 0 . 773 −0 . 058 0 . 024 −0 . 015 0 . 003 −0 . 002 0 . 001 −0 . 001 0 . −0 .]

48 [−0 . 0 . −0 . 003 0 . 012 −0 . 027 0 . 04 −0 . 188 0 . 67 −0 . 283 0 . 177 −0 . 038 0 . 023 −0 . 016 0 . 01 −0 . 002 0 . 001]

49 [0 . −0 . 0 . 001 −0 . 005 0 . 011 −0 . 017 0 . 078 −0 . 278 1 . 203 −0 . 752 0 . 16 −0 . 098 0 . 066 −0 . 041 0 . 007 −0 . 002]

50 [−0 . 0 . −0 . 0 . 002 −0 . 003 0 . 005 −0 . 024 0 . 086 −0 . 374 0 . 868 −0 . 184 0 . 114 −0 . 076 0 . 047 −0 . 008 0 . 003]

51 [0 . −0 . 0 . −0 . 001 0 . 003 −0 . 005 0 . 023 −0 . 084 0 . 362 −0 . 839 1 . 35 −0 . 831 0 . 56 −0 . 344 0 . 058 −0 . 019]

52 [−0 . 0 . −0 . 0 . −0 . 001 0 . 001 −0 . 006 0 . 021 −0 . 089 0 . 207 −0 . 333 1 . 184 −0 . 798 0 . 491 −0 . 082 0 . 027]

53 [0 . −0 . 0 . −0 . 0 . −0 . 0 . 002 −0 . 007 0 . 029 −0 . 068 0 . 11 −0 . 39 1 . 15 −0 . 707 0 . 118 −0 . 039]

54 [−0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . 002 −0 . 007 0 . 016 −0 . 025 0 . 089 −0 . 262 0 . 846 −0 . 141 0 . 046]

55 [0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 001 0 . 003 −0 . 006 0 . 01 −0 . 036 0 . 105 −0 . 339 0 . 918 −0 . 301]

56 [−0 . 0 . −0 . 0 . −0 . 0 . −0 . 0 . −0 . 001 0 . 002 −0 . 004 0 . 013 −0 . 039 0 . 125 −0 . 337 0 . 793]]

0.0 0.5 1.0 1.5 2.0
ω

101

102

103

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

in
 S

O
R

abc.dat

Figure A.2: Number of necessary iterations in the SOR-method for the tridiagonal matrix abc.dat

as a function of the over-relaxation parameter ω.

111

Solution to Exercise 6

A Python implementation of this exercise can be found here: exercise6.py. It reads in the data file

exercise6.dat and produces the plot shown in Fig. A.3.

0
1
2
3
4
5
6

T
(x

)

1.0

0.5

0.0

0.5

1.0

1.5

d
T
/d
x

0 2 4 6 8 10
x

1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2

d
2
T
/d
x

2 5

10

20

100

Figure A.3: Using a grids of N = 5, 10, 20, 100 points, the stationary heat equation is solved. The
finite difference solution for the temperature T (x) (top panel), its first derivative (middle panel), and
second derivative (bottom panel) is shown.

Solution to Exercise 7

A Python implementation of this exercise can be found here: exercise7.py. It produces the following

output for the matrix A5.dat

POWER ITERATION METHOD

Largest eigenvalue = 8.65427349302

Eigenvector = [0.32873476 0.48567729 0.55866362 0.48567565 0.32873265]

112

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise6.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise6.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise7.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/A5.dat

Number of iterations = 30

RESULT FROM numpy.linalg.eig

Largest eigenvalue = 8.65427349298

Eigenvector = [0.3287337 0.48567647 0.55866362 0.48567647 0.3287337]

Solution to Exercise 8

A Python implementation of this exercise can be found here: exercise8.py. It produces the following

output for the matrix A5.dat

Matrix =

[[4. 2. 1. 0. 0.]

[2. 4. 2. 1. 0.]

[1. 2. 4. 2. 1.]

[0. 1. 2. 4. 2.]

[0. 0. 1. 2. 4.]]

RESULT FROM numpy.linalg.eig

Eigenvalues = [8.65427 5.56155 2.7477 1.43845 1.59802]

Eigenvectors =

[[3.28734e-01 5.57345e-01 6.17548e-01 4.35162e-01 1.02801e-01]

[4.85676e-01 4.35162e-01 -1.78298e-01 -5.57345e-01 -4.82004e-01]

[5.58664e-01 -8.53973e-16 -4.16759e-01 -1.25069e-15 7.17082e-01]

[4.85676e-01 -4.35162e-01 -1.78298e-01 5.57345e-01 -4.82004e-01]

[3.28734e-01 -5.57345e-01 6.17548e-01 -4.35162e-01 1.02801e-01]]

JACOBI METHOD: Number of rotations = 14

Eigenvalues = [8.65427 1.43845 1.59802 5.56155 2.7477]

Eigenvectors =

[[3.28734e-01 -4.35162e-01 1.02801e-01 -5.57345e-01 6.17548e-01]

[4.85676e-01 5.57345e-01 -4.82004e-01 -4.35162e-01 -1.78298e-01]

[5.58664e-01 -1.98254e-16 7.17082e-01 -1.49191e-16 -4.16759e-01]

[4.85676e-01 -5.57345e-01 -4.82004e-01 4.35162e-01 -1.78298e-01]

[3.28734e-01 4.35162e-01 1.02801e-01 5.57345e-01 6.17548e-01]]

A performance test comparing implementations of the Jacobi-method in Fortran and Python as well

113

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise8.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/A5.dat

as performance results of LAPACK routine dsyev called from Fortran and the NumPy function

numpy.linalg.eig can be seen in Fig. A.4.

101 102 103 104

Matrix Size N

10-4

10-3

10-2

10-1

100

101

102

103

C
P
U

 t
im

e
 (

se
c)

Performace of eigenvalue solvers

numpy.linalg.eig

Jacobi [Python]

LAPACK (dsyev) [Fortran]

Jacobi [Fortran]

Figure A.4: CPU-time of various eigenvalue solvers as a function of matrix size in a double-logarithmic
plot.

Solution to Exercise 9

A Python implementation of part (a) of this exercise can be found here: exercise9a.py. The results

are plotted in Fig. A.5.

A Python implementation of part (b) of this exercise can be found here: exercise9b.py. The results

are plotted in Fig. A.6.

114

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise9a.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise9b.py

10-5
10-4
10-3
10-2
10-1
100
101 [-3.0, 3.0]

10-5
10-4
10-3
10-2
10-1
100
101

D
if
fe

re
n
ce

 t
o
 e

x
a
ct

 e
ig

e
n
v
a
lu

e

[-4.0, 4.0]

10-2 10-1 100 101

Grid spacing h

10-5
10-4
10-3
10-2
10-1
100
101 [-5.0, 5.0]

0

1

2

3

4

Figure A.5: Convergence of the lowest five eigenvalues E0 = 1
2
, E1 = 3

2
, ... of the harmonic oscillator

with step size h in the finite difference approach. Plotted is the absolute error as a function of step size
for three different intervals, [−3, 3] (top panel), [−4, 4] (middle panel), and [−5, 5] (bottom panel).

Solution to Exercise 10

A Python implementation of this exercise can be found here: exercise10.py. It produces the following

output for the data file exercise10.dat showing the values of the cubic spline coefficients ai, bi, ci

and di as defined in Eq. 4.2

a = [0.2 -0.1 -0.6 0.]

b = [0.16277778 -1.82555556 -0.35472222 1.92277778]

c = [0. -3.31388889 8.21666667 -2.52291667 0.]

d = [-1.84104938 12.8117284 -8.94965278 2.10243056]

The resulting spline curve as well as its first and second derivatives are plotted in Fig. A.7.

115

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise10.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise10.dat

3 2 1 0 1 2 3
x

4

2

0

2

4

6

V
(x

)

V(x) =−3x2 +x4 /2

0

1

2

3

4

Figure A.6: The dashed lines show the lowest five eigenvalues of the anharmonic potential V (x) =
−3x2 + x4

2
(black line). The full, colored lines indicate the eigenvectors corresponding to these five

eigenvalues.

Solution to Exercise 11

A Python implementation of this exercise can be found here: exercise11.py. It reads in the sun spot

data from the data file SN_m_tot_V2.0.txt. As FFT routine, it uses the function numpy.fft.fft of

the NumPy library and results in the plot shown in Fig. A.8.

Solution to Exercise 12

A Python implementation of this exercise can be found here: exercise12.py. It reads and fits the

specific heat data from the data file exercise12.dat. The data points as well as the best fit and the

116

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise11.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/SN_m_tot_V2.0.txt
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise12.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise12.dat

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

f(
x
)

data points

cubic spline I(x)

3
2
1
0
1
2
3

d
f/
d
x

dI/dx

1.0 1.5 2.0 2.5 3.0
x

10
5
0
5

10
15
20

d
2
f/
d
x

2

d2 I/dx2

Figure A.7: Data points from file exercise10.dat (symbols) and the corresponding cubic spline
interpolation (red line). the first and second derivatives of the spline curve are shown in the middle
and bottom panels, respectively.

resulting fit parameters are shown in Fig. A.9.

Solution to Exercise 13

A Python implementation of this exercise can be found here: exercise13.py. It reads and fits the data

from the file exercise13.dat. The data points as well as the best fit and the resulting fit parameters

are shown in Fig. A.10.

117

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise13.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise13.dat

Solution to Exercise 14

A Python implementation of this exercise can be found here: exercise14.py. The results are shown

in Fig. A.11. An alternative Python implementation which makes use of classes can be found here:

exercise14_myodeclass.py. Here, the functions ExplicitEuler and LeapFrog are put into a class

named ode: myode.py

Solution to Exercise 15

A Python implementation of this exercise can be found here: exercise15.py. The results are shown

in Fig. A.12.

Solution to Exercise 16

A Python implementation of this exercise can be found here: exercise16.py. The results are shown

in Fig. A.13. A Mathematica notebook which derives the equations of motion from the Lagrangian

can be downloaded from this link: exercise16.nb

Solution to Exercise 17

A Python implementation of this exercise can be found here: exercise17.py. The results are shown

in Fig. A.14.

Solution to Exercise 18

A Python implementation of parts (a), (b), (c) and (d) of this exercise can be found here: exercise18a.

py, exercise18b.py, exercise18c.py, and exercise18d.py. The results of part (b) are shown in

Fig. A.15, the CPU-time analysis related to part (d) is shown in Fig. A.16.

Solution to Exercise 19

A Python implementation of this exercise can be found here: exercise19.py. The results of part (a)

and (b) are shown in Figs. A.17 and A.18, respectively.

118

http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise14.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise14_myodeclass.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/myode.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise15.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise16.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise16.nb
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise17.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise18a.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise18a.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise18b.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise18c.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise18d.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python3/exercise19.py

1700 1750 1800 1850 1900 1950 2000 2050
time (years)

0

50

100

150

200

250

300

350

400

su
n
 s

p
o
t

n
u
m

b
e
r

0.0 0.2 0.4 0.6 0.8 1.0
period (1/years)

0

5

10

15

20

25

30

35

40

su
n
 s

p
o
t

n
u
m

b
e
r 11.11 years

Figure A.8: Top panel: Data points from the file SN m tot V2.0.txt showing the monthly averaged
sun-spot number from the year 1750 until today. The bottom panel shows the absolute value of
the discrete Fourier transform of the data. The prominent peak at a frequency of f ≈ 0.09 years−1

correspond to the well-known 1
0.09
≈ 11.11 period in the sun spot number.

119

0 1 2 3 4 5 6
T(K)

0

2

4

6

8

10

12

14

c V
(m
J
m
ol
−

1
K
−

1
)

γ = 0.619± 0.021

α = 0.041± 0.001

r = -0.019

data points

cV =γT+αT3

Figure A.9: The crosses show specific heat measurement data of silver cV as a function of temperature
T . The red line shows the best fit according to the form cV (T) = γT + αT 3. The best fit parameters
as well as their standard deviations are indicated.

120

0 1 2 3 4 5 6
t (min)

101

102

103

104

a
ct

iv
it

y
 A

(m
in
−

1
)

NA = 314± 19

NB = 1980± 22

λA = 4.601± 0.265

λB = 0.496± 0.008

A(t) =λANA exp(−λA t) +λBNB exp(−λB t)
data points

Figure A.10: The crosses show the activity A(t) as a function of time t. The red line shows the best
fit according to the form A(T) = λANA exp−λAt+ λBNB expλBt. The best fit parameters as well as
their standard deviations are indicated.

121

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (AU)

2

1

0

1

2

y
(A

U
)

Explicit Euler ∆t = 0.001

Leap Frog ∆t = 0.02

0 1 2 3 4 5
t (years)

20

19

18

17

16

15

E
 (

A
U

)

Explicit Euler

Leap Frog

exact value

Figure A.11: Left panel: Computed trajectories (x(t), y(t) resulting from the forward (=explicit) Euler
and the leap frog method in the time interval [0, 5] for time steps ∆t = 0.001 and ∆t = 0.02,
respectively. The right panel shows the evolution of the total energies E(t) for the two methods.

122

2 1 0 1 2
x (AU)

1.0

0.5

0.0

0.5

1.0

y
(A

U
)

RK4 ∆t = 0.10

RK4 ∆t = 0.05

RK4 ∆t = 0.01

RK4 ∆t = 0.001

10-3 10-2 10-1

∆t (years)

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

E
(t

=
5)
−
E
ex
a
ct
 (

A
U

)

Figure A.12: Top panel: Computed trajectories (x(t), y(t) resulting from the classical Runge-Kutta-4
method in the time interval [0, 5] for time steps ∆t = 0.1, ∆t = 0.05, ∆t = 0.01, and ∆t = 0.001,
respectively. The bottom panel shows the absolute error in the total energy at t = 5 versus the time
step ∆t in a double-logarithmic plot.

123

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
x (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y
(m

)

mass 1

mass 2

0 10 20 30 40 50
t (sec)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
−
E

0
 (

J)

Figure A.13: Top panel: Computed trajectories (x1(t), y1(t) and (x2(t), y2(t) of the masses m1 (red)
and m2 of a double pendulum in the time interval t ∈ [0, 50]. The following set of parameters have
been used: g = 9.81, m1 = m2 = 1 and l1 = l2 = 1, and the initial conditions were set to: θ1(0) = 2π/3,
θ2(0) = 0, θ̇1(0) = 0, θ̇2(0) = 0. Bottom panel: absolute error ∆E = E(t) − E(0) of the total energy
as a function of time.

124

6 4 2 0 2 4 6
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

ψ

-1.20174703343

-1.17431632891

-0.113733275659

V(x)

Figure A.14: The bound states of the potential function V (x) (black line) and the corresponding
eigenvalues of a one-dimensional Schrödinger equation as obtained by the shooting method.

125

x

10
5

0
5

10

y

10

5

0

5

10

Φ

0.4

0.2

0.0

0.2

0.4

Figure A.15: The potential Φ(x, y) as resulting from the solution of Poisson’s equation for 100× 100
grid points and using d = 5 and σ = 0.5 as parameters in the charge density function ρ(x, y).

126

102 103 104 105 106

Matrix Size NxN

10-4

10-3

10-2

10-1

100

101

102

C
P
U

 t
im

e
 (

se
c)

spsolve

cg

bicg

gmres

lgmres

minres

qmr

Figure A.16: CPU time for various sparse matrix solvers for the linear system of equations A ·x = b,
where A is the sparse matrix resulting from a finite difference approach to Poisson’s equation in 2D
(compare Eq. 5.58). The matrix size is N×N , where N is the number of grid points along 1 direction.

127

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t
Re Ψ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

Im Ψ

5 0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

|Ψ|

5 0 5 10 15 20 25

x

0.06

0.04

0.02

0.00

0.02

0.04

0.06

V
(x

)

Figure A.17: Free propagation of a Gaussian ψ(x, t) wave packet in one spatial dimension. The real
part (top panel), imaginary part (2nd panel) and the absolute value |ψ(x, t)| (3rd panel) is shown as
a colorplot representation. The bottom panel indicates the potential V (x) = 0. At time t = 0, the
Gaussian wave packet is centered around x = 0 and characterized by the mean momentum k0 = 10
and the momentum spread ∆k = 1.

128

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t
Re Ψ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

Im Ψ

5 0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

|Ψ|

5 0 5 10 15 20 25

x

0

20

40

60

80

100

120

V
(x

)

Figure A.18: Partial penetration of a Gaussian ψ(x, t) wave packet through a potential barrier. The
real part (top panel), imaginary part (2nd panel) and the absolute value |ψ(x, t)| (3rd panel) is shown
as a colorplot representation. The bottom panel indicates the potential V (x) shaped as a Gaussian of
height 110. At time t = 0, the Gaussian wave packet is centered around x = 0 and characterized by
the mean momentum k0 = 10 and the momentum spread ∆k = 1.

129

130

Bibliography

[1] Franz J. Vesely. Computational Physics - An Introduction. Kluwer Academic / Plenum Publishers,

New York-London, 2001.

[2] Rubin H. Landau, Manuel Jose Paez Mejia, and Cristian C. Bordeianu. Computational Physics

- Problem solving with computers. John Wiley & Sons, 2007.

[3] B. A. Stickler and E. Schachinger. Basic Concepts in Computational Physics. Springer, 2013.

[4] Samuel S. M. Wong. Computational Methods in Physics and Engineering. World Scientific, 1997.

[5] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes - The Art of Scientific Computing. Cambridge University Press, 1986.

[6] W. Törnig and P. Spellucci. Numerische Mathematik für Ingenieure und Physiker - Band 1:

Numerische Methoden der Algebra. Springer, 1988.

[7] H. Sormann. Physik auf dem Computer. Vorlesungsskriptum, Technische Universität Graz, 1996.

[8] Wikipedia. Matrix norm, 2013.

[9] Peter Arbenz and Daniel Kressner. Lecture Notes on Solving Large Scale Eigenvalue Problems.

ETH Zürich, 2012.

[10] W. Törnig and P. Spellucci. Numerische Mathematik für Ingenieure und Physiker - Band 2:

Numerische Methoden der Analysis. Springer, 1990.

[11] J. G. Charney, R. Fjörtoft, and J. Von Neumann. Numerical integration of the barotropic vorticity

equation. Tellus, 2:237–254, 1950.

131

http://en.wikipedia.org/wiki/Matrix_norm
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00336.x
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00336.x

	Introduction
	The nature of computational physics
	Representing numbers on computers
	Integers
	Floating numbers
	Machine precision

	Errors and Stability
	Round-off errors
	Methodological errors
	Stability

	Numerical Integration and Differentiation
	Numerical Integration
	Trapezoidal rule
	The Simpson rule
	The Romberg method
	Gauss-Legendre quadrature
	Improper integrals

	Numerical Differentiation
	First derivative
	Second derivative

	Numerical Methods for Linear Algebra
	Linear systems of equations
	Matrix operations
	The LU Decomposition
	Iterative Methods

	Eigenvalue problems
	Power iteration (Von Mises Method)
	Jacobi-Method
	Applications in Physics

	Interpolation and Least Squares Approximation
	Interpolation of data
	Definition of the problem
	Spline interpolation
	Fourier interpolation

	Least-squares approximation of data
	Linear model functions
	Nonlinear model functions

	Numerical Treatment of Differential Equations
	Ordinary differential equations
	Initial value problems
	Boundary value problems

	Partial differential equations
	Classification of PDEs
	Static problems in two dimensions
	Initial value problems
	Time dependent Schrödinger equation

	Monte Carlo Calculations
	Generation of random numbers
	Linear congruential generator
	Assessment of randomness and uniformity
	Generation of non-uniformly distributed random numbers

	Monte Carlo integration
	Introductory example
	Multidimensional integrals

	Solutions to Exercises
	Solution to Exercise 1: Roots of a quadratic equation
	Solution to Exercise 2: Romberg integration method
	Solution to Exercise 3: Numerical differentiation
	Solution to Exercise 4: Implementation of the LU-decomposition
	Solution to Exercise 5: Matrix inversion for tridiagonal matrices
	Solution to Exercise 6: Finite difference solution of the stationary heat equation
	Solution to Exercise 7: Von Mises Method
	Solution to Exercise 8: Jacobi Method
	Solution to Exercise 9: Eigenvalues of the stationary Schrödinger equation
	Solution to Exercise 10: Spline interpolation
	Solution to Exercise 11: Fast Fourier Transform
	Solution to Exercise 12: Linear fit problem
	Solution to Exercise 13: Non-linear fit problem
	Solution to Exercise 14: Kepler problem – part I
	Solution to Exercise 15: Kepler problem – Runge-Kutta
	Solution to Exercise 16: Double pendulum
	Solution to Exercise 17: Schrödinger equation – shooting method
	Solution to Exercise 18: Solution of Poisson's Equation in 2D
	Solution to Exercise 19: Time-dependent Schrödinger equation

	Bibliography

