
Computational Physics II

WS 2015/16

Ass.-Prof. Peter Puschnig
Institut für Physik, Fachbereich Theoretische Physik

Karl-Franzens-Universität Graz

Universitätsplatz 5, A-8010 Graz

peter.puschnig@uni-graz.at

http://physik.uni-graz.at/~pep

Graz, 27th January 2015

http://physik.uni-graz.at/~pep

ii

About these lecture notes
These lecture notes for ”Computational Physics II” do not intend to fully cover the content of the lecture.

Rather they are meant to provide an overview over the topics of the lecture and to set a framework for the

programming exercises accompanying the lecture. For a more extensive coverage of numerical methods for

solving linear systems of equations, computing eigenvalues of matrices, and for integrating partial differential

equations, these lecture notes will refer to appropriate text books and occasionally also to online resources

for further details.

iii

iv

Contents

1 Linear Systems of Equations 1

1.1 Introduction . 1

Exercise 1: Matrix Multiplications . 4

1.2 The LU Decomposition . 5

1.2.1 LU decomposition for general matrices . 6

Exercise 2: Implementation of the LU-decomposition 7

1.2.2 Pivoting . 8

1.2.3 Error estimation and condition number . 8

Exercise 3: LU-decomposition with LAPACK . 10

1.2.4 Linear Least Squares Fits . 11

Project 1: Fredholm’s integral equation . 15

1.2.5 LU decomposition for tridiagonal matrices . 16

1.3 Iterative Methods . 17

1.3.1 Construction of iterative methods . 17

1.3.2 The Jacobi Method . 18

1.3.3 Gauss-Seidel and Successive Over-Relaxation Method 19

Exercise 4: Matrix inversion for tridiagonal matrices 21

Project 2: Finite difference solution of the stationary heat equation 22

1.3.4 Conjugate Gradient Method . 24

Exercise 5: Conjugate gradient method . 27

2 Eigenvalues and Eigenvectors of Matrices 29

2.1 Introduction . 29

2.2 Subspace Methods . 30

2.2.1 Power iteration (Von Mises Method) . 30

Exercise 6: Von Mises Method . 33

2.2.2 Simultaneous vector iterations . 34

2.2.3 Lanczos algorithm . 34

v

2.3 Transformation Methods . 34

2.3.1 Jacobi-Method . 34

Exercise 7: Jacobi Method . 39

2.3.2 The QR algorithm . 40

2.4 Applications in Physics . 47

2.4.1 Normal modes of vibration . 47

2.4.2 One-dimensional Boundary Value Problems 47

Project 3: Eigenvalues of the stationary Schrödinger equation 50

2.4.3 Secular equation of Schrödinger equation . 51

Exercise 8: The Band Structure of fcc-Al . 55

3 Partial Differential Equations 57

3.1 Classification of PDEs . 57

3.1.1 Discriminant of a quadratic form . 57

3.1.2 Boundary vs. initial value problem . 59

3.2 Boundary Value Problems . 59

3.2.1 Finite differencing in ≥ 2 dimensions . 59

Exercise 9: Solution of Poisson’s Equation in 2D . 63

3.3 Initial Value Problems . 64

3.3.1 von Neumann stability analysis . 64

3.3.2 Heat equation . 69

3.3.3 Time dependent Schrödinger equation . 71

Exercise 10: Time-dependent Schrödinger equation in 1D 73

3.3.4 Initial value problems for > 1 space dimensions 74

Project 4: Time-dependent Schrödinger equation in 2D 76

3.3.5 Consistency, Order, Stability, and Convergence 78

Exercise 11: Finite difference scheme for the wave equation 81

3.4 Beyond Finite Differencing . 82

3.4.1 Finite Elements Method . 82

3.4.2 Finite Volume Method . 83

A Solutions to Exercises 85

Solution to Exercise 1: Matrix Multiplications . 85

Solution to Exercise 2: LU-decomposition . 85

Solution to Exercise 3: LU-decomposition with LAPACK 86

Solution to Exercise 4: Matrix inversion for tridiagonal matrices 86

Solution to Exercise 5: Conjugate gradient method . 87

vi

Solution to Exercise 6: Von Mises Method . 88

Solution to Exercise 7: Jacobi Method . 90

Solution to Exercise 8: The Band Structure of fcc-Al . 93

Solution to Exercise 9: Solution of Poisson’s Equation in 2D 98

Solution to Exercise 10: Time-dependent Schrödinger equation in 1D 100

Solution to Exercise 11: Finite difference scheme for the wave equation 102

Bibliography 110

vii

viii

Chapter 1

Linear Systems of Equations

1.1 Introduction

In this chapter we will learn about numerical methods for solving a linear system of equations con-

sisting of n equations for the n unknown variables xi.

a11x1 + a12x2 + · · ·+ a1n = b1 (1.1)

a21x1 + a22x2 + · · ·+ a2n = b2

... =
...

an1x1 + an2x2 + · · ·+ ann = bn

We will assume that the coefficient matrix aij as well as the vector bi are real numbers, and furthermore

we require

|b1|+ |b2|+ . . .+ |bn| > 0.

Under these assumptions, the Eqs. 1.1 constitute a real-valued, linear, inhomogeneous system of equa-

tions of n-th order. The numbers x1, x2, · · · , xn are called the solutions of the system of equations.

Conveniently, we can write Eqs. 1.1 as a matrix equation

A · x = b. (1.2)

The solution of such a system is a central problem of computational physics since a number of numerical

methods lead such a system of linear equations. For instance, numerical interpolations such as spline-

interpolations, linear least-square fitting problems, as well as finite difference approaches to the solution

of differential equations reduce to solving an equation system of type 1.2.

From a mathematical point of view, the solution of Eq. 1.2 poses no problem. As long as the deter-

1

minant of the coefficient matrix A does not vanish

detA 6= 0,

i.e., the problem is not singular, the solution can be obtained by applying the well-known Cramer’s

Rule. However, this method turns out to be rather impracticable for implementing it in a computer

code for n & 4. Moreover, its is computationally inefficient for large matrices. In this chapter, we will

therefore discuss various methods which can be implemented in an efficient way and also work in a

satisfactory manner for very large problem sizes n. Generally we can distinguish between direct and

iterative methods. Direct methods lead in principle to the exact solution, while iterative methods only

lead to an approximate solution. However, due to inevitable rounding errors in the numerical treatment

on a computer, the usage of an iterative method may prove superior over a direct method particular for

very large or ill-conditioned coefficient matrices. In this lecture we will learn about one direct method,

the so-called LU -decomposition according to Doolittle and Crout (see Section 1.2) which is the most

widely used direct method. In Sec. 1.3 we will outline various iterative procedures including the Gauss-

Seidel method (GS), the successive overrelaxation (SOR) method, and the conjugate gradient (CG)

approach.

The presentation of the above two classes of methods within this lecture notes will be kept to a mini-

mum. For further reading, the standard text book ’Numerical Recipes’ by Press et al. is recommended

[1]. A detailed description of various numerical methods can also be found in the book by Törnig and

Spellucci [2]. A description of the LU -decomposition and the Gauss-Seidel method can also be found

in the recent book by Stickler and Schachinger [3], and also in the lecture notes of Sormann [4].

Before we start with the description of the LU -decomposition, it will be a good exercise to look at

how a matrix-matrix product is implemented Exercise 1. Throughout this lecture notes, Fortran1 will

be used to present some coding examples, though other programming languages such as C, C++ or

Python may be used as well. Thus the goal of the first exercise will be to compute the matrix product

C = A ·B which may be implemented by a simple triple loop

1 do i = 1 ,n

2 do j = 1 ,m

3 do k = 1 , l

4 C(i , j) = C(i , j) + A(i , k) ∗B(k , j)

5 end do

6 end do

7 end do

Apart from this easy-to-implement solution, we will also learn to use highly-optimized numerical

libraries. For linear algebra operations, these are the so-called BLAS (Basic Linear Algebra Subpro-

1An online tutorial for modular programming with Fortran90 can for instance be found here [5]

2

grams) [6] and the LAPACK (Linear Algebra PACKage) [7]. When using Intel compilers (ifort for

Fortran or ifc for C), a particularly simple and efficient way to use the suite of BLAS and LAPACK

routines is to make use of Intel’s Math-Kernel-Library [8].

3

Exercise 1

Matrix Multiplications

As a warm-up for what follows, write a program which computes the matrix product between two matrices

A and B. Here, A is a m× n, and B is a n× p matrix, thus the product C is given by

Cij =
n∑
k=1

AikBkj. (1.3)

(a) Write subroutines that read in and write out a matrix from a text file. Assume that the number of

lines and columns, m and n, respectively, are contained in the first line of the file, followed by the

entries of the matrix where the column index changes fastest.

(b) Write a subroutine which performs the matrix multiplication of two matrices by the straight-forward

triple loops. Compare your results and the timing of this routine with internal matrix multiplication

routines such as MATMUL of Fortran.

(c) Link your program against the Basic Linear Algebra Subprograms (BLAS) and use the DGEMM routine

to perform the matrix multiplication and compare the results and the CPU times with those of (b).

Hints: Some information on the DGEMM routine and its Application programming interface (API) in Fortran

an C can be found here: http://en.wikipedia.org/wiki/General_Matrix_Multiply. If you choose

to use the Intel Fortran (ifort) or C compiler (ifc), then linking to the BLAS libraries can be most easily

done by including the ifort -mkl ... option in the compilation. Some documentation on Intel’s math-

kernel-library (mkl) and some tutorials can be found here: documentation and tutorial

Some more things to try: If you wonder why the optimized BLAS routine is so much faster than the straight-

forward triple-loop code, then have a look at the following tutorial, which explains in a step-by-step manner

which optimizations of the code are necessary in order to achieve this dramatic speed-up:

Optimizing-Matrix-Matrix-Multiplication

4

http://en.wikipedia.org/wiki/General_Matrix_Multiply
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/index.htm
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/tutorials/mkl_mmx_f/index.htm
http://wiki.cs.utexas.edu/rvdg/HowToOptimizeGemm

1.2 The LU Decomposition

The direct solution method called LU -decomposition, first discussed by Doolittle and Crout, is based

on the Gauss’s elimination method [1, 3, 4]. This in turn is possible due to the following property

of a system of linear equations: The solution of a linear system of equation is not altered if a linear

combination of equations is added to another equation. Now, Doolittle and Crout have shown that

any matrix A can be decomposed into the product of a lower and upper triangular matrix L and U ,

respectively:

A = L ·U , (1.4)

where

L =


1 0 0 · · · 0

l21 1 0 · · · 0

l31 l32 1 · · · 0
...

...

ln1 ln2 ln3 · · · 1

 and U =


u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

0 0 0 · · · unn

 (1.5)

Once such a decomposition has been found, it can be used to obtain the solution vector x by simple

forward- and backward substitution. We can write

A · x = L ·U · x = L · y = b,

where we have introduced the new vector y as U ·x = y, and see that due the lower triangle form of

L, the auxiliary vector y is obtained from forward substitution, that is

yi = bi −
i−1∑
j=1

lijyj, i = 1, 2, · · · , n. (1.6)

Using this result for y, the solution vector x can be obtained via backward substitution, i.e. starting

with the index i = n, due to the upper triangle form of the matrix U :

xi =
1

uii

[
yi −

n∑
j=i+1

uijxj

]
, i = n, n− 1, · · · , 1. (1.7)

Of course now the crucial point is how the decomposition of the matrix A into the triangular matrices

L and U can be accomplished. This will be shown in the next two subsections, first for a general

matrix, and second for a so-called tridiagonal matrix, a form which is often encountered when solving

differential equations by the finite difference approach.

5

1.2.1 LU decomposition for general matrices

Here, we simply state the surprisingly simple formulae by Doolittle and Crout for achieving the LU -

decomposition of a general matrix A. More details and a brief derivation of the equations below can

be found in Ref. [1] and an illustration of the algorithm can be found here: LU.nb.

uij = aij −
i−1∑
k=1

likukj, i = 1, · · · , j − 1 (1.8)

γij = aij −
j−1∑
k=1

likukj, i = j, · · · , n (1.9)

ujj = γjj (1.10)

lij =
γij
γjj

, i = j + 1, · · · , n (1.11)

Note that the evaluation of the above equations proceeds column-wise. Also note that in the code

example below, we have used the fact that both matrices L and U can be stored in only one two-

dimensional array LU due to the special shape of the matrices.

1 do j = 1 ,n ! l oop over columns

2 do i = 1 , j−1 ! Eq . (1 . 8)

3 s = A(i , j)

4 do k = 1 , i−1

5 s = s − LU(i , k) ∗LU(k , j)

6 end do

7 LU(i , j) = s

8 end do

9 do i = j , n ! Eq . (1 . 9)

10 s = a (i , j)

11 do k = 1 , j−1

12 s = s − LU(i , k) ∗LU(k , j)

13 end do

14 g (i , j) = s

15 end do

16 LU(j , j) = g (j , j) ! Eq . (1 . 10)

17 i f (g (j , j) . eq . 0 . 0 d0) then

18 g (j , j) = 1 .0 d−30

19 end i f

20 i f (j . l t . n) then ! Eq . (1 . 11)

21 do i = j +1,n

22 LU(i , j) = g (i , j) /g (j , j)

23 end do

24 end i f

25 end do ! end loop over columns

6

http://physik.uni-graz.at/~pep/Lehre/CP2/LU.nb

Exercise 2

Implementation of the LU-decomposition

In this exercise, subroutines for solving a linear system of equations will be developed and applied to a

simple test system.

(a) Write a subroutine that performs the LU -decomposition of a matrix A according to Eqs. 1.8–1.11.

(b) Write a subroutine that performs the forward- and backward substitution according to Eqs. 1.6 and

1.7.

(c) Combine the subroutines of (a) and (b) to solve the linear system of equations A ·x = b, where the

matrix A and the vector b are read from the following text files, respectively.

A =

3 3

1 5923181 1608

5923181 337116 -7

6114 2 9101372

b =

3 1

5924790

6260290

9107488

(d) Compare the numerical results for the solution x obtained in (c) when using either single precision

or double precision arrays in the calculation. What happens to the solution vector if you change

the order of the equations (rows in A and b) when using single precision or double precision

computations?

7

1.2.2 Pivoting

As has been demonstrated in the previous exercise, round-off errors in the simple procedure for LU -

decomposition may severely depend on the order of the equation rows. Thus, without a proper ordering

or permutations in the matrix, the factorization may fail. For instance, if a11 happens to be zero, then

the factorization demands a11 = l11u11. But since a11 = 0, then at least one of l11 and u11 has to be

zero, which would imply either being L or U singular. This, however, is impossible if A is nonsingular.

The problem arises only from the specific procedure. It can be removed by simply reordering the

rows of A so that the first element of the permuted matrix is nonzero. This is called pivoting. Using

such a LU factorization with partial pivoting, that is with row permutations, analogous problems in

subsequent factorization steps can be removed as well.

When analyzing the origin of possible round-off errors (or indeed the complete failure of the simple

algorithm without pivoting), it turns out that a simple recipe to overcome these problems is to require

that the absolute values of lij are kept as small as possible. When looking at Eq. 1.11, this in turn

means that the γii values must be large in absolute value. According to Eq. 1.9, this can be achieved

by searching for the row in which the largest |γij| appears and swapping this row with the j−row.

Only then, Eqs. 1.10 and 1.11 are evaluated. It is clear that such a strategy, partial pivoting, also

avoids the above mentioned problem that a diagonal element γjj may turn zero.

If it turns out that all γij for i = j, j + 1, · · · , n are zero simultaneously, then the coefficient matrix

Aij is indeed singular and the system of equations can not be solved with the present method.

1.2.3 Error estimation and condition number

While pivoting greatly improves the numerical stability of the LU -factorization, matrices may be ill-

conditioned, meaning that the solution vector is very sensitive to numerical errors in the matrix and

vectors elements of A and b. Knowing this property about a given matrix is of course very important.

In the subsection, we outline the general idea of a condition number which is a measure for how much

the output value of a function (solution vector x) can change for a small change in the input argument

(inhomogeneous vector b).

Quite generally, the condition number is a means of estimating the accuracy of a result in a given

calculation, in particular, this number tells us how accurate we can expect the solution vector x when

solving the system of linear equations A · x = b. Assume that there is an error in representing the

vector b, call it δb and otherwise the solution is given to absolute accuracy. That is we have to solve

A · (x+ δx) = b+ δb for which we formally get the solution

x+ δx = A−1 · (b+ δb) =⇒ δx = A−1 · δb. (1.12)

8

Using the operator norm of the inverse matrix ‖A−1‖ as defined below, we can estimate the error δx

in the solution vector.

‖δx‖ ≤ ‖A−1‖ · ‖δb‖ (1.13)

In order words, the operator norm for the inverse matrix ‖A−1‖ is the so-called condition number for

the absolute error in the solution vector. If we want to have a relative error estimate, that is ‖δx‖‖x‖ , we

can start with the ratio of the relative errors of the solution and the inhomogeneous vectors

‖δx‖
‖x‖
‖δb‖
‖b‖

=
‖δx‖
‖x‖

· ‖b‖
‖δb‖

≤ ‖A
−1‖ · ‖b‖
‖x‖

≤ ‖A−1‖ · ‖A‖. (1.14)

Here, we have used the fact that for consistent operator norms, the inequalities ‖δx‖ ≤ ‖A−1‖ · ‖δb‖
and ‖b‖ ≤ ‖A‖ · ‖x‖ hold. Thus, we can finally write for the relative error in the solution vector

‖δx‖
‖x‖

≤ ‖A−1‖ · ‖A‖ · ‖δb‖
‖b‖

= cond(A)
‖δb‖
‖b‖

, (1.15)

where we have defined the condition number of the matrix A as

cond(A) = ‖A−1‖ · ‖A‖. (1.16)

For calculating the matrix norm, the Euclidean norm is rather difficult to calculate since it would

require the full eigenvalue spectrum. Instead, we can use as operator norm either the maximum

absolute column sum (1-norm) or the maximum absolute row sum (∞-norm) of the matrix which are

easy to compute [9]

‖A‖1 = max
1≤j≤n

{
n∑
i=1

|aij|

}
, ‖A‖∞ = max

1≤i≤n

{
n∑
j=1

|aij|

}
. (1.17)

9

Exercise 3

LU-decomposition with LAPACK

In this exercise, we will make use of LAPACK routines for the LU -decomposition and solve linear systems of

equations for various system sizes and compare the performance with our self-made routine from Exercise

2.

(a) Set up a matrix of size n× n and vectors of length n containing random numbers.

(b) Use the LAPACK routines dgetrf and dgetrf to compute the solution vector and compare the

results and the CPU time with your self-made routines from Exercise 2. Make a double-logarithmic

plot in which you plot the CPU time over the system size up to n = 2000.

(c) Calculate the inverse A−1 of a (i) random matrix of size n, and (ii) of a so-called Hilbert-Matrix

defined by

aij =
1

i+ j − 1

Vary n from 2 to 50 and compute the matrix product A ·A−1. What do you observe when comparing

the typical numerical accuracies for matrices of type (i) and (ii), respectively?

(d) Compute the condition numbers as defined in Eq. 1.16 for the random matrices and for the Hilbert

matrices. Compare the direct calculation of the condition number with the results of the LAPACK

routine dgecon which computes an estimate of the condition number.

10

1.2.4 Linear Least Squares Fits

In numerous applications in physics, one seeks to describe a set of n data points (xk; yk), either from

a measurement or from a calculation, by a model function f(xk; {aj}). The model function contains

m fit parameters a1, a2, · · · am which are to be determined in such a way that

χ2 =
n∑
k=1

wk [yk − f(xk; {aj})]2 −→ min (1.18)

This is referred to as a least squares fit problem and the quantity χ2 (chi-squared) is the sum of the

squared differences between the data values yk and the values of the model function at the point xk.

The quantities wk are weights indicating the relevance of a certain data point (xk; yk) and are given

by the inverse square of the standard deviation σk of the measurement at the point yk [3]

wk =
1

σ2
k

(1.19)

While according to Eq. 1.18 the best fit parameters a1, a2, · · · am can be determined by requiring

∂(χ2)

∂aj
= 0, (1.20)

the statistical uncertainties in the fit parameters, denoted as σai , are derived from the so-called normal

matrix Nij, which is computed from the second partial derivatives of χ2 with respect to the model

parameters [10]

Nij =
1

2

∂2(χ2)

∂ai∂aj
. (1.21)

The matrix inverse of Nij is called the covariance matrix

C = N−1. (1.22)

Its diagonal elements are the squares of the standard deviations of the fit parameters

σai =
√
Cii, (1.23)

and its off-diagonal elements contain information about how strongly the model parameter ai is

correlated with the model parameter aj,

rij =
Cij√
CiiCjj

. (1.24)

11

The correlation coefficients rij are in the range between [−1,+1], where values close to 0 indicate no

correlation, while values approaching either +1 or −1 indicate a significant correlation between the

model parameters.

In terms of model functions, we must distinguish between two different cases: (i) the function f(x; {aj})
is a linear function of the parameters {aj}, and, (ii), the function f(x; {aj}) is nonlinear in its

parameters {aj}. An example for a linear model function would be

f(x; a1, a2, a3) = a1 + a2x
2 + a3e

x,

while an example of a non-linear model function would be the following expression

f(x; a1, a2, a3) = a1 sin(a2x− a3)

Here, we restrict ourselves to the linear fit problem since in this case the requirement of the minimiza-

tion of the least squares sum χ2 leads to a system of linear equations which can be solved by methods

presented in the previous sections.

In the linear case, we can always express the model function f(xk; {αj}) as

f(x; {aj}) =
m∑
j=1

ajϕj(x) = a1ϕ1(x) + a2ϕ2(x) + · · · amϕm(x), (1.25)

where ϕj(x) are linearly independent basis functions. Insertion into Eq. 1.18 and requiring that ∂χ2

∂aj
= 0

leads to a system of linear equations for the unknown fit parameters aj

M · a = β. (1.26)

Here, the coefficient matrix M and the inhomogeneous vector β are given by the following expression

[3]

Mij =
n∑
k=1

wkϕi(xk)ϕj(xk), (1.27)

βi =
n∑
k=1

wkykϕi(xk). (1.28)

Note that k runs over all n data points while the size of the matrix Mij is given by the number of fit

parameters m. For linear model functions, the calculation of the normal matrix is also easy since it is

12

identical to the matrix M defined above

Nij =
1

2

∂2(χ2)

∂ai∂aj
=

n∑
k=1

wkϕi(xk)ϕj(xk) ≡Mij. (1.29)

Example. We consider the following example of a linear fit problem: At low temperatures close to

the absolute zero (T = 0 K), the specific heat cV of a metal as a function of temperature T can be

described by the following relationship

cV (T) = γT + αT 3, (1.30)

where α and γ are material-specific constants. The term ∼ T arises from the specific heat of the

conduction electrons, while the ∼ T 3 term is due to lattice vibrations of the atomic nuclei (phonons).

(a) Read in and plot the specific heat data of a silver sample from the data file exercise12.dat.

The first column contains the temperature T in Kelvin, the second column is cV in mJ/(mol K),

and the third column is the standard deviation σcV of the specific heat measurement.

(b) Implement the least squares fitting procedure for a linear model function according to Eqs. 1.26–

1.29.

(c) Use your function from (b) to fit the function 1.30 to the data, determine the best fit parameters

α and γ, estimate their their standard deviations using Eq. 1.23, and plot the best fit function

together with the data points.

A Python implementation of this linear fit example can be found here: exercise12.py. It reads and

fits the specific heat data from the data file exercise12.dat. The data points as well as the best fit

and the resulting fit parameters are shown in Fig. 1.1.

13

http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise12.dat
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise12.py
http://physik.uni-graz.at/~pep/CompOriPhys/Python/exercise12.dat

0 1 2 3 4 5 6
T(K)

0

2

4

6

8

10

12

14

c V
(m
J
m
ol
−

1
K
−

1
)

γ = 0.619± 0.021

α = 0.041± 0.001

r = -0.019

data points

cV =γT+αT3

Figure 1.1: The crosses show specific heat measurement data of silver cV as a function of temperature
T . The red line shows the best fit according to the form cV (T) = γT + αT 3. The best fit parameters
as well as their standard deviations are indicated.

14

Project 1

Fredholm’s integral equation

In this project we will apply our knowledge about how to numerically solve a linear system of equations to

a solve the so-called Fredholm integral equation of second kind for the unknown function φ(x)

φ(x) = f(x) +

∫ b

a

dtK(x, t)φ(t). (1.31)

Here, K(x, t) is the integral kernel, f(x) is a known function, and the integration limits a and b are fixed.

(a) Show that a discretization of the interval into N equally long subintervals of length h, with

h =
b− a
N

, xi = a+ i h, i = 0, 1, 2, · · · , N,

and by approximating the integral with a trapezoidal rule leads to a linear system of equations for the

unknown function φ at the the grid points xi. Hint: you can use the notation φi ≡ φ(xi), fi ≡ f(xi),

and Kij ≡ K(xi, tj).

(b) Solve the following Fredholm-type integral equation

φ(x) = x+

∫ 1

0

dt 2ex+tφ(t),

by solving the resulting linear system of equations using an LU-decomposition.

(c) Compare your numeric solution with the analytic solution

φ(x) = x+
2ex

2− e2
.

How many intervals N do you need such that the absolute error of your numeric solution is below

10−6 over the entire interval [0, 1]?

15

1.2.5 LU decomposition for tridiagonal matrices

For very large problem sizes, it is a advantageous to make use of possible special forms of the coeffi-

cient matrix. One example are symmetric matrices where a variant of the LU -decomposition can be

simplified leading to the so-called Cholesky-procedure [1, 4]. In this section, we will focus on another

important class of matrices, so-called tridiagonal matrices

b1 c1 0 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

· ·
· ·
· cn−1

0 0 0 0 · · · bn


·



x1

x2

x3

·
·
·
xn


=



r1

r2

r3

·
·
·
rn


(1.32)

Such tridiagonal matrices arise, for instance, when performing spline-interpolations or after the ap-

plication of a finite-difference approach to differential equations. From Eq. 1.32 it is clear that the

tridiagonal matrix is uniquely characterized by three vectors, namely b the main diagonal, and a and c

defining the upper and lower secondary diagonal, respectively. The application of the LU -factorization

without pivoting leads to the following matrix structure

1 0 0 0 · · · 0

l2 1 0 0 · · · 0

0 l3 1 0 · · · 0

· ·
· ·
· 0

0 0 0 0 · · · 1


·



u1 c1 0 0 · · · 0

0 u2 c2 0 · · · 0

0 0 u3 c3 · · · 0

· ·
· ·
· cn−1

0 0 0 0 · · · un


·



x1

x2

x3

·
·
·
xn


=



r1

r2

r3

·
·
·
rn


(1.33)

Specialization of the general formulas for LU -decomposition Eqs. 1.8–1.11 lead to the following set of

simple set of equations which can be implemented in a straight-forward manner. Starting with u1 = b1

and y1 = r1, we have

lj = aj/uj−1, uj = bj − ljcj−1, yj = rj − ljyj−1, j = 2, · · · , n. (1.34)

The solution vector follows from back-substitution:

xn = yn/un, xj = (yj − cjxj+1)/uj for j = n− 1, · · · , 1. (1.35)

16

1.3 Iterative Methods

1.3.1 Construction of iterative methods

In certain cases, for instance for large sparse matrices arising from finite difference approach to partial

differential equations, it turns out to be advantageous to apply iterative procedures to solve the linear

equation system. In order to derive various iterative procedures, we have to rewrite

A · x = b (1.36)

in a so-called fix-point form [2]

x = G(ω) · x+ g(ω). (1.37)

Here, G is a quadratic n × n matrix and g is a vector of length n, respectively. Once the matrix G

has been defined, the iterative procedure is defined by

x(t+1) = G(ω) · x(t) + g(ω), k = 0, 1, · · · (1.38)

Here, we have also included a dependence on a parameter ω, the relaxation parameter which is

introduced to influence the convergence behavior. As we will show below this relaxation parameter

ω can be used to speed up the convergence of a given iterative method. In case of convergence, the

iteration approaches the exact solution x

lim
t→∞

x(t) = x. (1.39)

It is clear that the transformation of 1.36 into 1.37 is not unique, and the various iterative schemes to

be discussed below differ in the way the matrix G is defined. The most important iteration schemes

can be derived by splitting the coefficient matrix A into two n × n matrices which depend on the

relaxation parameter

A = N (ω)− P (ω), (1.40)

where N (ω) is assumed to be non-singular. Then we find for the fix-point matrix G of Eq. 1.37

G(ω) = N (ω)−1 · P (ω), g(ω) = N (ω)−1 · b. (1.41)

It can be shown [2] that the iteration converges if the spectral radius ρ of the matrix G is less than 1.

The spectral radius of a matrix is defined to be the maximum of the absolute value of the eigenvalues

of the matrix

ρ(G) = max
k=1,2,··· ,n

|λk(G)| . (1.42)

17

1.3.2 The Jacobi Method

We can derive the Jacobi method by splitting the matrix A in the following way

A = D−L−U =


a11 0 · · · 0

0 a22 · · · 0
...

. . .
...

0 0 · · · ann

−


0 0 · · · 0

−a21 0 · · · 0
...

. . .
...

−an1 −an2 · · · 0

−


0 −a12 · · · −a1n

0 0 · · · −a2n

...
. . .

...

0 0 · · · 0

 .

(1.43)

Assuming that there are no zeros in the diagonal matrix D, that is detD 6= 0, we set

N (ω) =
1

ω
D (1.44)

which according to Eq. 1.40 leads to

P (ω) =

(
1− ω
ω

)
D +L+U . (1.45)

Insertion into Eq. 1.41 results in the iteration matrix G and the residual vector g

G(ω) = (1− ω)I + ωD−1 · (L+U) (1.46)

g = ωD−1 · b. (1.47)

Thus, the iterative procedure is defined in the following way, first written in matrix notation, and

second in component form

x(t+1) =
[
(1− ω)I + ωD−1 · (L+U)

]
x(t) + ωD−1 · b (1.48)

x
(t+1)
i = (1− ω)x

(t)
i −

ω

aii

 n∑
j=1(j 6=i)

aijx
(t)
j − bi

 . (1.49)

Note that setting ω = 1 results in the original Jacobi Method, while for values ω 6= 1, the method

is referred to as Jacobi over-relaxation method (JOR). It can be shown that the Jacobi-method

converges if the matrix A is strictly diagonally dominant [2]. For values 0 < ω ≤ 1, the JOR-method

also converges for strictly diagonally dominant matrices. Moreover, for symmetric and positive-definite

matrices A, the JOR-method can be shown to converge for

0 < ω <
2

1− µmin

≤ 2, (1.50)

where µmin is the smallest eigenvalue of the fix-point matrix G [2].

18

Note that we can also derive the Jacobi-method by starting directly with Eq. 1.1. Again we require

that all diagonal elements of A are non-zero and then formally solve each row of 1.1 separately for xi

yielding

xi = − 1

aii

 n∑
j=1(j 6=i)

aijxj − bi

 (1.51)

We can easily turn this equation into an iterative prescription setting the t−th iteration of the solution

on the right-hand side while the left hand side yields the improved solution at iteration step t + 1

which is identical to Eq. 1.49 in the case of ω = 1.

Starting from an arbitrary trial vector x
(0)
i , the repeated application of Eq. 1.49 leads to a series of

solution vectors which converge to the true solution x under the above mentioned conditions. As

with all iterative procedures, also the Jacobi and JOR methods require a termination criterion. One

obvious exit condition would be to demand component-wise

max
i=1,··· ,n

(∣∣∣x(t+1)
i − x(t)

i

∣∣∣) < ε. (1.52)

Alternatively, also the vector norm of the difference between two consecutive iterative solution vectors

can be used to define convergence: ∣∣x(t+1) − x(t)
∣∣ < ε. (1.53)

It is clear that the iterative loop must also include another exit condition (maximum number if

iterations reached) to prevent endless loops in cases when the iteration does not converge.

1.3.3 Gauss-Seidel and Successive Over-Relaxation Method

In the Jacobi and JOR methods discussed in the previous section, the iteration deefined in Eq. 1.49

requires the knowledge of all vector components x
(t)
i at iteration step (t) in order to obtain the solution

vector of the next iteration step (t+ 1). In the so-called Gauss-Seidel (ω = 1) and the successive over-

relaxation (SOR) (ω 6= 1) methods, the solution vectors of the next iteration step are successively

created from the old iteration.

Formally, the SOR method is obtained by assuming the same matrix splitting A = D − L −U but

by making a somewhat different choice for the matrix N

N (ω) =
1

ω
D −L. (1.54)

19

This leads to the following fix-point matrix and residual vectors

G(ω) = (D − ωL)−1 · [(1− ω)D + ωU] , (1.55)

g = ω (D − ωL)−1 · b. (1.56)

Instead of calculating the inverse of the matrix D − ωL, which would be rather impractical, one

makes use of the fact that L is a lower triangular matrix, which is used to obtain the following

iterative prescription, first in matrix and then in component-wise notation [2]:

x(t+1) = (1− ω)x(t) + ωD−1
(
Lx(t+1) +Ux(t) + b

)
, (1.57)

x
(t+1)
i = (1− ω)x

(t)
i −

ω

aii

(
i−1∑
j=1

aijx
(t+1)
j +

n∑
j=i+1

aijx
(t)
j − bi

)
. (1.58)

Setting ω = 1 in Eq. 1.58 results in the Gauss-Seidel method, while for values ω 6= 1, the method

is referred to as successive over-relaxation method. Thus, the formula takes the form of a weighted

average between the previous iterate and the computed Gauss-Seidel iterate successively for each

component, where the parameter ω is the relaxation factor. The value of ω influences the speed of

the convergence. Its choice is not necessarily easy, and depends upon the properties of the coefficient

matrix. IfA is symmetric and positive-definite, then convergence of the iteration process can be shown

for ω ∈ (0, 2). In order to speed up the convergence with respect to the Gauss-Seidel method (ω = 1),

one typically uses values between 1.5 and 2. The optimal choice depends on the properties of the

matrix [3]. Values ω < 1 can be used to stabilize a solution which would otherwise diverge [2].

20

Exercise 4

Matrix inversion for tridiagonal matrices

In this exercise, we will implement a direct and an iterative linear equation solver for tridiagonal matrices.

A test matrix for a tridiagonal matrix as defined by three vectors a, b and c according to Eq. 1.32 can be

obtained from this link: abc.at

(a) Write a subroutine which performs the LU -decomposition for a tridiagonal matrix and solves a cor-

responding linear system of equations according to Eqs. 1.34 and 1.35. Test your code by calculating

the inverse of the matrix and computing the matrix product of the original band tridiagonal matrix

and its inverse.

(b) Write two subroutines which implement the method of successive over-relaxation (SOR) according

to Eq. 1.58. In the first subroutine, a general matrix form aij is assumed, while in the second version

the tridiagonal form of the matrix is taken into account. Test your routines by calculating the inverse

of the matrix abc.at and computing the matrix product as in (a).

(c) Vary the relaxation parameter in your SOR-routine ω from 0.1 to 1.9 in steps of 0.05 and monitor

the number of iterations required for a given accuracy goal.

(d) Set up a random matrix with matrix elements in the range [0, 1]. Does the SOR-method converge?

Check whether your random matrix is diagonally dominant defined in the following way:

A matrix is said to be diagonally dominant if for every row of the matrix, the magnitude of the diagonal

entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries

in that row. More precisely, the matrix A is diagonally dominant if ∀i

|aii| ≥
∑
j 6=i

|aij| (1.59)

The term strictly diagonally dominant applies to the case when the diagonal elements are strictly larger than

(>) the sum of all other row elements. We note that the Gauss–Seidel and SOR methods can be shown to

converge if the matrix is strictly (or irreducibly) diagonally dominant. Also note that many matrices that

arise in finite element methods turn out to be diagonally dominant.

21

http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/abc.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/abc.dat

Project 2

Finite difference solution of the stationary heat equation

In this project we will numerically solve the stationary, one-dimensional heat equation as a boundary value

problem

0 = κ
d2T (x)

dx2
+ Γ(x), with T (a) = Ta and T (b) = Tb. (1.60)

Here, T (x) is the temperature distribution in the interval x ∈ [a, b], κ is the thermal diffusivity, and Γ(x)

describes is a heat source term. The temperature values at the boundaries of the left and right ends of the

interval are fixed and are given by Ta and Tb, respectively. As described in more detail in Chapters 8 and 9

of Ref. [3], we discretize the interval a ≤ x ≤ b in N equidistant subintervals. Thus, the positions of the

grid points xk are given by

xk = a+ k · h, h =
b− a
N

(1.61)

The grid-spacing is h and the number of grid points is N + 1. The first and last grid points coincide with

a and b, respectively, hence x0 = a and xN = b. We will abbreviate the function values T (xk) and Γ(xk)

at the grid point xk simply by Tk and Γk, respectively.

For a finite difference solution, the differential quotient in Eq. 1.60 is replaced by a finite difference of

function values at the given grid points. When using three grid points, the appropriate finite difference

expression for the second derivative is

T ′′k =
Tk+1 − 2Tk + Tk−1

h2
(1.62)

(a) Insert Eq. 1.62 into the differential equation 1.60 and derive a system of N − 1 linear equations.

What form does the coefficient matrix have?

(b) Make use of the subroutines developed in Exercise 4, and write a program which solves the system

of equations for the N − 1 temperature values. For this purpose assume the heat source Γ(x) to be

of Gaussian shape

Γ(x) =
Γ0

σ
exp

(
−(x− xs)2

2σ2

)
(1.63)

(c) Test your program by reading in the following parameters from a file

0.0 10.0 ! [x0 xN] interval

0.0 2.0 ! T0, TN = temperatures at boundaries

10 ! N = number of grid points

1.0 ! kappa = thermal diffusivity

22

4.0 0.5 0.5 ! xS, sigma, Gamma0 (heat source parameters)

(d) Write out xk, Tk and finite difference expressions for dT/dx and d2T/dx2 at the grid points for four

different grids, N = 10, N = 20, N = 50. and N = 100, and plot the results.

23

1.3.4 Conjugate Gradient Method

The conjugate gradient method (CG) [11] is another iterative approach to solve (linear) systems of

equations which can be applied if the coefficient matrix A is symmetric (or Hermitian) and positive-

definite, that is

AT = A and xT ·A · x > 0, ∀x ∈ Rn. (1.64)

The CG method relies on the fact that stationary points of the quadratic function

f(x) =
1

2
xT ·A · x− xT · b (1.65)

are equivalent to the solution of the linear system of equations

A · x = b. (1.66)

This can be easily seen by computing the gradient of the function f(x) which gives

∇f(x) = A · x− b. (1.67)

In order to set up the conjugate gradient iteration, we need the following definition. We call two

non-zero vectors u and v conjugate with respect to A if

uT ·A · v = 0. (1.68)

We denote the initial guess for the solution vector by x0. Starting with x0, we change x0 in a direction

p0 for which we take the negative of the gradient of f at x = x0, that is

p0 = b−A · x0. (1.69)

The minimization direction p1 used to search for the true solution x will be conjugate to the gradient,

hence the name conjugate gradient method.

We illustrate the conjugate gradient method with help of a simple two-dimensional example defined

by

A =

(
3 1

1 4

)
, b =

(
2

1

)
. (1.70)

The function to be minimized now is f(x, y) = 3
2
x2 +xy+ 2y2−2x−y and is depicted as contour plot

in Fig. 1.2. We start the CG-iteration by choosing an arbitrary starting vector for which we choose

x0 = (0, 0), and calculate the residue vector r0 = b−A · x0. Since r0 coincides with the negative of

24

Figure 1.2: Illustration of the conjugate gradient method for the two-dimensional case. Starting from
an initial guess x0 = (0, 0) two steps via x1 (red lines) lead to the exact solution at x2 = x. For
comparison, also the iterative steps according to the gradient descent method (green dashed lines) are
shown.

the gradient at x0, we choose p0 = r0 = (2, 1) as the first direction in which we change the solution

x1 = x0 + α0p0 =

(
1

2
,
1

4

)
, α0 =

〈r0|r0〉
〈p0|A|p0〉

=
1

4
. (1.71)

The new residue vector r1 is given by

r1 = b−A · x1 = b−A(x0 + α0p0) = r0 − α0A · p0 =

(
1

4
,−1

2

)
. (1.72)

Now instead of changing the solution vector in the direction of the gradient at x1, which corresponds

to the gradient descent method, indicated by the yellow dashed lines in Fig. 1.2, we choose the new

direction p1 to be conjugate to the previous direction p0. This can be achieved in the following way:

p1 = r1 + β0p0 =

(
3

8
,− 7

16

)
, β0 =

〈r1|r1〉
〈r0|r0〉

=
1

16
. (1.73)

The iterative step is completed by setting

x2 = x1 + α1p1 =

(
7

11
,

1

11

)
, α1 =

〈r1|r1〉
〈p1|A|p1〉

=
1

3
, (1.74)

25

and computing the updated residue vector

r2 = b−A · x2 = b−A(x1 + α1p1) = r1 − α1A · p1 = (0, 0) . (1.75)

We observe that after two iterations we have obtained the exact solution. Generally it can be shown

that the CG algorithm leads to the exact solution after n steps where n is the size of the matrix.

However, often a solution which is reasonably close to the solution can already be obtained with less

steps.

We can summarize the conjugate gradient algorithm in the following five steps, where step (0) is the

initialization, and steps (1)–(5) are repeated until convergence.

(0) p0 = r0 = b−A · x0

(1) αi = 〈ri|ri〉
〈pi|A|pi〉

(2) xi+1 = xi + αipi
(3) ri+1 = ri − αiApi
(4) βi = 〈ri+1|ri+1〉

〈ri|ri〉

(5) pi+1 = ri+1 + βipi

(1.76)

We conclude this section by showing a Matlab implementation of the the conjugate gradient scheme

which iterates the steps described above for the simple two-dimensional case:

1 function [x] = conjgrad (A, b , x)

2 r=b−A∗x ;

3 p=r ;

4 r s o l d=r ’∗ r ;

5

6 for i =1:10ˆ(6)

7 Ap=A∗p ;

8 alpha=r s o l d /(p ’∗Ap) ;

9 x=x+alpha ∗p ;

10 r=r−alpha ∗Ap;

11 rsnew=r ’∗ r ;

12 i f sqrt (rsnew)<1e−10

13 break ;

14 end

15 p=r+rsnew/ r s o l d ∗p ;

16 r s o l d=rsnew ;

17 end

26

Exercise 5

Conjugate gradient method

In this exercise, we will implement the conjugated gradient method for iteratively solving the system of

linear equations A · x = b, where A is a symmetric positive-definite matrix.

(a) Write a subroutine which implements the conjugate gradient method and test it with the example

given in the previous section.

(b) Set up n× n matrices of the form

aii = 4, ai,i±1 = 2, ai,i±2 = 1, e.g. (1.77)

A =



4 2 1 0 0 0 0 0

2 4 2 1 0 0 0 0

1 2 4 2 1 0 0 0

0 1 2 4 2 1 0 0

0 0 1 2 4 2 1 0

0 0 0 1 2 4 2 1

0 0 0 0 1 2 4 2

0 0 0 0 0 1 2 4


(1.78)

and calculate the inverse matrix A−1 using the conjugate gradient algorithm.

(c) Compare the performance of your own LU -decomposition routine, the SOR-method, and the CG

algorithm among each other and with appropriate library rooutiens from LAPACK for various matrix

sizes n.

27

28

Chapter 2

Eigenvalues and Eigenvectors of Matrices

2.1 Introduction

In the previous Chapter 1, we were dealing with inhomogeneous linear systems of equations. In this

chapter we will discuss homogeneous problems of the form

A · x = 0. (2.1)

We have to distinguish between two cases. First, the determinant of A does not vanish, detA 6= 0,

then Eq. 2.1 only has the trivial solution x = 0. If, on the other hand, detA = 0, then Eq. 2.1 also

has a non-trivial solution. Of particular importance are problems where the matrix A depends on a

parameter λ

A(λ) · x = 0, (2.2)

which is called a general eigenvalue problem. Non-trivial solutions are characterized by the zeros of

the function detA(λ) = 0, λ1, λ2, · · · , which are called the eigenvalues of the system Eq. 2.2, the

corresponding vectors, x1,x2, · · · the eigenvectors of Eq. 2.2. A special, but very important case of

eigenvalue problems is the so-called regular eigenvalue problem

A(λ) = A0 − λI, (2.3)

where A0 is not dependent on λ and I denotes the identity matrix. This leads us to the regular

eigenvalue equation

A · x = λx. (2.4)

The requirement that the determinant of Eq. 2.3 has to vanish leads to a polynomial of rank n, Pn(λ),

which is called the characteristic polynomial. The n zeros of this polynomial (not necessarily all of

29

them have to be distinct) determine the n eigenvalues

det(A− λI) = Pn(λ) = λn +
n∑
i=1

piλ
n−i ≡ 0 ⇒ {λ1, λ2, · · · , λn} . (2.5)

For each eigenvalue λk, which may also be degenerate, there is an eigenvector xk which can be obtained

by inserting λk into Eq. 2.4 and solving the resulting linear system of equations. Since eigenvectors

are only determined up to an arbitrary multiplicative constant, one component of the eigenvector can

be freely chosen and the remaining n− 1 equations can be solved with the methods presented in the

previous chapter.

The numerical determination of regular eigenvalue problems are of great importance in many physical

applications. For instance, the stationary Schrödinger equation is an eigenvalue equation whose eigen-

values are the stationary energies of the system and whose eigenvector correspond to the eigenstates of

the quantum mechanical system. Another example would the normal modes of vibration of a system

of coupled masses which can be obtained as the eigenvalues of a dynamical matrix. Mathematically,

the eigenvalues can be obtained from the zeros of the characteristic polynomial. However, such an

approach becomes numerically problematic for large problem sizes. Therefore, a number of numerical

algorithms have been developed which are also applicable for large matrices which may be divided into

two classes. First we will discuss two examples of so-called subspace methods which aim at calculating

selected eigenvalues of the problem, Sec. 2.2, and second we will present present two more algorithms

which belong to the class of transformation methods (Sec. 2.3). More information can be found in the

books by Press et al. [1] and Törnig and Spellucci [2]. Comprehensive lecture notes on solving large

scale eigenvalue problems are given by Arbenz and Kressner [12].

2.2 Subspace Methods

Subspace methods aim at computing an approximation for one or a few eigenvalues and eigenvectors of

a given matrix A. For that purpose one or a few linearly independent vectors, which span a subspace

of A, are used to determine eigenvalues and eigenvectors in that subspace by an iterative procedure.

2.2.1 Power iteration (Von Mises Method)

The power iteration – or von Mises procedure – is a simple iterative algorithm which leads to the largest

eigenvalue (in magnitude) of a real matrix. A prerequisite for its application is that the eigenvalue

spectrum of the real symmetric (or complex Hermitian) matrix are of the form

|λ1| > |λ2| > · · · > |λn−1| > |λn|. (2.6)

30

In particular, we require that the largest eigenvalue is not degenerate. In this case, the corresponding

eigenvectors x1,x2, · · · ,xn are linearly independent and any vector v0 ∈ Rn may be written as a

linear combination of these eigenvectors

v(0) =
n∑
i=1

αixi where |α1|+ |α2|+ · · ·+ |αn| 6= 0. (2.7)

We can now use this arbitrary vector v(0) as a starting point for an iteration in which we multiply

v(0) from the left with the matrix A.

v(1) ≡ A · v(0) =
n∑
i=1

αiA · xi =
n∑
i=1

αiλi · xi (2.8)

The last step in the above equation follows from the eigenvalue equation 2.4 of the matrix A. If we

now act on the above equation by repeatedly multiplying from the left with the matrix A, we obtain

v(2) = A · v(1) =
n∑
i=1

αiλiA · xi =
n∑
i=1

αiλ
2
i · xi (2.9)

...

v(t) = A · v(t−1) =
n∑
i=1

αiλ
t−1
i A · xi =

n∑
i=1

αiλ
t
i · xi (2.10)

Now, because of our assumption 2.6, the first term in the above sums start to dominate for increas-

ing values of t. This means that after a given number of iterations, the vectors v(t) and v(t+1) are

approximately given by

v(t) ≈ α1λ
t
1 · x1 and v(t+1) ≈ α1λ

t+1
1 · x1 (2.11)

Since these are vector equations, we see that for any chosen component i, we have

λ1 ≈
v

(t+1)
i

v
(t)
i

, lim
t→∞

v
(t+1)
i

v
(t)
i

= λ1, lim
t→∞

v(t) ∝ x1. (2.12)

Instead of choosing one arbitrary i one takes the average over all n′ components of the vector v(t) for

which v
(t)
i 6= 0,

λ1 =
1

n′

∑
i

v
(t+1)
i

v
(t)
i

. (2.13)

In many applications, it is not the largest but the smallest eigenvalue which is of primary interest,

for instance, the ground state energy of of a quantum mechanical system. It is easy to see that the

31

smallest eigenvalue of A is the inverse of the largest eigenvalue of A−1 since we have

A · xi = λixi ⇒ xi = λiA
−1 · xi ⇒ A−1 · xi =

1

λi
xi. (2.14)

So we can simply apply the power iteration method A as described above to the inverse of the matrix

A−1. Instead of calculating the inverse of A explicitly, we can simply rewrite the iterative procedure

2.8–2.10 as

A · v(1) = v(0), v(1) =
n∑
i=1

αiA
−1 · xi =

n∑
i=1

αi
1

λi
· xi (2.15)

A · v(2) = v(1), v(2) =
n∑
i=1

αi
1

λi
A−1 · xi =

n∑
i=1

αi
1

λ2
i

· xi (2.16)

...

A · v(t) = v(t−1), v(t) =
n∑
i=1

αi
1

λt−1
i

A−1 · xi =
n∑
i=1

αi
1

λti
· xi. (2.17)

So at every iteration step, we have to solve a linear system of equations which can be performed quite

efficiently once a LU -factorization of A has been computed at the before starting the power iteration.

The power iteration method can even be applied to the determination of arbitrary eigenvalues of the

matrix A by shifting the eigenvalue spectrum by an amount µ. Assume that the eigenvalue λi is closer

to µ than all other eigenvalues λj, that is

|µ− λi| < |µ− λj| ∀j 6= i. (2.18)

Then we can consider the matrix (A− µI)−1 which has the eigenvalue spectrum

(A− µI)−1 · yk =
1

λk − µ
· yk, (2.19)

where λk are the eigenvalues of the original matrix A. So by applying the power iteration method

in a similar manner as described above for the smallest eigenvalue, Eq. 2.15–2.17, we calculate the

LU -factorization of (A− µI)−1 which leads to the eigenvalue ρk which lies closest to µ

ρk =
1

λk − µ
⇒ λk =

1

ρk
+ µ. (2.20)

32

Exercise 6

Von Mises Method

We implement the power iteration method to determine the largest and smallest eigenvalue and corre-

sponding eigenvectors of a real symmetric matrix.

(a) Write a subprogram which implements the Von Mises Method according to Eqs. 2.10 and 2.13. Test

your program with the following symmetric matrices A5.dat and A10.dat in order to compute their

largest eigenvalue and the corresponding eigenvector.

(b) Also compute the smallest eigenvalue by applying the Von Mises method to the inverse of A. Note

that

A · xi = λixi ⇒ xi = λiA
−1 · xi ⇒ A−1 · xi =

1

λi
xi. (2.21)

(c) Experiment with different initial vectors v(0) and check whether there is any influence on the resulting

eigenvalue and eigenvector.

(d) Compare your results with those from the eig routine in Matlab or Octave.

33

http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/A5.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/A10.dat

2.2.2 Simultaneous vector iterations

In the previous subsection, we have learned how to compute individual eigenvalues and eigenvectors

of a matrix, one after the other. This turns out to be quite inefficient. Some or several of the quotients

λi+1/λi may close to one which slows down the convergence of the method. To overcome these prob-

lems an algorithm that does not perform p individual iterations for computing the, say, p smallest

eigenvalues, but a single iteration with p vectors simultaneously, can be used. This can be achieved

by making sure that the p eigenvectors are orthogonalized among each other. More details on this

method can be found , for instance, in Refs. [2, 12].

2.2.3 Lanczos algorithm

The Lanczos algorithm is another subspace method which solves the eigenvalue problem in a subspace

of A. In contrast to the von Mises and the simultaneous vector iteration method which both only

use information of the (t− 1)-th iteration when computing the (t)-th iteration, the main idea of the

Lanczos algorithm is to make use of the information gained also in all previous iterations. During the

procedure of applying the power method, while getting the ultimate eigenvector v(t), we also got a

series of vectors v(0),v(1), · · · ,v(t−1) which were eventually discarded in the power iteration method.

The Lanczos algorithm saves this information and uses a Gram-Schmidt process to re-orthogonalize

them into a basis spanning the Krylov subspace corresponding to the matrix A. At iteration step

(t), a matrix Qt is constructed whose columns contain an orthonormal basis spanned by the vectors

v(0),A · v(0), · · · ,At−1 · v(0). One can show that the matrix

T t = QT
t ·A ·Qt (2.22)

will be (i) of tridiagonal shape, and (ii) be similar to A, that is have the same eigenvalues as A. After

the matrix T is calculated, one can solve its eigenvalues λ and their corresponding eigenvectors for

example, using the so-called QR algorithm to be discussed in Sec. 2.3.2. More details on the Lanczos

algorithm ans well numerical examples and a discussion of its numerical stability can be found in

Refs. [2, 12].

2.3 Transformation Methods

2.3.1 Jacobi-Method

The Jacobi method is the classical method to solve the complete eigenvalue problem of real symmetric

or complex Hermitian matrices leading to all eigenvalues and eigenvectors. It is based on the fact that

34

any such matrix can be transformed into diagonal form D = dij = λiδij by the application of an

orthogonal (or unitary) transformation matrix U

D = UT ·A ·U . (2.23)

A similarity transform, which does not alter the eigenvalue spectrum of the matrix A, is characterized

by the fact that U is an orthogonal matrix,1 that is

UT = U−1 ⇒ UT ·U = I, (2.24)

where I denotes the identity matrix. It is clear from Eq. 2.23 that the diagonal elements of the diagonal

matrix D are identical to the eigenvalues of A. Multiplication of 2.23 from the left with U also shows

that the columns of U are the corresponding n eigenvectors (u1,u2, · · · ,un)

U =


u11 u12 u13 · · · u1n

u21 u22 u23 · · · u2n

u31 u32 u33 · · · u3n

...
...

un1 un2 un3 · · · unn

 ≡ (u1,u2, · · · ,un) . (2.25)

Thus, Eq. 2.23 can be written as

A · (u1,u2, · · · ,un) = (λ1u1, λ2u2, · · · , λnun) , (2.26)

which shows that the j-th column of the transformation matrix U corresponds to the j-th eigenvector

of the matrix A with the eigenvalue λj.

The Jacobi method is an iterative algorithm which successively applies similarity transformations with

the goal to finally acquire the desired diagonal form.

A(1) = UT
0 ·A ·U 0

A(2) = UT
1 ·A(1) ·U 1 = UT

1 ·UT
0 ·A ·U 0 ·U 1

...

A(t+1) = UT
t ·A(t) ·U t = UT

t ·UT
t−1 · · ·UT

0 ·A ·U 0 · · ·U t−1 ·U t. (2.27)

These stepwise similarity transformations should have the property that in the for large t the trans-

1We will restrict ourselves to real symmetric matrices. In this case the matrix U is a real, orthogonal matrix. In the
more general case of Hermitian matrices A, the matrix U is a unitary matrix.

35

formed matrix approaches diagonal form

lim
t→∞

A(t) = D and lim
t→∞

U 0 ·U 1 · · ·U t−1 ·U t = U . (2.28)

For the Jacobi method, the matrices U t have the form of a general orthogonal rotation matrix which

performs a rotation around the angle ϕ in the ij-plane, that is in a two-dimensional subspace of the

of the n-dimensional space

U t(i, j, ϕ) =



1 0 0 0
. . .

...
...

0 · · · cosϕ · · · − sinϕ · · · 0
...

. . .
...

0 · · · sinϕ · · · cosϕ · · · 0
...

...
. . .

0 0 0 1


. (2.29)

It is easy to show that such a transformation matrix, which is uniquely characterized by the two

indices i and j and the rotation angle ϕ, is indeed an orthogonal matrix. Before we discuss how an

optimal choice for these three parameters can be made, we have a closer look on what such a similarity

transform does to the matrix A.

To this end, we write out the transformation A(t+1) = UT
t ·A(t) ·U t in component-wise and explicitly

take into account the special form of U t from Eq. 2.29,

a
(t+1)
kl =

n∑
m=1

n∑
m′=1

uTkma
(t)
mm′um′l =

n∑
m=1

n∑
m′=1

umkum′la
(t)
mm′ . (2.30)

In case the indices of k and l of the transformed matrix A(t+1) are neither i nor j (the indices

determining the rotation plane), then the transformation matrices reduce to Kronecker deltas and we

have

a
(t+1)
kl =

n∑
m=1

n∑
m′=1

δmkδm′la
(t)
mm′ = a

(t)
kl for (kl) 6= (ij). (2.31)

Thus, the transformation leaves all elements which do not belong to the i-th or j-th row or column,

respectively, unaltered. Similarly, we can use Eq. 2.30 to determine the components of the i-th and

36

j-th column and row, respectively, leading to the following expressions

a
(t+1)
ki = a

(t)
ki cosϕ+ a

(t)
kj sinϕ for k = 1, · · · , n with k 6= i, j (2.32)

a
(t+1)
kj = a

(t)
kj cosϕ− a(t)

ki sinϕ for k = 1, · · · , n with k 6= i, j (2.33)

a
(t+1)
ii = a

(t)
ii cos2 ϕ+ 2a

(t)
ij cosϕ sinϕ+ a

(t)
jj sin2 ϕ (2.34)

a
(t+1)
jj = a

(t)
jj cos2 ϕ− 2a

(t)
ij cosϕ sinϕ+ a

(t)
ii sin2 ϕ (2.35)

a
(t+1)
ij = a

(t)
ij

(
cos2 ϕ− sin2 ϕ

)
+
(
a

(t)
jj − a

(t)
ii

)
cosϕ sinϕ. (2.36)

Note that the symmetry of the original matrix aij = aji is preserved in the transformation, that is

a
(t+1)
kl = a

(t+1)
lk .

Now, how do we choose a particular index i and j and the rotation angle ϕ? Remember that we intend

to bring the matrix A into a diagonal form by successively applying similarity transforms defined by

the orthogonal matrix 2.29 leading to the component-wise changes listed above. Thus, if we choose

an off-diagonal element a
(t)
ij which is as large as possible in absolute value, |a(t)

ij |, and make sure that

it vanishes after the transformations has been applied, that is a
(t+1)
ij = 0, we are certainly on the right

way. This can be achieved, by setting Eq. 2.36 zero which defines the best rotation angle ϕ

tan 2ϕ =
2a

(t)
ij

a
(t)
ii − a

(t)
jj

(2.37)

ϕ =
π

4
, if a

(t)
ii = a

(t)
jj . (2.38)

It can be shown that with this strategy, the sequence S(t) of sums over the off-diagonal elements is

monotonically decreasing

S(0) > S(1) > · · · > S(t) > S(t+1) > · · · ≥ 0 (2.39)

where, the off-diagonal element sum is defined as

S(t) = 2
n−1∑
m=1

n∑
m′=m+1

∣∣∣a(t)
mm′

∣∣∣ . (2.40)

In practice one does not search for the largest element |a(t)
ij | in the whole matrix in order to determine

the indices i and j since this is already a major task for large matrices, but one looks, for instance,

for the first element which is larger than the average over all off-diagonal elements. After succes-

sively applying such Jacobi-rotations, the transformed matrix necessarily approaches diagonal form

since the sum over the off-diagonal elements approaches zero. As a consequence, after the successive

transformations the diagonal elements contain the desired eigenvalues of the matrix.

37

Last but not least, we can also retrieve the eigenvectors ofA by computing the product of all successive

rotations,

V (t−1) = U 0 ·U 1 · · ·U t−2 ·U t−1. (2.41)

Starting with an identity matrix for U 0, one can show that the application of the rotation matrix

U t(i, j, ϕ) only affects the elements of the i-th and j-th column of U . Thus, we can write for k =

1, · · · , n (
V (t−1) ·U t(i, j, ϕ)

)
ki

= vki cosϕ+ vkj sinϕ (2.42)(
V (t−1) ·U t(i, j, ϕ)

)
kj

= vkj cosϕ− vki sinϕ, (2.43)

and thereby obtain also all eigenvectors as columns of the matrix V (t) in the limit t→∞ where the

off-diagonal elements of the transformed matrix vanish.

38

Exercise 7

Jacobi Method

We implement the Jacobi method for determining all eigenvalues and eigenvectors of a real symmetric

matrix.

(a) Write a subprogram which implements the Jacobi Method according to Eqs. 2.32–2.36, 2.37 and

2.42. Test your program with the following symmetric matrices A5.dat and A10.dat in order to all

eigenvalues and the corresponding eigenvectors.

(b) Make a performance test of you Jacobi routine for real, symmetric random matrices for matrix sizes

starting from 100 to 2000 in steps of 100. Compare your results and the CPU time with those from

the LAPACK routine dsyev. Plot the timing results in a double logarithmic plot. What is the scaling

with system size?

(c) We apply our Jacobi method (or alternatively you may also use the LAPACK routine dsyev) and

compute the eigenmodes of the three molecules H2O, CH4 and NTCDA. To this end, we construct

the dynamical matrix Dij from the force constant matrix φij in the following way

Dij =
φij√
MiMj

, (2.44)

where Mi and Mj are the atomic masses associated with coordinate i and j, respectively. The

eigenvalues and eigenvectors of Dij are the squares of the eigen-frequencies of vibration ω and the

corresponding eigenmodes ui ∑
j

Dijuj = ω2ui. (2.45)

You can read in atomic masses as well as the force constant matrices for the three considered

molecules from the following files H2O.dat, CH4.dat, and NTCDA.dat. Note that the masses are in

units of the hydrogen mass and force constants are in eV/Å2. Compare your results for H2O and

CH4 with experimental values. How do the vibrational frequencies changes if you replace one or both

hydrogens in H2O by a deuterium atom?

39

http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/A5.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/A10.dat
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-29B96D95-A64E-44EB-9A7A-855F7FFE2EA2.htm
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-29B96D95-A64E-44EB-9A7A-855F7FFE2EA2.htm
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/H2O.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/CH4.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/NTCDA.dat

2.3.2 The QR algorithm

The QR algorithm is certainly one of the most important algorithms in eigenvalue computations for

dense matrices. The QR algorithm consists of two separate stages. First the original symmetric matrix

A is transformed in a finite number of steps to tridiagonal form by applying so-called Householder

transformations. In the second stage, the actual QR iterations are applied to this tridiagonal matrix

which is similar to the original matrix. The overall complexity (number of floating points) of the

algorithm is O(n3). The QR algorithm is employed in most algorithms for dense eigenvalue problems

and to solve ‘internal’ small auxiliary eigenvalue problems in large (or huge) sparse matrices. The

major limitation for using the QR algorithm for large sparse matrices is that already the first stage,

it generates usually complete fill-in in general matrices and it can therefore not be applied to large

sparse matrices, simply because of excessive memory requirements. In these lecture notes, we do not

attempt to present the QR algorithm with all details for which we refer to Refs. [1, 2, 12]. Rather do

we present the basic ingredients, i.e., the QR-decomposition, the transformation to tridiagonal form,

and the QR-iteration of the second stage.

The QR decomposition via Householder transformations

In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition

of a matrix A into a product A = Q ·R of an orthogonal matrix Q and an upper triangular matrix

R, a so-called Hessenberg matrix. More precisely, an (upper) Hessenberg matrix is a square matrix

which has zero entries below the first subdiagonal. Note that the Hessenberg form of a symmetric

matrix is thus a tridiagonal matrix owing to symmetry.

There are several methods for actually computing the QR decomposition, such as by means of the

Gram–Schmidt process, Householder transformations, or Givens rotations. Here, we will present the

so-called Householder transformation which describes a reflection about a plane or hyperplane con-

taining the origin first introduced in 1958 by Alston Scott Householder. The reflection hyperplane can

be defined by a unit vector v which is orthogonal to the hyperplane. This linear transformation can

be described by the Householder matrix

Q = I − 2v · vT , (2.46)

where I denotes the identity matrix and vT is the transpose of the column vector v. It is easy to see

that the Householder matrix is a symmetric (Q = QT) and orthogonal (Q−1 = QT) matrix. If the

vector v is chosen appropriately, Q can be used to reflect a column vector of a matrix in such a way

that all coordinates but one are zeroed. For an n× n matrix A, n− 1 steps are required to transform

A to Hessenberg form (upper triangular form). This is demonstrated in the Matlab (or octave) code

below.

40

1 % Demonstration o f a QR−f a c t o r i z a t i o n us ing Householder r e f l e c t i o n s

2 A = [12 −51 4 ;

3 6 167 −68;

4 −4 24 −41];

5 n = length (A) ;

6 % Firs t , we need to f i nd a r e f l e c t i o n t ha t trans forms the f i r s t column of matrix A

7 x = A(: , 1) ; % f i r s t column of A

8 alpha = norm(x) ;

9 u = x − alpha ∗ [1 ; 0 ; 0] ;

10 v = u/norm(u) ;

11 Q1 = diag (ones (n , 1)) − 2∗v∗v ’

12 A1 = Q1∗A
13 % now fo r the second column of matrix A

14 x = A1(2 : 3 , 2) ;% second column of A from diagona l downward

15 alpha = norm(x) ;

16 u = [0 ; x] − alpha ∗ [0 ; 1 ; 0] ;

17 v = u/norm(u) ;

18 Q2 = diag (ones (n , 1)) − 2∗v∗v ’

19 % we are done

20 R = Q2∗A1

21 Q = Q1’∗Q2’

22 Q∗R

The output of this example for a QR factorization is given below. Note that in Matlab (and in octave)

there is already a built.in function which performs the QR-decomposition, [Q,R]=qr(A), which you

can use to check the results below.

1 Q1 = 0.85714 0.42857 −0.28571

2 0.42857 −0.28571 0.85714

3 −0.28571 0.85714 0.42857

4 A1 = 1.4000 e+01 2.1000 e+01 −1.4000 e+01

5 −2.6645e−15 −4.9000 e+01 −1.4000 e+01

6 1.3323 e−15 1 .6800 e+02 −7.7000 e+01

7 Q2 = 1.00000 −0.00000 −0.00000

8 −0.00000 −0.28000 0.96000

9 −0.00000 0.96000 0.28000

10 R = 1.4000 e+01 2.1000 e+01 −1.4000 e+01

11 2 .0250 e−15 1 .7500 e+02 −7.0000 e+01

12 −2.1849e−15 −1.4211e−14 −3.5000 e+01

13 Q = 0.857143 −0.394286 0.331429

14 0.428571 0.902857 −0.034286

15 −0.285714 0.171429 0.942857

16 Q∗R = 12.0000 −51.0000 4 .0000

17 6 .0000 167.0000 −68.0000

18 −4.0000 24.0000 −41.0000

41

Transformation to tridiagonal from

A series of n−2 Householder reflections can also be used to transform a matrix into Hessenberg form,

or in particular, a symmetric matrix into tridiagonal form. The algorithm is demonstrated below:

1 function varargout = househo lder (vararg in)

2 A = [4 1 −2 2 ; % de f i n e some symmetric t e s t matrix

3 1 2 0 1 ;

4 −2 0 3 −2;

5 2 1 −2 1] ;

6 % [P, H] = hess (A) % NOTE tha t the b u i l t−in fucn t i on ’ hess ’ can be used ! !

7 n = length (A) ; % s i z e o f matrix

8 for j = 1 : (n−2) % loop over n−2 columns j =1 ,2 , . . . n−2
9 v = c a l c u l a t e v (A, j) % normal v e c t o r o f hyperp lane

10 P = diag (ones (n , 1)) − 2∗v ’∗ v % Householder t rans format ion matrix

11 A = P∗A∗P % app ly or thogona l t rans format ion to A

12 end

13 end

14

15 function v = c a l c u l a t e v (A, j)

16 % see e . g . h t t p :// en . w i k i p ed i a . org / w ik i /Househo lder t rans format ion

17 n = length (A) ;

18 s = norm(A((j +1) : n , j)) ;

19 alpha = −sign (A(j +1, j)) ∗ s ;

20 r = sqrt ((1/2) ∗(alpha ˆ2 − A(j +1, j) ∗ alpha)) ;

21 v (1 : j) = 0 ;

22 v (j +1) = (A(j +1, j) − alpha) /(2∗ r) ;

23 v ((j +2) : n) = A((j +2) : n , j) /(2∗ r) ;

24 end

The two Householder matrices P 1 and P 2 for columns j = 1 and j = 2, respectively, as well as the

resulting tridiagonal matrix H is listed below:

1 (j = 1) P1 = 1.00000 −0.00000 −0.00000 −0.00000

2 −0.00000 −0.33333 0.66667 −0.66667

3 −0.00000 0.66667 0.66667 0.33333

4 −0.00000 −0.66667 0.33333 0.66667

5 (j = 2) P2 = 1.00000 −0.00000 −0.00000 −0.00000

6 −0.00000 1.00000 −0.00000 −0.00000

7 −0.00000 −0.00000 −0.78087 −0.62470

8 −0.00000 −0.00000 −0.62470 0.78087

9 H = P2∗P1∗A∗P1∗P2 = 4.0000 e+00 −3.0000 e+00 −1.0403e−16 −9.3629e−16

10 −3.0000 e+00 4.2222 e+00 −7.1146e−01 −1.1102e−16

11 −1.0403e−16 −7.1146e−01 2 .4119 e−01 1 .1707 e+00

12 −9.3629e−16 5 .5511 e−17 1 .1707 e+00 1.5366 e+00

42

The QR iteration

The basic idea behind the QR algorithm for computing the eigenvalues and eigenvectors is that any

real matrix A can be decomposed in the product of an orthogonal matrix Q and a matrix R which

is of upper triangular form (QR factorization)

A = Q ·R. (2.47)

As has been shown above, such a decomposition can be calculated by successively applying so-called

Householder transformations which annihilate step by step columns of A below the diagonal. Now

consider the product of Q and R but in reverse order

A′ = R ·Q. (2.48)

Now since Q is an orthogonal matrix with the property QT = Q−1 we can multiply 2.47 from the left

with QT and insert the resulting expression R = QT ·A into Eq. 2.48 which gives

A′ = QT ·A ·Q. (2.49)

Thus, we see that A′ is similar to A and therefore has the same eigenvalues as the original matrix

A. One can also verify that the transformation 2.49 preserves possible symmetry and/or tridiagonal

form of the matrix A. The QR algorithm is based on the non-obvious observation that the following

sequence of orthogonal transformation leads to a diagonal form of A

At = Qt ·Rt (2.50)

At+1 = Rt ·Qt. (2.51)

Thus, at iteration t, Eq. 2.50 describes the QR decomposition of the matrix At, and Eq. 2.51 defines

new matrix At+1 as a product of the QR factors in reversed order. For a general matrix, the workload

per iteration is O(n3). However, for a tridiagonal matrix, the workload per iteration is only O(n)

which makes the QR algorithm very efficient for this form. Therefore, the initial step of any QR

algorithm for general, symmetric matrices consists of a so-called Householder transformation in order

to bring it into a similar, tridiagonal matrix (see above).

The main features of the QR-algorithm are demonstrated by the matlab script given below. Lines

3–12 are just used to set up a tridiagonal matrix A with given eigenvalues λi as defined in line 3. The

main QR loop are lines 14–22, where use is made of the built-in matlab function qr which performs

43

the QR-decomposition. At every iteration step t, the relative, logarithmic deviation

ε
(t)
i = log

∣∣∣∣∣A(t)
ii − λi
λi

∣∣∣∣∣ (2.52)

is stored (line 21) and plotted in line 25.

1 clear a l l

2 % se t up t e s t matrix A

3 D = diag ([−2 5 3]) ;

4 ev = sort (diag (D)) ;

5 n = length (D) ;

6 S = rand (n) ;

7 S = (S−0.5) ∗2 ; % s h i f t random numbers

8 S = 0 . 5∗ (S + S ’) ; % symmetrize S

9 [U, lam]=eig (S) ; % ge t a un i ta ry matrix U from the e i g en v e c t o r s o f S

10 A = U∗D∗U’ ; % ro t a t e D with the un i ta ry matrix U

11 [P, H]= hess (A) ; % f i n a l l y transform to Hessenberg (here t r i d i a g o n a l) matrix

12 A = H

13 % compute QR−f a c t o r i z a t i o n o f A

14 for t = 0:100

15 i f (mod(t , 1 0) == 0)

16 t

17 A

18 end

19 [Q R] = qr (A) ;

20 A = R∗Q;

21 conv (: , t +1) = [t ; log10 (abs ((sort (diag (A))−ev) . / ev))] ;

22 end

23 % show convergence o f e i g enva l u e s in a p l o t

24 A

25 plot (conv (1 , :) ,conv (2 : (n+1) , :)) ; legend (num2str(ev))

As can be seen from Fig. 2.1 for our simple example with λ1 = −2, λ2 = 3, and λ3 = 5, the diagonal

elements ofA are converged up to machine-precision after 25 and 50 iterations, respectively, for λ3 = 5

and for the other two eigenvalues λ1 = −2and λ2 = 3. Generally, it can be shown that, the rate with

which a superdiagonal element aij approaches zero depends on the ratio of the i-th and j-th eigenvalue,

respectively, thus

a
(t)
ij ∼

∣∣∣∣λiλj
∣∣∣∣t . (2.53)

Thus, in cases when the ratio of eigenvalues is close to 1, the rate of convergence in the simple QR

algorithm as discussed so far can be quite slow. This is illustrated in Fig. 2.2 where we show the

convergence of the diagonal elements for a matrix with eigenvalues λ1 = −2, λ2 = 90, and λ3 = 91.

44

Figure 2.1: The convergence of eigenvalues of the QR algorithm as defined by Eq. 2.52 for a simple
3× 3 matrix with the eigenvalues λ1 = −2, λ2 = 3, and λ3 = 5.

After 100 iterations, the matrix A is not yet fully converged to diagonal form:

90.99302 0.08324 0.00000

0.08324 90.00698 -0.00000

0.00000 -0.00000 -2.00000.

Convergence can be accelerated by the technique of shifting. We have already applied a similar ap-

proach for the power iteration method (von Mises method) when we shifted the eigenvalues spectrum

as described in Eq. 2.19. In the QR algorithm, rather than calculating the QR-factorization for A, it

is computed for A− µI, where µ is an appropriately chosen shift.

At − µtI = Qt ·Rt (2.54)

At+1 = Rt ·Qt + µtI. (2.55)

Then the convergence is determined by the ratio∣∣∣∣λi − µtλj − µt

∣∣∣∣ . (2.56)

The idea is to choose the shift µt at each iteration in way as to maximize the rate of convergence.

Obviously, the eigenvalues are not known in advance. However in practice, a rather effective strategy

is to compute the eigenvalues of the ending 2× 2 diagonal submatrix of A, and then to set µk equal

45

Figure 2.2: The convergence of eigenvalues of the QR algorithm as defined by Eq. 2.52 for a simple
3× 3 matrix with the eigenvalues λ1 = −2, λ2 = 90, and λ3 = 91.

to the eigenvalue closer to ann. An implementation of this idea into Matlab is listed below.

1 for t = 0:100

2 lam = eig (A((n−1) : n , (n−1) : n)) ;% e i g enva l u e s o f 2x2 matrix

3 [lammin , i lam] = min(abs (lam − A(n , n))) ; % which one i s c l o s e r to A(n , n)?

4 mu = lam (i lam) ; % se t s h i f t mu to t h i s e i g enva l u e

5 [Q R] = qr (A − mu∗E) ; % perform QR−i t e r a t i o n wi th s h i f t mu

6 A = R∗Q + mu∗E;

7 conv (: , t +1) = [t ; log10 (abs ((sort (diag (A))−ev) . / ev))] ;

8 end

Here, line 2 computes the 2 eigenvalues of the ending 2 × 2 block of A which are compared to the

bottom right element ann in line 3. Then, the shift µ is set to the eigenvalue which lies closer to ann

(line 4). Finally, lines 5 and 6 implement Eqs. 2.54 and 2.55, respectively. When repeating the example

from above with λ1 = −2, λ2 = 90, and λ3 = 91, we see in Fig. 2.3 that after only 4 iterations, all

eigenvalues are converged up to machine precision.

46

Figure 2.3: The convergence of eigenvalues of the QR algorithm with shifts as defined by Eqs. 2.54
and 2.55 for a simple 3× 3 matrix with the eigenvalues λ1 = −2, λ2 = 90, and λ3 = 91.

2.4 Applications in Physics

2.4.1 Normal modes of vibration

As we have seen in Exercise 7c (2.3.1), the vibrational frequencies can be obtained from the eigenvalues

of a dynamical matrix Dij

Dij =
φij√
MiMj

, (2.57)

where φij is a force constant matrix (the Hessian matrix of second derivatives of the total energy

with respect to atomic displacements), and where Mi and Mj are the atomic masses associated with

coordinate i and j, respectively. The eigenvalues and eigenvectors of Dij are the squares of the eigen-

frequencies of vibration ω and the corresponding eigenmodes ui.

2.4.2 One-dimensional Boundary Value Problems

As an example, we apply the finite difference approach to the solution of the stationary Schrödinger

equation in one dimension [
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (2.58)

47

where m is the mass of the particle which is trapped in the potential V (x). We assume that the

potential for large |x| approaches ∞, thus the wave function approaches 0 for large |x| leading to the

boundary conditions

lim
|x|→∞

ψ(x) = 0. (2.59)

Such a boundary problem could be solved by integrating the differential equation and applying the

so-called shooting method, we will, however, apply a finite difference approach which lead to a matrix

eigenvalue problem.

To this end, we define an integration interval [a, b] which we discretize by equidistant intervals of

length ∆x = b−a
N

in the following way

xi = a+ ∆x · i. (2.60)

Thus, the integer number i runs from i = 0 to i = N , where x0 = a and xN = b, respectively. Since we

assume hard (that is infinitely high) walls at the boundaries, a and b, the wave functions will vanish

ψ(a) ≡ ψ0 = 0 and ψ(b) ≡ ψN = 0. Using the short notation, ψ(xi) = ψi, we write down a finite

difference expression for the second derivative

ψ′′i =
ψi+1 − 2ψi + ψi−1

(∆x)2 , (2.61)

which we insert into the stationary Schrödinger equation 2.58. There are N − 1 unknown function

values ψ1, ψ2, · · · , ψN−1 which can be obtained from the following eigenvalue equation

1
(∆x)2 + V1 − 1

2(∆x)2 0 0 · · · 0

− 1
2(∆x)2

1
(∆x)2 + V2 − 1

2(∆x)2 0 · · · 0

0 − 1
2(∆x)2

1
(∆x)2 + V3 − 1

2(∆x)2 · · · 0
. . .

0 0 0 0 · · · 1
(∆x)2 + VN−1


·


ψ1

ψ2

ψ3

...

ψN−1

 = E


ψ1

ψ2

ψ3

...

ψN−1

 .

(2.62)

Note that we set ~ = m = 1. We end up with a symmetric, tridiagonal matrix whose eigenvalues are

the stationary energy states, and whose eigenvectors constitute the corresponding wave functions on

a finite grid.

As a second example, we assume that the potential V (x) entering Eq. 2.58 is periodic in space with

a periodicity L

V (x+ L) = V (x). (2.63)

Then we know from basic solid state physics, that the solutions of the Schrödinger equation must

be Bloch waves ψk(x) which are the product of a lattice periodic function uk(x) with the property

48

uk(x+ L) = uk(x) and a plane wave

ψk(x) = uk(x)eikx. (2.64)

Here, the quantum number k is the wave number which is a real number in the interval [− π
L
, π
L

].

When inserting Eq. 2.64 into Eq. 2.58, we obtain an eigenvalue equation for uk(x) (again we have set

~ = m = 1)

− 1

2
u′′k(x)− iku′k(x) +

k2

2
uk(x) + V (x)uk(x) = Ekuk(x), (2.65)

for which we want to derive a finite difference version. When applying the same discretization of the

interval [a, b] with L = b− a as above, we see that due to the periodic boundary conditions

u(a+ L) = u(a) and u′(a+ L) = u′(a). (2.66)

Note that here we have omitted the dependence on the wavenumber k. In the abbreviated notation,

the boundary conditions thus are, u0 = uN and u′0 = u′N . This means that there are N unknowns

which we write in the vector u = (u0, u1, · · · , uN−1). If we use a symmetric finite difference expression

for the first derivative and the usual finite difference form for the second derivative,

u′i =
ui+1 − ui−1

2∆x
(2.67)

u′′i =
ui+1 − 2ui + ui−1

(∆x)2 , (2.68)

insertion into Eq. 2.65 leads to a Hermitian N × N matrix H(k) whose eigenvalues are the energy

eigenstates E(k) for a given wave vector k. The structure of this matrix for N = 6 looks as follows

1
∆x2 + k2

2
+ V0 − 1

2∆x2 + ik
2∆x

0 0 0 − 1
2∆x2 − ik

2∆x

− 1
2∆x2 − ik

2∆x
1

∆x2 + k2

2
+ V1 − 1

2∆x2 + ik
2∆x

0 0 0

0 − 1
2∆x2 − ik

2∆x
1

∆x2 + k2

2
+ V2 − 1

2∆x2 + ik
2∆x

0 0

0 0 − 1
2∆x2 − ik

2∆x
1

∆x2 + k2

2
+ V3 − 1

2∆x2 + ik
2∆x

0

0 0 0 − 1
2∆x2 − ik

2∆x
1

∆x2 + k2

2
+ V4 − 1

2∆x2 + ik
2∆x

− 1
2∆x2 + ik

2∆x
0 0 0 − 1

2∆x2 − ik
2∆x

1
∆x2 + k2

2
+ V5


(2.69)

Again, the matrix has overall tridiagonal shape with the exception that there are two non-vanishing

elements in the top-right and bottom-left corner of the matrix due to the periodic boundary conditions.

49

Project 3

Eigenvalues of the stationary Schrödinger equation

In this project we will apply a finite difference approach to the one-dimensional, stationary Schrödinger

equation [
−1

2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (2.70)

where we have set the particle mass m = 1 and Planck’s constant ~ = 1.

(a) Harmonic oscillator: Set V (x) = x2/2 and numerically determine the eigenvalues and eigenfunctions

by applying the finite difference approach according to Eqs. 2.62. Compare your results with the

analytic solutions. How large do you have to make the interval [−a, a] and how many grid points are

needed to compute the 5 lowest lying eigenvalues with an accuracy better 0.001?

(b) Consider the double-well potential V (x) = −3x2 + x4/2 and compute the 5 lowest lying eigenvalues

and the corresponding normalized eigenvectors, and plot the solutions.

(c) Consider the periodic potential V (x+ L) = V (x) with

V (x) =
1

3
cos

(
2π

L
x

)
+ cos

(
4π

L
x

)
, (2.71)

where a = 0, b = 5 and L = b − a = 5. Compute the five lowest lying eigenvalues of the finite

difference Hamilton matrix 2.69 for a series of k points within the first Brillouin zone, k ∈ [− π
L
, π
L

].

Plot the resulting band structure E(k) and the a few exemplary Bloch-states ψk(x) = uk(x)eikx.

Hints for (c): Use either the LAPACK routine zheevx which computes selected eigenvalues of a Hermitian

matrix. Alternatively, use the routine zhbevx which makes use of the banded matrix shape of 2.69. Some

information on how band matrices are stored can be found here: banded-matrix.

50

http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-E24BE6C6-E4BF-4675-AF19-FDA723BFD666.htm
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-CF6D9DFC-EEFE-402A-89C0-9EE10C6F736D.htm
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-7B11079E-CB74-4A5F-AEEA-D6C9B7181C42.htm

2.4.3 Secular equation of Schrödinger equation

We can solve the stationary Schrödinger equation[
−1

2
∆ + V (r)

]
ψ(r) = Eψ(r), (2.72)

by expanding the solutions for the wave function ψ(r) into a linear combination of known basis

functions φj(r).

ψ(r) =
n∑
j=1

cjφj(r). (2.73)

Inserting Eq. 2.73 into 2.72, multiplying from the left with the basis function φ∗i (r), and integrating

over space
∫
d3r yields the so-called secular equation.

[Tij + Vij] cj = ESijcj. (2.74)

Here, Tij and Vij are the matrix elements of the kinetic and potential energy, respectively,

Tij =

∫
d3r φ∗i (r)

(
−1

2
∆

)
φj(r) = 〈i| T̂ |j〉 (2.75)

Vij =

∫
d3r φ∗i (r)V (r)φj(r) = 〈i| V̂ |j〉 (2.76)

(2.77)

and Sij is the overlap matrix

Sij =

∫
d3r φ∗i (r)φj(r) = 〈i| j〉 . (2.78)

Eq. 2.74 reduces to a standard matrix eigenvalue problem for the case when the basis functions are

orthonormal, that is, 〈i| j〉 = δij.

One-dimensional problem

As is project 3 (2.4.2), we solve the stationary Schrödinger equation in one dimension[
−1

2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (2.79)

however, not by employing a finite difference approach, but by expanding the wave function into basis

functions for which we choose the eigenfunctions of the particle-in-a-box problem with infinitely high

51

walls at x = −L
2

and x = +L
2
.

φj(x) =

√
2

L
sin

[
jπ

L

(
x− L

2

)]
, j = 1, 2, · · · , n (2.80)

It is easy to see that the basis functions 2.80 are orthonormal,

Sij =

∫ +L/2

−L/2
dx φi(x)∗φj(x) = δij. (2.81)

Also, the matrix elements of the kinetic energy operator are diagonal,

Tij =

∫ +L/2

−L/2
dx φi(x)∗

(
−1

2

d2

dx2

)
φj(x) =

i2π2

2L2
δij. (2.82)

For an harmonic potential V (x) = 1
2
x2, we can evaluate the matrix elements of the potential, Vij,

analytically yielding

Vij =

{
L2

24

(
1− 6

i2π2

)
, i = j

L2

π2

2ij[1+(−1)i+j]
(i−j)2(i+j)2 , i 6= j.

(2.83)

Below, there is a Matlab (octave) implementation which shows that only a few (≈ 10 − 15) basis

functions are sufficient to obtain the first few eigenvalues with high accuracy.

1 L = 10 ; % se t up and s o l v e s e cu l a r equat ion f o r harmonic o s c i l l a t o r

2 compare = [0 . 5 ; 1 . 5 ; 2 . 5 ; 3 . 5 ; 4 . 5] ;

3 nc = length (compare) ;

4 r e l e r r o r = [] ;

5 for n = nc :50 % use up to 50 b a s i s f unc t i on s o f type Eq . (2 . 80)

6 T= [] ;V= [] ;H= [] ;

7 for i = 1 : n

8 for j = 1 : n

9 i f (i == j)

10 T(i , j) = i ˆ2∗pi ˆ2/(2∗Lˆ2) ;

11 V(i , j) = Lˆ2/24∗(1 − 6/(i ˆ2∗pi ˆ2)) ;

12 else

13 T(i , j) = 0 ;

14 V(i , j) = (Lˆ2/pi ˆ2) ∗(2∗ i ∗ j ∗ (1 + (−1) ˆ(i+j))) /((i−j) ˆ2∗(i+j) ˆ2) ;

15 end

16 end

17 end

18 H = T + V;

19 e = eig (H) ;

20 r e l e r r o r (n−nc +1 , :) = real (log ((e (1 : nc) − compare) . / compare)) ;

21 end

52

22 plot (r e l e r r o r) % p l o t l ogar i thm of r e l a t i v e error o f f i r s t 5 e i g enva l u e s

Similarly, we can also compute the matrix elements for the double-well potential V (x) = −3x2 +x4/2

already treated in project 3 (2.4.2). With a little help from Mathematica (secularequation.nb), we

find

Vij =


L2(2π5i5(L2−40)−40π3i3(L2−12)+240πiL2)

320π5i5
, i = j

ijL2((−1)i+j+1)(π2i4(L2−12)−2i2((π2j2+24)L2−12π2j2)+π2j4(L2−12)−48j2L2)
π4(i−j)4(i+j)4 , i 6= j.

(2.84)

When used together with the expression 2.82 for the kinetic energy matrix elements, we can obtain

the lowest eigenvalues (and corresponding eigenvectors) of this double-well potential by using gain

only a few (10–15) basis functions.

Lattice periodic potentials

We conclude the Chapter about the numeric determination of eigenvalues and eigenvectors by com-

puting the band structure of three-dimensional crystalline structure, namely the face-centered cubic

Aluminum crystal. To this end we determine the eigenvalues of the stationary Schrödinger equation

given in Eq. 2.72. Within the framework of density functional theory (DFT), the so-called Kohn-

Sham equations can be derived in which the potential term V (r) is an effective potential which takes

into account (i) the electro-static interaction of the electrons with the atomic nuclei, (ii) the electro-

static interaction of an electron with all other electrons in the system (Hartee-potential), and (iii) a

term which is called the exchange-correlation potential which takes into account the Pauli-exclusion

principle (exchange) and the fact that electrons avoid each other due to their Coulomb repulsion

(correlations). Here, we do not attempt to calculate this effective potential which can be done within

DFT. Rather do we take the potential V (r) as granted and solve the eigenvalue problem by expanding

the wave functions in an appropriate basis which turns Eq. 2.72 into a matrix eigenvalue problem.

Owing to the translational symmetry, the effective potential has the property V (r +R) = V (r),

where R is any direct lattice vector of the crystal.

R = na1 +ma2 + la3 (2.85)

Here, a1, a2, and a3 are the lattice vectors spanning the unit cell and n,m, l are integer numbers.

Since the potential is lattice periodic, it can be expanded into a Fourier series in the following way:

V (r) =
1

Ω

∑
G

VGe
iGr (2.86)

VG =

∫
Ω

d3r V (r)e−iGr (2.87)

53

http://physik.uni-graz.at/~pep/Lehre/CP2/secularequation.nb

Here, the expansion runs over all reciprocal lattice vectors defined in the usual way

G = hb1 + kb2 + lb3 (2.88)

So, b1, b2, and b3 are the basis vectors of the reciprocal lattice, and h, k, l are integer numbers (the

Miller indices). The numbers VG are the expansion coefficients which represent the potential in Fourier

space, and Ω is the crystal volume.

Because of Bloch’s theorem, we can write the wave functions solving Eq. 2.72, as a plane wave eikr

times a lattice periodic function uk(r +R) = uk(r), where k, the Bloch wave number, is a vector

within the first Brillouin zone. Similar to the potential, we can also expand the lattice periodic part

of the wave function in plane waves eiGr.

ψk(r) = uk(r)eikr = eikr
1

Ω

∑
G′

cG′(k)eiG
′r (2.89)

When inserted into the Schrödinger equation[
−1

2
∆ + V (r)

]
ψk(r) = E(k)ψk(r), (2.90)

and multiplied from left by
∫

Ω
d3r e−i(k+G)r, we obtain the secular equation in the form∑
G′

[TGG′(k) + VGG′] cG′(k) = E(k)cG(k). (2.91)

the kinetic and potential energy matrix elements TGG′(k) and VGG′ , respectively, are given by the

following expressions

TGG′(k) =
1

2
|k +G|2 δGG′ (2.92)

VGG′ =
1

Ω
VG−G′ . (2.93)

We see that the kinetic energy operator is already diagonal in the chosen basis of plane waves and its

follows the dispersion relation of free particles E ∼ k2

2
. The potential term VG−G′ is independent of

the Bloch wave vector k and is given by the (G−G′)-Fourier coefficient of the potential V (r).

In practical calculations, the size of the matrices TGG′(k) and VGG′ must be finite and the summation

over G′ in Eq. 2.91 must be truncated. To this end, the matrix elements are sorted according to

the length of the reciprocal lattice vector |G|, and the matrices are truncated with a given cut-off

parameter Gmax.

54

Exercise 8

The Band Structure of fcc-Al

In an oversimplified approach,2 we determine the valence band structure E(k) of fcc-Al by determining

the eigenvalues of Eq. 2.91 for a series of k-points within the first Brillouin zone. The potential V (r) in

real space, as visualized in Fig. 2.4, should be read in from the following text file: Al.LOCPOT. It contains

information about the lattice vectors, the real real space grid onto which the potential V (x, y, z) is stored,

and of course the values of the potential at these grid points. Units are Å for length and eV for the potential.

You can use the following Matlab (Octave) function to read the potential from this file:

1 % read p o t e n t i a l V(x , y , z) from VASP−LOCOT f i l e

2 funct ion V = r e a d p o t e n t i a l (f i l e name , natomtype) ;

3 eV2Ha = 27 .21138505 ;

4 bohr = 0 .529177 ;

5 f i d = fopen (f i l e name , ’ r ’) ;

6 t i t l e = f g e t l (f i d) ;

7 l i n e = f g e t l (f i d) ;

8 s c a l e = str2num (l i n e) ;

9 vec = f s c a n f (f i d , ’%f ’ , [3 , 3]) ;

10 a1 = s c a l e ∗ vec (: , 1) / bohr ; % ba s i s v e c t o r a1

11 a2 = s c a l e ∗ vec (: , 2) / bohr ; % ba s i s v e c t o r a2

12 a3 = s c a l e ∗ vec (: , 3) / bohr ; % ba s i s v e c t o r a3

13 l i n e = f g e t l (f i d) ;

14 l i n e = f g e t l (f i d) ;

15 natom = f s c a n f (f i d , ’%f ’ , [1 , natomtype]) ;

16 l i n e = f g e t l (f i d) ;

17 coo sw i t ch = f g e t l (f i d) ;

18 coo = f s c a n f (f i d , ’%f ’ , [3 , sum(natom)]) ;

19 l i n e = f g e t l (f i d) ; l i n e = f g e t l (f i d) ;

20 n = f s c a n f (f i d , ’%f ’ , [1 , 3]) ;

21 nx = n (1) ; % number o f g r i d p o i n t s i n x−d i r e c t i o n
22 ny = n (2) ; % number o f g r i d p o i n t s i n y−d i r e c t i o n
23 nz = n (3) ; % number o f g r i d p o i n t s i n z−d i r e c t i o n
24 l i n e = f g e t l (f i d) ;

25 V. r = f s c a n f (f i d , ’%f ’ , [i n f]) ;

26 V. r = reshape (V . r , nx , ny , nz) /eV2Ha ; % po t e n t i a l V(x , y , z) on the g r i d

27 V. nx = nx ;

28 V. ny = ny ;

29 V. nz = nz ;

30 V. a1 = a1 ;

2Note that due to the details of the PAW method the eigenvalue problem of the transformed Hamiltonian is more
complicated than assumed in this exercise. See, for instance, Ref. [13] for more details.

55

http://physik.uni-graz.at/~pep/Lehre/CP2/EX08/Al.LOCPOT

31 V. a2 = a2 ;

32 V. a3 = a3 ;

33 V. dx = s q r t (a1 ’∗ a1) /nx ; % g r i d s pa c i n g i n x−d i r e c t i o n
34 V. dy = s q r t (a2 ’∗ a2) /ny ; % g r i d s pa c i n g i n y−d i r e c t i o n
35 V. dz = s q r t (a3 ’∗ a3) /nz ; % g r i d s pa c i n g i n z−d i r e c t i o n
36 V. x = 0 :V . dx : (s q r t (a1 ’∗ a1)−V. dx) ; % g r i d p o i n t s i n x−d i r e c t i o n
37 V. y = 0 :V . dy : (s q r t (a2 ’∗ a2)−V. dy) ; % g r i d p o i n t s i n y−d i r e c t i o n
38 V. z = 0 :V . dz : (s q r t (a3 ’∗ a3)−V. dz) ; % g r i d p o i n t s i n z−d i r e c t i o n
39 end

(a) Set up the reciprocal lattice starting from the real space basis vectors defined by the vectors a1, a2

and a3. Make a list of G vectors and sort them according to their length. Use atomic units, that is

Bohr−1 for reciprocal length, and compute a such a list up to Gmax = 5.0 Bohr−1.

(b) Compute the Fourier coefficients of the potential according to Eq. 2.87.

(c) Compute the band structure E(k) of the 10 lowest lying bands by solving the eigenvalue equation 2.91

for a k-path along the points W−L−Γ−X−W of the 1st Brillouin zone. Here, W = 1
2
b1+ 1

4
b2+ 3

4
b3,

L = 1
2
b1 + 1

2
b2 + 1

2
b3, Γ = 0, and X = 1

2
b1 + 1

2
b3.

Figure 2.4: The primitive unit cell of the face centered cubic cell of Al (red lines). The periodic
potential V (r) in the planes of the primitive unit cell of is shown as contour plot.

56

Chapter 3

Partial Differential Equations

Many problems in physics can be formulated as partial differential equations (PDEs): the heat equation

(or diffusion equation), the wave equation in elastic media, or Maxwell’s equation, time-dependent

Schrödinger equation, or the Navier-Stokes equation describing the viscous flow of fluids to name a

few well-known examples. Except for very rare cases, no analytical solutions exist, thus methods for

numerically solving PDEs are required, and the numerical treatment PDEs is, by itself, a vast subject.

The intent of this chapter is to give a brief introduction into subject. For a more detailed description

it is referred to Refs. [1, 14] and references therein.

3.1 Classification of PDEs

3.1.1 Discriminant of a quadratic form

In most mathematics books, partial differential equations are classified into three categories, hyperbolic,

parabolic, and elliptic, on the basis of their characteristics, or curves of information propagation.

Assume a linear PDE of second order for the function u which is dependent of two variable x and y

Auxx + 2Buxy + Cuyy +Dux + Eux + Fu+G = 0, (3.1)

where A, B, ... denote some coefficients which may depend on x and y, and uxx, are the partial

derivatives of the function u. If A2 + B2 + C2 > 0 over a region of the xy plane, the PDE is second-

order in that region. This form is analogous to the equation for a conic section

Ax2 + 2Bxy + Cy2 + · · · = 0.

57

More precisely, replacing ∂x by x, and likewise for other variables (formally this is done by a Fourier

transform), converts a constant-coefficient PDE into a polynomial of the same degree, with the top

degree (a homogeneous polynomial, here a quadratic form) being most significant for the classification.

Just as one classifies conic sections and quadratic forms into parabolic, hyperbolic, and elliptic based

on the discriminant B2 − 4AC, the same can be done for a second-order PDE at a given point.

However, the discriminant in a PDE is given by B2−AC, due to the convention of the xy term being

2B rather than B.

• B2 − AC < 0: solutions of elliptic PDEs are as smooth as the coefficients allow, within the

interior of the region where the equation and solutions are defined. For example, solutions of

Laplace’s equation are analytic within the domain where they are defined, but solutions may

assume boundary values that are not smooth.

• B2 − AC = 0: equations that are parabolic at every point can be transformed into a form

analogous to the heat equation by a change of independent variables. Solutions smooth out as

the transformed time variable increases.

• B2 − AC > 0: hyperbolic equations retain any discontinuities of functions or derivatives in the

initial data. An example is the wave equation. The motion of a fluid at supersonic speeds can

be approximated with hyperbolic PDEs.

The prototypical example for an elliptic equation is Poisson’s equation

uxx + uyy = ρ(x, y), (A = 1, B = 0, C = 1), (3.2)

where u denotes the electrostatic potential and ρ is a charge distribution. The prototypical parabolic

equation is the heat equation

ut = κuxx, (A = −κ,B = 0, C = 0), (3.3)

where u is the temperature, and κ > 0 is the diffusion coefficient. Finally, the typical example of a

hyperbolic equation is the wave equation

utt = v2uxx, (A = 1, B = 0, C = −v2). (3.4)

Here, u is the property which is propagated with velocity v.

58

3.1.2 Boundary vs. initial value problem

From a computational point of view, classifying partial differential equations according to type of

boundary conditions proves even more important. For instance, the Poisson equation 3.2 is the proto-

typical example of a boundary value or static problem. Here, boundary values of the function u(x, y)

or its gradient must be supplied at the edge of a region of interest. Then, an iterative process is

employed to find the function values in the interior of the region of interest. In contrast, the heat

and wave equations 3.3 and 3.4, respectively, represent prototypical examples of initial value or time

evolution problems. Here, a quantity is propagated forward in time starting from some initial values

u(x, t = 0) with additional boundary conditions at the edges of the spatial region of interest.

The main concern for the latter type of problem, the static case, is to devise numerical algorithms

which are efficient, both, in terms of computational load as well as in storage requirements. As we

will see in the next Sec. 3.2, one usually ends up with a large set of algebraic equations, or more

specifically for linear PDEs, with a large system of linear equations with a spase coefficient matrix.

In time evolution problems, on the other hand, the main concern is about the stability of the numerical

algorithm. As we will see in Sec. 3.3, there are finite difference form of PDEs which, at first sight,

look reasonable, but which are unstable, that is errors grow with time without bound. Thus, it will

be important to analyze the stability of the finite difference scheme and to devise algorithms which

lead to stable solutions.

3.2 Boundary Value Problems

3.2.1 Finite differencing in ≥ 2 dimensions

As our model problem, we consider the numerical solution of Poisson’s equation 3.2 in two dimensions.

We represent the function u(x, y) by its values at the discrete set of points

xj = x0 + jδ, j = 0, 1, · · · , J, (3.5)

yl = y0 + lδ, l = 0, 1, · · · , L. (3.6)

Here, δ is the grid spacing. Instead of writing u(xj, yl) and ρ(xj, yl) for the potential and charge

density, respectively, we abbreviate these functional values at the grid points by uj,l and ρj,l. When

using the same finite difference representation of the second derivative as already introduced earlier

(see Eq. 2.61), Poisson’s equation 3.2 turns into

uj+1,l − 2uj,l + uj−1,l

δ2
+
uj,l+1 − 2uj,l + uj,l−1

δ2
= ρj,l, (3.7)

59

which can be simplified into the following form

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = δ2ρj,l. (3.8)

This equation represents a system of linear equations. In order to write it in the conventional form,

A · x = b, we have to put all unknown function values uj,l inside the two-dimensional domain of

interest into a vector. This can be achieved by numbering all grid points on the two-dimensional grid

by in a single one-dimensional sequence by defining the new index i in the following way

i = 1 + (j − 1)(L− 1) + l − 1 for j = 0, 1, · · · , J, l = 0, 1, · · · , L. (3.9)

If we assume that the values of u at the boundary defined by j = 0, j = J , l = 0, and l = L are

fixed (Dirichlet boundary conditions), then only the function variables at the interior grid points,

j = 1, 2, · · · J − 1 and l = 1, 2, · · ·L − 1, are unknown. Then the new index i numbers all interior

points from i = 1, 2, · · · , (J − 1)(L− 1)) in the following way (J=L=4)

u1,1 → u1

u1,2 → u2

u1,3 → u3

u2,1 → u4

u2,2 → u5

u2,3 → u6

u3,1 → u7

u3,2 → u8

u3,3 → u9


,



ρ1,1 → ρ1

ρ1,2 → ρ2

ρ1,3 → ρ3

ρ2,1 → ρ4

ρ2,2 → ρ5

ρ2,3 → ρ6

ρ3,1 → ρ7

ρ3,2 → ρ8

ρ3,3 → ρ9


. (3.10)

Thereby, we can transform Eq. 3.8 into the standard form

−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4


·



u1

u2

u3

u4

u5

u6

u7

u8

u9


=



δ2ρ1 − u0,1 − u1,0

δ2ρ2 − u0,2

δ2ρ3 − u0,3 − u1,4

δ2ρ4 − u2,0

δ2ρ5

δ2ρ6 − u2,4

δ2ρ7 − u3,0 − u4,1

δ2ρ8 − u4,2

δ2ρ9 − u3,4 − u4,3


. (3.11)

60

Hereby, we have pulled all known function values at the boundary to right hand side of 3.8. Thus, the

inhomogeneous vector b of Eq. 3.11 contains not only the values of the charge density in the interior

but also the boundary values of u.

We note that the resulting coefficient matrix is a real, symmetric and sparse, more precisely, it may

be termed tridiagonal with additional fringes. The matrix consist of (J − 1)× (L− 1) = 3× 3 blocks.

Along the diagonal these blocks are tridiagonal, and the super- and sub-diagonal blocks are themselves

diagonal. Such a sparse matrix should not be stored in its full form as shown in Eq. 3.11 given the

fact that realistic grid sizes in the order of 100 × 100 grid points along x and y, respectively, result

in a matrix sizes 10000 × 10000. The matrix is diagonally dominant as defined in Eq. 1.59 and all

its eigenvalues are negative, so −A is positive definite. Therefore both, the successive over-relaxation

(SOR) (see Sec. 1.3.3) as well as the conjugate gradient (CG) iterative methods (see Sec. 1.3.4)

for solving linear systems of equation may be applied. In addition, also a direct method based on

Cholesky-decomposition (the analog of the LU-factorization for the symmetric case) may be employed.

For instance the LAPACK routine pbsv could be used.

The finite difference form of Poisson’s equation for three spatial coordinates x, y, z can be derived in

a similar manner. If we define the grid points by

xj = x0 + jδ, j = 0, 1, · · · , J, (3.12)

yl = y0 + lδ, l = 0, 1, · · · , L, (3.13)

zk = z0 + kδ, k = 0, 1, · · · , K, (3.14)

with an equal spacing δ in all three Cartesian directions, then we obtain for the following equation at

the grid point (j, l, k)

uj+1,l,k − 2uj,l,k + uj−1,l,k

δ2
+
uj,l+1,k − 2uj,l,k + uj,l−1,k

δ2
+
uj,l,k+1 − 2uj,l,k + uj,l,k−1

δ2
+ = ρj,l,k, (3.15)

which can be simplified into the following form

uj+1,l,k + uj−1,l,k + uj,l+1,k + uj,l−1,k + uj,l,k+1 + uj,l,k−1 − 6uj,l,k = δ2ρj,l,k. (3.16)

Again the resulting system of linear equations can be brought into the standard form A · x = b, by

writing the unknown function values in the interior as a vector with the one-dimensional index i, now

defined as

i = 1 + (j − 1)(L− 1)(K − 1) + (l − 1)(K − 1) + (k − 1). (3.17)

The resulting matrix structure for the example (J − 1)× (L− 1)× (K − 1) = 4× 4× 4 is visualized

in Fig. 3.1. Again, it is a highly sparse matrix which is symmetric, diagonally dominant, and −A is

61

http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/GUID-9D4C4C2F-66C8-469D-8576-96B5B0D5AA8D.htm

Out[394]=

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

64

Figure 3.1: Matrix structure resulting from finite differencing the Poisson equation in three dimensions.
For this illustration (J − 1) × (L − 1) × (K − 1) = 4 × 4 × 4 interior mesh points are selected. The
purple elements along the diagonal are equal to −6, while the orange squares represent the value 1.
All other matrix elements are zero.

positive definite. The matrix structure for various grid sizes may be visualized with the help of this

Mathematica notebook: Poisson.nb.

62

http://physik.uni-graz.at/~pep/Lehre/CP2/Poisson.nb

Exercise 9

Solution of Poisson’s Equation in 2D

We solve the Poisson equation in 2D by finite differencing as described by the system of linear equations

3.11. We use a simulation box defined by x ∈ [−10, 10] and y ∈ [−10, 10]. At the boundary of the box,

that is at x = −10, x = +10, y = −10 and y = +10, we apply Dirichlet boundary conditions and set the

potential u = 0. Inside the box, we assume a charge distribution given by the following expression

ρ(x, y) =
1√
2πσ

{
exp

[
−
x2 +

(
y − d

2

)2

2σ2

]
− exp

[
−
x2 +

(
y + d

2

)2

2σ2

]}
. (3.18)

This charge density consists of two Gaussian-shaped charge distributions of equal strength but opposite

sign with the width σ located at
(
0,+d

2

)
and

(
0,−d

2

)
, respectively.

(a) Set up the matrix A of Eq. 3.11 for N ≡ L = J equidistant grid points. Make use of the sparsity of

this matrix. For instance, use the sparse function of Matlab or use a banded matrix storage scheme

if you employ LAPACK functions.

(b) Solve the linear system of equations 3.11 taking into account the boundary values u|boundary = 0.

Choose σ = 0.5 and d = 5 and plot the resulting potential u(x, y), for instance with Matlab’s or

Octave’s function: surf(X,Y,u,’LineStyle’,’none’).

(c) Experiment with different grid densities, i.e., vary N between 9, 19, 29, ... and 499 or so and monitor

how the solution changes. In particular evaluate the potential u(x = 2, y = 0) and plot how it

changes when increasing the number of grid points.

(d) Experiment with different solution algorithms: direct vs. iterative schemes. Which one is the best in

terms of computational speed for this problem?

63

3.3 Initial Value Problems

3.3.1 von Neumann stability analysis

In numerical analysis, von Neumann stability analysis (also known as Fourier stability analysis) is a

procedure used to check the stability of finite difference schemes as applied to linear partial differential

equations. The analysis is based on the Fourier decomposition of numerical error [15]. A finite difference

scheme is stable if the errors made at one time step of the calculation do not cause the errors to increase

as the computations are continued. If the errors decay and eventually damp out, the numerical scheme

is said to be stable. If, on the contrary, the errors grow with time the numerical scheme is said to be

unstable.

Illustration with heat equation

The von Neumann method is based on the decomposition of the errors into Fourier series. To illustrate

the procedure, consider the heat equation for one spatial coordinate

∂u

∂t
= κ

∂2u

∂x2
. (3.19)

We discretize it on the spatial interval L using the so-called explicit Forward Time Centered Space

(FTCS) scheme. Thus, we use a first-order approximation for the time derivative and the already

well-known expression for the second derivative with respect to x.

∂u(xj, tn)

∂t
≈ u(xj, tn+1)− u(xj, tn)

∆t
≡
un+1
j − unj

∆t
(3.20)

∂2u(xj, tn)

∂x2
≈ u(xj+1, tn)− 2u(xj, tn) + u(xj−1, tn)

∆x2
≡
unj+1 − 2unj + unj−1

(∆x)2
(3.21)

Inserting these expressions, where we have introduced the short-hand notation that spatial grid-points

are indicated by subscripts j and temporal grid points by superscripts t, the FTCS version of the heat

equation reads:

un+1
j = unj + r

(
unj+1 − 2unj + unj−1

)
, where r =

κ∆t

(∆x)2
. (3.22)

The question is how to choose ∆x and ∆t such that a stable algorithm results. To this end, we

introduce the difference εnj between the exact solution to the problem unj , that is in the absence of

round-off errors, and the numerical version of it, ũnj which contains round-off errors due to finite

precision arithmetic.

εnj = ũnj − unj . (3.23)

64

Since the exact solution unj must satisfy the discretized equation exactly, the error εnj must also satisfy

the discretized equation. Thus

εn+1
j = εnj + r

(
εnj+1 − 2εnj + εnj−1

)
(3.24)

is a recurrence relation for the error. It shows that both the error and the numerical solution have the

same growth or decay behavior with respect to time. For linear differential equations with periodic

boundary condition, the spatial variation of error may be expanded in a finite Fourier series, in the

interval L, and the time dependence follows an exponential form

ε(x, t) =
M∑
m=1

eamteikmt. (3.25)

Here, the wavenumber km = πm
L

with m = 1, 2, . . . ,M and M = L/∆x. The time dependence of

the error is included by assuming that the amplitude of error Am = eamt tends to grow or decay

exponentially with time.

Since the heat equation is linear, it is enough to consider the growth of error of a typical term

εm(x, t) = eateikmx To find out how error varies in steps of time we note that

εnj = eateikmx (3.26)

εn+1
j = ea(t+∆t)eikmx (3.27)

εnj+1 = eateikm(x+∆x) (3.28)

εnj−1 = eateikm(x−∆x), (3.29)

and insert these expressions into Eq. 3.24

ea∆t = 1 +
κ∆t

∆x2

(
eikm∆x + e−ikm∆x − 2

)
. (3.30)

We can simplify this formula by using the identities

cos(km∆x) =
eikm∆x + e−ikm∆x

2
and sin2 km∆x

2
=

1− cos(km∆x)

2
(3.31)

to give

ea∆t = 1− 4κ∆t

(∆x)2
sin2(km∆x/2) (3.32)

65

If we define the amplification factor G as the ratio of the error at time n+ 1 and time n

G ≡
εn+1
j

εnj
=
ea(t+∆t)eikmx

eateikmx
= ea∆t, (3.33)

we see that the necessary and sufficient condition for the error to remain bounded is that |G| ≤ 1.

Thus, we arrive at the stability criterion for the FTSC discretization of the heat equation∣∣∣∣1− 4κ∆t

(∆x)2
sin2(km∆x/2)

∣∣∣∣ ≤ 1. (3.34)

For the above condition to hold at all spatial modes km appearing in sin2(km∆x/2), we finally can

write down the simple stability requirement

κ∆t

(∆x)2
≤ 1

2
. (3.35)

It says that for a given ∆x, the allowed value of ∆t must be small enough to satisfy equation the

above inequality.

A simple algorithm that does not work

We illustrate the von Neumann stability method by applying it to another prototypical PDE, which

is termed the flux-conservative equation

∂u

∂t
= −v∂u

∂x
. (3.36)

For instance it arises when rewriting the wave equation as a set of first-order equations. Eq. 3.36 has

the solution u = f(x− vt) where f is an arbitrary function.

If we employ the same finite difference approximation as for the heat equation, thus a Forward Time

Centered Space (FTCS) representation, we find the following finite difference version of this PDE

ut+1
j − unj

∆t
= −v

(
unj+1 − unj−1

2∆x

)
(3.37)

The algorithm looks simple, however, as we will show below it does not work because it can be shown

to be unstable no matter how we choose ∆t and ∆x!

To this end, we insert the ansatz

ε(x, t) = eateikmx (3.38)

66

already used above into Eq. 3.37 and obtain the following requirement for the amplification factor G

|G| =
∣∣∣∣1− iv∆t

∆x
sin (km∆x)

∣∣∣∣ < 1. (3.39)

We see that this inequality is never fulfilled no matter how small a value we choose for ∆t. We can

say that the FTCS algorithm for this flux-conservative equation 3.36 is unconditionally unstable.

The Lax Method

The instability of the FCTS method for the PDE 3.36 can be cured by a simple modification which

is due to Lax [1]. One replaces the term unj in the time derivative term by its average

unj →
1

2

(
unj+1 + unj−1

)
. (3.40)

This turns Eq. 3.37 into

un+1
j =

1

2

(
unj+1 + unj−1

)
− v∆t

2∆x

(
unj+1 − unj−1

)
. (3.41)

Substituting the ansatz 3.38, we now find for the amplification factor

G =
εn+1
j

εnj
= cos k∆x− iv∆t

∆x
sin k∆x (3.42)

which leads with the stability condition, |G| ≤ 1, to the requirement

|v|∆t
∆x

≤ 1. (3.43)

This criterion is called the Courant-Friedrichs-Levy stability criterion, sometimes simply termed the

Courant-condition. Its meaning can be understood quite simple: the amplitude un+1
j from Eq. 3.41 at

time step n + 1 and at position j is computed from spatial positions j − 1 and j + 1 at the earlier

time n. If we recall that PDE actually describes propagation of waves with the phase velocity v, then

it is clear why the time step ∆t must be smaller than the time needed for waves traveling a spatial

grid point ∆x/v. If ∆t were larger than ∆x/v, then it would require information from more distant

points than the differencing scheme allows. This is also illustrated in Fig. 3.2.

We want to shed light on the fact why the FTCS scheme as defined in Eq. 3.37 failed and the simple

modification according to Lax as in Eq. 3.41 helped to cure the instability. To this end, we bring the

67

n n+1n-1

j

j+1

j–1

t

x

∆x

∆t

n n+1n-1

j

j+1

j–1

t

x

∆x

∆t

stable: ∆x/∆t > v unstable: ∆x/∆t < v

Figure 3.2: Illustration of the Courant condition for a stable (left) and unstable (right) finite differ-
encing depending on the ratio of the grid spacings ∆x/∆t relative to the velocity v of information
propagation.

Lax differencing equation 3.41 into a form similar to 3.37 with a remainder, thus we have

ut+1
j − unj

∆t
= −v

(
unj+1 − unj−1

2∆x

)
+

1

2

(
unj+1 − 2unj + unj−1

∆t

)
. (3.44)

This equation can be viewed as the FTCS version of the following PDE

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t

∂2u

∂x2
. (3.45)

This PDE differs from the original PDE 3.36 by an added diffusion term. In resembles to fluid flow

described by the Navier-Stokes equations, this dissipative term is also called numerical dissipation or

numerical viscosity. This is also expressed by the amplification factor given by Eq. 3.42 which damps

the amplitude of the wave spuriously unless |v|∆t is exactly equal to ∆x.

The question is does such a spurious damping not alter the solution? Or in other words: Is the price of

getting a stable solution that we are led to the wrong solution of our original PDE 3.36? The answer is

no since the numerical viscosity term affects different spatial modes characterized by the wave number

k in a decisively different manner. The spatial scales that we intend to describe span over many grid

points, thus for these scales we have that k∆x� 1. In this case, the amplification factor of Eq. 3.42

68

simplifies to

G ≈ 1 when k∆x� 1. (3.46)

This means that the scales we wish to describe are almost undamped. On the other hand for the

short scales characterized by k∆x ∼ 1, the amplification factor will effectively damp such short-scale

oscillations which we are anyway not interested in. Thus, the difference between the unstable FTCS

and the stable Lax method lies only in the treatment of the short spatial scales which we cannot hope

to describe well. They blow up and dominate the whole solution in the FCTS, while these modes

eventually die away in the Lax scheme which then allows a look at the physically interesting behavior

at longer spatial scales.

3.3.2 Heat equation

We have already seen that for the heat equation 3.19, the simple FTCS leads to a stable solution

scheme with the restriction 3.35
κ∆t

(∆x)2
≤ 1

2
.

This can be interpreted in the sense that the maximal allowed time step ∆t must be smaller than

the diffusion time across a cell of width ∆x given by (∆x)2/κ. More generally, we can say that the

diffusion time τ over a length λ will be given by

τ ∼ λ2

κ
. (3.47)

Since the length scales λ that we intend to describe in our simulation are much larger than the grid

size, λ� ∆x, we immediately see that we need in the order of

Nt =
τ

∆t
=

λ2

(∆x)2
(3.48)

time steps to see things happening at the length scale of interest. Since Nt can be quite large, alter-

native discretization schemes would be useful which would allow for larger time steps ∆t without loss

of stability and accuracy for the length scales of interest.

Fully implicit method

To this end, we consider a slight modification of the FTCS Eq. 3.22

un+1
j − unj

∆t
= κ

unj+1 − 2unj + unj−1

(∆x)2
, (3.49)

69

and instead evaluate the u at time step n+1 when computing the spatial derivative on the right hand

side:
un+1
j − unj

∆t
= κ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
. (3.50)

We see that in order to obtain the solution at time step n + 1, we have to solve a linear system of

equations. In contrast to the original FTCS scheme which is called an explicit method since the values

at n+ 1 explicitly depend on previous time values, the scheme defined by Eq. 3.50 is called backward

time or fully implicit. For one spatial dimension and assuming Dirichlet boundary conditions at j = 0

and j = J , the resulting system of equations is tridiagonal as can be easily seen when rewriting

Eq. 3.50

− run+1
j−1 + (1 + 2r)un+1

j − run+1
j+1 = unj where r =

κ∆t

(∆x)2
. (3.51)

Note that for more than one spatial dimensions, the structure of the equation system will be no

longer tridiagonal, but remain highly sparse as we have already seen when discussing the solution of

the Poisson equation in 2 and 3 spatial dimensions in Sec. 3.2. We can now analyze the stability of

the implicit finite difference form 3.51 by computing the amplification factor according to the von

Neumann stability criterion, and find

G =
1

1 + 4r sin2
(
k∆x

2

) . (3.52)

It is clear that |G| < 1 for any time step ∆t. Thus, the fully implicit method is unconditionally stable.

Naturally, if the time step is chosen to be quite large, then the details of the time evolution are not

described very accurately, but a feature of the fully implicit scheme is that it leads to the correct

equilibrium solution, that is for t→∞.

Crank-Nicholson method

One can combine the accuracy of the explicit scheme for small time steps with the stability of the

implicit scheme by simply forming the average of the explicit and implicit FTCS schemes. This

approach is called the Crank-Nicholson scheme:

un+1
j − unj

∆t
=
κ

2

[
(unj+1 − 2unj + unj−1) + (un+1

j+1 − 2un+1
j + un+1

j−1)

(∆x)2

]
. (3.53)

Here, both the left- and right-hand sides are centered at time step n + 1
2
, so the method can be

viewed as second-order accurate in space and time. The von Neumann stability analysis gives the

70

amplification factor

G =
1− 2r sin2

(
k∆x

2

)
1 + 2r sin2

(
k∆x

2

) . (3.54)

We see that |G| ≤ 1 for any ∆t, so gain, the algorithm is unconditionally stable. It is the recommended

method for diffusive problems and has another nice property which will be shown in the next section

dealing the solution of the time-dependent Schrödinger equation.

3.3.3 Time dependent Schrödinger equation

We consider the time-dependent Schrödinger equation in one spatial dimension and set ~ = 1 and

m = 1
2
,

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ. (3.55)

Mathematically, this is a parabolic PDE for the complex quantity ψ(x). In the following, we will

assume that initially we have a normalized wave packet, ψ0(x) = ψ(x, t = 0), and that we have

boundary conditions that ψ → 0 at x→ ±∞.

We first attempt a fully implicit solution of Eq. 3.55 analogous to Eq. 3.50 which leads to

i

[
ψn+1
j − ψnj

∆t

]
= −

[
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2

]
+ Vjψ

n+1
j . (3.56)

By insertion of the usual ansatz ψnj = eatneikxj for the von Neumann stability analysis, one can show

that the amplification factor is

G =
1

1 + i
[

4∆t
(∆x)2 sin2

(
k∆x

2

)
+ Vj∆t

] . (3.57)

This is telling us that the method is unconditionally stable. But unfortunately it is not unitary. As a

consequence, the normalization of the wave function∫ +∞

−∞
|ψ|2dx = 1 (3.58)

is not preserved during the time evolution.

In order to derive a discretization of the Schrödinger equation which preserves the Hermiticity of the

Hamiltonian operator and thereby maintains the normalization of the wave function, we recall that

the time evolution of the wave function ψ(x, t) may be expressed as

ψ(x, t) = e−iHtψ(x, 0). (3.59)

71

Here, the exponential of the Hamilton operator H = − ∂2

∂x2 + V (x) is defined by its power series

expansion. We can now write down expressions of explicit and implicit schemes in terms of expansion

of the operator e−iHt. We obtain the explicit FTCS scheme by

ψn+1
j = (1− iH∆t)ψnj . (3.60)

The implicit (or backward time) scheme, on the other hand, results from

(1 + iH∆t)ψn+1
j = ψnj , (3.61)

when replacing H by its finite difference form space. However, neither the operator in Eq. 3.60 nor

the one in Eq. 3.61 is unitary as would be required to preserve the normalization of the wave function.

Thus, the proper way to proceed is to find a finite-difference approximation of e−iHt which is unitary.

Such a form was first suggested by Cayley :

e−iHt '
1− 1

2
iH∆t

1 + 1
2
iH∆t

. (3.62)

Thus, we have (
1 +

1

2
iH∆t

)
ψn+1
j =

(
1− 1

2
iH∆t

)
ψnj , (3.63)

which turns out to be just the Crank-Nicholson scheme discussed already earlier. Writing out Eq. 3.63,

we have

ψn+1
j − i∆t

2

[
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2
− Vjψn+1

j

]
= ψnj +

i∆t

2

[
ψnj+1 − 2ψnj + ψnj−1

(∆x)2
− Vjψnj

]
. (3.64)

This is a tridiagonal linear system of equations for the J − 1 unknown wave function values at time

step n+ 1 which we can write in the form

b1 c1

.

aj−1 bj−1 cj−1

aj bj cj

aj+1 bj+1 cj+1

.

aJ−1 bJ−1


·



ψn+1
1
...

ψn+1
j−1

ψn+1
j

ψn+1
j+1
...

ψn+1
J−1


=



rn1
...

rnj−1

rnj
rnj+1

...

rnJ−1


(3.65)

72

Here, the vectors a, b, and c are defined as

aj = cj = − i∆t

2(∆x)2
and bj = 1 +

i∆t

2

[
2

(∆x)2
+ Vj

]
, (3.66)

and the right hand side vector r is given by the right-hand-side of Eq. 3.64, thus it is calculated from

wave function values at the previous time step. Since the form of the matrix in Eq. 3.65 remains

unaltered for all time steps, and efficient way to solve 3.65 is to perform an LU -factorization of the

matrix and then solve the equation system by forward- and back-substitution for a series of different

right-hand sides corresponding to each time step as described in Sec. 1.2.5.

Exercise 10

Time-dependent Schrödinger equation in 1D

We solve the time-dependent Schrödinger equation in 1D by applying the Crank-Nicholson scheme as

expressed in Eqs. 3.64–3.66. We use a simulation box defined by x ∈ [−5, 25] and assume that the wave

function ψ(x, t) vanishes at x = −5 and x = +25. Initially, the wave function is given by a Gaussian wave

packet of the form

ψ(x, 0) = ψ0(x) =

√
∆k

π
1
4

e−
x2(∆k)2

2 eik0x. (3.67)

Thus, it is characterized by the group velocity k0 and the initial spread ∆k in momentum space.

(a) Compute the free propagation of a wave packet given by k0 = 10 and ∆k = 1 for times t0 = 0

to t = 1, that is, set V (x) ≡ 0. Visualize the result, for instance, by plotting |ψ(x, t)|2 and check

whether the wave packet stays normalized, thus approximate the integral as

∫ +∞

−∞
dx|ψ(x, t)|2 ≈

J∑
j=1

∆x|ψnj |2

(b) For the same wave packet as in (a), that is k0 = 10 and ∆k = 1, consider scattering at a potential

of the form V (x) = V0e
− (x−10)2

σ2 . Thus a Gaussian-shaped barrier of height V0 centered at position

x = 10 and with a width proportional to σ. Vary the parameters V0 and σ such that you obtain the

typical scenarios for reflection at and tunneling through the barrier, respectively. Again, check the

normalization of the wave function throughout your simulations and visualize your results.

73

3.3.4 Initial value problems for > 1 space dimensions

Diffusion equation in multi dimensions

We consider the heat equation in 2 spatial dimensions

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.68)

It is straight-forward to extend an explicit finite difference scheme to more than one spatial dimension.

However, we have learned that explicit schemes require very short time steps and, when used for the

time evolution of the Schrödinger equation, do not preserve the norm of the wave function. Thus, a fully

implicit, or even better, the usage of the Crank-Nicholson scheme, is desirable. The Crank-Nicholson

form of Eq. 3.68 can be written in the following way:

un+1
j,l − unj,l

∆t
=
κ

2

[
δ2
xu

n
j,l

(∆x)2
+
δ2
yu

n
j,l

(∆y)2
+
δ2
xu

n+1
j,l

(∆x)2
+
δ2
yu

n+1
j,l

(∆y)2

]
. (3.69)

Here we have introduced the abbreviations:

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (3.70)

δ2
yu

n
j,l ≡ unj,l+1 − 2unj,l + unj,l−1. (3.71)

Since Eq. 3.69 represents an implicit scheme, each time step requires the solution of a system of linear

equations. In analogy to the procedure described in Sec. 3.2.1 for the Laplace equation, the two spatial

indices l and j can be contracted into one index i according to Eq. 3.9. Then Eq. 3.69 can be brought

in the form [
1− r

2

(
δ2
x + δ2

y

)]
un+1
i =

[
1 +

r

2

(
δ2
x + δ2

y

)]
uni . (3.72)

Here, we have assumed equal grid spacings in x and y direction, ∆ ≡ ∆x = ∆y , and used the

abbreviation r = κ∆t
∆2 . With Dirichlet boundary conditions, i.e., vanishing function values at the

boundary, and for J = L = 4 grid points along x and y directions, respectively, the structure of

Eq. 3.72 is as follows

A · u(n+1) = B · u(n) = b(n),

74

where

A =



2r + 1 − r
2

0 − r
2

0 0 0 0 0

− r
2

2r + 1 − r
2

0 − r
2

0 0 0 0

0 − r
2

2r + 1 0 0 − r
2

0 0 0

− r
2

0 0 2r + 1 − r
2

0 − r
2

0 0

0 − r
2

0 − r
2

2r + 1 − r
2

0 − r
2

0

0 0 − r
2

0 − r
2

2r + 1 0 0 − r
2

0 0 0 − r
2

0 0 2r + 1 − r
2

0

0 0 0 0 − r
2

0 − r
2

2r + 1 − r
2

0 0 0 0 0 − r
2

0 − r
2

2r + 1


(3.73)

B =



1− 2r r
2

0 r
2

0 0 0 0 0
r
2

1− 2r r
2

0 r
2

0 0 0 0

0 r
2

1− 2r 0 0 r
2

0 0 0
r
2

0 0 1− 2r r
2

0 r
2

0 0

0 r
2

0 r
2

1− 2r r
2

0 r
2

0

0 0 r
2

0 r
2

1− 2r 0 0 r
2

0 0 0 r
2

0 0 1− 2r r
2

0

0 0 0 0 r
2

0 r
2

1− 2r r
2

0 0 0 0 0 r
2

0 r
2

1− 2r


(3.74)

u(n+1) =



u
(n+1)
1

u
(n+1)
2

u
(n+1)
3

u
(n+1)
4

u
(n+1)
5

u
(n+1)
6

u
(n+1)
7

u
(n+1)
8

u
(n+1)
9


, b(n) =



(1− 2r)u
(n)
1 +

ru
(n)
2

2
+

ru
(n)
4

2
ru

(n)
1

2
+ (1− 2r)u

(n)
2 +

ru
(n)
3

2
+

ru
(n)
5

2
ru

(n)
2

2
+ (1− 2r)u

(n)
3 +

ru
(n)
6

2
ru

(n)
1

2
+ (1− 2r)u

(n)
4 +

ru
(n)
5

2
+

ru
(n)
7

2
ru

(n)
2

2
+

ru
(n)
4

2
+ (1− 2r)u

(n)
5 +

ru
(n)
6

2
+ ru8

2
ru

(n)
3

2
+

ru
(n)
5

2
+ (1− 2r)u

(n)
6 +

ru
(n)
9

2
ru

(n)
4

2
+ (1− 2r)u

(n)
7 +

ru
(n)
8

2
ru

(n)
5

2
+

ru
(n)
7

2
+ (1− 2r)u

(n)
8 +

ru
(n)
9

2
ru

(n)
6

2
+

ru
(n)
8

2
+ (1− 2r)u

(n)
9



(3.75)

75

Project 4

Time-dependent Schrödinger equation in 2D

In this project, we solve the time-dependent Schrödinger equation in 2D by applying the Crank-Nicholson

scheme. We use a simulation box defined by x ∈ [−5, 15] and y ∈ [−10, 10]. We assume that the wave

function ψ(x, y, t) vanishes at the borders of this rectangular box, that is x = −5, x = +15, and y = ±10.

Initially, the wave function is given by a two-dimensional Gaussian wave packet of the form

ψ(x, y, 0) = ψ0(x, y) =
∆k√
π
e−

(x2+y2)(∆k)2

2 ei(kxx+kyy). (3.76)

Thus, it is characterized by the group velocity k0 = (kx, ky) and the initial spread ∆k in momentum space.

(a) Start from the generalization of Eq. 3.63 to two spatial dimensions(
1 +

1

2
iH∆t

)
ψn+1
j,l =

(
1− 1

2
iH∆t

)
ψnj,l, (3.77)

where j and l label grid points in x and y directions, respectively, and derive the finite difference

equations of the Crank-Nicholson scheme. Here, the Hamiltonian H is given by (~ = 1, m = 1
2
)

H = − ∂2

∂x2
− ∂2

∂y2
+ V (x, y). (3.78)

(b) Compute the free time evolution (V = 0) of the wave packet inside the box and check the normal-

ization of the wave function throughout your simulation. What happens if the wave packet hits the

borders of the simulation box?

(c) Simulate a double-slit experiment by introducing an appropriate potential wall at x = 5. Perform

experiments for various slit spacings d and slit widths b and check whether the scattered wave function

patterns meet your expectations.

76

Operator splitting method – alternating direction method

The Alternating Direction Implicit (ADI) method is most notably used to solve the diffusion problems

(heat conduction, Schrödinger equation) in two or more dimensions. It is an example of an operator

splitting method [1, 16]. The traditional method for solving the heat conduction equation and the

Schrödinger equation is the Crank-Nicholson method. However, as we have seen above, in multiple

dimensions, it results in a linear set of equations with very large, sparse matrices which tend to be

costly to solve for large grid sizes and higher dimensions. The advantage of the ADI method is that

the equations that have to be solved in each step have retain a simpler structure, namely tridiagonal

form, and can thus be solved efficiently with a tridiagonal matrix algorithm.

The ADI approach consists of solving the PDE in two steps of size ∆t/2. In the first sub-step, the

spatial derivatives are evaluated in one direction, say y, are evaluated at the known time level n,

and the other spatial derivatives, say x are evaluated at the unknown time level n + 1. On the next

sub-step, the process is reversed. Consider again the heat equation for two spatial dimensions

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
Thus, we can write for these two sub-steps:

u
n+1/2
j,l = unj,l +

r

2

(
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

)
(3.79)

un+1
j,l = u

n+1/2
j,l +

r

2

(
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

)
(3.80)

The advantage of this scheme is that at each sub-step only a tridiagonal system of equations has to be

solved. It can be shown that the resulting alternating direction implicit (ADI) method is consistent,

of order O(∆t2) +O(∆x2) +O(∆y2), and unconditionally stable.

ADI procedures can also be applied to three-dimensional problems, in which case a third permutation

involving the z-direction is necessary. However, a direct extension of the procedure presented above

does not work, but a modified procedure has been shown developed by Douglas and Gunn [16].

Finite-difference time-domain method

A standard method for solving Maxwell’s equations is the so called finite-difference time-domain

(FDTD) method. It is a time-domain method and thus can cover a wide frequency range with a single

simulation run, and treat nonlinear material properties in a natural way. In the FDTD method, the

time-dependent Maxwell’s equations are discretized using central-difference approximations to the

space and time partial derivatives. The resulting finite-difference equations are solved in a the so-

called leapfrog manner: the electric field vector components in a volume of space are solved at a given

77

instant in time; then the magnetic field vector components in the same spatial volume are solved at

the next instant in time; and the process is repeated over and over again until the desired transient

or steady-state electromagnetic field behavior is fully evolved.

The FDTD technique has emerged as primary means to computationally model many scientific and

engineering problems dealing with electromagnetic wave interactions with material structures. Current

FDTD modeling applications range from near-DC (ultralow-frequency geophysics involving the entire

Earth-ionosphere waveguide) through microwaves (radar signature technology, antennas, wireless com-

munications devices, digital interconnects, biomedical imaging/treatment) to visible light (photonic

crystals, nanoplasmonics, solitons, and biophotonics). More details about the method, its strengths

and weaknesses can be found in Refs. [17, 18].

3.3.5 Consistency, Order, Stability, and Convergence

Before we conclude this section about finite difference methods for time evolution problems, we sum-

marize four important properties which characterize any finite difference approach: these are consis-

tency, order, stability, and convergence [16]. While we have already spent some time in analyzing the

stability of various finite difference methods, the goal of this subsection is to explain what is meant

by consistency, order and convergence of a finite difference approach and how these properties can be

examined.

Consistency and Order

A finite difference equation (FDE) is called consistent with a partial differential equation (PDE) if the

difference between the two, i.e. the truncation error, vanishes as the sizes of the grid spacings go to

zero. The order of a FDE is the rate at which the global error decreases as the grid sizes approach zero.

We can check the consistency and the order of a particular FDE by inserting Taylor expansions into

the FDE and comparing the resulting equation, the so-called modified differential equation (MDE),

with the original PDE [16]. We will illustrate this procedure first with the explicit FTCS and second

with the Crank-Nicholson scheme for the heat equation.

The FTCS form of the heat equation reads (compare Eq. 3.22 above)

un+1
j = unj + r

(
unj+1 − 2unj + unj−1

)
78

Choosing unj as base point for Taylor expansion we can write

un+1
j = unj + ut|nj ∆t+

1

2
utt|nj ∆t2 +

1

6
uttt|nj ∆t3 + · · · (3.81)

unj+1 = unj + ux|nj ∆x+
1

2
uxx|nj ∆x2 +

1

6
uxxx|nj ∆x3 +

1

24
uxxxx|nj ∆x4 + · · · (3.82)

unj−1 = unj − ux|nj ∆x+
1

2
uxx|nj ∆x2 − 1

6
uxxx|nj ∆x3 +

1

24
uxxxx|nj ∆x4 − · · · (3.83)

Inserting these Taylor expansion and omitting the notation |nj for clarity, we obtain

ut∆t+
1

2
utt∆t

2 + · · · = κ∆t

∆x2

(
uxx∆x

2 +
1

12
uxxxx∆x

4 + · · ·
)
, (3.84)

which can be brought in the form

ut = κuxx −
1

2
utt∆t−

1

6
uttt∆t

2 − · · ·+ 1

12
κuxxxx∆x

2 + · · · (3.85)

Thus, we see that as ∆t→ 0 and ∆x→ 0, we are left with the original PDE, ut = κuxx which shows

the consistency of the FDE and that the FTCS scheme for the heat equation is first order in time

and second order in space.

As a second example, we check the consistency of the Crank-Nicholson scheme for the heat equation

un+1
j − unj

∆t
=
κ

2

[
(unj+1 − 2unj + unj−1) + (un+1

j+1 − 2un+1
j + un+1

j−1)

(∆x)2

]
. (3.86)

In order to obtain the modified differential equation we insert the Taylor expansions for u(x, t) about

the point
(
j, n+ 1

2

)
again omitting the notation |n+ 1

2
j for clarity

un+1
j = u+ ut

(
∆t

2

)
+

1

2
utt

(
∆t

2

)2

+
1

6
uttt

(
∆t

2

)3

+
1

24
utttt

(
∆t

2

)4

+ · · · (3.87)

unj = u− ut
(

∆t

2

)
+

1

2
utt

(
∆t

2

)2

− 1

6
uttt

(
∆t

2

)3

+
1

24
utttt

(
∆t

2

)4

− · · · (3.88)

un+1
j+1 = u+ ut

(
∆t

2

)
+ ux∆x+

1

2

[
utt

(
∆t

2

)2

+ 2utx

(
∆t

2

)
∆x+ uxx∆x

2

]
(3.89)

+
1

6

[
uttt

(
∆t

2

)3

+ 3uttx

(
∆t

2

)2

∆x+ 3utxx

(
∆t

2

)
∆x2 + uxxx∆x

3

]

+
1

24

[
utttt

(
∆t

2

)4

+ 4utttx

(
∆t

2

)3

∆x+ 6uttxx

(
∆t

2

)2

∆x2 + 4utxxx

(
∆t

2

)
∆x3 + uxxxx∆x

4

]

79

Expressions analog to the one for un+1
j+1 can be obtained for un+1

j−1 , unj+1, and unj−1 from Eq. 3.89 by

replacing ∆x → −∆x and ∆t → −∆t appropriately. Inserting these expressions together with 3.87–

3.89 into Eq. 3.86 results in the following modified differential equation:

ut = κuxx −
1

24
utttt∆t

2 +
κ

8
uttxx∆t

2 +
κ

12
uxxxx∆x

2 + · · · (3.90)

We see that also the Crank-Nicholson scheme leads to a consistent FDE, that is it reduces to the

original PDE of the heat equation for ∆t → 0 and ∆x → 0. Moreover, we see that the Crank-

Nicholson FDE is of second order in both the time and spatial variables. Thus, it is to be preferred

over the explicit FTCS and the fully implicit (or backward time central space) methods which are

only first order in time.

Stability

In Sec. 3.3.1, we have already learned how to analyse the stability of a finite difference equation by

using the so-called von Neumann stability analysis Based on a Fourier decomposition of numerical

error [15], a numerical scheme is said to be stable if the absolute value of the amplification factor G

is less than one, |G| < 1.

Convergence

A finite difference method is called convergent if the solution of the finite difference equation (i.e.,

the numerical values) approaches the exact solution of the partial differential equation as the sizes of

the grid spacings go to zero. It can be proven that for a properly posed linear initial-value problem

consistency and stability of a finite difference approximation is a necessary and sufficient condition

for convergence. This statement is the so-called Lax equivalence theorem (Lax, 1954) [16].

For non-linear problems, there is no such equivalence theorem. However, experience has shown that

stability criteria obtained for the FDE which approximates the linearized PDE also apply to the FDE

which approximates the nonlinear PDE. Moreover, FDEs that are consistent and whose linearized

equivalent is stable generally converge, even for nonlinear initial boundary-value problems [16].

80

Exercise 11

Finite difference scheme for the wave equation

We analyze the consistency and stability of the so-called Lax-Wendroff One-Step Method for solving a

prototypical hyperbolic partial differential equation (PDE), namely the wave equation.

ftt = a2gxx (3.91)

First, we note that the wave equation can be re-written as a system of two coupled first-order PDEs1

ft + agx = 0 (3.92)

gt + afx = 0. (3.93)

Introducing the convection number c = a∆t/∆x, the Lax-Wendroff One-Step method can be written as

the following explicit finite difference equation

fn+1
j = fnj −

c

2

(
gnj+1 − gnj−1

)
+
c2

2

(
fnj+1 − 2fnj + fnj−1

)
(3.94)

gn+1
j = gnj −

c

2

(
fnj+1 − fnj−1

)
+
c2

2

(
gnj+1 − 2gnj + gnj−1

)
(3.95)

(a) Check the consistency of the above finite difference equations and thus determine the order of the

finite difference equations.

(b) Perform a von-Neumann stability analysis of the above finite-difference equations. What restrictions

on the convection number c do you find? Note that for a coupled system of PDEs the eigenvalues λ

of the amplification matrix G defined as(
fn+1
j

gn+1
j

)
= G ·

(
fnj
gnj

)
(3.96)

must fulfill |λ| ≤ 1 in order to ensure stability.

(c) Is the Lax-Wendroff One-Step Method a convergent finite difference procedure?

1Taking the partial derivative of the first with respect to t, multiplying the second equation by a, taking the partial
derivative with respect to x and subtracting the two equations from each other leads to the wave equation.

81

3.4 Beyond Finite Differencing

The methods presented so far were all based on the finite difference method (FDM), that is, all deriva-

tives appearing in the differential equation are replaced by algebraic finite difference approximations.

Thereby the differential equation is transformed into algebraic equations which can be solved by

applying methods from linear algebra. Two alternative methods for numerically solving partial differ-

ential equations will be mentioned below, namely, the finite elements method (FEM), and the finite

volume method (FVM). The full treatment of these methods is beyond the scope of this lecture, so

the purpose of the following to sections is just to provide a very rough glance at these two methods.

3.4.1 Finite Elements Method

The finite element method (FEM) uses variational methods (the calculus of variations) to minimize

an error function and produce a stable solution. Analogous to the idea that connecting many tiny

straight lines can approximate a larger circle, FEM encompasses all the methods for connecting many

simple element equations over many small subdomains, named finite elements, to approximate a more

complex equation over a larger domain.

The subdivision of a whole domain into simpler parts has several advantages:

• Accurate representation of complex geometry

• Inclusion of dissimilar material properties

• Easy representation of the total solution

• Capture of local effects.

The differences between FEM and finite difference method (FDM) are:

• The most attractive feature of the FEM is its ability to handle complicated geometries (and

boundaries) with relative ease. While FDM in its basic form is restricted to handle rectangu-

lar shapes and simple alterations thereof, the handling of geometries in FEM is theoretically

straightforward.

• The most attractive feature of finite differences is that it can be very easy to implement.

• There are several ways one could consider the FDM a special case of the FEM approach. E.g.,

first order FEM is identical to FDM for Poisson’s equation, if the problem is discretized by a

regular rectangular mesh with each rectangle divided into two triangles.

82

• There are reasons to consider the mathematical foundation of the finite element approximation

more sound, for instance, because the quality of the approximation between grid points is poor

in FDM.

• The quality of a FEM approximation is often higher than in the corresponding FDM approach,

but this is extremely problem-dependent and several examples to the contrary can be provided.

•

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e. solving

for deformation and stresses in solid bodies or dynamics of structures) while computational fluid

dynamics (CFD) tends to use FDM or other methods like finite volume method (FVM). CFD problems

usually require discretization of the problem into a large number of cells/gridpoints (millions and

more), therefore cost of the solution favors simpler, lower order approximation within each cell. This

is especially true for ’external flow’ problems, like air flow around the car or airplane, or weather

simulation.

3.4.2 Finite Volume Method

The finite-volume method (FVM) is a method for representing and evaluating partial differential

equations in the form of algebraic equations. Similar to the finite difference method (FDM) or finite

element method (FEM), values are calculated at discrete places on a meshed geometry. ”Finite volume”

refers to the small volume surrounding each node point on a mesh. In the finite volume method, volume

integrals in a partial differential equation that contain a divergence term are converted to surface

integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of

each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent

volume, these methods are conservative. Another advantage of the finite volume method is that it is

easily formulated to allow for unstructured meshes. The method is used in many computational fluid

dynamics packages.

83

84

Appendix A

Solutions to Exercises

Solution to Exercise 1

A Fortran90 code solving this exercise can be found from the links given below. The main program

is in mult.f90, while the subroutines are compiled in a module called array_mod.f90. Using the

Intel Fortran compiler and enabling multi-threading, the code can be compiled with the following

command:

ifort -mkl=parallel array_mod.f90 mult.f90.

It requires the two data files containing the matrix elements of Aij, A.dat, and Bjk, B.dat. The results

of the scaling test are displayed in Fig. A.1

A Python code solving this exercise can be found from this link: matmul.py. The code can be executed

with the following command:

python matmul.py.

It requires the two data files containing the matrix elements of Aij, a.dat, and Bjk, b.dat.

Solution to Exercise 2

A Fortran90 code solving this exercise can be found from the links given below. The main program

is in LU1.f90, while the subroutines are compiled in a module called array_mod.f90. Using the Intel

Fortran compiler and enabling multi-threading, the code can be compiled with the following command:

ifort -mkl=parallel array_mod.f90 LU1.f90.

It requires the two data files containing the matrix elements of Aij, A.dat, and the vector bj, b.dat.

85

http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/mult.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/array_mod.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/A.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/B.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/matmul.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/a.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX01/b.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX02/LU1.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX02/array_mod.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX02/A.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX02/b.dat

Figure A.1: CPU time for matrix multiplications using a simple triple loop (black circle), Fotran’s
MatMul function (red triangle) and the level-3 BLAS routine dgemm (blue symbols) as a function of
matrix size N .

Solution to Exercise 3

Part (a) and (b) of the exercise can be found in the Fortran90 code LU2.f90, which uses some

subroutines in the module array_mod.f90. Using the Intel Fortran compiler and enabling multi-

threading, the code can be compiled with the following command:

ifort -o LU2.x -mkl=parallel array_mod.f90 LU2.f90.

The results of the scaling test are displayed in Fig. A.2

Part (c) and (d) of the exercise can be found in the Fortran90 code LU3.f90.

A Python implementation of the algorithm for LU-decomposition can be found here: LUdecomp.py.

Python script demonstrating parts (b) and (c) of the exercise can be found in LUdecomp_ex3b.py and

LUdecomp_ex3c.py respectively.

Solution to Exercise 4

Solutions to the exercise can be found in the Fortran90 code tri.f90, which is the main program, while

the subroutines for LU-decomposition and the SOR-method can be found in the module tri_mod.f90.

86

http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/LU2.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/array_mod.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/LU3.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/LUdecomp.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/LUdecomp_ex3b.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX03/LUdecomp_ex3c.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/tri.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/tri_mod.f90

Figure A.2: CPU time for LU-factorization using a simple one-to-one implementation (black circles)
compared to the performance of the LAPACK routine dgetrf as a function of matrix size N .

Using the Intel Fortran compiler, the code can be compiled with the following command:

ifort -o tri.x tri_mod.f90 tri.f90.

The number of iterations for an accuracy goal of 10−10 are displayed in Fig. A.3.

A full output of the program execution ./tri.x < abc.dat > abc.out can be downloaded from this

link: abc.out

A Python implementation of this exercise can be found here: tridiaginvert.py.

Solution to Exercise 5

Solutions to the exercise can be found in the Fortran90 codes cg1.f90, and cg2.f90 which are the

main programs, while the subroutine for the CG-algorithm are in the module cg_mod.f90. Using the

Intel Fortran compiler, the codes can be compiled with the following commands:

ifort -o cg1.x cg_mod.f90 cg1.f90 and

ifort -o cg2.x -mkl cg_mod.f90 cg2.f90.

A comparison of the CPU times for matrix inversion and for solving A ·x = b only once using various

direct and iterative algorithms are displayed in Figs. A.4 and A.5, respectively. We see that for this

87

http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/abc.out
http://physik.uni-graz.at/~pep/Lehre/CP2/EX04/tridiaginvert.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX05/cg1.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX05/cg2.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX05/cg_mod.f90

Figure A.3: Number of iterations in the SOR-method as a function of the relaxation parameter ω.

example, the LU -factorization is superior to any iterative method when the inverse matrix is desired.

When only one (or a few) solutions of A · x = b are required, then the conjugate gradient method is

superior to the LU -factorization in this example.

An alternative Python implementation of Exercise 5 using built-in functions of the scipy.sparse.

linalg package can be found here exercise5.py and exercise5c.py.

Solution to Exercise 6

Solutions to the exercise can be found in the Fortran90 codes mises.f90 which is the main program,

while the subroutine for the power iteration method is in the module mises_mod.f90. Using the Intel

Fortran compiler, the code can be compiled with the following command

ifort -o mises.x -mkl mises_mod.f90 mises.f90

and executed with ./mises.x < A5.dat or ./mises.x < A10.dat where the input matrices can be

found here A5.dat and A10.dat The results for A5.dat are

info = 22 info = 42

delta = 4.197886482870672E-011 delta = 6.381328798710229E-011

88

http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
http://physik.uni-graz.at/~pep/Lehre/CP2/EX05/exercise5.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX05/exercise5c.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/mises.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/mises_mod.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/A5.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/A10.dat

Figure A.4: Comparison of the CPU time for matrix inversion using various direct and iterative
algorithms as a function of matrix size.

lambda = 8.65427349296037 lambda = 1.59802376666348

v = 0.3287337 v = 0.1028014

0.4856765 -0.4820044

0.5586636 0.7170824

0.4856765 -0.4820044

0.3287337 0.1028014

This means the power iteration required 22 and 42 steps to obtain converged eigenvalues λ and vectors

v for A (left column) and A−1 (right column) with an accuracy given by δ. The corresponding output

from [v, lam]=eig(A) in octave is

v =

-4.3516e-01 1.0280e-01 6.1755e-01 -5.5735e-01 3.2873e-01

5.5735e-01 -4.8200e-01 -1.7830e-01 -4.3516e-01 4.8568e-01

-3.1436e-15 7.1708e-01 -4.1676e-01 6.7654e-17 5.5866e-01

-5.5735e-01 -4.8200e-01 -1.7830e-01 4.3516e-01 4.8568e-01

4.3516e-01 1.0280e-01 6.1755e-01 5.5735e-01 3.2873e-01

lam =

1.4384 0 0 0 0

89

Figure A.5: Comparison of the CPU time for solving A ·x = b once using various direct and iterative
algorithms as a function of matrix size.

0 1.5980 0 0 0

0 0 2.7477 0 0

0 0 0 5.5616 0

0 0 0 0 8.6543

We see that with the given staring vector v(0) = (1, 1, 1, 1, 1) the our power iteration method produced

the correct largest eigenvalue and eigenvector, however, it converged to second smallest eigenvalue

when applied to A−1. Try setting v(0) = (−1, 1, 0,−1, 1).

A Python implementation of this exercise can be found here: VonMises.py.

Solution to Exercise 7

The main programs solving exercises (7a), (7b) and (7c) can be found in the Fortran90 codes jacobiA.

f90, jacobiB.f90, and jacobiC.f90. The Jacobi-method is implemented in a subroutine which is in

the module jacobi_mod.f90.

90

http://physik.uni-graz.at/~pep/Lehre/CP2/EX06/VonMises.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/jacobiA.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/jacobiA.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/jacobiB.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/jacobiC.f90
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/jacobi_mod.f90

(a)

Using the Intel Fortran compiler, the code can be compiled with the following commands

ifort -o jacobiA.x -mkl jacobi_mod.f90 jacobiA.f90

and executed with ./jacobiA.x < A5.dat or ./jacobiA.x < A10.dat where the input matrices can

be found here A5.dat and A10.dat The results for A5.dat are

info = 15

eigenvalues =

8.65427349297991

1.43844718719117

1.59802376643698

5.56155281280883

2.74770274058312

eigenvectors =

U =

0.3287E+00 -0.4352E+00 0.1028E+00 -0.5573E+00 0.6175E+00

0.4857E+00 0.5573E+00 -0.4820E+00 -0.4352E+00 -0.1783E+00

0.5587E+00 -0.5043E-16 0.7171E+00 -0.7394E-16 -0.4168E+00

0.4857E+00 -0.5573E+00 -0.4820E+00 0.4352E+00 -0.1783E+00

0.3287E+00 0.4352E+00 0.1028E+00 0.5573E+00 0.6175E+00

This means the Jacobi method required 15 iterations to obtain converged eigenvalues and vectors.

The corresponding output from the LAPACK routine dsyev is given here

LAPACK: dsyev

eigenvalues =

1.43844718719117

1.59802376643698

2.74770274058312

5.56155281280883

8.65427349297990

eigenvectors =

U =

-0.4352E+00 0.1028E+00 0.6175E+00 -0.5573E+00 0.3287E+00

0.5573E+00 -0.4820E+00 -0.1783E+00 -0.4352E+00 0.4857E+00

-0.3776E-14 0.7171E+00 -0.4168E+00 0.9541E-16 0.5587E+00

91

http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/A5.dat
http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/A10.dat

Figure A.6: Comparison of the CPU time for solving computing all eigenvalues and -vectors of a real
and symmetric random matrix using a self-made implementation of the Jacobi method (black circles)
and the LAPACK routine dsyev (red triangles) as a function of matrix size N . The lines are fits of
the form cNγ.

-0.5573E+00 -0.4820E+00 -0.1783E+00 0.4352E+00 0.4857E+00

0.4352E+00 0.1028E+00 0.6175E+00 0.5573E+00 0.3287E+00

We see that both our home-built Jacobi routine yields identical results as the LAPACK routine

although their order is different. In our Jacobi routine the order of the eigenvalues is arbitrary while

dsyev sorts eigenvalues in ascending order.

(b)

Using the Intel Fortran compiler, the code can be compiled with the following commands

ifort -o jacobiB.x -mkl jacobi_mod.f90 jacobiB.f90

and executed with ./jacobiB.x

We observe roughly a scaling with N3 and see that, for instance, for N = 2000 the LAPACK routine

uses about 6.9 sec which is roughly a factor 55 faster than our Jacobi routine which uses roughly 380

sec.

A Python implementation of this exercise can be found here: Jacobi.py.

92

http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/Jacobi.py

(c)

Using the Intel Fortran compiler, the code can be compiled with the following commands

ifort -o jacobiC.x -mkl jacobi_mod.f90 jacobiC.f90

and executed, for instance, with ./jacobiC.x < H2O_phi.dat yielding the following output

i w[cm^-1] u1 u2 u3 u4 u5 u6

1 -264.18 0.58 -0.40 -0.56 -0.38 0.00 0.22

2 -21.59 0.23 -0.01 0.24 -0.01 0.94 -0.03

3 17.91 0.00 0.25 0.02 0.25 0.03 0.94

4 1593.53 -0.53 0.41 -0.55 -0.42 0.27 0.00

5 3727.28 0.32 0.48 0.45 -0.65 -0.19 0.04

6 3847.39 -0.48 -0.62 0.35 -0.44 0.03 0.27

A Python implementation of this exercise can be found here: dynamicalmatrix.py.

Solution to Exercise 8

An implementation in Matlab (Octave) of this exercise can be found here, bandstructure.m, and is

also listed below.

1 %%%% BEGIN MAIN PROGRAM %%%

2 %%%% compute the band s t r u c t u r e o f fcc−Al by computing the e i g enva l u e s o f %%

3 %%%% the s e cu l a r equat ion : H(k) GG’ = T(k) GG’ + V GG’ %%

4 %%%% The p o t e n t i a l V(x , y , z) i s read from the LOCPOT f i l e o f VASP %%

5 %%%

6 function varargout = bandstructure (vararg in)

7

8 Gmax = 5 . 0 ;

9 natomtype = 1 ;

10 V = r e a d p o t e n t i a l (’ Al .LOCPOT’ , natomtype) ;

11 [b1 , b2 , b3] = s e t u p r e c i p r o c a l b a s i s (V. a1 ,V. a2 ,V. a3) ;

12 Gvectors = setup Gvectors (b1 , b2 , b3 ,Gmax) ;

13 V = compute FT (V, Gvectors) ;

14 % se t up Po t en t i a l Matrix

15 nG = Gvectors .nGham

16 for i = 1 :nG

17 for j = 1 :nG

18 Gdi f f = Gvectors .G(: , i) − Gvectors .G(: , j) ;

93

http://physik.uni-graz.at/~pep/Lehre/CP2/EX07/dynamicalmatrix.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX08/bandstructure.m

19 [found , ih , ik , i l] = findG (Gvectors , Gd i f f) ;

20 i f (found)

21 v (i , j) = 0.03∗V.G(ih , ik , i l) ; % t h i s f a c t o r ’0 .08 ’ s c a l e s the p o t e n t i a l

22 else

23 v (i , j) = 0 ;

24 end

25 end

26 end

27 % se t up Kine t i x Energy Matrix

28 Gamma = [0 ; 0 ; 0] ;

29 L = 0 . 5∗ (b1+b2+b3) ;

30 X = 0 . 5∗ (b1+b3) ;

31 W = 0.5∗ b1 + 0.25∗ b2 + 0.75∗ b3 ;

32 [kpath , kp lot] = make kpath ([W L Gamma X W] , 5 0) ; % 50 d i v i s i o n s

33 for kcount = 1 : length (kpath) % loop over k−po in t s
34 k = kpath (: , kcount) ;

35 t = zeros (nG,nG) ;

36 for i = 1 :nG % se t up Hamilton Matrix

37 t (i , i) = 0 . 5∗ (k + Gvectors .G(: , i)) ’∗ (k + Gvectors .G(: , i)) ;

38 end

39 H = t + v ;

40 ev = eig (H) ; % d i a g ona l i z e Hamilton Matrix

41 bands (kcount , :) = ev (1 :min(nG, 1 5)) ; % show only f i r s t 15 bands

42 end

43 hold o f f ;

44 plot (kplot , bands) ;

45 end

46 %%%% END MAIN PROGRAM %%%

47

48 % se t up r e c i p r o c a l b a s i s v e c t o r s b1 , b2 , b3 from d i r e c t b a s i s v e c t o r s a1 , a2 , a3

49 function [b1 , b2 , b3] = s e t u p r e c i p r o c a l b a s i s (a1 , a2 , a3)

50 vo l= a1 ’∗ cross (a2 , a3) ;

51 b1 = (2∗pi/ vo l) ∗cross (a2 , a3) ;

52 b2 = (2∗pi/ vo l) ∗cross (a3 , a1) ;

53 b3 = (2∗pi/ vo l) ∗cross (a1 , a2) ;

54 end

55

56 % se t up l i s t o f r e c i p r o c a l l a t t i c e v e c t o r s G up to l en g t h Gmax

57 function Gvectors = setup Gvectors (b1 , b2 , b3 ,Gmax) ;

58 hklmax = 10 ;

59 nG = 0 ;

60 hmax = round(Gmax/sqrt (b1 ’∗ b1)) ;

61 kmax = round(Gmax/sqrt (b2 ’∗ b2)) ;

62 lmax = round(Gmax/sqrt (b3 ’∗ b3)) ;

94

63 for h = −hmax : hmax

64 for k = −kmax : kmax

65 for l = −lmax : lmax

66 G = h∗b1 + k∗b2 + l ∗b3 ;

67 Glen = sqrt (G’∗G) ;

68 i f (Glen <= Gmax)

69 nG = nG + 1 ;

70 Gvectors . length (nG) = Glen ;

71 Gvectors .G(: ,nG) = G;

72 Gvectors . hkl (: ,nG) = [h ; k ; l] ;

73 end

74 end

75 end

76 end

77 [Gvectors . length i] = sort (Gvectors . length) ;

78 Gvectors .G(: , :) = Gvectors .G(: , i) ;

79 Gvectors . hkl (: , :) = Gvectors . hkl (: , i) ;

80 Gvectors . hmin = min(Gvectors . hkl (1 , :)) ;

81 Gvectors . hmax = min(Gvectors . hkl (1 , :)) ;

82 Gvectors . kmin = min(Gvectors . hkl (2 , :)) ;

83 Gvectors . kmax = min(Gvectors . hkl (2 , :)) ;

84 Gvectors . lmin = min(Gvectors . hkl (3 , :)) ;

85 Gvectors . lmax = min(Gvectors . hkl (3 , :)) ;

86 Gvectors .nGham= length (find (Gvectors . length<=Gmax/2)) ;

87 end

88

89 % read p o t e n t i a l V(x , y , z) from VASP−LOCOT f i l e

90 function V = r e a d p o t e n t i a l (f i l ename , natomtype) ;

91 eV2Ha = 27 .21138505 ;

92 bohr = 0 .529177 ;

93 f i d = fopen (f i l ename , ’ r ’) ;

94 t i t l e = fget l (f i d) ;

95 l ine = fget l (f i d) ;

96 s c a l e = str2num(l ine) ;

97 vec = fscanf (f i d , ’%f ’ , [3 , 3]) ;

98 a1 = s c a l e ∗vec (: , 1) /bohr ; % ba s i s v e c t o r a1

99 a2 = s c a l e ∗vec (: , 2) /bohr ; % ba s i s v e c t o r a2

100 a3 = s c a l e ∗vec (: , 3) /bohr ; % ba s i s v e c t o r a3

101 l ine = fget l (f i d) ;

102 l ine = fget l (f i d) ;

103 natom = fscanf (f i d , ’%f ’ , [1 , natomtype]) ;

104 l ine = fget l (f i d) ;

105 cooswitch = fget l (f i d) ;

106 coo = fscanf (f i d , ’%f ’ , [3 ,sum(natom)]) ;

95

107 l ine = fget l (f i d) ; l ine = fget l (f i d) ;

108 n = fscanf (f i d , ’%f ’ , [1 , 3]) ;

109 nx = n (1) ; % number o f g r i d po in t s in x−d i r e c t i o n
110 ny = n (2) ; % number o f g r i d po in t s in y−d i r e c t i o n
111 nz = n (3) ; % number o f g r i d po in t s in z−d i r e c t i o n
112 l ine = fget l (f i d) ;

113 V. r = fscanf (f i d , ’%f ’ , [i n f]) ;

114 V. r = reshape (V. r , nx , ny , nz) /eV2Ha ; % po t e n t i a l V(x , y , z) on the g r i d

115 V. nx = nx ;

116 V. ny = ny ;

117 V. nz = nz ;

118 V. a1 = a1 ;

119 V. a2 = a2 ;

120 V. a3 = a3 ;

121 V. dx = sqrt (a1 ’∗ a1) /nx ; % gr i d spac ing in x−d i r e c t i o n
122 V. dy = sqrt (a2 ’∗ a2) /ny ; % gr i d spac ing in y−d i r e c t i o n
123 V. dz = sqrt (a3 ’∗ a3) /nz ; % gr i d spac ing in z−d i r e c t i o n
124 V. x = 0 :V. dx : (sqrt (a1 ’∗ a1)−V. dx) ; % gr i d po in t s in x−d i r e c t i o n
125 V. y = 0 :V. dy : (sqrt (a2 ’∗ a2)−V. dy) ; % gr i d po in t s in y−d i r e c t i o n
126 V. z = 0 :V. dz : (sqrt (a3 ’∗ a3)−V. dz) ; % gr i d po in t s in z−d i r e c t i o n
127 end

128

129 % compute Fourier c o e f f i c i e n t s V(G) o f p o t e n t i a l V(x , y , z)

130 function V = compute FT (V, Gvectors) ;

131 vo l = V. a1 ’∗ cross (V. a2 ,V. a3) ;

132 [X Y Z] = meshgrid (V. x ,V. y ,V. z) ;

133 nG = length (Gvectors . length) ;

134 for i g = 1 :nG % loop over G−v e c t o r s
135 I = 0 + 1∗ i ;

136 G = Gvectors .G(: , i g) ;

137 i n t = exp(−I ∗(G(1) ∗X + G(2) ∗Y + G(3) ∗Z)) ;

138 i n t = V. r .∗ i n t ;

139 VG = V. dx∗V. dy∗V. dz∗sum(i n t (:)) / vo l ;

140 h = Gvectors . hkl (1 , i g) ;

141 k = Gvectors . hkl (2 , i g) ;

142 l = Gvectors . hkl (3 , i g) ;

143 ih = h − Gvectors . hmin + 1 ;

144 ik = k − Gvectors . kmin + 1 ;

145 i l = l − Gvectors . lmin + 1 ;

146 V.G(ih , ik , i l) = VG;

147 end

148 end

149

150 % f ind a g iven G−vec t o r wi th the l i s t o f G−v e c t o r s

96

151 function [found , ih , ik , i l] = findG (Gvectors ,G) ;

152 nG = length (Gvectors . length) ;

153 eps = 1e−8;

154 found = 0 ;

155 ih = 0 ;

156 ik = 0 ;

157 i l = 0 ;

158 for i = 1 :nG

159 deltaG = Gvectors .G(: , i) − G;

160 i f (sqrt (deltaG ’∗ deltaG) < eps)

161 found = 1 ;

162 ih = Gvectors . hkl (1 , i) − Gvectors . hmin + 1 ;

163 ik = Gvectors . hkl (2 , i) − Gvectors . kmin + 1 ;

164 i l = Gvectors . hkl (3 , i) − Gvectors . lmin + 1 ;

165 return

166 end

167 end

168 end

169

170 % se t up k−path connect ing a l i s t o f po in t s in the B r i l l o u i n zone

171 function [kpath , kp lot] = make kpath (Kpoints , ndiv)

172 kpath = [] ;

173 kcount = 0 ;

174 nK = length (Kpoints) ;

175 nsegments = nK − 1 ;

176 for i = 1 : nsegments

177 kd i r = Kpoints (: , i +1) − Kpoints (: , i) ;

178 k len = sqrt (kdir ’∗ kd i r) ;

179 for j = 0 : ndiv

180 kcount = kcount + 1 ;

181 kpath (: , kcount) = Kpoints (: , i) + j / ndiv∗ kd i r ;

182 i f (kcount == 1)

183 kp lot (kcount) = 0 ;

184 else

185 kp lot (kcount) = kplot (kcount−1) + klen / ndiv ;

186 end

187 end

188 end

189 end

97

Solution to Exercise 9

An implementation in Matlab (Octave) of this exercise can be found here, poisson2D.m, and is also

listed below. Alternatively, Python implemtentations of this exercise can be found here: poisson_a.py,

poisson_b.py, poisson_c.py, and poisson_d.py.

1 % BEGIN MAIN PROGRAM %%%

2 % so l v e the 2D−Poisson equat ion by a f i n i t e d i f f e r e n c i n g approach %

3 % %

4 % We have a s imu la t i on box de f ined by x = [0 , 10] and y = [0 , 10] which i s %

5 % d i s c r e t i z e d by nx and ny g r i d po ints , r e s p e c t i v e l y . %

6 % At the boundary x=−10, x=10, y=−10, y=10, the p o t e n t i a l i s equa l to zero %

7 % Ins i d e the box , t h e r e i s a charge d i s t r i b u t i o n g iven by the f o l l ow i n g %

8 % func t i on : %

9 % 1 xˆ2 + (y−d/2) ˆ2 xˆ2 + (y+d/2) ˆ2 %

10 % rho (x , y)=−−−−−−−−−−−−−−−{exp(− −−−−−−−−−−−−−−−−−)−exp(− −−−−−−−−−−−−−−−−−−)} %

11 % sq r t (2Pi)∗ sigma 2 sigmaˆ2 2 sigmaˆ2 %

12 % %

13 % Here , d = [0 . 0 : 3 . 0] and sigma = [0 . 1 : 3 . 0] are parameters s e t by the user %

14 % The goa l i s to compute the e l e c t r o s t a t i c p o t e n t i a l in the i n t e r i o r o f the box%

15 %%

16 function varargout = poisson2D (nx , ny , d , sigma)

17 simbox . x0 = −10;

18 simbox .xN = 10 ;

19 simbox . y0 = −10;

20 simbox .yN = 10 ;

21 simbox . nx = nx ;

22 simbox . ny = ny ;

23 [X, Y, ix , i y] = s e t u p g r i d (simbox) ;

24 rho = 1/(sqrt (2∗pi) ∗ sigma) ∗(exp(− (X.ˆ2 + (Y−d/2) . ˆ 2) /(2∗ sigma ˆ2)) . . .

25 −exp(− (X.ˆ2 + (Y+d/2) . ˆ 2) /(2∗ sigma ˆ2))) ;

26

27 % set−up sparse matrix accord ing to Eq . (3 . 11)

28 i = [] ; j = [] ; a = [] ;

29 for k = 1 : nx % diagona l b l o c k s

30 for l = 1 : ny

31 i = [i ; index (k , l , nx , ny)] ;

32 j = [j ; index (k , l , nx , ny)] ;

33 a = [a ; −4] ;

34 end

35 for l = 1 : (ny−1)

36 i = [i ; index (k , l , nx , ny)] ;

37 j = [j ; 1+index (k , l , nx , ny)] ;

38 a = [a ; 1] ;

98

http://physik.uni-graz.at/~pep/Lehre/CP2/EX09/poisson2D.m
http://physik.uni-graz.at/~pep/Lehre/CP2/EX09/poisson_a.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX09/poisson_b.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX09/poisson_c.py
http://physik.uni-graz.at/~pep/Lehre/CP2/EX09/poisson_d.py

39 i = [i ; 1+index (k , l , nx , ny)] ;

40 j = [j ; index (k , l , nx , ny)] ;

41 a = [a ; 1] ;

42 end

43 end

44 for k = 1 : (nx−1) % super−d iagona l b l o c k s

45 for l = 1 : ny

46 i = [i ; index (k , l , nx , ny)] ;

47 j = [j ; ny+index (k , l , nx , ny)] ;

48 a = [a ; 1] ;

49 i = [i ; nx+index (k , l , nx , ny)] ;

50 j = [j ; index (k , l , nx , ny)] ;

51 a = [a ; 1] ;

52 end

53 end

54 N = nx∗ny ;

55 A = sparse (i , j , a ,N,N) ;

56 % spy (A) % v i s u a l i z e matrix s t r u c t u r e

57 b = rho (:) ;

58

59 % u = inv (A)∗b ; % use inv e r s e o f A

60 u = A\b ; % use func t i on ’\ ’ = mld i v ide

61 % t o l = 1e−8; maxit = 200; u = b i c g (A, b , t o l , maxit) ; % conjuga te g rad i en t i t e r a t i o n

62

63 u = reshape (u , nx , ny) ;

64 f igure ; surf (X,Y, rho , ’ L ineSty l e ’ , ’ none ’) % p l o t charge d i s t r i b u t i o n

65 set (gca , ’ CameraPosition ’ , [−160.44 −44.494 3 . 8 1 9 3 4] , ’ FontSize ’ ,18 , ’ Gr idLineSty le ’ , ’−
’) ;

66 f igure ; surf (X,Y, u , ’ L ineSty l e ’ , ’ none ’) % p l o t p o t e n t i a l

67 set (gca , ’ CameraPosition ’ , [−160.44 −44.494 3 . 8 1 9 3 4] , ’ FontSize ’ ,18 , ’ Gr idLineSty le ’ , ’−
’) ;

68 sprintf (’ %15.9 f ’ , u (ix , i y))

69 end

70 %%%% END MAIN PROGRAM %%%

71 % se t up r e a l space g r i d po in t s

72 function [X,Y, ix , i y] = s e t u p g r i d (simbox) ;

73 dx = (simbox .xN − simbox . x0) /(simbox . nx+1) ;

74 dy = (simbox .yN − simbox . y0) /(simbox . ny+1) ;

75 x = (simbox . x0+dx) : dx : (simbox . xN−dx)

76 y = (simbox . y0+dy) : dy : (simbox . yN−dy) ;

77 [X, Y] = meshgrid (x , y) ;

78 eps= 1e−8;

79 ix = find (abs (x − 2) < eps) ;

80 iy = find (abs (y − 0) < eps) ;

99

81 end

82 % compute l i n e a r index

83 function l i n i n d e x = index (j , k , nx , ny) ;

84 l i n i n d e x = 1 + (j−1)∗nx + k−1;

85 end

Solution to Exercise 10

An implementation in Matlab (Octave) of this exercise can be found here, sg1D.m, and is also listed

below. Results of exercises (a) and (b) are plotted in Figs. A.9 and A.10, respectively. An alternative

implementation in Python, can be downloaded from this link: schroedinger1d.py.

1 % BEGIN MAIN PROGRAM %%%

2 % so l v e the time−dependent Schroedinger equat ion in 1D by app l y ing the %

3 % Crank−Nicholson scheme %

4 % %

5 % Simulat ion box de f ined by x = [−5 ,25] d i s c r e t i z e d by J g r i d po in t s . %

6 % I n i t i a l l y , the wave func t i on i s a Gaussian wave packe t a t x=0 with %

7 % momentum k0 and mmentum spread dk %

8 % e . g : sg1D (10 ,1 ,1000 ,1 .2 ,0 .005)

9 %%

10 function varargout = sg1D (k0 , dk , J , tmax , dt)

11 x0 = −5;

12 xN = 25 ;

13 dx = (xN − x0) /(J+1) ;

14 x = (x0+dx) : dx : (xN−dx) ;

15 ps i 0 = wavepacket (x , k0 , dk) ;

16 % V = zeros (1 , J) ; % p o t e n t i a l i s zero f o r case (a)

17 V = 105∗exp(−(x−10) . ˆ 2 / 0 . 5 ˆ 2) ; % po t e n t i a l f o r case (b)

18 [A,B,C] = s e t u p t r i (dx , dt ,V) ;

19 r = setupr (ps i0 , dx , dt ,V) ;

20

21 PSI (1 , :) = ps i 0 ;

22 N = round(tmax/dt) +1;

23 for n = 2 :N

24 a = A; b = B; c = C;

25 p s i = t r i s o l v e (a , b , c , r) ;

26 r = setupr (ps i , dx , dt ,V) ;

27 calcnorm (ps i , dx) ;

28 PSI (n , :) = p s i ;

29 end

30 t = 0 : dt : tmax ;

31 imagesc (x , t , real (PSI)) ;

100

http://physik.uni-graz.at/~pep/Lehre/CP2/EX10/sg1D.m
http://physik.uni-graz.at/~pep/Lehre/CP2/EX10/schroedinger1d.py

32 xlabel (’ x ’ , ’ f o n t s i z e ’ , 18) ;

33 ylabel (’ t ’ , ’ f o n t s i z e ’ , 18) ;

34 set (gca , ’ FontSize ’ ,16)

35 end

36 %%%% END MAIN PROGRAM %%%

37

38 % compute wave packe t

39 function p s i = wavepacket (x , k0 , dk) ;

40 f = sqrt (dk) /pi ˆ(1/4) ;

41 e1 = exp(−x . ˆ 2 . ∗ dk ˆ2/2) ;

42 e2 = exp(i .∗ k0 .∗ x) ;

43 p s i = f .∗ e1 .∗ e2 ;

44 end

45

46 % compute norm of wave func t i on

47 function n = calcnorm (ps i , dx)

48 n = dx∗sum(abs (p s i) . ˆ 2) ;

49 end

50

51 % compute t r i d i a g o n a l v e c t o r s a , b , c

52 function [a , b , c] = s e t u p t r i (dx , dt ,V) ;

53 J = length (V) ;

54 a = − i ∗dt /(2∗dx ˆ2) ∗ ones (J , 1) ;

55 c = a ;

56 b = 1 + (i ∗dt /2) ∗(2/ dxˆ2 + V) ;

57 end

58

59 % compute r i g h t hand s i d e o f equat ion system

60 function r = setupr (ps i , dx , dt ,V) ;

61 J = length (p s i) ;

62 p s i p l u s = c i r c s h i f t (ps i , [0 1]) ;

63 p s i p l u s (1) = 0 ;

64 psiminus = c i r c s h i f t (ps i , [0 −1]) ;

65 psiminus (J) = 0 ;

66 r = p s i + (i ∗dt /2) ∗((p s i p l u s − 2∗ p s i + psiminus) /dxˆ2 − V.∗ p s i) ;

67 end

68

69 function x = t r i s o l v e (a , b , c , d)

70 % a , b , c are the column vec t o r s f o r the compressed t r i d i a g o n a l matrix ,

71 % d i s the r i g h t v e c t o r

72 n = length (d) ; % n i s the number o f rows

73 % Modify the f i r s t −row c o e f f i c i e n t s

74 c (1) = c (1) / b (1) ; % Div i s i on by zero r i s k .

75 d (1) = d (1) / b (1) ;

101

76 for i = 2 : n−1

77 temp = b(i) − a (i) ∗ c (i −1) ;

78 c (i) = c (i) / temp ;

79 d(i) = (d(i) − a (i) ∗ d(i −1)) /temp ;

80 end

81 d(n) = (d(n) − a (n) ∗ d(n−1)) /(b(n) − a (n) ∗ c (n−1)) ;

82 % Now back s u b s t i t u t e .

83 x (n) = d(n) ;

84 for i = n−1:−1:1

85 x (i) = d(i) − c (i) ∗ x (i + 1) ;

86 end

87 end

Solution to Exercise 11

(a) Consistency and Order of the Lax-Wendroff One-Step Method

The consistency is of the finite difference form of the two-coupled convection equations

fn+1
j = fnj −

c

2

(
gnj+1 − gnj−1

)
+
c2

2

(
fnj+1 − 2fnj + fnj−1

)
(A.1)

gn+1
j = gnj −

c

2

(
fnj+1 − fnj−1

)
+
c2

2

(
gnj+1 − 2gnj + gnj−1

)
(A.2)

is checked by inserting the Taylor expansions around the point (j, n) into the finite difference equations:

fn+1
j = fnj + ft∆t+

1

2
ftt∆t

2 +
1

6
fttt∆t

3 + · · · (A.3)

fnj+1 = fnj + fx∆x+
1

2
fxx∆x

2 +
1

6
fxxx∆x

3 +
1

24
fxxxx∆x

4 + · · · (A.4)

fnj−1 = fnj − fx∆x+
1

2
fxx∆x

2 − 1

6
fxxx∆x

3 +
1

24
fxxxx∆x

4 + · · · (A.5)

Insertion of these expressions together with the analog formulas for g into Eq. A.1 results in

ft∆t+
1

2
ftt∆t

2 +
1

6
fttt∆t

3 + · · · = − c
2

[
2gx∆x+

1

3
gxxx∆x

3 + · · ·
]

+
c2

2

[
fxx∆x

2 +
1

12
fxxxx∆x

4

]
(A.6)

102

When taking into account c = a∆t/∆x and that f fulfills the wave equation ftt − afxx = 0, we find

after rearranging terms

ft + agx = −1

6
fttt∆t

2 − a

6
gxxxx∆x

2 +
a2

24
fxxxx∆x

3∆t+ · · · (A.7)

This shows that the Lax-Wendroff scheme is consistent with the convection equation and that it leads

to second order finite difference equations, both, in time and space.

(b) Stability of the Lax-Wendroff One-Step Method

We check the stability by making a Fourier analysis of the solutions (von-Neumann-method) using

the ansatz

fnj = eγteikx and gnj = eγteikx (A.8)

Insertion into Eqs. A.1 and A.2 leads to the following set of equations which may be written in matrix

notations as (
fn+1
j

gn+1
j

)
=

(
1− 2c2 sin2 k∆x

2
−ic sin k∆x

−ic sin k∆x 1− 2c2 sin2 k∆x
2

)
·

(
fnj
gnj

)
(A.9)

We determine the eigenvalues λ of the amplification matrix G by setting the determinant of G−λI =

0,

det

(
1− 2c2 sin2 k∆x

2
− λ −ic sin k∆x

−ic sin k∆x 1− 2c2 sin2 k∆x
2
− λ

)
= 0 (A.10)

leading to (
1− 2c2 sin2 k∆x

2

)2

+ c2 sin2 k∆x = 0 (A.11)

1− 2c2 sin2 k∆x

2
− λ = ±ic sin k∆x (A.12)

λ± = 1− 2c2 sin2 k∆x

2
± ic sin k∆x. (A.13)

Geometrically this can be interpreted as an ellipse in the complex plane which lies entirely inside a

unit circle provided c ≤ 1, that is, |λ| ≤ 1. On the other hand, if c > 1, then |λ| will be larger than 1

for some k∆x. Thus, the Lax-Wendroff scheme is stable provided c ≤ 1, or in other words

∆t ≤ ∆x

a
. (A.14)

103

(c) Convergence of the Lax-Wendroff One-Step Method

Since the wave equation is a linear PDE, the consistency and stability of the finite difference equation

implies the convergence of the Lax-Wendroff scheme, that is for grid spacings fulfilling c ≤ 1, i.e.,

∆t ≤ ∆x

a
. (A.15)

104

Figure A.7: The charge distribution with the parameters d = 5 and σ = 0.5 as defined by Eq. 3.18
(top panel) and the resulting potential (bottom panel) as obtained from finite differencing with nx =
ny = 150 grid points.

105

Figure A.8: Difference of the potential u at the point x = 2, y = 0 to the converged value as a function
of the grid spacing ∆x in a double-logarithmic plot.

106

Figure A.9: Real part of ψ(x, t) with V (x) ≡ 0 and the following set of parameters: k0 = 10, ∆k = 0.1,
J = 1000,t ∈ [0, 1.2],∆t = 0.005.

107

Figure A.10: Real part of ψ(x, t) with V (x) = V0e
− (x−10)2

σ2 and the following set of parameters: k0 = 10,
∆k = 0.1, J = 1000,t ∈ [0, 1.2],∆t = 0.005, V0 = 105, σ = 0.5.

108

Bibliography

[1] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes - The Art of Scientific Computing. Cambridge University Press, 1986.

[2] W. Törnig and P. Spellucci. Numerische Mathematik für Ingenieure und Physiker - Band 1:

Numerische Methoden der Algebra. Springer, 1988.

[3] B. A. Stickler and E. Schachinger. Basic Concepts in Computational Physics. Springer, 2013.

[4] H. Sormann. Physik auf dem Computer. Vorlesungsskriptum, Technische Universität Graz, 1996.

[5] University of Liverpool. Modular Programming with Fortran 90, 1997.

[6] Wikipedia. Basic linear algebra subprograms, 2013.

[7] netlib. Lapack - linear algebra package, 2012.

[8] INTEL. Intel Math Kernel Library 11.0.5 Reference Manual, 2012.

[9] Wikipedia. Matrix norm, 2013.

[10] Samuel S. M. Wong. Computational Methods in Physics and Engineering. World Scientific, 1997.

[11] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213,

1994.

[12] Peter Arbenz and Daniel Kressner. Lecture Notes on Solving Large Scale Eigenvalue Problems.

ETH Zürich, 2012.

[13] Carsten Rostgaard. The projector augmented-wave method. arXiv, 0910.1921:1–26, 2009.

[14] W. Törnig and P. Spellucci. Numerische Mathematik für Ingenieure und Physiker - Band 2:

Numerische Methoden der Analysis. Springer, 1990.

109

http://www.liv.ac.uk/HPC/HTMLF90Course/HTMLF90CourseSlides.html
http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://www.netlib.org/lapack/
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/index.htm
http://en.wikipedia.org/wiki/Matrix_norm
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf
http://arxiv.org/abs/0910.1921

[15] J. G. Charney, R. Fjörtoft, and J. Von Neumann. Numerical integration of the barotropic vorticity

equation. Tellus, 2:237–254, 1950.

[16] Joe D. Hoffman. Numerical Methods for Engineers and Scientists. Marcel Dekker, second edition

edition, 2001.

[17] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The Finite-Difference

Time-Domain Method. Artech House Publishers, 2005.

[18] Wikipedia. Finite-difference time-domain method, 2013.

110

http://dx.doi.org/10.1111/j.2153-3490.1950.tb00336.x
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00336.x
http://en.wikipedia.org/wiki/Finite-difference_time-domain_method

	Linear Systems of Equations
	Introduction
	Exercise 1: Matrix Multiplications

	The LU Decomposition
	LU decomposition for general matrices
	Exercise 2: Implementation of the LU-decomposition
	Pivoting
	Error estimation and condition number
	Exercise 3: LU-decomposition with LAPACK
	Linear Least Squares Fits
	Project 1: Fredholm's integral equation
	LU decomposition for tridiagonal matrices

	Iterative Methods
	Construction of iterative methods
	The Jacobi Method
	Gauss-Seidel and Successive Over-Relaxation Method
	Exercise 4: Matrix inversion for tridiagonal matrices
	Project 2: Finite difference solution of the stationary heat equation
	Conjugate Gradient Method
	Exercise 5: Conjugate gradient method

	Eigenvalues and Eigenvectors of Matrices
	Introduction
	Subspace Methods
	Power iteration (Von Mises Method)
	Exercise 6: Von Mises Method
	Simultaneous vector iterations
	Lanczos algorithm

	Transformation Methods
	Jacobi-Method
	Exercise 7: Jacobi Method
	The QR algorithm

	Applications in Physics
	Normal modes of vibration
	One-dimensional Boundary Value Problems
	Project 3: Eigenvalues of the stationary Schrödinger equation
	Secular equation of Schrödinger equation
	Exercise 8: The Band Structure of fcc-Al

	Partial Differential Equations
	Classification of PDEs
	Discriminant of a quadratic form
	Boundary vs. initial value problem

	Boundary Value Problems
	Finite differencing in 2 dimensions
	Exercise 9: Solution of Poisson's Equation in 2D

	Initial Value Problems
	von Neumann stability analysis
	Heat equation
	Time dependent Schrödinger equation
	Exercise 10: Time-dependent Schrödinger equation in 1D
	Initial value problems for >1 space dimensions
	Project 4: Time-dependent Schrödinger equation in 2D
	Consistency, Order, Stability, and Convergence
	Exercise 11: Finite difference scheme for the wave equation

	Beyond Finite Differencing
	Finite Elements Method
	Finite Volume Method

	Solutions to Exercises
	Solution to Exercise 1: Matrix Multiplications
	Solution to Exercise 2: LU-decomposition
	Solution to Exercise 3: LU-decomposition with LAPACK
	Solution to Exercise 4: Matrix inversion for tridiagonal matrices
	Solution to Exercise 5: Conjugate gradient method
	Solution to Exercise 6: Von Mises Method
	Solution to Exercise 7: Jacobi Method
	Solution to Exercise 8: The Band Structure of fcc-Al
	Solution to Exercise 9: Solution of Poisson's Equation in 2D
	Solution to Exercise 10: Time-dependent Schrödinger equation in 1D
	Solution to Exercise 11: Finite difference scheme for the wave equation

	Bibliography

