Plant and Fungal Systematics 64(2): 163–172, 2019 DOI: 10.2478/pfs-2019-0017 ISSN 2544-7459 (print) ISSN 2657-5000 (online)

# Scale-dependent co-occurrence patterns of closely related genotypes in a lichen species complex

Ekaphan Kraichak<sup>1,2\*</sup>, Luis Allende<sup>3</sup>, Walter Obermayer<sup>4</sup>, Robert Lücking<sup>5</sup> & H. Thorsten Lumbsch<sup>2</sup>

Article info

Received: 21 Mar. 2019 Revision received: 19 Aug. 2019 Accepted: 22 Aug. 2019 Published: 2 Dec. 2019

Associate Editor Adam Flakus Abstract. The 'competition-relatedness' hypothesis postulates that co-occurring taxa should be more distantly related, because of lower competition. This hypothesis has been criticized for its dependence on untested assumptions and its exclusion of other assembly forces beyond competition and habitat filtering to explain the co-existence of closely related taxa. Here we analyzed the patterns of co-occurring individuals of lichenized fungi in the Graphis scripta complex, a monophyletic group of species occurring in temperate forests throughout the Northern Hemisphere. We generated sequences for three nuclear ribosomal and protein markers (nuLSU, RPB2, EF-1) and combined them with previously generated sequences to reconstruct an updated phylogeny for the complex. The resulting phylogeny was used to determine the patterns of co-occurrences at regional and at sample (tree) scales by calculating standard effect size of mean pairwise distance (SES.MPD) among co-occurring samples to determine whether they were more clustered than expected from chance. The resulting phylogeny revealed multiple distinct lineages, suggesting the presence of several phylogenetic species in this complex. At the regional and local (site) levels, SES.MPD exhibited significant clustering for five out of six regions. The sample (tree) scale SES. MPD values also suggested some clustering but the corresponding metrics did not deviate significantly from the null expectation. The differences in the SES.MPD values and their significance indicated that habitat filtering and/or local diversification may be operating at the regional level, while the local assemblies on each tree are interpreted as being the result of local competition or random colonization.

**Key words**: Assembly, community phylogeny, crustose lichens, cryptic species, mean pairwise distance (MPD)

#### Introduction

Combining the competitive exclusion principle (Gause 1934) with Darwin's (1859) hypothesis that closely related species are unlikely to coexist, the competitive relatedness hypothesis (CRH) postulates that closely related species should not co-occur persistently in the same community, because they are likely to be ecologically equivalent, so that competitive interactions would lead to exclusion of less competitive species (Cahill et al. 2008). This theoretical conjecture has stimulated

This work is licensed under the Creative Commons BY-NC-ND 4.0 License

numerous empirical studies, including the development of computational tools for hypothesis testing within a phylogenetic framework (e.g., Webb 2000; Webb et al. 2002; Kembel et al. 2010; Smith et al. 2013). With increasing access to molecular data, phylogenetics has become one of the principal tools for ecologists to study patterns and infer processes of community assembly, allowing them to estimate the 'relatedness' among co-existing species through phylogenetic distance (Webb et al. 2008). If competition shapes community assembly and closely related species are ecologically equivalent, competing for niche space, we would expect phylogenetic distance among co-occurring species to be greater than random, and co-occurring species would be dispersed across the phylogeny. If abiotic factors are more critical for community assembly or if community dynamics prevent species from outcompeting others, we would expect phylogenetic 'clustering' of lineages including species with similar

<sup>&</sup>lt;sup>1</sup> Department of Botany, Kasetsart University, Bangkok, Thailand

<sup>&</sup>lt;sup>2</sup> Science and Education, Field Museum, Chicago, IL USA

<sup>&</sup>lt;sup>3</sup> Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA

<sup>&</sup>lt;sup>4</sup> Institute of Biology, Division of Plant Sciences, NAWI Graz, University of Graz, Austria

<sup>&</sup>lt;sup>5</sup> Botanic Garden and Botanical Museum, Freie Universität Berlin, Berlin, Germany

<sup>\*</sup> Corresponding author e-mail: ekaphan.k@ku.th

ecological traits (Webb et al. 2002). An example for the latter is from tropical foliicolous lichens, in which multiple closely related species often grow together on the same leaf, due to the fact that leaves are a highly dynamic substrate and their longevity is usually shorter than the time required to reach competitive exclusion between species (Lücking 2001; Lücking & Bernecker-Lücking 2002).

While phylogenetic frameworks have been widely used to infer the assembly processes of various communities including lichens (e.g., Horner-Devine & Bohannan 2006; Kembel & Hubbell 2006; Verdú & Pausas 2007; Burns & Strauss 2011; Lücking et al. 2016), this approach relies heavily on the assumption that relatedness can be used as a proxy for the degree of competition and that competition is a primary factor in community assembly (Gerhold et al. 2015). This notion has been tested in various study systems, many of which showed no correlation between phylogenetic relatedness and strength of competition (Alexandrou et al. 2014; Naughton et al. 2015). Furthermore, phylogenetic community structure may be the result of processes other than competition (Vamosi et al. 2009). Therefore, with the appropriate spatial and temporal scale, these patterns could be used to describe or test hypotheses about broader macroevolutionary processes such as dispersal and diversification of co-occurring species (Gerhold et al. 2015).

Besides the problem of relating community assembly and competition to phylogeny, testing the CRH is challenging for other reasons. The scale of competition depends on the type of organism (Cavender-Bares, Keen & Miles 2006; Swenson et al. 2006; Slingsby & Verboom 2006; Cooper, Rodriguez & Purvi 2008). While large mammals may compete at landscape (regional or metacommunity) scale, trees largely compete at habitat scale, and small organisms such as lichens at microhabitat scale (Peterson et al. 1998; Bowker & Maestre 2012; Genet et al. 2014). Niche dimensions along which organisms compete are often insufficiently known, and proxies of ecological equivalency may be inaccurate. Lichens do not seem to exhibit specific biotic interactions such as found in plant pollination and seed dispersal, and the niche dimensions along which competition acts are presumed to be largely limited to the availability of space and to abiotic growth factors such as nutrients and microclimate (Lawrey 1981; John & Dale 1989). In lichens, a commonly used proxy to determine niche overlap or ecological equivalency, and hence competition, is the nearest neighbour approach, the observation of thalli growing side by side (Lawrey 1981; John 1989; Armstrong & Welch 2007).

Since competition acts at the individual level, lichens that frequently grow side by side should undergo strong competition. The CRH proposes that phylogenetic divergence results in phenotypic divergence, going along with changing ecological preferences (Violle et al. 2011; Herben & Goldberg 2014), so that closely related lineages are likely to be ecologically equivalent, whereas distantly related species are not. Provided that the ecologically similar species cannot remain in stable coexistence, members in an observed community should be ecologically different enough to reduce the interspecific competition. Such a mechanism can lead to the phenomena of 'limiting similarity' among coexisting species (MacArthur & Levins 1967).

The Graphis scripta complex, commonly known as 'script lichen', presents a useful study system to test the CRH in a phylogenetic framework and to grapple with the challenges relating to the definition of niche overlap and ecological equivalence. As one of a few extratropical members of the predominantly tropical family Graphidaceae (Lücking et al. 2014), this species complex is found on the bark of trees across North America and Eurasia, in particular on smooth-barked trees of the genera Fagus, Carpinus, Betula and Prunus (Otte 1999; Bollinger et al. 2007; Neuwirth 2013; Wirth, Hauck & Schultz 2013; Gnüchtel 2014). It is one of the few lichens for which possible mechanisms for competitive exclusion have been studied, focusing on allelopathy (Whiton & Lawrey 1984). Thalli of these lichens frequently grow side by side (Neuwirth & Aptroot 2011), facilitating the use of the nearest neighbour approach.

The Graphis scripta complex is characterized by elongated ascomata with a black margin (labia) and a laterally carbonized excipulum, a clear hymenium, small, transversely septate ascospores, and the lack of secondary substances (Lücking et al. 2009). Other characters, such as branching of the ascomata, visibility of the disc, and the presence of pruina, vary within this complex, which has led to a large number of nomenclatural novelties since the first description of Lichen scriptus by Linnaeus (1753), particularly at the infraspecies level (Acharius 1809; Zahlbruckner 1923). Zahlbruckner (1923) adopted a broad concept of G. scripta, subsuming all other taxa under a single name, a concept accepted until recently, when Neuwirth & Aptroot (2011) attempted to structure the observed morphological and anatomical variation by recognizing various species. Molecular data indeed suggest that the Graphis scripta complex contains a number of phylogenetic lineages representing distinct species (Kraichak et al. 2015).

Putative species within the Graphis scripta complex often co-occur spatially at regional and local (tree) levels. Two or more morphologically different but well-demarcated thalli of this complex can grow next to each other on the same bark (Neuwirth & Aptroot 2011). In a survey of epiphytic lichens in Styria in Austria, multiple thalli of the complex were found on single trees even though they were not strongly correlated with species delimitation (Obermayer, pers. comm.; Kraichak et al. 2015). According to the CRH, these co-occurring thalli either should belong to the same species or, if representing various lineages, should differ somewhat in their niche space and be more distantly related than expected by chance. On the other hand, competitive effects are not expected at local and regional scales. Hence, lichens in this complex should be phylogenetically dispersed (or show no phylogenetic diversity) at tree scale but appear phylogenetically clustered at habitat and landscape scales, due to similar habitat preferences.

## Molecular methods

Data matrices of 238 sequences from specimens of *Graphis scripta* were generated, comprising nuclear large subunit rDNA (nuLSU), RNA polymerase II second largest subunit (*RPB2*), and translation elongation factor (*EF-1*) from a previous study (Kraichak et al. 2015); new sequences were generated from additional samples from

North America and Europe (Table 1). *Graphis implicata* and *G. librata* were used as outgroups (Rivas Plata et al. 2013; Kraichak et al. 2015). Nuclear internal transcribed spacer (ITS) and mitochondrial small subunit (mtSSU) data were not included, due to low amplification success. DNA extraction, PCR reactions, product purification, and sequencing followed the protocol outlined in Kraichak et al. (2015). DNA extracts are housed at the Pritzker Laboratory of Molecular Systematics at the Field Museum,

Table 1. List of samples, with their collection data and GenBank accession numbers for the sequences used in this study. New sequences are bolded.

| Austria     Neuwith 11834 (F)     6814     KF875544     KF875527     KJ44107       Austria, Steirmark     Obermayer 12305 [2 (GZU)     8994     MN612583     —     MN612635       Austria, Steirmark     Obermayer 12305 [2 (GZU)     8997     MN612586     MN612636       Austria, Steirmark     Obermayer 12305 [20 (GZU)     9903     MN612576     MN612637       Austria, Steirmark     Obermayer 12305 [3 (GZU)     9983     MN612578     MN612604     —       Austria, Steirmark     Obermayer 12305 [3 (GZU)     8984     MN612579     MN612604     —       Austria, Steirmark     Obermayer 12305 [3 (GZU)     8986     MN612580     MN612604     —       Austria, Steirmark     Obermayer 12305 [3 (GZU)     8986     MN612580     MN612633       Austria, Steirmark     Obermayer 13006 [3 (GZU)     8987     MN612586     MN612634       Austria, Steirmark     Obermayer 13060 [3 (GZU)     8970     MN612570     MN612634       Austria, Steirmark     Obermayer 13060 [3 (GZU)     8971     MN612571     MN612637       Austria, Steirmark     Obermayer 13060 [3 (GZ                                                                                                                              | Locality                   | Specimen Voucher          | DNA Voucher | nuLSU    | RPB-2    | EF-1     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-------------|----------|----------|----------|
| Austria, Steimark     Obermayer 12305_10. (GZU)     8991     MN612831     —     MN612635       Austria, Steimark     Obermayer 12305_1A (GZU)     8977     MN612757     MN612607     —     MN612637       Austria, Steimark     Obermayer 12305_2A (GZU)     8983     MN612757     MN612602     —       Austria, Steimark     Obermayer 12305_3A (GZU)     8984     MN612777     MN612604     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8986     MN612581     MN612604     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8986     MN612581     MN612606     —       Austria, Steimark     Obermayer 12305_6 (GZU)     8986     MN612568     MN612606     MN612633       Austria, Steimark     Obermayer 13060_2 (GZU)     8970     MN612571     MN612593     MN612624       Austria, Steimark     Obermayer 13060_2 (GZU)     8970     MN612571     MN612595     MN612626       Austria, Steimark     Obermayer 13060_2 (GZU)     8970     MN612571     MN612590     MN612627       Austria, Steimark     Obermayer 13060_2 (GZU)     8971 <td>Austria</td> <td>Neuwirth 11834 (F)</td> <td>6814</td> <td>KF875544</td> <td>KF875527</td> <td>KJ441077</td>                          | Austria                    | Neuwirth 11834 (F)        | 6814        | KF875544 | KF875527 | KJ441077 |
| Austria, Steirmark     Obermayer 12305_12 (GZU)     8997     MN61257     MN61267     MN61267       Austria, Steirmark     Obermayer 12305_20 (GZU)     9078     MN612578     MN61260     —       Austria, Steirmark     Obermayer 12305_20 (GZU)     9083     MN612578     MN61260     —       Austria, Steirmark     Obermayer 12305_3 (GZU)     8984     MN612577     MN61260     —       Austria, Steirmark     Obermayer 12305_3 (GZU)     8984     MN612580     MN61260     —       Austria, Steirmark     Obermayer 12305_5 (GZU)     8987     MN612568     MN612697     —       Austria, Steirmark     Obermayer 13006_16 (GZU)     8989     MN612568     MN612593     MN612624       Austria, Steirmark     Obermayer 13060_2 (GZU)     8970     MN612570     MN612595     MN612627       Austria, Steirmark     Obermayer 13060_2 (GZU)     8971     MN612571     MN612598     MN612527       Austria, Steirmark     Obermayer 13060_2 (GZU)     8973     MN612571     MN612597     MN612628       Austria, Steirmark     Obermayer 13060_2 (GZU)     8973     MN                                                                                                                                       | Austria, Steirmark         | Obermayer 12305 10A (GZU) | 8994        | MN612583 |          | MN612635 |
| Austria, Steimark     Obermayer 12305 $1$ A (GZU)     8978     MN612576     MN612601        Austria, Steimark     Obermayer 12305 $2$ 0 (GZU)     8908     MN612578     MN612603        Austria, Steimark     Obermayer 12305 $3$ A (GZU)     8982     MN612577     MN612605        Austria, Steimark     Obermayer 12305 $3$ (GZU)     8984     MN612580     MN612605        Austria, Steimark     Obermayer 12305 $5$ (GZU)     8986     MN612580     MN612605        Austria, Steimark     Obermayer 12305 $4$ (GZU)     8986     MN612560     MN612593     MN612624       Austria, Steimark     Obermayer 13060 $_{2}$ (GZU)     8970     MN612570     MN612595     MN612626       Austria, Steimark     Obermayer 13060 $_{2}$ (GZU)     8971     MN612571     MN612595     MN612626       Austria, Steimark     Obermayer 13060 $_{2}$ (GZU)     8973     MN612571     MN612529     MN612624       Austria, Steimark     Obermayer 13060 $_{2}$ (GZU)     8974     MN612571     MN612589     MN612626       Austria, Steimark     Obermayer 13060 $_{2}$ (GZU)                                                                                                                                             | Austria, Steirmark         | Obermayer 12305 12 (GZU)  | 8997        | MN612584 | MN612607 | MN612636 |
| Austria, Steimark     Obermayer 12305_20 (GZU)     9005     NN612578     MN612637       Austria, Steimark     Obermayer 12305_32A (GZU)     8983     NN612577     NN612603     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8984     NN612581     NN612604     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8984     NN612581     NN612606     M       Austria, Steimark     Obermayer 12305_4 (GZU)     8986     NN612581     NN612606     M       Austria, Steimark     Obermayer 12306_6 (GZU)     8989     NN612570     NN612634     MN612624       Austria, Steimark     Obermayer 13060_6 (GZU)     8970     NN612570     NN612596     NN612626       Austria, Steimark     Obermayer 13060_6 (GZU)     8971     NN612571     NN612626     Austria, Steimark     Obermayer 13060_6 (GZU)     8973     NN612571     NN612628     MN612629     Austria, Steimark     Obermayer 13060_6 (GZU)     8974     NN612574     NN612630     Austria, Steimark     Obermayer 13060_6 (GZU)     8975     —     NN612608     Austria, Steimark     Obermayer 13060_6 (GZU)     8974                                                                                                           | Austria, Steirmark         | Obermayer 12305 1A (GZU)  | 8978        | MN612576 | MN612601 |          |
| Austria, Steimark     Obermayer 12305_3 (GZU)     8983     MN612577     MN612603     —       Austria, Steimark     Obermayer 12305_3 (GZU)     8984     MN612579     MN612604     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8986     MN612581     MN612606     —       Austria, Steimark     Obermayer 12305_6 (GZU)     8987     MN612581     MN612606     MN612633       Austria, Steimark     Obermayer 12306_6 (GZU)     8989     MN612509     MN612593     MN612634       Austria, Steimark     Obermayer 13060_6 (GZU)     8970     MN612570     MN612594     —       Austria, Steimark     Obermayer 13060_6 (GZU)     8971     MN612570     MN612575     MN612627       Austria, Steimark     Obermayer 13060_6 (GZU)     8971     MN612573     —     MN612628       Austria, Steimark     Obermayer 13060_6 (GZU)     8973     MN612573     —     MN612638       Austria, Steimark     Obermayer 13061_2 (GZU)     8974     MN612579     MN612589     MN612630       Austria, Steimark     Obermayer 13061_2 (GZU)     8977     — <t< td=""><td>Austria, Steirmark</td><td>Obermayer 12305 20 (GZU)</td><td>9005</td><td>MN612585</td><td></td><td>MN612637</td></t<>                   | Austria, Steirmark         | Obermayer 12305 20 (GZU)  | 9005        | MN612585 |          | MN612637 |
| Austria, Steimark     Obermayer 12305_3 (GZU)     8982     MN612577     MN612602     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8984     MN612580     MN612605     —       Austria, Steimark     Obermayer 12305_4 (GZU)     8986     MN612581     MN612605     —       Austria, Steimark     Obermayer 12305_6 (GZU)     8987     MN612581     MN612606     MN612633       Austria, Steimark     Obermayer 13060_a (GZU)     8968     MN612508     MN612594     —       Austria, Steimark     Obermayer 13060_a (GZU)     8970     MN612570     MN612259     MN612624       Austria, Steimark     Obermayer 13060_a (GZU)     8971     MN612571     MN612627     Austria, Steimark     Obermayer 13060_a (GZU)     8972     MN612574     MN612598     MN612629       Austria, Steimark     Obermayer 13060_a (GZU)     8975     —     MN612598     MN612633       Austria, Steimark     Obermayer 13061_a (GZU)     8975     MN612574     MN612598     MN612632       Austria, Steimark     Obermayer 13061_a (GZU)     8974     MN612575     MN612598     MN6                                                                                                                                   | Austria, Steirmark         | Obermayer 12305 2A (GZU)  | 8983        | MN612578 | MN612603 |          |
| Austria, Steimark     Obermayer 12305_4 (GZU)     8984     MN612579     MN612604     —       Austria, Steimark     Obermayer 12305_5 (GZU)     8986     MN612581     MN612605     —       Austria, Steimark     Obermayer 12305_5 (GZU)     8987     MN612581     MN612633     MN612634       Austria, Steimark     Obermayer 13060_6 (GZU)     8968     MN612568     MN612594     —       Austria, Steimark     Obermayer 13060_6 (GZU)     8970     MN612570     MN612595     MN612625       Austria, Steimark     Obermayer 13060_6 (GZU)     8971     MN612571     MN612595     MN612626       Austria, Steimark     Obermayer 13060_6 (GZU)     8973     MN612571     MN612599     MN612629       Austria, Steimark     Obermayer 13060_6 (GZU)     8974     MN612574     MN612639       Austria, Steimark     Obermayer 13060_6 (GZU)     8975     MN612579     MN612639       Austria, Steimark     Obermayer 13061_2 (GZU)     8976     MN612575     MN612630       Austria, Steimark     Obermayer 13061_2 (GZU)     8976     MN612575     MN612630       Aus                                                                                                                                           | Austria, Steirmark         | Obermayer 12305 3 (GZU)   | 8982        | MN612577 | MN612602 | _        |
| Austria, Steimark     Obermayer 12305_4 (GZU)     8986     MN612580     MN612605     —       Austria, Steimark     Obermayer 12305_6 (GZU)     8987     MN612581     —     MN612633       Austria, Steimark     Obermayer 13060_a (GZU)     8968     MN612568     MN612594     —       Austria, Steimark     Obermayer 13060_b (GZU)     8969     MN612570     MN612594     —       Austria, Steimark     Obermayer 13060_b (GZU)     8970     MN612571     MN612595     MN612625       Austria, Steimark     Obermayer 13060_b (GZU)     8971     MN612571     MN612596     MN6126263       Austria, Steimark     Obermayer 13060_b (GZU)     8973     MN612573     MN612639       Austria, Steimark     Obermayer 13061_b (GZU)     8975     —     MN612598     MN612630       Austria, Steimark     Obermayer 13061_b (GZU)     8975     —     MN612608     MN612632       Austria, Steimark     Obermayer 13061_b (GZU)     8975     —     MN612604     MN612630       Austria, Steimark     Obermayer 13061_b (GZU)     8976     MN612637     MN612631                                                                                                                                                      | Austria, Steirmark         | Obermayer 12305 3A (GZU)  | 8984        | MN612579 | MN612604 | _        |
| Austria, Steirmark     Obermayer 12305_5 (GZU)     8987     MN612581     MN612606     MN612633       Austria, Steirmark     Obermayer 13060 a (GZU)     8989     MN612664     MN612593     MN61264       Austria, Steirmark     Obermayer 13060 a (GZU)     8969     MN612564     MN612593     MN612624       Austria, Steirmark     Obermayer 13060 b (GZU)     8971     MN612571     MN612595     MN612627       Austria, Steirmark     Obermayer 13060 b (GZU)     8972     MN612571     MN612595     MN612627       Austria, Steirmark     Obermayer 13060 b (GZU)     8973     MN612573     MN612629     MN612620       Austria, Steirmark     Obermayer 13060 b (GZU)     8974     MN612574     MN612598     MN612630       Austria, Steirmark     Obermayer 13061 b (GZU)     8975     —     MN612609     MN612630       Austria, Steirmark     Obermayer 13061 b (GZU)     8976     MN612578     MN612630       Austria, Steirmark     Obermayer 13061 b (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tonsberg 42519 (BG)     8611     KJ4                                                                                                                          | Austria, Steirmark         | Obermayer 12305 4 (GZU)   | 8986        | MN612580 | MN612605 | _        |
| Austria, Steirmark     Obermayer 12305_6A (GZU)     8989     NN612582     —     NN612634       Austria, Steirmark     Obermayer 13060 b (GZU)     8969     MN612569     MN612594     —       Austria, Steirmark     Obermayer 13060 b (GZU)     8970     MN612570     MN612595     MN612625       Austria, Steirmark     Obermayer 13060 b (GZU)     8971     MN612571     MN612595     MN612627       Austria, Steirmark     Obermayer 13060 b (GZU)     8972     MN612573     —     MN612629       Austria, Steirmark     Obermayer 13060 b (GZU)     8973     MN612573     —     MN612629       Austria, Steirmark     Obermayer 13060 b (GZU)     8975     —     MN612598     MN612630       Austria, Steirmark     Obermayer 13061 2 (GZU)     8977     —     MN612599     MN612630       Austria, Steirmark     Obermayer 13061 2 (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tonsberg 42518 (BG)     8611     K1440023     —     K1441063       Canada, British Columbia     Tonsberg 42520 (BG)     8615     K1440025                                                                                                                                              | Austria, Steirmark         | Obermayer 12305 5 (GZU)   | 8987        | MN612581 | MN612606 | MN612633 |
| Austria, SteirmarkObernayer 13060_a (GZU)8968MN612568MN612593MN612624Austria, SteirmarkObernayer 13060_c (GZU)8970MN612570MN612570MN612526Austria, SteirmarkObernayer 13060_c (GZU)8971MN612572—MN612626Austria, SteirmarkObernayer 13060_c (GZU)8972MN612572—MN612573Austria, SteirmarkObernayer 13060_c (GZU)8973MN612572—MN612627Austria, SteirmarkObernayer 13060_c (GZU)8974MN612573MN612597MN612639Austria, SteirmarkObernayer 13060_c (GZU)8975—MN612598MN612639Austria, SteirmarkObernayer 13061_c (GZU)8976MN612575MN612598MN612630Austria, SteirmarkObernayer 13061_c (GZU)8977—MN612600MN612632Canada, British ColumbiaTonsberg 42518 (BG)8611KJ440922KJ441017KJ441061Canada, British ColumbiaTonsberg 42519 (BG)8612KJ440924KJ441018KJ441062Canada, British ColumbiaTonsberg 42525 (BG)8615KJ440925KJ441018KJ441064Canada, British ColumbiaTonsberg 42525 (BG)8618MN612559—MN612616Canada, British ColumbiaTonsberg 42525 (BG)8618MN612550—MN612616Canada, British ColumbiaTonsberg 4252 (BG)8618MN612550—MN612616Canada, British ColumbiaTonsberg 4252 (BG)8618MN612557— <td>Austria, Steirmark</td> <td>Obermayer 12305 6A (GZU)</td> <td>8989</td> <td>MN612582</td> <td>_</td> <td>MN612634</td> | Austria, Steirmark         | Obermayer 12305 6A (GZU)  | 8989        | MN612582 | _        | MN612634 |
| Austria, Steirmark     Obernayer 13060_b (GZU)     8969     MN61259     MN612594     —       Austria, Steirmark     Obernayer 13060_c (GZU)     8970     MN612570     MN612595     MN6126295     MN6126295     MN6126295     MN6126295     MN6126271     MN612570     MN612570     MN612571     MN612571     MN6126277     Austria, Steirmark     Obernayer 13060_c (GZU)     8973     MN612573     —     MN6126297       Austria, Steirmark     Obernayer 13060_c (GZU)     8974     MN612573     MN612589     MN612639       Austria, Steirmark     Obernayer 13060_c (GZU)     8976     MN612575     MN612589     MN612630       Canada, British Columbia     Tonsberg 42518 (BG)     8611     KJ440922     KJ441017     KJ441061       Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440924     KJ441018     KJ441063       Canada, British Columbia     Tonsberg 42520 (BG)     8618     MN612555     —     MN612616       Canada, British Columbia     Tonsberg 4252 (BG)     8618     MN612555     —     MN612616       Canada, British Columbia     Tonsberg 4252 (BG                                                                                                                  | Austria, Steirmark         | Obermayer 13060 a (GZU)   | 8968        | MN612568 | MN612593 | MN612624 |
| Austria, Steirmark     Obermayer 13060_c (GZU)     8970     MN612570     MN612595     MN612625       Austria, Steirmark     Obermayer 13060_c (GZU)     8971     MN612571     MN612596     MN612627       Austria, Steirmark     Obermayer 13060_c (GZU)     8973     MN612573     —     MN612627       Austria, Steirmark     Obermayer 13060_c (GZU)     8974     MN612574     MN612599     MN612630       Austria, Steirmark     Obermayer 13061_c (GZU)     8975     —     MN612599     MN612630       Austria, Steirmark     Obermayer 13061_c (GZU)     8977     —     MN612609     MN612632       Canada, British Columbia     Tonsberg 42518 (BG)     8611     KJ440922     KJ441017     KJ441062       Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440924     KJ441018     KJ441062       Canada, British Columbia     Tonsberg 42520 (BG)     8615     KJ440925     J441014     KJ441062       Canada, British Columbia     Tonsberg 4252 (BG)     8615     KJ441018     KJ441063       Canada, British Columbia     Tonsberg 4252 (BG)     8615     KJ44                                                                                                                          | Austria, Steirmark         | Obermayer 13060 b (GZU)   | 8969        | MN612569 | MN612594 | _        |
| Austria, SteirmarkObermayer 13060_d (GZU) $\$971$ MN612571MN612576MN612526Austria, SteirmarkObermayer 13060_e (GZU) $\$972$ MN612573—MN612627Austria, SteirmarkObermayer 13060_f (GZU) $\$973$ MN612573—MN61267Austria, SteirmarkObermayer 13060_f (GZU) $\$973$ MN612577MN612597MN612630Austria, SteirmarkObermayer 13061_f (GZU) $\$976$ MN612575MN612598MN612630Austria, SteirmarkObermayer 13061_f (GZU) $\$976$ MN612575MN612630Austria, SteirmarkObermayer 13061_f (GZU) $\$977$ —MN612600MN612632Canada, British ColumbiaTonsberg 42518 (BG) $\$611$ KJ440923—KJ441061Canada, British ColumbiaTonsberg 42520 (BG) $\$613$ KJ440923—KJ441063Canada, British ColumbiaTonsberg 42520 (BG) $\$615$ KJ440925KJ441019KJ441064Canada, British ColumbiaTonsberg 42520 (BG) $\$618$ MN612555—MN612616Canada, British ColumbiaTonsberg 42520 (BG) $\$618$ MN612555—MN612616Canada, OntarioLendemer 28278A (NY) $\$252$ MS12555—MN612617ChinaSohrabi 16420 (F)* $6454$ KF875542KF875523KJ441070ChinaSohrabi 16439 (F)* $3188$ HQ639666JF828945KJ441070ChinaSohrabi 16439 (F)* $3184$ HQ639666JF828945KJ441070France, Lo                                                                                              | Austria, Steirmark         | Obermayer 13060 c (GZU)   | 8970        | MN612570 | MN612595 | MN612625 |
| Austria, SteirmarkObernayer 13060_c (GZU) $8972$ MN612572—MN612627Austria, SteirmarkObernayer 13060_f (GZU) $8973$ MN612573—MN612628Austria, SteirmarkObernayer 13060_f (GZU) $8974$ MN612574MN612598MN612630Austria, SteirmarkObernayer 13061_f (GZU) $8975$ —MN612598MN612630Austria, SteirmarkObernayer 13061_f (GZU) $8976$ MN612575MN612599MN612631Austria, SteirmarkObernayer 13061_f (GZU) $8977$ —MN612600MN612632Canada, British ColumbiaTonsberg 42518 (BG) $8611$ KJ440922KJ441017KJ441062Canada, British ColumbiaTonsberg 42520 (BG) $8613$ KJ440924KJ441018KJ441063Canada, British ColumbiaTonsberg 42520 (BG) $8615$ KJ440925KJ441018KJ441063Canada, British ColumbiaTonsberg 42520 (BG) $8615$ KJ440925KJ441018KJ441063Canada, British ColumbiaTonsberg 42520 (BG) $8615$ KJ441072KJ441018KJ441063Canada, OntarioLendemer 28278A (NY) $8252$ MN612555—MN612616ChinaSohrabi 16439 (F) $6454$ KF875540KF875525KJ441070ChinaSohrabi 16438 (F) $6454$ KF8755535KJ441071El SalvadorLücking 28001 (F)*3188HQ039363JF828947KJ441071Fance, LorraineStapper F14-14728948MN612560—MN612617Ger                                                                                                               | Austria, Steirmark         | Obermayer 13060 d (GZU)   | 8971        | MN612571 | MN612596 | MN612626 |
| Austria, SteirmarkObermayer 13060_f (GZU)8973MN612573—MN612628Austria, SteirmarkObermayer 13060_g (GZU)8974MN612574MN612597MN612598Austria, SteirmarkObermayer 13061_l (GZU)8975—MN612599MN612639Austria, SteirmarkObermayer 13061_l (GZU)8977MN612575MN612599MN612631Austria, SteirmarkObermayer 13061_l (GZU)8977—MN612600MN612632Canada, British ColumbiaTensberg 42518 (BG)8611KJ440923—KJ441061Canada, British ColumbiaTensberg 42519 (BG)8612KJ440923KJ441063Canada, British ColumbiaTensberg 42520 (BG)8615KJ440924KJ441064Canada, British ColumbiaTensberg 42520 (BG)8618MN612555—MN612616Canada, British ColumbiaTensberg 42520 (BG)8618MN612555—MN612611ChinaSohrabi 16429 (F)6464KF875541KF875523KJ441072ChinaSohrabi 16439 (F)6450KF875542KF875525KJ441072ChinaSohrabi 16439 (F)6450KF875541KF875525KJ441071El slavadorLücking 16103 (F)*3188H0639636JF828947KJ441071France, LorraineStapper F14-14728948MN612557—MN612617GermanyBachmann 8.208 (POLL)7507KJ440921KJ441093KJ441079Germany, Baden-WürttembergDornes 21304.007 (M)8287KJ44                                                                                                                                                             | Austria, Steirmark         | Obermayer 13060 e (GZU)   | 8972        | MN612572 | _        | MN612627 |
| Austria, Steirmark     Obermayer 13060_g (GZU)     8974     MN612574     MN612597     MN612629       Austria, Steirmark     Obermayer 13060_l (GZU)     8975     —     MN612598     MN612630       Austria, Steirmark     Obermayer 13060_l (GZU)     8976     MN612575     MN612599     MN612632       Austria, Steirmark     Obermayer 13061_l (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tonsberg 42519 (BG)     8611     KJ440922     KJ441017     KJ441061       Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440925     KJ441064     Canada, British Columbia     Tonsberg 42520 (BG)     8618     MN612559     —     MN612616       Canada, British Columbia     Tonsberg 42520 (BG)     8618     MN612555     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612617       China     Sohrabi 16429 (F)     6454     KF875540     KF875523     KJ441072       China     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441072                                                                                                                                                       | Austria, Steirmark         | Obermayer 13060 f (GZU)   | 8973        | MN612573 | _        | MN612628 |
| Austria, Steirmark     Obermayer 13060_h (GZU)     8975     —     MN612598     MN612630       Austria, Steirmark     Obermayer 13061_1 (GZU)     8976     MN612575     MN612509     MN612631       Austria, Steirmark     Obermayer 13061_2 (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tonsberg 42518 (BG)     8611     KJ440922     KJ441017     KJ441061       Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440924     KJ441018     KJ441063       Canada, British Columbia     Tonsberg 42522 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, Ontario     Lendemer 28278 (RY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875540     KF875524     —       China     Sohrabi 16438 (F)     6450     KF875540     KF875525     KJ441070       China     Sohrabi 16439 (F)*     3194     DQ431939     JF828947     KJ441071       El acking 16103 (F)*     3194     MC61260     —     MN6125160     — <t< td=""><td>Austria, Steirmark</td><td>Obermayer 13060 g (GZU)</td><td>8974</td><td>MN612574</td><td>MN612597</td><td>MN612629</td></t<>                                      | Austria, Steirmark         | Obermayer 13060 g (GZU)   | 8974        | MN612574 | MN612597 | MN612629 |
| Austria, Steirmark     Obermayer 13061_1 (GZU)     8976     MN612575     MN612599     MN612631       Austria, Steirmark     Obermayer 13061_2 (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tensberg 42518 (BG)     8611     KJ440223     —     KJ441061       Canada, British Columbia     Tensberg 42520 (BG)     8613     KJ440923     —     KJ441063       Canada, British Columbia     Tensberg 42520 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, British Columbia     Tensberg 42522 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, Datrish Columbia     Tensberg 42523 (BG)     8618     MN612555     —     MN612616       Canada, Ontario     Lendeme 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16438 (F)     6454     KF875540     KF875523     KJ441072       Costa Rica     Lücking 28001 (F)*     3194     DQ431939     JF828947     KJ441071       El Salvador     Lücking 28001 (F)*     3194     DQ431939     KJ440934                                                                                                                                                          | Austria, Steirmark         | Obermayer 13060 h (GZU)   | 8975        |          | MN612598 | MN612630 |
| Austria, Steirmark     Obermayer 13061_2 (GZU)     8977     —     MN612600     MN612632       Canada, British Columbia     Tensberg 42518 (BG)     8611     KJ440922     KJ441017     KJ441061       Canada, British Columbia     Tensberg 42519 (BG)     8612     KJ440923     —     KJ441062       Canada, British Columbia     Tensberg 42520 (BG)     8613     KJ440923     KJ441018     KJ441064       Canada, British Columbia     Tensberg 42522 (BG)     8618     MN612559     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875541     KF875523     KJ441030       China     Sohrabi 16438 (F)     6450     KF875542     KJ441071       El salvador     Lücking 16103 (F)*     3194     DQ431939     JF828945     KJ441071       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7505     KJ440893     KJ441039     KJ441039 <t< td=""><td>Austria, Steirmark</td><td>Obermayer 13061 1 (GZU)</td><td>8976</td><td>MN612575</td><td>MN612599</td><td>MN612631</td></t<>                                            | Austria, Steirmark         | Obermayer 13061 1 (GZU)   | 8976        | MN612575 | MN612599 | MN612631 |
| Canada, British Columbia     Tensberg 42518 (BG)     8611     KJ440922     KJ441017     KJ441061       Canada, British Columbia     Tensberg 42519 (BG)     8612     KJ440923     —     KJ441062       Canada, British Columbia     Tensberg 42520 (BG)     8613     KJ440925     KJ441018     KJ441063       Canada, British Columbia     Tensberg 42520 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875541     KF875523     KJ441072       China     Sohrabi 16438 (F)     6450     KF875540     KF875525     KJ441070       Crina,     Sohrabi 16438 (F)     6450     KF875542     —     MN612617       Costa Rica     Lücking 28001 (F)*     3194     DQ431939     JF828947     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmans 8.208 (POLL)     7507     KJ440893     KJ441039     KJ441039  <                                                                                                                                                                                   | Austria, Steirmark         | Obermayer 13061 2 (GZU)   | 8977        |          | MN612600 | MN612632 |
| Canada, British Columbia     Tonsberg 42519 (BG)     8612     KJ440923     —     KJ441062       Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440924     KJ441018     KJ441063       Canada, British Columbia     Tonsberg 42522 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, British Columbia     Tonsberg 42522 (BG)     8618     MN612559     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875542     KF875523     KJ441072       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441072       Costa Rica     Lücking 28001 (F)**     3188     HQ639636     JF828945     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612506     —     MN612617       Germany     Bachmann 8.208 (POLL)     7505     KJ440893     KJ441039     KJ441028       Germany, Baden-Württemberg     Dornes 21304.006 (M)     8285     MN612557     —     MN6126                                                                                                                                                                 | Canada, British Columbia   | Tønsberg 42518 (BG)       | 8611        | KJ440922 | KJ441017 | KJ441061 |
| Canada, British Columbia     Tonsberg 42520 (BG)     8613     KJ440924     KJ441018     KJ441063       Canada, British Columbia     Tonsberg 42522 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, British Columbia     Tonsberg 42525 (BG)     8618     MN612559     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875541     KF875523     KJ441030       China     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441070       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7507     KJ440994     KJ441028     KJ441028       Germany, Baden-Wérttemberg     Dornes 21304.007 (M)     8287     KJ440921     KJ441015     KJ441028       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8290     MN612558     —     MN61                                                                                                                                                                 | Canada, British Columbia   | Tønsberg 42519 (BG)       | 8612        | KJ440923 | _        | KJ441062 |
| Canada, British Columbia     Tonsberg 42522 (BG)     8615     KJ440925     KJ441019     KJ441064       Canada, British Columbia     Tonsberg 42525 (BG)     8618     MN612559     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875540     KF875523     KJ441030       China     Sohrabi 16438 (F)     6454     KF875542     KF875525     KJ441071       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441071       El Salvador     Lücking 28001 (F)**     3188     HQ639636     JF828945     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7507     KJ440934     KJ441028     KJ441028       Germany, Baden-Wérttemberg     Dornes 21304.007 (M)     8286     KJ440920     KJ441015     KJ441028       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8285     MN612558     —     MN612614                                                                                                                                                                          | Canada, British Columbia   | Tønsberg 42520 (BG)       | 8613        | KJ440924 | KJ441018 | KJ441063 |
| Canada, British Columbia     Tønsberg 42525 (BG)     8618     MN612559     —     MN612616       Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     —     MN612611       China     Sohrabi 16429 (F)     6464     KF875541     KF875523     KJ441030       China     Sohrabi 16579 (F)     6454     KF875540     KF875523     KJ441030       China,     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441072       Costa Rica     Lücking 1603 (F)*     3194     DQ431939     JF828947     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7507     KJ440893     KJ441039     KJ441039       Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440920     KJ44105     KJ441059       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8285     MN612558     —     MN612614       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8274     KJ440921     KJ441016     KJ441053                                                                                                                                                                                 | Canada, British Columbia   | Tønsberg 42522 (BG)       | 8615        | KJ440925 | KJ441019 | KJ441064 |
| Canada, Ontario     Lendemer 28278A (NY)     8252     MN612555     MN612611       China     Sohrabi 16429 (F)     6464     KF875541     KF875524     —       China     Sohrabi 16579 (F)     6454     KF875540     KF875523     KJ441030       China,     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441071       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441071       El Salvador     Lücking 28001 (F)**     3188     HQ639636     JF828945     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7505     KJ440893     KJ441039     KJ441039       Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440920     KJ441055     KJ441059       Germany, Baden-Wérttemberg     Dornes 21207.36 (M)     8287     KJ440921     KJ441016     KJ441059       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612557     —     MN612615       Germany,                                                                                                                                                                                   | Canada, British Columbia   | Tønsberg 42525 (BG)       | 8618        | MN612559 | _        | MN612616 |
| China     Sohrabi 16429 (F)     6464     KF875541     KF875524     —       China     Sohrabi 16579 (F)     6454     KF875540     KF875523     KJ441030       China,     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441072       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441071       El Salvador     Lücking 28001 (F)**     3188     HQ639636     JF828945     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7505     KJ440893     KJ4410994     KJ441028       Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440920     KJ441015     KJ441089       Germany, Baden-Wérttemberg     Dornes 21304.007 (M)     8287     KJ440921     KJ441015     KJ441060       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8290     MN612557     —     MN612615       Germany, Baden-Württemberg     Dornes 2120.136 (M)     8274     KJ440911     KJ441006     KJ441053                                                                                                                                                                         | Canada, Ontario            | Lendemer 28278A (NY)      | 8252        | MN612555 | _        | MN612611 |
| China     Sohrabi 16579 (F)     6454     KF875540     KF875523     KJ441030       China,     Sohrabi 16438 (F)     6450     KF875542     KF875525     KJ441072       Costa Rica     Lücking 16103 (F)*     3194     DQ431939     JF828947     KJ441071       El Salvador     Lücking 28001 (F)**     3188     HQ639636     JF828945     KJ441070       France, Lorraine     Stapper F14-1472     8948     MN612560     —     MN612617       Germany     Bachmann 8.208 (POLL)     7505     KJ440893     KJ440993     KJ441039       Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440921     KJ441015     KJ441059       Germany, Baden-Wérttemberg     Dornes 21207.36 (M)     8285     MN612557     —     MN612615       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612558     —     MN612615       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8275     KJ440912     KJ441007                                                                                                                                                                 | China                      | Sohrabi 16429 (F)         | 6464        | KF875541 | KF875524 |          |
| China,Sohrabi 16438 (F) $6450$ KF875542KF875525KJ441072Costa RicaLücking 16103 (F)* $3194$ DQ431939JF828947KJ441071El SalvadorLücking 28001 (F)** $3188$ HQ639636JF828945KJ441070France, LorraineStapper F14-14728948MN612560—MN612617GermanyBachmann 8.208 (POLL)7505KJ440893KJ440993KJ441039GermanyBachmann 8.21 (POLL)7507KJ440894KJ440994KJ441028Germany, Baden-WérttembergDornes 21304.006 (M)8286KJ440920KJ441015KJ441059Germany, Baden-WérttembergDornes 21207.36 (M)8287KJ440921KJ441016KJ441060Germany, Baden-WürttembergDornes 21208.03 (M)8290MN612558—MN612614Germany, Baden-WürttembergDornes 21212.136 (M)8274KJ440911KJ441006KJ441053Germany, Baden-WürttembergDornes 21304.008 (M)8276KJ440913KJ441007—Germany, Baden-WürttembergDornes 21304.012 (M)8277KJ440913KJ441008KJ441054Germany, Baden-WürttembergDornes 21304.015 (M)8276KJ440913KJ441009KJ441054Germany, Baden-WürttembergDornes 21304.015 (M)8277KJ440914KJ441004KJ441055Germany, Baden-WürttembergDornes 21304.015 (M)8277KJ440915KJ441005KJ441055Germany, Baden-WürttembergDornes 21304.015 (M)8278KJ440915KJ441                                                                                                                   | China                      | Sohrabi 16579 (F)         | 6454        | KF875540 | KF875523 | KJ441030 |
| Costa RicaLücking 16103 (F)*3194DQ431939JF828947KJ441071El SalvadorLücking 28001 (F)**3188HQ639636JF828945KJ441070France, LorraineStapper F14-14728948MN612560—MN612617GermanyBachmann 8.208 (POLL)7505KJ440893KJ440993KJ441039GermanyBachmann 8.210 (POLL)7507KJ440894KJ440994KJ441028Germany, Baden-WérttembergDornes 21304.006 (M)8286KJ440920KJ441015KJ441059Germany, Baden-WérttembergDornes 21304.007 (M)8287KJ440921KJ441016KJ441060Germany, Baden-WürttembergDornes 21207.36 (M)8285MN612557—MN612614Germany, Baden-WürttembergDornes 21212.136 (M)8274KJ440911KJ441006KJ441053Germany, Baden-WürttembergDornes 21212.151 (M)8275KJ440912KJ441007—Germany, Baden-WürttembergDornes 21304.0012 (M)8277KJ440913KJ441008KJ441054Germany, Baden-WürttembergDornes 21304.012 (M)8278KJ440913KJ441009KJ441055Germany, Baden-WürttembergDornes X_OA4410 (M)8271KJ440915KJ441004KJ441051Germany, BayernDornes K_OA4411 (M)8272KJ440910KJ441005KJ441052Germany, BayernDornes K_OA4411 (M)8280KJ440916KJ441011—Germany, BayernDornes K_OA4413 (M)8280KJ440916KJ441011—<                                                                                                                                            | China,                     | Sohrabi 16438 (F)         | 6450        | KF875542 | KF875525 | KJ441072 |
| El SalvadorLücking 28001 (F)**3188HQ639636JF828945KJ441070France, LorraineStapper F14-14728948MN612560—MN612617GermanyBachmann 8.208 (POLL)7505KJ440893KJ440993KJ441039GermanyBachmann 8.21 (POLL)7507KJ440894KJ440994KJ441028Germany, Baden-WérttembergDornes 21304.006 (M)8286KJ440920KJ441015KJ441059Germany, Baden-WérttembergDornes 21304.007 (M)8287KJ440921KJ441016KJ441060Germany, Baden-WürttembergDornes 21207.36 (M)8285MN612557—MN612614Germany, Baden-WürttembergDornes 21208.03 (M)8290MN612558—MN612615Germany, Baden-WürttembergDornes 21212.136 (M)8274KJ440911KJ441006KJ441053Germany, Baden-WürttembergDornes 21208.03 (M)8276KJ440912KJ441007—Germany, Baden-WürttembergDornes 21212.151 (M)8275KJ440913KJ441005KJ441054Germany, Baden-WürttembergDornes 21304.012 (M)8277KJ440913KJ441008KJ441055Germany, Baden-WürttembergDornes 21304.015 (M)8278KJ440915KJ441004KJ441054Germany, Baden-WürttembergDornes K_OA4410 (M)8271KJ440915KJ441004KJ441051Germany, BayernDornes K_OA4411 (M)8272KJ440916KJ441005KJ441052Germany, BayernDornes K_OA4413 (M)8280KJ440916KJ4                                                                                                                         | Costa Rica                 | Lücking 16103 (F)*        | 3194        | DQ431939 | JF828947 | KJ441071 |
| France, Lorraine   Stapper F14-1472   8948   MN612560   —   MN612617     Germany   Bachmann 8.208 (POLL)   7505   KJ440893   KJ440993   KJ441039     Germany   Bachmann 8.21 (POLL)   7507   KJ440894   KJ440994   KJ441028     Germany, Baden-Wérttemberg   Dornes 21304.006 (M)   8286   KJ440920   KJ441015   KJ441059     Germany, Baden-Wérttemberg   Dornes 21304.007 (M)   8287   KJ440921   KJ441016   KJ441060     Germany, Baden-Württemberg   Dornes 21207.36 (M)   8285   MN612557   —   MN612614     Germany, Baden-Württemberg   Dornes 21208.03 (M)   8290   MN612558   —   MN612615     Germany, Baden-Württemberg   Dornes 21212.136 (M)   8274   KJ440911   KJ441006   KJ441053     Germany, Baden-Württemberg   Dornes 21304.008 (M)   8276   KJ440913   KJ441007   —     Germany, Baden-Württemberg   Dornes 21304.012 (M)   8277   KJ440913   KJ441008   KJ441054     Germany, Baden-Württemberg   Dornes 21304.012 (M)   8277   KJ440913   KJ441008   KJ441055     Germany, Baden-Wü                                                                                                                                                                                                       | El Salvador                | Lücking 28001 (F)**       | 3188        | HQ639636 | JF828945 | KJ441070 |
| GermanyBachmann 8.208 (POLL)7505KJ440893KJ440993KJ441039GermanyBachmann 8.21 (POLL)7507KJ440894KJ440994KJ441028Germany, Baden-WérttembergDornes 21304.006 (M)8286KJ440920KJ441015KJ441059Germany, Baden-WérttembergDornes 21304.007 (M)8287KJ440921KJ441016KJ441060Germany, Baden-WérttembergDornes 21207.36 (M)8285MN612557—MN612614Germany, Baden-WürttembergDornes 21208.03 (M)8290MN612558—MN612615Germany, Baden-WürttembergDornes 21212.136 (M)8274KJ440911KJ441006KJ441053Germany, Baden-WürttembergDornes 21212.151 (M)8275KJ440912KJ441007—Germany, Baden-WürttembergDornes 21304.008 (M)8276KJ440913KJ441008KJ441054Germany, Baden-WürttembergDornes 21304.012 (M)8277KJ440914KJ441009KJ441054Germany, Baden-WürttembergDornes 21304.015 (M)8278KJ440915KJ441009KJ441055Germany, Baden-WürttembergDornes 21304.015 (M)8271KJ440915KJ441004KJ441056Germany, BayernDornes K_OA4410 (M)8271KJ440910KJ441005KJ441052Germany, BayernDornes K_OA4413 (M)8280KJ440916KJ441011—Germany, BayernDornes K_OA4433 (M)8281KJ440917K1441012K1441057                                                                                                                                                                  | France, Lorraine           | Stapper F14-1472          | 8948        | MN612560 | _        | MN612617 |
| Germany     Bachmann 8.21 (POLL)     7507     KJ440894     KJ440994     KJ441028       Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440920     KJ441015     KJ441059       Germany, Baden-Wérttemberg     Dornes 21304.007 (M)     8287     KJ440921     KJ441016     KJ441060       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8285     MN612557     —     MN612614       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612558     —     MN612615       Germany, Baden-Württemberg     Dornes 21212.136 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441004     KJ441055       Germany, Baden-Württemberg     Dornes K_OA                                                                                                             | Germany                    | Bachmann 8.208 (POLL)     | 7505        | KJ440893 | KJ440993 | KJ441039 |
| Germany, Baden-Wérttemberg     Dornes 21304.006 (M)     8286     KJ440920     KJ441015     KJ441059       Germany, Baden-Wérttemberg     Dornes 21304.007 (M)     8287     KJ440921     KJ441016     KJ441060       Germany, Baden-Württemberg     Dornes 21207.36 (M)     8285     MN612557     —     MN612614       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612558     —     MN612615       Germany, Baden-Württemberg     Dornes 21212.136 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21202.136 (M)     8275     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441004     KJ441055       Germany, Bayern     Dor                                                                                                             | Germany                    | Bachmann 8.21 (POLL)      | 7507        | KJ440894 | KJ440994 | KJ441028 |
| Germany, Baden-Wérttemberg   Dornes 21304.007 (M)   8287   KJ440921   KJ441016   KJ441060     Germany, Baden-Württemberg   Dornes 21207.36 (M)   8285   MN612557   —   MN612614     Germany, Baden-Württemberg   Dornes 21208.03 (M)   8290   MN612558   —   MN612615     Germany, Baden-Württemberg   Dornes 21212.136 (M)   8274   KJ440911   KJ441006   KJ441053     Germany, Baden-Württemberg   Dornes 21212.151 (M)   8275   KJ440912   KJ441007   —     Germany, Baden-Württemberg   Dornes 21304.008 (M)   8276   KJ440913   KJ441008   KJ441054     Germany, Baden-Württemberg   Dornes 21304.012 (M)   8277   KJ440914   KJ441009   KJ441054     Germany, Baden-Württemberg   Dornes 21304.012 (M)   8277   KJ440914   KJ441009   KJ441055     Germany, Baden-Württemberg   Dornes 21304.015 (M)   8278   KJ440915   KJ441004   KJ441056     Germany, Baden-Württemberg   Dornes K_OA4410 (M)   8271   KJ440915   KJ441004   KJ441051     Germany, Bayern   Dornes K_OA4411 (M)   8272   KJ440910   KJ441005   KJ441052                                                                                                                                                                                | Germany, Baden-Wérttemberg | Dornes 21304.006 (M)      | 8286        | KJ440920 | KJ441015 | KJ441059 |
| Germany, Baden-Württemberg     Dornes 21207.36 (M)     8285     MN612557     —     MN612614       Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612558     —     MN612615       Germany, Baden-Württemberg     Dornes 21212.136 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440915     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)                                                                                                                     | Germany, Baden-Wérttemberg | Dornes 21304.007 (M)      | 8287        | KJ440921 | KJ441016 | KJ441060 |
| Germany, Baden-Württemberg     Dornes 21208.03 (M)     8290     MN612558     —     MN612615       Germany, Baden-Württemberg     Dornes 21212.136 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440915     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441004     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8                                                                                                                          | Germany, Baden-Württemberg | Dornes 21207.36 (M)       | 8285        | MN612557 | _        | MN612614 |
| Germany, Baden-Württemberg     Dornes 21212.136 (M)     8274     KJ440911     KJ441006     KJ441053       Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8278     KJ440915     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                  | Germany, Baden-Württemberg | Dornes 21208.03 (M)       | 8290        | MN612558 | _        | MN612615 |
| Germany, Baden-Württemberg     Dornes 21212.151 (M)     8275     KJ440912     KJ441007     —       Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440913     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                                                                                                                            | Germany, Baden-Württemberg | Dornes 21212.136 (M)      | 8274        | KJ440911 | KJ441006 | KJ441053 |
| Germany, Baden-Württemberg     Dornes 21304.008 (M)     8276     KJ440913     KJ441008     KJ441054       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441055     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                                                                                                                                                                                                                               | Germany, Baden-Württemberg | Dornes 21212.151 (M)      | 8275        | KJ440912 | KJ441007 |          |
| Germany, Baden-Württemberg     Dornes 21304.012 (M)     8277     KJ440914     KJ441009     KJ441055       Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Germany, Baden-Württemberg | Dornes 21304.008 (M)      | 8276        | KJ440913 | KJ441008 | KJ441054 |
| Germany, Baden-Württemberg     Dornes 21304.015 (M)     8278     KJ440915     KJ441010     KJ441056       Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Germany, Baden-Württemberg | Dornes 21304.012 (M)      | 8277        | KJ440914 | KJ441009 | KJ441055 |
| Germany, Bayern     Dornes K_OA4410 (M)     8271     KJ440909     KJ441004     KJ441051       Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1440917     K1441012     K1441057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Germany, Baden-Württemberg | Dornes 21304.015 (M)      | 8278        | KJ440915 | KJ441010 | KJ441056 |
| Germany, Bayern     Dornes K_OA4411 (M)     8272     KJ440910     KJ441005     KJ441052       Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K 1441012     K 1441057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Germany, Bayern            | Dornes K OA4410 (M)       | 8271        | KJ440909 | KJ441004 | KJ441051 |
| Germany, Bayern     Dornes K_OA4413 (M)     8280     KJ440916     KJ441011     —       Germany, Bayern     Dornes K_OA4433 (M)     8281     K1441017     K1441017     K1441057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Germany, Bayern            | Dornes K OA4411 (M)       | 8272        | KJ440910 | KJ441005 | KJ441052 |
| Germany Bayern Dornes K $OA 4433 (M)$ $2281 \times 1041017 \times 1041017 \times 1041017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Germany, Bayern            | Dornes K OA4413 (M)       | 8280        | KJ440916 | KJ441011 |          |
| COLIMANY, DAYON DUHUSIN U/1993.2 UVD 0/01 NJ440717 NJ441017 NJ441017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Germany. Bayern            | Dornes K OA4433 (M)       | 8281        | KJ440917 | KJ441012 | KJ441057 |

## Table 1. Continued.

| Locality                       | Specimen Voucher       | DNA Voucher    | nuLSU            | RPB-2                | EF-1                 |
|--------------------------------|------------------------|----------------|------------------|----------------------|----------------------|
| Germany, Bayern                | Dornes K_OA4442 (M)    | 8282           | KJ440918         | KJ441013             | KJ441074             |
| Germany, Bayern                | John 8.051 (POLL)      | 6999           | KJ440889         | _                    | KJ441035             |
| Germany, Bayern                | Werth K OA9237 (M)     | 8284           | KJ440919         | KJ441014             | KJ441058             |
| Germany, Rheinland-Pfalz.      | John 8.14 (POLL)       | 6991           | KJ440881         | KJ440984             | KJ441026             |
| Germany, Rheinland-Pfalz.      | John 8.144 (POLL)      | 6992           | KJ440882         | _                    | KJ441031             |
| Germany, Rheinland-Pfalz.      | John 8.149 (POLL)      | 6993           | KJ440883         | KJ440985             | KJ441027             |
| Germany, Rheinland-Pfalz.      | John 8.15 (POLL)       | 6994           | KJ440884         | KJ440986             | KJ441032             |
| Italy, Trentino                | Kalb 39883 (WIS)       | 8952           | MN612564         | MN612590             | MN612621             |
| Netherlands,                   | Aptroot 11808 (ABL)    | 8018           | KJ440895         | _                    | KJ441040             |
| Switzerland, Schweiz Tessin    | John 8.172 (POLL)      | 7000           | KJ440890         | KJ440990             | KJ441036             |
| Switzerland, Schweiz Tessin    | John 8.173 (POLL)      | 7001           | KJ440891         | KJ440991             | KJ441037             |
| Switzerland, Schweiz Tessin    | John 8.174 (POLL)      | 7002           | KJ440892         | KJ440992             | KJ441038             |
| Switzerland, Schweiz Tessin    | John 8.175 (POLL)      | 6995           | KJ440885         | KJ440987             | KJ441033             |
| Switzerland, Schweiz Tessin    | John 8.176 (POLL)      | 6996           | KJ440886         | KJ440988             | _                    |
| Switzerland, Schweiz Tessin    | John 8.177 (POLL)      | 6997           | KJ440887         | _                    | KJ441029             |
| Switzerland, Schweiz Tessin    | John 8.178 (POLL)      | 6998           | KJ440888         | KJ440989             | KJ441034             |
| USA, Alaska                    | Spribille 38023 (GZU)  | 8961           | MN612566         | MN612592             | MN612622             |
| USA, Alaska                    | Spribille 38060 (GZU)  | 8954           | MN612565         | MN612591             |                      |
| USA, Alaska                    | Spribille 39075 (GZU)  | 8963           | MN612567         |                      | MN612623             |
| USA, Delaware                  | Harris 57956 (NY)      | 8236           | KJ440900         | KJ440999             | KJ441044             |
| USA Delaware                   | Harris $57982$ (NV)    | 8237           | K 1440901        | K 1441000            | K 1441045            |
| USA Delaware                   | Hodkinson 18892 (NY)   | 8238           |                  | MN612587             | MN612609             |
| USA Delaware                   | Lendemer 32055 (NY)    | 8230           | K 1440902        |                      | K 1441046            |
| USA Delaware                   | Lendemer 32104 (NY)    | 8240           | K 1440903        | _                    | K 1441075            |
| USA Delaware                   | Lendemer 32130 (NY)    | 8240           |                  | MN612588             | MN612610             |
| USA Delaware                   | Lendemer 32150 (NY)    | 8241           | K 1440904        | K 1441001            | K 1441047            |
| USA Delaware                   | Lendemer 32748 (NV)    | 8234           | <b>K</b> J++070+ | MN612586             | MN612608             |
| USA Delaware                   | Lendemer 35766 (NV)    | 8234           | K 1440808        | K 1440007            | K 1441042            |
| USA Delaware                   | Lendemer 35820 (NV)    | 8235           | K 1440898        | K 1440997            | KJ441042             |
| USA Illinois                   | Nolson MNI502 (E)      | 0255<br>MNI502 | KJ440033         | KJ440998             | KJ441043             |
| USA, Illinois                  | Nelsen MN503 (F)       | MN503          | KJ440930         | KJ441023             | KJ441007<br>KJ441068 |
| USA, Illinois                  | Nelsen MNI550 (F)      | MN550          | KJ440937         | KJ441024<br>KJ441025 | KJ441008             |
| USA, Maina                     | L on domon 22200 (NIX) | NIN339         | KJ440936         | KJ441025             | KJ441009             |
| USA, Maine                     | Lendemer 32300 (NY)    | 8220           | KJ440890         | KJ440995             | KJ441041             |
| USA, Maryland                  | Harris 37934 (IN1)     | 8270           | KJ440908         | KJ441005             | KJ441050             |
| USA, Maryland                  | Lendemer 31990 (NY)    | 8200           |                  | WIN012589            | WIN012013            |
| USA, Maryland                  | Nulter MOULOA (E)      | 8208<br>MD1194 | KJ440907         | KJ441002             | KJ441049             |
| USA, Michigan                  | Nelsen MIN184 (F)      | MIN 184        | KJ440955         | KJ441020             | KJ441065             |
| USA, North Carolina            | Harris $57037$ (NY)    | 8264           | KJ440906         | _                    | KJ441048             |
| USA, North Carolina            | Lendemer $32154$ (NY)  | 8263           | MIN612556        |                      | MIN012012            |
| USA, Pennsylvania              | Lendemer $37/82$ (NY)  | 8232           | KJ440897         | KJ440996             | _                    |
| USA, Washington                | Tonsberg s.n. (BG)     | 8949           | MN612561         | _                    | MN612618             |
| USA, Washington                | Tonsberg s.n. (BG)     | 8950           | MN612562         | _                    | MN612619             |
| USA, Washington                | Tonsberg s.n. (BG)     | 8951           | MN612563         |                      | MN612620             |
| USA, Wisconsin                 | Nelsen MN498 (F)       | MN498          | KJ440934         | KJ441021             | KJ441066             |
| USA, Wisconsin                 | Nelsen MN499 (F)       | MN499          | KJ440935         | KJ441022             | KJ441076             |
| Number of new sequences        |                        |                | 0                | 0                    | 0                    |
| Total number of sequences      |                        |                | 87               | 70                   | 81                   |
| Adjusted alignment length (bp) |                        |                | 483              | 966                  | 357                  |
| Number of identical sites      |                        |                | 176              | 603                  | 160                  |

Asterisked specimens represent Graphis imbricata (\*) and G. librata (\*\*), use as outgroup.

and specimen vouchers in the corresponding herbaria (Table 1). New sequences were deposited in GenBank (Table 1).

### Sequence Alignments and Phylogenetic Analysis

Alignments of individual genes were performed using Muscle (Edgar 2004) and manually adjusted with Geneious 8.1.6 (Kearse et al. 2012; File S1 and File S2). Individual gene trees were reconstructed under maximum likelihood (ML) to examine potential conflict. The concatenated data of the three loci were then subjected to phylogenetic analyses using ML and Bayesian approaches (B/MCMC).

The ML analysis was performed on a partitioned alignment with RAxML-HPC2 (version 7.3.1) on Xsede (Stamatakis 2006), using the default settings and the Gtr-Gamma model of nucleotide substitution. Rapid bootstrap estimates were carried out for 1000 pseudoreplicates (Stamatakis et al. 2008).

For B/MCMC analysis the dataset was also partitioned for each locus and analyzed using MrBAYES 3.1.2 (Huelsenbeck & Ronquist 2001). The GTR+I+G model was chosen for all loci as the appropriate substitution model. Two parallel runs with 20,000,000 generations were executed, starting with a random tree and four simultaneous chains. Heating of chains was set to 0.2. Posterior probabilities were estimated by sampling every 1000<sup>th</sup> tree, using a variant of the Markov chain Monte Carlo (MCMC) method, to avoid sample autocorrelation. The first 4,000 trees were discarded as burn-in. A 50% majority-rule consensus tree with average branch lengths was computed from the remaining trees, using the sumt command. Only clades with bootstrap support equal to or above 70% under ML and a posterior probability equal to or above 0.95 under B/MCMC were considered as supported. Both analyses were performed using the CIPRES online computing facility (www.phylo.org) (Miller, Pfeiffer & Schwartz 2010). Phylogenetic trees were visualized using FigTree 1.4.0 (Rambaut 2012) and the R-package 'ape' (Paradis et al. 2004).

#### Phylogenetic clustering of co-occurring genotypes

To determine whether specimens from the same community at various scales were more distantly or more closely related than expected from chance, we calculated the standardized effect size of mean pairwise distance (SES.MPD), using the R-package 'picante' (Kembel et al. 2010). For this calculation we treated each sequence as an operational taxonomic unit (OTU) that occurred in each locality (or 'community' in the sense of phylogenetic community). The algorithm first calculated the actual phylogenetic distance from the resulting ML tree between each pair of sequences in the same locality and computed the mean for all observed distance values (mean pairwise distance: MPD). The program then ran 9,999 simulations by randomly drawing from the sequence pool the same number of sequences for each community ('phylogeny pool' option for the simulation method). The mean pairwise phylogenetic distance was calculated for each simulation and became a 'null' value. The observed MPD value was compared against the distribution of the null values, using the standardized score [z-score: mean(observed MPD) – mean(null MPD) / SD (null MPD)], which is known as standardized effect of mean pairwise distance (SES.MPD). The P-value for this analysis was calculated by dividing the number of null values that are more extreme than the observed value by the total number of cases (1 observed + 9,999 values from simulations) (Webb et al. 2008). We considered P-values of 0.05 or lower to be a significant departure from the simulated null values.

An MPD lower than expected from chance suggests that co-occurring specimens are more closely related (phylogenetic clustering), whereas a value higher than expected from chance suggests that co-occurring species are more distantly related (phylogenetic dispersion). A SES.MPD value of (close to) zero indicates that the assembly of species in each community is not different from a random pattern (Webb et al. 2008).

We performed this analysis at two different scales: regional (landscape) scale and local (tree) scale. For the regional scale we chose a region equivalent to state-level in each studied country that had at least six specimens in the dataset; we treated it as a metacommunity for the calculations. These specimens were collected from at least three different sites within the regions, according to the collectors' label information. For the tree scale we focused on a particularly dense sampling of *Graphis scripta* on two European Hornbeam trees (*Carpinus betulus*), each



Figure 1. Co-occurrence of two genotypes of Graphis scripta on bark with a distinct boundary.

containing ten specimens in our dataset, from Styria in Austria. At this scale the lichen thalli of *G. scripta* were found growing side-by-side, with distinct boundaries and variable morphologies (Fig. 1).

#### Results

## Phylogenetic Analysis

The analyzed data matrix contained a total of 238 nucleotide sequences, of which 83 new sequences were generated for this study, while the remaining 155 sequences were obtained from a previous study (Kraichak et al. 2015) (Table 1). A matrix of 1,761 unambiguously aligned nucleotide position characters was produced, of which 948 were identical (Table 1). Inspection of individual gene trees from the ML analysis did not show any significant incongruence among the gene trees, and therefore the concatenated data matrix of three loci was used. Because of similarity of topologies between the best ML and 50% majority-rule consensus trees from the B/MCMC analysis, we used the best ML tree for the subsequent analyses. The resulting phylogenetic tree revealed a similar set of several distinct clades that were previously recovered (Kraichak et al. 2015) (Fig. S1). All of the additional samples from Austria and North America were placed among already

existing clades and did not form additional lineages at species level.

#### Phylogenetic clustering of co-occurring genotypes

At regional scale we identified six areas with at least six samples in the dataset (Fig. 2). The SES.MPD values for all areas were negative (-4.41 to -1.15) and significantly deviated from the null distribution, with the exception of Bavaria, Germany (P=0.068), suggesting phylogenetic clustering. At tree scale (Fig. 3) the SES.MPD values for each tree were also negative (-1.79 to -0.98) but did not deviate significantly from the null distribution (P > 0.05). When compared across the two scales, the SES.MPD values at regional scale were generally more negative and significantly deviated from the null distribution, whereas the values at local scale were less negative and did vary significantly from the null distribution.

### Discussion

Our phylogenetic reconstruction of the *Graphis scripta* complex revealed several distinct lineages, in accordance with a previous study (Kraichak et al. 2015). The geographic distribution of these lineages, combined with branch length patterns, support the notion that they are to



Figure 2. Phylogenetic distribution of the Graphis scripta complex specimens from six localities, and their associated SES.MPD and P-values.



Figure 3. Phylogenetic distribution of the *Graphis scripta* complex specimens from two host trees found in Styria, Austria, and their associated SES.MPD and P-values.

be interpreted as distinct species and not as genetically variable, geographically isolated populations of a single taxon. The analyses of co-occurrence patterns showed that at the regional level, the specimens in the same region were significantly more closely related than expected from chance, while the clustering pattern was less clear at local level. The discrepancy in the phylogenetic patterns at two spatial scales points to the potential differences in the processes by which these specimens have come to occur (Fig. 4).

At the broad geographical scale considered in this study, the co-occurring specimens exhibited the clustering pattern in the comparison to the global phylogeny pool. Under the traditional community framework this pattern is interpreted to be a result of habitat filtering that selects similar individuals into the same habitat due to their similarity of ecological requirements (Webb et al. 2002). A study of Amazonian plant communities also showed that phylogenetic clustering is more common at a larger scale (25-10,000 m<sup>2</sup>; Kraft & Ackerly 2010). For lichens, however, it is unlikely that the habitats across the landscape at this broad scale would be uniform enough to exert such a strong habitat-filtering effect on the species pool (Kraft & Ackerly 2010). One of the few studies of the distribution dynamics of lichenized fungi showed that environmental filtering is significant to a local assemblage but also is much constrained by local dispersal dynamics (Schei et al. 2012). We would need functional traits of these lichens to validate the assumption that the more genetically similar individuals would have a similar set of traits associated with habitat filtering; that is beyond the scope of this study. Moreover, studies of the correlations between traits and genetic distance in the context of community assembly have shown mixed results (Cahill et al. 2008; Alexandrou et al. 2014; Naughton et al. 2015). Without more concrete evidence on the functional traits of these lichens, habitat filtering cannot be confirmed as a main assembly mechanism here.

We can offer two alternative mechanisms (Fig. 4). First, the phylogenetic clustering of the specimens can be the result of dispersal events, where only certain clades from the global phylogenetic pool disperse to an area. In this case the genetically similar individuals in the region are simply the result of an initial dispersal event and its subsequent in situ propagation. Second, local diversification of a lineage can also lead to a clustering pattern. Within a region, a lineage may diverge genetically and give rise to genetically similar populations across the landscape, as has been shown in several other lichen groups (Printzen & Ekman 2003; Walser et al. 2005; Lindblom & Ekman 2006). It should be noted that these two explanations are not mutually exclusive, as local diversification can be followed by dispersal of the resulting lineages to another area (also known as secondary contact). High dispersal ability has been widely recognized in lichenized fungi (Sillett et al. 2000; Yemets et al. 2014). This would appear to be the case for the Graphis scripta complex as well, because, despite the clustering pattern, each of the genetic groups contains specimens from various geographic areas, suggesting that dispersal limitation is unlikely for this complex (Kraichak et al. 2015). However, because we observed the clustering patterns in this study, it is also possible that long-range dispersal events might be rare and do not contribute in the assembly process. Additional molecular markers, such as microsatellite or RADseq data, will be needed at population level to illustrate the relative importance of these processes.

At local scale the co-occurring specimens from Styria did not exhibit significant phylogenetic clustering. The standardized values of MPD, while still negative, showed less deviation from the null expectation. This result showed that each individual tree hosted multiple distantly related genotypes, which is consistent with the patterns we would expect from the competition-relatedness hypothesis



Figure 4. Schematic diagram illustrating an assembly model of the Graphis scripta complex community, based on the current findings.

(Cahill et al. 2008). Several studies showed that competition between lichen thalli does occur at local level, as they are limited by the availability of space on the substrate (Armstrong 1986; Armstrong & Welch 2007; Pastore et al. 2014). However, crustose lichens such as *Graphis scripta* are also known for their slow growth, which prevents their use in a manipulative experiment to illustrate competitive interactions (Lange 1990; Armstrong & Bradwell 2010). However, since SES.MPD at this scale did not significantly deviate from the null distribution (standardized zero), we can attribute a random process such as random colonization as a possible mechanism for the local assemblage of multiple genotypes within the *Graphis scripta* complex, with little or no influence of competition (Webb et al. 2008).

Scale-dependent community phylogenetic patterns have been discovered in several empirical and theoretical works (Swenson et al. 2006; Kraft & Ackerly 2010). In many cases such sensitivity to the scale of analysis leads to problems in inferring biological processes from the observed pattern, especially when the species pool and local taxa are not completely sampled (Swenson et al. 2006; Cavender-Bares et al. 2009). However, it is also suggested that scale-sensitive patterns can be used as a way to gain a more comprehensive understanding of assembly processes which will encompass local and regional processes as well as the evolutionary dynamics of studied taxa (Swenson et al. 2006; Gerhold et al. 2015). In this study we integrated phylogenetic data with their locality information to analyze co-occurrences at two spatial scales and to propose an assembly of this species complex of lichenized fungi. To our knowledge, this is one of the first studies employing the community phylogenetic approach to examine the co-occurrence of closely related taxa in lichenized fungi. We hope that our approach will stimulate the use of interdisciplinary tools to study the ecology and evolution of lichens.

#### Acknowledgements

We would like to thank A. Aptroot, A. Beck, P. Dornes, V. John, K. Kalb, J. C. Lendemer, B. McCune, M. P. Nelsen, G. Neuwirth, M. Sohrabi, T. Sprillbe and T. Tønsberg for providing material for the current and previous studies. A. Nutakki, S. Parnmen and L. Strozier are thanked for their help in generating part of the molecular data. The project was funded by the U.S. National Science Foundation (NSF; DEB-1025861). The preparation and presentation of the manuscript were funded in part by grants from the Field Museum of Natural History, USA, and the Faculty of Science and Graduate School of Kasetsart University, Thailand.

## Supplementary electronic material

**Figure S1**. Phylogram from maximum likelihood analyses of nuLSU, *EF-1*, *RPB2* sequences from specimens in the *Graphis scripta* complex. Blue lettering refers to samples new to this study. Download file

File S1. Concatenate alignment of nuLSU, *EF-1* and *RPB2* sequences from specimens in the *Graphis scripta* complex, in nexus format. Download file

File S2. Maximum likelihood tree from the concatenated alignment of nuLSU, *EF-1*, *RPB2* sequences from specimens in the *Graphis scripta* complex, in newick format. Download file

#### References

- Acharius, E. 1809. Förteckning pa de i Sverige växande arter af Lafvarnes famille. Kongliga Vetenskaps Academiens Nya Handlingar 30: 145–169.
- Alexandrou, M. A., Cardinale, B. J., Hall, JD., Delwiche, C. F., Fritschie, K., Narwani, A., Venail, P. A., Bentlage, B., Pankey, M. S. & Oakley, T. H. 2014. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. *Proceedings of The Royal Society B: Biological Science* 282(1799): 20141745.
- Armstrong, R. A. 1986. Competition between three lichen species using a factorial experimental design. *New Phytologist* 104: 637–641.
- Armstrong, R. A. & Bradwell, T. 2010. Growth of crustose lichens: A review. Geografiska Annaler, Series A: Physical Geography 92: 3–17.
- Armstrong, R. A., & Welch, A. R. 2007. Competition in lichen communities. Symbiosis 43: 1–12.
- Bolliger, J., Bergamini, A., Stofer, S., Kienast, F. & Scheidgger, C. 2007 Predicting the potential spatial distributions of epiphytic lichen species at the landscape level. *The Lichenologist* 39: 279–291.
- Bowker, M. A. & Maestre, F. T. 2012. Inferring local competition intensity from patch size distributions: A test using biological soil crusts. *Oikos* 121: 1914–1922.
- Burns, J. H. & Strauss, S. Y. 2011. More closely related species are more ecologically similar in an experimental test. *Proceedings of the National Academy of Sciences of the United States of America* 108: 5302–5307.
- Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants? *Perspectives in Plant Ecology, Evolution* and Systematics 10: 41–50.
- Cavender-Bares, J., Keen, A. & Miles, B. 2006 Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. *Ecology* 87: S109–S122.
- Cavender-Bares J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. 2009. The merging of community ecology and phylogenetic biology. *Ecology Letters* 12: 693–715.
- Cooper, N., Rodriguez, J. & Purvis, A. 2008. A common tendency for phylogenetic overdispersion in mammalian assemblages. *Proceed*ings of The Royal Society B: Biological Science 275: 2031–2037.
- Darwin, C. 1859. On the Origin of the Species. John Murray, London.
- Edgar, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
- Gause, G. F. 1934. *The Struggle for Existence*. Williams and Wilkins, Baltimore.
- Genet, A., Grabarnik, P., Sekretenko, O. & Pothier, D. 2014. Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry. *Ecological Modelling* 288: 143–154.
- Gerhold, P., Cahill Jr., J. F., Winter, M., Bartish, I. V. & Prinzing, A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). *Functional Ecology* 29: 600–614.
- Gnüchtel, A. 2014. Die Verbreitung der Arten des Graphis scripta-Komplexes in Sachsen und den angrenzenden Gebieten Nordböhmens. Sächsische Floristische Mitteilungen 16: 58–64.
- Herben, T. & Goldberg, D. E. 2014. Community assembly by limiting similarity vs. competitive hierarchies: testing the consequences of dispersion of individual traits. *Journal of Ecology* 102: 156–166.
- Horner-Devine, M. & Bohannan, B. J. M. 2006. Phylogenetic clustering and overdispersion in bacterial communities. *Ecology* 87: S100–S108.
- Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755.
- John, E. & Dale, M. R. T. 1989. Niche relationships amongst *Rhizocarpon* species at Jonas Rockslide, Alberta, Canada. *The Lichenologist* 21: 313–330.

- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647–1649.
- Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P. & Webb, C. O. 2010. Picante: R tools for integrating phylogenies and ecology. *Bioinformatics* 26: 1463–1464.
- Kembel, S. & Hubbell, S. P. 2006. The phylogenetic structure of a Neotropical forest tree community. *Ecology* 87: S86–S99.
- Kraft, N. J. B. & Ackerly, D. D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. *Ecological Monographs* 80: 401–422.
- Kraichak, E., Lücking, R., Aptroot, A., Beck, A., Dornes, P. et al. 2015. Hidden diversity in the morphologically variable script lichen (*Graphis scripta*) complex (Ascomycota, Ostropales, Graphidaceae). Organisms Diversity and Evolution 15: 447–458.
- Lange, O. L. 1990. Twenty-three years of growth measurements on the crustose lichen *Caloplaca aurantia* in the central Negev Desert. *Israel Journal of Botany* 39: 383–394.
- Lawrey, J. D. 1981. Evidence for competitive release in simplified saxicolous lichen communities. *American Journal of Botany* 68: 1066–1073.
- Lindblom, L. & Ekman, S. 2006. Genetic variation and population differentiation in the lichen-forming ascomycete *Xanthoria parietina* on the island Storfosna, central Norway. *Molecular Ecology* 15: 1545–1559.
- Linnaeus, C. 1753. Species Plantarum. Salvius, Stockholm.
- Lücking, R. 2001. Lichens on leaves in tropical rainforests: life in a permanently ephemerous environment. *Dissertationes Botanicae* 346: 41–77.
- Lücking, R. & Bernecker-Lücking A. 2002. Distance, dynamics, and diversity in tropical rainforests: an experimental approach using foliicolous lichens on artificial leaves. I. Growth performance and succession. *Ecotropica* 8: 1–13.
- Lücking, R., Johnston, M. K., Aptroot, A., Kraichak, E., Lendemer, J. C. et al. 2014. One hundred and seventy-five new species of Graphidaceae: closing the gap or a drop in the bucket? *Phytotaxa* 189: 7–38.
- Lücking, R., Villaseñor, J. L., Herrera-Campos, M. A., Pérez-Pérez, R. E., Egan, R. S. et al. 2016. Phylogenetic structure of metacommunities in Mexican Parmeliaceae (lichenized Ascomycota: Lecanorales). *Bibliotheca Lichenologica* 110: 27–54.
- Lücking, R., Archer, A. W. & Aptroot, A. 2009. A world-wide key to the genus *Graphis* (Ostropales: Graphidaceae). *The Lichenologist* 41: 363–452.
- MacArthur, R. H. & Levins, R. 1967 Limiting similarity convergence and divergence of coexisting species. *American Naturalist* 101, 377–385.
- Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Gateway Computing Environments Workshop (GCE)*, 2010: 1–8.
- Naughton, H. R., Alexandrou, M. A., Oakley, T. H., & Cardinale, B. J. 2015. Phylogenetic distance does not predict competition in green algal communities. *Ecosphere* 6: 1–19.
- Neuwirth G. 2013. Der *Graphis scripta*-komplex in Oberösterreich. *Stapfia* 99: 61–74.
- Neuwirth, G. & Aptroot, A. 2011. Recognition of Four Morphologically Distinct Species in the *Graphis scripta* Complex in Europe. *Herzogia* 24: 207–230.
- Otte, V. 1999. Karten zur Flechtenverbreitung in Brandenburg: *Graphis scripta* (L.) Ach. und *Pyrenula nitida* (Weigel) Ach. *Gleditschia* 27: 139–146.
- Paradis, E., Claude, J. & Strimmer, K. 2004. APE: analyses of phylogenetics and evolution in R language. *Bioinformatics* 20: 289–290.

- Pastore, A. I., Prather, C. M., Gornish, E. S., Ryan, W. H. & Ellis, R. D. 2014. Testing the competition-colonization trade-off with a 32-year study of a saxicolous lichen community. *Ecology* 95: 306–15.
- Peterson, G., Allen, C. R. & Holling, C. S. 1998. Ecological resilience, biodiversity, and scale. *Ecosystems* 1: 6–18.
- Printzen, C. & Ekman, S. 2003. Local population subdivision in the lichen *Cladonia subcervicornis* as revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. *Mycologia* 95: 399–406.
- Rambaut A. 2012. FigTree. Version 1.4.4.
- Rivas Plata, E., Parnmen, S., Staiger, B., Mangold, A., Frisch, A. et al. 2013. A molecular phylogeny of Graphidaceae (Ascomycota, Lecanoromycetes, Ostropales) including 428 species. *MycoKeys* 6: 55–94.
- Schei, F. H., Blom, H. H., Gjerde, I., Grytnes, J-A., Heegaard, E. & Saetersdal, M. 2012. Fine-scale distribution and abundance of epiphytic lichens: environmental filtering or local dispersal dynamics? *Journal* of Vegetation Science 23: 459–470.
- Sillett, S. C., McCune, B., Peck, J. L. E., Rambo T. R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. *Ecological applications* 10: 789–799.
- Slingsby, J. A. & Verboom, G. A. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. *American Naturalist* 168: 14–27.
- Smith, A. B., Sandel, B. S., Kraft, N. J. B. & Carey, S. 2013. Characterizing scale-dependent community assembly using the functionaldiversity-area relationship. *Ecology* 94: 2392–2402.
- Stamatakis, A. 2006. RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. *Bioinformatics* 22: 2688–2690.
- Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Systematic Biology* 57: 758–771.

- Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. 2006. The problem and promise of scale dependency in community phylogenetics. *Ecology* 87: 2418–2424.
- Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. *Molecular Ecology* 18: 572–592.
- Verdú, M. & Pausas, J. G. 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. *Journal of Ecology* 95: 1316–1323.
- Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. 2011. Phylogenetic limiting similarity and competitive exclusion. *Ecology Letters* 14: 782–787.
- Walser, J. C., Holderegger, R., Gugerli, F., Hoebee, S. E. & Scheidegger, C. 2005. Microsatellites reveal regional population differentiation and isolation in *Lobaria pulmonaria*, an epiphytic lichen. *Molecular Ecology* 14: 457–467.
- Webb, C. O. 2000. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. *American Naturalist* 156: 145–155.
- Webb, C. O., Ackerly, D. D. & Kembel, S. W. 2008. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. *Bioinformatics* 24: 2098–2100.
- Webb, C. O., Ackerly, D. D. & McPeek, M. A. 2002. Phylogenies and community ecology. *Annual Review of Ecology and Systematics* 33: 475–505.
- Whiton, J. C., Lawrey, J. D. 1984. Inhibition of crustose lichen spore germination by lichen acids. *The Bryologist* 87: 42–43.
- Wirth, V., Hauck, M. & Schultz, M. 2013. Die Flechten Deutschlands: Band 1 und 2. Ulmer, Stuttgart.
- Yemets, O. A., Solhaug, K. A., Gauslaa, Y. 2014. Spatial dispersal of airborne pollutants and their effects on growth and viability of lichen transplants along a rural highway in Norway. *The Lichenologist* 46: 809–823.
- Zahlbruckner, A. 1923. *Catalogus lichenum universalis*. Gebrüder Borntraeger: Leipzig.