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Abstract: We propose a new monitoring procedure based on moving sums (MOSUM) for detecting single or
multiple structural breaks in factor copula models. The test compares parameter estimates from a rolling
window to those froma historical data set and analyzes the behavior under the null hypothesis of no parameter
change. The case of multiple breaks is also treated. In the model, the joint copula is given by the copula of
random variables which arise from a factor model. This is particularly useful for analyzing high dimensional
data. Parameters are estimated with the simulated method of moments (SMM). We analyze the behavior of the
monitoring procedure inMonte Carlo simulations and a real data application.We consider an online procedure
for predicting the day-ahead Value-at-risk based on the suggested monitoring procedure.
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1 Introduction

Analyzing time-variant parameters in models for financial data is a research topic of wide importance. In this
paper,we consider factor copulamodelswhichhavebeen recently proposedbyOhandPatton (2017) andKrupskii
and Joe (2013), and we focus on the first approach. In such models, the joint copula between random variables is
given by the copula of random variables which arise from a factor model. The time-varying parameters are factor
loadings and the parameters describing the distributions of the common and idiosynchratic factors.

The advantage of these models is that they can be used in relatively high dimensional applications and
nevertheless capture the dependence structure by a fairly low number of parameters. Alternative copula
models suitable for high-dimensional data are hierarchical Archimedean copulas (see Savu and Trede 2010)
and vine copulas (see Bedford and Cooke 2002). We focus on factor copula models to have both considerable
model flexibility and parsimonious parametrizations that allow for reliable statistical inference.

For the estimation of themodel parameters, we use the simulatedmethod ofmoments (SMM) as suggested
by Oh and Patton (2013), which is different to standard method of moments applications, since the theoretical
moment-counterparts are simulated and not as usual analytically derived. This makes asymptotic theory such
as deriving consistency and asymptotic distribution results of the estimators more difficult. The reason is that
the objective function is not continuous and furthermore not differentiable in the parameters and standard
asymptotic approaches cannot be used here.

There are many papers which deal with monitoring procedures for detecting structural changes; some go
back to the seminal paper by Chu, Stinchcombe, andWhite (1996) onmonitoring the regression parameters in a
linear regression model. The basic idea is that an initial training sample with constant parameters is available
and the goal is to monitor for changes in the correlation as new data become available. A more recent paper
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concerned with this problem is Kurozumi (2017) who considers endogenous regressors. In the context of
univariate financial time series Garthoff (2014) provides a sequential analysis of financial time series, where
mean and variance of time series are simultaneously monitored. Hoga and Wied (2017) construct a sequential
monitoring procedure for changes in the tail index and extreme quantiles of beta-mixing random variables,
which can be based on a large class of tail index estimators. Furthermore, Pape, Wied, and Galeano (2017)
propose a model-independent multivariate sequential procedure to monitor changes in the vector of
component wise unconditional variances in a sequence of p-variate random vectors. In the context of moni-
toring dependence measures, Wied and Galeano (2013) develop a monitoring procedure to test for the con-
stancy of the correlation coefficient of a sequence of randomvariables. Na and Lee (2014) propose amonitoring
test for stability of copula parameter in time series. Finally, Dette and Goesmann (2019) propose a new
approach for sequential monitoring a parameter of a d-dimensional time series, where a closed-end-method
motivated by the likelihood ratio testing principle is considered.

The aim of this paper is to construct a new parametric monitoring procedure, based on moving sums
(MOSUM), for the parameters in factor copula models. Rolling window parameter estimates are compared to
the parameter estimates of an initial training sample for which we can assume constant parameter values.
Concerning the assumption of constant parameters for the initial training period, we suggest applying the
retrospective changepoint test inManner, Stark, andWied (2019) to pre-test this crucial assumption. These two
tests complement each other in the sense that the monitoring procedure proposed here is meant for real-time
monitoring of change-points, whereas the test in Manner, Stark, and Wied (2019) detects structural change in
factor copulas in a retrospective way.

Westudy the asymptotic properties of the test and suggest a bootstrapprocedure to approximate its resulting
asymptotic distribution. We then analyze size and power properties of our procedure in single and multi break
situations in Monte Carlo simulations. Finally, we use the monitoring procedure in a real-data application for a
data set covering the last financial crisis. We also propose an online procedure for predicting the 1-day ahead
Value-at-risk using simulations from the considered factor model accounting for the detected change-points.

The rest of the paper is structured as follows: Section 2 presents the model and the monitoring procedure,
whereas in Section 3 we study its asymptotic distribution under the setting of simulated method of moments
estimation. Results from the Monte Carlo simulations can be found in Section 4. Section 5 presents our
empirical application and Section 6 concludes the paper. The main proof can be found in the appendix.

2 Model, null hypothesis, detectors and monitoring

In this section we present the factor copula model (Section 2.1), followed by our testing problem and the
monitoring procedure (Section 2.2).

2.1 Factor copula model

We consider the same class of data-generating process as in Manner, Stark, and Wied (2019), i.e. the factor
copula model proposed by Oh and Patton (2017). In this class the dynamics of the marginal distributions are
determined by a parameter vector ϕ0 ∈ R

r. We have d cross sectional dimensions and each variable can have

time varying conditional mean μt(ϕ0): � [μ1t(ϕ0),  …,  μdt(ϕ0)]′ and variance σt(ϕ0): � diag{σ1t(ϕ0),
 …,  σdt(ϕ0)}. The dependence function of the joint distribution of the innovations ηt, namely the copula
C(⋅,  θt), depends on the unknown parameter vector θt for t � 1,  …,  T, which we allow to be time-varying in
general. The data-generating process is given by

[Y 1t ,  …,  Ydt]′ � :Yt � μt(ϕ0) + σt(ϕ0)ηt ,
where [η1t ,  …,  ηdt] � : ηt with distribution function Fη � C(F1(η1),  …,  Fd(ηd);  θt) by Sklar’s theorem. This
means that the joint distribution of the innovations is given by the copula C, capturing the contemporaneous
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dependence, evaluated at the marginal distributions Fi,  i � 1,  …,  d. Moreover μt and σt are F t−1-measurable
and independent of ηt.F t−1 is the sigmafield containing information from thepast {Yt−1,  Yt−2,  … }. Note thatϕ0

is assumed to be
��
T

√
consistently estimable, which is fulfilled by most commonly used time series models, e.g.

ARMA and GARCHmodels (see, e.g. Francq and Zakoian 2004), and the corresponding estimator is denoted as
ϕ̂. For the contemporaneous dependence of the vector ηt, estimated using standardized residuals η̂t, we
assume the factor copula model C(⋅,  θt), which is implied by the following linear factor structure

[X1t ,  …,  Xdt]′ � :Xt � βtZt + qt , (2.1)

i.e., Xit � ∑K
k�1 β

t
ikZkt + qit with idiosyncratic factors qit ∼

iid Fq(αt) and common factors Zkt ∼
iid Fzk(γkt), for

i � 1,  …,  d, t � 1,  …,  T and k � 1,  …,  K. Here K denotes the number of factors. Note that Zkt and qit are
independent ∀i,  k,  t. The distribution function of Xt, Fx implies the factor copula C(⋅,  θt), i.e.,

Fx(x1t ,  …,  xdt ;  θt) � C(G1(x1t ;  θt),  …,  Gd(xdt ;  θt);  θt) (2.2)

with continuousmarginal distributionsGi(⋅,  θt) and θt � [vec(βt)′ ,  αt
′ ,  γ1t ′ ,  …,  γKt ′]′. Note that in thismodel we

are only interested in the implied factor copula C(⋅, θt) from the (latent) factor structure (2.1). We completely
ignore the marginal distributions Gi(⋅, θt) of the factor model, which are in general different from Fi(⋅), the
marginal distributions of ηt. The advantage of thesemodels is that they can be applied in high dimensions and
nevertheless capture the dependence structure by a relatively low numbers of parameters. Through the choice
of the distributions of the common factor Fzk and the idiosyncratic error distribution Fq one can adapt
asymmetry and tail dependence properties to the copula, which is useful when dealing with financial data. A
(block-) equidependence structure can be accommodated by placing appropriate restrictions on θt. See Oh and
Patton (2017) for more details on the properties of factor copulas. The estimation of the p × 1 vectors θt ∈ Θ of
the copula is based on the simulated method of moments described in Section 3.1 below.

As the notation suggests, we consider a constant model structure and allow the parameters to be time-
varying, having a piece-wise constant model in mind, i.e. Fq(αt) and Fzk(γkt) are only time-varying through
their parameter vectors αt and γkt. We make this more precise in the next subsection.

2.2 Null hypothesis and detectors

In this paper we want to test the null hypothesis of no parameter change of the factor copula model that is
assumed to describe the residual dependence. Themain idea is to compare parameter estimates froma training
sample of size ⌊mT⌋ (that we call “initial sample” for the remainder of the paper), for which constant depen-
dence is assumed, to sequentially estimated parameters from a rolling data window of the same size. Thus, we
are considering a MOSUM type procedure; see Chu, Hornik, and Kuan (1995). Here T is the length of the
monitored time series andm a value in (0, 1]. Sincewe are interested in sequentiallymonitoringwhether or not
the parameter θt changes in t � mT + 1,  …,  T, we assume that the parameters remain constant over the initial
sample t � 1,  …,  mT, meaning that:

Assumption 1. θ1 � ⋯ � θmT . (2.3)

In practice, if a sufficient amount of initial data is available, this assumption can be tested by using the test
for parmeter constancy in factor copulas proposed in Manner, Stark, and Wied (2019).

We are interested in testing the null hypothesis

H0 : θ1 � ⋯ � θmT � θmT+1 � …

versus the alternative
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H1 : θ1 � ⋯ � θmT � ⋯ � θmT+k*−1 ≠ θmT+k* � θmT+k*+1 � ⋯,

by using the detector

DT(s): � m2T(θ̂1+(s−m)T :sT − θ̂1:mT)′(θ̂1+(s−m)T :sT − θ̂1:mT), (2.4)

where s ∈ [m,  1], k* ≥ 1 and mT + k* is the unknown change point and θ̂t1 :t2 a consistent estimator for θ that is
based on the subsample ranging from t1 to t2. Note that for the sake of thrift, we use the same parameterm for
the initial period and further rolling window periods. Furthermore, we do not need a certain weighted devi-
ation factor, due to the fact we consider aMOSUM-type test statistic in contrast to for example Pape,Wied, and
Galeano (2017), where an expanding window is used. Themonitoring procedure is stopped if theMOSUM-type
detector defined in (2.4) exceeds the appropriately chosen constant critical value c for the first time k. This
yields the stopping rule

τT : � inf
k
{k ≤ T : DT(kT) > c},

where τT is the stopping time of the monitoring procedure. Here c is chosen in a way that under H0 the
monitoring procedure holds the size level lim

T ,S→∞
 P(τT <∞|H0) � α, with α ∈ (0,  1). The quantity S refers to the

number of simulations used to approximate the moments, see Section 3.1.
We write τT <∞ to indicate that the monitoring has been terminated during the testing period, meaning

that the detector crossed the boundary value c at a time point k ≤ T. On the other hand, we write τT � ∞, if DT

does not cross the boundary value during the testing period. Note that the detected stopping time τT is not
meant to be an estimator of change point, as the actual change point is likely to be earlier. This is due to the fact
the monitoring procedure needs a sufficient number of observations after a change point before it can be
detected. In the next chapter we present a procedure for estimating the change point conditional onH0 having
been rejected.

Similar to the detector defined in (2.4) we consider an alternative detector that is based directly on the
moment conditions used to estimate the model.

MT(s): � m2T(m̂1+(s−m)T :sT − m̂1:mT)′(m̂1+(s−m)T:sT − m̂1:mT) (2.5)

This allows for monitoring the corresponding dependence measures in a model-free way. Under the assumed
factor copula model it can be used to monitor the stability of the model parameters. Furthermore, it has the
added advantage of being computationally much less demanding since no model parameters have to be
estimated and it does not depend on any simulated quantities.

3 Estimation and asymptotics

In this section we describe our theoretical results. The estimation of the factor copula model by the SMM is
reviewed in Section 3.1, whereas the asymptotic behavior of our monitoring procedures is studied in Section
3.2. A bootstrap algorithm to approximate the asymptotic distribution is presented in Section 3.3 and a
procedure for detecting multiple breaks is described in Section 3.4.

3.1 SMM estimation

We are interested in estimating the parameter vector θuT :vT for the subsample ranging from ⌊uT⌋ to ⌊vT⌋, where
u < v and u,  v ∈ [ε,  1], with ε > 0. The value ε is chosen by the applicant; typical values are 0.1 or 0.2. This is
achieved by using the SMM, where the estimator is defined as
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θ̂uT :vT , S :� arg min
θ∈Θ

 QuT:vT , S(θ),

where QuT:vT, S(θ): � guT:vT, S(θ)′Ŵ(uT:vT)guT:vT , S(θ) is the objective function,
ga:b, S(θ): � m̂a:b − m̃S(θ),  a < b, (3.1)

and Ŵ(uT :vT) a positive definite weightmatrix which convergence in probability toW. For simplicity one can chose
the k × k identity matrix. The moment conditions m̂uT :vT are k × 1 vectors of appropriately chosen pairwise
dependencemeasures m̂ij

uT :vT (possibly averaged over equidependent pairs), computed from the residuals {η̂t}vTt�uT ,
whereas m̃S(θ) is an approximation for the corresponding vector of true dependence measures. Note that the
dependencemeasures implied by the factor copulamodel are typically not available in closed form and they have
tobeobtainedby simulation. Therefore, the classicalmethodofmoments (MM) or generalizedmethodofmoments
(GMM) cannot be used here. The true dependence measures are approximated using S simulations {η̃t}St�1 from Fx

from equation (2.2), and hence the objective function, the estimator, and consequently our detector defined in
equation (2.4) depend on the number of simulations S. Following the simulation studies in Oh and Patton (2013),
we chose S � 25 ⋅ (vT − uT) and we need to ensure that the sub-sample ranging from uT to vT is large enough to
receive reasonable SMM estimates. In our simulation studies we find that our procedure still results in reasonable
size and power properties by choosing uT − vT � mT � 250 data points. For the dependencemeasures of the pair
(ηi,  ηj), we use Spearman’s rank correlation ρij and the quantile dependence λijq. These are defined as

ρij: � 12 ∫
1

0

∫
1

0

Cij(ui,  vj)duidvj − 3

λijq: �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P[Fi(ηi) ≤ q∣∣∣∣∣Fj(ηj) ≤ q] � Cij(q,  q)
q

, q ∈ (0,  0.5]

P[Fi(ηi) > q
∣∣∣∣∣Fj(ηj) > q] � 1 − 2q + Cij(q,  q)

1 − q
, q ∈ (0.5,  1)

.

The sample counterparts for the observations between uT and vT are defined as

ρ̂ij: � 12
⌊vT − uT⌋

∑
⌊vT⌋

t�⌊uT⌋
F̂

uT :vT

i (η̂it)F̂ uT :vT

j (η̂jt) − 3

λ̂
ij

q: �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ĉ
uT:vT

ij (q,  q)
q

,  q ∈ (0,  0.5]

1 − 2q + Ĉ
uT:vT

ij (q,  q)
1 − q

, q ∈ (0.5,  1)
,

where F̂
uT:vT

i (y): � 1
vT−uT ∑vT

t�uT1{η̂it ≤ y} and Ĉ
uT:vT

ij (u,  v): � 1
vT−uT ∑vT

t�uT1{F̂
uT:vT

i (η̂it) ≤ u,  F̂
uT :vT

j (η̂jt) ≤ v}. The simu-
lated counterparts of these dependencemeasures based on the simulations {η̃t}St�1 are defined analogically and
are denoted by ρ̃ij and λ̃

ij

q.
In summary, the SMM estimator minimizes the weighted difference between suitable sample dependence

measures and theirmodel counterparts obtained by simulation. Depending on the precisemodel specification,
the pairwise dependence measures are averaged for groups, which have the same factor loadings. For more
information on SMM estimation and a suitable way to average the pairwise dependence measures for equi-
dependence or block equidependence models see Oh and Patton (2013, 2017).

3.2 Asymptotics

To derive the asymptotic distribution of our detector (2.4), we consider Assumption 1 and Assumptions 3–6
(given in the appendix), which are fullfilled by the considered ARMA-GARCH factor copula model, see Oh and
Patton (2013) and references therein. We follow similar steps as in Manner, Stark, and Wied (2019) where the
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difference is that we replace the scale factor s
��
T

√
bym

��
T

√
and that we derive the following distributional limit

for the process s↦m
��
T

√
g1+(s−m)T :sT, S(θ) with g⋅:⋅, S(θ) from equation (3.1), S

T → k ∈ (0,  ∞] and T ,  S→∞:

m
��
T

√
g1+(s−m)T :sT , S(θ) � m

��
T

√ (m̂1+(s−m)T:sT − m̃S(θ))
� m

��
T

√ (m̂1+(s−m)T :sT −m0(θ)) −m
��
T

√ (m̃S(θ) −m0(θ))

� m
��
T

√ (m̂1+(s−m)T :sT −m0(θ)) − ��
T
S

√
m

�
S

√ (m̃S(θ) −m0(θ))

⇒d A(s) − m��
k

√ B.

Here and in the following, ⇒ denotes convergence of stochastic processes in certain metric spaces. In this
particular case, the convergence takes place in the Cádlág space D[m,  1] for m ≥ ε > 0. Moreover, A(s) is a
Gaussian process defined in the proof of Theorem 1 in the Appendix and B: � N(0,  Σ0) a centered Gaussian
distribution with covariance matrix Σ0, for details see Oh and Patton (2013). The limit result follows by using
the independence of the moment process calculated from the data and the moment process corresponding to
the simulated data. Note that the term m�

k
√ B cancels out in later considerations, e.g. to determine the critical

value c using the bootstrap procedure proposed in Section 3.3.

Theorem 1. Under the null hypothesis H0 : θ1 � ⋯ � θmT � θmT+1 � … and under Assumption 1 in Section 2.2 and
Assumptions 2–5 in the Appendix, we obtain for m ≥ ε > 0

m
��
T

√ (θ̂1+(s−m)T:sT , S − θ0)⇒d A*(s)

as T,  S→∞ in the space of Càdlàg functions on the interval [m,  1] and S
T → k ∈ (0,  ∞]. Here,

A*(s) � (G′WG)−1G’W(A(s) − m�
k

√ B) and θ0 is the (constant) value of θt under the null. Note that G is the

derivative matrix of g0(θ) with g1:mT , S(θ)→pg0(θ) for T ,  S→∞.

With Theorem 1 we obtain for T ,  S→∞

m
��
T

√ (θ̂1+(s−m)T:sT , S − θ̂1:mT , S)
� m

��
T

√ (θ̂1+(s−m)T :sT , S − θ0) −m
��
T

√ (θ̂1:mT , S − θ0)
⇒d A*(s) − A*(m).

From this we can conclude the asymptotic behavior of our parameter detector (2.4) under H0, which we
state in Corollary 1.

Corollary 1. Under the null hypothesis H0 : θ1 � ⋯ � θmT � θmT+1 � … and if the assumptions from Theorem 1
hold, we obtain for our detector

DT, S(s) � m2T(θ̂1+(s−m)T :sT , S − θ̂1:mT , S)′(θ̂1+(s−m)T :sT , S − θ̂1:mT, S)
⇒d (A*(s) − A*(m))′(A*(s) − A*(m)) � :Q(s)

as T ,  S→∞ and S
T → k ∈ (0,  ∞].

The asymptotic behavior of our moment detector (2.5) can be found in Corollary 2.

Corollary 2. Under the null hypothesis H0 : θ1 � ⋯ � θmT � θmT+1 � … and if the assumptions from Theorem 1
hold, we obtain

MT(s) � m2T(m̂1+(s−m)T :sT − m̂1:mT)′(m̂1+(s−m)T:sT − m̂1:mT)
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⇒d (A(s) − A(m))′(A(s) − A(m)) � :R(s)
as T →∞.

With the limit distribution of our detector Q(s), we define the boundary value c in our monitoring pro-
cedure as the upper α-quantile of

sup
s∈[m,1]

Q(s) � sup
s∈[m,1]

(A∗(s) − A∗(m))′(A∗(s) − A∗(m)), m ≥ ε > 0. (3.2)

Thus, lim
T ,S→∞

P(τT <∞|H0) � lim
T ,S→∞

P(inf
k
{k ≤ T : DT , S(k) > c} <∞|H0) � α.

In the same way the critical value of the moment monitoring procedure is determined as the upper
α-quantile of sup

s∈[m,1]
R(s). For the estimation of the break pointmT + k*, onceH0 is rejected, we proposemT + k̂,

with

k̂: � argmax
⌊γ(τT−mT)⌋≤i≤τT−mT

i2

τT −mT
(θ̂1+mT:mT+i−1, S − θ̂1+mT :τT−1, S)′(θ̂1+mT :mT+i−1, S − θ̂1+mT :τT−1, S), (3.3)

where we only consider the information from mT + 1 to τm − 1. Note that we need to trim a sufficient fraction
γ(τT −mT) of the beginning, where γ > 0 to receive reasonable SMM estimates. In a similar way, the size of the
rollingwindowmT should not be chosen to small. Note that the stopping time and the break point estimator for
the moment monitoring procedure are defined analogically to the parameter monitoring procedure. As
mentioned above, the moment based monitoring procedure is easy to implement and can be calculated fast,
but in general it has lower power than the parametric procedure. Furthermore, as outlined in Manner, Stark,
and Wied (2019), another disadvantage is that it does not allow testing the constancy of a subset of the
parameters, but only can detect breaks in the whole copula. It may, however, be used to test for breaks in the
dependence in selected regions of the support such as the lower tail. We leave this possibility for future
research.

The limit distributions of DT , S and MT are not known in closed form. To overcome this issue we have to
simulate the critical values using an i.i.d. bootstrap procedure, which is described in the next section.

3.3 Bootstrap distribution

First note that the limit result mainly consists of the limit distribution of the moment vectors, which can be
computed relatively fast, compared to the detector that requires solving a minimization problem. This fact is
used for the construction of the bootstrap. In order to approximate the limiting distribution under the null we
use a parametric i.i.d. bootstrap consisting of the following steps:
i. Sample with replacement from {η̃i}Ti�1 to obtain B bootstrap samples {η̃(b)i }Ti�1, for b � 1,…,B, where {η̃i}Ti�1

stacks the initial residual data {η̂i}mT
i�1 and simulated data {η̃*i }Ti�mT+1 from the assumed model, using the

parameter estimate θ̂1:mT , S from the initial sample period.
ii. Use {η̃(b)i }ti�1+t−mT to compute m̂(b)

1+t−mT:t for t � mT ,…,T and use {η̃(b)i }Ti�1 to obtain m̂(b)
1:T , for b � 1,  …,  B.

iii. For obtaining the critical values of Q(s), calculate the bootstrap version of the limiting distribution of our
detector

K(b): � max
t∈{mT ,…,T}

(A*(b)( t
T
) − A*(b)(m))′(A*(b)( t

T
) − A*(b)(m)),

with A*(b)( t
T): � (Ĝ’ŴTĜ)−1Ĝ′ŴTA

(b)( t
T) and A(b)( t

T) � m
��
T

√ (m̂(b)
1+t−mT :t − m̂(b)

1:T ), where Ĝ is the two sided nu-

merical derivative estimator ofG, evaluated at point θ1:mT, S, computedwith the historical sample {η̂i}mT
i�1 . We can

compute the k-th column of Ĝ by
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Ĝ
k � gT , S(θ̂1:mT , S + ekεT , S) − gT , S(θ̂1:mT , S − ekεT , S)

2εT, S
, k ∈ {1,  …,  p},

where ek is the k-th unit vector, whose dimension is p × 1 and εT , S has to be chosen in a way that it fulfills
εT , S → 0 and min{ ��

T
√

,  
�
S

√ }εT , S →∞.

For obtaining the critical values of R(s), replace A*(b) with A(b).
iv. Compute B versions of K(b) and determine the boundary value c such that

1
B

∑
B

b�1
1{K(b) > c}�! 0.05.

This bootstrapmethod is similar to the bootstrap used in Manner, Stark, andWied (2019), where iii) is adapted
to the monitoring situation. Under the following assumption we obtain that both detectors are valid under the
null hypothesis and a suitable alternative.

Assumption 2. Both the parametric factor copula model and the rank-based estimators fulfill the regularity
conditions in Genest and Rémillard (2008) (Definition 1 and 4).

Theorem 2. Let cBQ be the bootstrapped critical value for Q(s) and cBR the bootstrapped critical value for R(s),
based on B bootstrap replications, respectively. Consider the hypotheses H0 : θ1 � ⋯ � θmT � θmT+1 � … and
H1 : θ1 � ⋯ � θmT � ⋯ � θrT ≠ θrT+1 � … for some m < r < 1. Moreover, let Assumption 1 in Section 2.2,
Assumption 2 and Assumptions 3–6 in the Appendix be true. Then,

lim
T ,S,B→∞

P(inf
k
{k ≤ T : DT, S(k) > cBQ} <∞

∣∣∣∣∣∣∣∣H0) � lim
T ,B→∞

P(inf
k
{k ≤ T :MT(k) > cBR} <∞

∣∣∣∣∣∣∣∣H0) � α

and

lim
T ,S,B→∞

P(inf
k
{k ≤ T : DT , S(k) > cBQ} <∞

∣∣∣∣∣∣∣∣H1) � lim
T ,B→∞

P(inf
k
{k ≤ T :MT(k) > cBR} <∞

∣∣∣∣∣∣∣∣H1) � 1,

whereas, for the last equation, we impose the additional assumption that mmT+1 � ⋯ � mrT ≠mrT+1 � …, where
mt is the vector of true dependence measures at time t.

Clearly, Assumption 2 is high-level, but Genest and Rémillard (2008) and subsequent papers such as
Rémillard (2017) showed that this holds for a wide range of models and estimators. Our Monte Carlo simu-
lations below confirm that the bootstrap indeed results in reasonably sized tests and we leave it as a task for
further research to show that the assumption also holds under lower-level assumptions.

3.4 Multiple break testing

In practice if one is interested in detecting multiple structural breaks in factor copula models in real time, we
propose the following procedure that consists of steps applying the monitoring procedure proposed in this
paper and the retrospective change point test for factor copulas from Manner, Stark, and Wied (2019). In
particular, the retrospective test is used to test for the constant parameter assumption (2.3) in the initial sample
period and to detect the break point location once the monitoring procedure stops.
(1) Compute the retrospective change point statistic sups∈[ε,m]PsT , S from Manner, Stark, and Wied (2019)

for the initialmT observation. If a changepoint is detected go to step 2a). If no changepoint is detected
go to step 2b).

(2a) Estimate the breakpoint location and remove all pre-change observations. Restock the subsample tomT
observations and return to step 1). If there are not enoughobservations left to restock the subsample tomT
observations go to step 4).

8 H. Manner et al.: Detecting structural breaks in factor copula models



(2b) Take the sample as initial sample period. Apply the monitoring procedure to the residuals, i.e. compute
DT , S(s) for s ∈ (m, 1]. Compute the bootstrap critical value c as described in Section 3.3. If a changepoint is
detected go to step 3). If no changepoint is detected go to step 4).

(3) Estimate the location of the changepoint. Then, remove the pre-change observations, use the first mT
observations of the resulting dataset as the new initial sample and return to step 1). If there are not enough
observations left to restock the subsample to mT observations go to step 4).

(4) Terminate the procedure.

In the same way this procedure can be adapted for the moment monitoring procedure. Simulation results for
single and multiple break testing, using the moment or the parameter monitoring procedure can be found in
the next section. An obvious issue with this procedure is its multiple testing nature, in particular given that a
pre-test has to be applied to the initial sample period to ensure that Assumption 1 holds. One should adapt the
significance levels accordingly and be aware of this when interpreting testing results. In our simulation study

and the empirical analysis below we adapt the significance levels to αk � 1 − (1 − α0)1k for the kth hypothesis
test, where α0 is some initially chosen significance level.

4 Simulations

Wenowwant to investigate the size and power and the estimation of the break point location of ourmonitoring
procedure. We consider the simple one factor copula model, i.e. the copula implied by

[X1t ,  …,  Xdt]′ � :Xt � βtZt + qt , (4.1)

where βt � (βt ,  … βt)′ and qt � (qt ,  … qt)′ are d × 1 vectors, Zt ∼ Skew t(σ2,  ν−1,  λ) and qt ∼
iid
t(ν−1) for

t � 1,  …,  T. We fix σ2 � 1, ν−1 � 0.25 and λ � −0.5, so that our model is parametrized by the factor loading
parameter βt.

The sequential parameter estimates β̂t � β̂1−mT+t:t for t � mT,  …,  T in the detector are computed using the
SMM approach with S � 25 ⋅mT simulations. For this we use five dependence measures, namely Spearman’s
rank correlation and the 0.05, 0.10, 0.90, 0.95 quantile dependence measures, averaged across all pairs.
Critical values for the monitoring procedure are computed using B � 500 bootstrap replications.

The nominal size of the tests is chosen to be 5%.Weuse 700Monte Carlo replications to compute the size of
the test and 301 Monte Carlo replications for all other settings.1

Before reporting the simulation results, we report the computation times (in hours) of the procedure in
Table 1. It shows the time it takes to perform the monitoring procedure for a single break, including the
computation of the bootstrap distribution on a standard PC using parallel computation on four cores. It can be
seen that the computations are feasible for all reported cases and that the parameter based detector runs
approximately two to four times longer than the moment detector.

4.1 Size and single break case

We begin with the case of testing against a single break. The rejection rates under the null are presented in
Table 2 for βt � 1 for t � 1,  …,  T, for various combinations of the length of the initial samplemT and dimension
d, where the critical values are calculated using one of the following two possibilities:

1 The computational complexity of the simulations was extremely high due to the fact that for every monitoring procedure the
parameter values need to be estimated a large number of times using the computationally heavy SMMestimator and because critical
values have to be bootstrapped. This explains why we had to restrict ourselves to a limited number of situations for a fairly simple
model. Furthermore, numerical instabilities were present in more complex models when repeatedly estimating the model pa-
rameters. Such problems can be dealt with in empirical applications, but further restrict the potential model complexity in
simulations. The computations were implemented in Matlab, parallelized and performed using CHEOPS, a scientific High Per-
formance Computer at the Regional Computing Center of the University of Cologne (RRZK) funded by the DFG.

H. Manner et al.: Detecting structural breaks in factor copula models 9



i. Calculate the critical value c using the whole, in general not known, data up to time T. This mimics the
situation that the test is used in a retrospective fashion, i.e. once all T observations are available.

ii. Calculate the critical value c using the initial data set together with the data frommT + 1 up to T, based on
the estimated parameter β̂1:mT, S.

The test shows acceptable size for both settings. The empirical size is slightly higher than the nominal level for
the second procedure ii), most likely due to the fluctuation in the parameter estimation in the SMM procedure.
The size of the testing period is always fixed to be T � 1500.

To study the power of the procedure, we generate data with a break point at T2, where the data is simulated

with βt � 1 for t ∈ {1,  …,   T2}, denoted as β0 and with βt � {1.2,  1.4,  1.6,  1.8,  3.0} for t ∈ {T2 + 1,  …,  T}, denoted as

β1. The dimension d is set equal to 10 in this case. With power we mean the probability that our monitoring
procedure stops with in the monitored testing period (τT <∞). The upper panel of Table 3 reveals that the
power of the procedure increases with the size of the initial sample for the two possibilities i) and ii). The
moment monitoring procedure based onMT has similar size characteristics but lower power compared to the
parameter-based procedure. This result is in linewith the results for the retrospective test inManner, Stark, and
Wied (2019).

The second and third panels of the table present the (average) relative stopping times and break point
estimates using (3.3). The table reveals that the averaged stopping time, given that a break has been detected,

occurs with a significant delay after the true break point. It is closer to the true location 1
2 for a smaller

monitoring window, due to the greater impact of new data and, of course, for an increase of the step size
between β0 and β1. If the step size is large enough (β1 � 3.0) themonitoring procedure consistently stops shortly
after the true break point.

The averaged estimated break point locations based on equation (3.3) are closer to the true break point. It
always detects the break before the stopping time. For small shifts in θ it estimates the break too late, whereas

Table : Computation times in hours for monitoring the breakpoint based on the parameter (β) and the vector of dependence
measure (mT ) for different combinations of T and d with β


� . and m � .. Procedures implemented and performed in

MATLAB. Calculations parallelized on four kernels with Intel(R) Core(TM) i- CPU . GHz.

d ¼  d ¼  d ¼  d ¼ 

β T ¼  . . . .
T ¼  . . . .
T ¼  . . . .
T ¼  . . . .

mT T ¼  . . . .
T ¼  . . . .
T ¼  . . . .
T ¼  . . . .

Table : Empirical size for β

� ., T �  and  simulations, using i) the whole sample up to time point T and using ii) the

initial data set and simulated data from mT +  up to T.

d ¼  d ¼  d ¼ 

i) mT ¼  . . .
mT ¼  . . .
mT ¼  . . .
mT ¼  . . .

ii) mT ¼  . . .
mT ¼  . . .
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for large shifts in θ break are estimated a little too early. It seems that a larger initial sample always results in
slightly later stopping times,which can be explained due to the greater impact on the detector by newobserved
data in small rolling window sample sizes. However the usage of smaller window sizes imply lower power of
the procedure. Note that the moment monitoring tends to result in later stopping times and break point
estimates in all cases.

Next, we consider a setting similar to that in Table 3, but where we now consider a break in the skewness
parameter to studywhether the test is able to detection breaks in the shape of the copula.We fix βt � 2 and vary
the skewness parameter λ under the alternative. Similarly to the previous case, we denote its value before the
break as λ0 � −0.5 and its value after the break as λ1 � { − 0.4,   − 0.3,   − 0.2,   − 0.1,  0}. The results in Table 4
show that the test is close in size to its nominal value and the power increases with the size of the break in λ.
Furthermore, the parameter based test again has higher power than the one based on the moments.
Additionally, we consider a heterogeneous two-factor model with several parameters, i.e.

[X1t ,  …,  Xd
2 t
]′ � βt11Z1t + βt12Z2t + qt (4.2)

[X(d
2+1)t ,  …,  Xdt]′ � βt21Z1t + βt22Z2t + qt ,

where βt11 � βt21 � (βt1,  …,  βt1), βt12 � (βt12,  …,  βt12), βt22 � (βt22,  …,  βt22) and the factors again follow a Skew t dis-
tribution with fixed parameters as above. Thus there are two factors and two groups of variables that have the
same loading for the first factor, but a different factor loading for the second factor. The value βt1 is fixed to 0.5

Table : Rejection frequency (rej), average stopping time τT
T and average breakpoint estimate k̂

T for β
� , T �  d �  and

 simulations for the parameter monitoring procedure, where critical values c computedwith the two possibilities i) and ii) and
for the moment monitoring procedure. Data was generated with a break at T


and post-break parameter β


.

β

¼ : β


¼ : β


¼ : β


¼ : β


¼ : β


¼ :

i) mT ¼  . . . . . .
mT ¼  . . . . . .
mT ¼  . . . . . .

ii) mT ¼  . . . . . .
Rej mT ¼  . . . . . .

mT ¼  . . . . . .
mT mT ¼  . . . . . .

mT ¼  . . . . . .
mT ¼  . . . . . .

i) mT ¼  . . . . .
mT ¼  . . . . .
mT ¼  . . . . .

ii) mT ¼  . . . . .
τT
T mT ¼  . . . . .

mT ¼  . . . . .
mT mT ¼  . . . . .

mT ¼  . . . . .
mT ¼  . . . . .

i) mT ¼  . . . . .
mT ¼  . . . . .
mT ¼  . . . . .

ii) mT ¼  . . . . .
bk
T mT ¼  . . . . .

mT ¼  . . . . .
mT mT ¼  . . . . .

mT ¼  . . . . .
mT ¼  . . . . .
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and only the parameters βt12 and β
t
22 are estimated.We consider breaks only in βt12, i.e., the loading of the second

factor for thefirst group. It changes from β012 � 1.5 to β112 � {1.7,  1.9,  2.1,  2.3,  2.5}. The results in Table 5 show some
small size distortions, likely due to the increased estimation error as a consequence of the increased model
complexity. The power increases with the break size as expected. As before, the moment-based test performs
worse compared to the parameter-based test.

Next, we consider the problem of detecting the correct number of breaks using the procedure proposed in
Section 3.4 in the case a single break occurs at time 2T/3 with the parameter changing from β0 � 1 to β1 � 1.5.

For every conducted test k � 1,  2,  … we adapted the significance levels to αk � 1 − (1 − α0)1k with α0 � 0.05 for
correcting themultiple testing setup of our procedure based onGaleano andWied (2014). The results in Table 6
reveal that inmost cases the correct number of breaks is identified. The parameter based test detector performs
much better here, whereas the test based onmT suffers from the general weakness of low power and therefor
often does not detect a single break. The results improve slightly going from d � 10 to d � 20, whereas a larger
size of moving window has a strong effect on the results.

4.2 Two breaks

For the analysis of two breaks we allow for breaks at T
3 and

2T
3 with sample size T � 1500, and dimensions

d � 10 and d � 20. The parameter varies from β0 � 1.0 for t ∈ {1,  …,   T3} to β1 � 1.5 for t ∈ {T3 + 1,  …,   2T3 } and

Table : Rejection frequency (rej), average stopping time τT
T and average breakpoint estimate k̂

T for λ � −., T �  d � 

and  simulations for the parametermonitoring procedure, where critical values c computedwith the two possibilities i) and ii)
and for themomentmonitoring procedure. Data was generatedwith a break at T


and post-break parameter λ. We fixedβ �  and

ν � .

λ ¼ �: λ ¼ �: λ ¼ �: λ ¼ �: λ ¼ �: λ ¼ 

rej i) mT ¼  . . . . . .
ii) mT ¼  . . . . . .
mT mT ¼  . . . . . .

τT
T i) mT ¼  . . . . .

ii) mT ¼  . . . . .
mT mT ¼  . . . . .

bk
T i) mT ¼  . . . . .

ii) mT ¼  . . . . .
mT mT ¼  . . . . .

Table : Rejection frequency (rej), average stopping time τT
T and average breakpoint estimate k̂

T for the null parameter β


� .,

T �  d �  and  simulations for the parameter monitoring procedure, where critical values c computed with the two
possibilities i) and ii) and for the moment monitoring procedure. Data was generated with a break at T


and post-break parameter

β


.

β


¼ : β


¼ : β


¼ : β


¼ : β


¼ : β


¼ :

rej i) mT ¼  . . . . . .
ii) mT ¼  . . . . . .
mT mT ¼  . . . . . .

τT
T i) mT ¼  . . . . .

ii) mT ¼  . . . . .
mT mT ¼  . . . . .

bk
T i) mT ¼  . . . . .

ii) mT ¼  . . . . .
mT mT ¼  . . . . .
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β2 � 0.8 for t ∈ {2T3 + 1,  …,  T}. As in the previous section, we adapted the significance level of the test to

αk � 1 − (1 − α0)1k for the kth test using α0 � 0.05. The results using the procedure proposed in Section 3.4 can
be found in Table 7. The tables report the averaged stopping times, averaged break point estimates and
rejection rates for the first, second, and the joint first and second break events.

The rejection rates increasewith the size of the initial sample periodmT. Power increases in the dimension
d, although this effect is only moderate for both tests. As before, the tests based on DT , S has larger power than
the one based onMT . We also note that the second break point is detected more frequently than the first one,
which can be explained by the highermagnitude of the second break compared to the first break. Furthermore,
if the monitoring procedure detects the first break point it is very likely that the second break point is detected
as well, which can be seen by the almost identical rejection rates of rej1 and rejall. Again, the average stopping

time is much later than the true break, but the estimated break point k̂ is able to detect the breaks reasonably
well. Thus, we can conclude that the procedure works fairly well for the case of two breaks and that both the
power of detecting changes and estimating the break locations can be achieved in a reasonably reliable
manner.

5 Empirical application

In this section we apply our test to a real data set. We use daily log returns of stock prices over a time span
ranging from 29.01.2002 to 01.07.2013 of 10 large firms, namely Citigroup, HSBCHoldings ($), UBS-R, Barclays,
BNPParibas, HSBCHoldings (ORD),Mitsubishi, Royal Bank, Credit Agricole andBank of America. This implies

Table : Fraction of no, exact one or more found breaks in a single break setting. Constructed break at T

with β


� . and

β

� ., T �  and  simulations, using ii) the initial data set and simulated data frommT +  up to T. Results are based on

the parameter based detector DT ,S (top panel) and the moment based detector (bottom panel).

no breaks one break more breaks

d ¼  d ¼  d ¼  d ¼  d ¼  d ¼ 

β mT ¼  . . . . . .
mT ¼  . . . . . .

mT mT ¼  . . . . . .
mT ¼  . . . . . .

Table : Average detected break point location k̂i

T , stopping time τ iT
T and rejection frequency using  simulations for the

parameter monitoring procedure. Data was generated with breaks at T

and T


, with T � , d � ,, β


� ., β


� .,

β

� .. Results are based on the parameter based detector DT ,S (top panel) and the moment based detector (bottom panel).

τT
T

kb


T rej
τT
T

kb


T rej (τ


T
T

τT
T ) (kb



T
kb



T ) rejall

Parameter based
d ¼  mT ¼  . . . . . . (. .) (. .) .

mT ¼  . . . . . . (. .) (. .) .
d ¼  mT ¼  . . . . . . (. .) (. .) .

mT ¼  . . . . . . (. .) (. .) .
Moment based
d ¼  mT ¼  . . . . . . (. .) (. .) .

mT ¼  . . . . . . (. .) (. .) .
d ¼  mT ¼  . . . . . . (. .) (. .) .

mT ¼  . . . . . . (. .) (. .) .

H. Manner et al.: Detecting structural breaks in factor copula models 13



amonitored period of size T � 2980 and d � 10. Figure 1 is a plot of the stock prices in US-$ of the 10 assets over
the whole monitored period.

Weuse the same factor copulamodel as in (4.1) andwefix the parameters ν � 2.855 and λ � −0.0057 for the
monitoring procedure, i.e. we only monitor the factor loading parameter. These fixed values correspond the
parameter estimates from the initial sample period of sizemT � 400. For the conditionalmean and variancewe
specify the following AR(1)-GARCH (1,1).

ri, t � α + βri, t−1 + σi, tηit ,

σ2
it � γ0 + γ1σ

2
i, t−1 + γ2η

2
i, t−1,

for t � 2,  …,  2980, and i � 1,  …,  10. Note that for the monitoring procedure the parameters of the conditional
mean and variance models are always reestimated on the same rolling window sample of size mT.

5.1 Monitoring procedure

Figure 2 shows the factor loading parameter estimated over a rollingwindow of size 400. From this one can see
somenotable parameter changes between 2006 and 2009. The results of themonitoring procedure of thewhole

considered period can be seen in Table 8, where again we used a significance level of αk � 1 − (1 − α0)1k for the
kth test with α0 � 0.05.We choose the initial sample asmT � 400 from 29.01.2002 to 11.08.2003, where we first
estimate the marginal AR(1)-GARCH(1,1) model to obtain the residuals. We use the retrospective test from
Manner, Stark, andWied (2019) to test the hypothesis of no parameter change in the initial sample and the null

Figure 1: Asset values Si
t in US-$

in our considered portfolio for
data between 29.01.2002 and
01.07.2013, T � 2980 and
d � 10.
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hypothesis cannot be rejected. Note that for the retrospective parameter test a burn in period of 20 % of the
behold data is used. We then apply our constructed monitoring procedure. The monitoring procedure stops at
the 18.09.2008 and the estimated break point location is found at the 19.07.2007, where we used the retro-
spective parameter break point estimate with data from the end of the historical data set 12.08.2003 to the
stopping time 18.09.2008.

Figure 3 is a plot of DT ,S for every time point between mT + 1 (12.08.2003) and the stopping point, where
DT , S exceeds the critical value of (3.2) equal to 3.4566.

We then cut of all the data in front of the estimated break point location (19.07.2007) and test for the null
hypothesis of no parameter change in the period from 20.07.2007 to 29.01.2009 of sizemT � 400, using again
the retrospective parameter test and the null is rejected. The estimated break point is found at the 08.08.2008.

Figure 2: Rolling window estimate of θmT for mT � 400
and d � 10 between 11.08.2003 and 01.07.2013, with
parameter values estimated from break to break. Each
parameter value is associated to the end time point of
the rolling window.

Figure 3: DT ,S(s) for T � 2980, mT � 400 and d � 10.
Stopping date at 18.09.2008 and c � 3.4566.

Table : Stopping time τT , estimated break point location k̂ and associated sample size T for monitored or tested periods using
the monitoring procedure or the retrospective parameter test.

Monitored/testing Period τT bk T

..–.. 

..–.. .. .. 

..–.. .. 

..–.. 

..–.. 
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For the next subsample we try the period from 11.08.2008 to 22.02.2010 and get a retrospective test statistic
value ST ,S of 2.0269with a critical value of 4.1138. Hence, the null hypothesis cannot be rejected andwe choose
this period as our new historical period and restart our monitoring procedure from 23.02.2010 to 01.07.2013.
The detector DT ,S does not cross the boundary value c � 15.5073 and the procedure stops at the end of the
monitored period, without rejecting the null. The piecewise constant factor loadings can be seen in Figure 2
and we observe that they track the evolution of the rolling window estimates fairly well.

5.2 Value-at-risk predictions

Given the growing need for managing financial risk, risk prediction plays an increasing role in banking and
finance. The value-at-risk (VaR) is one of the most prominent measure of financial risk. Despite it having
been criticized as being theoretically not efficient and numerically problematic (see Dowd and Blake 2006),
it is still themost widely used riskmeasure in practice. The number of methods for its computation continues
to increase. The theoretical and computational complexity of VaR models for calculating capital re-
quirements is also increasing. Some examples include the use of extreme value theory (McNeil and Frey
2000), quantile regression methods (Manganelli and Engle 2004), and Markov switching techniques (Gray
1996 and Klaassen 2002).

First, we want to define the Value at Risk (VaR). We define the log return of a single asset i at time t as

rit � ln(Sit) − ln(Sit−1), where Sit is the time t stock price of asset i. The change in the portfolio value over the time
interval [t − 1,  t] is then

ΔVt � ∑
d

i�1
wirit ,

wherewi are portfolio weights. The (negative) α-quantile of the distribution of ΔV: � {ΔVt}Tt�1 is the day tValue-
at-risk at level α.
Here we want to show that our monitoring procedure can help improve the day-ahead predictions of the VaR
based on a factor copula model. The VaR predictions based on the monitoring procedure for the factor copula
model are computed as follows. In general, based onF t, the information available at time t, wewant to predict
the VaR for period t + 1. The prediction of the VaR is always based on the following four steps.
(1) SimulateM draws from the copula model ũt+1 ∼ C(⋅,  θ̂t), where ũt+1 � [ũ1, t+1,  …,  ũd, t+1] is anM × dmatrix

of simulated observation and θ̂t is an appropriate parameter estimate based on information up to time t.
(2) Use the inverse marginal distribution function of the standardized residuals η to transform every

component of ũt+1 to η̃t+1 � [F−1
1 (ũ1, t+1),  …,  F−1

d (ũd, t+1)], where F−1
i (⋅) is estimated by the inverse integrated

kernel density estimator of the residuals η̂ with a sufficiently large number of evaluation points.
(3) Compute the simulated returns r̃t+1: � [r̃1t+1,  …,  r̃dt+1]′ � μ(ϕ̂t) + σ(ϕ̂t)η̃t+1, where ϕ̂t are the estimated pa-

rameters from models for the conditional mean and variance using information up to time t.
(4) Form the portfolio of interest from the simulated returns and compute the appropriate quantile from the

distribution of the portfolio to obtain the VaR prediction for time t + 1.

This procedure for predicting the VaR is generic. Themonitoring procedure for the copula parameter θt is used
to determine the appropriate information set onwhich the parameter estimate in Step 1 is based. The basic idea
is to use asmuch information as possible as long as no changepoint is detected. In case a changepoint is found
only the most recent observations should be used to estimate θt. Recall that mT observations for which the

dependence is assumed to be constant are available at the beginning of the sample. Further, denote θ̂s:t the
estimator of the copula parameter based on the observations from time s to t. At each point in time t, compute
DT , S(t).
i. Before a changepoint is detected, i.e. as long as DT , S(t) < c the draws from the copula in Step 1 above are

based on θ̂1:t
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ii. Assume the monitoring procedure stops at time t � τ̂, i.e. when DT , S(t) > c. Compute the breakpoint
estimate k̂ using (3.3). Use the estimate θ̂

k̂:t
in Step 1 above. If k̂ − t < 400, i.e. if less than 400 observations

are available use θ̂t−400:t. In other words, after a breakpoint is identified use either all observations after the
breakpoint estimate or the most recent 400 observations to estimate the copula parameter.2

iii. If k̂ − t ≤mT proceed as in Step ii. Otherwise use the window [k̂,  k̂ +mT] as the new initial sample and
apply themonitoring procedure. As long as no further breakpoint is detected the parameter estimate θ̂

k̂:t
is

used. When the monitoring procedure stops again return to Step ii.

The results for the online VaR evaluation based on M � 1500 simulations for each period and for
α � 0.05 can be seen in Figure 4. As an alternative, we consider the same model without the monitoring
procedure. In that case the copula parameter is estimated using the full sample available at time t using an
expanding window. The model for the margins is an AR(1)-GARCH(1,1) in both cases. Visually, the online
procedure tracks the 5 % VaR well. The empirical VaR exceedance rate is, in fact, 5.39% (139 exceedances
in 2580 days) and therefore reasonably close to 5 %. In the model without structural breaks, where the
parameters are estimated from the beginning of the sample on, the exceedance rate is higher with 6.78%
(175 exceedances). With a binomial test (compare Berens et al. 2014), we test the null hypothesis of
unconditional coverage, i.e.,

E(1
T

∑
T

t�1
It(0.05)) � α � 0.05,

where α is the VaR coverage probability and

It(0.05) � {0,  if ΔVt ≥ −VaR0.05

1,  if ΔVt < −VaR0.05.

One expects 129 exceedances under H0 and at the 1% significance level the critical value of the test is 158
exceedances. This implies that the null of unconditional coverage is rejected in the model without structural
breaks, but not in the model with structural breaks.

Figure 4: Portfolio returns ΔVt

and the α � 0.05 predicted
Value-at-Risk based on the
monitoring procedure, allow-
ing for structural breaks (up-
per panel) and without (lower
panel) for the period between
29.01.2002 and 01.07.2013.

2 The minimum number of observations required for model estimation depends on the complexity of the chosen model. However,
for the type of model we are considering here we found that one needs at least 400 observations to obtain reliable and numerically
stable parameter estimates.
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6 Conclusion

We propose a new monitoring procedure for detecting structural breaks in factor copula models and analyze
the behavior under the null hypothesis of no change. Due to the discontinuity of the SMM objective function
this requires additional effort to derive a functional limit theorem for the model parameters. The presence of
nuisance parameters in the asymptotic distribution of the two proposed detectors requires a bootstrap
approximation for parts of the asymptotic distribution. The case of detecting two breaks is also treated. In
simulations, the proposed procedures show good size and power properties in single and multiple break
settings in finite samples. An empirical application to a set of 10 stock returns of large financial firms indicates
the presence of break points around July 2007 and August 2008, time points of the heights of the last financial
crisis. The proposed online Value-at-Risk procedure shows the usefulness of the monitoring procedure in
portfolio management.

7 Assumptions and Proof

7.1 Assumption

Assumption 3 and Assumption 4 ensure that the estimated rank correlation and quantile dependencies
converge to their respective population counterparts.

Assumption 3. i. The distribution function of the innovations Fη and the joint distribution function of the factors
FX(θ) are continuous.

ii. Every bivariate marginal copula Cij(ui,  uj ; θ) of C(u ; θ) has continuous partial derivatives with respect to
ui ∈ (0, 1) and uj ∈ (0, 1).

The assumption is similar to Assumption 1 in (Oh and Patton 2013), but the assumption on the copula is
relaxed in the sense that the restriction of ui and vi is relaxed to the open interval (0, 1).

Assumption 4. The first order derivatives of the functions ϕ↦ μt(ϕ) and ϕ↦ σt(ϕ) exist and are given by

μ̇t(ϕ): � ∂μt(ϕ)
∂ϕ′ and σ̇kt(ϕ): � ∂[σt(ϕ)]k−th column

∂ϕ′ for k � 1,  …,  d. Moreover, define γ0t : � σ−1
t (ϕ̂)μ̇t(ϕ̂) and

γ1kt : � σ−1
t (ϕ̂)σ̇kt(ϕ̂) such as

dt : � ηt − η̂t − (γ0t + ∑
k�1

d
ηktγ1kt)(ϕ̂ − ϕ0),

with ηkt is the k-th row of ηt and γ0t such as γ1kt are Et−1-measurable, where Et−1 contains information from the past
as well as possible information from exogenous variables.
i. 1

T ∑
⌊sT⌋
t�1 γ0t ⇒

p
sΓ0and 1

T ∑
sT
t�1γ1kt ⇒

p
sΓ1k, uniformly in s ∈ [ε,  1], ε > 0, where Γ0 and Γ1k are deterministic for

k � 1,  …,  d.
ii. 1

T ∑
T
t�1E(

∣∣∣∣∣∣∣∣γ0t∣∣∣∣∣∣∣∣),  1
T ∑

T
t�1E(

∣∣∣∣∣∣∣∣γ0t∣∣∣∣∣∣∣∣2),  1
T ∑

T
t�1E(

∣∣∣∣∣∣∣∣γ1kt∣∣∣∣∣∣∣∣) and 1
T ∑

T
t�1E(γ21kt) are bounded for k � 1,  …,  d.

iii. There exists a sequence of positive numbers rt > 0with∑∞
i�1rt <∞, such that the sequencemax1≤t≤T ||dt ||rt

is tight.
iv. max

1≤t≤T

||γ0t||�
T

√ � op(1)and max1≤t≤T
|ηkt|||γ1kt||�

T
√ � op(1) for k � 1,  …,  d.

v. (αT(s,  u),  
��
T

√ (ϕ̂ − ϕ0))weakly converges to a continuous Gaussian process in D((0,  1] × [0,  1]d) × R
r,

where D ((0,  1] × [0,  1]d) is the space of all Càdlàg-functions on (0, 1] × [0, 1]d, with

18 H. Manner et al.: Detecting structural breaks in factor copula models



αT(s, u): � 1��
T

√ ∑
sT

t�1
{∏

k�1

d
1{Ukt ≤ uk} − C(u ; θ)}.

vi. ∂Fη
∂ηk

and ηk
∂Fη
∂ηk

are bounded and continuous on R
d � [−∞,  ∞]d for k � 1,  …,  d.

vii. For u ∈ [0,  1]d, s ∈ [m,  1] and F̂
1+(s−m)T :st(η̂t) � (F̂1+(s−m)T :st

1 (η̂1t),  …,  F̂
1+(s−m)T :st
d (η̂dt)), the sequential

empirical copula process

1��
T

√ [ ∑
⌊sT⌋

t�1+(s−m)T
1{F̂1+(s−m)T :st(η̂t) ≤ u} − C(u)]

converges in distribution to some limit process A∗(s,  u) on [0,  1]d × [m,  1]
Parts i) to vi) of this assumption are similar to Assumption 2 in (Oh and Patton 2013), only part i) and v) are

more restrictive. We need this because we consider successively estimated parameters. Part vii) ensures that the
empirical copula process of the residuals has some well-defined limit. Note that Assumption vii) is plausible and
follows from a combination of the results in Bücher et al. (2014) and Rémillard (2017).

The next assumption is needed for consistency of the successively estimated parameters. It is the same as
Assumption 3 in (Oh and Patton 2013) with the difference that part (iv) is adapted to our situation and that a
regularity condition on the moment simulating function (which is missing both in (Oh and Patton 2013) and
(Manner, Stark, and Wied 2019) is added in part (v). Note that part i) ensures the identifiability of the factor
model.

Assumption 5. i. For g0(θ), defined by the limit g1:mT, S(θ)→pg0(θ) for T , S→∞, it holds that g0(θ) � 0 only for
θ � θ0 (the value of all θt under the null).

ii. The space Θ of all θ is compact.
iii. Every bivariatemarginal copula Cij(ui,  uj ; θ) of C(u ; θ) is Lipschitz-continuous for (ui,  uj) ∈ (0,  1) × (0,  1) on

Θ.
iv. The sequential weighting matrix Ŵ(s−m)T :sT is Op(1) and sup

s∈[m,1]
‖ Ŵ(s−m)T :sT −W ‖ →p 0 for m ≥ ε > 0.

v. It holds for the moment simulating function m̃S(θ) that, for θ1, θ2 ∈ Θ,
|m̃S(θ1) − m̃S(θ2)| ≤ CS|θ1 − θ2|

with a random variable CS that is independent of θ1 − θ2 and that fulfills E(C2+δ
S ) <∞ for some δ > 0.

The compactness of Θ is not too restrictive and the parameter space can be determined from outside
information such as constraints from economic arguments. Further, we checkedAssumption 5 v) for the case of

m̂ij � ρ̂ij and m̂ij � λ̂
ij
0.1 using Model 4.1. We considered θ1 � θ2 + h where h � 1

i for i � 1,  …,  1000, θ2 � 1.0 and

d � 10. We varied S � {250,  500,  1000,  2000,  4000} and the results can be seen in Figure 5.

Figure 5 reveals that the quotient q(h): � |m̃S(θ1)−m̃S(θ2)|
|θ1−θ2| seems to be bounded for increasing S independently

of the parameter difference 1
i.

Finally, we need an assumption for distributional results, which is the same as Assumption 4 in (Oh and
Patton 2013) with a difference in part iii).

Assumption 6. i. θ0 is an interior point of Θ.
ii. g0(θ) is differentiable at θ0 with derivative G such that G’WG is non-singular.
iii. ∀s ∈ [m,  1],  ε > 0 : g., S(θ(s−m)T :sT , S)′Ŵg., S(θ(s−m)T :sT , S) ≤ inf

θ∈Θ
g., S(θ)′Ŵg., S(θ) + dT,

where dT � o*p ((m2T)−1) and dT ≥ 0.
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7.2 Proofs

Proof of Theorem 1. We consider the dependence measures Spearman’s rho and quantile dependence mea-
sures, which are functions only depending on bivariate copulas. Under the null and all mentioned Assump-
tions, we first want to show

m
��
T

√ (m̂(s−m)T :sT −m0(θ0))⇒d A(s), T →∞,  ∀ s ∈ [m,  1],  m ≥ ε > 0

where A(s) is a Gaussian process and θ0 the value of all θt under the null.

By Assumption iiv) (1) the sequential empirical copula of the d-dimensional random vectors fulfills

CT : � m
��
T

√ [Ĉ1+(s−m)T :sT(u) − C(u)]
    � 1��

T
√ [ ∑

⌊sT⌋

t�1+(s−m)T
1{F̂1+(s−m)T :sT(η̂t) ≤ u} − C(u)]

   ⇒d
(1)

� A∗(s,  u), T →∞,  ∀ s ∈ [m,  1],  m ≥ ε > 0,

where u ∈ [0,  1]d and F̂
1+(s−m)T :sT(η̂t): � (F̂1+(s−m)T :sT

1 (η̂1t),  …,  F̂
1+(s−m)T :sT
d (η̂dt)). Here, F̂

1+(s−m)T :sT
j denotes the

marginal empirical distribution function of the j-th component and Ĉ: � Ĉ1+(s−m)T :sT(u) the empirical copula
both calculated from the data between the time point 1 + ⌊(s −m)T⌋ and time point ⌊sT⌋. Note that Spearman’s
rho between the i-th and j-th component is given by

12 ∫
1

0

∫
1

0

C(1,  …,  1,  ui,  1,  …,  1,  uj,  1,  …,  1)duiduj − 3

and that the quantile dependencies are projections of the d-dimensional copula onto one specific point
divided by some prespecified constant. Define the functionmij(C) as the function which generates a vector
of all considered dependence measures (Spearman’s rho and/or quantile dependencies for different
levels) between the i-th and j-th component out of the copula C. Without loss of generality consider the
equidependent case (averaging over all possible pairs, for details see Oh and Patton (2017)), then the
function

Figure 5: Quotient q(h) for h � 1
i

for i � 1,  …,  1000,θ2 � 1.0 and
d � 10 such as S�{250(blue), 
500(orange), 1000(yellow),
2000(purple), 4000(green)}.
Results for m̂ij�ρ̂ij (upper
panel) and m̂ij�λ̂ij0.1 (lower
panel) using Model 4.1.
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m(C) : D[0,  1]d → R
k

     C →m(C) � 2
d(d − 1) ∑i�1

d−1
∑
d

j�i+1
mij*(C)

is continuous and we directly obtain

m
��
T

√ (m̂1+(s−m)T :sT −m0(θ)) � m
��
T

√ [m(Ĉ) −m(C)]
⇒d 2

d(d − 1)(∑i,jmij(A∗(s, u))) � :A(s)

as T →∞with s ∈ [m,  1],  m ≥ ε > 0. Here,mij(⋅) is the same function asmij*(⋅)with the only difference that the
formula for Spearman’s rho between the i-th and j-th component is replaced by

12 ∫
1

0

∫
1

0

C(1,  …,  1,  ui,  1,  …,  1,  uj,  1,  …,  1)duiduj.

Then we receive for S
T → k ∈ (0,  ∞] and T,  S→∞

m
��
T

√
g1+(s−m)T :sT , S(θ) � m

��
T

√ (m̂1+(s−m)T :sT − m̃S(θ))
� m

��
T

√ (m̂1+(s−m)T :sT −m0(θ)) −m
��
T

√ (m̃S −m0(θ))

� m
��
T

√ (m̂1+(s−m)T :sT −m0(θ)) − ��
T
S

√
m

�
S

√ (m̃S −m0(θ))

⇒d A(s) − m��
k

√ B,

whereB � N(0,  Σ0) is a centered Gaussian distributionwith covariancematrix Σ0, for details see Oh and Patton
(2013). The limit result then follows with the same proof steps as in Manner, Stark, and Wied (2019), using the
given limit result for m

��
T

√
g1+(s−m)T :sT , S(θ) and replacing the scale factor s

��
T

√
by m

��
T

√
.

This completes the proof.

Proof of Theorem 2. Due to Assumption 2, conditionally on the original data, as T →∞, the process

A(b)(s) � m
��
T

√ (m̂(b)
1+(s−m)T :sT − m̂(b)

1:T )
converges in distribution to the process A(s) defined in Theorem 1 in Manner, Stark, and Wied (2019), see
Proposition 4 in Genest and Rémillard (2008). Then, the results for the null hypothesis follow, as all trans-
formations of the process of the empiricalmoments from theproof of Theorem 1 are applicable for the bootstrap
sample as well. Under the alternatives, it holds that, for some s ∈ (0,  1) the quantities θ̂1+(s−m)T :sT , S and θ̂1:mT , S

resp. m̂1+(s−m)T :sT and m̂1:mT have different limits so that the detectors tend to ∞. On the other hand, the
bootstrapped critical values remain stochastically bounded, as they are generated under the assumption that
the model does not change over time. ,
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