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Abstract

We consider the problem of forecasting the occurrence of extreme prices in the

Australian electricity markets from high frequency spot prices. In particular, we

are interested in the simultaneous occurrence of such so-called spikes in two or more

markets. Our approach is based on a novel dynamic model for multivariate binary

outcomes, which allows the latent variables driving these observed outcomes to

follow a vector autoregressive process. Furthermore the model is constructed using a

copula representation for the joint distribution of the resulting innovations. This has

several advantages over the standard multivariate probit model. First, it allows for

nonlinear dependence between the error terms. Second, the distribution of the latent

errors can be chosen freely. Third, the computational burden can be greatly reduced

making estimation feasible in higher dimensions and for large samples. The model

is applied to spikes in half-hourly electricity prices in four interconnected Australian

markets. The multivariate model provides a superior fit compared to single-equation

models and generates better forecasts for spike probabilities. Furthermore, evidence

of spillover dynamics between the markets is revealed.
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1 Introduction

Electricity spot prices are known to be characterized by the occurrence of extreme spikes

caused by inelastic demand in case of demand shocks (e.g. extreme weather conditions) or

supply disruptions due to outages of generating capacity or transmission lines; see Knittel

and Roberts (2005), Cartea and Villaplana (2008), or Lindström et al. (2015). Many

electricity markets, e.g. continental European capacity markets, allow separate prices for

electricity and capacity reserves. In contrast, markets which exhibit one price only, as is

the case in Australia, typically are characterized by heavier and more frequently occurring

spikes. Therefore, a proper understanding of spike occurrence is particularly important

for such markets.

There are several recent papers which discuss the dependence of electricity prices

between markets. For instance, Le Pen and Sevi (2010) use a VAR-BEKK model for a

discussion of spill-over effects in both mean and volatility between European electricity

forward markets. For the Australian energy markets, which are also the main focus of this

paper, Ignatieva and Trueck (2016) fit univariate GARCH model to deseasonalized half-

hourly logarithmized spot prices and model the cross-dependence between two markets by

copula functions. A similar approach is taken by Aderounmu and Wolff (2014b,a), who

focus on the estimation of the tail dependence parameter, and Smith et al. (2012) who

model daily Australian spot prices using a skew t-Copula. Finally, Smith and coauthors

(Smith et al. 2010, Smith 2015) propose a copula regression model in which also the serial

dependence of the electricity demand and spot prices are modelled by copulas. In contrast

to the above approaches, which all directly model the dynamics and dependences of the

electricity spot prices, we focus in the current paper on the spikes themselves and their

dynamics.

The aim of this paper is to propose an econometric model for the prediction of (co-)

spike probabilities in four interconnected Australian electricity markets. This subject is

highly relevant for market participants in order to properly schedule demand/production,

execute risk management and perform statistical arbitrage. In a univariate setting this

problem has been studied by Christensen et al. (2009), Christensen et al. (2012), Clements

et al. (2013), Korniichuk (2012), and Eichler et al. (2014). However, as the Australian

markets are directly interconnected and many market participants are active in more than

one of these markets, a purely univariate treatment of price spikes seems inefficient and

inappropriate. The only study deviating from the univariate analysis is the paper by

Clements et al. (2015), who treat this problem in a bivariate setting using a self-exciting
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peaks-over-threshold model.

The first contribution of this paper is to propose the methodology to model and

forecast multivariate price spike probabilities. The model we propose extends the dynamic

binary choice models tailored to forecast the probability of spike occurrence developed in

Eichler et al. (2014). This requires dynamic multivariate discrete choice models.

Models for binary outcomes such as logit and probit models are standard tools in

econometrics, but the basic specifications are not always suitable for problems that arise

in applications. In particular, the analysis of time-series data and modeling more than one

variable are often of interest. Several studies have extended the basic model framework

to the dynamic time series setting by including past information in the model. Examples

are Dueker (1997), Kauppi and Saikkonen (2008) and Nyberg (2010) who apply dynamic

binary choice models to the problem of modeling and forecasting recessions, Eichengreen

et al. (1985) who model bank rate policy, or Eichler et al. (2014) who use a variation of the

model of Kauppi and Saikkonen (2008) to forecast the occurrence of spikes in Australian

electricity prices. Theoretical properties of dynamic binary choice models are treated in

De Jong and Woutersen (2011).

The first study introducing a multivariate probit model was Ashford and Sowden

(1970). Recently, Nyberg (2013) and Candelon et al. (2013) proposed multivariate exten-

sions of the dynamic binary choice model of Kauppi and Saikkonen (2008). The former

paper proposes the generalization to a bivariate autoregressive probit model to jointly

forecast recession probabilities for the US and Germany. The latter shows how to esti-

mate the multivariate dynamic probit model in three dimensions using an exact maximum

likelihood approach and applies the model to the problem of financial crisis mutation. Fur-

thermore, Winkelmann (2012) presents an alternative model specification based on the

recursive static bivariate probit model. The idea is to maintain the probit assumption

for the marginal distributions while introducing non-normal dependence using copulas.

In an application of the proposed copula bivariate probit model to analyse the effect of

insurance status on the absence of ambulatory health care expenditure, the author shows

that a model based on the Frank copula outperforms the standard bivariate probit model.

Another notable contribution is Dueker (2005). He proposes a vector autoregressive model

that allows for the inclusion of qualitative variables and applies it to model U.S. recessions

and monetary policy contractions.

This paper makes the following contributions to the literature on multivariate discrete

choice modeling. We introduce a copula based approach which permits the estimation of

multivariate dynamic discrete choice models in dimensions larger than two, thus extending
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the ideas of Kauppi and Saikkonen (2008), Candelon et al. (2013), Nyberg (2013) and

Winkelmann (2012). Our model allows for a flexible choice of the link functions, which

may even differ for the distinct dependent variables in the model. Furthermore, the use

of copulas makes it possible to model asymmetric dependence as well as tail dependencies

between the innovations in the model. In order to make the computations feasible in high

dimensional models we propose to use the class of nested Archimedean copulas (see, e.g.,

Okhrin et al. 2013 and Savu and Trede 2010) which yields closed form expressions for the

likelihood function that can be evaluated at low computational cost, while maintaining

a certain degree of flexibility. The representation of the model via the latent processes

driving the observed outcomes implies that, in principle, it can easily be extended to allow

for ordered outcomes and that it can even be applied in situations in which some of the

outcomes are binary and others are ordered.

The second contribution of this paper is to adapt the model to the problem of modeling

and forecasting price spike occurrences for half-hourly Australian electricity prices in

four interconnected markets. Our model takes information concerning the presence of

market interconnectors into account by setting appropriate restrictions for the spillover

dynamics between the different markets. Additionally, we allow for an exponentially

decaying effect of the duration between subsequent spikes to capture the time dependence

in an appropriate way. Our results reveal that multivariate modeling of price spikes greatly

improves the model fit. There is clear evidence for dynamic spillovers between different

markets. Furthermore, there is strong evidence for contemporaneous dependence between

the markets captured via copulas connecting the latent innovations. The improvements

in model fit extend to the out-of-sample evaluation of our model where we find that

the predictive ability of the model improves upon more restrictive specifications. Both

univariate spikes and co-spikes are predicted with higher accuracy.

The paper is structured as follows. In Section 2 we present the general econometric

model and elaborate on its precise specification. The data and the empirical application

are presented in Section 3, while Section 4 concludes. The appendix contains details on

the estimation of the model and the computation of marginal effects.
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2 A copula-based multivariate dynamic binary choice

model

In this section we present the dynamic copula based multivariate discrete choice (DCMDC)

model. The general model specification is given in Section 2.1. The precise choice of the

copula function for dimensions larger than two is discussed in Section 2.2. In Appendix

A.1 we discuss the estimation of the model and Appendix A.2 treats the computation of

marginal effects.

2.1 Model specification

Let yt = (y1t, . . . , ydt)
′, for t = 1, . . . , T , be a d-dimensional vector of binary variables.

Assume that the outcomes are driven by a vector of latent variables y∗t = (y∗1t, . . . , y
∗
dt)
′.

The observable variables are defined as

yit = 1 if y∗it > 0

yit = 0 otherwise,

for i ∈ {1, . . . , d}. Furthermore, let xt = (x1t, . . . , xkt)
′ be a vector of exogenous variables.

Generalizing the model by Kauppi and Saikkonen (2008) the latent variables are modeled

as

y∗t = πt + εt (1)

with

πt = α +Bxt + Γπt−1 +Dyt−1, (2)

where πt = (π1t, . . . , πdt)
′, α = (α1, . . . , αd)

′ is a vector of intercepts, B is a d×k matrix, Γ

and D are d×d matrices, and εt = (ε1t, . . . , εdt)
′ is a vector of zero mean i.i.d. innovations.

The parameters in the matrix Γ need to satisfy the usual restrictions to ensure stationarity

of a VAR process. In this model specification the latent processes driving the binary

outcomes are autocorrelated and the model permits (dynamic) spillover effects between

the endogenous variables. More general specifications in which πt depends nonlinearly

on its past or on exogenous variables are possible. In Section 3 we adapt this model to

the specific problem of modeling joint spike probabilities of the interconnected Australian

electricity markets by adding a nonlinear term to equation (2) and by placing suitable

restrictions on the coefficient matrices Γ and D that take the specific structure of the

markets into account. Note that in practice one needs to specify an initial value π0
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of the latent process. We follow Kauppi and Saikkonen (2008) and set π0 equal to its

unconditional mean.

The probabilities of the 2d possible outcomes at time t depend on the distribution of

εt and are given by

P (y1t = 1, . . . , ydt = 1) = P (ε1t > −π1t, . . . , εdt > −πdt)
...

...
... =

...
...

... (3)

P (y1t = 0, . . . , ydt = 0) = P (ε1t ≤ −π1t, . . . , εdt ≤ −πdt).

If εt is assumed to follow a multivariate normal distribution then the model is the mul-

tivariate probit model proposed by Candelon et al. (2013) and Nyberg (2013). However,

we assume a more general joint distribution for the innovations based on the copula de-

composition of multivariate distributions. In particular, the joint distribution H of εt can

be written as

H(ε1t, . . . , εdt) = Cθ(F1(ε1t), . . . , Fd(εdt)), (4)

where Fi is the marginal distribution for εit and Cθ is a d-dimensional copula with param-

eter vector θ that captures the contemporaneous dependence between the innovations.

For the copula any parametric family can in principle be used; see, e.g., the books Nelsen

(2006) or Joe (1997) for various examples of copulas. We come back to this issue in

Section 2.2. Common choices for the marginal distributions Fi are the standard normal

distribution

Fi(ε) = Φ(ε) (5)

corresponding to the probit model or the logistic distribution

Fi(ε) =
1

1 + exp(−ε)
(6)

leading to a logit model. However, besides these two popular choices there are several al-

ternative specifications available such as the Gumbel or the complementary log-log model

(e.g. Greene 2011). In this paper we consider a further alternative distribution, namely

the Burr-10 distribution,

Fi(ε) =
1

[1 + exp(−ε)]a
, a > 0, (7)

which was used by Nagler (1994) and results in the so called skewed logit (scobit) model.

For a = 1 it nests the logit model, but otherwise the Burr-10 distribution is asymmetric.

In contrast to the logit and probit models, the probability of observing yit = 1 is thus

5



Figure 1: Scobit link function

allowed to be most sensitive to changes in the explanatory variables at probabilities smaller

or larger than 0.5. This has the effect that, in contrast to the logit and probit models,

marginal effects are maximized at P 6= 0.5, i.e. the probability of observing a one is allowed

to be most sensitive to changes in the explanatory variables at probabilities smaller or

larger than 0.5. Figure 1 shows the scobit link function. The solid line corresponds to the

logit model for which a = 1.

Our model specification nests a number of specifications proposed in the literature.

For Γ = D = 0, F (·) = Φ(·) and C being the Gaussian copula the model reduces to

the standard multivariate probit model; see Ashford and Sowden (1970). The dynamic

specification of Candelon et al. (2013) and Nyberg (2013) is obtained if the probit link

and the Gaussian copula are used, and Γ and D are unrestricted. A bivariate, static

(recursive) version of our model using probit link functions and a general dependence

structure has been introduced by Winkelmann (2012).

Our specification has three advantages over the classical multivariate probit model.

First, more general types of dependence are permitted. This includes the possibility of

tail dependence and asymmetric dependence, i.e., the strength of cross dependence in εt

can be different for small and large values. This can potentially result in a better model fit

as linear correlation may not be an appropriate dependence measure in some situations.
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Second, the link function F can be of any form. This allows the use of distinct marginal

distributions for the different dependent variables included in the system. The third

advantage is the availability of closed forms for the distribution function H whenever the

chosen copula has a closed form CDF1, which is not the case for the multivariate normal

distribution. This makes the estimation computationally more efficient, in particular for

higher dimensions, as one does not need to rely on numerical integration techniques.

Although the computational aspect may seem irrelevant given the availability of fast

computers, note that the estimation of a three or four dimensional model with a Gaussian

copula for reasonably large samples can be extremely time consuming or even infeasible.

In our application below we have d = 4 and over 80.000 observations available for which

the computations using a Gaussian copula are impossible.

The model can be estimated straightforwardly using maximum likelihood estimation.

Details can be found in Appendix A.1. Furthermore, in Appendix A.2 we explain how

marginal effects can be computed, which are typically reported due to the fact that the

model coefficients cannot be interpreted directly.

2.2 Specification of the copula

Until now we have left the specification of the copula function open. In principle any

parametric copula C: [0, 1]d → [0, 1] with unrestricted domain can be considered, see

Nelsen (2006) or Joe (1997) for a large number of possibilities. In our situation the copula

should ideally satisfy some properties to be useful. First, it must be available in dimensions

larger than two. Second, while flexibility is generally speaking a nice feature the number of

parameters should not grow too fast as the dimension increases.2 Finally, the distribution

function of the copula should be available in closed form. This precludes elliptical copulas

such as the Gaussian and Student copulas, as their distribution functions are only defined

implicitly and have to be evaluated using numerical integration techniques. This also

precludes the popular class of vine copulas to handle dependence dimensions larger than

two; see Aas et al. (2009) or Czado (2010) for an introduction. One class of copulas that

satisfies the stated requirements are Archimedean copulas. They are defined through a

generator function φ : [0, 1] → [0,∞] that is continuous, strictly decreasing and convex

1Admittedly this restricts the number of choices for the copula.
2This is not as important as in other applications of copula models where one may consider dimensions

of 10 or higher. Here the number of parameters in the VAR-type model driving the latent process restricts

the dimension of the model to a certain degree.
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with φ(1) = 0 and φ(0) =∞. Then the function

C(u1, . . . , ud) = φ−1(φ(u1) + . . .+ φ(ud))

is called an Archimedean copula. Some popular examples are the Clayton copula with

φ(t) = (t−θ − 1)/θ, the Gumbel copula with φ(t) = (− ln(t))θ, or the Frank copula with

φ(t) = − ln((e−θt− 1)/(e−θ − 1)). A clear disadvantage of simple Archimedean copulas is

that a single dependence parameter determines the dependence between all d variables.

However, this class can be extended by relying on a nested dependence structure that

allows for d − 1 distinct generators to construct d-dimensional copulas that only have

partial exchangeability. The fully nested Archimedean copula is given by

C(u1, . . . , ud) = φ−1d−1(φd−1 ◦ φ
−1
d−2[. . . (φ2 ◦ φ−11 [φ1(u1) + φ1(u2)] + φ2(u3)) + . . .

+ φd−2(ud−1)] + φd−1(ud)).

The dependence parameter of generator j − 1, denoted by θj−1, always has to be larger

or equal to θj in order for C to be a copula. In the trivariate case this gives the copula

C(u1, u2, u3) = Cθ2(Cθ1(u1, u2), u3), (8)

with θ1 ≥ θ2. The bivariate dependence between u1 and u2 is characterized by θ1, whereas

the dependence of the pairs (u1, u3) and (u2, u3) is described by θ2. In the four dimensional

case this gives the fully nested structure

C(u1, u2, u3, u4) = Cθ3(Cθ2(Cθ1(u1, u2), u3), u4), (9)

with θ1 ≥ θ2 ≥ θ3. Here θ1 is the dependence parameter for the pair (u1, u2), θ2 for the

pairs (u1, u3) and (u2, u3), and θ3 for the pairs (u1, u4), (u2, u4) and (u3, u4).

The nesting can also be done in different ways, see Savu and Trede (2010) or Okhrin

et al. (2013) for a general treatment of hierarchical Archimedean copulas. In higher

dimensions a large number of nesting structures are possible. In the four dimensional

case only one alternative nesting structure is possible,

C(u1, u2, u3, u4) = Cθ3(Cθ1(u1, u2), Cθ2(u3, u4)), (10)

with θ1, θ2 ≥ θ3. Now θ1 characterizes the dependence of the pair (u1, u2), θ2 corresponds

to the pair (u3, u4), and θ3 is the dependence parameter of the pairs (u1, u3), (u1, u4),

(u2, u3) and (u2, u4).
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Two issues concerning the use of nested Archimedean copulas arise in practice. The

first is the selection of the type of Archimedean copula. The three families mentioned

above cover the possible types of dependence one typically encounters in applications.

The Clayton family is characterized by a stronger dependence for small values of the

random variable than for large realizations and it has positive lower tail dependence. The

Gumbel copula implies upper tail dependence and stronger dependence of large values.

Finally, the Frank copula is the only Archimedean copula that is rotationally symmetric

(Frank 1979) and it has independent tails. In this sense it is similar to a Gaussian copula,

although it has slightly lighter tails. Again, the question of which copula should be used is

an empirical issue and should be determined by the model fit. As these copulas have the

same number of parameters a comparison of the log-likelihood statistic is recommended.

The second issue is the precise choice of the nesting structure and the ordering of

the variables. In principle one could test all possible orderings and chose the one that

results in the highest log-likelihood. However, as there are d! possible orderings this may

be computationally very demanding and we propose a more elegant way to address this

problem. Inspired by Hafner and Rombouts (2007) we suggest the following approach.

Start with an arbitrary ordering of the data and estimate the multivariate discrete choice

model using the independence copula C(u1, . . . , ud) = u1 ·u2 · . . . ud. Denote the resulting

marginal probabilities Pit = P (Yit = yit) for t = 1, . . . , T and i = 1, . . . , d and compute

the Pearson residuals

ε̂it =
yit − Pit√
Pit(1− Pit)

.

For these compute the Spearman rank correlation matrix. As the rank correlation is a

copula based dependence measure this should give a good impression about the depen-

dence structure of the true error terms εit. The estimated rank correlation matrix can

then be used to decide upon a useful nesting structure and ordering of the variables. To

illustrate this idea, consider an example for d = 3 variables and let ρ̂rank(x, y) be the es-

timated rank correlation between x and y. If, e.g., ρ̂rank(ε̂1, ε̂3) = 0.6, ρ̂rank(ε̂1, ε̂2) = 0.4

and ρ̂rank(ε̂2, ε̂3) = 0.35 then for the hierarchical Archimedean copula in equation (8) one

would chose the ordering (y1t, y3t, y2t) because the pair (ε̂1, ε̂3) has the highest degree of

dependence, whereas the other two pairs have a lower degree of dependence that is of

similar magnitude.
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3 Data and empirical results

In this section we apply the proposed DCMDC model to a large data set of Australian

intra-day electricity spot prices and we model the probability of extreme price occurrences,

so called spikes, across four markets. Univariate treatments of this problem can be found

in, e.g., Christensen et al. (2012), Eichler et al. (2014) and Hurn et al. (2016). To our

knowledge, the only study considering the multivariate case is Clements et al. (2015),

which relies on a bivariate self-exciting point process model to analyze inter-regional links

between the probability of spike occurrence.3

Understanding the co-dependence of spikes in real-time electricity prices between in-

terconnected markets plays a crucial role in risk-management. Furthermore it is of great

importance when pricing and hedging inter-regional spreads and/or to value interconnec-

tors between these markets. In this context the Australian power exchange provides an

ideal framework. It consists of five physically interconnected markets for which individual

electricity prices are settled in a continuous trading scheme. Nowadays more than A$10

billion worth of electricity is traded annually. In each market, cap products are traded

based on half-hourly electricity prices for which inter-regional spreads can be priced once

the co-dependence of extremes is properly analyzed. Insights concerning the dynamics

and dependence of co-spikes, i.e. simultaneous spikes in different markets, will further

help to price and hedge Settlements Residue Auction products that are available in the

Australian market. These products give the owner a share of the surplus generated on

interconnectors which transfer electricity between two regions. While univariate models

for spikes have recently been proposed for intradaily data in these markets, the nature

of co-spikes remains still unexplored in the existing literature. Therefore, we address

this topic and analyze the occurrence of such co-spikes and their dependence by using a

variation of the DCMDC model.

3.1 Data description

Our data set consists of half-hourly spot prices, i.e. the highest frequency freely avail-

able, for the four main Australian markets Victoria (VIC), New South Wales (NSW),

Queensland (QLD) and South Australia (SA). The region Tasmania was omitted as it

3Recall that dynamic multivariate probit models as suggested in Nyberg (2013) and Candelon et al.

(2013) cannot be estimated for the problem at hand due to the fact that this would require the evaluations

of the CDF of a four-variate Normal distribution for a sample of over 80,000 observations, which is

computationally infeasible.
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Figure 2: Different regions forming the NEM. The figure was taken from AEMO (2010).

is assumed to have a minor role being the smallest of the 5 National Electricity Market

(NEM) regions. Figure 2 shows the regions in the market and the transmission lines

that connect them. We use data between January 1, 2008 and December 31, 2012 for

our analysis. This results in a total of 87,695 half-hourly observations. The reason to

exclude earlier data is that in 2007 the occurrence of spikes was extremely high due to

a “millennial drought”, which not only reduced the amount of water available for hydro

generation, but also limited the cooling water available for thermal (coal- and gas-fired)

generators. This resulted in noticeably higher wholesale electricity prices as the cost of

supply increased and the mix of generation sources changed. Similarly, in January 2013

there have been severe floods in Queensland which led to far more frequent occurrence of

spikes than usual.

Following Christensen et al. (2012), we define prices exceeding a threshold of A$100

per MWh as spikes. Although this choice appears somewhat arbitrary, the threshold of

A$100/MWh is widely accepted by market participants (see Christensen et al. 2012).

Other definitions of spikes based on statistical arguments have been proposed, by, e.g.,

Chan et al. (2008), Korniichuk (2012), Janczura et al. (2013) and Eichler and Türk (2013).

Here we choose to use the concept of economic price spikes, in contrast to a statistical

definition of price spikes. Our reasoning is that the latter is important and often used

when it comes to disentangling the continuous from the discontinuous part of a time series.

The former concept of economic spikes on the other hand is of importance when market

participants can be expected to be interested in the probabilities of prices exceeding a
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certain threshold in order to adapt their behavior. Over the five year period under analysis

there were 757 spikes in VIC, 867 in NSW, 954 in QLD, and 1,140 in SA. These spikes

were shown to cluster strongly in time by, e.g., Eichler et al. (2014) who apply univariate

dynamic binary choice models to analyze spike occurrences.

Formally, let Si,t be a binary variable representing the occurence of a spike in market

i and time t. Table 1 presents some descriptive statistics for the occurrence of pairwise

co-spikes. Directly interconnected markets are highlighted with bold letters. They exhibit

a larger number of co-spikes than markets that are not directly connected. Among the

not directly connected pairs NSW-SA can be seen to be more interdependent than the

pairs VIC-QLD and QLD-SA. This is likely due to the physical proximity of the two

markets and their indirect connection via VIC, see Figure 2. These results indicate that

co-spikes are more likely between directly interconnected or locally close markets. A

similar pattern can by seen when looking at the rank correlations between the sizes of

the spikes.4 The co-spikes of the directly interconnected regions, VIC-NSW, VIC-SA and

NSW-QLD are characterized by a stronger dependence than those between the remaining

markets. This finding indicates that interconnected markets exhibit stronger dependence

in the magnitude of spikes than others.

Finally, the table reports the probabilities of observing a spike in one market condi-

tional on a spike in another market during the same period and of observing a spike in one

market conditional on a spike in another market during the previous period. As expected,

these probabilities are larger for directly interconnected markets. Furthermore, it can be

expected that the conditional probability of observing a spike in a small market (such as

SA) conditional on observing a spike in a bigger directly or indirectly connected market

should be greater than the probability of the larger market spiking conditional on a spike

in the smaller market. The fact that P (SSA|SVIC), P (SSA|SQLD) and P (SSA|SNSW) are,

respectively, greater than P (SVIC|SSA), P (SQLD|SSA) and P (SNSW|SSA) for both contem-

poraneous and lagged conditional probabilties supports this assumption. It can also be

seen that the conditional probability of a spike occurrence in SA is greatest for the directly

interconnected market VIC, followed by the physically close market NSW which again ex-

hibits higher values than the conditional probability to observe a spike in SA when a spike

in QLD has occurred. For the conditional probabilities of the three larger markets, NSW,

VIC and QLD, note that P (SNSW|SVIC) and P (SQLD|SVIC) are higher than the respective

reverse conditional probabilities. Concerning the relationship between NSW and QLD no

4Due to the fat tails of these extreme electricity prices (see Korniichuk 2012) we rely on Spearman

rank correlations instead of linear correlations.
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Table 1: Descriptive statistics for co-spikes

VIC-NSW VIC-QLD VIC-SA NSW-QLD NSW-SA QLD-SA

# of co-spikes 402 288 638 591 361 262

rank corr 0.7837 0.6559 0.8069 0.8837 0.6582 0.6021

P (S2,t|S1,t) 0.5310 0.3804 0.8428 0.6817 0.4164 0.2746

P (S1,t|S2,t) 0.4637 0.3019 0.5596 0.6195 0.3167 0.2298

P (S2,t|S1,t−1) 0.4055 0.3025 0.7001 0.5479 0.3541 0.2327

P (S1,t|S2,t−1) 0.3576 0.2442 0.4456 0.4979 0.2518 0.1886

Note: The table exhibits the number of co-spikes, the Spearman rank correlations, contemporaneous and

lagged conditional probabilities for all six market combinations. S1,t denotes the first named market in the

pair and S2,t denotes the second named market. Spikes are defined as prices greater A$100. The period

under consideration goes from 01.01.2008 to 31.12.2012. Directly interconnected markets are indicated

through the use of bold letters in row 1.

clear pattern can be observed. This is particularly interesting when considering that QLD

and VIC are net exporters while NSW is a net importer of electricity. Nevertheless, we

observe that for some pairs the dependence actually appears to be asymmetric. This may

have been expected and is in line with the findings of Lindstroem and Regland (2012)

who also documented asymmetries in co-spike occurrences for daily spot prices between

European electricity markets.

3.2 Model specification

Based on our findings in Section 3.1, on Eichler et al. (2014) where univariate spike

probabilities are modeled, and on Lindström et al. (2015) who identify drivers for spikes

in the Nord Pool market, we formulate the following model for the multivariate spike

probabilities:

πt = α +Blt + Γπt−1 +D1yt−1 + ediag(−D3dt−tn )D2. (11)

Here yt = (yVIC,t, yNSW,t, yQLD,t, ySA,t)
′ is the vector of observed spikes, πt = (πVIC,t, πNSW,t,

πQLD,t, πSA,t)
′ the vector latent process driving the spike probabilities, and α is a (4× 1)

column vector of constants. The vector of loads, lt = (lVIC,t, lNSW,t, lQLD,t, lSA,t)
′, represents
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demand for electricity.5 Finally, dt−tn is the (4 × 1) vector of durations between the last

spike (denoted by tn) and t in each market. Note that this model is a variation of model

(2) introduced in Section 2.1, with πt now being allowed to nonlinearly depend on past

information through the last term in equation (11).

The matrices B, Γ, D1, and D3 are (4 × 4) coefficient matrices and D2 is a (4 × 1)

vector. Both B and D3 are restricted to be diagonal. Thus electricity loads and durations

are only allowed to affect the spike probabilities of the corresponding markets. The choice

to include this last term is based on the findings of Eichler et al. (2014), where it was

introduced in order to model an exponential decay in the probability of spike occurrence

as a function of the duration which is given by dt−tn . It therefore resembles the dynamic

structure of a Hawkes process; see Hawkes (1971). The coefficients in D2 measure the

impact that newly occurring spikes have on the probability of further spikes, whereas the

coefficients in D3 measure the speed of the exponential decays in the absence of further

spikes. As this last term, i.e. the dynamic Hawkes term, already captures the effect

of past spike occurrences in the corresponding market, we restrict the main diagonal of

matrix D1 to be zero in order to prevent multicollinearity. Furthermore the off-diagonal

elements of D1 are only allowed to differ from zero for markets that are directly connected

to the corresponding market.

We consider two further restrictions on the coefficient matrix Γ in (11). First we restrict

this matrix to be diagonal, in which case the evolution of πt is described by four univariate

models. We term this the ’single equation model’ as it can be estimated one equation at a

time. Note that the fact that the matrix D1 is not diagonal implies that spillover effects are

nonetheless possible through the inclusion of lags of yt from neighboring markets. The

more general specification, corresponding to the second possible restriction, leaves the

coefficients corresponding to directly connected markets unrestricted, so that the model

also allows for spillover effects via πt−1.

The only part left to specify is the distribution of the error term εt in equation (1).

For the marginal distribution we chose the flexible Burr-10 distribution given in equation

(7) implying the scobit model of Nagler (1994). For the dependence between the inno-

vations we consider two choices. The first one is the independence copula. The second

one is the nested Archimedean copula from Section 2.2. In order to decide on the or-

dering of the variables and the precise nesting structure we use the approach suggested

5Here we use the actual loads instead of predictions as argued by Christensen et al. (2012) because

half-hourly load forecasts are typically very precise and the authors show that using true instead of

predicted loads does not alter the results.
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in that section and compute the rank correlation of the Pearson residuals based on the

independence copula and using the second (more general) specification for Γ, to be found

in Table 2. It can be seen, that the Spearman correlation between directly connected

markets is higher than the one between the remaining market combinations. We decide

to proceed using C(uVIC, uNSW, uQLD, uSA) = Cθ3(Cθ1(uVIC, uSA), Cθ2(uNSW, uQLD)) with

θ1, θ2 > θ3 as the nesting structure. The alternative nesting C(uVIC, uNSW, uQLD, uSA) =

Cθ3(Cθ2(Cθ1(uVIC, uSA), uNSW), uQLD) with θ1 > θ2 > θ3 also seems plausible, but resulted

in an inferior fit. Finally, the chosen copula family is the Gumbel copula, which performed

better in terms of the log-likelihood than alternative specifications that we considered.

This implies a larger degree of dependence for large values of the innovations than for

small ones. This model is termed ’fully multivariate’ model as it allows for dependence

between the innovations and allows for spillovers due to unrestricted coefficients in the

coefficient matrices Γ and D1 for directly connected markets. Note that it would be de-

sirable to consider a Gaussian copula or even the standard multivariate probit model as

a benchmark. However, estimating the proposed model based on Archimedean copulas

takes more than one day. This implies that using the Gaussian copula for estimation

can be expected to take several years as evaluating the CDF of the multivariate normal

distribution is computationally very costly in four dimensions and for such a large sample

size.

To summarize, based on equation (11) we have a total of three models which we will

compare considering their ability to model and predict spike occurrences, namely the

model with diagonal Γ matrix and an independence copula (i.e. single equation model),

the model allowing for spillovers via πt−1 but assuming an independence copula (interme-

diate model) and the same model but assuming a nested Gumbel copula (fully multivariate

model). Note that the ’single equation’ specification includes past information from neigh-

boring markets. We have decided to allow for this because then all three models are based

on the same information set and the comparison between them can be considered to be

fair.

3.3 In-sample results

For our analysis we split the sample into an in-sample period to which we fit the model

(2008-2011) and an out-of-sample period (2012) that we use to evaluate the forecasting

performance of our model.

The estimation results can be found in Table 3. We only report the parameter es-
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Table 2: Spearman correlation for residuals

VIC-NSW VIC-QLD VIC-SA NSW-QLD NSW-SA QLD-SA

correlation 0.8722 0.7744 0.8849 0.8507 0.7837 0.6951

Note: The table exhibits Spearman correlations for residuals for all six market combinations. These

residuals resulted from applying model (11) using the Independence copula and the Scobit approach

for the link functions. The period under consideration goes from 01.01.2008 to 31.12.2011. Directly

interconnected markets are indicated through the use of bold letters in row 1.

timates for the ’single equation’ and the ’fully multivariate’ models, as the parameter

estimates for the intermediate model allowing for spillovers but with the independence

copula are quite similar to those of the most complex model. Standard errors computed

using a robust ’sandwich’ formula are given in parentheses.

The parameter estimates are in line with intuition. The loads have a positive effect

on spike probabilities. Concerning the coefficients in D2 and D3 that characterize the

exponentially decaying influence of the durations, we find that the estimated coefficients

imply higher spike probabilities for shorter durations capturing the clustering of spikes.

The coefficients on the lags of πt and yt provide evidence of spillover effects across markets.

The interpretation of the individual parameters is difficult due to the interaction of the

explanatory variables, resulting in some of the estimated coefficients for πt to take on

negative values. Some estimates have high standard errors that can be explained by the

high correlation between the regressors and resulting multicollinearity.

The parameters of the scobit link function are all smaller than one. This implies that

the slope of each individual link function takes on its maximum values at probability

levels which are smaller than 0.5; compare Figure 1 for the corresponding shape of the

link function. The parameters of the copula indicate strong dependence between the

innovations of the model. The strongest dependence is reported between the error terms

of NSW and QLD, with θ2 = 3.05. This value is followed by the dependence between the

error terms of VIC and SA with θ1 = 2.57. The estimated parameter of the connecting

copula is equal to θ3 = 1.85.

The in-sample fit of the models is compared using the Bayesian information crite-

rion (BIC). The values of the BIC are equal to 12,325, 11,978 and 9,279, respectively

for the ’single equation’, ’intermediate’ and ’fully multivariate’ model. The differences in

log-likelihoods, taking the values 5,995, 5,788 and 4,422, respectively, are statistically sig-
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Table 3: Parameter estimates for price spike models

Single equation Fully multivariate

VIC NSW QLD SA VIC NSW QLD SA

constant -5.3902 -5.2451 -4.9162 -8.4559 -5.8689 -6.6440 -5.6830 -6.5014

(0.0064) (0.0141) (0.0060) (0.0138) (1.2817) (0.5543) (0.6270) (1.3838)

πVIC,t−1 0.2168 -0.1480 -0.0357 0.1125

(0.0001) (0.2562) (0.0711) (0.1361)

πNSW,t−1 0.1950 0.0304 -0.1139 0.1724

(0.0001) (0.0153) (0.0631) (0.0329)

πQLD,t−1 0.3949 0.1481 -0.0355

(0.0006) (0.0558) (0.0221)

πSA,t−1 -0.2782 0.0619 -0.2169

(0.0002) (0.0543) (0.3061)

D2 4.8110 9.0512 7.1481 7.1043 9.9913 9.9951 7.6561 9.9783

(6.5214) (0.0449) (0.0981) (5.2847) (1.6280) (1.2739) (2.6854) (4.5741)

D3 0.5199 0.8650 0.6095 0.5331 0.5982 0.7154 0.6696 0.7959

(0.2000) (0.0064) (0.0062) (0.0666) (0.2083) (0.1022) (0.2442) (0.4803)

yVIC,t−1 0.8827 1.1288 0.6264 1.5223

(0.9185) (1.6636) (0.7080) (0.4914)

yNSW,t−1 0.7031 1.1297 0.9951 1.2406

(0.2531) (0.8959) (0.2705) (0.3502)

yQLD,t−1 0.6263 0.8217

(0.1183) (0.2805)

ySA,t−1 1.8219 1.1953

(1.8180) (0.3773)

Load 1.2283 1.4270 1.0050 1.7314 1.3776 1.8001 1.5556 1.5371

(0.0017) (0.0013) (0.0010) (0.0008) (0.3265) (0.2192) (0.1176) (0.2430)

scobit 0.4382 0.4873 0.5532 0.7918 0.2851 0.5082 0.5569 0.4808

(0.0013) (0.0006) (0.0002) (0.0004) (0.0745) (0.1031) (0.3285) (0.1730)

[θ1, θ2, θ3] [2.5664,3.0475,1.8472]

[(0.1983),(0.2934),(0.1088)]

Note: The table contains estimated parameters for the univariate model (left panel) and the DCMDC

model, when using the Gumbel copula and Cθ3(Cθ1(uVIC, uSA), Cθ2(uNSW, uQLD)) as the nesting structure

(right panel). The time-period under consideration is 01.01.2008 to 31.12.2011.
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nificant using likelihood ratio tests6. Thus we can conclude that the additional flexibility

of our model leads to notable improvements in the model fit. In particular, the size of the

improvement when allowing for dependent errors is large, implying that the assumption

of independence clearly cannot be maintained.

Based on the model that provides the best in-sample fit, i.e. the fully multivariate spec-

ification relying on the Gumbel copula, we compute the marginal effects caused by any

of the lagged binary variables yi,t−1. The corresponding results for the average marginal

effects are documented in Table 4. The left panel presents average marginal effects that

yi,t−1 has on the probabilities that one of the four endogenous variables is equal to one,

P (Yj,t = 1). It can be seen that the average marginal effect of a market’s own lag, is

between 8.7% for QLD and 19% for VIC. Furthermore, the average marginal effects on

neighboring markets are all positive, albeit - with values between 0.3% and 1.3% - far

smaller than the average marginal effects caused by their own lagged dependent variables.

In accordance with the descriptive statistics, lagged spike occurrences in the more influ-

ential market VIC do exert larger average marginal effects on the spike probability in SA

than vice versa. Furthermore, lagged spike occurrences in NSW have stronger average

marginal effects on QLD and VIC than lagged spikes occurrences in one of these two

markets have on NSW. This is in accordance with the fact that NSW is the area with

the highest electricity consumption while being a net importer and QLD and VIC being

net exporters. Knowing that unconditionally P (Si,t|Si,t−1) is around 70% (see Table 1),

it might be surprising that the largest average marginal effect is about 19%. Nonethe-

less one has to keep in mind that we are documenting the average marginal effect. This

does not necessarily reflect the effect a lagged spike will have when, e.g., loads for the

corresponding market are already high, as it is the case during day time when spikes

generally occur. The same argument holds for lagged cross effects. For example, on the

4th of January 2008 VIC exhibited prices exceeding the threshold of 100 from 13:30 until

18:00. This occurred in combination with high loads and with spikes occurring in SA

between 13:00 and 18:00. For these observations the average marginal effect of yVIC,t−1

on the spike probability in VIC at time t is 62%, while the marginal effects of ySA,t−1 and

yNSW,t−1 are about 13% and 8%, respectively. Similar observations can be made for the

lagged own and cross effects corresponding to the remaining three markets. This finding

is reasonable as a spike in one market at time t can be expected to have larger impact on

the probability of observing spikes at t + 1 in the same or connected markets when the

6Note that the models are nested.
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Table 4: Average marginal effects of lagged spikes

Univariate probabilities Co-spike probabilities

VIC NSW QLD SA VIC-NSW VIC-SA NSW-QLD

yVIC,t−1 0.1909 0.0028 - 0.0126 0.0082 0.0188 0.0006

yNSW,t−1 0.0047 0.1385 0.0085 - 0.0088 0.0016 0.0131

yQLD,t−1 - 0.0040 0.0866 - 0.0007 - 0.0098

ySA,t−1 0.0062 - - 0.1399 0.0012 0.0094 -

Note: The table contains marginal effects that correspond to the estimated parameters on probabilites

for only one of the four endogenous variables to be one (left panel) and for pairs of endogenous variables

that belong to connected markets, to be jointly one (right panel). The time-period under consideration

is 01.01.2008 to 31.12.2011.

system as a whole is already under stress.

The right panel of Table 4 reports the average marginal effects that yi,t−1 has on the

different co-spike probabilities for directly interconnected market pairs, P (Yj,t = 1, Yk,t =

1). The average marginal effects are in accordance with the results from the descriptive

data analysis in Section 3.1. As to be expected, lagged binary variables that correspond

to one of the two markets of interest exhibit higher average marginal effects than those of

other markets. Lagged spike occurrences in the more influential market VIC exert larger

average marginal effects on the probability of co-spikes between VIC and SA than lagged

spike occurrences in SA. Furthermore the marginal effect that a lagged spike occurrence in

NSW has on co-spikes in NSW and QLD or NSW and VIC is higher than the corresponding

marginal effect that is caused by a lagged spike in QLD or VIC. This can (as documented

for marginal probabilities in the left panel) be attributed to the fact that NSW is the area

with the highest electricity consumption while being a net importer, and QLD and VIC

being net exporters. We again report the average marginal effect caused by lagged spike

occurrence in VIC, SA or NSW for January, 4th 2008 between 13:30 and 18:00. However,

this time we look at the effects for co-spikes in VIC and SA. It turns out, that the lagged

marginal effect of yVIC,t−1 is 25% while the ones for ySA,t−1 and yNSW,t−1 are 12% and

7%, respectively. Again, we find that the size of marginal effects will heavily depend on

the overall state of the system and that average marginal effects alone do not convey the

whole picture.
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3.4 Out-of-sample results

The predictive ability of our proposed models is compared to a simple benchmark model

that is based on the observations that spikes tend to occur in blocks of consecutive spikes.

Thus a natural benchmark is the naive model that predicts a spike in market i in period t

whenever a spike has occurred in period t−1. This model has been used as a benchmark by

Clements et al. (2013) and Eichler et al. (2014) where it was shown to provide surprisingly

good forecasts. The clear disadvantage is the this model can never predict the first spike

in a block, nor the first non-spike after a block. In fact, this model which we term ’naive

model’ is nested in our specification by setting

πit = αi + diyi,t−1

and assuming an independence copula.

In order to compare the forecasting performance of the different models we compute

McFadden’s (1974) pseudo R2 and the predictive log likelihood (LL) for the overall model,

as well as the univariate Cramer (CR) statistic (see Cramer 1999) based on the out-of-

sample data and the 1-step predictions of the underlying probabilities. The pseudo R2 of

McFadden (1974) is calculated as

R2
pseudo = 1− L/L0, (12)

with L giving the log-likelihood value that corresponds to the model under consideration,

while L0 is log-likelihood assuming constant probabilities. The predictive log-likelihood is

the out-of-sample value of the log-likelihood function and the Cramer statistic is computed

as

CRi =
1

Ki

T+K∑
t=T+1

P̂ (yit = 1) yit −
1

K −Ki

T+K∑
t=T+1

P̂ (yit = 1)(1− yit), (13)

where Ki =
∑T+K

t=T+1 yit is the number of spike occurrences in market i in the out-of-sample

period {T + 1, . . . , T + K}. The first term is the average of P̂ (yit = 1) conditional on

yit = 1, while the second term gives the average of P̂ (yt = 1) conditional on no spike

having occurred at t. This measure heavily penalizes incorrect predictions. Furthermore,

because each proportion is taken within the corresponding subsample, it is not unduly

influenced by the large proportionate size of the group of more frequent outcomes. Apart

from being considered for the marginal spike probabilities for each market separately,

the Cramer statistic is further applied to the stacked marginal probabilities in order to
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Table 5: Out-of-sample fit

R2 L CRstacked CRV IC CRNSW CRQLD CRSA

Naive 0.4723 -2356 0.4599 0.4862 0.5533 0.3384 0.5144

Single equation 0.5001 -2232 0.3640 0.4638 0.5215 0.2708 0.3209

Intermediate 0.5496 -2011 0.4021 0.4849 0.5188 0.3023 0.3926

Fully multivariate 0.6250 -1674 0.4169 0.4856 0.5170 0.3084 0.4307

Note: The table contains pseudo R2, predictive log-likelihood and Cramer statistic results for the out-of-

sample period from 01.01.2012 to 31.12.2012.

evaluate the joint fit of the model. For this purpose we adapt it as

CRstacked =

∑d
i=1

∑T+K
t=T+1 P̂ (yit = 1) yit∑d
i=1

∑T+K
t=T+1 yit

−
∑d

i=1

∑T+K
t=T+1 P̂ (yit = 1)(1− yit)

K −
∑d

i=1

∑T+K
t=T+1 yit

. (14)

The results are documented in Table 5. The values of the pseudo R2 statistic indicate

that the naive model gives a 47% improvement compared to a model only including a

constant term. The single equation model obtains a value of 50%. When allowing for

spillover via πt−1 the pseudo R2 increases to about 55%, whereas the generalization to

dependent error terms leads to a further improvement to a value of 62.5%. The predictive

(negative) log-likelihood statistics give the same ranking as the pseudo R2. We decided to

include them nonetheless in order to give the reader an impression about their absolute

magnitude as a measure of the quality of the density forecasts.

Looking at the Cramer measure it stands out that the naive model performs sur-

prisingly well and better than the more complex alternatives, which is in line with the

findings in Eichler et al. (2014). However, note again the obvious disadvantage of this

trivial forecasting approach of not having any value for forecasting the first spike in a

sequence of spikes, nor the first non-spike after such a sequence. Focusing on the other

models, the overall Cramer measure, which stacks the univariate probabilities and the

observed binary variables for each of the four markets, also ranks the models consistently

with their complexity. However, in this case the generalization to dependent errors only

results in a minor improvement compared to the improvements yielded for pseudo R2 and

predictive log-likelihood. This may be due to the fact that this measure only considers

univariate probabilities. When looking at the Cramer statistic for each time series we

can see that the same argument as for the overall Cramer statistic applies. Only for
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Figure 3: Receiver operating characteristic (ROC)

NSW the single equation model appears to perform slightly better than its generaliza-

tions. Altogether the results clearly illustrate that for the problem at hand multivariate

modeling improves quality of the forecasts. A graphical illustration of the predictive

ability of the competing models is the receiver operating characteristic (ROC) in Figure

3. It varies the probability threshold τ at which a spike is predicted and plots the false

positive rate (FPR) against the true positive rate (TPR) for all τ ∈ (0, 1). The diagonal

line shows the pairs that would arise for completely random guesses and a curve above the

diagonal indicates predictions that are better than random guesses. The figure shows our

models perform very similarly, whereas the naive model performs worse than the more

sophisticated approaches.

As noted above, the naive model is not able to predict the first spike in block of

spikes, nor the first non-spike after such a block. In order to assess how our proposed

models perform for predicting such events we recomputed the ROC for two subsamples
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Figure 4: Conditional ROC for VIC

of the out-of-sample data. First, we consider only those periods t for which yt−1 = 0,

i.e. we consider the problem of predicting spikes given that no spikes have occurred in

the previous period. Second, we consider the observations for which yt−1 = 1, in which

case a spike has occurred in the previous period and the market has entered a block of

spikes. Figure 4 shows the curves for the Victoria (VIC) market. The results for the

other markets look similar and are omitted to preserve space. It can be seen that our

models perform well for both cases and that the fully multivariate model does slightly

better than the less complex models. The high predictive power conditional on yt−1 = 0

stems from the fact that most non-spikes are predicted correctly and we thus have a fairly

low false positive rate. Conditional on being in a block of spikes the predictive power is

lower since there are naturally more false positives when a block of spikes ends. Note that

the diagonal ROC for the naive model is an artifact from the fact that depending on the

chosen probability threshold the FPR and TPR are both either 0 or 1.

Next we analyze how well the models perform when forecasting co-events between

directly interconnected markets. To be more precise, we evaluate their capability of

forecasting probabilities for directly interconnected markets to co-spike. Furthermore,

we look at the forecasts of the event that only one of the two markets spikes. Being

able to forecast these events is important when pricing inter-regional settlements residue.

Reliable forecasts for the probability of a single spike will help speculators to better price

their bids for transmission rights in one direction or the other. Quantifying the expected

probability of two connected markets to co-spike will allow one to bet on spreads between
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Table 6: Out-of-sample Cramer statistic for co-events

VIC,NSW VIC,SA NSW,QLD

1,1 1,0 0,1 1,1 1,0 0,1 1,1 1,0 0,1

# of events 106 65 13 161 10 119 91 28 166

Naive 0.3640 0.3771 0.3992 0.3560 0.1022 0.3794 0.3660 0.3355 0.2562

Single equation 0.3808 0.3530 0.1278 0.2633 0.1187 0.1378 0.3341 0.1636 0.1981

Intermediate 0.4089 0.3363 0.1203 0.3474 0.1167 0.1499 0.4148 0.1411 0.1856

Fully multivariate 0.4281 0.3612 0.1018 0.4352 0.0959 0.1730 0.4651 0.1253 0.2017

Note: Cramer statistic for bivariate coevents concerning directly interconnected markets. The out-of-

sample period under consideration is 01.01.2012 to 31.12.2012.

resulting spikes by bidding on transmission rights in both directions.

We compare the forecasting performance using a variation of the Cramer statistic

(CRco). The adaptation is straightforward. An example on how to calculate CRco for the

co-event that yit = 1 and ykt = 0 is given by:

CRco =

∑T+K
t=T+1 P̂ (yit = 1, ykt = 0) yit(1− ykt)∑T+K

t=T+1 yit(1− ykt)
−
∑T+K

t=T+1 P̂ (yit = 0, ykt = 1)(1− (1− yit)ykt)
K −

∑T+K
t=T+1 yit(1− ykt)

.

(15)

Here the first term gives the mean probability that the model yields for {yit = 1, ykt = 0}
when being calculated only for the observations for which this event really occurs. The

second term gives the average probability of {yit = 1, ykt = 0} for all t at which this event

does not occur.

Table 6 reports the results. Comparing the single equation and the intermediate

models, we can conclude that the intermediate model performs better at forecasting co-

spikes, whereas the single equation model might be slightly more reliable for predictions

of the event that a single spike occurs. The fully multivariate model in contrast not only

outperforms these two competitors for forecasting co-spikes, but also indicates a better

performance when forecasting the event that only one of the two markets spikes. Again

the naive model performs rather well for the event that only a single spike occurs, but

it is always clearly outperformed by the fully multivariate model for predicting co-spikes.

Ignoring the naive model, the fully multivariate model gives the best predictions in 6 out

of 9 cases. The three cases in which it does not outperform are the ones with very few
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occurrences. The fact that in these three cases we only have 10, 13 and 28 observations

suggests that the rankings are not very reliable. Furthermore, these cases indicate a

strong asymmetry concerning the occurrence of spikes in only a single market. A sensible

extension of our model may allow for a non-exchangeable dependence structure, i.e. a

Copula for which C(u, v) 6= C(v, u). We leave this topic for future research.

Overall, it can be stated that the fully multivariate model outperforms its less complex

alternatives in terms of marginal spike forecasting, in terms of forecasting specific event

combinations and regarding the overall in- and out-of-sample fit. Furthermore, we can

conclude that the proposed models offer advantages over the naive forecasting scheme

that predicts a spikes whenever a spike in the previous period has occurred.

4 Conclusion

This paper proposes a general model for multivariate binary outcomes in a time series

setting, which is adapted to the problem of forecasting multivariate price spikes in Aus-

tralian electricity prices. The model specification allows the researcher to freely choose

the link function and copula, therefore nesting a large number of different models. Choos-

ing a copula other than the Gaussian has the further advantage of drastically simplifying

the computations needed to evaluate the likelihood function of the model at the price of

some restrictions on the dependence structure. This makes the estimation of the model

in dimension larger than two feasible even for very large sample sizes. Furthermore the

computation of marginal effects for any probability of interest is straightforward.

The application of the paper shows that one can obtain considerable improvements in

model fit and forecasting precision when applying the general multivariate model com-

pared to single equation models or models assuming independent error terms. The model

is applied to the problem of modeling and forecasting price spikes in half-hourly electricity

prices in four interconnected markets in Australia. The basic model has been adapted

to this specific problem by including an exponentially decaying effect of durations in or-

der to better capture the clustering behavior of spikes and by allowing direct spillover

effects only for markets that are directly interconnected. The model is compared to more

restricted specifications and our results show that the full model complexity of allowing

spillovers and dependent innovations leads to significant improvements in in-sample fit

and in terms of forecasting performance. Advantages over a naive forecasting scheme are

also pointed out.
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Future research could aim at quantifying the potential economic gains from apply-

ing this complex model over simpler specifications. Furthermore, the stability of the

dependence between the markets over time may be studied considering changes in the

market infrastructure such as additional transmission capacities between markets. From

a methodological perspective, the development of tools for an impulse response analysis

could greatly improve the usefulness and interpretability of the model.

Appendix A Estimation and marginal effects

Appendix A.1 Maximum likelihood estimation

The model introduced in Section 2 can be estimated via maximum likelihood estimation

(MLE). As discussed in Nyberg (2013), consistency and asymptotic normality of the MLE

can be expected to hold under suitable regularity conditions, but a rigorous treatment of

this poses some technical challenges and is beyond the scope of this paper.

We begin by presenting the log-likelihood for the two-dimensional case. Let zt =

(1 x′t π
′
t−1 y

′
t−1) be the vector that stacks all explanatory variables and let βi for i = 1, 2

be the column vector that stacks parameters from α, B, Γ and D corresponding to the

ith equation. Furthermore we make use of the fact that C(u1, 1) = u1, C(1, u2) = u2, and

C(u1, 0) = C(0, u2) = 0. Next we define sit = 2yit − 1 for i = 1, 2. Then the probabilities

corresponding to the four possible outcomes of yt which are the contributions to the

likelihood function, can be written as:

L(y1t, y2t) = P (y1t, y2t|zt)

= y1ty2t − y1ts2tF2(−ztβ2)− y2ts1tF1(−ztβ1) + s1ts2tCθ[F1(−ztβ1), F2(−ztβ2)].
(16)

The corresponding log-likelihood function for the model is then given by

LL(β, θ) =
T∑
t=1

lnL(y1t, y2t), (17)

where β = (β1, β2). In order to derive the likelihood for higher dimensions one has

to compute the probabilities corresponding to the 2d possible outcomes. These can

be computed from the general formulas for computing rectangle probabilities for mul-

tivariate distributions given in, e.g., Nelsen (2006). Consider a = (a1, a2, . . . ad) and

b = (b1, b2, . . . bd) where ai < bi, for all i = 1, 2, . . . , d and let [a,b] denote the d-box
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B = [a1, b1]× [a2, b2]× · · · × [ad, bd], the Cartesian product of n closed intervals. Then for

a given cumulative distribution function H : Rd → [0, 1], the probability of the random

vector X to take values in [a,b] is given by

PH(B) = P (a < X < b) =
2∑

j1=1

· · ·
2∑

jd=1

(−1)j1+...+jdH(xj1 , . . . , xjd), (18)

with xji = ai if ji = 1 and xji = bi if ji = 2. For our specific case one has to set ai = −ztβi
and bi =∞ for an event occurring in component i, (yit = 1) and ai = −∞ and bi = −ztβi
for the probability of no event occurring in component i, (yit = 0). Corresponding to the

possible number of outcomes, 2d probabilities need to be computed, each consisting of up

to 2m terms with m =
∑d

i=1 1{yit=1} being the number of occurrences for the probability

of interest. The log-likelihood is then computed similarly to the bivariate case as the sum

of the probabilities of the observed outcomes.

Here we give detailed expressions for the probabilities entering the likelihood function

in three and four dimensions that are more user friendly than the general probabilities

in equation (18). We start with an illustration for the three-dimensional case. Consider

the vectors (a1, a2, a3) and (b1, b2, b3) with ai < bi for all i. Then for the vector of random

variables X = (X1, X2, X3) it holds in general that

P (a1 < X1 < b1, a2 < X2 < b2, a3 < X3 < b3) = H(b1, b2, b3)−H(a1, a2, a3) +H(b1, a2, a3)

−H(b1, b2, a3)−H(b1, a2, b3) +H(a1, b2, a3)−H(a1, b2, b3) +H(a1, a2, b3).

Since Fi(−∞) = 0 and Fi(∞) = 1 a number of terms drop out or simplify when evaluating

the nine probabilities of interest. Using the shorthand notation Fi = Fi(−ztβi) for i =

1, 2, 3 this leads to the following expressions for the probabilities.

Pt(1, 1, 1) = 1− Cθ(F1, F2, F3) + Cθ(1, F2, F3) + Cθ(F1, 1, F3)

+ Cθ(F1, F2, 1)− F1 − F2 − F3

Pt(1, 1, 0) = F3 − Cθ(1, F2, F3)− Cθ(F1, 1, F3) + Cθ(F1, F2, F3)

Pt(1, 0, 1) = F2 − Cθ(1, F2, F3)− Cθ(F1, F2, 1) + Cθ(F1, F2, F3)

Pt(0, 1, 1) = F1 − Cθ(F1, 1, F3)− Cθ(F1, F2, 1) + Cθ(F1, F2, F3)

Pt(1, 0, 0) = Cθ(1, F2, F3)− Cθ(F1, F2, F3)

Pt(0, 1, 0) = Cθ(F1, 1, F3)− Cθ(F1, F2, F3)

Pt(0, 0, 1) = Cθ(F1, F2, 1)− Cθ(F1, F2, F3)

Pt(0, 0, 0) = Cθ(F1, F2, F3)
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The log-likelihood is obtained by multiplying the logs of these probabilities with indicators

for the actual observations.

Using the same notation as for the three dimensional case, but omitting the dependence

of the copula on θ we get the following statements for the 16 probabilities of interest in the

four-dimensional case. Note that when the bivariate or trivariate margins of the copula

are known most of the terms can be replaced by those. This may lead to a slight decrease

in computation times in practice.

Pt(1, 1, 1, 1) = 1 + C(F1, F2, F3, F4)− C(1, F2, F3, F4)− C(F1, 1, F3, F4)− C(F1, F2, 1, F4)

− C(F1, F2, F3, 1) + C(1, 1, F3, F4) + C(1, F2, 1, F4) + C(1, F2, F3, 1)

+ C(F1, 1, 1, F4) + C(F1, 1, F3, 1) + C(F1, F2, 1, 1)− F1 − F2 − F3 − F4

Pt(1, 1, 1, 0) = F4 − C(F1, F2, F3, F4)− C(1, 1, F3, F4)− C(1, F2, 1, F4)− C(F1, 1, 1, F4)

+ C(1, F2, F3, F4) + C(F1, 1, F3, F4) + C(F1, F2, 1, F4)

Pt(1, 1, 0, 1) = F3 − C(F1, F2, F3, F4)− C(F1, 1, F3, 1)− C(1, F2, F3, 1)− C(1, 1, F3, F4)

+ C(1, F2, F3, F4) + C(F1, 1, F3, F4) + C(F1, F2, F3, 1)

Pt(1, 0, 1, 1) = F2 − C(F1, F2, F3, F4)− C(F1, F2, 1, 1)− C(1, F2, F3, 1)− C(1, F2, 1, F4)

+ C(1, F2, F3, F4) + C(F1, F2, 1, F4) + C(F1, F2, F3, 1)

Pt(0, 1, 1, 1) = F1 − C(F1, F2, F3, F4)− C(F1, F2, 1, 1)− C(F1, 1, F3, 1)− C(F1, 1, 1, F4)

+ C(F1, 1, F3, F4) + C(F1, F2, 1, F4) + C(F1, F2, F3, 1)

Pt(1, 1, 0, 0) = C(F1, F2, F3, F4) + C(1, 1, F3, F4)− C(1, F2, F3, F4)− C(F1, 1, F3, F4)

Pt(1, 0, 1, 0) = C(F1, F2, F3, F4) + C(1, F2, 1, F4)− C(1, F2, F3, F4)− C(F1, F2, 1, F4)

Pt(1, 0, 0, 1) = C(F1, F2, F3, F4) + C(1, F2, F3, 1)− C(1, F2, F3, F4)− C(F1, F2, F3, 1)

Pt(0, 1, 1, 0) = C(F1, F2, F3, F4) + C(F1, 1, 1, F4)− C(F1, 1, F3, F4)− C(F1, F2, 1, F4)

Pt(0, 1, 0, 1) = C(F1, F2, F3, F4) + C(F1, 1, F3, 1)− C(F1, 1, F3, F4)− C(F1, F2, F3, 1)

Pt(0, 0, 1, 1) = C(F1, F2, F3, F4) + C(F1, F2, 1, 1)− C(F1, F2, 1, F4)− C(F1, F2, F3, 1)

Pt(1, 0, 0, 0) = C(1, F2, F3, F4)− C(F1, F2, F3, F4)

Pt(0, 1, 0, 0) = C(F1, 1, F3, F4)− C(F1, F2, F3, F4)

Pt(0, 0, 1, 0) = C(F1, F2, 1, F4)− C(F1, F2, F3, F4)

Pt(0, 0, 0, 1) = C(F1, F2, F3, 1)− C(F1, F2, F3, F4)

Pt(0, 0, 0, 0) = C(F1, F2, F3, F4).
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Appendix A.2 Computation of marginal effects

Due to the fact that the coefficients of discrete choice models do not have a direct interpre-

tation, one commonly computes the marginal effects of changes in the exogenous variables

on the probabilities of interest based on the estimated model parameters. This problem

has been addressed for certain specifications of multivariate discrete choice models in

Greene (1996), Christofides et al. (1997), Hasebe (2013) and Mullahy (2011). In the bi-

variate case marginal effects for joint conditional probabilities are obtained by calculating

the derivative of (16):

∂P (Y1t = y1t, Y2t = y2t|zt)
∂zt

= y1ts2tf1(−ztβ1)β1 + y2ts1tf2(−ztβ2)β2

− s1ts2t

[
∂Cθ
∂u1
· f1(−ztβ1) · β1 +

∂Cθ
∂u2
· f2(−ztβ2) · β2

]
,(19)

where f1 and f2 are the density functions corresponding to F1 and F2, respec-

tively, and sit has been defined in Appendix A.1. We use (∂Cθ)/(∂ui) instead of

∂Cθ(F1(−ztβ1), F2(−ztβ2))/∂Fi(−ztβi) to simplify notation.

For the d-variate case marginal effects for joint conditional probabilities are given as

the derivative of (18):

∂P (Y1t = y1t, . . . , Ydt = ydt|zt)
∂zt

=

∑2
j1=1 · · ·

∑2
jd=1(−1)j1+...+jd∂H(xj1 , . . . , xjd)

∂zt
, (20)

with the corresponding xji given below equation (18). The number of marginal effects

which need to be calculated is 2d while each equation itself will again be a function of

the number of corresponding events with 2m terms, where m is the number of ones in the

event of interest. Furthermore the number of needed derivatives for each equation is a

function of d and m equal to
∑m

i=1

(
m
i

)
(d−m+ i). Thus computation of marginal effects

for very high dimensions will be tedious. Nonetheless, for dimensions that are relevant in

practice this is generally manageable.

In case one is interested in marginal effects with respect to a binary variable, say zk,t,

they can be computed using the difference, P (Y1t = y1t, . . . , Ydt = ydt|zk,t = 1, z−k,t) −
P (Y1t = y1t, . . . , Ydt = ydt|zkt = 0, z−k,t). Here z−k,t denotes the vector zt excluding zk,t.
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