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a b s t r a c t

We make an attempt to identify factors that explain accidents on German Autobahn connectors. To find
these factors we perform an empirical study making use of count data models with fixed and random
coefficients. The findings are based on a set of 197 ramps, which we classify into three distinct types of
ramps. For these ramps, accident data is available for a period of 3 years (January 2003 until December
eywords:
ighway connectors
erman Autobahn
ccident causes
egative binomial regression

2005). The negative binomial model with some random coefficients proved to be an appropriate model in
our cross-sectional setting for detecting factors that are related to accidents. The most significant variable
is a measure of the average daily traffic. For geometric variables, not only continuous effects were found
to be significant, but also threshold effects indicating the exceedance of certain values.

© 2011 Elsevier Ltd. All rights reserved.

andom parameters

. Introduction

The traffic on German highways, the so-called “Autobahn”, has
een increasing drastically over the past years and is expected to
row further in the future, due to Germany’s central geographi-
al position in Europe. The increase in traffic surpasses not only
he economic growth, but also the speed of construction of roads.
f the road network is not expanded significantly, the increasing
umber of vehicles on German Autobahns will certainly lead to an

ncreasing number of accidents. Due to limitations in the poten-
ial expansions of the Autobahn, particularly in the short run, an
mportant task is to identify accident factors and their influence
n accident probabilities. This information could give suggestions
or low-cost, short-term improvements for the prevention of acci-
ents on existing Autobahn segments. One of the most dangerous
ituations for car drivers on Autobahns is the weaving out of the
ow of traffic via a road connector. In the years 2003–2005 nearly
000 accidents happened on road connectors on Autobahns in the
dministrative district Düsseldorf, which has an extremely dense
utobahn network and is the region we focus on in this study. Due

o the safety-standards on Autobahns “only” 10 of these accidents
ere fatal, however, the economic damage caused by accidents is

emarkable.

Several studies found that about 90% of all accidents are at least

artially caused by human failure, see, e.g. Treat et al. (1977). As
river behavior is influenced by the whole environment, the aim

∗ Corresponding author. Tel.: +49 221 470 4130; fax: +49 221 470 5084.
E-mail addresses: mgarnowski@fedex.com (M. Garnowski),

anner@statistik.uni-koeln.de (H. Manner).

001-4575/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.aap.2011.04.026
of road construction should be to construct road sites that prevent
or forgive human errors. The problem with road connectors is that
each of them is constructed differently according to distinct traf-
fic volumes or geographical constraints. The key question is which
factors cause drivers to make mistakes. The aim of our study is to
find a model that explains the number or the probability of acci-
dents at various types of Autobahn connectors. This is a statistical
problem. However, due to the nature of the problem, the use of
standard linear regression models is inappropriate, as argued by
Jovanis and Chang (1986) and Miaou and Lum (1993). The variable
of interest, namely the number of accidents during a given time
interval, suggests the use of count data models.

Miaou and Lum (1993), who investigated the relationship
between truck accidents and roadway geometries, and Pickering
et al. (1986) used the Poisson regression model to study accident
data. Hauer et al. (1988), on the other hand, introduced the more
appropriate negative binomial model to find that traffic flow and
various road characteristics have a significant effect on the number
of accidents on signalized intersections in Toronto. Another study
applying the negative binomial model to determine the causes of
car accidents is Shankar et al. (1995), who analyzed accidents on
a section of the Interstate 90 near Seattle. Both Poisson and neg-
ative binomial models require a cross sectional setting. Chin and
Quddus (2003) found that panel count data models have the advan-
tage that they are able to deal with spatial or temporal effects in
contrast to cross sectional count data models. They analyzed differ-
ent types of accidents on signalized intersections in Singapore using

a set of variables containing geometric variables, traffic volume
variables and regulatory controls. Another paper applying panel
data techniques to study accident data is Shankar et al. (1998).
As accident data typically tends to have more zero-observations

dx.doi.org/10.1016/j.aap.2011.04.026
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:mgarnowski@fedex.com
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han are predicted by standard count data models, zero-inflated
odels have been introduced into traffic accident research. For

xample, Shankar et al. (1997) investigated accidents on arteri-
ls in Washington with two years of accident data and concluded
hat zero-inflated models have a great flexibility in uncovering
rocesses affecting accident frequencies on roadway sections. For
un-off-roadway accidents on a section of a highway in Washing-
on State Lee and Mannering (2002) got promising results applying
ero-inflated models in contrast to standard models. However,

ashington et al. (2003) and Lord et al. (2005) provide arguments
gainst the use of zero-inflated models in the analysis of acci-
ent data. Recently, Anastasopoulos and Mannering (2009) and
l-Basyouny and Sayed (2009) introduced count data models with
andom parameters to account for unobserved heterogeneity and
ound that these models perform very well. For more on regression

odels with count data we refer to, among others, Cameron and
rivedi (1986); Lord et al. (2005); Lord and Mannering (2010) and
ibria (2006).

None of the above-mentioned studies analyzes data on highway
onnectors, but the statistical techniques and explanatory variables
hat they use are similar to the ones used here. We make an attempt
o find an appropriate model for our dataset of 3 years of accidents
n Autobahn connectors in the administrative district Düsseldorf
approximately a fifth of the area of North Rhine-Westphalia). In
ur analysis, we consider more than 60 Autobahn connectors with
97 ramps in an area of approximately 2300 km2, using traffic data
nd geometric variables both in continuous form and allowing for
hreshold effects, which are represented by dummies indicating the
xceedance of certain threshold values.

The remainder of the paper is organized as follows. In the next
ection we describe our methodology. In Section 3 we introduce and
xplain our dataset, followed by the presentation of the empirical
esults in Section 4. Finally, Section 5 concludes our paper.

. Methodology

As our variable of interest, the number of accidents on highway
onnectors, is a count variable, linear regression models are not an
ppropriate tool for our analysis. Instead, we make use of count
ata regression models that have been designed for the specific pur-
ose of modeling discrete count variables. The benchmark model
or count data is the Poisson regression model, which is derived
rom the Poisson distribution. We assume a cross sectional setting
ith n independent observations, the ith of which being (yi, xi),
here yi is the number of occurrences of the event of interest and

i is a vector of regressors that determine the number of accidents
i. The Poisson regression model is defined by

(yi|xi, ˇ) = e−�i �yi
i

yi!
, yi = 0, 1, 2, . . . (2.1)

here �i > 0 is the intensity or rate parameter of observation i. Equa-
ion (2.1) measures the probability of yi occurrences of an event
uring a unit of time. In this model, the mean and the variance are
he same, which is called the equidispersion-property of the Poisson
istribution. The intensity parameter �i is assumed to depend on
he regressors through

i = exp(x′
iˇ), (2.2)

here the log-linear dependence of �i on xi assures that the inten-
ity parameter is always positive. It is crucial that the conditional
ean equation is correctly specified and that the assumption of

quidispersion is satisfied. In the case of overdispersion, maximum

ikelihood estimation (MLE) t-statistics are inflated, which can lead
o too optimistic conclusions about the statistical significance of
egressors. The assumption that yi is Poisson distributed can be
elaxed considerably as studied in Gourieroux et al. (1984a,b).
and Prevention 43 (2011) 1864–1871 1865

Given a correctly specified mean, the pseudo MLE based on a density
from the linear exponential family (LEF) is consistent. This allows
the assumption of equidispersion to be relaxed either by allowing
for specific variance functions or by leaving the form of the variance
unspecified. In the latter case standard errors can be obtained by a
robust sandwich or bootstrap estimator.

As the assumption of equidispersion is unlikely to hold in real-
ity, a natural extension of the model is to allow for unobserved
heterogeneity. Unobserved heterogeneity arises when the covari-
ates do not account for the full amount of individual heterogeneity.
An extension of the Poisson model that allows for unobserved het-
erogeneity and overdispersion is the negative binomial regression
(NB) model. The NB model can be obtained by writing

�i = exp(x′
iˇ + εi), (2.3)

where exp (εi) follows a gamma distribution with mean 1 and vari-
ance ˛. For this reason it is also called the Poisson-gamma model.
The density of the NB distribution is given by

f (yi|xi, ˇ, ˛) = �(˛−1 + yi)
�(˛−1)yi!

(
˛−1

˛−1 + �i

)˛−1(
�i

˛−1 + �i

)yi

. (2.4)

The variance of this distribution is:

V[yi|�i, ˛] = �i(1 + ˛�i) > �i.

Thus, for ˛ > 0, this model allows for overdispersion. The NB regres-
sion is also estimated by MLE and, as it is also a member of LEF, it is
robust to distributional misspecifications. However, if the model is
misspecified the maximum likelihood standard errors are in gen-
eral inconsistent and either robust sandwich or bootstrap standard
errors should be used.

One possibility to allow for heterogeneity across observations
(possibly caused by unobserved factors) is to let all or some of
the parameters be random. Random parameter count data mod-
els for accident data have been proposed by Anastasopoulos and
Mannering (2009) and El-Basyouny and Sayed (2009). The random
parameters are written as

ˇi = ˇ + ϕi, (2.5)

where ϕi is a random variable with density g(·). The most popu-
lar choice is the normal distribution with mean 0 and variance
�2, which we also use in this paper. Conditional on the random
components, the intensity parameters are given by �i|ϕi = exp(x′

i
ˇ)

and �i|ϕi = exp(x′
i
ˇ + εi) for the Poisson and negative binomial

regression, respectively. The log-likelihood of the random param-
eter model can be obtained by integrating out ϕi from the joint
density of yi and ϕi:

ln L =
n∑

i=1

ln

∫
ϕi

g(ϕi)f (yi|ϕi)dϕi. (2.6)

As this integral cannot be evaluated analytically and numer-
ical integration is computational infeasible when the number of
random parameters goes beyond one or two, Anastasopoulos and
Mannering (2009) suggest to evaluate it by simulation. However,
instead of using pseudo random numbers the integral above is
evaluated using so called scrambled Halton sequences. Halton
sequences are non-random sequences that cover the domain of
integration more uniformly than random numbers and lead to
a more precise evaluation of the integral with fewer draws. We
refer to Train (1999) and Bhat (2001, 2003) for details on Halton
sequences and their use in simulated maximum likelihood. Note

that we treat a parameter as random when its estimated variance
is significantly different from zero.

In order to decide between the competing models, it is impor-
tant to test for overdispersion in the data. Besides comparing the
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ample mean and variance, a simple formal test can be performed
y noting that the NB model reduces to the Poisson model when
= 0. Thus, the null hypothesis of equidispersion can be tested by

stimating the NB and Poisson models and performing a likelihood
atio (LR) test for H0 : ˛ = 0. Since ˛ is restricted to be positive the
R statistic asymptotically has probability mass of a half at zero and
half �2(1) distribution above 0. The critical value is then �2

1−2ı
(1)

hen testing at level ı.
The fit of competing models can be measured by the (McFadden)

seudo-R2 given by

− ln L1

ln L0
(2.7)

here ln L1 is the log-likelihood of the full model and ln L0 is the
og-likelihood of the model without any regressors. Additionally,
otentially non-nested models can be compared by looking at infor-
ation criteria. The most popular ones are the Akaike Information

riterion (AIC) proposed by Akaike (1973) and defined as

IC = −2 lnL + 2k, (2.8)

nd the Bayesian Information criterion (BIC) proposed by Schwarz
1978) and given by

IC = −2 lnL + (ln n)k, (2.9)

here k is the number of parameters in the model. The BIC places a
arger penalty on additional regressors and thus leads to the selec-
ion of more parsimonious models.

The estimated coefficients of the above models can be inter-
reted as semi-elasticities and, in contrast to linear regression
oefficients, the response does not stay constant with varying
egressors. For dummy variables the conditional mean of the
ependant variable is exp( ˆ̌

j) times larger if the dummy variable is
ne. The marginal effect is different for each observation i, but we
onsider both the average marginal effect (“Avg”) and the marginal
ffect evaluated at the average (“At Avg”), which are calculated as

1
n

n∑
i=1

∂E[yi|xi]
∂xij

= 1
n

n∑
i=1

ˇjexp(x′
iˇ) (2.10)

nd

∂E[yi|x]
∂xj

∣∣∣∣
x̄

= ˇjexp(x̄′ˇ), (2.11)

espectively, where x̄ denotes the vector of sample means of the
egressors.

. Data

In this section we describe important terms and introduce
ur dataset. Further details about the data are available from the
uthors upon request.

.1. Clarification of terms

We distinguish between the terms connector, ramp and curve.
ig. 1 shows a schematic picture of a connector for two Autobahns.
his connector consists of 8 ramps and each ramp consists of at least
ne curve. One has to distinguish between different types of con-
ectors, namely clover leaves which connect two Autobahns as in
ig. 1 and diamond interchanges which connect an Autobahn with a
inor road as in Fig. 2. The schematic pictures present only two pos-

ible shapes of connectors as their form varies due to construction

onstraints.

The ramps can be categorized as tangents, loops, egress-ramps
nd drive-up ramps. Drive-up ramps are not considered here,
ecause many variables that can be gathered for the other types
Fig. 1. Clover leaf.

of ramps cannot be found for this type. Furthermore, significantly
fewer accidents occur on these ramps due to a lower permitted
driving speed. Thus, we only consider ramps on which cars leave a
specific Autobahn and change onto another Autobahn or a minor
road. For the sake of simplicity tangent ramps, loop-ramps and
egress-ramps will be called T-ramps, O-ramps and E-ramps, respec-
tively.

3.2. Data description

Our data contains the following information: details on individ-
ual accidents, traffic flow data and geometrical properties of the
ramps. We describe each type in turn.

Accident data: The raw data on accidents was provided by
the “Autobahnpolizei Düsseldorf”, the highway police for the dis-
trict Düsseldorf. The dataset contains detailed information for all
reported accidents on Autobahns in the administrative district in
the time period from January 2003 to December 2005. This amounts
to a total of 39,032 accidents (12,887 in 2003, 13,433 in 2004 and
12,712 in 2005). This detailed information includes the exact time
of the accident, its location, type of vehicle, number of vehicles
involved, the severity and type of the accident, information on the
driver, sight conditions, and road sleekness. Out of nearly 40,000
reported accidents, we filtered out the accidents that happened on
ramps of the various connectors. Given the constraints imposed by
the datasets we had a total of 197 ramps under investigation of
which 95 were E-ramps, 33 were O-ramps and 69 were T-ramps.
After the filtering process a total of 3048 accidents were analyzed.
Due to the fact that we are interested in modeling the aggregated
counts over a certain period of time at a particular location, the
detailed information on the accidents is disregarded in this study.

Table 1 shows some descriptive statistics for accidents on the
different types of ramps. The significant difference in the mean of
accident numbers for the different types of ramps is eye-catching
and suggests the existence of heterogeneity across ramp types.
A phenomenon that is often present in accident data analysis is
the predominance of zero-observations, which calls for the use of
zero inflated models, i.e. count data models that explicitly account
for the presence of a large number of zero-observations. Lord et al.
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Fig. 2. Diamond interchange.

Table 1
Descriptive statistics, accidents, whole sample period.

Variable All ramps E-ramps O-ramps T-ramps

Min number of accidents on a ramp 0 0 0 0
Max number of accidents on a ramp 103 76 99 103
Mean number of accidents per ramp 15.32 10.97 15.86 21.03
Mode 4 4 2 4
Median 9 7 11 12
Standard deviation 18.53 12.01 18.56 23.84
Variance 343.33 144.20 344.48 568.44
Inter quartile range 15 12 18 25
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Three different types of surfaces have to be distinguished, namely,
melted or mastic asphalt (MA), found on 57 ramps, mastic asphalt
using chipping (MAC), found on 136 ramps, and asphaltic concrete

Table 2
Descriptive statistics ADT, whole sample period.

Average daily traffic (ADT)

All vehicles (ADTTotal)
Mean 6630.8
Maximum 28,178.47
Minimum 579.26
Standard deviation 4579.36

Passenger cars (ADTPC)
Mean 5173.95
Maximum 25,094.72
Minimum 472.57
Standard deviation 3582.56

Trucks (ADT )
Total number of accidents 3048
Number of ramps 197
Number of zero-accident ramps 10

2005) concluded that excess zeros indicate an inappropriate choice
f time scale. Referring to Table 1, for neither ramp-type the mode
s zero. We have only 10 zero-observations out of the 197 ramps
5 E-ramps, 1 O-ramp and 4 T-ramps). On the other hand, on 35
amps, 25 or more accidents happened in our sample period of three
ears. Furthermore, Cheng and Washington (2005) found that three
ears of crash-history data provides an appropriate crash history
uration, which initially motivated our choice of the data period.
herefore we decided against the use of zero inflated models in our
nalysis.

Traffic flow data: The traffic flow data was provided by the
Landesbetrieb Straßenbau Nordrhein-Westfalen”, the institution
esponsible for the planning, construction and maintenance of the
utobahn in the area of North Rhine-Westphalia.

The traffic volume is counted automatically by induction loops
hat additionally recognize the length of passing cars and catego-
izes them into the groups of cars smaller or larger than 7.50 m. We
ill use the term passenger cars for the former and trucks for the

atter group.
The raw dataset contained daily data for all induction loops on

utobahns in the administrative district Düsseldorf for the period
rom the 4th of March 2005 to the 7th of March 2006, from which
he traffic volume on the connectors of interest was extracted. Note
hat the sample period is not exactly the same as that of the acci-
ent data. However, we believe that the available data captures
he essential information on the amount of traffic and can be used
ithout any reservations.

For our cross sectional analysis we calculated the average daily
raffic (abbreviated ADT) for each ramp. For ramp i the ADT is
efined as:
DTi = 1
Ti

Ti∑
t=1

TVi,t , (3.1)
1042 555 1451
95 33 69

5 1 4

where TVi,t is the traffic volume on ramp i on day t and Ti is the
number of daily observations available for ramp i. We also calcu-
lated the percentage of trucks on each ramp. Table 2 shows some
descriptive statistics for the variable ADT. It is imminent that there
is a large spread in the distribution of traffic volume on the various
ramps.

Geometry data: The geometry data was collected manually by
using aerial photos of the ramps of interest. Details on how the vari-
ables were constructed are available from the authors upon request.
Table 3 presents a list of the geometry variables along with their
descriptive statistics.

Next, a number of dummy variables were constructed that are
shown in Table 4.

Finally, we have information on the surface types on the ramps.
Trucks

Mean 1456.85
Maximum 15,844.4
Minimum 51.94
Standard deviation 2051.49
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Table 3
Descriptive statistics of geometry variables.

Variable Minimum Maximum Mean Stand.Dev.

Length of the ramp (m) 49.56 1868.15 335.12 243.95
Length of the deceleration lane (m) 0.00 902.24 258.00 158.08
Total width of the lanes on the ramp (m) 3.30 8.19 4.93 1.13
Width per lane (m) 3.02 7.16 4.33 0.73
Width of the shoulder lane (m) 0.00 4.81 2.14 1.40
Radius steepest curve (m) 28.43 1428.47 164.78 195.56
Total deflection angle (◦) 0.00 305.15 115.78 92.75
Absolute total deflection angle (◦) 4.32 305.15 148.29 83.97
Angle of the steepest curve (◦) 3.76 302.00 119.86 86.47
Length of the steepest curve (m) 30.05 1259.25 205.49 155.90
Number of lanes on the ramp 1 2 1.17 0.38
Number of inflection points on the ramp 0 4 0.59 0.86
Position of the steepest curve on the ramp 1
Number of curves on the ramp 1
Number of lanes on the autobahn leaving 1

Table 4
Descriptive statistics dummy variables.

Variable Mean Stand.Dev.

Right Autobahn lane becomes decel. lane 0.06 0.24
A curve gets steeper 0.24 0.43
A curve gets less steep 0.13 0.34
Incline on the ramp 0.50 0.50
Decline on the ramp 0.54 0.50
Trees inside 0.87 0.33
Trees outside 0.78 0.42
Crossing lane at the access of the ramp 0.22 0.42
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was changed to thousands of cars for all ADT-variables and to hun-
dreds of meters for the radius in order to avoid unreadably small
regression results.

Table 5
Abbreviations of variables in the dataset.

Variable Abbrevation

Number of accidents nb acc
Length of the ramp length ramp
Length of the deceleration lane length decel
Total width of the lanes on the ramp width lanes
Width per lane width per lane
Width of the shoulder lane width should
Radius steepest curve radius
Total deflection angle angle tot
Absolute total deflection angle angle abs
Angle of the steepest curve angle steepest
Length of the steepest curve length steepest
Number of lanes on the ramp nb lanes
Number of inflection points on the ramp nb infl
Position of the steepest curve on the ramp pos steepest
Number of curves on the ramp nb curves
Number of lanes on the Autobahn leaving nb autob lanes
Dummy – Right Autobahn lane becomes decel. lane D autob decel
Dummy – A curve gets steeper D steeper
Dummy – A curve gets less steep D less steep
Dummy – Incline on the ramp D incline
Dummy – Decline on the ramp D decline
Dummy – Trees inside D trees in
Dummy – Trees outside D trees out
Dummy – Crossing lane at the access of the ramp D cross access
Dummy – Crossing lane at the exit of the ramp D cross exit
Dummy – Median between Autobahn and decel. lane D median
Crossing lane at the exit of the ramp 0.22 0.41
Median between Autobahn and decel. lane 0.38 0.49

AC) found on 4 ramps. Without going into details, according to
ichter and Heindel (2004) the main advantages of the different
urface types are: MA is known to have a good grip, with the trade-
ff of being a loud surface type. AC has the worst grip, but it is the
heapest of the three surface types. Roads build out of MAC are very
urable and thus MAC is perfect for roads with high traffic density.

.3. Missing information

There are a number of potential variables that may have been
seful for the analysis but could not be collected. First of all, we did
ot have any information on traffic signs located on the connectors.
n German Autobahns as well as on ramps there is no mandatory

peed limit. However, on several ramps there are speed limit signs.
Slippery road”-signs can also be found on several ramps.

Next, the aerial photos we used for the collection of our geome-
ry variables did not give us any information on standing guardrails
n the ramps. However, the effect of guardrails on accidents is
complex issue since guardrails may increase the frequency of

roperty damage, but reduce the severity of accidents.1

Another shortcoming of our dataset was the short period of our
raffic flow variable, not allowing us for a substantiated panel data
pproach and hence making us ignore information on seasonality.
ince a panel approach was not conducted, weather variables have
ot been used in our research. As the area of the connectors inves-
igated is quite small (around 2300 km2), we think there are no
ignificant differences in weather conditions for aggregated data.
evertheless, in a panel approach it might have been interesting to

ake weather into consideration, not only to explain cross-sectional

ifferences, but also to explain seasonality.

Finally, the information we had on the road surface was also
uite rudimentary. Without doubt, not only the type of the surface,

1 We would like to thank an anonymous referee for pointing this out.
4 1.45 0.72
6 1.72 0.93
3 2.48 0.51

but also the age of the surface has an impact on the grip of the road
and thus an influence on the accident frequency.

4. Empirical results

In this section we present the results of our empirical analysis.
Section 4.1 presents the estimation result. Their interpretation can
be found in Section 4.2.

Before we present our results we would like to note the fol-
lowing. First, Table 5 presents all variables we use along with their
abbreviations. Second, for the regressions, the unit of measurement
Average daily traffic passenger cars ADT pc
Average daily traffic trucks ADT trucks
Truck percentage truck perc
Threshold Dummy – Length deceleration lane T length decelthreshold

Threshold Dummy – Width of the lanes T width lanesthreshold

Threshold Dummy – Position of the steepest curve T pos steepestthreshold

Threshold Dummy – Radius of the steepest curve T radiusthreshold
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Table 6
Estimation results.

Variable Fixed parameters model Random parameters model

Coefficient Std. Errors Coefficient Std. Errors

Constant −0.9091 0.4791 −1.2067 0.4690
ln(ADT pc) 0.7363 0.0988 0.8130 0.1030
truck perc 0.8954 0.4194 1.2078 0.4114
ln(angle abs) 0.2685 0.0840 0.2838 0.0780
D steeper 0.3435 0.1661 0.2364 0.1776
�RC 0.5989 0.1925
T length decel180 0.4831 0.1409 0.4352 0.1382
�RC 0.5071 0.1381
T width lanes3.90 0.4333 0.1824 0.4057 0.1942
T pos steepest1 0.3115 0.1470 0.2246 0.1527
�RC 0.5012 0.1765
Dispersion parameter 0.6267 0.0719 0.2909 0.1160
ln L −689.86 −685.99
AIC 1397.7 1395.9
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BIC 1427.3
Pseudo-R2 0.0672

.1. Estimation results

We consider the negative binomial (NB) regression both with
xed and with (possibly) random coefficients (RC). A coefficient

s treated as random when its estimated standard deviation �RC is
ignificantly different from 0. Since the negative binomial model
ests the Poisson regression model when ˛ = 0 the null hypothesis
f a Poisson Model, and hence the null hypothesis of equidisper-
ion, can be tested using the LR test as described in Section 2. We
omputed this LR statistic for all estimated models and it turned
ut that the test has p-values of virtually zero for all the model
pecifications we considered. An exception is the RC model with
andom intercept, in which case the fit of the Poisson regression is
lmost identical to the fit of the NB model. This is not surprising
s the NB model and the Poisson model with random intercept are
ery similar differing only in the error distributions.

Preliminary estimates of the NB regression reveal that from our
nitial set of variables only ADT pc, ln(angle abs), truck perc and

steeper are statistically significant. Alternatively, the radius can
e used instead of ln(angle abs), as these two variables have a cor-
elation of about −0.76. In the next step of our analysis, we test for
he different functional forms of the regressor ADT pc in order to
llow for nonlinearities. We consider two variations, first by adding
quadratic term to the initial model and second by working with

he natural logarithm of ADT pc. Both choices clearly improve the
odel fit as indicated by the pseudo-R2 and information criteria.
owever, there is no clear evidence whether the squared form is to
e preferred over the logarithmic form. In order to get an additional
valuation criterion we conducted the LR-test for non-nested mod-
ls proposed by Vuong (1989). The null hypothesis of equivalence
f the models cannot be rejected in favor of any of the specifica-
ions. However, as it has one parameter less to estimate we continue
orking with the logarithmic form.

Next, we want to investigate the heterogeneity across the dif-
erent ramp types suggested by the descriptive statistics. Ideally,
separate regression should be estimated for each ramp type, but
iven the small number of observations for the individual ramp
ypes the results would not be reliable. Therefore we consider
ummy variables for each ramp type (skipping the intercept to
void multicollinearity) and perform a likelihood ratio test to see
f the model fit improved. The improvement in fit is not significant
o we dropped the dummies from the model.
As none of the remaining variables were found to have addi-
ional significant effects in explaining accident frequencies we
nvestigate whether there are possible threshold effects. By this

e mean the effect when variables are larger than some (pre-
1435.4
0.0725

determined) value and we consider these to capture potential
nonlinearities. To identify the thresholds we create dummy vari-
ables that for values exceeding the supposed threshold value and
zero otherwise. By varying the threshold value and comparing the
information criteria and the pseudo-R2 we try to determine the
actual value of the threshold. The notation of the threshold vari-
ables is as follows: A “T” in front of the variable indicates that this
is a dummy measuring the threshold and the index-number shows
the value of the threshold. This means that the variable is 1 for val-
ues larger than the threshold and zero otherwise. Three variables
seem to have a threshold effect, namely the length of the decelera-
tion lane (length decel), the total width of the lane(s) (width lanes)
and the position of the steepest curve (pos steepest).

We would like to note two things concerning our final model: (i)
the variable width lanes measures the total width of the officially
accessible lanes without accounting for the width of a possible
shoulder lane. We also investigated a possible threshold effect of
the total width of the official road together with the shoulder lane
(i.e. the whole possibly accessible road). However no significant
effect could be found. (ii) the variable T pos steepest1 takes on the
value one if the first curve is not the steepest curve on the ramp.

The following step in the analysis is to allow for random
coefficients. We estimate the model using 500 Halton draws to
simulate the log-likelihood function. Initially, all model parame-
ters are allowed to vary randomly, but we treat parameters as
fixed when the estimated variance of the random coefficient �RC
is not significantly different from 0. Only the variables D steeper,
T length decel180 and T pos steepest1 have random coefficients.
Furthermore, in the random coefficient model no additional vari-
ables from our dataset have a significant (fixed or random) effect
on the number of accidents.

Table 6 presents the estimation results of our model with fixed
and random coefficients. First of all, it is noticeable that the ran-
dom coefficient specification only leads to a small improvement in
the model fit, which is in contrast to the findings of Anastasopoulos
and Mannering (2009). Nevertheless, a likelihood ratio test suggests
that the improvement in fit is significant with a p-value of about
0.05. The BIC, on the other hand, indicates that the simpler version
of the model with fixed parameters is more suitable. Furthermore,
the estimated dispersion parameter ˛ of the binomial distribution is
much smaller for the random coefficient model, which is likely due
to the fact that the heterogeneity of the random coefficients picks

up some of the heterogeneity originally captured by the dispersion
parameter. The parameter estimates are mostly very similar across
the models, with the exception that the parameter of the variable
truck perc changes when allowing for random coefficients. How-
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Table 7
Marginal effects.

Variable Fixed parameters model Random parameters model

Coefficient Avg At Avg Coefficient Avg At Avg

ln(ADT pc) 0.74 11.14 8.89 0.81 10.53 8.32
truck perc 0.90 13.55 10.82 1.21 15.64 12.36
ln(angle abs) 0.27 4.06 3.24 0.28 3.67 2.90
D steeper 0.34 5.20 4.15 0.24 3.06 2.42
T length decel180 0.48 7.31 5.84 0.44 5.64 4.45
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T width lanes3.90 0.43 6.56
T pos steepest1 0.31 4.71

ver, for the variables that have random coefficients, the estimates
re a bit lower compared to their fixed counterparts.

.2. Interpretation

In Table 7 we report both the average marginal effect, as well
s the marginal effect evaluated at the averages of the regressors.
e only interpret the model with random coefficients, since the

verall model fit is better and the parameter estimates are quite
lose for most of the variables.

The variable that has the strongest effect on the number of acci-
ents is the measure of average daily traffic. Since the variable
DT pc enters in logarithmic form it means that a 1% increase in
verage daily traffic on average leads to a 0.81% increase in the
xpected number of accidents. An increase of truck perc by 0.1
nits, hence an increase of the truck ratio by 10 percentage points

eads to an increase in the expected number of accidents by 12.08%.
he mean effect “Avg” suggests that the average effect of a 10
ercentage point increase in the ratio of trucks yields 1.56 more
xpected accidents per ramp in a time period of three years. The
Avg” estimates for this model are about 26% higher than those
f the “representative” ramp given in “At Avg”, which is due to
he convex exponential mean function. The same phenomenon can
herefore be observed for the other variables. The remaining vari-
bles are more interesting from an engineering perspective. The
stimated coefficient of the variable ln(angle abs) implies that a
% increase in the absolute total deflection angle leads to a 0.27%

ncrease in the expected number of accidents. Next, a ramp on
hich a curve gets steeper on average has an exp (0.24) = 1.27 times
igher expected number of accidents than a ramp on which no
urve is getting steeper. In absolute terms you expect on aver-
ge 3.06 more accidents over a period of three years when a curve
n a ramp gets steeper. The distribution of the random coefficient
mplies that in 35% of the cases the effect of a curve getting steeper
ctually reduces the number of accidents, but for the majority of
ases this has a positive effect.

The estimates of the remaining variables are rather counterin-
uitive. The estimate of 0.4352 for the coefficient of the variable
length decel180 suggests that exp (0.43) = 1.54 times more acci-

ents occur on ramps with a deceleration lane larger than 180 m
n contrast to ramps with a deceleration lane that is smaller than
80 m. However, 20% of the parameter distribution is less than 0
nd thus of the expected sign. Similarly, the expected number of
ccidents on ramps with lane widths exceeding 3.9 m is 1.5 times
igher than on ramps with lane widths of less than 3.9 m. Finally,
he estimate of the threshold variable T pos steepest1 suggests that
e can expect the number of accidents to be 1.25 times higher, if

he first curve is not the steepest on the ramp. In this case, about
3% of the distribution is smaller than zero. One reason for these

hree counterintuitive results might be that an unsafe looking ramp
auses the driver to be more aware. Another explanation is an
mitted variable bias, since it is likely that there are stricter speed
estrictions (or warning sings) on these unsafe ramps, which in
5.23 0.41 5.25 4.15
3.76 0.22 2.91 2.30

would turn decrease the number of accidents. However, part of the
possible problem of omitted variable bias is handled by allowing
for random parameters.

5. Conclusion

The aim of this paper was to find an appropriate statistical model
that helps to explain accident frequencies on Autobahn connectors
in Germany. The negative binomial regression model with random
coefficients turned out to be the most appropriate tool. Our dataset
contains detailed information on accidents on 197 connectors, data
on traffic flow of passenger cars and trucks, and a set of nearly
30 geometry variables. Although the three types of ramps, egress-
ramps (n =95), tangent-ramps (n =69) and loop-ramps (n =33), have
quite distinct characteristics, dummy variables indicating ramp
types are not significant and separate models cannot be estimated
due to the small number of observations in the sub-populations.

The most important variable explaining accident frequencies is
the average daily traffic. The fraction of trucks is also an important
factor. Beyond that, measures of the curvature, like the radius of
the steepest curve or a dummy indicating that a curve gets steeper,
turned out to be relevant. The variables measuring the length of
the deceleration lane, the width of the lanes and the position of the
steepest curve only have an effect when exceeding certain thresh-
olds.

The final question is whether and how our findings can be used
to improve the safety of existing Autobahn connectors and to give
recommendations in the construction of new ones. The accident
factors identified in this study cannot be used for simple short term
improvements, which is not surprising, as the easiest and cheap-
est solution one can think of is putting up additional warning signs
and speed restrictions. Since we had no data available on these, and
it is likely that these measures were already taken on relatively
dangerous connectors, we have to leave the recommendation of
simple solutions to future research that includes such information.
However, if connectors are built from scratch, our results might be
helpful. The finding that curves getting steeper yield higher acci-
dent frequencies is definitely a result that future planning should
not disregard. The radius effect might also be interesting for the
design of ramps. This can be simplified as: the steeper a curve, the
more accidents can be observed. The significant positive parameter
of the variable absolute total deflection angle can be interpreted as:
the simpler a ramp is constructed, the less accidents can be expected.

In future research we need to deal with the data limitations
encountered. Information on speed limitations, vertical grades on
the ramps or exit approaches, warning signs and pavement fric-
tion is likely to add significant explanatory power to the model.
Furthermore, one may try to expand the dataset and consider tem-

poral and dynamic effects, possibly in a panel framework. Finally,
the small number of observations is another limitation of the cur-
rent research, as it was not possible to estimate models for the
different ramp types separately.
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