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Abstract

We consider the problem of modelling and forecasting the distribution of a vector of prices from
interconnected electricity markets using a flexible class of drawable vine copula models, where we
allow the dependence parameters of the constituting bivariate copulae to be time-varying. We un-
dertake in-sample and out-of-sample tests using daily electricity prices, and evidence that our model
provides accurate forecasts of the underlying distribution and outperforms a set of competing models
in their abilities to forecast one-day-ahead conditional quantiles of a portfolio of electricity prices.
Our study is conducted in the Australian National Electricity Market (NEM), which is the most effi-
cient power auction in the world. Electricity prices exhibit highly stylised features such as extreme
price spikes, price dependency between regional markets, correlation asymmetry and non-linear de-
pendency. The developed approach can be used as a risk management tool in the electricity retail
industry, which plays an integral role in the apparatus of modern energy markets. Electricity retailers
are responsible for the efficient distribution of electricity, while being exposed to market risk with
extreme magnitudes.
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1. Introduction

A multivariate analysis of electricity prices has become a critical issue for electricity retailers who si-
multaneously operate in multiple interconnected markets. Over the course of the past two decades, many
countries have deregulated their electricity industries. The vertically integrated electricity industry has
been restructured into three parties: power generators, transmission and distribution network service
providers, and retailers. Reliance has been placed on the forces of competition to not only achieve effi-
cient operational and investment decisions by generators, but also fairer energy prices for the end users.
Further, to promote stability, local markets have formed interconnected power grids, so that electricity
can be transmitted between different regions. Therefore, when the demand for electricity in a region
surges, electricity can be displaced from adjoining regions, if the price is low enough. Concurrently,
retail competition has been introduced through the market deregulation, such that retailers now operate
in multiple markets and compete with each other over larger market shares. On the other hand, the re-
tailers have to bid for electricity in the wholesale power auction and sell at a contractual fixed rate to the
end-users. This creates an incredibly high exposure to the market risk, especially when considering the
fact that extreme price movements of up to 1000% are observed frequently. Electricity, by the virtue of
not being (economically) storable5, exhibits extreme price movements (spikes) and volatility clustering.
These stylised features, in tandem with the interconnection of regional markets, have turned the problem
of modelling electricity prices to a challenging, yet intriguing, question.

Recent empirical studies evidence non-linear dynamic dependence in every interconnected electricity
market, e.g. Nord Pool, Continental U.S. power transmission grid, and Australian National Electricity
Market (NEM) (cf. Misiorek, Trück, and Weron (2006), Higgs (2009) and references therein). However,
NEM is of particular interest, because electricity is traded in a constrained real time spot market, whereas
in other markets electricity is traded one-day-ahead. In their seminal work, Maskin and Tirole (1988)
note that day-ahead price-setting mechanisms, especially when the market consists of a few producers,
endogenises the timing of production, which in turn allows the producers to collect monopoly rent.
Therefore, this type of inefficiency is removed by real time trading in NEM, thus our results could be
extended to other commodities (e.g. oil and gas).

The multivariate analysis of Australian electricity markets was first studied in Higgs (2009), where
she employs the DCC-GARCH6 model of Engle (2002). She found evidence for time-varying correla-
tions between the electricity prices between Australia’s different regional markets. However, empirical
studies suggest that the electricity prices in Australia are extremely sensitive to small imbalances in
the electricity demand and supply (cf. Higgs and Worthington 2008), often resulting in large changes
in electricity prices (or spikes) and spillovers to other regional markets. This characteristic results in
asymmetric dependence and violates the assumption of elliptical dependence that is the basis of classic
econometric models, such as the DCC-GARCH. To address this issue, Smith, Gan, and Kohn (2012)
construct a copula model from the skew t-distribution of Sujit K. Sahu and Branco (2003), and the cop-
ula approach was further explored in Ignatieva and Trück (2016). One of the important advantages of
using copula based models is their ability to capture asymmetric tail dependencies. This, Ignatieva and
Trück (2016) show, provides a flexible framework of modelling non-linearity in the dependence struc-
ture of electricity markets, which is particularly relevant when analysing heavy-tailed and skewed data
sets (cf. Siburg, Stoimenov, and Weiß 2015). However, two major drawbacks in Ignatieva and Trück
(2016) are that they focus on bivariate copulae only, and that the dependence parameter is assumed to be
time-invariant. Particularly, when considering the multidimensional nature of power grids, it becomes of

5In recent years there has been a number of technological advancements in building electricity storage facilities, but they
are not economically feasible to be used in large scales.

6Dynamic Conditional Correlation Generalised Autoregressive Conditional Heteroskedasticity
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critical importance to consider the interconnection of markets in a system as a whole, as opposed to pairs
of markets in isolation.

The literature on time-varying non-linear dependence modelling has gained a substantial momentum
in the literature of financial econometrics (cf. Engle 2002, Kole, Koedijk, and Verbeek 2007, Koliai
2016). This has motivated a strand of research to construct flexible, non-standard multivariate models
with the aid of dynamic copulae. The history of copula can be traced back to Sklar (1959), as a flexible
framework, through which dependencies are modelled independently of the marginal distributions. It
was then introduced by Wang (1998) in the insurance context and popularised by Li (1999) in finance
literature. The early applications of copula models only considered constant copula (cf. Cherubini,
Luciano, and Vecchiato 2004 for a complete review), until the seminal work of Patton (2006), where he
offers an extension to the Sklar’s theorem for conditional distributions forming the basis for dynamic
copula modelling. This innovation has sparked a rapid growth in the literature of the theory and the
applications of time-varying copulae (cf. Manner and Reznikova 2012 and references therein).

In parallel to the above advancements, the high demand for multivariate analysis of financial time-
series has motivated another strand of research aiming at practically useful higher dimensional copulae,
such as hierarchical Archimedean copulae by Savu and Trede (2010), factor copula models by Oh and
Patton (2017a), or vine copula models by Aas, Czado, Frigessi, and Bakken (2009). In particular, the
latter class has become extremely popular because of its structure that allows for the sequential estimation
of a large number of parameters.7 Vines are copulae constructed from a sequence of nested pair-copulae.
Although they offer the flexibility of using any combination of pair-copulae, one challenge is to select
a flexible structure that provides tractable analytical expressions. In this paper, we use ‘drawable’ vine,
or Dvine, copulae (Aas, Czado, Frigessi, and Bakken 2009), which offer a tractable structure due to
their ‘closure’ property. This property ensures that any adjacent sub-vector retains the Dvine structure,
with bivariate copulae that are subsets of those of the initial Dvine. Most recently, Almeida, Czado, and
Manner (2016) propose two copula models by combining Dvine with stochastic autoregressive copula
(SCAR) and generalised autoregressive score (GAS) models (cf. Creal, Koopman, and Lucas 2013), to
capture high-dimensional dependence which changes over time. The former model is termed SCAR-
Dvine, which is used in this paper.

The contribution of this paper is to analyse the complex dependence structure in the NEM. We show
that the SCAR-Dvine model is the most suitable model for forecasting extreme price movements, better
than any other model applied to the literature before. Furthermore, the statistically determined structure
of the model resembles the geographical locations of the markets, adding to the interpretability of the
results. Our research design is based on the dynamic financial analysis approach, looking at an enter-
prise’s risks holistically, as opposed to the traditional risk analysis which analyses risks individually.
Modelling risk of the five markets as a complex interconnected system, as opposed to analysing markets
individually, for the electricity retailers is more relevant than ever before. In late 1990s, when the Aus-
tralian electricity was deregulated, the market consisted of numerous retailers operating in local markets.
However, over the past 15 years, many of the small market players amalgamated into large enterprises
operating in all five markets simultaneously. Many of the remaining regional retailers also went bankrupt
due to poor risk management strategies, especially during the volatile market conditions between 2005
and 2011 (Australian Energy Regulator 2012).

From the financial risk management point of view, the central problem is the actual quantification of
the risks. Since the adoption of Value-at-Risk (VaR) by Basel Committee in the second Basel Accord,
the regulatory capital requirements of commercial banks with trading activities are based on (VaR) es-
timates. This important measure of market risk is defined as a pre-specified quantile of the conditional

7Examples of financial applications of vine copula models are Chollete, Heinen, and Valdesogo (2009), Low, Alcock, Faff,
and Brailsford (2013), Pourkhanali, Kim, Tafakori, and Fard (2016), amongst many others.
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distribution of portfolio returns and its estimates are routinely generated by the banks’ internal models.
Conventionally, VaR is defined as the quantile of the conditional distribution of the portfolio returns.
However, research on electricity markets, predominantly, concentrate on log-price series (cf. Bennedsen
2017). That is because electricity is a non-storable commodity and returns cannot be defined in the tradi-
tional sense, as in other financial assets. Thus, to avoid confusion, we use the term Conditional Quantile
(CQ), instead of VaR, which is a more general definition of the same concept.

Finally, we conduct a thorough out-of-sample back-testing exercise to evaluate the performance of
the proposed SCAR-Dvine model, as well as a number of benchmark models, in forecasting CQs ac-
curately. In order to have a conclusive analysis, we implement four statistical tests, namely, the test of
Kupiec (1995), the autocorrelation test of Christoffersen (1998), the dynamic quantile test of Engle and
Manganelli (2004), the duration-based test of Christoffersen and Pelletier (2004), as well as the Risk
Map of Colletaz, Hurlin, and Pérignon (2013). Our study includes point estimation of eight CQs based
on a set of five competing models. Further, the sort of back-testing procedures suggested here are the
statistical diagnostic tests carried out on various aspects of the risk model. Therefore, it is quite natu-
ral to anticipate some mixed evidence across such a large amount of results. To assist concluding the
presented evidence, we develop a simple scorecard system as a ‘decision making’ tool. Our scorecard
system summarises the p-values from the omnibus back-testing exercise and aggregates the scores for
each model to conclude the overall performance. We show that SCAR-Dvine provides appropriate and
reliable out-of-sample CQ forecasts in the conducted study. This is a very significant finding, since many
researchers have concluded due to the spiky and extremely volatile behaviour of electricity spot prices,
no known statistical model can provide appropriate out-of-sample (conditional) quantile forecasts (cf.
Bierbrauer, Menn, Rachev, and Trück (2007), Weron and Misiorek (2008), Ignatieva and Trück (2016)
and reference therein)

The remainder of this paper is structured as follows. The model and its estimation are discussed in
Section 2. Section 3 introduces the data and the in-sample estimation results. Section 4 discusses the
out-of-sample backtesting of the conditional quantiles and Section 5 concludes.

2. The Model

2.1. Seasonal and Weekly Periodicity

A preparatory, but important, issue in fitting stochastic models to electricity spot prices is the estimation
of a component to deal with trends and seasonality in the data. Seasonal fluctuations in electricity demand
are well documented (cf. Pilipovic 2007 and references therein). As a result, electricity prices tend
to follow a similar periodicity. The seasonal patterns in electricity prices are intrinsically different to
those observed in other commodity markets, which has motivated the growth of a body of literature
on different methods of capturing the seasonal periodicity. Early investigations in modelling seasonal
patterns often lacked robustness (or elegance). For example, Garcia, Contreras, Van Akkeren, and Garcia
(2005) use many AR terms (more than 500) to model the mean process and do not distinguish between
long-term and short-term trends. The recent literature notes that the long-term seasonal pattern is often
the more complex part of the mean process to model (cf Janczura, Trück, Weron, and Wolff 2013), so
the distinction between the long- and short-term seasonal patterns is important.

Janczura, Trück, Weron, and Wolff (2013) provide a comprehensive review of the literature on dif-
ferent methodologies available to capture the long-term seasonal components of electricity prices. They
classify the available models into three larger categories, namely 1) piecewise constant functions (cf.
Higgs and Worthington 2008, Cartea and Villaplana 2008), 2) wavelet filters (cf. Nowotarski, Tomczyk,
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and Weron 2013), and 3) sinusoidal functions (cf. Bierbrauer, Menn, Rachev, and Trück 2007, Keles,
Hartel, Möst, and Fichtner 2012).

The first class of models, typically, yields a non-smooth seasonal component which is not appropriate
for complex empirical studies. Most of the recent literature either uses the wavelet filter, or a version
of sinusoidal functions. Janczura, Trück, Weron, and Wolff (2013) show that a combination of an expo-
nentially weighted moving average and a sinusoidal function (sin-EWMA) does accurately capture the
seasonal pattern in the electricity price data. They further compare their results to that obtained from a
wavelet filter and found that the ability of both models to capture the seasonal component of electricity
prices are very similar.

Janczura, Trück, Weron, and Wolff (2013), also note that the estimation routines for the long-term
and short-term seasonal patterns are usually quite sensitive to extreme observations, known as electricity
price spikes. They recommend that the robustness of models can be improved by filtering the data with
some reasonable procedure for outlier detection, before using estimation and testing procedures on the
filtered data. In this study, we use the sin-EWMA model to capture the long-term periodicity in electricity
log-price series, together with the recursive filtration procedure proposed in Janczura, Trück, Weron, and
Wolff (2013) to treat outliers.

We denote by Pt = (p1,t, . . . , pd,t) the vector of electricity prices at time t = 1, . . . , T , for the
d = 5 states NSW, Qld, SA, TAS, and VIC, receptively. Furthermore, Yt = (y1,t, . . . , yd,t) denotes
the vector of log-price, such that yi,t := ln(pi,t). The logarithmic transformation is especially suitable
and commonly used for extremely spiky and non-negative spot prices (cf. Janczura, Trück, Weron, and
Wolff 2013). Additionally, it makes the spot price distribution more symmetric and less leptokurtic,
hence better suited for statistical analysis.

The vector of log-prices, Yt. consists of two independent parts: a trend-seasonal component St and
a stochastic component Xt, thus,

Yt = St +Xt. (1)

Further, we let St be composed of two components 1) a short-term (weekly) seasonal component STt,
and 2) a long-term trend-seasonal component LTt, i.e. St = STt+LTt. The latter component represents
long-term non-periodic fuel price levels, changing climate related consumption conditions throughout
the years and variation in bidding practices on the strategic level (e.g., due to changes in the generation
portfolio).

The model for LTt used in this study is given by:

LTt = b1 sin

{
2π

(
t

365
+ b2

)}
+ b3 + b4EWMAλ, (2)

where λ denotes the decay factor λ, such that

EWMAλt = (1− λ) · Pt + λ · EWMAλt−1.

The parameters bi, i ∈ {1, 2, 3, 4} and λ are estimated using maximum likelihood estimation.
The price series without the long-term trend is obtained by subtracting LTt from Yt. Next, the short-

term (weekly) periodicity STt can simply be removed by subtracting weekly averages of the long-term
deseasonalised log-prices corresponding to each day of the week. This approach is equivalent to having
dummies for each day of the week, as in De Jong (2006). Note that the median or a truncated mean can
be used instead of the mean as an alternative more robust to outliers; however, usually the differences
are not substantial. Public holidays are treated as the eighth day of the week. It should be noted that
electricity consumption profiles on working days directly preceding/following holidays or enclosed by a
public holiday and the weekend may possibly resemble holiday consumption patterns more than working
day profiles.
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2.2. DVine Stochastic Autoregressive Copula (SCAR-Dvine) Model

We consider the following model for the joint (conditional) distribution of the deseasonalised log-prices
Xt = (x1,t, . . . , xd,t) for t = 1, . . . , T . We assume that each variable xi,t follows an AR(1) −
GARCH(1, 1) process, i.e.

xi,t = µi,t + σi,tεi,t

µi,t = βi,0 + βi,1xi,t−1 (3)

σ2i,t = αi,0 + αi,1ε
2
i,t−1 + γiσ

2
i,t−1.

The usual stationarity conditions are assumed to hold. Denote the joint distribution of the standardised
innovations εi,t by G(ε1,t, . . . , εd,t) and let their marginal distributions be Fi(εi,t) for i = 1, . . . , d. Note
that the marginal distributions are specified as the skew-t distribution by Hansen (1994) parametrised by
the degrees-of-freedom νi and the skewness parameter λi. By Sklars theorem there exists a copula C
such that

G(ε1,t, . . . , εd,t) = C (F1(ε1,t), . . . , Fd(εd,t)) (4)

Since all the marginal behaviour is captured by the marginal distributions, the copula captures the com-
plete contemporaneous dependence of the distribution. Let ui,t = Fi(εi,t) be the innovations transformed
to U(0, 1) random variable and define ut := (u1,t, . . . , ud,t). Since the copula distribution is dynamic,
then

ut ∼ c(ut;ω,Ft−1), (5)

where c(·) is the copula density, Ft−1 the information set at time t− 1 and ω the vector of time invariant
parameters.

The challenge in specifying an appropriate parametric model for the copula is that this model must
be able to capture time-varying dependence in a flexible way, that it should be able to capture different
types of dependence such as (potentially asymmetric) tail dependence and that it must possible to handle
such a model for higher dimensional data (d = 5 in our case). Such a model was proposed by Almeida,
Czado, and Manner (2016) relying on drawable vine copula constructions (Dvine) and stochastic latent
dependence parameters for the bivariate dynamic copula models entering the pair copula construction.

As in Czado (2010), we define a d-dimensional dynamic Dvine copula using the recursive decompo-
sition of a multivariate density:

c(u1,t, . . . , ud,t;θt) :=

d−1∏
j=1

d−j∏
i=1

cl(i,j)

(
F (ui,t|ui+1:i+j−1,t;θ

l(i,j)
t ), F (ui+j,t|ui+1:i+j−1,t;θ

l(i,j)
t )

)
, (6)

where l(i, j) := i, i+j|i+1 : i+j−1 and θt := {θl(i,j)t ; j = 1, . . . , d−1, i = 1, . . . , d−j} is the time-
varying copula parameter vector. Here cl(i,j)(·, ·;θ

l(i,j)
t ) is the bivariate copula density corresponding to

the bivariate dynamic copula.
Most copula models in the literature consider the copula dependence parameters to be fixed in

time. To capture possible dynamics, Patton (2006) extends Sklar’s theorem for conditional distributions
and proposes the use of time-varying copulae, with parameters following a restricted nonlinear ARMA
model. da Silva Filho, Ziegelmann, and Dueker (2012) allow the ARMA dynamics for the dependence



Forecasting the Joint Distribution of Australian Electricity Prices using Dynamic Vine Copulae 7

parameters to be driven by a hidden Markov Chain. For higher dimensions, Oh and Patton (2017b) use
the GAS model, proposed by Creal, Koopman, and Lucas (2013), to describe time dynamics of a fac-
tor copula. Heinen, Valdesogo Robles, et al. (2009) build on the DCC GARCH model for specifying
dynamic dependence and adapt the approach to copula models. For elliptical copulas this approach is
readily available in higher dimensions and below we consider this model based on the Gaussian and Stu-
dent copulas as benchmark models. Different approaches for time-varying copula models are surveyed in
Manner and Reznikova (2012). The choice of the most appropriate model requires a level of pragmatism,
in particular, when considering high dimensional problems. As discussed in Oh and Patton (2017a), one
should strike a balance between number of model parameters, flexibility, and computation time.

We assume that θl(i,j)t is driven by an unobserved stochastic process λl(i,j)t such that θl(i,j)t =

Γ(λ
l(i,j)
t ), where Γ : R→ Θ is an appropriate transformation to ensure that the copula parameter remains

in its domain and whose functional form depends on the choice of copula. The underlying process λl(i,j)t

driving the dependence parameter, which is unobserved, is assumed to follow a latent Gaussian AR(1)
process given by

λ
l(i,j)
t = µl(i,j) + φl(i,j)λ

l(i,j)
t−1 + ηl(i,j)z

l(i,j)
t , (7)

where zl(i,j)t are independent standard normal innovations. We further assume |φl(i,j)| < 1 for station-
arity and ηl(i,j) > 0 for identification. This model specification is known as stochastic autoregressive
copula (SCAR), which was first proposed in Hafner and Manner (2012).

For the parametric bivariate copulae we consider the Gaussian, Gumbel, and Clayton copulas and
rotated versions of the latter two.8 For the Gaussian copula we apply the inverse Fisher transform to
ensure that correlations are in the interval (−1, 1),

Γ(λ
l(i,j)
t ) :=

exp(2λ
l(i,j)
t )− 1

exp(2λ
l(i,j)
t ) + 1

. (8)

For the Gumbel and Clayton copulae, as well as their rotated versions, we first transform λ
l(i,j)
t to

Kendall’s τ using the inverse Fisher transformation and then we use the relationship between Kendall’s
τ and the copula parameter θ = r(τ) to obtain the implied parameter of these copulas 9.

θ
l(i,j)
t = r(τ

l(i,j)
t ) := r(Γ(λ

l(i,j)
t )) (9)

where, as above, Γ(x) is the inverse Fisher transform that maps λl(i,j)t into (−1, 1), the domain of τ l(i,j)t .
Whenever τt is negative we rotate the copula by 90◦ to allow the models to have negative dependence.

The use of the Gaussian SCAR model instead of tail dependent copulas such as the t-copula is justi-
fied by the result of Manner and Segers (2011). There it is shown that Gaussian copulas with stochastic
correlations have the property of near asymptotic dependence, which implies that the dependence in the
tails is basically indistinguishable from true tail dependence at any practically relevant quantiles. This
translates into an excellent fit of such models for financial data and we expect this also to be the case for
electricity prices.

8A rotation by 180◦, e.g., transforms the lower tail dependent Clayton copula into an upper tail dependent copula. A rotation
by 90◦, on the other hand, transforms a copula that only allows for positive dependence into one that allows only for negative
dependence. In fact, we use this approach to extend the Gumbel and Clayton copulas to allow the time-varying parameter to
correspond to negative dependence as well.

9For the Gumbel family the relationship is θ = 1/(1− τ) and for the Clayton copula θ = 2τ/(1− τ).
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Finally, similar to tail properties of Dvines studied in Joe, Li, and Nikoloulopoulos (2010) the choice
of time-varying pair copulae in the first tree propagates to the whole distribution, in particular all pairs
of variables have an induced time-varying Kendall’s τ if the copulas on the first tree are specified to be
time-varying. In order to keep the models tractable and reduce the number of parameters to be estimated
we also allow for static copulas as pair copulas and in the set of static models we include the t-copula, as
well as the independence copula. The particular choice for each pair copula is made using the Bayesian
information criterion (BIC).

2.3. Sequential Estimation of SCAR-Dvine models

We need to estimate the parameters of both the marginal models and the stochastic copula models. The
joint density of our model is given by the product of the marginal and the copula densities. The esti-
mation process involves two steps. First, the marginal parameters for the conditional mean and variance
as specified in (3), as well as the parameters of the skewed-t distribution for the errors, are estimated
separately and then the standardised residuals are formed, for which we employ a parametric probability
integral transformation as in Joe (2005). The transformation must be applied with due care, as Kim,
Silvapulle, and Silvapulle (2007) note that the gross misspecification of the marginal models impairs the
accuracy of the approximation to the true copula data. We perform goodness-of-fit tests to ensure that
this is not the case. Second, the parameters of the dependence model are estimated sequentially for each
pair-copula. This subsection provides a brief discussion of the latter. Aas, Czado, Frigessi, and Bakken
(2009) show that the form of the Dvine density given in (6) allows for a sequential parameter estimation
approach starting from the first tree until the last tree. The technique was further developed and expanded
for dynamic Dvine in Almeida, Czado, and Manner (2016).

We are interested in estimating the copula parameter vector ω := (µ, φ, σ). For convenience, and
with slight abuse of notations, we drop the indices i and j, wherever it does not cause ambiguity. Denote
ui = {ui,t}Tt=1, uj = {uj,t}Tt=1 and Λ = {λt}Tt=1, and let f(ui,uj ,Λ;ω) be the joint density of the
observable variables (ui,uj) and the latent process Λ. Further, let Λt := {λτ}tτ=1, and similarly for uj,t
and ui,t. Then the likelihood function of the parameter vector Ω can be obtained by integrating the latent
process Λ out of the joint likelihood. Richard and Zhang (2007) propose an efficient importance sam-
pling (EIS) procedure to approximate the likelihood function, taking advantage of an auxiliary sampler
{m(λt|Λt−1, at)}Tt=1, indexed by the auxiliary parameters at. Then, the likelihood can be rewritten as

L(ω; ui,uj) =

∫ T∏
t=1

[
f(ui,t, uj,t, λt|ui,t−1,uj,t−1,Λt−1,ω)

m(λt|Λt−1, at)

]
m(λt|Λt−1, at)dΛ.

This can be evaluated using N trajectories {λ̃(i)t (at)}Tt=1 drawn from the importance sampler m by

L̃(ω; ui,uj) =
1

N

N∑
s=1

(
T∏
t=1

[
f(ui,t, uj,t, λ̃

(s)
t (at)|ui,t−1,uj,t−1, Λ̃(s)

t−1(at−1),ω)

m(λ̃
(s)
t |Λ̃

(s)
t−1, at)

])
.

{λ̃(i)t (at)}Tt=1 is a natural sampler that are sampled independently of the observed variables ui and uj .
For the details concerning the implementation of the EIS algorithm the interested reader is referred to
Liesenfeld and Richard (2003). Dvine copula is the product of bivariate (conditional) copulae. Estima-
tion of all copula parameters of our model in one step is computationally expensive, due to the large
number of parameters. Thus, we utilise a sequential procedure of the copula parameters, similar to
Almeida, Czado, and Manner (2016). To begin with, we need a fast recursive way to compute condi-
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tional cdf’s which enter as arguments. Let εD := (εi1 , . . . , εik), then by the virtue of margins being
uniform in Dvine, we can express F (εj |εD) as

F (εj |εD) = h
(
F (εj |εD−i)|F (εi|εD−i),θij|D−i

)
where

h(uj |ui,θij) :=
∂Ci,j(ui, uj ;θij)

∂ui
(10)

The form of the Dvine density given in (6) allows for a sequential parameter estimation approach
starting from the level 1 tree until the level d−1 tree. The algorithm begins by estimating the parameters
corresponding to the pair-copulae in the first level. For the copula parameters in level 2, we first trans-
form the data with the h function in (10) required for the appropriate conditional cdf using estimated
parameters to determine pseudo realisations needed in the level 2 tree. Using these pseudo observa-
tions the parameters in the second level are estimated, the pseudo data is again transformed using the h
function and so on.

Naturally, in the level 1 tree one would assume that time-varying dependence can be computed
and inserted into the corresponding (time-dependent) h functions to compute the pseudo observations.
Nevertheless, in the SCAR model, given that the bivariate models in the level 1 tree have been estimated,
it is not possible to apply the h function directly to obtain the pseudo observations that are needed to
obtain the parameters on the second tree. The problem can be circumvented by calculating the pseudo
observations, using N simulated trajectories θ̃(s)t from the importance sampler:

uj|i,t =
1

N

N∑
s=1

h(uj,t|ui,t, θ̃(s)t ). (11)

Even though the parameters of the underlying process are of interest themselves, ultimately we wish
to get estimates of the latent process Λ and transformations thereof. In particular, we are interested in
estimating τt = Γ(λt) for t = 1 . . . , T , where Γ(·) denotes the inverse Fisher transform given in (8).
Smoothed estimates of Γ(λt) given the entire history of the observable information ui and uj can be
computed as

E[Γ(λt)|ui,uj ] =

∫
Γ(λt)f(ui,uj ,Λ;ω)dΛ∫
f(ui,uj ,Λ;ω)dΛ

. (12)

Note that the denominator in (12) corresponds to the likelihood function with t − 1 observations,
which is L(ω; ui,t−1,uj,t−1). Then both integrals can be evaluated using draws from the importance
sampler m(λt|Λt−1,at).

Finally, in order to obtain 1-step ahead predictive distributions we predict the conditional mean and
variances, which is straightforward, as well as the copula parameters. The dependence parameters are
predicted for each level as described in Hafner and Manner (2012). Using the parameters from the
predictive distribution we simulate a large number of random draws from the predictive distribution
using the algorithm form Aas, Czado, Frigessi, and Bakken (2009), which allow us to construct the
predictive distribution of a portfolio.
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3. Empirical Analysis: Dependence Modelling and In-Sample Estimation

In this section, we present the empirical results of fitting our model to the electricity prices from five
Australian regional Markets, namely, New South Wales (NSW), Queensland (QLD), South Australia
(SA), Tasmania (TAS), and Victoria (VIC). For benchmarking the forecasting performance of the SCAR-
Dvine copula model, we use four competing models, namely,

1. the DCC-GARCH model of Engle (2002),

2. the DCC-Copula-GARCH model with Gaussian copula (cf. Heinen, Valdesogo Robles, et al.
2009),

3. the DCC-Copula-GARCH model with Student’s t copula (cf. Heinen, Valdesogo Robles, et al.
2009), and

4. the static Dvine copula model (cf. Aas, Czado, Frigessi, and Bakken 2009, Brechmann, Czado,
and Aas 2012).

The first model is studied as it was applied to Australian electricity prices by Higgs (2009). The
DCC-Copula-GARCH models are fairly flexible time-varying specifications based on elliptical copulas
that have the advantage of being relatively easy to implement at a low computational cost. The last
benchmark model is included to assess whether time-varying parameters do indeed lead to improved
distributional forecasts. For the copula models we use the same process of choosing marginal distri-
butions as used for the SCAR-Dvine model. For simplicity, we label the the second and third models
N-DCC-Copula and t-DCC-Copula, respectively. A natural question is whether more complex models
lead to improved predictions of the joint density of electricity prices. The first three models allow for
time-varying dependence, but rely on elliptical models that do not allow for asymmetries. The static,
Dvine, on the other hand, does potentially capture asymmetric tail dependence, but as the name suggests,
not the dynamic dependence. Thus we will be able to judge which of these characteristics, all of which
are captured by the SCAR-Dvine model, are necessary for appropriate density forecasts of electricity
prices.

We estimate the SCAR-Dvine model using a simulated maximum likelihood, programmed in MAT-
LAB. The computation time for the estimation using the in-sample period is about 2 hours on a computer
with an i5 core processor. The most computationally-expensive part of the algorithm is the out-of-sample
back-testing, discussed in the next section. Here, we just mention that due to the large number of iter-
ations in the problem, we performed the computations in parallel on a cluster with 32 core processors,
taking close to 40 hours for all four models.

3.1. The Australian National Electricity Market (NEM)

As a wholesale market the NEM in Australia began operating in December 1998, forming a grid be-
tween five regional market jurisdictions (New South Wales, Queensland, South Australia, Tasmania, and
Victoria)10. In the market, electricity load is displaced when the price of electricity in an adjoining state
(or country) is low enough, or the demand in a particular region is significantly higher than the amount
of electricity that can be provided by local generators. Electricity transmission involves three parties;
namely, 1) power plants (or generators), 2) electricity retailers, 3) consumers (commercial or residen-
tial); but only the first two engage in trading electricity in NEM. Transmission between power plants

10Western Australia and Northern Territory are not connected to the NEM
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Introduction NSW QLD SA TAS VIC Portfolio

Panel (a): Descriptive statistics of the full sample (2010-2015)
Number of observations 2190 2190 2190 2190 2190 2190
Minimum 2.85 -1.11 0.11 1.29 1.94 2.1207
Maximum 7.16 7.54 7.76 6.69 7.15 5.6232
Mean 3.6158 3.6053 3.6731 3.5837 3.5397 3.6035
Std. Deviation 0.3870 0.5486 0.5535 0.3879 0.4365 0.3746
Skewness 1.647 .847 0.922 0.631 1.287 0.2160
Kurtosis 9.608 9.209 5.946 5.286 7.481 0.2267
Jarque–Bera 9370 7960.3 3518.2 2680 5684 21.566
(p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel (b): Descriptive statistics of the in-sample period (2010-2012)
Number of observations 1095 1095 1095 1095 1095 1095
Minimum 2.85 -1.11 0.11 1.29 1.94 2.1207
Maximum 7.16 6.97 7.76 6.69 7.15 5.6232
Mean 3.4601 3.3758 3.4602 3.4280 3.3939 3.4235
Std. Deviation 0.4244 0.4775 0.5218 0.3949 0.45918 0.3662
Skewness 2.968 0.4161 1.834 1.301 2.490 1.1797
Kurtosis 15.649 18.090 14.246 10.292 13.627 3.0188
Jarque–Bera 12666 14818 9780.1 5091.8 9516.4 663.83
(p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel (c): Descriptive statistics of the out-of-sample period (2013-2015)
Number of observations 1095 1095 1095 1095 1095 1095
Minimum 2.96 1.01 1.62 2.21 2.45 2.8362
Maximum 6.16 7.54 6.69 4.94 6.21 4.8377
Mean 3.7714 3.8348 3.8861 3.7394 3.6855 3.7834
Std. Deviation 0.2668 0.51840 0.4999 0.3108 0.3575 0.2863
Skewness 0.8140 1.4840 0.5350 0.7150 0.2120 -0.2983
Kurtosis 8.228 8.215 3.798 2.524 4.050 0.2592
Jarque–Bera 3177.3 3447.2 702.12 379.72 747.71 19.107
(p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: Descriptive statistics of daily log-prices.

and consumers is facilitated through electricity retailers, who have contractual supply agreements, fixed
in price, with the consumers, but purchase electricity from the spot market. NEM acts as an exchange
between generators and retailers, where the output from all power plants are aggregated and instanta-
neously scheduled to meet demand through a centrally-coordinated dispatch process. The Australian
Energy Market Operator (AEMO) coordinates the demand-dispatch process in compliance with the pro-
visions of Australian National Electricity Law and Australian National Electricity Rules. Every five
minutes, AEMO receives offers from scheduled generators, then determines the required generation ca-
pacity based on the prevailing demand in the most cost-efficient way. Subsequently, a dispatch price is
determined and automatic generation control target signals are sent to the generators. For the purpose
of the settlement of all financial transactions, spots or derivatives, AEMO uses the dispatch prices; thus,
‘dispatch prices’ and ‘spot prices’ are interchangeably used.

We use daily spot prices from five electricity markets in Australia: NSW, QLD, SA, TAS and VIC.
For each market, the sample of 2190 daily observations covers the time period from 01.01.2010 to
31.12.2015. We split the data into an in-sample period covering the years 2010-2012 and an out-of-
sample period covering 2013-2015. Table 1 provides the summary statistics for the log-prices and an
equally weighted portfolio of all five markets, as well as the Jarque–Bera statistics showing that they all
reject the normal distribution at the 1% level of significance. This documents the well accepted stylised
features of electricity log-prices, which has been reported in the literature (c.f. Janczura, Trück, Weron,
and Wolff 2013).

This research aims to model the dynamic and nonlinear dependence between different regional elec-



12 Manner et. al.

tricity markets. There now exists a wide-spread consensus in the empirical literature that the dependence
between the returns of financial assets is asymmetric, nonlinear, and time-varying. In particular, there is
a growing body of evidence that electricity prices in different interconnected grids exhibit such complex
dependence between local markets (cf. Misiorek, Trück, and Weron 2006, Smith, Gan, and Kohn 2012,
Lindström and Regland 2012, Ignatieva and Trück 2016, among others). The upper triangle of Figure
??, plots the Kendall’s τ of different pairs of electricity log-prices from different regional markets for
the full sample implementing a rolling window approach with lags of 50 days. For all pairs, we can see
significant variation of the dependence measure over time, which strongly supports our model assump-
tions. Despite the wide use of the Pearson correlation coefficient, there are several undesirable properties
associated with its use (cf. Dietrich 1991), due to which we choose Kendall’s τ as a better alternative
for measuring dependence. Kendall’s τ , is a well accepted measure of dependence, which assess statis-
tical associations based on the ranks of the data. It provides, arguably, the best alternatives to the linear
correlation coefficient as a measure of dependence for non-elliptical distributions, for which the linear
correlation coefficient is inappropriate and often misleading. Further, Kendall’s τ plays a special role in
the parametrisation of copula functions (see Subsection 2.2).

<<Insert Figure ??>>

One of the fundamental challenges in analysing portfolios of financial assets is the presence of asym-
metric correlations between them, which means assets move more often with the market when the market
goes down than when it goes up (cf. Pourkhanali, Kim, Tafakori, and Fard 2016 and references therein).
Asymmetric correlation, also, manifests itself in electricity price data in the form of the shocks’ spill-over
from one regional market to another. Intuitively, prolonged periods of excess demand are expected to
impose more severe distress on the grid than periods of excess supply. This is because the price elasticity
of electricity demand is extremely low, but the elasticity of supply is typically slightly greater than unit
elasticity (cf. Moral-Carcedo and Vicens-Otero 2005, Chang, Kim, Miller, Park, and Park 2016). For ex-
ample, often industrial consumers with mission critical support services (MCSS) directly compete with
power retailers in the market. MCSSs guarantee uninterrupted power supply to their clients (e.g. data
centres), thus, when a regional market experience a high load of excess demand, they instantly place bids
in neighbouring markets. These bids are always limit-to-market, and the sheer load-per-hour required
for these infrastructures catapult the prices, propagating shocks through the grid.

In the lower triangle of Figure ?? we present the exceedance correlation plots of different pairs of
log-prices series, based on the method proposed in Ang and Chen (2002) and Hong, Tu, and Zhou (2007).
Exceedance correlation captures three features of the dependence relationship in the joint distribution,
namely, correlation levels, correlation asymmetry, and tail-dependence, all of which are evident in the
data. The presence of such strong asymmetric correlations can cause problems in hedging effectiveness.
Additionally, it hampers the effectiveness of diversification for the electricity retailers, through expanding
operations into different states.

3.2. Seasonality and the Marginal Models

As discussed in Section 2.1, we apply the recursive filtration procedure proposed in Janczura, Trück,
Weron, and Wolff (2013) to treat outliers, before estimating the seasonal trend. This is because the
analysis will be more robust, as the estimation procedure can be sensitive to extreme observations. The
parameter estimation of the sinusoidal pattern is performed on the full-sample using a maximum likeli-
hood estimator. The results are reported in Table 2, Panel A. Figure ?? presents the time series of the
log-prices, adjacent to their deseasonalised time series.



Forecasting the Joint Distribution of Australian Electricity Prices using Dynamic Vine Copulae 13

Panel A: Parameter Estimation for sin-EWMA model
λ b1 b2 b3 b4 MSE

NSW 0.3930 -0.0380 4.9476 -0.1654 1.0453 0.1475
Qld 0.2550 0.0671 7.4587 -0.2155 1.0593 0.2720
SA 0.0490 -0.0876 6.9011 -0.1147 1.0314 0.3991
Tas 0.2490 0.0214 4.4398 -0.1904 1.0531 0.1849
Vic 0.3150 0.0721 7.449 -0.1828 1.0511 0.1879

Panel B: Parameter Estimation for Marginal Models
Parameters NSW QLD SA TAS VIC

Conditional Mean Equation

β0
0.0085

(0.1577)
0.0077

(0.0278)
0.0036

(0.0386)
0.0074

(0.3206)
0.0067

(0.0529)

β1
0.5185

(0.0878)
0.5547

(0.0813)
0.6455

(0.0260)
0.4773

(0.0258)
0.5701

(0.0488 )
Conditional Variance Equation

α0
0.8569

(0.0062)
0.0114

(0.0027)
0.0529

(0.0072)
0.0100

(0.0024)
0.0095

(0.0028)

α1
0.9234

(0.1635)
0.8569

(0.0625)
0.9693

(0.1270)
0.7490

(0.0606)
0.6466

(0.0224 )

γ
0.0766

(0.0470)
0.1431

(0.0275)
0.0307

(0.0547)
0.2510

(0.1383)
0.1049

(0.0400)

CS∗
0.0807

(0.1284)
0.0241

(0.1410)
0.0008

(0.0342)
0.0801

(0.0376)
0.0275

(0.0349)

df∗∗
2.6082

(0.1086)
2.5446

(0.1319)
2.4826

(0.0685)
2.5321

(0.3287)
2.6677

(0.1881)

Log Likelihood 1473 836 148 847 1009
K-S p-value∗∗∗ 0.4201 0.3890 0.3708 0.3726 0.4110
NS p-value∗∗∗∗ 0.9867 0.9648 0.6988 0.5143 0.9594

∗ CS denotes the coefficient of skewness.
∗∗ df denotes the degree of freedom.
∗ ∗ ∗ p-values for Kolmogorov–Smirnov test for residuals’ goodness-of-fit to skewed Student’s t.
∗ ∗ ∗∗ p-values for Neyman smooth test for residuals’ goodness-of-fit to skewed Student’s t.

Table 2: This table reports the parameter estimation for the long-term seasonal component of the in-
sample data using sin-EWMA model (Panel A), as well as the model for marginal distributions using a
AR(1)-GARCH(1,1) (Panel B).

Next we proceed to the modelling of the marginal distributions using the AR(1) − GARCH(1, 1)
specification, where the errors are assumed to follow a skewed Student-t distribution. We have also
considered a range of different models and lag orders on the in-sample period, including ARMA −
GARCH , ARMA − EGARCH , ARMA − GAS, and ARMA − EGAS. We did not find any
significant evidence of out-performance by any other model, based on the BIC information criteria.
Looking at the results in Table 2, Panel B, we note the following: (i) The log-prices are characterised
by signification autocorrelation, (ii) the underlying GARCH processes appear to be integrated for four
out of five markets for which α1,i + γi = 1, (iii) there almost no evidence of skewness in the error
distribution, (iv) the error distribution has very heavy tails as indicated by the low estimates for the
degrees-of-freedom, and (v) the Kolmogorov-Smirnov (KS) and Neyman smooth (NS) goodness-of-fits
indicate an adequate fit of the marginal models for all markets.

<<Insert Figure ?? >>
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Parameters NSW QLD SA TAS VIC
NSW 1.0000
QLD 0.3807 1.0000
SA 0.3307 0.1631 1.0000

TAS 0.2349 0.1070 0.2188 1.0000
VIC 0.5375 0.2668 0.4602 0.3062 1.0000

Table 3: Matrix of the in-sample Kendall’s τs for residuals (full-sample).

3.3. Copula Estimation

After choosing the Dvine decomposition of the multivariate copula, we still have to decide which per-
mutation of the data to choose, since there are 5!/2 possible distinct permutations and the results are not
invariant to the chosen permutation. A rule for selecting the best permutation for Dvines, according to
Nikoloulopoulos, Joe, and Li (2012), consists of choosing and connecting the most dependent pairs in the
first tree, which is the approach typically used in the literature. Using the sample Kendall’s τs computed
from AR(1)−GARCH(1, 1) residuals, reported in Table 3, we choose the following structure:

<<Insert Figure ??>>

It is noteworthy that this structure is chosen purely based on the strength of dependence of the standard-
ised residuals. However, it perfectly matches the geographical location of the inter-connectors, since
adjacent states presenting the strongest ranked correlation in the data set. The only exception is TAS,
which we have to connect to SA, because the structure of Dvine trees does not allow three edges to be
connected to VIC.

In Table 4, Panel A, we report the parameter estimates for the SCAR-Dvine model. We have ex-
amined different copula functions (i.e. Gaussian, Student’s t, Gumbel, Clayton, and rotated versions
thereof, described in Cherubini, Luciano, and Vecchiato 2004) for each pair, and chosen the best one
based on their respective BIC criteria. At first, it might seem striking that the majority of the chosen
copulae in the level 1 tree are Gaussian. However, a similar behaviour has been identified in Hafner
and Manner (2012) and Manner and Segers (2011), which can be explained by the property of near
asymptotic dependence discussed in Subsection 2.3. Additionally, it is also surprising that the symmetric
Gaussian copula outperforms the two asymmetric models, even though upper-tail dependence behaviour
is expected in electricity log-prices. It seems that to some extent this asymmetry is accounted for by
the time-varying dependence parameter. Furthermore, the asymmetric models, e.g. the Clayton copula,
may simply underestimate the dependence for large observations and this may outweigh the advantage
of allowing for lower tail dependence (see Hafner and Manner 2012 for a similar situation).

To verify these arguments, we compare our results with the static Dvine model, the results of which
are reported in Table 4, Panel B. In the static Dvine model, the dependence copula parameter θ is constant,
as opposed to the stochastic process (9). Therefore, it is the Dvine extension of the copula model of
Ignatieva and Trück (2016), applied to a similar dataset. We can see that the Student t-copula is the
dominant copula for all pairs in the first tree, whereas different copulas have been selected on the higher
trees. However, the results are not at odds with the dynamic model. For example, for the pairs “QLD-
NSW”, “NSW-VIC”, and “VIC-SA” Student copula provides the best static fit, while SCAR Gaussian
provides the best dynamic fit, both of which alluding to the existence of both (near) upper- and lower-
tail dependence (recall that dynamic Gaussian copulas have the property of near asymptotic dependence,
making their tails indistinguishable from asymptotically dependent one). Overall, the SCAR version of
the Dvine model provides a better fit with a log-likelihood of 1337.37, compared to 1100.57 in the static



Forecasting the Joint Distribution of Australian Electricity Prices using Dynamic Vine Copulae 15

Panel A: SCAR-Dvine Model

Pairs states Copula type Prameters
µ φ σ LL

Tree Level 1
QLD-NSW SCAR Gaussian 0.2119 0.7460 0.3774 283.9477
NSW-VIC SCAR Gaussian 0.2920 0.7363 0.4138 448.3619
VIC-SA SCAR Gaussian 0.3130 0.6789 0.3811 382.7633
SA-TAS SCAR Gumbel 0.1067 0.7675 0.2762 104.7408

Tree Level 2
QLD-VIC|NSW Static Gumbel 1.0450 - - 2.5947
NSW-SA|VIC SCAR Gumbel 0.0045 0.6872 0.2540 16.2751
VIC-TAS|SA SCAR Gaussian 0.2670 0.4250 0.3948 79.5261

Tree Level 3
QLD-SA|NSW VIC Independence 0 - - 0
NSW-TAS|VIC SA SCAR Gaussian -0.0149 0.7644 0.2581 8.7489

Tree Level 4
QLD-TAS|NSW VIC SA SCAR Gumbel 0.0226 0.7447 0.1206 10.4091

Panel B: Static Dvine Model

Pairs states Copula type Prameters
θ ν LL

Tree Level 1
QLD-NSW Student’s t 0.52 5.15 208.0061
NSW-VIC Student’s t 0.77 3.46 193.1331
VIC-SA Student’s t 0.56 8.09 486.3622
SA-TAS Student’s t 0.60 20.76 101.2675

Tree Level 2
QLD-VIC|NSW Student’s t 0.14 6.63 1.7173
NSW-SA|VIC Gaussian -0.27 - 30.4260
VIC-TAS|SA Gaussian 0.17 - 16.9282

Tree Level 3
QLD-SA|NSW VIC Clayton 0.89 - 6.12062
NSW-TAS|VIC SA Gaussian 0.39 - 52.0421

Tree Level 4
QLD-TAS|NSW VIC SA Clayton 0.32 - 4.1845

Table 4: In-sample parameters estimation for the SCAR-DVine model (Panel A) and the static Dvive
model (Panel B). Selected copula models and parameter estimates are provide for both models and
for daily electricity log-prices of five regional markets in Australia, covering the period 01.01.2010 to
31.12.2012.

version. In comparison, the log-likelihood values of the Gaussian and Student DCC-copulas are 979 and
1136, respectively, indicating a clearly worse fit than the SCAR-Dvine. However, the dynamic Student
copula fits better than the static Dvine.11 This is also reflected in the predictive power of the models, a
thorough discussion of which will follow in the next section.

The findings here are in line with the observation that regional energy markets exhibit significant tail
dependence. Additionally, the choice of Gumbel indicate higher upper-tail dependence on the lower trees
of the model. The survival Gumbel copula on the second tree, on the other hand, indicate (conditional)
lower tail dependence. The estimates of the persistence parameters φ indicate that the time-varying
dependence is positively autocorrelated. In the third and fourth levels the persistence is equally strong
as in the lower trees. However, the conditional dependence is rather weak with µ being close to zero
showing that most of the dependence has been captured by the first two levels. It is noteworthy that there
is conditional independence between QLD and SA.

Important features of the joint dependence among different markets can be inferred from the preced-
ing estimation results (cf Joe, Li, and Nikoloulopoulos 2010). Because the pair-copulae in the first level

11This ranking of the models is preserved when computing information criteria based on the log-likelihoods such as AIC or
BIC that penalize highly parametrized models.
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of the estimated Dvines have upper and lower tail dependence, the multivariate copulae also have upper
and lower tail dependence. Moreover, since one of these pair-copulae are tail asymmetric (SA-TAS),
the range of upper/lower tail dependence for the bivariate margins is quite flexible. These characteristics
are in accordance with empirical evidence found in Ignatieva and Trück (2016) that electricity price data
tends to exhibit tail dependence and asymmetries.

The dynamics of the dependencies over the in-sample period can be observed in Figures ?? and ??.
For the SCAR-Dvine model Kendall’s τ has been computed based on 10000 Monte Carlo simulations,
whereas for the N-DCC and t-DCC copulas the time-varying correlations have been transformed to
Kendall’s τ to make the results comparable. Time-variation clearly visible and it is more pronounced for
the SCAR-Dvine model. Further evidence on the importance of modelling time-varying dependence is
provided in the next section, where we compare the results of our model to the static Dvine model in an
out-of-sample test.

<<Insert Figures ?? and ??>>

4. Out-of-Sample Back-testing of Conditional Quantiles

Assessment of risk models (or back-testing) is an essential part of the process of internal control for
market risk management. The internal risk management teams in financial institutions are particularly
interested in detecting clustering in exceedances12. Empirical studies have shown that large losses that
occur in rapid succession are more likely to lead to disastrous events such as bankruptcy (Christoffersen
and Pelletier 2004). In this section, we consider the problem of estimating the Conditional Quantile (CQ)
of an equally weighted portfolio of different regional markets. Recall that our out-of-sample covers the
period between 01.01.2013 to 31.12.2015, consisting of 1095 days.

4.1. Back-testing

We are interested in comparing the SCAR-Dvine copula model’s ability to forecast the occurrence of
extreme events with the alternative models. For this purpose, we conduct the following out-of-sample
back-testing exercise. Given the estimation set of {1, . . . , T} daily observations for the copula model
and the testing set consisting of T ∗ = 1095 observations {T + 1, . . . , T + T ∗}, the exercise is done as
follows:

1. For h = 1, . . . , T ∗:

(a) From the fitted copula model, we simulate 10,000 samples u1,T+h, . . . , u5,T+h from the
estimated copula using one-day ahead prediction the copula parameter, θt+h|t+h−1.

(b) For j = 1, . . . , 5, we convert uj,T+h to ε̂j,T+h, using the (estimated) inverse cdf’s, i.e.,
ε̂j,T+h = F̂−1j (uj,T+h).

(c) For j = 1, . . . , 5, we convert ε̂j,T+h to the deseasonalised log-price using one-day ahead
forecasts of the conditional mean and variance as

x̂j,T+h = µ̂j,T+h|T+h−1 + σ̂j,T+h|T+h−1 · ε̂j,T+h.
12Kupiec (1995) defines exceedance as an event where the ex post portfolio loss exceeds the ex ante risk measure.
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(c†) For j = 1, . . . , 5, we add seasonal trend back to the deasonalised forecasts by13

ŷj,T+h = x̂j,T+h + sj,T+h.

(d) Then we compute the portfolio forecasts as

P̂T+h =
1

5

5∑
j=1

xj,T+h.

(d†) Then we compute the portfolio forecasts as

P̂ †T+h =
1

5

5∑
j=1

yj,T+h.

2. For significance levels α = {0.005, 0.01, 0.05, 0.1, 0.9, 0.95, 0.99, 0.995}, we compute the one-
day ahead conditional quantileQα(T+h) forecast for the day T+h based on the 10,000 simulated
samples from the predictive distribution.

3. To implement backtesting of a sequence of CQ forecast, we follow Christoffersen (1998) in defin-
ing the hit-sequence, {It}T+T

∗

t=T , as follows:

It := I(Pt < Qα(t|t− 1).

Where I(·) is the indicator function. That is if the observed value of the portfolio log-prices for the
day is less than Qα, then a hit (i.e., violation or exceedance) is said to occur.

The portfolio CQs are shown graphically in Figure ??. Visually it is difficult to distinguish the out-of-
sample forecasting performance of different models. Therefore, in order to have a conclusive analysis, we
implement four important statistical tests, namely, the test of Kupiec (1995), the autocorrelation test of
Christoffersen (1998), the dynamic quantile test of Engle and Manganelli (2004), and the duration-based
test of Christoffersen and Pelletier (2004). These tests check whether the proportion of CQ exceptions is
consistent with the chosen confidence level α and whether the exceedances are independent.

<Place holder for Figure ?? >

By definition, the conditional probability of violating the VaR should always be

P(It+1 = 1|Ft) = α, (13)

for every t. Equation (13) implies that no information available to the risk manager at the time the CQ
was made is helpful in forecasting the probability of violations. Otherwise, this information would be
incorporated into calculating a better CQ with unpredictable violations. We will refer to tests of this
property as conditional coverage (CC) tests.

Kupiec (1995) developed an unconditional coverage (UC) test of whether Pr(It+1 = 1) = α, under
the assumption of independence for the hits. The test is built on the idea that if the actual fraction
of CQ exceedences is statistically different than α, the UC test rejects the null. While Kupiec test

13The steps with superscript (†) are optional depending on the application. The vector of seasonal component is assumed to
be deterministic, by construction (see Subection 2.1); thus, it has no effect on the analysis.
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provide a useful benchmark for assessing the accuracy of a given CQ model, it focuses exclusively on
the unconditional coverage property of an adequate CQ measure and do not examine the extent to which
the independence property is satisfied.

According to Christoffersen (1998), It should be an i.i.d. sequence, following a Bernoulli distribution
with first moment α. Christoffersen (1998) proposes a formal test, using a general first-order Markov
process, where the one-step-ahead transition probabilities Pr(It+1|It) are given by

(
1− π01 π01
1− π11 π11

)
.

Here, πij := Pr(It+1 = j|It = i). Under the null hypothesis, the hits have a constant conditional mean,
i.e., π01 = π11 = α.

Another test that we use to test the adequacy of the estimated CQs is the Dynamic Quantile test of
Engle and Manganelli (2004). The null hypothesis of the test states that the model is correctly specified
and that CQ is not under- or over-estimated. The test is based on F statistics and tests H0 : b0 = b1 =
· · · = b6 = 0 for the regression

It = a0 +
5∑

k=1

bkIt−k + b6CQα(t) + ut.

In their estimation method, Engle and Manganelli (2004) assume that the error term ut has a logistic
distribution resulting in a logistic regression.

Finally, we apply the duration-based test of Christoffersen and Pelletier (2004). Under the null
hypothesis of the test, hits should occur at random time intervals. Let Di denote the duration between
two time intervals; then, Di = ti − ti−1, where ti is the observation time of hit number i. Using the
Bernoulli property, the probability of a violation in d periods is Pr(Di = d) = Pr(It+1 = 0, It+2 =
0, . . . , It+d = 1). Consider the hazard rate

λ(Di) =
Pr(Di = d)

1− Pr(Di < d)
.

Under the null hypothesis, λ(Di) should be flat and equal to α. The only memory free (continuous)
random distribution is the exponential, thus Christoffersen and Pelletier (2004) specify that under the
null the distribution of the no-hit durations should be

fexp(Di;α) = α exp(−αDi).

Table 5 reports the p-values for all four statistical tests of interest14, applied to SCAR-Dvine model
and the four competing models, across all values of α under consideration. The results of the tests for
the lower tail quantiles are provided in the left part of the table and the upper tail results are displayed on
the right side. Our results indicate that the SCAR-Dvine provide a sufficient coverage and outperforms
the competing models in sense that it has the fewest rejections for any given significance level.

To cross validate the results, we also use the Risk Map, which has been recently introduced in Col-
letaz, Hurlin, and Pérignon (2013). Risk Map is a graphical tool, which summarises all information
about the performance of a risk model. It jointly considers the number and the magnitude of extreme

14For brevity, we have excluded the backtesting results for the UC autocorrelation test of Christoffersen (1998), the UC
conditional autoregressive test of Engle and Manganelli (2004), and the UC duration-based test of Christoffersen and Pelletier
(2004). The results of these test are in line with the tests presented in Table 5 and are available upon request.
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Panel A: Kupiec’s Unconditional Coverage Test of Kupiec (1995)
Lower tail Upper tail

0.005 0.01 0.05 0.1 0.90 0.95 0.99 0.995

SCAR-Dvine 0.8378 0.1311 0.075 0.0269 0.3915 0.2085 0.7719 0.2468
t-DCC-Copula 0.8215 0.1007 0.0002 0.0001 0.0342 0.0075 0.5433 0.8381
N-DCC-Copula 0.5080 0.1007 0.0109 0.0022 0.2921 0.0415 0.9855 0.5080
DCC-GARCH 0.1665 0.0728 0.3429 0.0006 0.0001 0.1656 0.0003 0.0001
Static Dvine Copula 0.8230 0.8979 0.0004 0.0003 0.5940 0.1996 0.7729 0.5274

Panel B: Autocorrelation Conditional Coverage Test of Christoffersen (1998)
Lower tail Upper tail

0.005 0.01 0.05 0.1 0.90 0.95 0.99 0.995

SCAR-Dvine 0.9567 0.2771 0.2035 0.0425 0.5292 0.4149 0.8744 0.5071
t-DCC-Copula 0.9433 0.2522 0.0006 0.0001 0.0838 0.026 0.711 0.9571
N-DCC-Copula 0.7916 0.2522 0.0345 0.0075 0.2847 0.1215 0.8441 0.7916
DCC-GARCH 0.3563 0.2103 0.6341 0.0022 0.0005 0.2747 0.0007 0.0001
Static Dvine Copula 0.5637 0.2497 0.0008 0.0009 0.8395 0.4468 0.8744 0.7916

Panel C: Dynamic Quantile Conditional Coverage Test of Engle and Manganelli (2004)
Lower tail Upper tail

0.005 0.01 0.05 0.1 0.90 0.95 0.99 0.995

SCAR-Dvine 0.9987 0.7017 0.1381 0.0540 0.7939 0.7147 0.9871 0.8899
t-DCC-Copula 0.9777 0.6806 0.0001 0.1177 0.1792 0.0704 0.9129 0.9987
N-DCC-Copula 0.9804 0.6806 0.0117 0.0147 0.5162 0.308 0.9864 0.9804
DCC-GARCH 0.6119 0.1741 0.7856 0.0265 0.0066 0.5383 0.0002 0.0001
Static Dvine Copula 0.8155 0.3212 0.0017 0.0024 0.3429 0.1815 0.3212 0.5696

Panel D: Duration-based Conditional Coverage Test of Christoffersen and Pelletier (2004)
Lower tail Upper tail

0.005 0.01 0.05 0.1 0.90 0.95 0.99 0.995

SCAR-Dvine 0.6438 0.1936 0.1687 0.0047 0.5788 0.5443 0.9245 0.1765
t-DCC-Copula 0.6211 0.1294 0.0001 0.0001 0.0524 0.0454 0.9043 0.4841
N-DCC-Copula 0.4750 0.1294 0.0308 0.0015 0.5671 0.1771 0.5561 0.5061
DCC-GARCH 0.4436 0.0868 0.5814 0.0045 0.0007 0.2723 0.0030 0.0001
Static Dvine Copula 0.4750 0.1294 0.0090 0.0076 0.4503 0.2741 0.1266 0.2234

Table 5: Comparison of CQ backtesting results obtained using alternative procedures. For each set of
models, the table reports the p-values of A) UC Kupiec (1995) test, B) the CC autocorrelation test of
Christoffersen (1998), C) the CC conditional autoregressive test of Engle and Manganelli (2004), and D)
the CC duration-based test of Christoffersen and Pelletier (2004).

events, relying on the concept of super exceptions. Colletaz, Hurlin, and Pérignon (2013) define a supper
exception as an extreme event which exceeds both the standard CQα and aCQα′ defined at an extremely
low coverage probability α′. Here we assume, α′ = 0.2% for the lower tail CQs and α′ = 99.8% for the
upper tail CQs. Colletaz, Hurlin, and Pérignon (2013) name several advantages of Risk Map: 1) it incor-
porates the magnitude of the extreme events into the Kupiec test15; 2) it allows us to jointly test the null
hypothesis that both the numbers of CQ exceptions and super exceptions are accurate; 3) it allows joint
validation of the standard and stressed CQs that the risk manager must compute; and 4) the approach is
general and no distributional assumptions is needed.

The hypothesis test underlying the Risk Map boils down to jointly test the number of CQs exceptions
and super exceptions:

15Thus, the Risk Map approach is a three-dimensional generalisation of the “Traffic Light” system of on Banking Supervision
(2011). The three colour “Traffic Light” system of on Banking Supervision (2011) is the reference back-test methodology for
banking regulators.
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H0 : E[It(α)] = α, and E[It(α
′)] = α′.

This joint conditional coverage null hypothesis can be tested using the hit regression test of Engle
and Manganelli (2004), under which the test statistic is asymptotically chi-square with two degrees of
freedom16.

Figure ?? and ?? presents the Risk Maps for different quantiles, constructed based on the rejection
zones for different confidence levels. Note that the cells below the diagonal are not coloured as they
correspond to situations in which the number of super exceptions exceeds the number of exceptions,
which is of course impossible. If the (exception, super exception) pair corresponds to a green cell,
we conclude that we cannot reject the null for either the exception or the super exception, at the 95%
confidence level. If the pair falls in the orange zone, we can reject the null at the 95% but not at the 99%
confidence level. Finally, a red cell implies that we can reject the null hypothesis at the 99% confidence
level. The key take away from this figures is that the p-values remain remarkably stable for SCAR-Dvine
models, which confirms the robustness of our results.

<Place holder for Figure ?? >

Overall, we have shown that SCAR-Dvine has performed very well for predicting the distribution of
electricity log-prices; however, it is less than straightforward to draw a conclusion due to the following
observations. The sheer quantity of information in Table 5 makes it hard to determine which models
perform best overall, as the p-values are often close to each other, we are testing for numerous quantiles
indicating a multiple testing problem and in some cases, although SCAR-Dvine has performed better
than the competing models, the p-values still suggest rejection at conventional significance levels. For
instance, in quantile α = 0.1 in Panel D the duration based model rejects all models, including SCAR-
Dvine.

Therefore, we develop a ‘decision making’ tool, to assist us in assessing the reliability of the CQ fore-
casts by summarising the p-values, using a simple ‘scorecard’ system. Thereby, we compare the quality
of results from each test, including the Risk Map, then by aggregating the scores for each model we can
choose the better risk model with more conclusive evidence. The idea of linear scoring of market-risk
models has first appeared in So and Chan (2014), where they ranked the ratio of absolute and theoret-
ical proportion of exceedances. However, the method proposed here is more robust, because instead
of basing the scorecard on the sequence of violations, we construct it based on the p-values obtained
from each backtest. Having the p-values already calculated, we can proceed to our scoring scheme. We
score each p-value from 0 to 3, based on the strength of evidence against the null hypothesis. A small
p-value of less than 0.01 indicates strong evidence against the null hypothesis, so the test in the quantile
receives a Score of 0. A p-value larger than 0.01 indicates weak evidence against the null hypothesis,
so we fail to reject the null hypothesis. If the p-value is between 0.01 and 0.05 we accept the null with
‘weak’ statistical evidence, and give it a Score of 1; if between 0.05 and 0.10, we accept the null with
an ‘acceptable’ statistical evidence, and give it a Score of 2; if greater than 0.10 we accept the null with
a ‘reliable’ statistical evidence, giving it a Score of 3. As for the Risk Map, the situation is simpler. If
the (exception, super exception) pair corresponds to a green cell, we give the model a Score of 3, if it
corresponds to orange we give a Score of 2, and if it corresponds to red we give a score of 1.

The scorecard is presented in Table 6. The total score for each model is presented in the last column,
based on which the five risk models can be compared in each test. It is clear that SCAR-Dvine has
obtained a higher total score in every instance. We must highlight that this decision making tool addresses

16The p-values of the test can be based on either the asymptotic distribution or the finite sample distribution, which can be
generated by simulation. See Colletaz, Hurlin, and Pérignon (2013) for more discussion on finite sample properties.
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Panel A: Kupiec’s Unconditional Coverage Test of Kupiec (1995)
0.005 0.01 0.05 0.1 0.90 0.95 0.99 0.995 Total Score

SCAR-Dvine 3 3 2 1 3 3 3 3 21*
t-DCC-Copula 3 3 0 0 1 0 3 3 13
N-DCC-Copula 3 3 1 0 3 1 3 3 17
DCC-GARCH 3 2 3 0 0 3 0 0 11
Static Dvine Copula 3 3 0 0 3 2 3 3 17

Panel B: Autocorrelation Conditional Coverage Test of Christoffersen (1998)
SCAR-Dvine 3 3 3 1 3 3 3 3 22*
t-DCC-Copula 3 3 0 0 2 1 3 3 15
N-DCC-Copula 3 3 1 0 3 3 3 3 19
DCC-GARCH 3 3 3 0 0 3 0 0 12
Static Dvine Copula 3 3 0 0 3 3 3 3 18

Panel C: Dynamic Quantile Conditional Coverage Test of Engle and Manganelli (2004)
SCAR-Dvine 3 3 3 2 3 3 3 3 23*
t-DCC-Copula 3 3 0 3 3 2 3 3 20
N-DCC-Copula 3 3 1 1 3 3 3 3 20
DCC-GARCH 3 3 3 1 0 3 0 0 13
Static Dvine Copula 3 3 0 0 3 3 3 3 16

Panel D: Duration-based Conditional Coverage Test of Christoffersen and Pelletier (2004)
SCAR-Dvine 3 3 3 2 3 3 3 3 23*
t-DCC-Copula 3 3 0 3 3 2 3 3 20
N-DCC-Copula 3 3 1 1 3 3 3 3 20
DCC-GARCH 3 3 3 1 0 3 0 0 13
Static Dvine Copula 3 3 0 0 3 3 3 3 18

Panel E: Risk Map of Colletaz, Hurlin, and Pérignon (2013)
SCAR-Dvine 3 3 3 2 2 3 3 3 22*
t-DCC-Copula 3 3 1 1 1 1 3 3 16
N-DCC-Copula 3 3 2 1 1 2 3 3 18
DCC-GARCH 3 3 3 1 1 2 1 1 15
Static Dvine Copula 3 3 1 1 1 1 1 2 13

Table 6: This table presents the scorecard for the p-values of each back-testing procedure. The last
column sums up the total score in each row. The asterisks indicate the wining models in each test (block
of scores). The scorecard also provides a quick visual summary of the performance of each test in each
quantile.

the first two concerns discussed above. That is if the p-values are very close to each other, models receive
a similar score, and if a p-value is lower than 0.05, the result is excluded from the decision via a score
of 0. Finally, in this study, the decision making is straightforward, since the SCAR-Dvine has received
a higher total score in every single test. Nevertheless, one may envisage situations where the results are
mixed, in the case of which a weighting scheme based on the reliability of the test might be helpful.

5. Conclusion

The electricity retail industry plays an integral role in the apparatus of modern energy markets. They
are responsible for the efficient distribution of electricity through profiling the consumers consumption
(i.e. load profile), aggregating the electricity demand and bidding for electricity in a competitive auction
(e.g. NEM in Australia). On the other hand, they are constrained to provide energy at fixed rates to the
end-users, while purchasing it at the spot price form the market. Therefore, effectively, they bare all of
the market risk on the buy-side.

In managing the market risk, electricity retailers need to have a robust model for distributional fore-
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casts that adequately capture extreme price movements. However, electricity price series exhibit highly
stylised features, which are materially different to other financial time-series, namely, strong seasonality,
extreme price spikes, non-linear price dependency between regional markets, and correlation asymmetry.
Similar features might also be observed in other financial time-series, but not with the same magnitude
and frequency; thus analysing electricity prices demands more sophisticated techniques.

This paper proposes the employment of SCAR-Dvine model for capturing complex dependence
structures in daily Australian electricity prices. Our research design is based on the dynamic financial
analysis approach, looking at an enterprise’s risks holistically, as opposed to the traditional risk analysis
which analyses risks individually. Modelling risk of the five markets as a complex interconnected sys-
tem, as opposed to analysing markets individually, for the electricity retailers is more relevant than ever
before. This is because, over the last two decades, many of the small market players have amalgamated
into large enterprises operating in all five markets simultaneously. Seasonality is dealt with by using
sophisticated models for long- and short-term seasonal components. The (conditional) marginal distri-
butions are modelled using GARCH models with skewed t-distributed errors and goodness-of-fit tests
suggest the appropriateness of these models. Furthermore, we provide empirical evidence that not only
the SCAR-Dvine model fits the data very well in an in-sample period, but also preforms better than four
competing models in predicting conditional quantiles in an out-of-sample back testing exercise.
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