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Summary

Established tests for proper calibration of multivariate density forecasts based on
Rosenblatt probability integral transforms can be manipulated by changing the
order of variables in the forecasting model. We derive order-invariant tests. The
new tests are applicable to densities of arbitrary dimensions and can deal with
parameter estimation uncertainty and dynamic misspecification. Monte Carlo
simulations show that they often have superior power relative to established
approaches. We use the tests to evaluate generalized autoregressive conditional
heteroskedasticity-based multivariate density forecasts for a vector of stock mar-
ket returns and macroeconomic forecasts from a Bayesian vector autoregression
with time-varying parameters.

1 INTRODUCTION

The use of density forecasts has recently become common in many scientific fields (Gneiting & Katzfuss, 2014) and,
in particular, in many areas of economics. Density forecasts are increasingly used, for instance, in the fields of energy
economics (Huurman, Ravazzolo, & Zhou, 2012), demand management (Taylor, 2012), finance (Hallam & Olmo, 2014),
and macroeconomics (Clark, 2011; Wolters, 2015). Many tasks, such as the computation of value-at-risk measures for
portfolios containing multiple assets or the planning of production for a firm that serves many markets from one central
production facility, require the construction and evaluation of multivariate density forecasts. Beginning with Smith (1985)
and Diebold, Hahn, and Tay (1999), the literature has proposed several approaches for testing whether a sequence of
multivariate density forecasts coincides with the corresponding true densities (e.g., Bai & Chen, 2008; Clements and
Smith, 2000, 2002; Corradi & Swanson, 2006a; Ko & Park, 2013).

This strand of the literature has neglected two important issues. First, established tests depend on the order of variables
in a multivariate model.1 This offers room for data mining if a researcher decides to report only those results that corre-
spond to one particular (“preferred”) order. Second, most empirical applications and many of the theoretical results focus
on the bivariate case. However, many applications, especially in finance, require models of higher dimensionality to be
useful. We address both issues in this paper.

Following Diebold et al. (1999), the most commonly used approach for testing the calibration of multivariate density
forecasts is based on the Rosenblatt (1952) probability integral transform (PIT). Examples include Clements and Smith,
(2000, 2002) and Ko and Park, (2013, 2019). This approach relies on a factorization of the forecast distribution into condi-

1Note that there is a complementary literature on methods for comparing the relative accuracy of (multivariate) density forecasts (see, e.g.,Gneiting &
Katzfuss, 2014). This literature usually compares scores of different density forecast models that do not suffer from dependence on the order of variables.
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tional distributions because these, in turn, can be used to form independent PITs which, for well-specified models, follow
a uniform distribution. Suitable transformations of these conditional PITs then lead to a reduction of the multivariate
testing problem to a univariate one.

We contribute to the literature by proposing new variants of such transformations of the conditional PITs. The new
transformations have a number of advantages. First, they are order invariant—a concept we define below—meaning that
test results do not depend on the order of variables in the forecasting model. We show that the distortions in rejection rates
caused by a tendentious application of the established tests, which are not order invariant, can be very substantial. Second,
the new tests are applicable to densities of arbitrary dimension. Third, they have better power (relative to established
tests) against a wide range of alternatives. In two applications, we show that the new tests are helpful for testing the
appropriateness of density forecasts based on sophisticated multivariate models for vectors of financial returns and to
evaluate macroeconomic density forecasts. In particular, we show that the potential for data mining is immense when
using the established tests in practice and that our order-invariant tests are required to draw unambiguous conclusions.

Our tests can also be used when dynamic misspecification and parameter uncertainty have to be taken into account.
These two aspects are of utmost importance in practical applications that involve parametric forecasting models. Corradi
and Swanson (2006b) present a comprehensive overview of both aspects.

Dynamic misspecification refers to the fact that a forecaster potentially uses only a subset of the relevant information to
form a conditional density forecast. In most fields of economics and finance such misspecification is very likely. Dynamic
misspecification causes the PITs to be serially correlated. A number of papers propose tests that are robust against dynamic
misspecification; that is, they preserve this misspecification under the null hypothesis. Pioneering work in this context
has been done by Corradi and Swanson (2006a), who show that a block bootstrap can be used to adjust Kolmogorov-type
tests under such conditions. In contrast, Rossi and Sekhposyan (2013) relax this assumption and propose a test for correct
specification of density forecasts that is robust, in addition, to structural breaks. Other papers (Berkowitz, 2001; Hong,
Li, & Zhao, 2007; Ko & Park, 2019; Lin & Wu, 2017) jointly test for uniformity and the i.i.d. property of the PITs, thereby
testing the null hypothesis of completely calibrated densities (Mitchell & Wallis, 2011).

Parameter estimation uncertainty arises whenever a parametric forecast model is used to construct density forecasts
whose parameters are estimated based on finite samples. Whether estimation uncertainty has to be dealt with when eval-
uating a sequence of predictive densities depends on the exact formulation of the null hypothesis one is interested in. One
common approach is to test whether the forecast distribution belongs to a given parametric density family with param-
eters evaluated at their pseudo-true values. The alternative view, proposed in Rossi and Sekhposyan (2019), is to test for
the ability of a model to produce correct forecast distributions evaluated at the estimated parameter values. Bai (2003) (for
the univariate case) and Bai and Chen (2008) (for multivariate densities) combine the Kolmogorov test with Khmaladze's
martingale transformation to obtain a test which is distribution free in the presence of estimated parameters. Andrews
(1997) solves this problem by using a parametric bootstrap. More recently, Chen (2011) adapts a number of tests from the
parameter-free context to parameter-dependent density forecast evaluation, building on insights from Newey (1985) and
Tauchen (1985) in the in-sample case and from West (1996) and West and McCracken (1998) in the out-of-sample case.
This is the approach that we use in our paper.

Thus there is a wide range of views regarding how density forecasts should be tested (Table 1). The methods that we
propose below are compatible with any combinations of those views.

TABLE 1 Classification of
testing problems

Treatment of dynamic Known parameters/
misspecification: Forecasts as primitives Estimated parameters
Tests that ignore dynamic Diebold et al. (1998, 1999), Andrews (1997),
misspecification Clements and Smith (2000, 2002), Bai (2003),

Ko and Park (2013) Chen (2011)
Tests robust to dynamic Knüppel (2015) Corradi and Swanson (2006a)
misspecification
Tests that test for Berkowitz (2001), Hong and Li (2005),
dynamic misspecification Rossi and Sekhposyan (2019) Hong et al. (2007),

Ko and Park (2019),
Lin and Wu (2017),
González-Rivera and Sun (2015)

Note. This table contains a nonexhaustive collection of papers taking different views on how parameter estimation
and dynamic misspecification should be treated when testing the calibration of (predictive) densities.
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The remainder of this paper is organized as follows. In Section 2 we describe the testing problem, generalize established
tests, and derive new tests to evaluate multivariate densities. In Section 3 we assess the finite-sample properties of different
tests by means of Monte Carlo simulations. In Section 4 we demonstrate the usefulness of the newly proposed tests in an
application to forecast the distribution of a vector of stock returns. Section 5 concludes.

2 THEORY

2.1 Setup and test hypothesis
Let Yt = [Y1,t …Yd,t]′ be a vector-valued continuous random variable with true (but unknown) conditional distribution
function (CDF) GYt (𝑦|ℑt−1), where ℑt−1 denotes the relevant information set available at time t−1. Furthermore, we con-
sider the predictive CDF FYt (𝑦|Ωt−1, 𝜃0)with corresponding conditional probability density function (PDF) FYt (𝑦|Ωt−1, 𝜃0),
where Ωt−1 ⊆ ℑt−1 is the information set available to the researcher and 𝜃0 denotes a parameter vector with compact and
finite parameter space Θ. This framework takes into account that density forecasts are often constructed using parametric
models and allows for dynamic misspecification as defined, for instance, by Corradi and Swanson (2006a). For the time
being, we treat 𝜃0 as known, but we also discuss how we can take estimation uncertainty into account.

Consider a sample {𝑦t,Ωt−1}n
t=1 of which the first R observations can potentially be used to estimate 𝜃0 and the remain-

ing P observations are used to evaluate the predictive densities generated by FYt (𝑦|Ωt−1, 𝜃0). We are interested in testing
whether the model FYt (𝑦|Ωt−1, 𝜃0) is correctly specified in the sense that

H0 ∶ FYt (𝑦|Ωt−1, 𝜃0) = GYt (𝑦|ℑt−1) a.s. ∀ 𝑦 in Rd, ∀ t = R + 1, … ,T. (1)

We call a density forecast satisfying Equation (1) properly calibrated. To specify the null exactly, assumptions need to
be made about whether 𝜃0 has to be estimated and about whether dynamic misspecification can be ignored, should be
controlled for, or should jointly be tested. In Table 1 we provide an overview about the assumptions made in the literature.

In the univariate case, H0 implies that the probability integral transform (PIT), given by Ut = FYt (Yt), is uniformly
distributed between 0 and 1 (see, e.g.,Gneiting & Katzfuss, 2014). This fact can be used to test for proper density calibration
(e.g., Dawid, 1984; Diebold et al., 1998).

Unfortunately, matters are more complicated in the multivariate case because the distribution of the multivariate PITs
of Yt under the null is unknown, in general, for d > 1 (see, e.g.,Genest & Rivest, 2001). In essence, the task then is to
reduce the multivariate problem to a univariate one by using suitable transformations. The commonly used approach is
based on the factorization of the joint densities into the product of conditional densities. Let FYi (𝑦|Ωt−1, 𝜃0) denote the
marginal (conditional) CDF for the ith element of Yt and denote by FYi|Yi−1,… ,Y1(𝑦|Yi−1,t, … ,Y1,t,Ωt−1, 𝜃0) the conditional
distribution of Yi,t given Yi−1,t, … ,Y1,t, and by FYi (𝑦|Ωt−1, 𝜃0) and 𝑓Yi|Yi−1,… ,Y1 (𝑦|Yi−1,t, … ,Y1,t,Ωt−1, 𝜃0) the corresponding
PDFs. Rosenblatt (1952) shows that the sequences of conditional PITs for the elements of Yt given by

U1
t = FY1(Y1,t), U2|1

t = FY2|Y1(Y2,t), … ,Ud|1,… ,d−1
t = Ud|1∶d−1

t = FYd|Yd−1,… ,Y1(Yd,t) (2)

are independent of each other and distributed  (0, 1). The next step is to obtain a univariate testing problem based on
this vector of PITs.

A commonly used approach is to transform the vector-valued random variable Yt into a scalar random variable and to
compute PITs for this transformed random variable. The computation of the conditional PITs is often an intermediate
step in such transformations. To formalize the idea, consider the general transform function gt(·) ∶ Rd → R and define
the transformed series Wt = gt(Yt) with distribution function FWt . The PIT of Wt is given by

UW
t = FWt (Wt). (3)

A particular class of such transformations is based on the conditional PITs defined by Equation (2); that is, Wt = gt(Yt) =
g̃t

[
U1

t (Yt), U2|1
t (Yt), … , Ud|1,… ,d−1

t (Yt)
]
.

In general, testing H0 is equivalent to testing whether UW
t ∼  (0, 1). In the absence of dynamic misspecification, the

PITs are also independently distributed across time under H0; that is, UW
t

i.i.d.∼  (0, 1).
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Different transformations gt(·) have been considered in the literature. Clements and Smith (2000) propose evaluat-
ing density forecasts based on the product of the conditional PITs corresponding to one particular permutation of the
variables. In this case, the transformation function gt(·) is given by

CSt = g(Yt) =
d∏

i=1
Ui|1∶i−1

t , (4)

where we define U1|1∶0
t = U1

t and assume that it is implicitly understood that the statistic depends on the dimension d. Ko
and Park (2013) explain why tests based on CSt have good power only against correlations lower than the hypothesized
value. They suggest a location-adjusted version which does not suffer from this asymmetry and is given by

KPt = g(Yt) =
d∏

i=1

(
Ui|1∶i−1

t − 0.5
)
. (5)

Diebold et al. (1999) achieve the reduction of dimension somewhat differently by stacking all conditional PITs. More
formally, if we let

St =
[

Ud|1∶d−1
t , … ,U1

t

]′
, (6)

then S =
[
S′

R+1, S′
R+2, … , S′

n
]′ constitutes a vector of variables that are uniformly distributed under H0.

2.2 The order of variables
So far, we have implicitly assumed that there exists a natural order of variables from 1 to d. This, of course, is not true, as
already mentioned in most papers on the topic (Clements & Smith, 2002; Diebold et al., 1999; Hong & Li, 2005; Ishida,
2005). Ordering the elements in Yt in a different way will generally lead to different results because the Rosenblatt trans-
form in Equation (2) clearly depends on the order of the variables. Consequently, the outcome of a hypothesis test will
depend on the selected order. This is an undesirable property for a test since a researcher who is interested in supporting
or discrediting a certain model may perform the hypothesis test for all distinct orders and only report the outcome with
the largest or smallest p-value. While it is certainly true that for low-dimensional cases results for all possible permuta-
tions can be presented and discussed, this becomes quickly impossible for larger d. In addition, even when multiple test
statistics are presented, it is unclear how an overall decision should be made.

We use the following notation for different permutations of the variables. Let {𝜋k}, for k = 1, … , d!, be the set of all pos-
sible permutations of the data. Furthermore, let 𝜋k(i) denote the index (or “position”) of variable i in the kth permutation.
Then, the conditional PITs under permutation 𝜋k are given by

U𝜋k(1)
t = FY𝜋k (1)

(Y𝜋k(1),t),

U𝜋k(2)|𝜋k(1)
t = FY𝜋k (2)

|Y𝜋k (1)
(Y𝜋k(2),t),

⋮

U𝜋k(d)|𝜋k(1)∶𝜋k(d−1)
t = FY𝜋k (d)

|Y𝜋k (d−1),t ,… ,Y𝜋k (1),t
(Y𝜋k(d),t).

(7)

Definition 1. Let T(𝜋k) be a test statistic based on {Yt}n
t=1 under permutation 𝜋k. We call a test statistic T(𝜋k) order

invariant if T(𝜋k) = T(𝜋j), ∀ k ≠ j.

The next proposition shows that tests based on the established transformations suggested by Diebold et al.
(1999), Clements and Smith (2000), and Ko and Park (2013) are not, in general, insensitive to the choice of the
permutation.

Proposition 1. Test statistics T(𝜋k) based on {CSt}n
t=1, {KPt}n

t=1 and on the stacked transformation {St}n
t=1 are order

invariant if and only if under H0 the variables Y1,t, … ,Yd,t are independent—that is, when 𝑓Yt (Yt) = 𝑓Y1(Y1,t) × … ×
𝑓Yd(Yd,t).

In the next section, we first discuss a transformation that is based on the Rosenblatt transformation and can be order
invariant under less restrictive conditions, and we derive new transformations that are always order invariant.

DOVERN AND MANNER 443



2.3 New transformations
The first transformation that we propose leads to order-invariant test statistics under less restrictive conditions and forms
the basis for additional transformations that always lead to order-invariant tests. Consider the following transformation,
which is based on the squares of inverse normal transforms of the PITs for one particular permutation of the data:

Z2
t =

d∑
i=1

[
Φ−1

(
Ui|1∶i−1

t

)]2
, (8)

where Φ(·) denotes the CDF of the standard normal distribution.

Proposition 2. Test statistics T(𝜋k) based on
{

Z2
t
}n

t=1 are order invariant if under H0 Yt ∼  (𝜇,Σ)—that is, when
Yt follows a multivariate normal distribution with mean vector 𝜇 and covariance matrix 𝛴 or when Y1,t, … ,Yd,t are
independent under H0.

Of course, Z2
t can also be used to test non-Gaussian densities. In this case, however, the corresponding test statistics are

not generally order invariant, except for the obvious case of independence. The proof of Proposition 2 in the Supporting
Information Appendix shows that under the null hypothesis of normality it holds that Z2

t = (Yt − 𝜇)′Σ−1(Yt − 𝜇), which
is the transformation proposed by Ishida (2005).

Ideally, however, we would like to obtain a transformation that is order invariant in general. A transformation that
fulfills this criterion is similar in structure to Z2

t but considers the sum over all distinct conditional PITs. Consider all
possible permutations 𝜋k for k = 1, … , d! and the corresponding sequences of conditional PITs defined by Equation (7).
The number of distinct PITs is d ×

∑d−1
k=0

(
d−1

k

)
= d × 2d−1. Let 𝛾k

i , for k = 1, … , 2d−1 be the set of all sets of conditioning
variables corresponding to all distinct conditional PITs for Yi,t. Then the suggested transformation has the form

Z2
t
∗ =

d∑
i=1

2d−1∑
k=1

[
Φ−1

(
Ui|𝛾k

i
t

)]2
. (9)

Since all distinct conditional PITs enter into this transformation and, thus, the initial order of the variables in Yt is
irrelevant, order invariance is clearly ensured for any test statistic based on Z2

t
∗.

When d increases, the number of terms entering Z2
t
∗ can become prohibitively large. In this case, it appears sensible to

use an order-invariant transformation for which the number of terms grows only linearly with d. We propose to consider
only such conditional PITs corresponding to each Yi,t that are conditional on all other variables. We think that this choice
has some merits since, on the one hand, the considered subset of conditional PITs contains rich information about the
dependence structure of the elements of Yt while, on the other hand, also containing information about the margins.
Denoting those conditional PITs by Ui|−i

t , the new transformation is given by

Z2
t
† =

d∑
i=1

[
Φ−1

(
Ui|−i

t

)]2
. (10)

2.4 Distribution of transformations
To test H0 based on the transformations, we need to know their distribution under the null hypothesis as indicated by
Equation (3). The transformation St is simply a vector of independent uniformly distributed random variables under H0.
Clements and Smith (2000) derive the distribution of CSt for d = 2, 3, and Ko and Park (2013) provide the distribution of
KPt for d = 2. In the Supporting Information Appendix, we derive the distributions of CSt and KPt for arbitrary d.

Next, we derive the distributions of the new transformations. We distinguish two cases. In the general case, we do
not make any assumptions about the distribution of Yt, except that it is continuous. The corresponding results include,
for instance, cases in which H0 implies non-Gaussian parametric distributions of Yt or its distribution is not available
analytically, so that the conditional PITs have to be calculated numerically. For the special case of normally distributed
Yt, we show that the distributions of Z2* and Z2† become much more tractable.
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2.4.1 Distributions of new transformations: General case
As shown in Section 2.1, the different conditional PITs for one particular permutation are independent. Therefore, H0
implies that Z2

t ∼ 𝜒2
d , where 𝜒2

d denotes the chi-squared distribution with d degrees of freedom. Denoting its CDF by F𝜒2
d
,

the random variable UZ2

t = F𝜒2
d

(
Z2

t
)

is distributed  (0, 1) under H0.
The transformation Z2

t
∗ is similar to Z2

t . However, due to the fact that the summands in Equation (9) are not independent
in general, Z2

t
∗ no longer follows a 𝜒2 distribution under H0. The same argument applies in the case of Z2

t
†. However, we

can straightforwardly obtain the distributions of the transformations by Monte Carlo simulation as long as it is possible
to generate random draws from the density model under H0.

The following algorithm describes how the distributions of Z•
t ∈

{
Z2

t
∗,Z2

t
†} can be approximated numerically to com-

pute UZ•

t . We would like to stress that this algorithm is exclusively used to approximate this distribution for a given
parameter value that can be either 𝜃0 or an estimate �̂�.2

1. Generate M conditional forecasts, 𝑦(m)
t , based on the model under H0; that is, draw repeatedly from the conditional

predictive densities 𝑓Yt (𝑦).

2. Given 𝑓Yt (𝑦), construct ui|𝛾k
i

t,(m), ∀i, k, for m = 1, … ,M along the lines described in Section 2.3.

3. Compute the corresponding inverse PITs as Φ−1
(

ui|𝛾k
i

t,(m)

)
.

4. Based on the set of Φ−1
(

ui|𝛾k
i

t,(m)

)
, compute z•t,(m) using Equation (9) or 10, respectively.

5. Compute uZ•

t = Pr
(

Z•
t < z•t,(m)

)
by simply counting how often the transformed statistic based on the actual

realizations is smaller than the transformed statistics based on conditional forecasts that are generated under H0.

If H0 holds, UZ•

t is distributed (0, 1) for M sufficiently large. The validity of this simulation approach is straightforward
as we simulate directly from the (parametric) null distribution and only apply continuous transformations.

2.4.2 Distributions of new transformations: Gaussian case
Under the assumption that Yt is normally distributed, the distributions of Z2

t
∗ and Z2

t
† are available analytically and do

not need to be simulated. In this case, the terms Φ−1
(

Ui|𝛾k
i

t

)
jointly follow a multivariate normal distribution. However,

since their marginal distributions are not independent, the transformations do not follow a chi-squared distribution but a
mixture of chi-squared distributions, where the weights depend on the dependence structure of the Φ−1

(
Ui|𝛾k

i
t

)
. For Z2

t
∗,

we obtain the following result:

Proposition 3. Let Yt ∼  (𝜇,Σ). Then Z2
t
∗ is distributed as

∑d
i=1 𝜆iZ2

i , for independent  (0, 1) variables Z1, … ,Zd
and 𝜆1, … , 𝜆d the nonzero eigenvalues of the rank d matrix RZ∗ , which is the correlation matrix of all distinct terms
Φ−1

(
Ui|𝛾k

i
t

)
∀ i, k entering Z2

t
∗, where 𝛾k

i for k = 1, … , 2d−1 denotes all subsets of the set {1, … , i − 1, i + 1, … , d}. A
typical entry of RZ∗ is given by

corr
[
Φ−1

(
Ui|𝛾k

i
t

)
,Φ−1

(
U

𝑗|𝛾 l
𝑗

t

)]
=
(
Σi,i − Σi,𝛾k

i
Σ−1
𝛾k

i ,𝛾
k
i
Σ𝛾k

i ,i

)−1∕2

×(Σi,𝑗 − Σ𝑗,𝛾 l
𝑗
Σ−1
𝛾 l
𝑗
,𝛾 l
𝑗

Σ𝛾 l
𝑗
,i − Σi,𝛾k

i
Σ−1
𝛾k

i ,𝛾
k
i
Σ𝛾k

i ,𝑗
+ Σi,𝛾k

i
Σ−1
𝛾k

i ,𝛾
k
i
Σ𝛾k

i ,𝛾
l
𝑗
Σ−1
𝛾 l
𝑗
,𝛾 l
𝑗

Σ𝛾 l
𝑗
,𝑗),

where the 𝛴r,c (r, c ∈ {i, 𝛾k
i }) are scalars, vectors, and matrices containing those elements of 𝛴 that are defined by the

row(s) corresponding to the variable(s) defined by r and the column(s) corresponding to the variable(s) defined by c.

The distribution of Z2
t
† in the Gaussian case is given by the following corollary:

Corollary 1. Let Yt ∼  (𝜇,Σ). Then Z2
t
† is distributed as

∑d
i=1 𝜆iZ2

i , for independent  (0, 1) variables Z1, … ,Zd and
𝜆1, … , 𝜆d the eigenvalues of the matrix RZ† , which is the correlation matrix of all terms Φ−1

(
Ui|−i

t

)
for i = 1, … , d

entering Z2
t
†. A typical entry of RZ† is given by

2We show in the Supporting Information Appendix how parameter uncertainty is accounted for in the latter case at another step of the testing procedure.
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corr
[
Φ−1

(
Ui|−i

t

)
,Φ−1

(
U𝑗|−𝑗

t

)]
=
(
Σi,i − Σi,−iΣ−1

−i,−iΣ−i,i

)−1∕2(
Σ𝑗,𝑗 − Σ𝑗,−𝑗Σ−1

−𝑗,−𝑗Σ−𝑗,𝑗
)−1∕2

×
(
Σi,𝑗 − Σ𝑗,𝛾 l

𝑗
Σ−1
𝛾 l
𝑗
,𝛾 l
𝑗

Σ𝛾 l
𝑗
,i − Σi,𝛾k

i
Σ−1
𝛾k

i ,𝛾
k
i
Σ𝛾k

i ,𝑗
+ Σi,𝛾k

i
Σ−1
𝛾k

i ,𝛾
k
i
Σ𝛾k

i ,𝛾
l
𝑗
Σ−1
𝛾 l
𝑗
,𝛾 l
𝑗

Σ𝛾 l
𝑗
,𝑗

)
,

where the index −i denotes all rows/columns of 𝛴 except for the ith one.

Note that, of course, Z2
t ∼ 𝜒2

d continues to hold under H0 in the Gaussian case.

2.5 Tests for proper calibration
In this section, we describe how we can construct tests of H0 based on the transformations derived in the previous section.
Depending on the formulation of the null hypothesis, this involves either testing that UW

t ∼  (0, 1) or jointly testing
UW

t ∼  (0, 1) and independence across time. We delegate the discussion of the second case to the Supporting Information
Appendix and focus here on the first case in which we use Neyman's (1937) smooth test.

2.5.1 Known parameters and no dynamic misspecification
In this subsection we assume 𝜃0 is known and Ωt−1 = ℑt−1. The null hypothesis is UW

t ∼  (0, 1).3 Many tests can be used
in this context. We follow Bera and Ghosh (2002) and De Gooijer (2007), who advocate testing uniformity with Neyman's
(1937) smooth test. Ko and Park (2019) also formally derive the smooth test in a context similar to ours and establish its
asymptotic properties.

To understand Neyman's smooth test, consider the alternative family of smooth distributions:

s(u) = b0 exp

( k∑
i=1

bi𝜓i(u)

)
, u ∈ [0, 1], (11)

with b0 a normalization constant and 𝜓 i the orthonormal Legendre polynomials. Testing uniformity (and hence H0)
against all distributions nested in Equation (11) boils down to testing bi = 0 for all i = 1, … , k. Here we consider the
first four Legendre polynomials, but in principle one could also determine the number of polynomials in a data-driven
fashion as suggested by Ledwina (1994) and applied, for instance, by Lin and Wu (2017) and Ko and Park (2019).

A score test is easily computed as follows. Denoting the vector of (log-)scores of Equation (11) by 𝜉t =[
𝜓1

(
UW

t
)
, … , 𝜓4

(
UW

t
)]′, it follows that under the null hypothesis 1√

P

∑n
t=R+1 𝜉t

d
→N(0, I4), where I4 is the 4 × 4 identity

matrix. The Neyman smooth test statistic is then given by NST = P−1[∑n
t=R+1 𝜉t

]′ [∑n
t=R+1 𝜉t

]
, which follows a 𝜒2

4 distri-
bution under H0. This result, however, only holds when the model parameters are known and when there is no dynamic
misspecification. In the next subsection we describe the adjustments necessary for relaxing those assumptions.

2.5.2 Estimated parameters and accounting for dynamic misspecification
Parameter uncertainty and dynamic misspecification are often relevant in practice when parametric forecast models are
used and the data generating process (DGP) of the variables to be forecast (including the true values of the relevant
parameters) is unknown to the forecaster. Ignoring both issues will, in general, lead to oversized tests in an out-of-sample
evaluation. Thus we now assume estimates of the parameters, �̂�, are obtained using a

√
T-consistent estimator

and Ωt−1 ⊂ ℑt−1.
Building on ideas in Chen (2011), we adjust Neyman's smooth test by relying on results in West (1996) and West and

McCracken (1998) to derive suitable tests in the presence of parameter uncertainty and potential dynamic misspecifica-
tion. A similar approach based on the ideas in Chen has been proposed by Lin and Wu (2017). Recall that we split our n
observations into R in-sample observations, which we use to estimate the parameters, and P out-of-sample observations,
which we use to evaluate the forecast model. Let 𝜉t =

[
𝜓1

(
ÛW

t

)
, … , 𝜓4

(
ÛW

t

)]′
denote the Legendre polynomials in the

estimated PITs of the (univariate) transformed series Wt, where ÛW
t has been computed using the in-sample parameter

estimates.

3This approach can also be used if autocorrelation is not of concern and/or the tested densities are not model based (for instance, because they are
obtained from a survey).
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The following results rely on assumptions 1–5 in West and McCracken (1998). The moment conditions of interest are
given by the vector 𝜉t defined above and we consider the situation that the model is estimated by maximum likelihood
estimation, thus satisfying their assumption 2 under stationarity. The conditional densities 𝑓Yt (𝑦|Ωt−1, 𝜃) need to be twice
continuously differentiable. Furthermore, the expected moment function E(𝜉t) must be continuously differentiable with
respect to 𝜃. Suitable mixing conditions in assumption 4 in West and McCracken ensure the applicability of suitable limit
theorems.

It follows that under H0 the elements of 𝜉t are no longer independently distributed with unit variance as above, but

1√
P

n∑
t=R+1

𝜉t
d
→N(0,Σ), (12)

where (using the notation in (Chen, 2011)

Σ = S∗ − 𝜂1
(

D∗A−1C′ + CA−1D∗′) + 𝜂2
(

CA−1B∗A−1C′) . (13)

Given the score function st = 𝜕

𝜕𝜃0
ln 𝑓t (𝑦|Ωt−1, 𝜃0), the elements of 𝛴 are given by A = E

(
𝜕

𝜕𝜃0
st

)
, B = E

(
sts′t

)
, C =

E
(

𝜕

𝜕𝜃0
𝜉t

)
, D = E

(
𝜉ts′t

)
, S∗ =

∑∞
k=−∞ E

(
𝜉t𝜉

′
t−k

)
, B∗ =

∑∞
k=−∞ E

(
sts′t−k

)
, and D∗ =

∑∞
k=−∞ E

(
𝜉ts′t−k

)
. The constants 𝜂1 and

𝜂2 are determined by the sampling scheme (fixed, rolling, or recursive) used to estimate the parameters and the limiting
value of the ratio of in-sample and out-of-sample observations 𝜆 = limn→∞P∕R; see Chen (2011) for the precise formulas.

In order to avoid evaluation of the matrices A and C (the latter of which may be particularly tedious to obtain), we use
the fact that the equalities A+B = 0 and C+D = 0 continue to hold even under dynamic misspecification, even though in
this case they cannot be interpreted as (generalized) information matrix equalities; see White (1994). Thus we can rewrite
Equation (13) as

Σ = S∗ − 𝜂1
(

D∗B−1D′ + DB−1D∗′) + 𝜂2
(

DB−1B∗B−1D′) . (14)
The matrices B and D can be estimated straightforwardly by their sample counterparts. In contrast, S∗,B∗, and D∗ need

to be estimated by an appropriate estimator that is autocorrelation consistent. While, in principle, the widely used HAC
estimator by Newey and West (1987) could be used, we found results in finite samples to be better (in terms of size) if we
use the quadratic spectral estimator proposed by Andrews (1991). Neyman's smooth test statistic is then given by

NST = P−1

[ n∑
t=R+1

𝜉t

]′

Σ̂−1

[ n∑
t=R+1

𝜉t

]
, (15)

which follows a 𝜒2
4 distribution under H0. In addition, we can consider two intermediate cases. In the absence of dynamic

misspecification, it holds that B∗ = B,D∗ = D, and S∗ = I4; thus Equation (13) simplifies to 𝛴 = I4 + (𝜂2 − 2𝜂1)DB−1D′.
In the absence of parameter uncertainty, we obtain 𝛴 = S*.

3 MONTE CARLO SIMULATIONS

We use Monte Carlo simulations to analyze how severe the size and power distortions caused by data mining can be in the
case of the order-dependent approaches and how the size and power of the tests based on the different transformations
compare. Here we consider the problem of testing the null hypothesis of a multivariate normal distribution for the baseline
case of known parameters and no dynamic misspecification and when relaxing these two assumptions. In the Supporting
Information Appendix we consider the following additional settings: (i) testing the null hypothesis of a multivariate t
distribution; (ii) testing the null hypothesis of a multivariate generalized autoregressive conditional heteroskedasticity
(GARCH) model; and (iii) jointly testing the null hypothesis of proper calibration and independence using the generalized
autocontour approach of González-Rivera and Sun (2015).

3.1 Simulation setup

Assume that the DGP under the null hypothesis is given by yt = 𝜀t with 𝜀t
i.i.d.∼  (0,Σ). The d × d covariance matrix 𝛴

is constructed such that all elements of yt have unit variances
(
𝜎2

i = 1 for i = 1, … , d
)

and the correlation between any
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FIGURE 1 Scope for data mining: (a) under H0; (b) under H3. In the left-hand panel the solid lines show the nominal size of 5% and the
dashed (dotted) lines show the rejection frequency that we obtain when we always choose that permutation for which we obtain the the
highest (lowest) test statistic. In the right-hand panel the solid lines show the power that is obtained when the tests are applied properly and
the dashed (dotted) lines show the rejection frequency that we obtain when we always choose that permutation for which we obtain the the
highest (lowest) test statistic. The plots in the top panels refer to the stacked transformation by Diebold et al. (1999), those in the middle
panels use the product transformation by Clements and Smith (2000), and those in the lower panels use the location-adjusted transformation
Ko and Park (2013) [Colour figure can be viewed at wileyonlinelibrary.com]

two elements of yt is equal to 0.5
(
𝜌i𝑗 = 0.5 for all i ≠ 𝑗

)
. We consider different dimensions between d = 2 and d = 50

and (predictive) sample sizes of P = {50, 200}. Throughout the paper, we use 10,000 iterations for our Monte Carlo
simulations. For the case of known parameters and no dynamics misspecification we consider four alternative DGPs that
imply different deviations from H0:

• Alternative 1 (H1): The innovations are generated from a multivariate normal distribution with 𝜎i = 1.1 and 𝜌ij = 0.5.
• Alternative 2 (H2): The innovations are generated from a multivariate normal distribution with 𝜎i = 1.0 and 𝜌ij = 0.4.
• Alternative 3 (H3): The innovations are generated from a multivariate t distribution with 8 degrees of freedom, with

𝜎i = 1.0 and 𝜌ij = 0.5.
• Alternative 4 (H4): The innovations are generated from a multivariate Gaussian constant conditional correlation

(CCC)-GARCH(1, 1)model, which we parametrize such that the unconditional covariance matrix is equal to that under
H0 and with GARCH parameters (𝜔, 𝛼, 𝛽) = (0.05, 0.1, 0.85).

When allowing for estimated parameters and dynamic misspecification, we generate data by yt = 0.5yt−1 + 𝜀t with
𝜀t

i.i.d.∼  (0,Σ).4 To simulate dynamic misspecification, we generate predictive densities ignoring the autocorrelation in the
conditional mean. When the parameters are estimated, we consider only alternative 3 from the above list of alternatives.
In addition, we consider a similar alternative with a more substantial deviation from H0:

• Alternative 5 (H5): The innovations are generated from a multivariate t distribution with 4 degrees of freedom, with
𝜎i = 1.0 and 𝜌ij = 0.5.

We also consider alternative 4, but control for the dynamic misspecification that is present in higher moments.
Additionally, we consider the same alternative with dynamic misspecification in the mean:

4Results assuming a dynamic moving average structure, yt = 0.8𝜀t−1 + 𝜀t, are very similar and not reported below.
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• Alternative 6 (H6): The same as H4 but with actual conditional mean dynamics given by the autoregressive homoskedas-
tic model.

To estimate the model parameters, we consider a fixed estimation scheme and set 𝜆 = 1∕4 to determine the size of the
estimation sample R = P∕𝜆.

3.2 Potential for data mining
In this section we present results that show whether considering different permutations of the data can have a serious
impact on the outcomes of the tests that are not order invariant. The idea is the following: A researcher who wants to
discredit (support) the hypothesis that a particular model produces good density forecasts could, in principle, search
across all permutations and select the one which yields the highest (lowest) test statistic. We present results for H0 and
H2 based on P = 100; results are similar for other settings and are available upon request.

The left-hand part of Figure 1 shows how severe data mining can be under the null hypothesis. The solid line indicates
the nominal size of 5%, which, as we show below, is obtained when tests are applied properly (meaning that the order of
variables is chosen randomly). The other lines refer to the rejection frequencies that we obtain for the tests based on S,
CS, and KP, respectively, when we always choose the permutation for which we obtain the highest (lowest) test statistic.
At the lower end of obtainable rejection rates, it is clearly possible virtually never to reject the null hypothesis for any
dimension. On the other hand, the null hypothesis can be rejected much too frequently if one chooses those permutations
that yield high test statistics. For d = 2 the scope for data mining is rather limited, with obtainable rejection rates being
around 10%. However, once the dimension (and consequently the number of possible permutations) increases, obtainable
rejection rates increase quickly. They lie above 50% for d = 6 for all transformations considered and reach virtually 100%
for the test based on KP.

TABLE 2 Size and power: Known parameters and no dynamic misspecification

n = 50 n = 200
S CS KP Z2

t Z2
t
∗ Z2

t
† S CS KP Z2

t Z2
t
∗ Z2

t
†

Size
d = 2 0.047 0.051 0.047 0.051 0.050 0.052 0.053 0.051 0.050 0.051 0.052 0.053
d = 4 0.049 0.050 0.048 0.050 0.048 0.051 0.051 0.050 0.051 0.045 0.051 0.049
d = 6 0.047 0.051 0.049 0.048 0.047 0.048 0.052 0.049 0.049 0.052 0.053 0.051
d = 10 0.047 0.046 0.049 0.049 0.052 0.053 0.053 0.051 0.051 0.050 0.062 0.053
d = 20 0.053 0.048 0.051 0.053 — 0.059 0.053 0.051 0.053 0.050 — 0.054
d = 50 0.048 0.049 0.048 0.051 — 0.051 0.054 0.049 0.046 0.053 — 0.055

Power against H1

d = 2 0.197 0.137 0.139 0.198 0.199 0.164 0.556 0.338 0.358 0.596 0.583 0.484
d = 4 0.323 0.164 0.184 0.338 0.335 0.289 0.859 0.435 0.487 0.893 0.882 0.822
d = 6 0.449 0.193 0.219 0.482 0.475 0.434 0.961 0.527 0.600 0.977 0.971 0.954
d = 20 0.925 0.384 0.497 0.953 — 0.941 1.000 0.915 0.978 1.000 — 1.000

Power against H2

d = 2 0.066 0.046 0.100 0.067 0.072 0.106 0.100 0.063 0.244 0.106 0.105 0.235
d = 4 0.135 0.060 0.106 0.149 0.175 0.238 0.377 0.114 0.199 0.429 0.513 0.691
d = 6 0.225 0.075 0.138 0.252 0.324 0.373 0.706 0.187 0.327 0.762 0.856 0.915

Power against H3

d = 2 0.107 0.077 0.080 0.183 0.188 0.156 0.299 0.172 0.218 0.544 0.545 0.439
d = 4 0.177 0.091 0.125 0.481 0.472 0.391 0.563 0.247 0.413 0.970 0.970 0.925
d = 6 0.264 0.114 0.173 0.747 0.736 0.670 0.752 0.344 0.619 1.000 1.000 0.998

Power against H4

d = 2 0.290 0.204 0.252 0.319 0.320 0.285 0.413 0.314 0.376 0.477 0.477 0.423
d = 4 0.353 0.216 0.169 0.406 0.402 0.350 0.491 0.316 0.285 0.623 0.619 0.545
d = 6 0.388 0.222 0.194 0.457 0.443 0.402 0.547 0.335 0.304 0.712 0.699 0.641

Note. Rejection frequencies of Neyman's smooth test based on the transformations introduced in Sections 2.1 and 2.3 for
the null hypothesis of multivariate normality with 𝜎i = 1 for i = 1, … , d and 𝜌ij = 0.5 for all i ≠ j. All Monte Carlo
simulations are based on 10,000 iterations. The alternative models deviate from the null in terms of wrong variances (H1),
wrong correlations (H2), fat tails (H3), and GARCH effects (H4). The exact hypotheses are defined in Section 3.1. For each
set of simulations, the highest power is set in bold. A dash indicates that we did not compute Z2* because it would take too
much computing time.
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In the right-hand part of Figure 1, the solid lines indicate the power that is obtained when the tests are applied properly.
The upper (lower) lines show the rejection rates that one obtains when always selecting the highest (lowest) test statistic
across all possible permutations. The range of obtainable rejection rates is considerable in all cases. For tests based on
CS and KP, the lower line is very close to 0. This means that, even though the data are generated from a different DGP, a
researcher would be able to purposely select permutations in such a way that H0 is almost never rejected.

3.3 Size and power
When studying the size and power of the test we distinguish the baseline case of known parameters and no dynamic
misspecification, and the situation when this is relaxed.

3.3.1 Known parameters and no dynamic misspecification
Table 2 shows the Monte Carlo results concerning the size and power for the different transformations under the
assumption of known parameters and no dynamic misspecification. Focusing on the upper panel of the table, we see that
none of the approaches suffers from notable size distortions. In all cases, the obtained actual sizes are very close to the
nominal size of 5%.

The second panel of the table reveals that tests based on our three new transformations and on S have the best power
when the alternative implies deviations of the variances (H1). Tests based on our new transformations outperform the
test based on S for large dimensions. Results for H2 show that the three new approaches consistently outperform the tests
based on established transformations when deviations from H0 are specified in terms of the correlation structure of the
multivariate density.

TABLE 3 Size and power: Estimated parameters and dynamic misspecification

P = 50 P = 200
S CS KP Z2 Z2* Z2† S CS KP Z2 Z2* Z2†

Size (original test)
d = 2 0.252 0.236 0.154 0.124 0.124 0.127 0.240 0.221 0.153 0.123 0.124 0.122
d = 4 0.270 0.229 0.101 0.153 0.152 0.174 0.260 0.235 0.086 0.132 0.132 0.136
d = 6 0.295 0.239 0.102 0.182 0.182 0.252 0.261 0.223 0.085 0.138 0.137 0.157

Size (adjusted test)
d = 2 0.039 0.020 0.038 0.039 0.041 0.037 0.055 0.063 0.066 0.059 0.061 0.057
d = 4 0.026 0.015 0.024 0.025 0.029 0.028 0.048 0.054 0.053 0.056 0.059 0.055
d = 6 0.010 0.006 0.010 0.014 0.018 0.014 0.043 0.058 0.041 0.047 0.049 0.050

Power against H3

d = 2 0.050 0.019 0.043 0.022 0.024 0.022 0.121 0.096 0.122 0.129 0.130 0.106
d = 4 0.038 0.013 0.024 0.007 0.007 0.009 0.170 0.092 0.136 0.360 0.351 0.262
d = 6 0.022 0.005 0.009 0.003 0.003 0.003 0.223 0.095 0.166 0.648 0.629 0.538

Power against H5

d = 2 0.074 0.016 0.042 0.015 0.016 0.013 0.471 0.266 0.424 0.654 0.649 0.541
d = 4 0.088 0.010 0.023 0.007 0.007 0.006 0.758 0.320 0.613 0.979 0.978 0.942
d = 6 0.077 0.007 0.010 0.004 0.004 0.002 0.883 0.348 0.757 0.999 0.999 0.997

Power against H4

d = 2 0.141 0.075 0.092 0.081 0.098 0.075 0.327 0.267 0.336 0.315 0.321 0.280
d = 4 0.169 0.065 0.045 0.049 0.065 0.051 0.392 0.248 0.254 0.373 0.363 0.323
d = 6 0.152 0.045 0.029 0.030 0.042 0.036 0.448 0.241 0.258 0.427 0.412 0.370

Power against H6

d = 2 0.069 0.019 0.047 0.045 0.049 0.043 0.239 0.200 0.295 0.244 0.248 0.217
d = 4 0.066 0.011 0.025 0.020 0.020 0.018 0.297 0.161 0.243 0.285 0.279 0.221
d = 6 0.044 0.006 0.011 0.005 0.007 0.008 0.347 0.148 0.233 0.319 0.295 0.247

Note. Rejection frequencies of Neyman's smooth test based on the transformations introduced in Sections 3.1 and 3.3 for the
null hypothesis of multivariate normality. All Monte Carlo simulations are based on 10,000 iterations. The data are generated by
VAR(1) models with innovations following a multivariate normal distribution (H0), multivariate t distributions with 8 degrees of
freedom (H3), and 4 degrees of freedom (H5). H4 and H6 correspond to Gaussian GARCH(1, 1) models without and with dynamic
misspecification in the mean equation, respectively. H3 and H4 are defined in Section 3.1. For each set of simulations, the highest
power is set in bold.

DOVERN AND MANNER450



Turning to the power of the different tests for detecting misspecification of the kurtosis (H3), we see that the new
approaches outperform all established tests by a wide margin. Especially for P = 50 the results are stunning: The power of
the new approaches exceeds that of even the best-performing established approach by a factor of more than two in many
cases. Finally, the new transformations also have better power against GARCH effects (H4). In light of the good power
against H3, this is expected given that this alternative leads to innovations that are unconditionally distributed with excess
kurtosis.

3.3.2 Estimated parameters and accounting for dynamic misspecification
In general, the results indicate that tests based on all transformations are substantially oversized if one does not adjust
Neyman's smooth test (Table 3). Using the adjusted version described above yields correctly sized tests for P = 200.
Furthermore, the results indicate that having to deal with estimated parameters and dynamic misspecification results
in a considerable loss of power against H3. Large evaluation samples seem to be necessary to detect this deviation from
the null hypothesis reasonably well (especially for low-dimensional densities). Power increases considerably for P = 200
in the case of H5, which implies a much stronger deviation from H0. At the same time, the ranking of the competing
tests remains largely unaffected under both alternatives, so that the new tests proposed in this paper continue to perform
substantially better than established tests (for moderate to large samples). Interestingly, when GARCH effects are present,
the test based on S outperforms other tests both when dynamic misspecification is present (H6) and when it is not (H4).

4 APPLICATIONS

4.1 Predicting the distribution of stock market returns
In this section we provide an application showing that using tests that are not order invariant offers room for data mining
in many situations. We consider the problem of forecasting the joint distribution of five international stock market indices.
Our data consist of weekly returns of the MSCI indices for the USA, Japan (JA), the UK, Australia (AU), and Germany
(GE), which we obtained from Datastream. The sample spans the period from January 1978 to December 2018, for a total
of 2,191 weekly returns. We consider eight different time periods of 4 years, for which we evaluate density forecasts. These
(out-of-sample) evaluation periods are 1987–1990, 1991–1994, 1995–1998, 1999–2002, 2003–2006, 2007–2010, 2011–2014,
and 2015–2018. For each period, the previous 10 years are considered as in-sample data to estimate the models of interest.
The models are reestimated for each week using a recursive scheme.

Three competing models of increasing complexity are considered: (i) a Gaussian dynamic conditional correlation
(DCC)-GARCH model (Engle, 2002); (ii) a time-varying t-copula with DCC-type dynamics and t-GARCH margins; and
(iii) a time-varying t-copula with skewed-t-GJR-GARCH margins.

For the second model, the marginal models are the same as for the DCC, with the difference that the innovations follow
a t distribution with 𝜈i degrees of freedom. The dependence between the t-distributed GARCH innovations is given by a
t-copula with degrees of freedom 𝜈c and correlation matrix Rt. The evolution of the correlation matrix is the same as in the
DCC model, but with the innovations transformed to have a t distribution with 𝜈c degrees of freedom. Note that this model
is slightly more flexible than a DCC-GARCH model based on a multivariate t distribution, since the copula approach
allows all marginal series to have distinct degrees of freedom. The estimation of the copula-based model is naturally done
in two steps, ensuring numerical stability at the price of a small loss in statistical efficiency.

The third model is even more flexible by assuming that the GARCH innovations follow the skewed t distribution of
Hansen (1994) and by relying on the GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993). The dependence
is again given by the DCC-t-copula model.

For each model and each time period, we compute the Rosenblatt PITs and apply the established and new transfor-
mations described above. Recall that for non-Gaussian models the distribution of Z2∗

t and Z2†
t is not known but can be

computed numerically, as explained in Section 2.4.1. The null hypothesis of correctly predicted densities is then tested
with Neyman's smooth test, accounting for parameter estimation and potential dynamic misspecification. We estimate
the required long-run covariance matrices using a quadratic spectral kernel and automatic lag selection as proposed in
Andrews (1991). For those tests that are not order invariant, we consider all 5! = 120 permutations of the data. We report
the p-value of a random permutation of the variables (based on the arbitrary order in which we downloaded the data:
USA, JP, UK, AU, GE) and, in brackets, the lowest and highest p-values across all permutations (Table 4).

The potential for data mining using the tests based on S, CS, and KP, respectively, is immense. For the majority of periods
one can find permutations that reject and permutations that do not reject the null hypothesis of properly calibrated density
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TABLE 4 Density forecast evaluation for stock market returns

S CS KP Z2 Z2* Z2†

Gaussian DCC
1987–1990 0.005 [0.000, 0.173] 0.016 [0.005, 0.365] 0.012 [0.000, 0.990] 0.034 0.003 0.004
1991–1994 0.000 [0.000, 0.000] 0.002 [0.000, 0.018] 0.000 [0.000, 0.002] 0.000 0.000 0.000
1995–1998 0.000 [0.000, 0.000] 0.001 [0.000, 0.030] 0.001 [0.000, 0.083] 0.001 0.000 0.001
1999–2002 0.003 [0.000, 0.028] 0.031 [0.010, 0.486] 0.016 [0.001, 0.570] 0.002 0.002 0.004
2003–2006 0.000 [0.000, 0.000] 0.001 [0.000, 0.002] 0.000 [0.000, 0.298] 0.000 0.001 0.000
2007–2010 0.002 [0.000, 0.049] 0.130 [0.004, 0.441] 0.004 [0.000, 0.447] 0.001 0.001 0.001
2011–2014 0.006 [0.000, 0.401] 0.407 [0.003, 0.796] 0.054 [0.001, 0.932] 0.004 0.039 0.128
2015–2018 0.062 [0.002, 0.316] 0.089 [0.000, 0.170] 0.874 [0.000, 0.961] 0.001 0.000 0.036

t-GARCH-tDCC-Cop
1987–1990 0.083 [0.004, 0.282] 0.137 [0.091, 0.601] 0.655 [0.017, 0.988] 0.688 [0.486, 0.699] 0.7759 0.9627
1991–1994 0.008 [0.001, 0.095] 0.122 [0.009, 0.373] 0.000 [0.000, 0.250] 0.009 [0.006, 0.012] 0.0082 0.04
1995–1998 0.036 [0.000, 0.136] 0.005 [0.001, 0.122] 0.133 [0.004, 0.940] 0.017 [0.017, 0.055] 0.0117 0.0141
1999–2002 0.094 [0.012, 0.397] 0.045 [0.015, 0.544] 0.238 [0.011, 0.866] 0.056 [0.034, 0.079] 0.0582 0.0124
2003–2006 0.000 [0.000, 0.000] 0.003 [0.000, 0.007] 0.001 [0.000, 0.661] 0.001 [0.001, 0.001] 0.0005 0.001
2007–2010 0.299 [0.016, 0.478] 0.489 [0.004, 0.880] 0.098 [0.001, 0.976] 0.167 [0.100, 0.272] 0.0834 0.0606
2011–2014 0.154 [0.001, 0.817] 0.281 [0.005, 0.999] 0.390 [0.020, 0.993] 0.873 [0.535, 0.873] 0.8799 0.2113
2015–2018 0.437 [0.097, 0.940] 0.263 [0.019, 0.970] 0.726 [0.063, 0.991] 0.625 [0.489, 0.646] 0.4003 0.0708

st-GJR-tDCC-Cop
1987–1990 0.000 [0.000, 0.002] 0.000 [0.000, 0.002] 0.003 [0.000, 0.409] 0.010 [0.005, 0.035] 0.0036 0.0003
1991–1994 0.000 [0.000, 0.014] 0.023 [0.000, 0.124] 0.000 [0.000, 0.133] 0.012 [0.006, 0.013] 0.0091 0.0534
1995–1998 0.027 [0.000, 0.275] 0.008 [0.001, 0.155] 0.169 [0.007, 0.966] 0.042 [0.041, 0.111] 0.0374 0.0296
1999–2002 0.016 [0.003, 0.091] 0.155 [0.017, 0.764] 0.031 [0.001, 0.543] 0.004 [0.004, 0.007] 0.0058 0.0044
2003–2006 0.000 [0.000, 0.000] 0.002 [0.000, 0.006] 0.004 [0.000, 0.431] 0.003 [0.002, 0.004] 0.0025 0.0025
2007–2010 0.092 [0.004, 0.529] 0.908 [0.087, 0.990] 0.282 [0.001, 0.989] 0.201 [0.181, 0.279] 0.1211 0.0816
2011–2014 0.862 [0.009, 0.961] 0.655 [0.022, 0.992] 0.645 [0.009, 0.986] 0.606 [0.583, 0.790] 0.555 0.2169
2015–2018 0.472 [0.021, 0.724] 0.775 [0.000, 0.956] 0.678 [0.007, 0.993] 0.267 [0.170, 0.410] 0.3771 0.196

Note. The table shows p-values corresponding to the different transformations introduced in Sections 2.1 and 2.3 using the adjusted version
of Neyman's smooth test (Neyman, 1937), which accounts for parameter estimation and potential dynamic misspecification. The data are
weekly MSCI stock index returns for the USA, Japan, the UK, Australia, and Germany. Forecasts are evaluated for the stated periods, and
the previous 10 years of data are used as the in-sample period. For transformations that are not order invariant, the entries in brackets
show the lowest and highest obtained p-values across all permutations of the variables; for these transformations, the first p-value is for
an arbitrarily selected permutation.

forecasts for any of the models. Note, however, that, in line with our results from Section 3.2, the range of p-values for
tests based on S is, on average, smaller than for those based on CS and KP. Finally, turning to the results for Z2, which
are not order invariant for the non-Gaussian models, one can see that the range of the p-values is very limited and that
there is only moderate scope for data mining based on this transformation. In summary, we recommend evaluating the
density forecasts based on Z2* and Z2†, and possibly based on Z2. The results based on the other transformations are not
reliable as different permutations can lead to substantially different conclusions regarding the performance of the models.
Furthermore, our Monte Carlo simulations show that the new tests are superior in terms of power.

The results concerning the performance of the models are mixed and depend on the time period under study. However,
a few things clearly stand out. First, the Gaussian DCC model is rejected by almost all tests for all time periods except the
2011–2014 period. Second, model specifications (ii) and (iii) perform much better, but are still rejected for some periods.
Third, the most flexible specification (iii) does not consistently outperform specification (ii), confirming the known fact
that model complexity may yield superior in-sample fit, but not necessarily a better forecasting performance. Using a 1%
significance level, specifications (ii) and (iii) are rejected by the test based on Z2* (Z2†) for 2 (1) and 4 (3) subsamples,
respectively. When using a Bonferroni correction to address the fact that this is a case of multiple testing, specification
(ii) is only rejected for the 2003–2006 period (based on both Z2* and Z2†).5 Thus, overall, the t-GARCH model with a
time-varying t-copula can be recommended for modeling and predicting the joint density of weekly stock market returns.

5Since we apply the tests to eight different subsamples, a test at the 5% significance level should reject when the p-value is smaller than 0.05∕8 = 0.0063.
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4.2 Evaluating macroeconomic density forecasts
In a second application, we demonstrate how the newly developed tests can be applied in the area of macroeconomic
forecasting. We evaluate macroeconomic density forecasts for the US economy, which we generate using the model by
Primiceri (2005).

The model is a Bayesian vector autoregressive (VAR) model with time-varying parameters, which is designed to track
changes in macroeconomic volatility and structural changes that alter the economic transmission channels. As in Prim-
iceri (2005), we model the unemployment rate (ut), the log-difference of the chain weighted gross domestic product price
index (Δpt), and the yield of 3-month Treasury bills (it). The data are downloaded from FRED and cover the sample from
1953:Q1 to 2018:Q4. We use the original specification with two lags and assuming a very flexible processes that governs the
variation of the model's parameters over time. In essence, all time-varying parameters (including those of the covariance
matrix) are specified as random walk processes and the covariance matrix of the vector of innovations to these processes
is assumed to have a block diagonal structure. Details can be found in Section 2 of Primiceri. We estimate the model using
Bayesian methods and follow the specification of priors as in Primiceri.6

We use a recursive scheme to generate density forecasts, 𝑓𝑦t+h (𝑦t+h|t), with forecast horizons h = 1, … , 4. The period
between 1982:Q4+h and 2017:Q4+h is used as the evaluation sample. Thus we start by estimating the model using data
until 1982:Q4 and constructing density forecasts for 1983:Q1, 1983:Q2, 1983:Q3, and 1983:Q4. Subsequently, we recur-
sively add one observation to our estimation sample and shift the forecast period one quarter forward. In total, a sequence
of 141 density forecasts is available for each forecast horizon.

The form of 𝑓𝑦t+h (𝑦t+h|t) is unknown. For h = 1 it follows a multivariate normal distribution conditional on the param-
eters of the model but not unconditionally. For h > 1, further deviations from a Gaussian distribution arise due to the
fact that the conditional forecasts are nonlinear functions of the model parameters. Therefore, we estimate the predictive
densities nonparametrically. All results are based on samples of B = 5, 000 draws from the posterior distribution of the
model parameters, which we obtain by keeping every 10th draw from a sample of 50,000 draws, after a burn-in phase of
5,000 draws. For each of these draws, we simulate corresponding draws from the implied predictive density, �̂�(b)t+h, which
reflect estimation uncertainty and shocks that occur during the forecast period. We use a nonparametric kernel estimator
with a (second-order) Gaussian kernel (with fixed bandwidths) to estimate the different conditional and marginal distri-
butions that are needed to compute the conditional PITs under all possible permutations.7 Since the distributions of the
random variables Z2

t
∗ and Z2

t
† are not known, we simulate their distribution by repeatedly computing Z2

t
∗ and Z2

t
† under

H0 in order to compute the corresponding PITs.
For comparison, we also check whether results differ if we use an approximation and assume that all condi-

tional forecasts follow a multivariate normal distribution. In this case, the mean and the covariance matrix com-
pletely determine the predictive density. We estimate both quantities as �̄�t+h = (1∕B)

∑B
b=1 �̂�

(b)
t+h and Σt+h =

(1∕B)
∑B

b=1

(
�̂�
(b)
t+h − �̄�t+h

)(
�̂�
(b)
t+h − �̄�t+h

)′
.

Since for h > 1 the PITs will be subject to autocorrelation even under H0 and without dynamic misspecification, we
report results using the robust version of the Neyman smooth test. Test results for h = 1 and h = 4 are summarized in
Table 5.

We first focus on the nonparametric predictive densities and the corresponding results in the right-hand panel. The
tests based on our preferred transformations, Z2* and Z2†, indicate for all forecast horizons that the conditional predictive
densities are well calibrated. The evidence based on those transformations that are not order invariant is mixed. The
variation in p-values across permutations is large in almost all cases, indicating that data mining can be a very serious
problem in practice even for low-dimensional models.8 In general, however, the null hypothesis is not rejected for most
cases. Only the tests based on CS indicate for h = 4 and most permutations that the null hypothesis of proper calibration
should be rejected.

The results in the left-hand panel correspond to the case of a normal approximation of the predictive density.
They provide strong evidence against the null hypothesis of well-calibrated predictive densities. All order-invariant

6We use the corrected algorithm (Del Negro & Primiceri, 2015), which implies a different ordering of the Markov chain Monte Carlo steps. We use the
“bvarsv” package for R to estimate the model.
7Since the data-driven determination of optimal bandwidths is computationally demanding, we do so only for every 12th period and keep the bandwidths
fixed for all intermediate periods. We rely on least-squares cross-validation (Li, Lin, & Racine, 2013) to reoptimize the bandwidths. All nonparametric
estimations are executed using the “np” package for R.
8The average (across all forecast horizons and transformations) standard deviation of the p-values is 0.12.
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TABLE 5 Tests for proper calibration of macroeconomic forecasts

Normal approximation Nonparametric densities
S P P* Z2 Z2* Z2† S P P* Z2 Z2* Z2†

h = 1
ut − Δpt − it 0.036 0.109 0.235 0.000 0.000 0.001 0.455 0.581 0.031 0.008 0.224 0.162
ut − it − Δpt 0.030 0.053 0.248 0.370 0.148 0.700 0.067
Δpt − ut − it 0.033 0.097 0.073 0.483 0.574 0.008 0.005
Δpt − it − ut 0.005 0.117 0.003 0.312 0.073 0.086 0.052
it − ut − Δpt 0.003 0.091 0.036 0.291 0.139 0.401 0.070
it − Δpt − ut 0.007 0.064 0.013 0.261 0.379 0.191 0.077

h = 4
ut − Δpt − it 0.046 0.025 0.457 0.014 0.015 0.083 0.356 0.001 0.820 0.433 0.744 0.686
ut − it − Δpt 0.158 0.225 0.212 0.248 0.179 0.024 0.631
Δpt − ut − it 0.049 0.030 0.816 0.239 0.004 0.553 0.396
Δpt − it − ut 0.487 0.380 0.866 0.394 0.000 0.566 0.418
it − ut − Δpt 0.416 0.002 0.202 0.436 0.000 0.807 0.462
it − Δpt − ut 0.445 0.002 0.329 0.483 0.022 0.684 0.576

Note. The table shows p-values corresponding to tests based on different transformations for all possible permutations of the
data. Results account for potential autocorrelation in the PITs. For those transformations that yield order-invariant test statistics,
we only report one p-value.

transformations (with the exception of Z2† for h = 4) yield p-values very close to 0 for both forecast horizons. For
h = 1, the tests based on the other transformations mostly reject the null hypothesis for the majority of permuta-
tions. For h = 4, the CS-based tests tend to reject H0, whereas tests based on S and KP do not, for the majority of
permutations.

In general, we conclude that (i) data mining can be a very relevant issue in practice even in macroeconomic applications
with a relative low number of variables, (ii) the VAR model with time-varying parameters proposed by Primiceri (2005)
is able to generate well-calibrated multivariate density forecasts for the US economy, and (iii) the latter result holds true
only for properly estimated predictive densities but not when using a Gaussian approximation.

5 CONCLUSION

In this paper we derive order-invariant tests for proper calibration of multivariate density forecasts of arbitrary dimension.
We demonstrate that distortions in rejection rates can be very large when established tests, which are not order invariant,
are used for data mining. Furthermore, we show that the new tests have very good power against a wide range of deviations
from the null hypothesis. We do not find that one of our new tests dominates the others in terms of power regardless of the
alternatives. Therefore, we recommend using simultaneously the tests based on Z2* and Z2† whenever there is no strong
prior about the nature of potential deviations from the specified null model.

We believe there is a wide range of other applications in various fields. First, the proposed methods are useful whenever
properly calibrated density forecasts are crucial to form well-informed decisions (about production, investment, pricing,
etc.) and will foster the use of multivariate density forecasts in situations in which decisions are based on loss functions
that take more than one variable as input arguments. Our tests could, for instance, be used to assess the overall fore-
cast performance of macroeconomic dynamic stochastic general equilibrium models used in central banks. Second, the
proposed methods are useful to improve the specification of multivariate models taking higher moments into account;
obvious applications of this kind are common in financial econometrics—for example, for estimating the value at risk of
a portfolio, but it can be expected that the modeling of the dependence structure of higher moments of multivariate data
will become more common also for demand management or in macroeconomics.

Our study leaves room for future research. First, especially for financial applications, it would be interesting to extend
the analytical results of our paper, which are limited to the case of multivariate Gaussian processes under the null
hypothesis, to more general settings. Second, it would be interesting to analyze why a multivariate predictive density
is not properly calibrated by looking at the distribution of individual conditional PITs. Finally, it might be worth-
while to investigate whether powerful order-invariant tests can be constructed that are not based on the Rosenblatt
transformation.
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