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Abstract

We consider the problem of forecasting realized variance measures. These measures are

highly persistent, but also noisy estimates of the underlying integrated variance. Bollerslev,

Patton and Quaedvlieg (2016) exploited this to extend the commonly used Heterogeneous

Autoregressive (HAR) by letting the model parameters vary over time depending on esti-

mated measurement error variances. We propose an alternative specification that allows the

autoregressive parameters of HAR models to be driven by a latent Gaussian autoregressive

process that potentially also depends on the estimated measurement error variance. The

model parameters are estimated by maximum likelihood using the Kalman filter. Our em-

pirical analysis considers realized variances of 40 stocks from the S&P 500. Our model based

on log variances shows the best overall performance and generates superior forecasts in terms

of different loss functions and for various subsamples of the forecasting period.
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1 Introduction

Since accurate forecasts of asset volatility are crucial for option pricing, portfolio allocation

and risk management, research has investigated volatility modeling for over thirty years. Early

models were the observation driven class of GARCH models (Engle, 1982; Bollerslev, 1986) or

the parameter driven class of stochastic volatility models (Taylor, 1982, 1986). Both types are

typically applied to daily or weekly data. The increasing availability of high frequency data

offers an alternative approach to estimate and forecast the latent volatility process. Models

based on lower frequency returns have (partially) lost their appeal since they are not able to

fully exploit the information available in the data.

In order to make intraday data applicable for estimating the true integrated variance (IV),

Andersen and Bollerslev (1998) suggested to estimate asset volatility as sum of squared intraday

returns. The resulting realized variance (RV) is a consistent estimator for the IV as the sampling

frequency goes to zero. The asymptotic theory for the realized volatility measure was derived

by Barndorff-Nielsen and Shephard (2002). More sophisticated realized measures to estimate

the integrated variance in the presence of jumps, microstructure noise or overnight returns have

been suggested in the literature. Prominent examples are the jump-robust bipower-variation of

Barndorff-Nielsen and Shephard (2004), the subsampled realized variance of Zhang et al. (2005)

and the realized kernel of Barndorff-Nielsen et al. (2008). Nevertheless, Liu et al. (2015) have

shown that the standard RV estimator based on 5-minute returns is difficult to beat and it is

still commonly applied in many applications.

In order to model and forecast volatility the typical approach is to treat realized variance

measures as the true variance and apply reduced form econometric models. RV measures have

been shown to be characterized by strong persistence, which must be taken into account when

specifying an appropriate model. Andersen et al. (2003) propose to model that persistence

directly as a fractionally integrated process. Since the estimation of ARFIMA processes is

cumbersome, the cascade model of Corsi (2009) has become the workhorse for modeling the

long-memory of realized measures. The so-called Heterogeneous Autoregressive (HAR) model

generates persistence as sum of three autoregressive components that reflect investment horizons

of different types of investors, namely at the daily, weekly and monthly horizon. Since the HAR

could be written as a restricted AR(20) model parameter estimation is straightforward using

ordinary least squares. Variance forecasts based on high frequency measures are superior to the

ones based on GARCH or SV models fitted for daily returns as shown by, e.g., Engle (2002) and

Koopman et al. (2005). Furthermore, augmenting GARCH and SV models with RV measures

based on high frequency data leads to an improved model fit and forecasting performance; see,

e.g., Engle and Gallo (2006), Shephard and Sheppard (2010) and Hansen and Lunde (2012)

for observation driven models and Takahashi et al. (2009), Dobrev and Szerszen (2010) and

Koopman and Scharth (2013) for extended stochastic volatility models.

Besides long memory, RV measures have a second feature that is relevant for modeling

and forecasting volatilities that has, until recently, mostly been neglected in the literature.

Namely, realized variance measures the integrated variance with an error as long as the sampling
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frequency is nonzero. Relying on the asymptotic distribution theory of Barndorff-Nielsen and

Shephard (2002), Bollerslev et al. (2016a) show how this heteroscedastic error translates into an

attenuation bias and the OLS estimate is attenuated with the average value of the measurement

error variance. This implies that constant AR parameters are not optimal for forecasting.

They suggest to allow for time-varying parameters in the HAR model. The time-variation

is driven by the variance of measurement error of the realized variance, estimated by realized

quarticity, which results in superior forecasts compared to the basicHAR model. Their empirical

results show that their resulting HARQ model also has a better forecasting performance than

alternative HAR type models like the HAR with jumps and the continuous HAR of Andersen

et al. (2007) or the semivariance HAR of Patton and Sheppard (2015). Since the approach of

Bollerslev et al. (2016a) models the HAR coefficients as function of the realized quarticity the

same approach can in principle also be implemented for different variations of HAR models.

Furthermore, the authors demonstrate that their approach is robust to the choice of the realized

variance and quarticity estimators.

The contribution of this paper is to propose an alternative model to forecast realized volatility

measures that exploits the potential presence of measurement errors. Our model is also based on

the HAR model, but the first order autoregressive coefficient is specified to be a latent Gaussian

AR(1) process. The intuition behind this model is as follows: In the situation of heteroscedastic

measurement errors optimal forecasts are based on models with time-varying parameters. Since

realized quarticity is only a noisy measure of the variance of the measurement error we propose

to approximate the dynamics of the HARQ model by assuming latent AR(1) coefficients as a

more robust alternative. The model parameters are estimated by maximum likelihood using

a standard Kalman filter. Even though this basic specification does not exploit the realized

quarticity as an estimate for the measurement error variance it is able to produce forecasts that

are superior to those generated by the HAR and HARQ models. As an extension we consider

models that combine the state space specification with the idea by Bollerslev et al. (2016a).

First, we augment the state equation for the time-varying parameter with realized quarticity. A

variant of this extension contains an indicator such that the realized quarticity is only effective

when it exceeds the 99% quantile of its in-sample values. Thus the model uses this additional

information only when the measurement error variance is exceptionally large. Second, we study

a model that combines the time-varying parameters of the HARQ model and our state space

model. Furthermore, we consider the HAR model in terms of the natural logarithm both in

the basic and the state space form, an approach that results in the most promising empirical

results.

In our empirical application we use a large dataset of 40 stocks from the S&P 500 index over

a period of 15 years. We compare the in-sample fit and forecasting performance of our models

for realized variances based on 5 minute returns. Furthermore, we consider subsamples of the

forecasting period covering periods of high and low volatility. Our state space model based on

log volatilities shows the best performance of all compared models and consistently outperforms

the HARQ models for forecasting volatility.
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The remainder of the paper is structured as follows. Section 2 discusses the theoretical

framework, reviews existing approaches and introduces our model. In Section 3 the competing

models are compared in terms of model fit and forecasting performance and Section 4 concludes.

2 Methodology

2.1 Setup and existing approaches

Consider an asset whose price process Pt is given by the stochastic differential equation

d log(Pt) = µtdt+ σtdWt, (2.1)

where µt denotes the drift, σt the instantaneous volatility and Wt a standard Brownian motion.

Integrated Variance for day t is then defined as

IVt =

∫ t

t−1
σ2
sds. (2.2)

Let rt,i = log(Pt−1+i∆)− log(Pt−1+(i−1)∆) be the ith intraday return over a period of length ∆

and assume that M = 1/∆ intraday returns are available. A consistent estimator for integrated

variance as ∆→ 0, assuming no jumps are present in the price process, is given by the realized

variance measure

RVt =
M∑
i=1

r2
t,i. (2.3)

The aim here is to forecast RVt and a popular model for this task that is able to capture the

long memory of RVt is the Heterogeneous Autoregression by Corsi (2009)

RVt = β0 + β1RVt−1 + β2RVt−1:t−5 + β3RVt−1:t−20 + εt, (2.4)

where εt is a mean zero error term. Here RVt−1:t−h = 1
h

∑h
j=1RVt−j for h = 1, 5, 20 represents

a daily, weekly and monthly lag1, approximating the long-memory present in RVt. However,

Bollerslev et al. (2016a) remarked that the fact that RVt is measured with error leads to an

time-varying attenuation bias when estimating (2.4) using OLS and that this bias translates

into the forecasts. In particular, Barndorff-Nielsen and Shephard (2002) showed that

RVt = IVt + ηt, ηt ∼ N(0, 2∆IQt), (2.5)

where IQt =
∫ t
t−1 σ

4
sds is the Integrated Quarticity (IQ), which can be estimated consistently

using the Realized Quarticity (RQ) RQt = M
3

∑M
i=1 r

4
t,i. Exploiting this, Bollerslev et al. (2016a)

propose to account for this (heteroscedastic) measurement error by allowing for time varying

1Often h = 22 is alternatively used for the monthly lag.
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coefficients where the time-variation depends on RQ and they suggest the model

RVt = β0 + (β1 + γ1RQ
1/2
t−1)RVt−1 + (β2 + γ2RQ

1/2
t−1:t−5)RVt−1:t−5

+ (β3 + γ3RQ
1/2
t−1:t−20)RVt−1:t−20 + εt, (2.6)

which is termed HARQ−F model. Bollerslev et al. (2016a) show that the attenuation bias is of

lesser importance for the weekly and monthly lags and they recommend the use of time-varying

coefficients only for the daily lag leading to the model (termed HARQ)

RVt = β0 + (β1 + γRQ
1/2
t−1)RVt−1 + β2RVt−1:t−5 + β3RVt−1:t−20 + εt. (2.7)

The intuitive idea behind this model is that for γ < 0, whenever the variance of the measurement

error is large, and consequently RQ
1/2
t−1 is large, the model has less persistence allowing for a faster

mean reversion in this case. This feature leads to a significantly better forecasting performance

compared to the standard HAR model, but also compared to other specifications that have been

proposed in the literature. Below we propose alternative models that build on the intuition of

the HARQ model, but in which the time-variation in the autoregressive parameter are not

driven by realized quarticity, but by a latent Gaussian autoregressive process.

2.2 State space HAR models

The empirical success of the HARQ model lies in the realization that in contrast to Taka-

hashi et al. (2009), Dobrev and Szerszen (2010) and Koopman and Scharth (2013) who assume

measurement errors with constant variance, measurement errors are in fact heteroscedastic.2

Therefore the HARQ model has the ability to allow the persistence of the model to decrease

whenever RVt−1 is measured with high uncertainty and hence realized quarticity is large. This

also leads to a larger degree of persistence whenever RQt−1 is not large and explains why the

model produces superior forecasts not only when uncertainty is large but also for less volatile

days. However, it should be noted that not only IVt−1 is measured with uncertainty, but also

RQt−1 is a noisy estimator for IQt−1. Therefore, we propose to let the autoregressive parameter

to be driven by a latent Gaussian process instead. The model is given by

RVt = β0 + (β1 + λt)RVt−1 + β2RVt−1:t−5 + β3RVt−1:t−20 + εt (2.8)

λt+1 = φλt + ηt+1, ηt+1 ∼ N(0, σ2
η). (2.9)

This model is similar to the HARQ model, but instead of using realized quarticity as a proxy for

the measurement error, the state variable λt is introduced to allow for time-varying coefficients.

Thus we do not directly model the measurement error in realized variances as done in the papers

assuming homoscedastic measurement errors mentioned above. Rather, we build on the insight

that heteroscedastic measurement errors imply time-varying coefficients that we model directly

using a (reduced form) state space model. We expect the state variable to be correlated with

2We would like to thank an anonymous referee for pointing this out.
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realized quarticity so that the model captures the effect of measurement errors in a similar

way to the HARQ model. However, λt is likely to capture additional sources of temporal

variation that may affect the forecasting performance of the model. We call the specification

in (2.8) and (2.9) the HARS model, where ’S’ stands for state space. The estimation of this

model is straightforward using the Kalman filter and maximum likelihood estimation under the

simplifying assumption that εt ∼ N(0, σ2
ε). In case this restrictive assumption does not hold

the estimator is interpreted as a quasi maximum likelihood estimator. However, one has to be

aware of the fact that realized variances are highly skewed and heavy tailed and that therefore

the maximum likelihood estimator may be inefficient. Although the forecasts are optimal under

a squared loss function this may not be the case under more suitable loss functions for such

data. Nevertheless, our empirical results below suggest that this model provides good forecast

both under a squared and a QLIKE loss (defined below).

The model for λt in (2.9) can be extended in various ways in order to exploit the features

of the HARQ model. In particular, we experimented by including different functions of RVt−1

and RQt−1 into the model. We propose two additional models by replacing (2.9) with

λt+1 = φλt + γRQ
1/2
t + ηt+1, ηt+1 ∼ N(0, σ2

η), (2.10)

i.e. augmenting the state equation with realized quarticity and

λt+1 = φλt + γRQ
1/2
t · I(RQt > τ) + ηt+1, ηt+1 ∼ N(0, σ2

η), (2.11)

where I(·) denotes the indicator function and τ can either be estimated or some fixed value can

be used. We propose to set τ equal to the 99% quantile of the in-sample values of RQ.3 In

this way the persistence of the model is altered whenever the uncertainty in RVt is particularly

large, in which case the Gaussian process alone is not flexible enough to capture the sudden

changes in persistence. We call the extended model with this state equation HARSQ, where we

distinguish the HARSQAll model in (2.10) and the HARSQ0.99 model in (2.11). Alternatively,

one may consider replacing the indicator function by jump indicator, which should be estimated

by some appropriate non-parametric jump estimator.

Another model that combines the features of the HARQ model and the state space model

we propose is the following specification

RVt = β0 + (β1 + ψγRQ
1/2
t−1 + (1− ψ)λt)RVt−1 + β2RVt−1:t−5 + β3RVt−1:t−20 + εt, (2.12)

with λt given by (2.9) and ψ ∈ [0, 1]. This is a model combination of the HARQ and the

HARS model, which nests either model when ψ = 1 or ψ = 0, respectively. We term this model

HARM , where the M stands for “mixed”.4

3We experimented with potential values of the threshold τ and the 99% quantile gave the most robust results.
Estimating τ with a grid search did not improve the forecasting performance of the model but increased the
computational burden significantly.

4We would like to thank an anonymous referee for suggesting this model.
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2.3 Models based on logarithmic realized variance

Although the HAR model introduced by Corsi (2009) is specified in terms of levels realized

volatility the literature also considers models for the log of realized volatility (for good reasons

as we shall see in the empirical results). Therefore we also consider the following model termed

HARL, where ’L’ stands for the use of the logarithmic transformation of RVt.

log(RVt) = β0 + β1 log(RVt−1) + β2 log(RVt−1:t−5) + β3 log(RVt−1:t−20) + εt, (2.13)

Asai et al. (2012) discuss how measurement errors in the logarithmic realized variance can

translate into non-optimal variance forecasts and biased estimators. Although the logarithmic

transformation of realized volatility reduces most of the heteroscedasticity in the measurement

error one may nevertheless argue that a time-varying coefficient may capture time-dependence of

the persistence parameters due to model misspecification.5 Hence, one can expect a time-varying

parameter that changes less than for a model based on the levels of RVt and, consequently,

smaller gains in forecasting performance compared to a model with time-constant coefficients.

We propose a variation of the state space model which is based on the log of the realized volatility,

which reads as

log(RVt) = β0 + (β1 + λt) log(RVt−1) + β2 log(RVt−1:t−5) + β3 log(RVt−1:t−20) + εt (2.14)

λt+1 = φλt + ηt+1, ηt+1 ∼ N(0, σ2
η). (2.15)

Note that this model for log(RVt) instead of RVt has the advantage that the assumption εt ∼
N(0, σ2

ε) is more likely to hold. This model is termed HARSL. Forecasts for realized volatility

can then be computed by

̂log(RVt+1|t) = β̂0 + (β̂1 + λ̂t+1|t) log(RVt) + β̂2 log(RVt:t−4) + β̂3 log(RVt:t−19),

λ̂t+1|t = φ̂λ̂t|t,

R̂V t+1|t = exp

(
̂log(RVt+1|t) +

σ̂2
ε

2
+

log (RVt)
2V̂ ar(λt+1|t)

2

)
.

Note that λ̂t+1|t denotes the predicted and λ̂t|t the updated states computed from the Kalman

filter in the usual way. The last equation in the above display relies on the expectation of

the log-normal distribution. The second term in the exponential function is the variance of

the measurement equation whereas the last term represents the variance of the state equation

entering through λ̂t+1|t. The prediction for the HARL in (2.13) is similar but without the last

variance term.

5As pointed out by an anonymous referee, the measurement error variance of log(RVt) is proportional to
IQ/IV 2, such that the heteroscedasticity is only driven by the degree of variation in intra-day spot-volatility. In
the constant spot-volatility case, measurement error is homoscedastic.
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3 Application

We apply the five models HARS, HARSQAll, HARSQ0.99, HARM and HARSL proposed in

equations (2.8) to (2.14) in Sections 2.2 and 2.3 and the three benchmark models HAR, HARL

and HARQ to a large dataset of 40 individual stocks that are included in the S&P 500 index.6

Our sample spans the period from Jan. 3, 2000 until Dec. 31, 2014 implying a total of 3773

daily observations. The list of companies can be found in Table 1 together with descriptive

statistics for the 5-Minute realized variances of the complete sample. We cleaned the data

for outliers following the recommendations in Barndorff-Nielsen et al. (2009). The descriptive

statistics show that realized variance is very volatile with large maxima and that its distribution

is heavily right-skewed with means typically more than twice the median.

For the presentation of the estimation results we consider the full sample, whereas for the

analysis of the forecasting performance we split our sample into an (initial) in-sample period

spanning the first four years of data (1004 observations) and an out-of-sample period ranging

from Jan. 2, 2004 until Dec. 31, 2014 (2769 observations). Note that the forecasts are based on a

rolling forecasting scheme using the most recent 4 years of data for re-estimating the parameters.

Furthermore, we consider two specific subsamples of the out-of-sample period representing a

highly volatile crisis period from Aug. 1, 2007 to Dec. 31, 2009 (611 observations) and a

tranquil period with low volatility from Jan. 3, 2012 to Dec. 31, 2013 (502 observations).

Figure 1 shows the time series of 5-minute realized variances for American Express (AXP). The

in-sample period has a white background, whereas for the out-of-sample period it is shaded.

The two subsamples of the out-of-sample period are highlighted with a dark grey background.

The differences in volatility over the subsamples are apparent.

We base our analysis on realized variances computed as in equation (2.3) with ∆ correspond-

ing to 5-minute returns. One-step ahead predictions of realized variances R̂V t|t−1 are compared

to the observed realized variances RVt using the mean-squared-error (MSE) and QLIKE loss

functions; see Patton (2011) for robustness properties of loss functions under noisy volatility

proxies and Patton and Sheppard (2009) for a discussion of the appeal of the QLIKE loss crite-

rion. They are defined as

MSEt = (RVt − R̂V t|t−1)2 (3.1)

and

QLIKEt =
RVt

R̂V t|t−1

− log

(
RVt

R̂V t|t−1

)
− 1. (3.2)

Concerning the MSE, one has to be aware of the fact that this loss function is likely to be

dominated by the largest RV values due to the fact that realized variance is a highly skewed

and heavy tailed variable. Still, this is a popular loss function in this context due to the

robustness properties shown in Patton and Sheppard (2009). We compute the average of these

losses relative to the average loss for the HAR model over the respective prediction periods.

Thus a value lower than one indicates that the corresponding model has lower average losses

6The data were purchased from the provider QuantData.com.
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Table 1: Descriptive Statistics for realized variances

Company Symbol Mean Median Min Max

Alcoa Inc. AA 5.6452 3.1596 0.3100 339.2431

Apple Inc. AAPL 5.7819 2.9513 0.0730 215.8907

American Express Company AXP 4.6165 1.6998 0.0802 319.9164

The Boeing Company BA 3.1371 1.7388 0.1319 72.1900

Bank of America Corporation BAC 5.9977 1.9099 0.0859 558.1151

Best Buy Co., Inc. BBY 6.2265 3.3581 0.2740 202.2147

Bristol-Myers Squibb Company BMY 3.1299 1.5388 0.1394 127.8528

Caterpillar Inc. CAT 3.7342 2.0306 0.1763 132.9197

Colgate-Palmolive Co. CL 1.9633 0.9289 0.1014 209.6321

Cisco Systems, Inc. CSCO 4.6681 2.1263 0.0670 125.4656

E. I. du Pont de Nemours and Company DD 3.0537 1.6150 0.1322 97.5313

The Walt Disney Company DIS 3.4404 1.5782 0.1577 131.2498

The Dow Chemical Company DOW 4.4409 2.2986 0.1868 290.6847

Electronic Arts Inc. EA 6.9684 3.4170 0.2874 204.0304

General Electric Company GE 3.3059 1.4462 0.0257 138.7871

The Gap, Inc. GPS 5.9102 2.9759 0.1215 459.2995

The Home Depot, Inc. HD 3.5993 1.7525 0.1566 130.5600

International Business Machines IBM 2.1845 1.0008 0.1104 91.8390

Intel Corporation INTC 4.4042 2.2114 0.2049 122.1063

International Paper Company IP 4.7798 2.3564 0.1575 178.8687

JPMorgan Chase & Co. JPM 5.2027 1.9964 0.1079 237.4689

Kellogg Company K 1.9682 0.8352 0.1160 66.0650

Kimberly-Clark Corporation KMB 1.7271 0.9133 0.0846 87.9796

The Coca-Cola Company KO 1.7872 0.8683 0.0498 66.1156

Mattel, Inc. MAT 4.4322 2.0855 0.1445 147.7115

McDonald’s Corp. MCD 2.4323 1.2266 0.0901 167.6442

Merck & Co. Inc. MRK 2.6439 1.4385 0.0725 170.0580

Microsoft Corporation MSFT 2.8021 1.4495 0.1385 67.8713

Nike Inc. NKE 3.1087 1.5288 0.1604 77.3086

Oracle Corporation ORCL 5.4740 2.3635 0.2201 106.5709

Pepsico, Inc. PEP 1.8310 0.8683 0.0552 123.6126

Pfizer Inc. PFE 2.6219 1.4509 0.1026 68.3574

The Procter & Gamble Company PG 1.6488 0.7875 0.0627 142.8925

Raytheon Company RTN 2.7807 1.3026 0.1435 139.3518

Starbucks Corporation SBUX 4.5658 2.4663 0.1875 98.9106

AT&T, Inc. T 3.1050 1.3051 0.0685 162.1391

The Travelers Companies, Inc. TRV 3.4409 1.3445 0.0025 274.6101

Verizon Communications Inc. VZ 2.6684 1.2658 0.0827 161.8981

Wal-Mart Stores Inc. WMT 2.4132 1.0306 0.1016 123.7077

Exxon Mobil Corporation XOM 2.2062 1.2023 0.0892 203.7265
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Figure 1: Realized variance for AXP

than the HAR model. Furthermore, we compute the average relative losses for the in-sample

period, in which case R̂V t|t−1 is not a real forecast as the model parameters were estimated over

the whole sample.

In Section 3.1 we present the estimation results and compare the in-sample fit of the com-

peting models. Section 3.2 presents the forecast comparisons based on the out-of-sample period.

3.1 Estimation and full-sample results

In Table 2 we present the estimated model parameters for two selected stocks, namely American

Express (AXP) and General Electric (GE) for the full sample from Jan. 3, 2000 until Dec. 31,

2014. The results are based on realized variances computed from 5-minute returns7. Comparing

the parameter estimates of theHAR andHARQmodels we can confirm the findings of Bollerslev

et al. (2016a) that the persistence is estimated to be stronger for the HARQ model, in particular

in terms of the first order autoregressive coefficient β1.

The estimated coefficients for the HARS and HARSQ models are very similar and the

insignificant estimates for γ indicate that including realized quarticity in the state equation does

7An earlier version of this paper also considered realized variances based on 1-minute and 15-minute returns.
The estimation and forecasting results were similar to the ones based on 5-minute returns and are therefore not
reported.
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not improve the model fit. The estimates for β1 are larger than for the HARQ model indicating

a similar, but stronger, effect to the one observed by Bollerslev et al. (2016a), namely that the

average AR(1) coefficient is larger than for the HAR model and that large measurement errors

lead to a decrease in persistence. Another notable result is the relatively small and negative

value of φ̂ for these models. At first sight this is a counterintuitive results and one may expect

this to result in a poor forecasting performance of the model. We provide an interpretation of

this below.

The estimated parameters of the mixed model (HARM) are very close to the ones by the

HARS and HARSQ models. The coefficient γ is statistically insignificant, confirming our

finding from the HARQ models that the state space model does appear to capture the time-

variation due to measurement errors. The mixing parameter ψ is estimated to be 0.3 and

0.5, respectively, indicating that both model components appear to be approximately equally

important. However, it is statistically insignificant showing that the two model components

cannot be distinguished.

Looking at the estimated coefficients for the HARSL model we observe that in most cases

β1 is smaller than for the HARQ model, whereas β2 and β3 are estimated to be larger than the

corresponding coefficients in the HARQ model. However, the coefficients of the two HAR/HARQ

models and the HARSL models cannot be compared directly, because the former models are

specified in terms of the realized variance, whereas the latter ones are models for the log of the

realized variances. The persistence parameter φ is positive implying positively autocorrelated

time-varying coefficients for this model.

Table 3 shows the mean and median estimated parameters for the proposed models for all

40 stocks for the full-sample period. The mean and median parameter estimates are close to

the ones we reported for AXP and GE. In particular, the small negative estimates for φ for

the HARS and HARSQ models are confirmed. Furthermore, the parameter estimates for the

HARM model are confirmed to be very close to the ones for the HARS and the HARSQ

models, with γ being very close to zero and the mixing parameter ψ close to 0.5. We further

investigated the mixing parameter ψ by testing three different hypotheses for all 40 assets,

namely H0a : ψ = 0, H0b : ψ = 1 and H0c : ψ = 0.5. Note that the first two test are against

one-sided alternatives. Using a 5% significance level, we reject H0a in 22 out 40 cases, H0b in 3

cases, while H0c is never rejected. This provides some evidence that in sample realized quarticity

seems to be slightly more informative about the time-variation, but it also resembles the finding

that when combining forecasts it is difficult to beat an equal weighted model average.
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Table 2: Full sample parameter estimates for American Express and General Electric

HAR HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

AXP

φ -0.1426∗∗∗ -0.1389∗∗∗ -0.1423∗∗∗ -0.1407∗∗∗ φ 0.7185∗∗∗

ση 0.8235∗∗∗ 0.8235∗∗∗ 0.8235∗∗∗ 1.2000 ση 0.0728∗∗∗

β0 0.4556∗∗∗ -0.0141 0.0840∗∗∗ 0.0819∗∗∗ 0.0840∗∗∗ 0.0828∗∗∗ δ0 0.0158∗ 0.0103∗

β1 0.1164∗∗∗ 0.5637∗∗∗ 0.7896∗∗∗ 0.7929∗∗∗ 0.7896∗∗∗ 0.7914∗∗∗ δ1 0.3439∗∗∗ 0.2965∗∗∗

β2 0.5627∗∗∗ 0.4441∗∗∗ 0.1286∗∗∗ 0.1300∗∗∗ 0.1287∗∗∗ 0.1296∗∗∗ δ2 0.3863∗∗∗ 0.3390∗∗∗

β3 0.2218∗∗∗ 0.0556∗ 0.1330∗∗∗ 0.1326∗∗∗ 0.1330∗∗∗ 0.1327∗∗∗ δ3 0.2443∗∗∗ 0.3283∗∗∗

σε 7.6012∗∗∗ 7.8567∗∗∗ 0.2165∗∗∗ 0.2165∗∗∗ 0.2165∗∗∗ 0.2165∗∗∗ σε 0.5163∗∗∗ 0.4957∗∗∗

γ × 100 -0.1414∗∗∗ -0.0436 -0.0047 -0.0689

ψ 0.3138

GE

φ −0.0689∗∗∗ −0.0786∗∗∗ −0.0783∗∗∗ −0.0803∗∗∗ φ 0.4353∗∗∗

ση 0.8763∗∗∗ 0.8763∗∗∗ 0.8762∗∗∗ 1.7771 ση 0.1386∗∗∗

β0 0.3623∗∗∗ 0.1892∗ 0.0974∗∗∗ 0.0992∗∗∗ 0.0968∗∗∗ 0.0998∗∗∗ δ0 0.0142 0.0077

β1 0.2518∗∗∗ 0.5319∗∗∗ 0.6462∗∗∗ 0.6471∗∗∗ 0.6523∗∗∗ 0.6473∗∗∗ δ1 0.3457∗∗∗ 0.2914∗∗∗

β2 0.4015∗∗∗ 0.2945∗∗∗ 0.1615∗∗∗ 0.1582∗∗∗ 0.1582∗∗∗ 0.1572∗∗∗ δ2 0.3579∗∗∗ 0.3599∗∗∗

β3 0.2368∗∗∗ 0.1566∗∗∗ 0.1934∗∗∗ 0.1915∗∗∗ 0.1915∗∗∗ 0.1913∗∗∗ δ3 0.2645∗∗∗ 0.3072∗∗∗

σε 5.3523∗∗∗ 5.4410∗∗∗ 0.1688∗∗∗ 0.1687∗∗∗ 0.1690∗∗∗ 0.1688∗∗∗ σε 0.5018∗∗∗ 0.4682∗∗∗

γ × 100 -0.1275∗∗∗ 0.0910 0.0956 0.2047

ψ 0.5069

Note: Table 2 shows the estimated parameters for the models defined in equations (2.4), (2.7), (2.8) -
(2.11), (2.12), (2.13), and (2.14) in Section 2.
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In order to explain the finding that the persistence parameter of the HARS model is small

and negative, and that the latent state does indeed capture measurement errors and time-

variation, we computed the correlations of the predicted states λ̂t|t−1 and γ̂RQ
1/2
t−1, the term used

in the HARQ model, for the full-sample estimates of all 40 stocks. These correlations, reported

in Table 4, are all positive at around 0.558 for the states based on the HARS and HARSQ

models. Correlations are largest for the HARSQAll model and smallest for the HARSQ0.99

model. Thus we can conclude that the latent states appear to be able to capture measurement

errors in a similar way as the term RQ
1/2
t in the HARQ model. Thus whenever the measurement

error in period t − 1 is particularly large the predicted state λt|t−1 is large and negative and

consequently β̂1 + λ̂t|t−1 is smaller than β̂1. This leads to the same reduction in persistence in

the present of large measurement errors as for the HARQ model. This is coupled with a small

(negative) persistence coefficient φ in the state equation that ensures that a large measurement

error in period t − 1 does not affect the predictions for period t + 1. Figure 2 graphically

illustrates the mean adjusted predicted states λ̂t+1|t and the mean adjusted attenuation bias

correction term γ̂RQ
1/2
t for Intel over the complete sample and over a subsample spanning from

May 2008 to January 2009.

In the HARSL model the coefficient φ, which is around 0.45, is higher than for the models

in levels, leading to a more smooth progression of the persistence parameter over time. This

is due to the argument given above that in this model the time-varying parameter captures

general time-variation due to model misspecification rather than variation due to heteroscedastic

measurement errors.

8Note that this correlation is a lower bound of the actual correlation due to the fact that RQt is measured
with error. We would like to thank an anonymous referee for pointing this out.

13



Table 3: Full-sample mean and median parameter estimates

HARS HARSQAll HARSQ0.99

Mean Median Mean Median Mean Median

φ -0.0743 -0.0681 -0.0705 -0.0690 -0.0786 -0.0757

ση 0.9436 0.9038 0.9436 0.9037 0.9435 0.9036

β0 0.1357 0.1144 0.1326 0.1091 0.1352 0.1143

β1 0.6110 0.6143 0.6136 0.6128 0.6136 0.6180

β2 0.1635 0.1637 0.1643 0.1638 0.1625 0.1638

β3 0.2315 0.2369 0.2321 0.2373 0.2304 0.2327

σε 0.4501 0.2917 0.4502 0.2918 0.4501 0.2917

γ × 100 -0.0495 -0.0438 0.0375 0.0322

HARM HARSL

Mean Median Mean Median

φ -0.0701 -0.0697 φ 0.4238 0.4874

ση 1.8970 1.9418 ση 0.0876 0.0930

β0 0.1324 0.1085 δ0 0.0239 0.0193

β1 0.6137 0.6130 δ1 0.2858 0.2813

β2 0.1645 0.1641 δ2 0.3484 0.3473

β3 0.2322 0.2376 δ3 0.3127 0.3122

σε 0.4502 0.2918 σε 0.4971 0.4959

γ × 100 -0.0264 -0.0011

ψ 0.4705 0.5091

Note: Table 3 shows the mean and median of the estimated parameters across all 40
stocks for the models defined in equations (2.4), (2.7), (2.8) - (2.11), (2.12), (2.13),
and (2.14) in Section 2.

Table 4: Correlation of predicted states with γ̂RQ
1/2
t−1

HARS HARSQAll HARSQ0.99

Mean 0.5616 0.6150 0.5233

1st Quartile 0.4790 0.5309 0.4515

Median 0.5561 0.6108 0.5287

3rd Quartile 0.6345 0.7291 0.5872

Note: Table 4 shows the mean, the 1st quartile, the me-
dian and the 3rd quartile of the correlations of the square-
root of realized quarticity multiplied by the estimated co-
efficient γ̂ and the filtered states across all 40 stocks for
the models defined in equations (2.8) - (2.11) in Section
2.
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Figure 2: Predicted states (black line) and γ̂RQ
1/2
t−1 (grey line) for Intel (both mean adjusted)
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Table 5: In-sample model fit (full sample)

HAR HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

MSE Mean 1.0000 0.9528 0.9782 0.9763 0.9968 0.9747 0.9700 1.0208

Median 1.0000 0.9554 0.9800 0.9673 0.9783 0.9673 0.9687 0.9925

MCS 34 38 38 40 37 40 40 39

QLIKE Mean 1.0000 0.9552 0.9352 0.9400 0.9372 0.9353 0.9151 0.9114

Median 1.0000 0.9572 0.9425 0.9477 0.9419 0.9470 0.9258 0.9254

MCS 1 15 29 30 31 31 39 40

Note: Table 5 shows the mean and median of the in-sample MSE and QLIKE loss functions defined
in equations (3.1) and (3.2) across all 40 stocks for the models defined in equations (2.4), (2.7), (2.8)
- (2.11), (2.12), (2.13), and (2.14) in Section 2. The losses are computed relative to the losses of the
HAR model. Realized variances are computed based on 5-minute returns. The results are based on the
full-sample period Jan. 3, 2000 to Dec. 31, 2014. The smallest losses are shown in bold. MCS denotes
the number of times each model is included in the model confidence set. It is computed for ψ = 0.1 using
a block-bootstrap with window length 20 and using 10,000 bootstrap replications.
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Next, we turn to the comparison of the in-sample fit. Table 5 shows the mean and median of

the MSE and the average QLIKE, relative to the loss of the HAR model, over all 40 stocks for

the full-sample period Jan. 3, 2000 to Dec. 31, 2014 based on 5-minute realized variances. The

lowest average loss is shown in bold. In terms of the MSE all models except the HARSL model

have a lower average loss than the HAR model. The lowest average in-sample MSE is obtained

by the HARQ model with an average/median relative loss of approximately 0.95. Looking at

the QLIKE loss function all models outperform the HAR model on average. However, the lowest

mean and median losses are obtained by the HARSL and HARL models, respectively, with

relative losses of around 0.92. The HARS and HARQ0.99 models also perform quite well with

relative losses of around 0.94.

The reported relative losses are point estimates and it is not obvious whether the difference

in fit are statistically significant. To assess the statistical significance of the differences in losses

we further computed the model confidence set (MCS) proposed by Hansen et al. (2011). The

model confidence set is computed for α = 0.1 using a block bootstrap with window lengths 20

and using 10,000 bootstrap replications. We compute the MCS for each stock and report the

number of times (out of 40) each model is included in the MCS. The MCS based on the MSE

shows that all models perform equally well for the majority of the stocks. The HARSQAll,

HARM and HARL models are all included in the MCS for all 40 stocks9. In terms of the

QLIKE loss a different pictures emerges. The HAR model clearly performs worst with only

1 inclusion in the MCS, whereas the HARSL (40 inclusions) and the HARL (39 inclusions)

models show a dominating performance. We also note that the HARQ model perform rather

poorly with only 15 inclusions in the MCS.

When evaluating the good performance of the newly proposed models compared to the bench-

mark models one has to keep in mind that it does not entirely come as a surprise when looking

at the in-sample period due to the flexibility of the state space specification. Therefore, next

we study the performance of the models for forecasting to decide whether the good performance

of some of the models is a result of overfitting or whether they capture inherent features of the

data.

9As mentioned above, the MSE is likely to be dominated by large RV values, so the MCS has little power to
discriminate the models.
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Table 6: Out-of-sample evaluation

HAR HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

Full Sample - Jan. 2, 2004 to Dec. 31, 2014

MSE Mean 1.0000 0.9185 0.8306 0.9203 0.9320 0.9193 0.8298 0.9182

Median 1.0000 0.9270 0.8574 0.9284 0.9285 0.9240 0.8680 0.9295

MCS 40 40 40 40 40 40 40 40

QLIKE Mean 1.0000 0.9747 0.9064 0.9560 0.9212 0.9363 0.8871 0.8864

Median 1.0000 0.9657 0.9158 0.9370 0.9299 0.9397 0.8887 0.8914

MCS 0 6 32 24 27 24 38 40

Crisis Period - Aug 1, 2007 to Dec. 31, 2009

MSE Mean 1.0000 0.9050 0.8095 0.9312 0.9526 0.9303 0.8220 0.9249

Median 1.0000 0.9064 0.8240 0.9071 0.9044 0.8890 0.8582 0.9425

MCS 40 40 40 40 40 40 40 40

QLIKE Mean 1.0000 1.0075 0.9432 1.1478 0.9800 1.0472 0.9465 0.9139

Median 1.0000 0.9822 0.9319 0.9901 0.9535 0.9799 0.9505 0.9125

MCS 19 35 39 36 38 38 40 40

Tranquil Period - Jan. 3, 2012 to Dec. 31, 2013

MSE Mean 1.0000 1.0387 0.9432 0.9447 0.9503 0.9429 0.8587 0.8515

Median 1.0000 1.0431 0.9570 0.9662 0.9658 0.9653 0.8926 0.8864

MCS 5 7 8 8 8 8 25 40

QLIKE Mean 1.0000 0.9828 0.8906 0.8920 0.8926 0.8918 0.8675 0.8506

Median 1.0000 0.9683 0.9260 0.9280 0.9284 0.9243 0.8842 0.8724

MCS 7 5 18 18 18 17 34 40

Note: Table 6 shows the mean and median of the out-of-sample MSE and QLIKE loss functions defined
in equations (3.1) and (3.2) across all 40 stocks for the models defined in equations (2.4), (2.7), (2.8)
- (2.11), (2.12), (2.13), and (2.14) in Section 2. The models are reestimated every day using a rolling
window forecasting scheme using an estimation window corresponding to four years of data. The losses
are computed relative to the losses of the HAR model. Realized variances are computed based on 5-
minute returns. The smallest losses are shown in bold. MCS denotes the number of times each model is
included in the model confidence set. It is computed for α = 0.1 using a block-bootstrap with window
length 20 and using 10,000 bootstrap replications.
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3.2 Forecasting performance

We now turn to the discussion of the forecasting performance of the competing models. We

report results for the complete out-of-sample period and for two sub-periods of high volatility

(crisis period) and low volatility (tranquil period). We perform a rolling window forecasting

scheme and always use four years of data to estimate the model parameters used for the one-

step ahead predictions.10 As for the in-sample evaluation, we compute the mean and median

relative MSE and QLIKE losses over the 40 stocks for predicting realized variances based on

5-minute returns, as well as the number of times each model appeared in the model confidence

set (MCS) to assess whether the differences in average losses are statistically significant. The

results are reported in Table 6. For the full sample period the HARL and HARS model

clearly have the lowest mean and median losses in terms of MSE. The relative loss is around

0.84, whereas the next best models have relative losses of about 0.92. However, based on

the MSE all models appear in the MCS for the majority of assets, likely due to the reason

discussed above that the MSE is dominated by the largest observations and therefore has low

power to discriminate between the models. For the QLIKE, the HARL and HARSL models

outperform the competing specifications. The relative losses for the QLIKE loss function are

about 0.89 for the HARL and HARSL models and about 0.91 for the HARS model. Looking

at the number of appearances in the MCS the picture is clearer here. The HARSL clearly

evolves as the best model with 40 appearances, followed by the HARL and HARS models,

with 38 and 32 appearances, respectively. For the crisis period the HARS stands out as the

best forecast model in terms of the MSE, whereas the HARSL model has the lowest losses

looking at the QLIKE. For the tranquil period the HARSL is the best performing model for

both loss functions. It is noteworthy how well the HARL model performs in all cases as this

model consistently outperforms most competing specifications including the HARQ. Overall,

however, the HARSL appears to be preferable, especially when looking at the appearances in

the MCS. We conclude that in general models for log(RV ) are preferable over models in levels,

even when one is interested in predicting realized volatility itself, as they account naturally for

most heteroscedasticity in the measurement errors. At the same time, the gains from allowing

for time-varying parameters are smaller for the models for log(RV ). Among the models specified

in levels the HARS model is best performing one.

As Table 6 only reports mean and median losses we present boxplots of the MSE and QLIKE

relative losses in Figures 3 and 4. Overall, the HARS and HARL models shows the most stable

performance with lower variation in relative losses than the other model. Furthermore, there

are notably less instances of particularly large relative losses. It appears that the gains in

forecasting performance from using the HARS model are systematic, although only the HARL

and HARSL models have lower losses than the standard HAR model for all stocks over at least

some time periods.

10The computations were parallelized and performed using CHEOPS, a scientific High Performance Computer
at the Regional Computing Center of the University of Cologne (RRZK) funded by the DFG.

19



Figure 3: Boxplot of the MSE losses
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4 Conclusion

This paper proposes an alternative to the time-varying HARQ model of Bollerslev et al. (2016a)

for forecasting realized variance measures. Instead of directly accounting for measurement error

variance by letting the time-varying first order autoregressive parameter of the HAR model be

driven by the realized quarticity, we propose a state space specification of the HAR model for

realized variance. The state equation can be augmented by functions of realized quarticity in

order to allow for a faster reaction when the measurement error is unusually high. Furthermore,

we consider a model combination of the HARQ and HARS models that combine the time-

varying AR(1) coefficients of the two models. Additionally, models in levels are compared to

models specified in terms of the natural logarithm of realized variance.

The state space models turn out to perform well compared to the other models in the sense

that they produces equal or better in-sample fit and more precise predictions. However, the

HAR models in logs is also among the best performing specifications. In particular, the forecast

accuracy measured in terms of the MSE and QLIKE loss functions is best for the HARSL

model in most instances. Statistically the difference in forecast losses is not always significant,

but overall the model has the largest number of inclusion in the model confidence set across all

assets, time-periods and loss functions. When looking at different subsamples of the forecasting

period some differences in performance can be observed, but overall the HARL and HARLS

models can be recommended for forecasting realized variances. Considering only models in
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Figure 4: Boxplot of the QLIKE losses

HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

0.5

1

1.5
QLIKE January 2, 2004 to December 31, 2014

HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

0.5

1

1.5
QLIKE August 1, 2007 to December 31, 2009

HARQ HARS HARSQAll HARSQ0.99 HARM HARL HARSL

0.5

1

1.5
QLIKE January 3, 2012 to December 31, 2013

levels, the HARS model stands out as the superior specification that can often compete with

the models logs.

The superior performance of our state space HAR models for realized variance is most likely

explained by the fact that realized quarticity is again only a noisy proxy for the true measurement

error variance and its imprecision is likely to be largest in period of high volatility. Furthermore,

it appears that the state space model is able to capture other sources of time-variation of the

HAR parameters that cannot be explained by measurement error.

Future research should aim at extending our approach to the problem of forecasting realized

covariance matrices. A multivariate extension of the HARQ model is provided in Bollerslev

et al. (2016b) and the model is shown to produce economically valuable predictions compared

to existing approaches. The approach from our paper could in principle be extended to a

multivariate setting along similar lines and it should be investigated whether the advantages

from the univariate approach translate to the multivariate problem.
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