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Abstract

We consider the problem of modeling the dependence among many time series. We

build high dimensional time-varying copula models by combining pair-copula construc-

tions with stochastic autoregressive copula and generalized autoregressive score models

to capture dependence that changes over time. We show how the estimation of this highly

complex model can be broken down into the estimation of a sequence of bivariate models,

which can be achieved by using themethod ofmaximum likelihood. Further, by restricting

the conditional dependence parameter on higher cascades of the pair copula construction

to be constant, we can greatly reduce the number of parameters to be estimated with-

out losing much �exibility. Applications to �ve MSCI stock market indices and to a large

dataset of daily stock returns of all constituents of the Dax 30 illustrate the usefulness of

the proposed model class in-sample and for density forecasting.
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1 Introduction

The modeling of multivariate distributions is an important task for risk management and as-

set allocation problems. Since modeling the conditional mean of �nancial assets is rather

di�cult, if not impossible, much research has focused on modeling conditional volatilities

and dependencies. The literature on multivariate GARCH (Bauwens et al. 2006) and stochas-

tic volatility models (Harvey et al. 1994, Yu and Meyer 2006) o�ers many approaches to extend

univariate volatility models to multivariate settings. However, usually the resulting multivari-

ate model makes the assumption of (conditional) multivariate normality. Multivariate models

based on copulas o�er a popular alternative as non-elliptical multivariate distributions can

be constructed in a tractable and �exible way. The advantage of using copulas to construct

multivariate volatility models is that one is free with the choice of the marginal model, i.e.

the univariate volatility model, and that it is possible to capture, possibly asymmetric, de-

pendencies in the tails of the distributions. In particular, lower tail dependence often needs

to be accounted for when measuring �nancial risks. Among many others, Patton (2009) or

Cherubini et al. (2004), and references therein, give an overview of copula based models in

�nancial applications.

Twomajor drawbacks of the early applications of copula basedmodels are thatmost studies

focus on bivariate copulas only, limiting the potential for real world applications, and that the

dependence parameter is assumed to be time-constant. This is in contrast to the empirically

observed time-varying correlations. Each of these issues individually has been addressed in

the literature in recent years. Larger dimensional copulas other than Gaussian or Student cop-

ulas have become available through the introduction of hierarchical Archimedean copulas by

Savu and Trede (2010) and Okhrin et al. (2013), factor copula models by Oh and Patton (2015),

or the class of pair copula constructions by Aas et al. (2009). In particular the latter class, also

called vine copula constructions, has become extremely popular because of its �exibility and

because of the possibility of estimating the large number of parameters sequentially. Examples

of �nancial applications of vine copula models are, e.g., Chollete et al. (2009) or Dißmann et al.

(2013). Copulas with time-varying parameters have been introduced by Patton (2006) to model

changing exchange rate dependencies. Since then a number of studies have proposed di�erent

ways to specify time-varying copulas. For example, Dias and Embrechts (2004) test for struc-

tural breaks in copula parameters, Giacomini et al. (2009) use a sequence of breakpoint tests

to identify intervals of constant dependence, Garcia and Tsafack (2011) and Stöber and Czado

(2014) use a regime-switchingmodel for changing dependencies, Hafner and Reznikova (2010)

treat the copula parameter as a smooth function of time and estimate it by local maximum like-

2



lihood, whereas Hafner and Manner (2012) and Almeida and Czado (2012) propose a model

where the copula parameter is a transformation of a latent Gaussian autoregressive process

of order one. Finally, Creal et al. (2013) propose an observation driven autoregressive model

in which the scaled score drives the dependence parameter. An overview and comparison of

(bivariate) time-varying copula models is given in Manner and Reznikova (2012). Only very

few papers allow for time-varying parameters in larger dimensions. Chollete et al. (2009) es-

timate a regime-switching vine copula, Heinen and Valdesogo (2009) allow the parameter of a

vine copula to be driven by a variation of the DCC model by Engle (2002), and Creal and Tsay

(2015) extend the factor copula model by Oh and Patton (2015) by allowing for stochastic fac-

tor loadings. Oh and Patton (2013), on the other hand, introduce time-variation into the factor

copula model by specifying it as a generalized autoregressive score model.

The contribution of this paper is to extend the stochastic autoregressive copula (SCAR)

model by Hafner and Manner (2012) and Almeida and Czado (2012) and the generalized au-

toregressive score (GAS) model of Creal et al. (2013) to practically relevant dimensions using

D-vines. We discuss how the proposed model can be estimated sequentially using maximum

likelihood estimation. We also address how a reasonable restrictions can bemade on themodel

without restricting its �exibility too much. In our empirical study we consider the problem of

modeling and forecasting the joint distribution of asset (market) returns using two datasets,

namely 5 weekly MSCI index returns spanning a period of 40 years and daily returns of the

constituents of the German DAX 30. The model �t and forecasting performance is compared

to a Gaussian DCC copula model and to a time-constant regular vine model.

The remainder of the paper is structured as follows. The next section introduces copulas

in general, dynamic copula models, D-vines copulas and shows how they can be combined

to obtain the �exible class of dynamic D-vine models. Section 3 treats the estimation of the

proposed model, Section 4 contains the empirical application and Section 5 gives conclusions

and outlines further research.

2 D-vine based dynamic copula models

Weare interested inmodeling the joint (conditional) distribution of a d-dimensional time series

yt = (y1,t, ..., yd,t) for t = 1, ..., T . We assume that each variable yi,t for i = 1, ..., d follows an

ARMA(p,q)-GARCH(1,1) process, i.e.

yi,t = βi,0 +

p
∑

j=1

βi,jyi,t−j +

q
∑

k=1

δi,kσi,t−kεi,t−k + σi,tεi,t (1)
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with

σ2
i,t = αi,0 + αi,1ε

2
i,t−1 + γiσ

2
i,t.

The usual stationarity conditions are assumed to hold. Denote the joint distribution of

the standardized innovations εi,t by G(ε1,t, ..., εd,t) and let their marginal distributions be

F1(ε1,t), ..., Fd(εd,t), respectively. Then by Sklar’s theorem there exists a copula C such that

G(ε1,t, ..., εd,t) = C(Fi(ε1,t), ..., Fd(εd,t)). (2)

Since all the marginal behavior is captured by the (conditional) marginal distributions,

the copula captures the complete contemporaneous dependence of the distribution. Let

ui,t = Fi(εi,t) be the innovations transformed to U(0, 1) random variable and de�ne ut :=

(u1,t, ..., ud,t).

In this paper we are interested in models that allow the copula distribution to be time-

varying as well. In this case we assume that

ut ∼ c(ut;ω,Ft−1), (3)

where c is the copula density, Ft−1 is the information set available at time t − 1 and ω is the

vector of time independent parameters of the model.

In the next section we present two speci�cations to incorporate time-varying dependence

in bivariate copula models, namely the parameter driven stochastic copula autoregressive

(SCAR) model and the observation driven generalized autoregressive score (GAS) model. In

Section 2.2 we introduce the notion of vines to construct large-dimensional copula, before we

show how time-varying dependence can be incorporated yielding large dimensional models

with dynamic dependence.

2.1 Dynamic Copula Models

For now, consider the bivariate time series process (ui,t, uj,t) for t = 1, ..., T . We assume that

its distribution is given by

(ui,t, uj,t) ∼ C(·, ·; θijt ) (4)

with θijt ∈ Θ the time-varying parameter of the copula C. In order to be able to compare

copula parameters that have di�erent domains, the copula can equivalently be parameterized

in terms of Kendall’s τ ∈ (−1, 1). This follows from the fact that for all bivariate copulas we

consider there exists a one-to-one relationship between the copula parameter and Kendall’s τ ,

which we express by θijt = r(τ ijt ). We assume that τ ijt is driven by the process λijt ∈ (−∞,∞).
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Due to the fact that λijt takes values on the real line we apply the inverse Fisher transform to

map it into (−1, 1), the domain of τ ijt :

τ ijt =
exp(2λijt )− 1

exp(2λijt ) + 1
=: ψ(λijt ). (5)

The time-varying parameter can be speci�ed in di�erent ways, see Manner and Reznikova

(2012) for a survey on di�erent speci�cations. Here we consider two speci�cations that have

been shown to performwell. The �rst approach is the stochastic copula autoregressive (SCAR)

model proposed by Hafner and Manner (2012) and Almeida and Czado (2012). In this case λijt
is assumed to be a latent Gaussian AR(1) process given by

λijt = µij + φij(λ
ij
t−1 − µij) + σijzij,t, (6)

where zij,t are independent standard normal innovations. We further assume |φij| < 1 for

stationarity and σij > 0 for identi�cation. This is an example of a parameter driven model.

The second speci�cation for the latent process is the generalized autoregressive score

(GAS) model by Creal et al. (2013). This observation driven model also assumes an autore-

gressive structure for λijt , but also uses the weighted score of the underlying model to drive

the latent process. The model of order one is given by

λijt = ωij + φijλ
ij
t−1 + δijs

ij
t−1, (7)

where sijt is the scaled score vector

sijt = Sij,t▽ij,t,

with

▽ij,t =
∂ ln c(ui,t, uj,t;ωij,Ft−1)

∂θijt

is the score and ωij = (ωij, φij, δij). The scaling matrix Sij,t is the square root matrix of the

inverse of the information matrix de�ned as

Sij,t = Jt|t−1 with J ′
t|t−1Jt|t−1 = I−1

t|t−1,

where It|t−1 = Et−1[▽ij,t▽
′
ij,t] is the information matrix. Details and properties can be

found in Creal et al. (2013). Stationarity conditions are studies in Blasques et al. (2014).

Blasques et al. (2015) show optimality properties of GAS models, whereas Koopman et al.

(2015) compare the forecasting performanceof awide range of parameter-driven and observation-

driven models and conclude that both perform equally well.
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2.2 D-vine Distributions and Copulas

While copulas are recognized as a very powerful tool to construct multivariate distributions, in

the past only the class of bivariate copulas (e.g. Joe 1997 and Nelsen 2006) was �exible enough

to accommodate asymmetric and/or tail dependencewithout placing unrealistic restrictions on

the dependence structure. Recently pair copula constructions (PCC) are found to be very useful

to construct �exible multivariate copulas. Here a multivariate copula is built up with bivariate

copula terms modeling unconditional and conditional dependencies. The �rst such construc-

tion was proposed in Joe (1996). It was subsequently signi�cantly extended to more general

settings in Bedford and Cooke (2002), Bedford and Cooke (2001) and Kurowicka and Cooke

(2006). They called the resulting distributions regular (R) vines and explored them for the case

of Gaussian pair copulas. The backbone is a graphical representation in form of a sequence of

linked trees identifying the indices which make up the multivariate copula. In particular, they

proved that the speci�cation of the corresponding pair copula densities make up a valid multi-

variate copula density. Further properties, estimation, model selection methods and their use

in complex modeling situations can be found in Kurowicka and Joe (2011), Czado et al. (2013)

and Joe (2014).

Aas et al. (2009) recognized the potential of this construction for statistical inference and

developed a sequential estimation (SE) procedure, which can be used as starting values for

maximum likelihood estimation (MLE). Bedford and Cooke (2002) identi�ed two interesting

subclasses of regular vines called D-vines and canonical (C)-vines. In the case of D-vines the

sequence of vine trees consist of pair trees, while for C-vines they are starlike with a central

node. This shows that C-vines are more useful for data situations where the importance of

the variables can be ordered. This is not the case for the application we will present later;

therefore we concentrate on D-vines. However, we would like to note that multivariate SCAR

models can also be constructed based on C-vines and more generally on R-vines.

Notably, C- and D-vines can be introduced from �rst principles (e.g. Czado 2010). For

this let (X1, ..., Xd) be a set of variables with joint distribution F and density f , respectively.

Consider the recursive decomposition

f(x1, . . . , xd) =
d
∏

k=2

f(xk|x1, . . . , xk−1)× f(x1). (8)

Here F (·|·) and later f(·|·) denote conditional cdf’s and densities, respectively. As a second

ingredient we utilize Sklar’s theorem for dimension d = 2 to express the conditional density
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of X1 givenX2 = x2 as

f(x1|x2) = c12(F1(x1), F2(x2))× f1(x1), (9)

where c12 denotes an arbitrary bivariate copula density. For distinct indices i, j, i1, · · · , ik with

i < j and i1 < · · · < ik we now introduce the abbreviation

ci,j|D := ci,j|D(F (xi|xD), F (xj|xD)), (10)

where D := {i1, · · · , ik} and xD := (xi1 , . . . , xik). Using (9) for the conditional distribution

of (X1, Xk) given X2 = x2, . . .Xk−1 = xk−1 we can express f(xk|x1, · · · , xk−1) recursively

as

f(xk|x1, . . . , xk−1) = c1,k|2:k−1 × f(xk|x2, . . . , xk−1)

= [

k−2
∏

s=1

cs,k|s+1:k−1]× c(k−1),k × fk(xk), (11)

where r : s := (r, r+1, . . . , s) for integers r and swith r < s. Using (11) in (8) and s = i, k =

i+ j it follows that

f(x1, . . . , xd) = [
d−1
∏

j=1

d−j
∏

i=1

ci,i+j|i+1:i+j−1] · [
d
∏

k=1

fk(xk)] (12)

If the marginal distribution of Xk are uniform for all k = 1, · · · , d, then we call the corre-

sponding density in (12) a D-vine copula density and the corresponding distribution function

a D-vine copula.

For illustration we consider a �ve dimensional D-vine, its density then given by

f(x1, · · · , x5) = [
5
∏

k=1

fk(xk)] · c12 · c23 · c34

× c45 · c13|2 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234, (13)

with the corresponding vine tree representation identifying the utilized indices given in Figure

1. In particular the indices in Tree T1 indicate the unconditional pair copulas, while Trees T2

to T4 correspond to conditional pair copulas, where the set of conditioning variables has size

1 to 3, respectively.

If ci,i+j|i+1:i+j−1 models the dependence between the rv’s F (Xi|xi+1:i+j−1) and

F (Xi+j|xi+1:i+j−1) we implicitly assume that the copula density ci,i+j|i+1:i+j−1(·, ·) does

not depend on the conditioning variables xi+1:i+j−1 other than through the arguments
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1      2              3                4                5

12    23                 34               45

12             23             34              45

13|2                24|3             35|4

13|2                     24|3                 35|4
14|23                  25|34 

14|23                 25|34

15|234

T
1

T
2

T
3

T
4

Figure 1: A D-vine tree representation for d = 5.

F (Xi|xi+1:i+j−1) and F (Xi+j|xi+1:i+j−1). This is a common assumption and Ha� et al. (2010)

call this a simpli�ed vine. They showed that this restriction is not severe by examining several

examples. Stöber et al. (2013) investigated which multivariate copula families can be written

as a simpli�ed vine and gave further examples in which it is di�cult to detect a violation

of the simpli�ed vine assumption. Acar et al. (2012) provided an estimation method for non

simpli�ed vines, which however is only operational in three dimensions.

In the D-vine representation given in (12) we also need a fast recursive way to compute

conditional cdf’s which enter as arguments. For this Joe (1996) showed that for i ∈ D and

D−i := D \ i

F (xj |xD) =
∂ Ci,j|D

−i
(F (xi|xD

−i
), F (xi|xD

−i
))

∂F (xi|xD
−i
)

. (14)

For the special case of D = {i} it follows that

F (xj|xi) =
∂ Ci,j(F (xi), F (xj))

∂F (xi)
.

In the case of uniform margins uj = Fj(xj), for a parametric copula cdf Cij(ui, uj) =

Cij(ui, uj; θij) this further simpli�es to

h(uj|ui, θij) :=
∂ Ci,j(ui, uj; θij)

∂ui
. (15)
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With this notation we can express F (xj |xD) as

F (xj|xD) = h(F (xj |xD
−i
)|F (xi|xD

−i
), θij|D

−i
).

This allows the recursive determination of the likelihood corresponding to (12). Furthermore,

the inverse of the h-functions is used to facilitate sampling from D- and C-vines (see for exam-

ple Aas et al. 2009 and Kurowicka and Cooke 2007). They are also used for sampling from the

more general R-vine model (see Stöber and Czado 2011). These sampling methods in addition

to estimation methods are implemented in the R packages CDVine and VineCopula.

2.3 D-vine based multivariate dynamic copula models

We now combine bivariate dynamic copula models and D-vines to formulate a multivariate

D-vine time-varying copula model. For this we use a bivariate dynamic copula model as the

pair copula model in a D-vine copula. This gives rise to the following de�nition of a dynamic

D-vine copula density

c(u1, · · · , ud; θt) :=

d−1
∏

j=1

d−j
∏

i=1

cl(i,j)(F (ui|ui+1:i+j−1; θ
l(i,j)
t ), F (ui+j|ui+1:i+j−1); θ

l(i,j)
t ), (16)

where l(i, j) := i, i+ j|i+1 : i+ j−1 and θt := {θ
l(i,j)
t ; j = 1, · · · , d−1, i = 1, · · · , d−j} is

the time-varying copula parameter vector. Here cl(i,j)(·, ·; θ
l(i,j)
t ) is the bivariate copula density

corresponding to the bivariate dynamic copula given in (4), where θl(i,j)
t satis�es

θ
l(i,j)
t = r(τ

l(i,j)
t ) = r(ψ(λ

l(i,j)
t )) (17)

for the latent process λl(i,j)t de�ned either by equation (6) or (7). The bivariate copula family

corresponding to l(i, j) can be chosen arbitrarily and independently of any other index l(r, s).

The copula in (16) can be used in (2) to specify the joint distribution of the innovations in

(1).

3 Parameter estimation

We are interested in estimating the parameters of both the marginal models and the stochastic

copula models. The joint density of our model is given by the product of the marginal and the

copula densities

g(ε1,t, ..., εd,t) = c(Fi(ε1,t), ..., Fd(εd,t)) · fi(ε1,t) · ... · fd(εd,t),
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where g, c and f denote the densities of the joint distribution, the copula and the marginal

distributions, respectively. Taking logarithms, we can see that the joint log-likelihood is the

sum the marginal and the copula log-likelihood function. For estimation we ultilize a two-step

approach common in copula based models. In this approach �rst the marginal parameters

are estimated separately and standardized residuals are formed. These are transformed using

either a parametric (see Joe 2005) or nonparametric probability integral transformation (see

Genest et al. 1995) to get a sample from a multivariate copula. These transformations do not

change the dependence structure among the standardized residuals. This approach allows us

to perform the estimation of the marginal and copula parameters separately. If the marginal

models are chosen carefully, as we will do, then a parametric probability transformation is a

good approximation to the true copula data ui,t = Fi(εi,t). Problems only occur if the marginal

models are grossly misspeci�ed (see Kim et al. 2007).

Furthermore, we saw above that the density of a D-vine copula is the product of bivariate

(conditional) copulas. Therefore, instead of estimating all copula parameters of our model in

one step, which is computationally infeasible due to the large number of parameters, we are

able to estimate the copula parameters sequentially.

For the bivariate model the log-likelihood for observation t is given by

LL(ωij ; ui,t, uj,t) = ln c(ui,t, uj,t;ωij,Ft−1) = ln c(ui,t, uj,t; θ
ij
t ). (18)

For the GAS model θijt can be computed for a given value of ωij using the recursion (7) and

therefore the estimation is straightforward. For the SCARmodel, on the other hand, θijt cannot

be observed and therefore needs to be integrated out of the likelihood function.

In Section 3.1 the estimation of bivariate SCAR copula models by simulated maximum

likelihood (SML) using e�cient importance sampling (EIS) is reviewed, Section 3.2 presents the

sequential estimation of vine copula models and in Section 3.3 we discuss how the sequential

estimation of dynamic D-vine copula models can be achieved.

3.1 Estimation of bivariate SCAR copula models

For the moment, we are interested in estimating the copula parameter vector ω := (µ, φ, σ).

For notational convenience we decided to drop the indices i and j whenever no ambiguity

arises. Denote ui = {ui,t}
T
t=1, uj = {uj,t}

T
t=1 and Λ = {λt}

T
t=1 and let f(ui,uj,Λ;ω) be the

joint density of the observable variables (ui,uj) and the latent processΛ. Then the likelihood

function of the parameter vector ω can be obtained by integrating the latent processΛ out of

the joint likelihood,
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L(ω;ui,uj) =

∫

f(ui,uj,Λ;ω)dΛ. (19)

We can alternatively write this as a product of conditional densities

L(ω;ui,uj) =

∫ T
∏

t=1

f(ui,t, uj,t, λt|λt−1,ω)dΛ. (20)

This is a T-dimensional integral that cannot be solved by analytical or numerical means.

It can, however, be solved e�ciently by Monte Carlo integration using a technique called

e�cient importance sampling introduced by Richard and Zhang (2007). The idea is to make

use of an auxiliary samplerm(λt;λt−1,at) that utilizes the information on the latent process

contained in the observable data. Note that it depends on the auxiliary parameter vector at =

(a1,t, a2,t). Multiplying and dividing by m(·), the likelihood can then be rewritten as

L(ω;ui,uj) =

∫ T
∏

t=1

[

f(ui,t, uj,t, λt|λt−1,ω)

m(λt;λt−1,at)

] T
∏

t=1

m(λt;λt−1,at)dΛ. (21)

DrawingN trajectories Λ̃(i) from the importance sampler1 the likelihood can be estimated by

L̃(ω;ui,uj) =
1

N

N
∑

s=1

(

T
∏

t=1

[

f(ui,t, uj,t, λ̃
(s)
t |λ̃

(s)
t−1,ω)

m(λ̃
(s)
t ; λ̃

(s)
t−1,at)

])

. (22)

This leaves the exact choice of the importance sampler m(·) to be determined, which ideally

should provide a good match between the numerator and the denominator of (22) in order to

minimize the variance of the likelihood function. It is chosen to be

m(λt;λt−1,at) =
k(λt, λt−1;at)

χ(λt−1;at)
, (23)

where

χ(λt−1;at) =

∫

k(λt, λt−1;at)dλt

is the normalizing constant of the auxiliary density kernel k(·). Furthermore, the choice

k(λt, λt−1;at) = p(λt|λt−1,ω)ζ(λt,at),

1A good choice for N is about 100, in which case the simulation error is negligible and the computational

costs are still acceptable.
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with p(λt|λt−1,ω) the conditional density of λt given λt−1 and ζ(λt,at) = exp(a1,tλt +

a2,tλ
2
t ) turns out to simplify the problem considerably. Noting that f(ui,t, uj,t, λt|λt−1,ω) =

c(ui,t, uj,t;λt)p(λt|λt−1,ω), the likelihood expression (21) can be rewritten as

L(ω;ui,uj) =

∫ T
∏

t=1

[

c(ui,t, uj,t;λt)χ(λt;at+1)

exp(a1,tλt + a2,tλ2t )

] T
∏

t=1

m(λt;λt−1,at)dΛ, (24)

where we have used the fact that χ(·) can be transferred back one period, because it does not

depend on λt. De�ning χ(λT ;aT+1) ≡ 1 and given a set of trajectories Λ̃(s) for s = 1, . . . , N ,

minimizing the sampling variance of the quotient in the likelihood function is equivalent to

solving the following linear least squares problem for each period t = T, . . . , 1,

log c(ui,t, uj,t; λ̃
(s)
t ) + logχ(λt;at+1) = ct + a1,tλ̃

(s)
t + a2,t[λ̃

(s)
t ]2 + η

(s)
t . (25)

This problem can be solved by OLS with ct the regression intercept and η(s)t the error term.

Then the procedure works as follows. First, draw N trajectories Λ̃(s) from p(λt|λt−1, ω) and

estimate the auxiliary parameters ât for t = T, . . . , 1 by solving (25). Next, draw N trajecto-

ries Λ̃(s) from the importance samplerm(λt;λt−1, ât) and re-estimate the auxiliary parameters

{ât}
T
t=1. Iterate this procedure until convergence of {ât}

T
t=1 and useN draws from the impor-

tance sampler to estimate the likelihood function (22). This likelihood function can then be

maximized to obtain parameter estimates ω̂. Note that throughout the same random numbers

have to be used when simulating the likelihood function in order to ensure its smoothness

and, consequently, convergence of {ât}
T
t=1.

Although the parameter vector ω driving the latent process is of some interest, ultimately

one wishes to get estimates of the latent processΛ and transformations thereof. In particular,

we are interested in estimating τt = ψ(λt) for t = 1, . . . , T , where ψ(·) denotes the inverse

Fisher transform given in (5). Smoothed estimates of ψ(λt) given the entire history of the

observable information ui and uj can be computed as

E[ψ(λt)|ui,uj] =

∫

ψ(λt)f(ui,uj,Λ;ω)dΛ
∫

f(ui,uj,Λ;ω)dΛ
. (26)

Note that the denominator in (26) corresponds to the likelihood function and both integrals

can be estimated using draws from the importance samplerm(λt;λt−1, ât). Filtered estimates

of ψ(λt) given information until time t − 1 can be computed in a similar way and details are

given in Liesenfeld and Richard (2003).
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3.2 Sequential estimation of static D-vine copula parameters

The form of the D-vine density given in (12) allows for a sequential parameter estimation

approach starting from the �rst tree until the last tree. This was �rst proposed by Aas et al.

(2009) for D-vines and shown in detail for C-vines in Czado et al. (2012). First estimate the

parameters corresponding to the pair-copulas in the �rst tree using any method you prefer.

For the copula parameters identi�ed in the second tree, one �rst has to transform the data with

the h function in (15) required for the appropriate conditional cdf using estimated parameters

to determine pseudo realizations needed in the second tree. Using these pseudo observations

the parameters in the second tree are estimated, the pseudo data is again transformed using

the h function and so on.

For example we want to estimate the parameters of copula c13|2. First transform the obser-

vations {u1,t, u2,t, u3,t, t = 1, · · · , n} to u1|2,t := h(u1,t|u2,t, θ̂12) and u3|2,t := h(u3,t|u2,t, θ̂23),

where θ̂12 and θ̂23 are the estimated parameters in the �rst tree. Now estimate θ13|2 based

on {u1|2,t, u3|2,t; t = 1, · · · , n}. Continue sequentially until all copula parameters of all

trees are estimated. For trees Ti with i ≥ 2 recursive applications of the h functions is

needed. Asymptotic normality of the SE has been established by Ha� (2013). However, the

asymptotic covariance of the parameter estimates is very complex and one has to resort to

bootstrapping to estimate the standard errors. SE is often used in large dimensional prob-

lems, e.g. Mendes et al. (2011), Heinen and Valdesogo (2009), Brechmann et al. (2012) and

Brechmann and Czado (2013). A joint MLE of all parameters in (12) requires high dimensional

optimization. Therefore SE’s are often used as starting values as, e.g., in Aas et al. (2009) and

Czado et al. (2012).2

A �nal issue to be discussed is model selection for D-vine copula models. For non Gaussian

pair copulas, permutations of the ordering of the variables give di�erent D-vine copulas. In

fact, there are d!/2 di�erent D-vine copulas when a common bivariate copula is used as pair

copula type. In Section 4 we will describe a simple method for determining the order of the

variables in a D-vine, while Dißmann et al. (2013) provide more sophisticated methods for

D-vines involving �nding a maximal spanning tree corresponding to a traveling salesman

problem. Often the bivariate Clayton, Gumbel, Gauss, t, Joe and Frank copula families are

utilized as choices for pair copula terms. However, in this study we restrict the attention to

the Gauss, Gumbel, Clayton and rotated versions thereof.

2From a practical perspective, the recent R package CDVine of Schepsmeier and Brechmann (2013) provides

easy to use random number generation, and both SE and MLE �tting algorithms for C- and D-vines.
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3.3 Sequential estimation of dynamic D-vine models

In principle, estimation of the dynamic D-vine model given in (16) works the same way as for

static D-vine copulas. For the GAS model this is straightforward to do, because the (estimated)

time-varying dependence can be computed and inserted into the corresponding h functions

to compute the pseudo observations:

uj|i,t = h(uj,t|ui,t, θ̂
ij
t ). (27)

For the parameter driven model, on the other hand, there are two important di�erences. First

of all, given that the bivariate SCAR models in the �rst tree have been estimated, it is not

possible to apply the h function given in (15) directly to obtain the pseudo observations that

are needed to obtain the parameters on the second tree. The reason is that one only obtains

parameter estimates of the hyper-parameters (µ, φ, σ), but not of the latent (time-varying)

copula parameters θt. We do, however, haveN simulated trajectories θ̃(s)t from the importance

sampler. With these we can calculate the pseudo observations by

uj|i,t =
1

N

N
∑

s=1

h(uj,t|ui,t, θ̃
(s)
t ), (28)

where we suppress the dependence of θ̃ on the variable indices i and j for notational reasons.3

The second di�erence is that one-step estimation by MLE is computationally not feasible for

the SCAR D-vine model, because each bivariate likelihood function needs to be computed by

simulation.

For a d dimensional dataset using the dynamic D-vine copula one has to estimate 3d(d +

1)/2 parameters. Fortunately, we can reduce the number of parameters to be estimated by

placing a number of restrictions. Similar to tail properties of D-vines studied in Joe et al. (2010)

the choice of time-varying pair copulas in the �rst tree propagates to the whole distribution,

in particular all pairs of variables have an induced time-varying Kendall’s tau. We expect

estimation errors to increase for parameters as the corresponding tree increases because of

the sequential nature of the estimation procedure. This is likely to be much more severe for

dynamic models than for static ones. Therefore we allow for dynamic D-vine copula models

where the pair copulas are time-varying only in lower trees, while the pair copulas are time-

constant for higher trees.

3Alternatively, we could calculate the pseudo realizations using the smoothed estimates of the latent depen-

dence parameter using (26). However, averaging over the nonlinear transformation h seems more reasonable

than applying the transformation to the (weighted) average.
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A second useful restriction is to allow for the possibility of truncating the D-vine copula,

which means that we set all pair copulas beyond a certain tree equal to the independence

copula. This is empirically justi�ed, since the dependence in the lower trees seems to capture

most of the overall dependence in the data and the conditional dependence in higher trees

is hardly visible. Note that this also allows the estimation of our model in arbitrarily large

dimensions, as we will only need to estimate (bivariate) models up to a certain dimension and

can truncate themodel thereafter. For static models this has been followed by Brechmann et al.

(2012) and includes tests at which level to truncate.

In order to decide which copula family to use and whether to use time-varying, time-

constant or independence copulas at certain levels we compare the Bayesian Information Cri-

terion (BIC) for all competing models. We decided for this information criterion, because it

favors parsimonious models. Given the high �exibility of the dynamic D-vine model and the

di�culty to estimate the parameters at higher level, we believe that parsimony is crucial.

3.4 Computational issues with SCAR models

Estimation of a bivariate SCARmodel by simulatedmaximum likelihood programmed inMAT-

LAB can take up to several minutes on a normal computer. As we consider an application with

29 variables this is much too slow. However, the problem at hand o�ers itself to parallel com-

puting. On each tree one has to estimate a large number of bivariate models independently of

each other. Therefore, given a su�cient number of processing cores we can estimate all mod-

els on one tree at the same time and proceed to the next tree once all models are estimated.

Depending on the dimension of the problem, this can lead to immense increases in computing

speed. The most demanding computational task, the estimation of the log-likelihood func-

tion by EIS, is implemented in C++, which resulted in our code being about 20-30 times faster

compared to R code. The maximization of the likelihood and the parallel computation within

levels is implemented in R (version 2.12.1) by using the optim function and the multicore

library.

4 Application

In this section illustrate the empirical application of the dynamic D-vine models. We consider

two datasets. The �rst one are weekly returns on 5 MSCI stock market indices over a period

of more than 40 years (Section 4.1), whereas in the second application we model the returns

of daily stock prices for 29 German stocks using about 6 years of data.

15



The �rst step in the analysis is the estimation of univariatemodels for the conditional mean

and variance. For the conditional mean we rely on simple ARMA models with the lag length

chosen in order to minimize the BIC. The conditional variance of the residuals was modeled

using a GARCH(1,1) model with Student t errors. For brevity, we do not report the estimation

results of the marginal models, but note that the ARMAmodels were mostly of very low order,

the most complex ones being ARMA(1,1) models, and that the residuals and squared residuals

showed no evidence of autocorrelation.

For the dependencewe consider four competingmodels. The �rst two are the SCAR-DVine

and GAS-DVine models introduced in Section 2. As a comparison we estimated multivariate

Gaussian copulawith time-varying correlationmatrix using the DCC dynamics of Engle (2002)

in a similar fashion as in Heinen and Valdesogo (2009). The last model is the �exible R-Vine

speci�cation with constant dependence parameters studied in Brechmann et al. (2012) and

Dißmann et al. (2013). The structure of the R-vine was selected using the algorithms suggested

in these papers. For the D-vine based models we face two choices. The �rst is the ordering

of the variables. This was done by maximizing the overall pairwise dependence measured

by Kendall’s tau. In particular, �rst choose the pair of variables with the highest empirical

Kendall’s τ . Second connect the next variable which has highest pairwise Kendall’s τ with

one of the previously chosen variables and proceed in a similar fashion until all variables are

connected. This is the common strategy for D-vine copulas. In particular, we expect to capture

the overall time variation of the dependence as good as possible with this choice, as it turns

out that time variation is most relevant on the �rst tree.

Second, for each bivariate (conditional) copula model we then face two important choices,

namely whether dependence is time-varying or static, and which copula family to use. We

automatically select the model by �rst estimating time-varying and constant copulas from

the following families: Gumbel (G), survival Gumbel (SG), Clayton (C), survival Clayton (SC),

Normal (N) and the independence copula (I)4. We then select the best �tting copula family

from these 11 candidate models by the BIC. Given the size and complexity of our model, as

well as the di�culty to estimate parameters precisely on higher trees, we decided to rely on

the BIC to �nd more parsimonious model speci�cations and to minimize the estimation error.

4.1 Weekly index returns

Our �rst dataset consists of weekly MSCI stock index return for the United States (US), United

Kingdom (UK), Europe (EU), Canada (Can) and Japan (Jap) for the period Jan. 7, 1971 until

4Obviously, for the independence copula no parameter needs to be estimated.
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October 10, 2013, resulting in a total of 2232 observations. We split the sample into an in-

sample period consisting of the �rst 2000 returns, covering the period until June 30, 2009, and

an out-of-sample period covering the remaining 232 observations.

Table 1: SCAR-DVine estimation parameters

Pair Type Family Parameters

µ φ σ

12 Time Varying Normal 0.2788 0.9829 0.0334

23 Time Varying Normal 0.7066 0.9660 0.0517

34 Time Varying Normal 0.4629 0.9867 0.0354

45 Time Varying Normal 0.6517 0.7855 0.1054

13 | 2 Time Constant Normal 0.1574 - -

24 | 3 Time Varying Normal 0.0043 0.9999 0.0055

35 | 4 Time Constant Normal 0.1623 - -

14 | 23 Time Constant Gumbel 0.1031 - -

25 | 34 Time Constant Independent 0 - -

15 | 234 Time Constant Independent 0 - -

Note: Selected copula models and parameter estimates of the SCAR-DVine model for weekly MSCI stock market

index returns covering the period Jan 7, 1971 until April 30, 2009. The countries were ordered as follows: Jap,

UK, EU, USA, CAN.

The ordering of the countries was done as described above in turned out to be: Jap, UK, EU,

USA, CAN. In Tables 1 and 2 we report the parameter estimates for the SCAR-DVine and GAS-

DVine models, respectively. We do not report the estimation results for the R-vine and DCC

models, but results are available from the authors upon request. It is striking that the majority

of the chosen copulas are Gaussian. This corresponds with the �ndings Hafner and Manner

(2012). An explanation for this �nding is given in Manner and Segers (2011), who show that

the Gaussian copula with random correlations has much larger dependence in the tails than

the static Gaussian copula. This is in line with the stylized fact that �nancial returns are

characterized by tail dependence. On the �rst tree all models have time-varying dependence

parameters, whereas in higher trees several conditional copulas are in fact static. For the GAS-

DVine model time-variation is also found in most of the higher trees, which is not the case for

the SCAR-DVine speci�cation. The parameter estimates indicate higher dependence on the

lower trees of the model. Notably, the SCAR-DVine model selects the independence copula
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Table 2: GAS-DVine estimation parameters

Pair Type Family Parameters

ω φ δ

12 Time Varying Normal 0.001 0.010 0.996

23 Time Varying Normal 0.012 0.020 0.982

34 Time Varying Normal 0.000 0.004 0.999

45 Time Varying Normal 0.085 0.024 0.863

13 | 2 Time Varying Normal 0.331 0.123 0.031

24 | 3 Time Varying Normal 0.003 0.032 0.991

35 | 4 Time Varying Normal 0.000 0.013 0.999

14 | 23 Time Constant rotated Gumbel 0.287 - -

25 | 34 Time Varying Normal 0.006 0.060 0.981

15 | 234 Time Constant rotated Clayton -0.095 - -

Note: Selected copula models and parameter estimates of the GAS-DVine model for weekly MSCI stock market

index returns covering the period Jan 7, 1971 until April 30, 2009. The countries were ordered as follows: Jap,

UK, EU, USA, CAN.

in two out of three cases for the last two trees. The persistence parameters (φ and δ) indicate

that the dependence parameters in the time-varying models are highly persistent. In several

cases the upper bound of the permissible parameter space was selected, which indicates that

the dependence parameter follows a random walk.

The in-sample �t of the models in terms of the log-likelihood statistic and the BIC is com-

pared in Table 3. The D-vine based models clearly outperform the DCC and R-vine speci�ca-

tions and the GAS-DVine model clearly provides the best in-sample model �t.

Figure 2 shows the path of the time-varying Kendall’s τ for all market pairs implied by the

model allowing for time-varying dependence. In case of the SCAR-DVine model the smoothed

path of τt is presented as an estimated for the latent dependence process. For pairs which are

not directly connected in the �rst tree the dependence path was obtained by Monte Carlo sim-

ulation. The dynamics implied by the three models di�er to a certain extend. In particular the

dependence path of the DCC model often deviate signi�cantly from the other two. For market

pairs that lie on neighboring nodes (e.g. Jap-UK or UK-EU) the paths of the SCAR-DVine and

GAS-DVine models are closer to each other than for pairs that are not on neighboring nodes.

No clear picture about the evolution of the dependence over these 40 years can be observed,
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Table 3: In- and out-of-sample �t MSCI returns

Model LL BIC Pred. LL # param.

SCAR-DVine 2645.39 -5153.96 515.48 18

GAS-DVine 2912.41 -5093.15 464.43 26

DCC 2030.75 -3970.29 479.50 12

RVine (Constant) 2089.42 -4057.22 404.74 16

Note: This table presents the in-sample and out-of-sample �t of the analyzed model for the weekly MSCI returns

in terms of log-likelihood (LL), Bayesian information criterion (BIC) and predictive log-likelihoood (Pred. LL).

LL and BIC are based on the period Jan 7, 1971 until June 30, 2009. Pred. LL is based on the out-of-sample period

July 6, 2009 until Oct 10, 2013. The last column gives the total number of parameters of each model.

but we note that there seems to evidence for an increase of the degree of dependence towards

the end of the sample corresponding to the global �nancial crisis.

Finally, we use the estimated models to forecast the joint distribution of the stock market

returns. We perform one-step forecasts and we do not re-estimate the models. The out-of-

sample �t is compared based on two criteria. First, we compute the predictive log-likelihood

of the copula part of the distribution to get an indication of the statistical �t, which can also

be found in Table 3. The good performance of the DCC model that had the worst in-sample �t

is quite noticeable, but the good performance of the SCAR model is con�rmed. For the second

criterion of the out-of-sample �t of our model, we construct an equally weighted portfolio

from the �ve market indices and estimate its Value-at-Risk at the 10%, 5% and 1% level based

on our four model speci�cations. The portfolio VaR is shown graphically in Figure 3. Visually

it is di�cult to see any di�erences between the four models, which is not surprising as they

are all based on the same volatility models. In Table 4 we report the exceedance rate, as well

as the p-values of the dynamic quantile (DQ) test by Engle and Manganelli (2004), which tests

the correct coverage of the VaR and the i.i.d.’ness of the exceedances. We apply the test with 0

lags in order to test the unconditional coverage of the VaR and with 4 lags to additionally test

the i.i.d.’ness. The results show that all models except the time-constant RVine model perform

well in terms of the unconditional coverage. However, the i.i.d.’ness of the VaR is rejected

for all four models for the 1% VaR. Thus it seems like the choice of the dependence model

has a relatively small in�uence on the quality of the VaR forecasts, as long as we allow for

time-variation in the dependence parameters.
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Figure 2: Marginal Kendal’s tau for weekly MSCI returns based on the SCAR-DVine, GAS-

DVine and DCC models in black, red and green, respectively.
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Figure 3: Value-at-Risk and realized returns for weekly MSCI returns based on the SCAR-

DVine, GAS-DVine, DCC and constant RVine models.
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Table 4: Value-at-Risk evaluation weekly MSCI returns

Exceedance rate EM-test 0 lags EM-test 4 lags

10% 5% 1% 10% 5% 1% 10% 5% 1%

SCAR-DVine 0.112 0.065 0.013 0.821 0.592 0.872 0.583 0.449 0

GAS-DVine 0.095 0.060 0.013 0.536 0.444 0.890 0.973 0.502 0

DCC 0.108 0.060 0.013 0.836 0.544 0.558 0.950 0.484 0

RVine (constant) 0.116 0.082 0.022 0.538 0.036 0.063 0.897 0.045 0

Note: This table present the evaluation of the Value-at-Risk forecasts for weekly MSCI returns based on the out-

of-sample period May 7, 2009 until October 10, 2013. EM-test refers to the p-value of the dynamic quantile test

of Engle and Manganelli (2004).

4.2 Daily returns on German stocks

In this section we provide an empirical illustration of the dynamic D-vine models. The dataset

we consider are daily returns from the stocks listed in the DAX30 index during the period from

the 1st of January 2008 to the 31st of December 2013, giving a total of 1523 observations for 29

stocks that were included in the Dax over the whole sample period. The �rst 4 years of data

constitute the in-sample period, whereas the years 2012 and 2013 are used for the evaluation

of the forecasts. A list of the included companies is given in the Appendix. We decided for this

dataset to �nd a balance between demonstrating the possibility of high dimensional modeling

and the ability to still present the main results. Nevertheless, one could in principle consider

much larger dimensions, which we leave for future research.

Due to the high complexity of the model in 29 dimensions, we considered the restriction

of allowing potential time variation only on a limited (small) number of trees. We considered

this restriction from 1 to 12 trees, but we report only for the best �tting speci�cation since

results are identical or at least very similar for many of those cases.5 Speci�cally, it turned out

that making this restriction beyond the 6th tree is irrelevant, since there is no evidence of time

variation on higher trees. A further possible restriction that may be made is to truncate the

vine beyond a certain tree, meaning that all conditional copulas are set to the independence

copula. In the current application we did not make this restriction because the independence

copula is included in the set of admissible models and the automatic selection by the BIC in

practice leads to a truncation. Nevertheless, for large dimensional applications truncation of

5Further details regarding the model estimation such as parameter estimates or alternative speci�cations are

not presented in order to conserve space, but are available from the authors upon request.
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the vine should de�nitely be considered.

Table 5: SCAR-DVine and GAS-DVine model selection

Tree time-varying time-constant # par

N G SG I N C G SC SG

SCAR-DVine

1 28 0 0 0 0 0 0 0 0 84

2 2 0 0 0 2 0 8 0 15 31

3 - - - 1 5 0 11 0 9 25

4 - - - 6 8 0 8 0 3 19

5 - - - 6 8 0 6 2 2 18

6 - - - 9 9 1 3 0 1 14

7 - - - 10 7 1 0 0 4 12

GAS-DVine

1 5 7 8 0 1 0 2 0 5 68

2 3 0 0 0 8 0 8 0 8 33

3 - - - 3 22 0 0 1 0 23

4 - - - 6 13 0 3 0 3 19

5 - - - 7 14 0 0 1 2 17

Note: Selected copulas on all trees of the dynamic DVine models. Time-variation was only permitted until the

third tree. The copulas on the unreported trees were all the independence copulas. The data were daily returns

on Dax30 stock prices for the period Jan 1, 2008 until Dec 31, 2011.

An overview over the selected copula families is given in Table 5. Note that we only report

the results for the model that restricts the time-variation to the �rst two trees, because this

speci�cation gave the best overall �t and there was very little evidence for time-variation

beyond the second tree. For the SCAR model the Normal copula again dominates whenever

time-variation is found, whereas in the remaining cases other copulas are also selected quite

often. It is noticeable that on higher trees the independence copula tends to be selected quite

often. Thus we can conclude that the time-variation is su�ciently captured on the �rst two

trees of the model, whereas the overall dependence is captured by modeling the �rst 7 trees

and inserting an independence copula on the remaining trees of the model. This is remarkable

insofar as this suggests that is is possible to model much larger dimensional datasets, as the

essential information concerning the dependence is captured within relatively few trees and
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Table 6: In- and out-of-sample �t daily Dax returns

Model LL BIC Pred. LL # param.

SCAR-DVine 10195.17 -18986.86 5567.36 203

GAS-DVine 9200.46 -17294.72 4378.58 160

DCC 9984.34 -17147.47 4513.32 408

RVine (Constant) 10587.76 -18368.54 4128.80 406

Note: This table presents the in-sample and out-of-sample �t of the analyzed model for the daily Dax returns in

terms of log-likelihood (LL), Bayesian information criterion (BIC) and predictive log-likelihoood (Pred. LL). LL

and BIC are based on the period Jan 1, 2008 until Dec 31, 2011. Pred. LL is based on the out-of-sample period Jan

1, 2012 until Dec 31, 2013. The last column gives the total number of parameters of each model.

the vine can be truncated beyond the �rst 7-10 trees.

Table 6 presents the in-sample log-likelihood and BIC for our dynamic models, as well as

the Gaussian DCC copula model and the aforementioned static RVine model. For this dataset

the RVine model performs very well and has the largest log-likelihood. However, due to its

large numer of parameters (a total of 406) its BIC is larger than for the SCAR-DVine model.

The DCC and GAS-DVine models perform much worse in comparison.

Next, in the same fashion as in Section 4.1 we computed density forecasts for the remaining

two years of data, i.e. Jan 1, 2012 until Dec 31, 2013. The predictive log-likelihood suggests

that the SCAR model provides by far the best density forecasts, again followed by the DCC

model. The predictive log-likelihood of the RVine is the lowest, showing that this model is

perhaps overparametrized and/or that its structure is not stable over time. Finally, Value-at-

Risk forecasts are computed and backtested in the same way as for the MSCI returns. The

results in Table 7 show that the coverage rates are mostly below their nominal levels and no

model shows entirely satisfactory results. The results of the dynamic quantile test are equally

satisfactory for all models, so again in terms of forecasting the Value-at-Risk each of the four

models compared appear to be performing equally well.

5 Conclusions and further research

In light of the recent �nancial crisis, including the discussion of understanding systemic risk,

the need to understand time-varying e�ects not only within individual �nancial products but

also among groups of �nancial variables has been increasing. The developed D-Vine SCAR
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Table 7: Value-at-Risk evaluation daily Dax returns

Exceedance rate EM-test 0 lags EM-test 5 lags

10% 5% 1% 10% 5% 1% 10% 5% 1%

SCAR-DVINE 0.072 0.045 0.006 0.070 0.613 0.633 0.542 0.385 0.993

GAS-DVINE 0.070 0.039 0 0.056 0.453 0.074 0.405 0.838 0.985

DCC 0.076 0.047 0.016 0.055 0.745 0.172 0.560 0.527 0.076

Rvine (constant) 0.072 0.039 0.008 0.081 0.449 0.734 0.691 0.978 0.985

Note: This table present the evaluation of the Value-at-Risk forecasts for daily Dax returns based on the out-

of-sample period Jan 1, 2012 until Dec 31, 2013. EM-test refers to the p-value of the dynamic quantile test of

Engle and Manganelli (2004).

and GAS models are aiming to �ll this demand. From a statistician’s point of view such a

model is demanding. First, a very �exible multivariate dependency model is required such as

the class of vine copulas and, secondly, an appropriate model for the time dependency of the

copula parameters has to found. Here we consider parameter driven and observation driven

approaches, but the former approach seems to be more suitable considering its superior in-

sample and out-of-sample �t.

While this approach leads to a relatively straightforward model formulation, the develop-

ment of e�cient estimation procedures is much more di�cult. Especially in high dimensions

maximum likelihood is infeasible, since it would require the maximization over integrals of

size equal to the data length. These integrals occur since we need to integrate over the la-

tent variable process to express the joint likelihood. This problem already occurs when we

consider bivariate SCAR models. One solution to this is to use e�cient importance sampling

(Richard and Zhang 2007). In addition, the pair copula construction approach of Aas et al.

(2009) for multivariate copulas allows to express the likelihood in bivariate copula terms in

addition to a sequential formulation over the vine tree structure. This makes it feasible to

develop and implement e�cient importance sampling for the D-vine SCAR model.

One interesting feature of the applications in this paper is that non-normal pair copulas

with constant parameters were replaced by normal pair copulas when time-varying copula pa-

rameters are allowed. This shows that the assumption of conditional normality is in fact in line

with the data whenever an appropriate model for the time-varying correlations is chosen. It

should also be noted that using dynamic D-vine speci�cationsmightmigitate themisspeci�ca-

tion e�ects of using a simpli�ed vine speci�cation instead of a true underlying non simpli�ed
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vine speci�cation. In particular this might be the case when the e�ect of the conditioning

value on the pair copulas in higher trees arises from time varying conditioning variables.

In this paper we follow some approaches to model selection. We �rst restrict to a known

dependency structure given by a D-vine, but allow the copula family of each pair copula to

be chosen among a prespeci�ed class of copula families in addition to the choice if a pair cop-

ula has time-varying parameters or not. For this we use BIC, although more sophisticated

criteria might be necessary. When considering larger dimensions, we also restrict the use of

time-varying pair copula parameters to a prespeci�ed number of top trees. Here the approach

of truncated vines as developed in Brechmann et al. (2012) might be a good starting point to

choose this number in a data driven manner. As already mentioned, it is feasible to extend the

class of D-vine SCAR models to include R-vines as copula models. Finally the model uncer-

tainty introduced by assuming the marginal parameter estimates as true ones in the two-step

approach has to be assessed in future research. However the simulation results of Kim et al.

(2007) can be expected to remain valid for a copula model with time-varying parameters.
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A Stocks in the DAX and their ordering

Company Ticker Symbol node in D-vine

Adidas ADS 24

Allianz ALV 8

BASF BAS 14

Bayer BAYN 16

Beiersdorf BEI 26

BMW BMW 19

Commerzbank CBK 10

Daimler DAI 18

Deutsche Bank DBK 9

Deutsche Börse DB1 3

Lufthansa LHA 11

Deutsche Post DPW 12

Deutsche Telekom DTE 5

E.ON EOAN 7

Fresenius FRE 29

Fresenius Medical Care FME 28

HeidelbergCement HEI 22

Henkel HEN3 25

In�neon Technologies IFX 2

K+S SDF 1

Linde LIN 15

MAN MAN 20

Merck MRK 27

Metro MEO 4

Munich Re MUV2 17

RWE RWE 6

SAP SAP 23

Siemens SIE 13

ThyssenKrupp TKA 21

Table 8: DAX companies and their node position in the selected D-vine for the in-sample

period from the 1st of January 2008 until the 31st of December 2011.
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