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Abstract

We consider the problem of modeling the dependence among many time series. We
build high dimensional time-varying copula models by combining pair-copula construc-
tions with stochastic autoregressive copula and generalized autoregressive score models
to capture dependence that changes over time. We show how the estimation of this highly
complex model can be broken down into the estimation of a sequence of bivariate models,
which can be achieved by using the method of maximum likelihood. Further, by restricting
the conditional dependence parameter on higher cascades of the pair copula construction
to be constant, we can greatly reduce the number of parameters to be estimated with-
out losing much flexibility. Applications to five MSCI stock market indices and to a large
dataset of daily stock returns of all constituents of the Dax 30 illustrate the usefulness of

the proposed model class in-sample and for density forecasting.
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1 Introduction

The modeling of multivariate distributions is an important task for risk management and as-
set allocation problems. Since modeling the conditional mean of financial assets is rather

difficult, if not impossible, much research has focused on modeling conditional volatilities

and dependencies. The literature on multivariate GARCH ( IZD_OA) and stochas-

tic volatility models ﬂanLe;Le_t_alJ |12%\|,|Iu_an.d_M_e;La”2M) offers many approaches to extend
univariate volatility models to multivariate settings. However, usually the resulting multivari-
ate model makes the assumption of (conditional) multivariate normality. Multivariate models
based on copulas offer a popular alternative as non-elliptical multivariate distributions can
be constructed in a tractable and flexible way. The advantage of using copulas to construct
multivariate volatility models is that one is free with the choice of the marginal model, i.e.
the univariate volatility model, and that it is possible to capture, possibly asymmetric, de-

pendencies in the tails of the distributions. In particular, lower tail dependence often needs

to be accounted for when measuring financial risks. Among many others, _ ) or
IE_b.Qr_ubinLe_t_alJ 29&4]), and references therein, give an overview of copula based models in

financial applications.

Two major drawbacks of the early applications of copula based models are that most studies
focus on bivariate copulas only, limiting the potential for real world applications, and that the
dependence parameter is assumed to be time-constant. This is in contrast to the empirically
observed time-varying correlations. Each of these issues individually has been addressed in
the literature in recent years. Larger dimensional copulas other than Gaussian or Student cop-
ulas have become available through the introduction of hierarchical Archimedean copulas by

[S_aml_anﬂr_e_cki _ZQld) andIQkhrin_e_t_al] _M), factor copula models byIQh_amLEa.tLQIJ .ZD_]A),

or the class of pair copula constructions by ( ). In particular the latter class, also

called vine copula constructions, has become extremely popular because of its flexibility and
because of the possibility of estimating the large number of parameters sequentially. Examples

of financial applications of vine copula models are, e.g., IQth].e_tﬁ_e_t_alJ Zﬂﬂd) or
_M) to model

). Copulas with time-varying parameters have been introduced by
changing exchange rate dependencies. Since then a number of studies have proposed different

ways to specify time-varying copulas. For example, Di _ ) test for struc-
tural breaks in copula parameters, |Gi ini ( ) use a sequence of breakpoint tests
to identify intervals of constant dependence, i ( ) and ISt

) use a regime-switching model for changing dependencies, IHa.fnf;Lami_RemkmLeJ .Zilld)

treat the copula parameter as a smooth function of time and estimate it by local maximum like-



lihood, whereas IHafn.eLan.d_Mannﬂl .ZD_IA) and IAlm.eLda_amLCza.d_cJ _ZQ].A) propose a model

where the copula parameter is a transformation of a latent Gaussian autoregressive process

of order one. Finally, _ ZQL"J) propose an observation driven autoregressive model

in which the scaled score drives the dependence parameter. An overview and comparison of

(bivariate) time-varying copula models is given in i _ ). Only very

few papers allow for time-varying parameters in larger dimensions. _ ) es-

timate a regime-switching vine copula, Hei A ,Zﬂﬂd) allow the parameter of a

vine copula to be driven by a variation of the DCC model by En.g].eJ ZQQA), and IQI_QaLan.d_Tia;ll

) extend the factor copula model bleh.aniRaII.cml ZQd) by allowing for stochastic fac-

tor loadings. ( ), on the other hand, introduce time-variation into the factor

copula model by specifying it as a generalized autoregressive score model.
The contribution of this paper is to extend the stochastic autoregressive copula (SCAR)

model by IHafn&LaniNhnn&J (2012) and IAlm.eLda_an.d_Cza.d_ol ZD_IA) and the generalized au-

toregressive score (GAS) model of ( ZQL"J) to practically relevant dimensions using

D-vines. We discuss how the proposed model can be estimated sequentially using maximum
likelihood estimation. We also address how a reasonable restrictions can be made on the model
without restricting its flexibility too much. In our empirical study we consider the problem of
modeling and forecasting the joint distribution of asset (market) returns using two datasets,
namely 5 weekly MSCI index returns spanning a period of 40 years and daily returns of the
constituents of the German DAX 30. The model fit and forecasting performance is compared
to a Gaussian DCC copula model and to a time-constant regular vine model.

The remainder of the paper is structured as follows. The next section introduces copulas
in general, dynamic copula models, D-vines copulas and shows how they can be combined
to obtain the flexible class of dynamic D-vine models. Section [3 treats the estimation of the
proposed model, Section [ contains the empirical application and Section [§ gives conclusions

and outlines further research.

2 D-vine based dynamic copula models

We are interested in modeling the joint (conditional) distribution of a d-dimensional time series
Yr = (Y1.ty .., Yar) fort = 1, ..., T. We assume that each variable y; ; for i = 1, ..., d follows an
ARMA(p,q)-GARCH(1,1) process, i.e.

p q
Vi = Bio + Z BijVYit—j + Z 0i kOit—kEit—k + Oit€it (1)
k=1

j=1



with

2 2 2
Oir = Qo+ Q1€ 1 + 7i0 4

The usual stationarity conditions are assumed to hold. Denote the joint distribution of
the standardized innovations ¢;; by G(e14,...,£4:) and let their marginal distributions be

Fi(e14), ..., Fa(eas), respectively. Then by Sklar’s theorem there exists a copula C' such that

G((":Lt, ey 5d,t) = C(F;'(&“Lt), ey Fd(gd,t»- (2)

Since all the marginal behavior is captured by the (conditional) marginal distributions,
the copula captures the complete contemporaneous dependence of the distribution. Let
u;+ = Fi(e;+) be the innovations transformed to U(0, 1) random variable and define u, :=
(Ut .oy Udy)-

In this paper we are interested in models that allow the copula distribution to be time-

varying as well. In this case we assume that
up ~ c(ugw, Fi), 3)

where c is the copula density, F;_; is the information set available at time ¢ — 1 and w is the
vector of time independent parameters of the model.

In the next section we present two specifications to incorporate time-varying dependence
in bivariate copula models, namely the parameter driven stochastic copula autoregressive
(SCAR) model and the observation driven generalized autoregressive score (GAS) model. In
Section 2.2l we introduce the notion of vines to construct large-dimensional copula, before we
show how time-varying dependence can be incorporated yielding large dimensional models

with dynamic dependence.

2.1 Dynamic Copula Models

For now, consider the bivariate time series process (u;, u;) for t = 1, ..., 7. We assume that
its distribution is given by

(ties uje) ~ O (5 6) (4)
with 6} € © the time-varying parameter of the copula C. In order to be able to compare
copula parameters that have different domains, the copula can equivalently be parameterized
in terms of Kendall’s 7 € (—1, 1). This follows from the fact that for all bivariate copulas we
consider there exists a one-to-one relationship between the copula parameter and Kendall’s 7,

which we express by 07 = r(7/7). We assume that 7;” is driven by the process \’ € (—o0, 00).

4



Due to the fact that A takes values on the real line we apply the inverse Fisher transform to
map it into (—1, 1), the domain of 777
s exp(2A7) — 1 ii
= PN =Ly (5)
exp(2)\) +1
The time-varying parameter can be specified in different ways, see Ilylann_e];an_d_]&ezmkolzi

) for a survey on different specifications. Here we consider two specifications that have

been shown to perform well. The first approach is the stochastic copula autoregressive (SCAR)
model proposed byIHafn.eLan.d_NLann.QJ ZD_IA) andIAlm.eida_an.d_Cza.cch ZQ].A) In this case A/

is assumed to be a latent Gaussian AR(1) process given by

A = pij + Gy (AL — i) + 0352154, (©)

where z;;, are independent standard normal innovations. We further assume |¢;;| < 1 for
stationarity and o;; > 0 for identification. This is an example of a parameter driven model.
The second specification for the latent process is the generalized autoregressive score

(GAS) model by |Qr_ea]_e_t_alJ M) This observation driven model also assumes an autore-

gressive structure for A" but also uses the weighted score of the underlying model to drive

the latent process. The model of order one is given by
A= wij + G AL+ digs (7)
where s¥ is the scaled score vector
s = SijtVijit
with
Oln c(ui, wjs; wij, Fi-1)
00y

is the score and w;; = (w;j, ¢i;, 0;;). The scaling matrix S;;; is the square root matrix of the

Vijt =

inverse of the information matrix defined as

. / -1
S’ij,t = \7t|t—1 with \7t|t71‘7t‘t_1 = It|t—1’

where 7y, = E:_l[ 1tV is the information matrix. Details and properties can be

found in _ ). Stationarity conditions are studies in _ ).
IB].as_Gu_e_s_e_t_a].J .2&15’) show optimality properties of GAS models, whereas mp_m_an_e_t_al]

2015) compare the forecasting performance of a wide range of parameter-driven and observation-

driven models and conclude that both perform equally well.



2.2 D-vine Distributions and Copulas

While copulas are recognized as a very powerful tool to construct multivariate distributions, in
the past only the class of bivariate copulas (e.g. @Ilﬁﬂl and|N_eLs_eL||&0_0£J) was flexible enough

to accommodate asymmetric and/or tail dependence without placing unrealistic restrictions on

the dependence structure. Recently pair copula constructions (PCC) are found to be very useful
to construct flexible multivariate copulas. Here a multivariate copula is built up with bivariate

copula terms modelinﬁnconditional and conditional dependencies. The first such construc-

tion was proposed in ). It was subsequently significantly extended to more general

settings in ( ), ( ) and

(2006). They called the resulting distributions regular (R) vines and explored them for the case
of Gaussian pair copulas. The backbone is a graphical representation in form of a sequence of
linked trees identifying the indices which make up the multivariate copula. In particular, they
proved that the specification of the corresponding pair copula densities make up a valid multi-
variate copula density. Further properties, estimation, model selection methods and their use
in complex modeling situations can be found in Kurowicka and IQQJ _ M), Iglad_o_e_t_alj _ M)
and M)

IAaS_e_t_alJ ZDQA) recognized the potential of this construction for statistical inference and
developed a sequential estimation (SE) procedure, which can be used as starting values for

maximum likelihood estimation (MLE). Bedford and QQQchI ;O_OA) identified two interesting

subclasses of regular vines called D-vines and canonical (C)-vines. In the case of D-vines the
sequence of vine trees consist of pair trees, while for C-vines they are starlike with a central
node. This shows that C-vines are more useful for data situations where the importance of
the variables can be ordered. This is not the case for the application we will present later;
therefore we concentrate on D-vines. However, we would like to note that multivariate SCAR
models can also be constructed based on C-vines and more generally on R-vines.

Notably, C- and D-vines can be introduced from first principles (e.g. I@ IE) For
this let (X7, ..., X;4) be a set of variables with joint distribution F' and density f, respectively.

Consider the recursive decomposition

d

f(xla"'axd> = Hf(l'k|x1,...,l'k,1)Xf(l'l). (8)

k=2

Here F(-|-) and later f(-|-) denote conditional cdf’s and densities, respectively. As a second

ingredient we utilize Sklar’s theorem for dimension d = 2 to express the conditional density



of X given Xy = x5 as

f(x1]|z2) = cra(Fi(w1), Fa(22)) X fi(21), ©)

where c;5 denotes an arbitrary bivariate copula density. For distinct indices 7, 7, 7y, - - - , 7, with

1 <jandi; < --- <1, we now introduce the abbreviation

¢ijip = cigp(F(zilxp), F(z;|xp)), (10)
where D := {iy, -+ ,ix} and xp = (z;,,...,;, ). Using (9 for the conditional distribution
of (X1, Xy) given Xy = x9,... X;_1 = x,_1 we can express f(zg|z1, - ,xr_1) recursively
as

flaglar, . aem1) = cipom—1 X f(ap]2a, ..o Tp—1)
f—2
= [H Cs kfs1:k—1] X C—1)k X fr(Tr), (11)
s=1

wherer : s := (r,r+1,...,s) for integers r and s with r < s. Using (I1) in 8) and s = i, k =
1 + 7 it follows that

d—1d—j d
[z, xa) = [H Hci,i-i-j\i—i—l:i-i-j—l] [ Sean)] (12)
j=1i=1 k=1
If the marginal distribution of X}, are uniform for all k = 1,.-- | d, then we call the corre-

sponding density in (I2)) a D-vine copula density and the corresponding distribution function
a D-vine copula.

For illustration we consider a five dimensional D-vine, its density then given by

5
f(901> T ,905) = [H fk:(fk;)] " C12 - C23 - C34
k=1
X Cq5 " C13)2 * C24]3 * C35]4 * C14[23 * C25|34 * C15]234; (13)

with the corresponding vine tree representation identifying the utilized indices given in Figure
[ In particular the indices in Tree 7} indicate the unconditional pair copulas, while Trees 75
to T}y correspond to conditional pair copulas, where the set of conditioning variables has size
1 to 3, respectively.

If ¢; it jji+1:4j—1 models the dependence between the rv’s F'(X;|X;41:4j-1) and
F(Xiyj%it1:45-1) we implicitly assume that the copula density ¢;;jjit1:i+j—1(-,-) does

not depend on the conditioning variables X;1.;4;_1 other than through the arguments
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Figure 1: A D-vine tree representation for d = 5.

F(X;|xit1:+-1) and F(X;1j|X;41:i45-1). This is a common assumption and Haff et alJ _ZQIQJ)

call this a simplified vine. They showed that this restriction is not severe by examining several

examples. |St6 ( ) investigated which multivariate copula families can be written
as a simplified vine and gave further examples in which it is difficult to detect a violation
of the simplified vine assumption. |Acar et al.l _2(213) provided an estimation method for non

simplified vines, which however is only operational in three dimensions.

In the D-vine representation given in (12) we also need a fast recursive way to compute

conditional cdf’s which enter as arguments. For this @) showed that for ¢ € D and
D,Z' =D \ 1
_ 9Cip (F(zifxp ), F(xilxp_,))

F(ZL‘j|XD) = aF(l‘i|XD_i) . (14)

For the special case of D = {i} it follows that

8Ci,j(F(£Ci)7 F(.T]))

F(zj|z;) = IF (1)

In the case of uniform margins u; = Fj(x;), for a parametric copula cdf Cj;(u;, u;) =
Ci;(ui, uj; 0;;) this further simplifies to
0 Cij(ui, uy; 035)

h(uj|ui70ij) = au . (15)




With this notation we can express F'(x;|xp) as
F(ajlxp) = h(F(z;xp )| F(zilxp_.), 0ijip_,)-

This allows the recursive determination of the likelihood corresponding to (I2). Furthermore,
the inverse of the h-functions is used to facilitate sampling from D- and C-vines (see for exam-
plelAas et al”;O_Oﬁ and Kurowicka and QQQngI ILOQZI). They are also used for sampling from the
more general R-vine model (seelSjﬁiher_aMdAM). These sampling methods in addition

to estimation methods are implemented in the R packages CDVine and VineCopula.

2.3 D-vine based multivariate dynamic copula models

We now combine bivariate dynamic copula models and D-vines to formulate a multivariate
D-vine time-varying copula model. For this we use a bivariate dynamic copula model as the
pair copula model in a D-vine copula. This gives rise to the following definition of a dynamic
D-vine copula density

d—1d—j
c(ur, -+, uqg; 04) := H H i) (F (Wl i1 0,)), F(uiyj|tisrivs-1);:0.),  (16)

j=1i=1

where [(i,]) :=4,i+jli+1:i4+j—1and 6, := {Oi(i’j);j =1,---,d=1,i=1,---,d—j}is
the time-varying copula parameter vector. Here ¢;(; j) (-, -; Bi(i’j )) is the bivariate copula density

corresponding to the bivariate dynamic copula given in (), where Oi(i’j ) satisfies
1, 13,5 1,
0,7 = (") = r((™) (17)

for the latent process )\ff(i’j ) defined either by equation (€) or (7). The bivariate copula family
corresponding to I(7, j) can be chosen arbitrarily and independently of any other index [(r, s).

The copula in (16) can be used in (2) to specify the joint distribution of the innovations in

@.

3 Parameter estimation

We are interested in estimating the parameters of both the marginal models and the stochastic
copula models. The joint density of our model is given by the product of the marginal and the

copula densities

9(51,t> ey 5d,t) = C(E‘(&,t); ey Fd(5d,t)) : fi(gl,t) RPN fd(gd,t),

9



where ¢, c and f denote the densities of the joint distribution, the copula and the marginal
distributions, respectively. Taking logarithms, we can see that the joint log-likelihood is the
sum the marginal and the copula log-likelihood function. For estimation we ultilize a two-step
approach common in copula based models. In this approach first the marginal parameters
are estimated separately and standardized residuals are formed. These are transformed using

either a parametric (see @ ) or nonparametric probability integral transformation (see

n 1 |l225]) to get a sample from a multivariate copula. These transformations do not
change the dependence structure among the standardized residuals. This approach allows us
to perform the estimation of the marginal and copula parameters separately. If the marginal
models are chosen carefully, as we will do, then a parametric probability transformation is a

good approximation to the true copula data u; ; = F;(e;). Problems only occur if the marginal

models are grossly misspecified (see Ki , ).

Furthermore, we saw above that the density of a D-vine copula is the product of bivariate
(conditional) copulas. Therefore, instead of estimating all copula parameters of our model in
one step, which is computationally infeasible due to the large number of parameters, we are
able to estimate the copula parameters sequentially.

For the bivariate model the log-likelihood for observation ¢ is given by
LL(wij; i, g0) = I (i, w4 wig, Fror) = Incugy, wg; 07). (18)

For the GAS model G,fj can be computed for a given value of w;; using the recursion (Z) and
therefore the estimation is straightforward. For the SCAR model, on the other hand, 6} cannot
be observed and therefore needs to be integrated out of the likelihood function.

In Section [3.1] the estimation of bivariate SCAR copula models by simulated maximum
likelihood (SML) using efficient importance sampling (EIS) is reviewed, Section[3.2 presents the
sequential estimation of vine copula models and in Section 3.3 we discuss how the sequential

estimation of dynamic D-vine copula models can be achieved.

3.1 Estimation of bivariate SCAR copula models

For the moment, we are interested in estimating the copula parameter vector w := (p, ¢, o).
For notational convenience we decided to drop the indices ¢ and j whenever no ambiguity
arises. Denote w; = {u;;}_;, w; = {u;:}l_; and A = {\}L_, and let f(u;, u;, A;w) be the
joint density of the observable variables (u;, u;) and the latent process A. Then the likelihood
function of the parameter vector w can be obtained by integrating the latent process A out of
the joint likelihood,

10



L(w;u;,u;) = /f(ui,uj,A;w)dA. (19)
We can alternatively write this as a product of conditional densities
T
L(‘*’; u’huj) = /Hf(ui,tyuj,ta )\t|/\t—1>w)dA' (20)
t=1

This is a T-dimensional integral that cannot be solved by analytical or numerical means.

It can, however, be solved efficiently by Monte Carlo integration using a technique called

efficient importance sampling introduced by Richard and Zhang (2007). The idea is to make
use of an auxiliary sampler m(A;; \;_1, a;) that utilizes the information on the latent process
contained in the observable data. Note that it depends on the auxiliary parameter vector a; =

(@1 ¢, asy). Multiplying and dividing by m(-), the likelihood can then be rewritten as

T
uztyujta)\tp\t 1, W ) .
L(w; u;, u;) /H [ O 1) tl;[lm(/\t,)\t_l,at)dA. (21)

Drawing N trajectories A) from the importance samplexEI the likelihood can be estimated by

N Y ()13 (s)
T (ws s, ) Z (H [ (Wits Wjp, Ay |)\t 15 )]) (22)

=1 t=1 ()‘ES 7)\t 1, @ )

This leaves the exact choice of the importance sampler m(-) to be determined, which ideally
should provide a good match between the numerator and the denominator of (22) in order to
minimize the variance of the likelihood function. It is chosen to be
k(A Ai—15 @)

At A =
e ) =T e

(23)

where
X(Ai1;ar) = / k(Ae, Adi—15 ap)dA
is the normalizing constant of the auxiliary density kernel k(-). Furthermore, the choice

k()\t, Ai—1; at) = p()\t|)\t717 W)C(Au a’t)7

'A good choice for N is about 100, in which case the simulation error is negligible and the computational

costs are still acceptable.

11



with p(A\¢|A\t—1,w) the conditional density of \; given A\;_; and ((A\;,a:) = exp(ai A +
az;A?) turns out to simplify the problem considerably. Noting that f(u;, wj s, M| N—1, w) =

c(wig, wjg; Ae)p(Ae]Mi—1, w), the likelihood expression (2I) can be rewritten as

T
uZt)“jt7)\t) (/\t§at+1)
L(w; u;, s A1, ay)dA, 24
(w; u;, uy) /H{ exp(arh + Az \2) Em(t 1, Q) (24)

where we have used the fact that x(-) can be transferred back one period, because it does not
depend on ;. Defining x(Ar; ar11) = 1 and given a set of trajectories AW fors=1,...,N,
minimizing the sampling variance of the quotient in the likelihood function is equivalent to

solving the following linear least squares problem for each periodt =7, ...,1,
log c(ug s, uj S\IES)) +log x(A; @ary1) = ¢ + al,t;\§8) + a2,t[;\§8)]2 + (25)

This problem can be solved by OLS with ¢; the regression intercept and ngs) the error term.
Then the procedure works as follows. First, draw N trajectories A®) from p(A\|\_1,w) and
estimate the auxiliary parameters a; for ¢ = T',..., 1 by solving (23). Next, draw N trajecto-
ries A(®) from the importance sampler m(\;; A;_1, G;) and re-estimate the auxiliary parameters
{a;}L . Tterate this procedure until convergence of {a;}._, and use N draws from the impor-
tance sampler to estimate the likelihood function (22). This likelihood function can then be
maximized to obtain parameter estimates w. Note that throughout the same random numbers
have to be used when simulating the likelihood function in order to ensure its smoothness
and, consequently, convergence of {a;}._,.

Although the parameter vector w driving the latent process is of some interest, ultimately
one wishes to get estimates of the latent process A and transformations thereof. In particular,
we are interested in estimating 7, = ¥(\;) for t = 1,..., T, where ¢(-) denotes the inverse
Fisher transform given in (B). Smoothed estimates of 1()\;) given the entire history of the

observable information u, and u; can be computed as

J o) f(w, g, Asw)dA

Elp(N)|ug, uj] = [ f(us,uj, A w)dA

(26)

Note that the denominator in (26)) corresponds to the likelihood function and both integrals
can be estimated using draws from the importance sampler m(\;; A\;_1, @;). Filtered estimates

of 1(\;) given information until time ¢ — 1 can be computed in a similar way and details are

given in Il.ms_enfe]_d_aniRmhar_d .ZDD_?J)

12



3.2 Sequential estimation of static D-vine copula parameters

The form of the D-vine density given in (12) allows for a sequential parameter estimation

aiiroach starting from the first tree until the last tree. This was first proposed by

) for D-vines and shown in detail for C-vines in ( ). First estimate the
parameters corresponding to the pair-copulas in the first tree using any method you prefer.
For the copula parameters identified in the second tree, one first has to transform the data with
the h function in (I3) required for the appropriate conditional cdf using estimated parameters
to determine pseudo realizations needed in the second tree. Using these pseudo observations
the parameters in the second tree are estimated, the pseudo data is again transformed using
the h function and so on.

For example we want to estimate the parameters of copula c;3)5. First transform the obser-
vations {uy ¢, Uy, sy, t = 1, -+, n} to uyjay = h(u¢|uay, ém) and ugjo, = h(ug|usy, égg),
where élg and 923 are the estimated parameters in the first tree. Now estimate 6,3, based
on {u1|2,t,u3‘27t;t = 1,---,n}. Continue sequentially until all copula parameters of all

trees are estimated. For trees 7; with ¢ > 2 recursive applications of the A functions is

needed. Asymptotic normality of the SE has been established by E) However, the
asymptotic covariance of the parameter estimates is very complex and one has to resort to
bootstrapping to estimate the standard errors. SE is often used in large dimensional prob-
lems, e.g. n 1 ,M), hem&amﬂahie.mg& .Md), IB_reSMam_t_alJ .M) and

). A joint MLE of all parameters in (12) requires high dimensional

optimization. Therefore SE’s are often used as starting values as, e.g., in ( ) and
|§1ad9_el_alj M)H

A final issue to be discussed is model selection for D-vine copula models. For non Gaussian

pair copulas, permutations of the ordering of the variables give different D-vine copulas. In
fact, there are d!/2 different D-vine copulas when a common bivariate copula is used as pair
copula type. In Section 4 we will describe a simple method for determining the order of the
variables in a D-vine, while Diffmann et alJ _M) provide more sophisticated methods for

D-vines involving finding a maximal spanning tree corresponding to a traveling salesman

problem. Often the bivariate Clayton, Gumbel, Gauss, t, Joe and Frank copula families are
utilized as choices for pair copula terms. However, in this study we restrict the attention to
the Gauss, Gumbel, Clayton and rotated versions thereof.

From a practical perspective, the recent R package CDVine of |Schepsmeier and Brgghmanﬂ (21!1;4) provides

easy to use random number generation, and both SE and MLE fitting algorithms for C- and D-vines.
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3.3 Sequential estimation of dynamic D-vine models

In principle, estimation of the dynamic D-vine model given in (16) works the same way as for
static D-vine copulas. For the GAS model this is straightforward to do, because the (estimated)
time-varying dependence can be computed and inserted into the corresponding h functions

to compute the pseudo observations:
wjtip = h(ugiluig, 0)- (27)

For the parameter driven model, on the other hand, there are two important differences. First
of all, given that the bivariate SCAR models in the first tree have been estimated, it is not
possible to apply the h function given in (I5) directly to obtain the pseudo observations that
are needed to obtain the parameters on the second tree. The reason is that one only obtains
parameter estimates of the hyper-parameters (i, ¢, o), but not of the latent (time-varying)
copula parameters ¢;. We do, however, have N simulated trajectories ét(s) from the importance

sampler. With these we can calculate the pseudo observations by

N
Ui = % > h(uj i, ), (28)

s=1
where we suppress the dependence of 0 on the variable indices i and j for notational reasonsH
The second difference is that one-step estimation by MLE is computationally not feasible for
the SCAR D-vine model, because each bivariate likelihood function needs to be computed by

simulation.

For a d dimensional dataset using the dynamic D-vine copula one has to estimate 3d(d +
1)/2 parameters. Fortunately, we can reduce the number of parameters to be estimated by
placing a number of restrictions. Similar to tail properties of D-vines studied in Jge_e_t_al] _ M)

the choice of time-varying pair copulas in the first tree propagates to the whole distribution,

in particular all pairs of variables have an induced time-varying Kendall’s tau. We expect
estimation errors to increase for parameters as the corresponding tree increases because of
the sequential nature of the estimation procedure. This is likely to be much more severe for
dynamic models than for static ones. Therefore we allow for dynamic D-vine copula models
where the pair copulas are time-varying only in lower trees, while the pair copulas are time-

constant for higher trees.

3 Alternatively, we could calculate the pseudo realizations using the smoothed estimates of the latent depen-
dence parameter using (26). However, averaging over the nonlinear transformation h seems more reasonable

than applying the transformation to the (weighted) average.
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A second useful restriction is to allow for the possibility of truncating the D-vine copula,
which means that we set all pair copulas beyond a certain tree equal to the independence
copula. This is empirically justified, since the dependence in the lower trees seems to capture
most of the overall dependence in the data and the conditional dependence in higher trees
is hardly visible. Note that this also allows the estimation of our model in arbitrarily large
dimensions, as we will only need to estimate (bivariate) models up to a certain dimension and
can truncate the model thereafter. For static models this has been followed by|B_re_ch_mam_t_alJ

) and includes tests at which level to truncate.

In order to decide which copula family to use and whether to use time-varying, time-
constant or independence copulas at certain levels we compare the Bayesian Information Cri-
terion (BIC) for all competing models. We decided for this information criterion, because it
favors parsimonious models. Given the high flexibility of the dynamic D-vine model and the

difficulty to estimate the parameters at higher level, we believe that parsimony is crucial.

3.4 Computational issues with SCAR models

Estimation of a bivariate SCAR model by simulated maximum likelihood programmed in MAT-
LAB can take up to several minutes on a normal computer. As we consider an application with
29 variables this is much too slow. However, the problem at hand offers itself to parallel com-
puting. On each tree one has to estimate a large number of bivariate models independently of
each other. Therefore, given a sufficient number of processing cores we can estimate all mod-
els on one tree at the same time and proceed to the next tree once all models are estimated.
Depending on the dimension of the problem, this can lead to immense increases in computing
speed. The most demanding computational task, the estimation of the log-likelihood func-
tion by EIS, is implemented in C++, which resulted in our code being about 20-30 times faster
compared to R code. The maximization of the likelihood and the parallel computation within
levels is implemented in R (version 2.12.1) by using the opt im function and the multicore

library.

4 Application

In this section illustrate the empirical application of the dynamic D-vine models. We consider
two datasets. The first one are weekly returns on 5 MSCI stock market indices over a period
of more than 40 years (Section [4.1), whereas in the second application we model the returns

of daily stock prices for 29 German stocks using about 6 years of data.
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The first step in the analysis is the estimation of univariate models for the conditional mean
and variance. For the conditional mean we rely on simple ARMA models with the lag length
chosen in order to minimize the BIC. The conditional variance of the residuals was modeled
using a GARCH(1,1) model with Student t errors. For brevity, we do not report the estimation
results of the marginal models, but note that the ARMA models were mostly of very low order,
the most complex ones being ARMA(1,1) models, and that the residuals and squared residuals
showed no evidence of autocorrelation.

For the dependence we consider four competing models. The first two are the SCAR-DVine
and GAS-DVine models introduced in Section 2l As a comparison we estimated multivariate
Gaussian copula with time-varying correlation matrix using the DCC dynamics of! _@)
in a similar fashion as in [Heinen an 1 (2009). The last model is the flexible R-Vine

specification with constant dependence parameters studied in IB_r_e_thann_e_t_alJ ZQ].A) and

ZD_IfJ) The structure of the R-vine was selected using the algorithms suggested

in these papers. For the D-vine based models we face two choices. The first is the ordering
of the variables. This was done by maximizing the overall pairwise dependence measured
by Kendall’s tau. In particular, first choose the pair of variables with the highest empirical
Kendall’s 7. Second connect the next variable which has highest pairwise Kendall’s 7 with
one of the previously chosen variables and proceed in a similar fashion until all variables are
connected. This is the common strategy for D-vine copulas. In particular, we expect to capture
the overall time variation of the dependence as good as possible with this choice, as it turns
out that time variation is most relevant on the first tree.

Second, for each bivariate (conditional) copula model we then face two important choices,
namely whether dependence is time-varying or static, and which copula family to use. We
automatically select the model by first estimating time-varying and constant copulas from
the following families: Gumbel (G), survival Gumbel (SG), Clayton (C), survival Clayton (SC),
Normal (N) and the independence copula (I)f]. We then select the best fitting copula family
from these 11 candidate models by the BIC. Given the size and complexity of our model, as
well as the difficulty to estimate parameters precisely on higher trees, we decided to rely on

the BIC to find more parsimonious model specifications and to minimize the estimation error.

4.1 Weekly index returns

Our first dataset consists of weekly MSCI stock index return for the United States (US), United
Kingdom (UK), Europe (EU), Canada (Can) and Japan (Jap) for the period Jan. 7, 1971 until

*Obviously, for the independence copula no parameter needs to be estimated.
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October 10, 2013, resulting in a total of 2232 observations. We split the sample into an in-
sample period consisting of the first 2000 returns, covering the period until June 30, 2009, and

an out-of-sample period covering the remaining 232 observations.

Table 1: SCAR-DVine estimation parameters

Pair Type Family Parameters

Iz ¢ o
12 Time Varying  Normal 0.2788 0.9829 0.0334
23 Time Varying  Normal 0.7066 0.9660 0.0517
34 Time Varying  Normal 0.4629 0.9867 0.0354
45 Time Varying  Normal 0.6517 0.7855 0.1054
132 Time Constant Normal 0.1574 - -
2413 Time Varying  Normal 0.0043 0.9999 0.0055
354  Time Constant Normal 0.1623 - -
14|23  Time Constant Gumbel 0.1031 - -
25|34  Time Constant Independent 0 - -
15234 Time Constant Independent 0 - -

Note: Selected copula models and parameter estimates of the SCAR-DVine model for weekly MSCI stock market
index returns covering the period Jan 7, 1971 until April 30, 2009. The countries were ordered as follows: Jap,
UK, EU, USA, CAN.

The ordering of the countries was done as described above in turned out to be: Jap, UK, EU,
USA, CAN. In Tables[[landlwe report the parameter estimates for the SCAR-DVine and GAS-
DVine models, respectively. We do not report the estimation results for the R-vine and DCC

models, but results are available from the authors upon request. It is striking that the majority

of the chosen copulas are Gaussian. This corresponds with the findings Hafner an nn

). An explanation for this finding is given in 2011|), who show that

the Gaussian copula with random correlations has much larger dependence in the tails than
the static Gaussian copula. This is in line with the stylized fact that financial returns are
characterized by tail dependence. On the first tree all models have time-varying dependence
parameters, whereas in higher trees several conditional copulas are in fact static. For the GAS-
DVine model time-variation is also found in most of the higher trees, which is not the case for
the SCAR-DVine specification. The parameter estimates indicate higher dependence on the
lower trees of the model. Notably, the SCAR-DVine model selects the independence copula
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Table 2: GAS-DVine estimation parameters

Pair Type Family Parameters

w 10) )
12 Time Varying  Normal 0.001 0.010 0.996
23 Time Varying  Normal 0.012 0.020 0.982
34 Time Varying  Normal 0.000 0.004 0.999
45 Time Varying  Normal 0.085 0.024 0.863
132 Time Varying  Normal 0.331 0.123 0.031
2413 Time Varying  Normal 0.003 0.032  0.991
3514 Time Varying  Normal 0.000 0.013  0.999
14|23  Time Constant rotated Gumbel 0.287 - -
25|34  Time Varying Normal 0.006 0.060 0.981

15234 Time Constant rotated Clayton -0.095 - -

Note: Selected copula models and parameter estimates of the GAS-DVine model for weekly MSCI stock market
index returns covering the period Jan 7, 1971 until April 30, 2009. The countries were ordered as follows: Jap,
UK, EU, USA, CAN.

in two out of three cases for the last two trees. The persistence parameters (¢ and 0) indicate
that the dependence parameters in the time-varying models are highly persistent. In several
cases the upper bound of the permissible parameter space was selected, which indicates that
the dependence parameter follows a random walk.

The in-sample fit of the models in terms of the log-likelihood statistic and the BIC is com-
pared in Table 8l The D-vine based models clearly outperform the DCC and R-vine specifica-
tions and the GAS-DVine model clearly provides the best in-sample model fit.

Figure 2 shows the path of the time-varying Kendall’s 7 for all market pairs implied by the
model allowing for time-varying dependence. In case of the SCAR-DVine model the smoothed
path of 7; is presented as an estimated for the latent dependence process. For pairs which are
not directly connected in the first tree the dependence path was obtained by Monte Carlo sim-
ulation. The dynamics implied by the three models differ to a certain extend. In particular the
dependence path of the DCC model often deviate significantly from the other two. For market
pairs that lie on neighboring nodes (e.g. Jap-UK or UK-EU) the paths of the SCAR-DVine and
GAS-DVine models are closer to each other than for pairs that are not on neighboring nodes.

No clear picture about the evolution of the dependence over these 40 years can be observed,
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Table 3: In- and out-of-sample fit MSCI returns

Model LL BIC Pred. LL # param.
SCAR-DVine 2645.39 -5153.96 51548 18
GAS-DVine 291241 -5093.15  464.43 26
DCC 2030.75 -3970.29  479.50 12
RVine (Constant) 2089.42 -4057.22  404.74 16

Note: This table presents the in-sample and out-of-sample fit of the analyzed model for the weekly MSCI returns
in terms of log-likelihood (LL), Bayesian information criterion (BIC) and predictive log-likelihoood (Pred. LL).
LL and BIC are based on the period Jan 7, 1971 until June 30, 2009. Pred. LL is based on the out-of-sample period
July 6, 2009 until Oct 10, 2013. The last column gives the total number of parameters of each model.

but we note that there seems to evidence for an increase of the degree of dependence towards
the end of the sample corresponding to the global financial crisis.

Finally, we use the estimated models to forecast the joint distribution of the stock market
returns. We perform one-step forecasts and we do not re-estimate the models. The out-of-
sample fit is compared based on two criteria. First, we compute the predictive log-likelihood
of the copula part of the distribution to get an indication of the statistical fit, which can also
be found in Table[3l The good performance of the DCC model that had the worst in-sample fit
is quite noticeable, but the good performance of the SCAR model is confirmed. For the second
criterion of the out-of-sample fit of our model, we construct an equally weighted portfolio
from the five market indices and estimate its Value-at-Risk at the 10%, 5% and 1% level based
on our four model specifications. The portfolio VaR is shown graphically in Figure 3 Visually
it is difficult to see any differences between the four models, which is not surprising as they
are all based on the same volatility models. In Table [l we report the exceedance rate, as well
as the p-values of the dynamic quantile (DQ) test by Engle and Manganelli ( M), which tests
the correct coverage of the VaR and the i.i.d. ness of the exceedances. We apply the test with 0

lags in order to test the unconditional coverage of the VaR and with 4 lags to additionally test
the i.i.d. ness. The results show that all models except the time-constant RVine model perform
well in terms of the unconditional coverage. However, the i.i.d’ness of the VaR is rejected
for all four models for the 1% VaR. Thus it seems like the choice of the dependence model
has a relatively small influence on the quality of the VaR forecasts, as long as we allow for

time-variation in the dependence parameters.
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Figure 2: Marginal Kendal’s tau for weekly MSCI returns based on the SCAR-DVine, GAS-
DVine and DCC models in black, red and green, respectively.
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Figure 3: Value-at-Risk and realized returns for weekly MSCI returns based on the SCAR-
DVine, GAS-DVine, DCC and constant RVine models.
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Table 4: Value-at-Risk evaluation weekly MSCI returns

Exceedance rate EM-test 0 lags EM-test 4 lags
10% 5% 1% 10% 5% 1% 10% 5% 1%
SCAR-DVine 0.112 0.065 0.013 0.821 0.592 0.872 0.583 0449 0
GAS-DVine 0.095 0.060 0.013 0.536 0.444 0.890 0.973 0502 0
DCC 0.108 0.060 0.013 0.836 0.544 0.558 0.950 0484 0
RVine (constant) 0.116 0.082 0.022 0.538 0.036 0.063 0.897 0.045 0

Note: This table present the evaluation of the Value-at-Risk forecasts for weekly MSCI returns based on the out-
of-sample period May 7, 2009 until October 10, 2013. EM-test refers to the p-value of the dynamic quantile test

of [Engle and Manganglli M)

4.2 Daily returns on German stocks

In this section we provide an empirical illustration of the dynamic D-vine models. The dataset
we consider are daily returns from the stocks listed in the DAX30 index during the period from
the 1% of January 2008 to the 31°' of December 2013, giving a total of 1523 observations for 29
stocks that were included in the Dax over the whole sample period. The first 4 years of data
constitute the in-sample period, whereas the years 2012 and 2013 are used for the evaluation
of the forecasts. A list of the included companies is given in the Appendix. We decided for this
dataset to find a balance between demonstrating the possibility of high dimensional modeling
and the ability to still present the main results. Nevertheless, one could in principle consider
much larger dimensions, which we leave for future research.

Due to the high complexity of the model in 29 dimensions, we considered the restriction
of allowing potential time variation only on a limited (small) number of trees. We considered
this restriction from 1 to 12 trees, but we report only for the best fitting specification since
results are identical or at least very similar for many of those casesH Specifically, it turned out

6" tree is irrelevant, since there is no evidence of time

that making this restriction beyond the
variation on higher trees. A further possible restriction that may be made is to truncate the
vine beyond a certain tree, meaning that all conditional copulas are set to the independence
copula. In the current application we did not make this restriction because the independence
copula is included in the set of admissible models and the automatic selection by the BIC in

practice leads to a truncation. Nevertheless, for large dimensional applications truncation of

SFurther details regarding the model estimation such as parameter estimates or alternative specifications are

not presented in order to conserve space, but are available from the authors upon request.
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the vine should definitely be considered.

Table 5: SCAR-DVine and GAS-DVine model selection

Tree | time-varying time-constant # par
N G SG| I N C G SC SG
SCAR-DVine
1128 0 o0 o0 0 o0 0 o0 84
2| 2 0o 2 0 8 0 15 31
3] - - -1 5 0 11 0 9 25
4| - - -l 6 8 0 8 0 3 19
5|1 - - -l 6 8 0 6 2 2 18
6| - - -9 9 1 3 0 1 14
70 - - -l10 7 1 0 0 4 12
GAS-DVine
115 7 8 0 1.0 2 0 5 68
21 3 0 o0 8 0 8 0 8 33
3] - - -1 3 2 0 0 1 0 23
4 - - -1 6 13 0 3 0 3 19
51 - - -7 14 0 0 1 2 17

Note: Selected copulas on all trees of the dynamic DVine models. Time-variation was only permitted until the
third tree. The copulas on the unreported trees were all the independence copulas. The data were daily returns
on Dax30 stock prices for the period Jan 1, 2008 until Dec 31, 2011.

An overview over the selected copula families is given in Table[5] Note that we only report
the results for the model that restricts the time-variation to the first two trees, because this
specification gave the best overall fit and there was very little evidence for time-variation
beyond the second tree. For the SCAR model the Normal copula again dominates whenever
time-variation is found, whereas in the remaining cases other copulas are also selected quite
often. It is noticeable that on higher trees the independence copula tends to be selected quite
often. Thus we can conclude that the time-variation is sufficiently captured on the first two
trees of the model, whereas the overall dependence is captured by modeling the first 7 trees
and inserting an independence copula on the remaining trees of the model. This is remarkable
insofar as this suggests that is is possible to model much larger dimensional datasets, as the

essential information concerning the dependence is captured within relatively few trees and
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Table 6: In- and out-of-sample fit daily Dax returns

Model LL BIC Pred. LL # param.
SCAR-DVine 10195.17 -18986.86  5567.36 203
GAS-DVine 9200.46 -17294.72  4378.58 160
DCC 9984.34 -17147.47 4513.32 408

RVine (Constant) 10587.76 -18368.54 4128.80 406

Note: This table presents the in-sample and out-of-sample fit of the analyzed model for the daily Dax returns in
terms of log-likelihood (LL), Bayesian information criterion (BIC) and predictive log-likelihoood (Pred. LL). LL
and BIC are based on the period Jan 1, 2008 until Dec 31, 2011. Pred. LL is based on the out-of-sample period Jan

1, 2012 until Dec 31, 2013. The last column gives the total number of parameters of each model.

the vine can be truncated beyond the first 7-10 trees.

Table [6] presents the in-sample log-likelihood and BIC for our dynamic models, as well as
the Gaussian DCC copula model and the aforementioned static RVine model. For this dataset
the RVine model performs very well and has the largest log-likelihood. However, due to its
large numer of parameters (a total of 406) its BIC is larger than for the SCAR-DVine model.
The DCC and GAS-DVine models perform much worse in comparison.

Next, in the same fashion as in Section[d.Tlwe computed density forecasts for the remaining
two years of data, i.e. Jan 1, 2012 until Dec 31, 2013. The predictive log-likelihood suggests
that the SCAR model provides by far the best density forecasts, again followed by the DCC
model. The predictive log-likelihood of the RVine is the lowest, showing that this model is
perhaps overparametrized and/or that its structure is not stable over time. Finally, Value-at-
Risk forecasts are computed and backtested in the same way as for the MSCI returns. The
results in Table [7] show that the coverage rates are mostly below their nominal levels and no
model shows entirely satisfactory results. The results of the dynamic quantile test are equally
satisfactory for all models, so again in terms of forecasting the Value-at-Risk each of the four

models compared appear to be performing equally well.

5 Conclusions and further research

In light of the recent financial crisis, including the discussion of understanding systemic risk,
the need to understand time-varying effects not only within individual financial products but

also among groups of financial variables has been increasing. The developed D-Vine SCAR
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Table 7: Value-at-Risk evaluation daily Dax returns

Exceedance rate EM-test 0 lags EM-test 5 lags
10% 5% 1% 10% 5% 1% 10% 5% 1%
SCAR-DVINE 0.072 0.045 0.006 0.070 0.613 0.633 0.542 0.385 0.993
GAS-DVINE 0.070 0.039 0 0.056 0.453 0.074 0.405 0.838 0.985
DCC 0.076 0.047 0.016 0.055 0.745 0.172 0.560 0.527 0.076

Rvine (constant) 0.072 0.039 0.008 0.081 0.449 0.734 0.691 0.978 0.985

Note: This table present the evaluation of the Value-at-Risk forecasts for daily Dax returns based on the out-
of-sample period Jan 1, 2012 until Dec 31, 2013. EM-test refers to the p-value of the dynamic quantile test of
Engle and Mangangld (lM)

and GAS models are aiming to fill this demand. From a statistician’s point of view such a
model is demanding. First, a very flexible multivariate dependency model is required such as
the class of vine copulas and, secondly, an appropriate model for the time dependency of the
copula parameters has to found. Here we consider parameter driven and observation driven
approaches, but the former approach seems to be more suitable considering its superior in-
sample and out-of-sample fit.

While this approach leads to a relatively straightforward model formulation, the develop-
ment of efficient estimation procedures is much more difficult. Especially in high dimensions
maximum likelihood is infeasible, since it would require the maximization over integrals of
size equal to the data length. These integrals occur since we need to integrate over the la-

tent variable process to express the joint likelihood. This problem already occurs when we

consider bivariate SCAR models. One solution to this is to use efficient importance samilinf

RLQhar_d_an.d_Zhan.é |2£)le|) In addition, the pair copula construction approach of

_@) for multivariate copulas allows to express the likelihood in bivariate copula terms in

addition to a sequential formulation over the vine tree structure. This makes it feasible to
develop and implement efficient importance sampling for the D-vine SCAR model.

One interesting feature of the applications in this paper is that non-normal pair copulas
with constant parameters were replaced by normal pair copulas when time-varying copula pa-
rameters are allowed. This shows that the assumption of conditional normality is in fact in line
with the data whenever an appropriate model for the time-varying correlations is chosen. It
should also be noted that using dynamic D-vine specifications might migitate the misspecifica-

tion effects of using a simplified vine specification instead of a true underlying non simplified
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vine specification. In particular this might be the case when the effect of the conditioning

value on the pair copulas in higher trees arises from time varying conditioning variables.

In this paper we follow some approaches to model selection. We first restrict to a known

dependency structure given by a D-vine, but allow the copula family of each pair copula to

be chosen among a prespecified class of copula families in addition to the choice if a pair cop-

ula has time-varying parameters or not. For this we use BIC, although more sophisticated

criteria might be necessary. When considering larger dimensions, we also restrict the use of

time-varying pair copula parameters to a prespecified number of top trees. Here the approach

of truncated vines as developed in

) might be a good starting point to

choose this number in a data driven manner. As already mentioned, it is feasible to extend the

class of D-vine SCAR models to include R-vines as copula models. Finally the model uncer-

tainty introduced by assuming the marginal parameter estimates as true ones in the two-steﬁ
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approach has to be assessed in future research. However the simulation results of

) can be expected to remain valid for a copula model with time-varying parameters.



A Stocks in the DAX and their ordering

Company Ticker Symbol node in D-vine
Adidas ADS 24
Allianz ALV 8
BASF BAS 14
Bayer BAYN 16
Beiersdorf BEI 26
BMW BMW 19
Commerzbank CBK 10
Daimler DAI 18
Deutsche Bank DBK 9
Deutsche Borse DB1 3
Lufthansa LHA 11
Deutsche Post DPW 12
Deutsche Telekom DTE 5
E.ON EOAN 7
Fresenius FRE 29
Fresenius Medical Care FME 28
HeidelbergCement HEI 22
Henkel HEN3 25
Infineon Technologies  IFX 2
K+S SDF 1
Linde LIN 15
MAN MAN 20
Merck MRK 27
Metro MEO 4
Munich Re MUV2 17
RWE RWE 6
SAP SAP 23
Siemens SIE 13
ThyssenKrupp TKA 21

Table 8: DAX companies and their node position in the selected D-vine for the in-sample
period from the 1% of January 2008 until the 315 of December 2011.
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