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Ω

Dϕϕ(x)...ϕ(z)eiS [ϕ]

Expectation values are weighted averages 
over space-time histories

Dependencies on special events 
is only due to external choices
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⟨δbcϕ
b
(x)ϕc

( y)⟩

=∫
Ω

Dϕa eiS [ϕ ]
δbcϕ

b
(x)ϕc

( y)=0

● No longer invariant under gauge transformations
● Vanishes just as any other non-invariant quantity

[Review: Maas’17]
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Path integral and local symmetries

⟨ϕ
b
(x)ϕc

( y)⟩

=∫
Ωc

D ϕa DU W (U ,ϕ)eiS [ϕ ]
ϕ

b
(x)ϕc

( y)≠0

● Reduction of integration region by gauge fixing
● Arbitrary choice of coordinates
● Weight factor to keep gauge-invariant quantities the same

Reduced integration range

[Review: Maas’17]
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A toy model: Symmetries

● Consider an SU(2) with a fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaenous gauge symmetry 
breaking’: SU(2) → 1

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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The origin of the problem

● Elementary fields are gauge-dependent
● Change under a gauge transformation
● Gauge transformations are a human choice...
● ...and gauge-symmetry breaking is not there 

[Elitzur’75, Osterwalder & Seiler’77, Fradkin & Shenker’78]

● Just a figure of speech
● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities
● And this includes non-perturbative aspects…
● ...even at weak coupling [Gribov’78,Singer’78,Fujikawa’82]

[Fröhlich et al.'80,
 Banks et al.'79]
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]



How to make predictions

● JPC and custodial charge only quantum numbers

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods!

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods! - Lattice

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



Physical spectrum
Perturbation theory

M
a
ss

0

Scalar
fixed charge

Vector
gauge triplet

Both custodial singlets

Experiment tells that somehow the left is correct



Physical spectrum
Perturbation theory

M
a
ss

0

Scalar
fixed charge

Vector
gauge triplet

Both custodial singlets

W hW WW

WW

h

h

h

Composite (bound) states

Experiment tells that somehow the left is correct
Theory say the right is correct



Physical spectrum
Perturbation theory

M
a
ss

0

Scalar
fixed charge

Vector
gauge triplet

Both custodial singlets

W hW WW

WW

h

h

h

Composite (bound) states

Experiment tells that somehow the left is correct
Theory say the right is correct

There must exist a relation that both are correct
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Augmented perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17
 Maas & Sondenheimer ‘20]
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     0+ singlet:

2) Expand Higgs field around fluctuations
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Consequences: The Higgs [Maas'12,’17
 Maas & Sondenheimer’20,
 Maas et al. unpublished]

Same structure repeats itself
For decays and scattering processes
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● Two possibilities to 
measure extension
● Form factor

● Difficult
● Higgs and Z need to be 

both produced in the 
same process

● Elastic scattering
● Standard vector boson 
scattering process at 
low energies

● Use this one

h h

WZ

WZ

WZ

WZ

WZ

h

[Maas, Raubitzek, Törek’18]

[Jenny, Maas, Riederer’22]

Bound states as extended objects
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● Elastic region:
● s is the CMS energy in the initial/final 

ZZ/WW system
● Requires a partial wave analysis  

160 /180GeV⩽√s⩽250GeV
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=

1

64 π2 s
|M|2

M (s ,Ω)=16π∑J
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Scattering length~”size”
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Impact on the radius of the Higgs

● Reduced SM: Only W/Z and the Higgs
● Parameters slightly different 

● Higgs too heavy (145 GeV) and too strong weak 
coupling

● Qualitatively but not quantitatively [Jenny, Maas, Riederer’22,
 Maas’23]

Estimated Exclusion limits

Pretty
ok, still

CMS’22/ATLAS’23 constraint
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Generic behavior: DIS-like

Probes bound state
as a whole
2204.02756
1811.03395



Generic behavior: DIS-like

Probes FMS-dominant
contribution
2011.02301
2009.06671
2008.07813
1312.4873

h



Generic behavior: DIS-like

Probes other
Constituents
2212.08470
2110.07312
2002.01688
1701.02281

h h



Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Can this matter?
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● Flavor has two components
● Global SU(3) generation 
● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable
● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet
● Yukawa terms break custodial symmetry

● Different masses for doublet members

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]

⟨ ( ( h2
h1
∗

−h1
h2
∗ ) (
νL

lL ) )i(x)
+ ( ( (

h2
h1
∗

−h1
h2
∗ ) (
νL

lL ) ) j )( y)⟩
h=v+η
≈ v2 ⟨ (

νL

lL )i
(x) + (

νL

lL ) j
( y)⟩+O(η)



Flavor

● Flavor has two components
● Global SU(3) generation 
● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable
● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet
● Yukawa terms break custodial symmetry

● Different masses for doublet members
● Extends non-trivially to hadrons

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]
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Flavor on the lattice
● Only mock-up standard model

● Compressed mass scales
● One generation
● Degenerate leptons and 

neutrinos
● Dirac fermions: left/right-

handed non-degenerate
● Quenched

● Same qualitative outcome

● FMS construction
● Mass defect
● Flavor and custodial 

symmetry patterns
● Supports FMS prediction

[Afferrante,Maas,Sondenheimer,Törek’20]
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● Standard model is special
● Mapping of custodial symmetry to gauge 

symmetry
● Fits perfectly degrees of freedom

● Is this generally true?
● No: Depends on gauge group, 

representations, and custodial groups
● Can work sometimes (2HDM,MSSM) [Maas,Pedro’16, 

Maas,Schreiner’23]

● Generally qualitative differences

[Maas’15
 Maas, Sondenheimer, Törek’17]
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry

● Global U(1) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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lattice calculations [Maas et al.’16]
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ

8
⟩+...

h=v+η

[Maas & Törek’16]



What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμh)(x)(h + Dμh)( y)⟩

Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμh)(x)(h + Dμh)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)μ⟩+...

=v2 ⟨Wμ

8Wμ

8
⟩+...

h=v+η

[Maas & Törek’16]
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A different kind of states

● Group theory forced same gauge multiplets 
and custodial multiples for SU(2) 
● Because Higgs is bifundamental
● Remainder is bound state/resonance or not

● Now: Elementary states without analouge
● No global symmetry to provide multiplet 

structure
● Now: States without elementary analouge

● Gauge-invariant states from 3 Higgs fields
● Baryon analogue – U(1) acts as baryon number
● Lightest must exist and be absolutely stable



Possible new states

● Quantum numbers are JPC
Custodial



Possible new states

● Quantum numbers are JPC
Custodial

● Simpelst non-trivial state operator: 0++
1

ϵabcϕ
a Dμϕ

b DνDνDμ
ϕ

c



Possible new states

● Quantum numbers are JPC
Custodial

● Simpelst non-trivial state operator: 0++
1

● What is the lightest state?
● Prediction with constituent model

ϵabcϕ
a Dμϕ

b DνDνDμ
ϕ

c
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● Qualitatively different spectrum
● No mass gap!
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Possible states

● Quantum numbers are JPC
Custodial

● Simpelst non-trivial state operator: 0++
1

●

● What is the lightest state?
● Prediction with constituent model
● Lattice calulations
● All channels: J<3
● Aim: Ground state for each channel

● Characterization through scattering states

ϵabcϕ
a Dμϕ

b DνDνDμ
ϕ

c
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Spectrum

Third (dependent) scale from 
constituent analysis
(lighter gauge boson mass)

PRELIMINARY
[Dobson et al.’21]



Experimental consequences



Experimental consequences

● Add fundamental fermions

[Maas & Törek'18
 Maas'17]



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]

Physical resonance

Physical scattering
thresholds



Experimental consequences

● Add fundamental fermions
● Bhabha scattering
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Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]

Close to true structures identical!
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Bottom line for GUTs

● Toy models representative for mechanisms
● All results so far inconsistent with 

perturbation theory
● Consistent with FMS construction

● Different spectrum: Different phenomenology
● Application of FMS to GUT candidates: 

All checked failed [Maas et al.’17,Sondenheimer’19]

● SU(5), SO(10), Pati-Salam,…
● None found so far that works

● Depends on Higgs sector
● May still be possible (hopefully?)
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Quantum gravity

● Quantum gravity is a gauge theory
● Empirically dominated by a field configuration

● De Sitter/FLRW metric
● Observables need to be fully invariant

● Diffeomorphism and local Lorentz
● FMS mechanism applicable

● A ‘BEH effect’ for gravity
● Technically much more involved
● First predictions agree with dynamical 

triangulation results [Dai et al.’21]

[Maas’19,
 Maas, Markl, Müller’22]
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Supergravity

● Gravity and supersymmetry imply 
supergravity
● Supersymmetry becomes a local gauge 

symmetry
● Same reasoning: Observables need to 

be gauge invariant
➔ Observables cannot show supersymmetry
➔ Could explain absence of supersymmetry in 

experiment
● FMS mechanism as applicable as to 

quantum gravity

[Maas’23]
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Summary

● Full invariance necessary for physical 
observables in path integrals

● FMS mechanism allows estimates of 
quantum effects in a systematic 
expansion

● Gives a new perspective on particle 
physics and quantum gravity

Review: 1712.04721 Update: 2305.01960 
Philosophy of physics perspective: 2110.00616



Come to Graz!

Upcoming jobs advertisments:

Postdoc in this talk’s topic in January ‘24

Full professorship in particle physics in January’24

Upcoming workshops:

Parton Shower and Resummation in July ‘24

Philosophical Reflections on Gauge Symmetries in July’24

Graz 
Center of Physics

Now 2030
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