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Mysteries of the standard model

● Why is the hydrogen atom electrical 
neutral?

● No coupling universality for Abelian charges
● But necessary to cancel gauge anomalies

● Why are gauge symmetries except the 
strong are linked to the Higgs?

● Gauging of the SU(2)xU(1) subgroup of the 
O(4) Higgs global symmetry

● Why do all gauge couplings become 
similarly strong at about the same 
energy of ~1015 GeV?
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Grand-unified theories

● Could all be emergent features?
● Scenario: Only one gauge interaction

● Grand unification
● Standard model low-energy effective theory

● Standard scenario of double breaking
● Two Brout-Englert-Higgs effect
● One breaks at 1015 GeV
● The other at the electroweak scale
● Requires at least one more Higgs

● Other particle content scenario-dependent
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Consequences and status

● Requires leptoquarks
● Surplus gauge bosons
● Connects necessarily quarks and leptons

● One gauge group only!
● Color cannot be distinguished from 
electroweak charges

● Violating baryon number and lepton 
number separately

● → Lepton flavor universality violations?
● Many (simple) scenarios ruled out…
● ...but many more alive (w or w/o SUSY)



What’s the deal?
-

Gauge symmetry
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● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaenous gauge symmetry 
breaking’: SU(2) → 1

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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The origin of the problem

● Elementary fields are gauge-dependent
● Change under a gauge transformation
● Gauge transformations are a human choice...
● ...and gauge-symmetry breaking is not there 

[Elitzur’75, Osterwalder & Seiler’77, Fradkin & Shenker’78]

● Just a figure of speech
● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities

● And this includes non-perturbative aspects…
● ...even at weak coupling [Gribov’78,Singer’78,Fujikawa’82]

[Fröhlich et al.'80,
 Banks et al.'79]
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods! - Lattice

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Augmented perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

Exactly one gauge boson 
for every physical state

Matrix from
group structure

c projects custodial
states to gauge
states

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩=v2cij
ab

⟨Wμ

a
(x)W b

( y)
μ
⟩+...

=v2 ⟨W μ

i W μ

j
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h=v+η

[Fröhlich et al.’80,’81
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⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
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η⟩+⟨η

+2
η
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1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17
 Maas & Sondenheimer’20]
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1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

What about
this?

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17
 Maas & Sondenheimer’20]
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Generic behavior: DIS-like

0 200 400 600 800 1000
(s - sthreshold)
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Probes other
Constituents
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2002.01688
1701.02281

h h

Note: Works also with fermions [Afferrante et al.’20]
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● Standard model is special
● Mapping of custodial symmetry to gauge 

symmetry
● Fits perfectly degrees of freedom

● Is this generally true?
● No: Depends on gauge group, 

representations, and custodial groups
● Can work sometimes (2HDM) [Maas,Pedro’16]

● Generally qualitative differences

[Maas’15
 Maas, Sondenheimer, Törek’17]
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● Consider an SU(3) with a single fundamental scalar
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● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry

● Global U(1) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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lattice calculations [Maas et al.’16]
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩

Matrix from
group structure

cab projects out
only one field
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩

Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩=v2cab
⟨Wμ

a
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( y)
μ
⟩+...
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⟩+...

h=v+η

[Maas & Törek’16]
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A different kind of states

● Group theory forced same gauge multiplets 
and custodial multiples for SU(2) 

● Because Higgs is bifundamental
● Remainder is bound state/resonance or not

● Now: Elementary states without analouge
● No global symmetry to provide multiplet 

structure
● Now: States without elementary analouge

● Gauge-invariant states from 3 Higgs fields
● Baryon analogue – U(1) acts as baryon number
● Lightest must exist and be absolutely stable
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Possible new states

● Quantum numbers are JPC
Custodial

● Simpelst non-trivial state operator: 0++
1

● What is the lightest state?
● Prediction with constituent model

ϵabc ϕ
a Dμ ϕ

b Dν Dν Dμ
ϕ

c
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● Qualitatively different spectrum
● No mass gap!
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● Simpelst non-trivial state operator: 0++
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Possible states

● Quantum numbers are JPC
Custodial

● Simpelst non-trivial state operator: 0++
1

●

● What is the lightest state?
● Prediction with constituent model
● Lattice calulations
● All channels: J<3
● Aim: Ground state for each channel

● Characterization through scattering states

ϵabc ϕ
a Dμ ϕ

b Dν Dν Dμ
ϕ

c
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Technical details

● Standard lattice discretization [Dobson et al.’21]

● Pseudo-Heatbath
● Flexible code for adjoint/fundamental Higgs

● Variational analysis [Jenny et al.’22]

● Extreme statistical fluctuations
● APE smearing
● Pre-/postseelection of operator basis

● Fitting uses a predictor for plateaus
● Substantial improvement compared to cosh

● Comparison to possible scattering states
● Infinite volume analysis
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Spectrum
QCD-like → BEH-like

Change from scalars to vectors – like in SU(2)

PRELIMINARY
[Dobson et al.’21]
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What about the photon?

● Spectrum gapped
● OK for strong interactions (confinement)
● But there should be a photon

● Photon also member of non-Abelian multiplet
● Same arguments – need a gauge-invariant 
state

● Massless composite vector boson!
● Made from massive objects

● Without associated symmetry
● Not a Goldstone of dilation symmetry breaking, 
like SM photon

[Maas et al.’17]



A massless composite vector

● Appears impossible with a fundamental 
Higgs [Maas et al.’17, Sondenheimer’20] 



A massless composite vector

● Appears impossible with a fundamental 
Higgs [Maas et al.’17, Sondenheimer’20] 

● Possible with an adjoint Higgs



Simpelst case

● SU(2) with an adjoint Higgs
● Breaks by BEH to a U(1)



Simpelst case

● SU(2) with an adjoint Higgs
● Breaks by BEH to a U(1)
● Massless gauge boson
● Two massive gauge boson
● One massive scalar

Gauge-dependent

M
a
ss

0

Vector Scalar



Simpelst case

● SU(2) with an adjoint Higgs
● Breaks by BEH to a U(1)
● Massless gauge boson
● Two massive gauge boson
● One massive scalar

● Should happen at 
arbitrary weak coupling

● Check by calculating running coupling
● MiniMOM scheme

Gauge-dependent

M
a
ss

0

Vector Scalar



Simpelst case

● SU(2) with an adjoint Higgs
● Breaks by BEH to a U(1)
● Massless gauge boson
● Two massive gauge boson
● One massive scalar

● Should happen at 
arbitrary weak coupling

● Check by calculating running coupling
● MiniMOM scheme

● Massless state: Autocorrelation bad!

Gauge-dependent

M
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A massless composite vector

● Appears impossible with a fundamental 
Higgs [Maas et al.’17, Sondenheimer’20] 

● Possible with an adjoint Higgs
● Simplest operator

● Creates only a state in a moving frame
● Indications existed early on [Lee et al.’85]

● Seen also in 3d [Kajantie et al.’98]

● FMS: Massless state [Maas et al.’17]

pν

p2
tr (ϕa

τ
a Fμ ν)=v ( Aμ

3
)

T
+O(v0)



Result: Gauge-dependent
[Afferrante et al.’20]



Result: Gauge-dependent
[Afferrante et al.’20]

Gauge coupling between
massive gauge bosons

Gauge coupling to
massless gauge bosons
- still small



Result: Gauge-dependent
[Afferrante et al.’20]

Gauge coupling between
massive gauge bosons

Gauge coupling to
massless gauge bosons
- still small



Result: Gauge-dependent
[Afferrante et al.’20]

Gauge coupling between
massive gauge bosons

Massive behavior

Gauge coupling to
massless gauge bosons
- still small

Massless behavior



Result
[Afferrante et al.’20]

No massive states seen yet – but no suitable methods available 
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What happens in a ‘real’ GUT?

● Multiple breaking patterns possible
● Simplest is SU(5)
● Potentially gauge-

dependent!
● SU(2): no physical 
distinction even 
between QCD 
region and 
BEH region

● BEH effect switches  
on as a function of gauge

● What is the physical realization?
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Coulomb gauge
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[Fradkin & Shenker'78
 Seiler & Osterwalder’77
 Caudy & Greensite'07]
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Toy model

● SU(3)+adjoint Higgs
● Two Possible breaking patterns

● SU(2)xU(1) and U(1)xU(1)

● Z2 global symmetry

● Simplest theory with multiple breaking 
patterns

● How to even physically characterize 
patterns?

● Not possible, gauge-dependent
● Can any pattern be forced by gauge-fixing?

[Maas et al.’17]
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Different relevant quantities

● Global symmetry: Order parameter

● Local symmetry: Characterize Higgs vev

● Angle and vev give gauge boson masses
● No gauge transformations connects Cartans

● Cannot be chosen arbitrarily by gauge fixing
● Only special angles give SU(2)xU(1)
● All others give U(1)xU(1)

● Possible vevs fixed by dynamics

⟨(∑x
det ϕ(x))

2
⟩

ϕ
g
=v(λ

3cosω+λ
8 sinω)
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Depends on gauge –
in certain gauges there is

always a BEH effect!

[Dobson et al.’21, in prep]

Modification at loop order

Fixed value of w 
by gauge condition

Perturbation theory



Expectations vs. reality

Depends on gauge –
in certain gauges there is

always a BEH effect!

“Gauge as perturbative 
as possible”

[Dobson et al.’21, in prep]

Modification at loop order

Fixed value of w 
by gauge condition

Perturbation theory



Expectations vs. reality [Dobson et al.’21, in prep]



Expectations vs. reality [Dobson et al.’21, in prep]

Every configuration has its
“own” breaking direction,
and cannot be forced to the
perturbative one!



Expectations vs. reality [Dobson et al.’21, in prep]

Averaging yields a quantum
effective potential with unique
minimum, giving overall pattern
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Consequences

● Relation between parameters and 
breaking pattern may be different than 
in perturbation theory

● Different spectrum
● Both in perturbation theory and FMS

● Spectrum predicted differently by FMS
● As in the fundamental case

● Future: Needs to be checked
● Difficult due to massless vector bosons
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Bottom line for GUTs

● Toy models representative for mechanisms
● All results so far inconsistent with 

perturbation theory
● Consistent with FMS construction

● Different spectrum: Different phenomenology
● Application of FMS to GUT candidates: 

All checked failed [Maas et al.’17,Sondenheimer’19]

● SU(5), SO(10), Pati-Salam,…
● None found so far that works

● Depends on Higgs sector
● May still be possible (hopefully?)
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Summary: GUTs are different

● Gauge invariance is central
● Qualitative different results in GUTs

● Invalidates most scenarios
● SM special

● Augmentation with FMS a possibility
● Lattice tests successful

● Nature of most particles different
● Extension to fermions impacts experiments 

[Maas et al.’21, Afferrante et al.’20, Fernbach et al.’20, Egger et al.’17]

Review: 1712.04721@axelmaas
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