Composite Massless Vector Bosons

 And other surprises in GUTs

 And other surprises in GUTs}

Axel Maas

$4^{\text {th }}$ of July 2022
Zeuthen/Online
Germany

NAWI Graz

Natural Sciences

Der Wissenschaftsfonds.

What is this talk about?

- Why to care about GUTs?

What is this talk about?

-Why to care about GUTs?

- Gauge invariance and the Brout-Englert Higgs effect

What is this talk about?

-Why to care about GUTs?

- Gauge invariance and the Brout-Englert Higgs effect
- The standard model is special

What is this talk about?

-Why to care about GUTs?

- Gauge invariance and the Brout-Englert Higgs effect
- The standard model is special
- Implications for GUTs
- Spectrum and compositness
- Breaking patterns

What is this talk about?

-Why to care about GUTs?

- Gauge invariance and the Brout-Englert Higgs effect
- The standard model is special
- Implications for GUTs
- Spectrum and compositness
- Breaking patterns
- Where to go from here

Mysteries of the standard model

- Why is the hydrogen atom electrical neutral?
- No coupling universality for Abelian charges
- But necessary to cancel gauge anomalies

Mysteries of the standard model

- Why is the hydrogen atom electrical neutral?
- No coupling universality for Abelian charges
- But necessary to cancel gauge anomalies
- Why are gauge symmetries except the strong are linked to the Higgs?
- Gauging of the $\operatorname{SU}(2) \times U(1)$ subgroup of the O(4) Higgs global symmetry

Mysteries of the standard model

- Why is the hydrogen atom electrical neutral?
- No coupling universality for Abelian charges
- But necessary to cancel gauge anomalies
- Why are gauge symmetries except the strong are linked to the Higgs?
- Gauging of the $\operatorname{SU}(2) \times U(1)$ subgroup of the O(4) Higgs global symmetry
- Why do all gauge couplings become similarly strong at about the same energy of $\sim 10^{15} \mathrm{GeV}$?

Grand-unified theories

- Could all be emergent features?

Grand-unified theories

- Could all be emergent features?
- Scenario: Only one gauge interaction
- Grand unification
- Standard model low-energy effective theory

Grand-unified theories

- Could all be emergent features?
- Scenario: Only one gauge interaction
- Grand unification
- Standard model low-energy effective theory
- Standard scenario of double breaking
- Two Brout-Englert-Higgs effect
- One breaks at $10^{15} \mathrm{GeV}$
- The other at the electroweak scale
- Requires at least one more Higgs
- Other particle content scenario-dependent

Consequences and status

- Requires leptoquarks
- Surplus gauge bosons
- Connects necessarily quarks and leptons
- One gauge group only!
- Color cannot be distinguished from electroweak weak charges

Consequences and status

- Requires leptoquarks
- Surplus gauge bosons
- Connects necessarily quarks and leptons
- One gauge group only!
- Color cannot be distinguished from electroweak charges
- Violating baryon number and lepton number separately
- \rightarrow Lepton flavor universality violations?

Consequences and status

- Requires leptoquarks
- Surplus gauge bosons
- Connects necessarily quarks and leptons
- One gauge group only!
- Color cannot be distinguished from electroweak charges
- Violating baryon number and lepton number separately
$\bullet \rightarrow$ Lepton flavor universality violations?
- Many (simple) scenarios ruled out

Consequences and status

- Requires leptoquarks
- Surplus gauge bosons
- Connects necessarily quarks and leptons
- One gauge group only!
- Color cannot be distinguished from electroweak charges
- Violating baryon number and lepton number separately
$\bullet \rightarrow$ Lepton flavor universality violations?
- Many (simple) scenarios ruled out...
- ...but many more alive (w or w/o SUSY)

What's the deal?
 Gauge symmetry

A toy model

A toy model: Higgs sector of the SM

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Coupling g and some numbers $f^{a b c}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$
- Global SU(2) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow h \Omega$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Physical spectrum

Perturbation theory
$0 \quad$ Mass

Physical spectrum

Perturbation theory
Scalar
$\backsim \Delta$ fixed charge

Custodial singlet

Physical spectrum

Perturbation theory

Scalar Vector

$\backsim \wedge$ fixed charge gauge triplet

- Both custodial singlets

The origin of the problem

- Elementary fields are gauge-dependent

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects...
- ...even at weak coupling [Gribov'7, Singeri7, fujikawa'82]

Physical states

- Need physical, gauge-invariant particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W
(W) W

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Can this matter?

How to make predictions

- JPC and custodial charge only quantum numbers

How to make predictions

- J ${ }^{\text {PC }}$ and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods!

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice

Physical spectrum

Perturbation theory

Scalar Vector

\backsim « fixed charge gauge triplet

- Both custodial singlets

Experiment tells that somehow the left is correct

Physical spectrum
Perturbation theory
Composite (bound) states
n ${ }^{\wedge}$ fixed charge gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct

Physical spectrum
Perturbation theory
Composite (bound) states
$\backsim \wedge$ fixed charge gauge triplet

Scalar	Vector
$\sim \Delta$ fixed charge	gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct There must exist a relation that both are correct

Physical spectrum

Perturbation theory

«^ fixed charge gauge triplet

Composite (bound) states Require non-perturbative methods

Experiment tells that somehow the left is correct Theory say the right is correct There must exist a relation that both are correct

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet
Mass

- Both custodial singlets

$$
h(x)^{+} h(x) \quad \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singlet- Both custodial singlets Custodial singlet

$$
h(x)^{+} h(x) \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { dixed charge gauge triplet }}$

Gauge-invariant
Scalar singlet

- Both custodial singlets Custodial singlet

Physical spectrum

Both custodial singlets Custodial singlet

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet

$$
\operatorname{trt}^{a} \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet Triplet

$$
\operatorname{tr} @ \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { d }}$ fixed charge gauge triplet

Gauge-invariant
Scalar singlet

Equal!

Custodial singlet Triplet
Vector
singlet

Both custodial singlets

A microscopic mechanism

Why on-shell is important

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH
- Perform double expansion ${ }_{\text {FFroblich etal: } 80, \text { Mas }{ }^{122]}}$
- Vacuum expectation value (FMS mechanism)
- Standard expansion in couplings
- Together: Augmented perturbation theory

Augmented perturbation theory

1) Formulate gauge-invariant operator

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Higgs field

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state
4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

Higgs mass
4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& \quad+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

4) Compare poles on both sides

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator

$$
1^{-} \text {triplet: }\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\sharp} h\right)(x)\left(\tau^{j} h^{+} D_{\sharp} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\sharp}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{u}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{\mu}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure
c projects custodial states to gauge states

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots
$$

c projects custodial states to gauge states

Exactly one gauge boson for every physical state

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

Mrohlich et al.'80,'81
Maas \& Sond

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle
$$

What about this?
3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Generic behavior: DIS-like

Generic behavior: DIS-like

Note: Works also with fermions [Afferrante et al.'20]

Generic behavior: DIS-like

Note: Works also with fermions [Afferante etal:20]

Generic behavior: DIS-like

Note: Works also with fermions [Afferrante et al.'20]

Generic behavior: DIS-like

Note: Works also with fermions [Afferrante et al.'20]

Generic behavior: DIS-like

Note: Works also with fermions [Afferante etal:20]

Generic behavior: DIS-like

Note: Works also with fermions [Afferante e tal: 20$]$

New physics

Qualitative changes

Beyond the standard model

- Standard model is special

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups
- Can work sometimes (2HDM) (Massededoen)

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups
- Can work sometimes (2HDM) (Masseatoroce)
- Generally qualitative differences

A toy model

- Consider an SU(3) with a single fundamental scalar

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws $W_{\mu}^{a} W$
- Coupling g and some numbers $f^{a b c}$

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(3) gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(3) gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$
- Global U(1) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow \exp (i a) h$

Spectrum

Gauge-dependent
Vector

‘SU(3) \rightarrow SU(2)'

Spectrum

Gauge-dependent
Vector Scalar

Spectrum

Gauge-dependent
Vector Scalar

Confirmed in gauge-fixed lattice calculations [Maas etal:16]

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-invariant
Vector singlet

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1 singlet

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{u} h\right)(x)\left(h^{+} D_{u} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{u}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
\left\langle(h ^ { + } D _ { \mu } h) (x) \left(h^{+}\right.\right. & \left.\left.D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y){ }^{u}\right\rangle+\ldots \\
& =v^{2}\left\langle W_{\mu}^{8} W_{\mu}^{8}\right\rangle+\ldots
\end{aligned}
$$

Matrix from group structure
$c^{a b}$ projects out only one field

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
&\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
&=v^{2}\left\langle W_{\mu}^{8} W_{\mu}^{8}\right\rangle+\ldots \begin{array}{l}
\text { Matrix from } \\
\text { group structure }
\end{array}
\end{aligned}
$$

$c^{a b}$ projects out only one field

Only one state remains in the spectrum at mass of gauge boson 8 (heavy singlet)

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not
- Now: Elementary states without analouge
- No global symmetry to provide multiplet structure

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not
- Now: Elementary states without analouge
- No global symmetry to provide multiplet structure
- Now: States without elementary analouge
- Gauge-invariant states from 3 Higgs fields
- Baryon analogue - U(1) acts as baryon number
- Lightest must exist and be absolutely stable

Possible new states

- Quantum numbers are J ${ }_{\text {Custodial }}$

Possible new states

- Quantum numbers are J ${ }^{\mathrm{PC}}$ Custodial
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$ $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{\nu} D^{\mu} \phi^{c}$

Possible new states

- Quantum numbers are J ${ }^{\mathrm{PC}}$ Custodial
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$ $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model

Gauge-dependent
Vector Scalar

Gauge-invariant
Scalar Scalar Vector singlet non-singlet singlet

Gauge-dependent Vector Scalar

Gauge-invariant
Scalar Scalar Vector Vector singlet non-singlet singlet non-singlet

$2 x$

Gauge-dependent Vector Scalar

Gauge-invariant Scalar Scalar Vector Vector singlet non-singlet singlet non-singlet

- Qualitatively different spectrum
- No mass gap!

Possible states

- Quantum numbers are ${ }^{\mathrm{PC}}{ }_{\text {Custodial }}$
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$
- $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model
- Lattice calulations

Possible states

- Quantum numbers are ${ }^{\mathrm{PC}}{ }_{\text {Custodial }}$
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$
- $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model
- Lattice calulations
- All channels: J<3
- Aim: Ground state for each channel
- Characterization through scattering states

Technical details

- Standard lattice discretization ${ }_{\text {Iobsson etal:21] }}$
- Pseudo-Heatbath
- Flexible code for adjoint/fundamental Higgs

Technical details

- Standard lattice discretization ${ }_{\text {Iobsson etal:21] }}$
- Pseudo-Heatbath
- Flexible code for adjoint/fundamental Higgs
- Variational analysis Jemyyetal:22]
- Extreme statistical fluctuations
- APE smearing
- Pre-/postseelection of operator basis
- Fitting uses a predictor for plateaus
- Substantial improvement compared to cosh

Technical details

- Standard lattice discretization ${ }_{\text {Iobsson etal:21] }}$
- Pseudo-Heatbath
- Flexible code for adjoint/fundamental Higgs
- Variational analysis Jenny etal:22]
- Extreme statistical fluctuations
- APE smearing
- Pre-/postseelection of operator basis
- Fitting uses a predictor for plateaus
- Substantial improvement compared to cosh
- Comparison to possible scattering states
- Infinite volume analysis
8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

8.433600-0.488003-9.544000

PRELIMINARY
[Dobson et al.'21]

8.433600-0.488003-9.544000

PRELIMINARY
[Dobson et al.'21]

8.433600-0.488003-9.544000

PRELIMINARY

8.433600-0.488003-9.544000

Spectrum

PRELIMINARY

[Dobson et al.'21]
8.353950-0.407782-7.748300

6.472300-0.459049-5.750400

8.393775-0.447893-8.646150

6.663825-0.457562-4.046000

8.433600-0.488003-9.544000

6.855350-0.456074-2.341600

PRELIMINARY
[Dobson et al.'21]

QCD-like \rightarrow BEH-like

8.353950-0.407782-7.748300

6.472300-0.459049-5.750400

8.393775-0.447893-8.646150

6.663825-0.457562-4.046000

8.433600-0.488003-9.544000

6.855350-0.456074-2.341600

PRELIMINARY
[Dobson et al.'21]

QCD-like \rightarrow BEH-like

8.353950-0.407782-7.748300

6.472300-0.459049-5.750400

8.393775-0.447893-8.646150

6.663825-0.457562-4.046000

8.433600-0.488003-9.544000

6.855350-0.456074-2.341600

Change from scalars

PRELIMINARY
[Dobson et al.'21]

QCD-like \rightarrow BEH-like

8.353950-0.407782-7.748300

6.472300-0.459049-5.750400

8.393775-0.447893-8.646150

6.663825-0.457562-4.046000

8.433600-0.488003-9.544000

6.855350-0.456074-2.341600

Change from scalars to vectors

PRELIMINARY
[Dobson et al.'21]

QCD-like \rightarrow BEH-like

8.353950-0.407782-7.748300

6.472300-0.459049-5.750400

8.393775-0.447893-8.646150

6.663825-0.457562-4.046000

8.433600-0.488003-9.544000

6.855350-0.456074-2.341600

Change from scalars to vectors - like in SU(2)

What about the photon?

- Spectrum gapped
- OK for strong interactions (confinement)

What about the photon?

- Spectrum gapped
- OK for strong interactions (confinement)
- But there should be a photon

What about the photon?

- Spectrum gapped
- OK for strong interactions (confinement)
- But there should be a photon
- Photon also member of non-Abelian multiplet
- Same arguments - need a gauge-invariant state

What about the photon?

- Spectrum gapped
- OK for strong interactions (confinement)
- But there should be a photon
- Photon also member of non-Abelian multiplet
- Same arguments - need a gauge-invariant state
- Massless composite vector boson!
- Made from massive objects

What about the photon?

- Spectrum gapped
- OK for strong interactions (confinement)
- But there should be a photon
- Photon also member of non-Abelian multiplet
- Same arguments - need a gauge-invariant state
- Massless composite vector boson!
- Made from massive objects
- Without associated symmetry
- Not a Goldstone of dilation symmetry breaking, like SM photon

A massless composite vector

- Appears impossible with a fundamental Higgs mase etal:17, sondemenemerer 20)

A massless composite vector

- Appears impossible with a fundamental Higgs masas etal:17, sondemenemerer 20]
- Possible with an adjoint Higgs

Simpelst case

- $\operatorname{SU}(2)$ with an adjoint Higgs
- Breaks by BEH to a U(1)

Simpelst case

- SU(2) with an adjoint Higgs
- Breaks by BEH to a U(1)
- Massless gauge boson
- Two massive gauge boson
- One massive scalar

Gauge-dependent

 Vector Scalar
Simpelst case

Gauge-dependent

 Vector Scalar- $\operatorname{SU}(2)$ with an adjoint Higgs \sum^{n}
- Breaks by BEH to a U(1)
- Massless gauge boson
- Two massive gauge boson
- One massive scalar
- Should happen at arbitrary weak coupling
- Check by calculating running coupling
- MiniMOM scheme

Simpelst case

Gauge-dependent

 Vector Scalar- $\operatorname{SU}(2)$ with an adjoint Higgs \sum^{n}
- Breaks by BEH to a U(1)
- Massless gauge boson
- Two massive gauge boson
- One massive scalar
- Should happen at arbitrary weak coupling
- Check by calculating running coupling - MiniMOM scheme
- Massless state: Autocorrelation bad!

A massless composite vector

- Appears impossible with a fundamental Higgs masas etal:17, sondemenemerer 20]
- Possible with an adjoint Higgs
- Simplest operator

$$
\frac{p_{v}}{p^{2}} \operatorname{tr}\left(\phi^{a} \tau^{a} F_{\mu \nu}\right)
$$

A massless composite vector

- Appears impossible with a fundamental Higgs [mase etal:17, sondenenemerer 20]
- Possible with an adjoint Higgs
- Simplest operator

$$
\frac{p_{v}}{p^{2}} \operatorname{tr}\left(\phi^{a} \tau^{a} F_{\mu \nu}\right)
$$

- Creates only a state in a moving frame
- Indications existed early on
- Seen also in 3d Kramante eta:ses

A massless composite vector

- Appears impossible with a fundamental Higgs [mase etal:17, sondentemener 20]
- Possible with an adjoint Higgs
- Simplest operator

$$
\frac{p_{v}}{p^{2}} \operatorname{tr}\left(\phi^{a} \tau^{a} F_{\mu \nu}\right)=v\left(A_{\mu}^{3}\right)^{T}+O\left(v^{0}\right)
$$

- Creates only a state in a moving frame
- Indications existed early on
- Seen also in 3d Kkamante eta/:98
- FMS: Massless state

Result: Gauge-dependent

Result: Gauge-dependent

Gauge coupling to massless gauge bosons

- still small

Gauge coupling between massive gauge bosons

Result: Gauge-dependent

Gauge coupling to massless gauge bosons

- still small

Gauge coupling between massive gauge bosons

Result: Gauge-dependent

Gauge coupling to massless gauge bosons

- still small

Gauge coupling between massive gauge bosons

Massless behavior

Massive behavior

No massive states seen yet - but no suitable methods available

What happens in a 'real' GUT?

- Multiple breaking patterns possible
- Simplest is SU(5)

What happens in a 'real' GUT?

- Multiple breaking patterns possible
- Simplest is SU(5)
- Potentially gaugedependent!

What happens in a 'real' GUT?

- Multiple breaking patterns possible
- Simplest is SU(5)
- Potentially gaugedependent!
- SU(2): no physical distinction even between QCD region and BEH region
- BEH effect switches on as a function of gauge

What happens in a 'real' GUT?

- Multiple breaking patterns possible
- Simplest is SU(5)
- Potentially gauge- 总 crossover

Higgs "phase" dependent!
-SU(2): no physical distinction even between QCD region and BEH region

- BEH effect switches on as a function of gauge
- What is the physical realization?

Toy model

- SU(3)+adjoint Higgs

Toy model

- SU(3)+adjoint Higgs
- Two Possible breaking patterns
- $\operatorname{SU}(2) \times U(1)$ and $U(1) x U(1)$

Toy model

- SU(3)+adjoint Higgs
- Two Possible breaking patterns
- $\operatorname{SU}(2) \times U(1)$ and $\mathrm{U}(1) \times U(1)$
- Z_{2} global symmetry

Toy model

- SU(3)+adjoint Higgs
- Two Possible breaking patterns
- $\operatorname{SU}(2) \times U(1)$ and $\mathrm{U}(1) \mathrm{xU}(1)$
- Z_{2} global symmetry
- Simplest theory with multiple breaking patterns

Toy model

- SU(3)+adjoint Higgs
- Two Possible breaking patterns
- $\operatorname{SU}(2) \times U(1)$ and $\mathrm{U}(1) \mathrm{xU}(1)$
- Z_{2} global symmetry
- Simplest theory with multiple breaking patterns
- How to even physically characterize patterns?

Toy model

- SU(3)+adjoint Higgs
- Two Possible breaking patterns
- $\operatorname{SU}(2) \times U(1)$ and $\mathrm{U}(1) \mathrm{xU}(1)$
- Z_{2} global symmetry
- Simplest theory with multiple breaking patterns
- How to even physically characterize patterns?
- Not possible, gauge-dependent
-Can any pattern be forced by gauge-fixing?

Different relevant quantities

- Global symmetry: Order parameter
$\left\langle\left(\sum_{x} \operatorname{det} \phi(x)\right)^{2}\right\rangle$

Different relevant quantities

- Global symmetry: Order parameter

$$
\left\langle\left(\sum_{x} \operatorname{det} \phi(x)\right)^{2}\right\rangle
$$

- Local symmetry: Characterize Higgs vev

$$
\phi^{g}=v\left(\lambda^{3} \cos \omega+\lambda^{8} \sin \omega\right)
$$

Different relevant quantities

- Global symmetry: Order parameter

$$
\left\langle\left(\sum_{x} \operatorname{det} \phi(x)\right)^{2}\right\rangle
$$

- Local symmetry: Characterize Higgs vev

$$
\phi^{g}=v\left(\lambda^{3} \cos \omega+\lambda^{8} \sin \omega\right)
$$

- Angle and vev give gauge boson masses

Different relevant quantities

- Global symmetry: Order parameter

$$
\left\langle\left(\sum_{x} \operatorname{det} \phi(x)\right)^{2}\right\rangle
$$

- Local symmetry: Characterize Higgs vev

$$
\phi^{g}=v\left(\lambda^{3} \cos \omega+\lambda^{8} \sin \omega\right)
$$

- Angle and vev give gauge boson masses
- No gauge transformations connects Cartans
- Cannot be chosen arbitrarily by gauge fixing
- Only special angles give $\operatorname{SU}(2) x U(1)$
- All others give $\mathrm{U}(1) \mathrm{xU}(1)$

Different relevant quantities

- Global symmetry: Order parameter

$$
\left\langle\left(\sum_{x} \operatorname{det} \phi(x)\right)^{2}\right\rangle
$$

- Local symmetry: Characterize Higgs vev

$$
\phi^{g}=v\left(\lambda^{3} \cos \omega+\lambda^{8} \sin \omega\right)
$$

- Angle and vev give gauge boson masses
- No gauge transformations connects Cartans
- Cannot be chosen arbitrarily by gauge fixing
- Only special angles give $\operatorname{SU}(2) x U(1)$
- All others give $U(1) x U(1)$
- Possible vevs fixed by dynamics

Expectations vs. reality

Expectations vs. reality

Fixed value of ω by gauge condition

Expectations vs. reality

Modification at loop order

Fixed value of ω by gauge condition

Expectations vs. reality

Modification at loop order

Fixed value of ω by gauge condition

Expectations vs. reality

Modification at loop order

Fixed value of ω by gauge condition

Depends on gauge in certain gauges there is always a BEH effect!

Expectations vs. reality

Modification at loop order

Fixed value of ω by gauge condition

Depends on gauge in certain gauges there is always a BEH effect!
"Gauge as perturbative as possible"

Expectations vs. reality

Expectations vs. reality

Every configuration has its "own" breaking direction, and cannot be forced to the perturbative one!

Expectations vs. reality

Averaging yields a quantum effective potential with unique minimum, giving overall pattern

Consequences

- Relation between parameters and breaking pattern may be different than in perturbation theory
- Different spectrum
- Both in perturbation theory and FMS

Consequences

- Relation between parameters and breaking pattern may be different than in perturbation theory
- Different spectrum
- Both in perturbation theory and FMS
- Spectrum predicted differently by FMS
- As in the fundamental case

Consequences

- Relation between parameters and breaking pattern may be different than in perturbation theory
- Different spectrum
- Both in perturbation theory and FMS
- Spectrum predicted differently by FMS
- As in the fundamental case
- Future: Needs to be checked
- Difficult due to massless vector bosons

Bottom line for GUTs

Bottom line for GUTs

- Toy models representative for mechanisms

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates:

- SU(5), SO(10), Pati-Salam,...

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates:

All checked failed [Mas etal:17, Sondenheimer'19]

- SU(5), SO(10), Pati-Salam,...
- None found so far that works

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector
- May still be possible

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector
- May still be possible (hopefully?)

Summary: GUTs are different

- Gauge invariance is central

Summary: GUTs are different

- Gauge invariance is central
- Qualitative different results in GUTs
- Invalidates most scenarios
- SM special

Summary: GUTs are different

- Gauge invariance is central
- Qualitative different results in GUTs
- Invalidates most scenarios
- SM special
- Augmentation with FMS a possibility
- Lattice tests successful

Summary: GUTs are different

- Gauge invariance is central
- Qualitative different results in GUTs
- Invalidates most scenarios
- SM special
- Augmentation with FMS a possibility
- Lattice tests successful
- Nature of most particles different

Summary: GUTs are different

- Gauge invariance is central
- Qualitative different results in GUTs
- Invalidates most scenarios
- SM special
- Augmentation with FMS a possibility
- Lattice tests successful
- Nature of most particles different
- Extension to fermions impacts experiments
[Maas et al.'21, Afferrante et al.'20, Fernbach et al.'20, Egger et al.'17]

