Brout-Englert-Higgs physics: From foundations to phenomenology

Axel Maas with Larissa Egger, Leonardo Pedro, and Pascal Törek

15th of November 2016 Vienna Austria

Der Wissenschaftsfonds

 Why it is not obvious that the Higgs and W/Z are physical particles?

- Why it is not obvious that the Higgs and W/Z are physical particles?
- Does it matter in the standard model?

- Why it is not obvious that the Higgs and W/Z are physical particles?
- Does it matter in the standard model?
 - No. And why.

- Why it is not obvious that the Higgs and W/Z are physical particles?
- Does it matter in the standard model?
 - No. And why.
- Why it can matter beyond the standard model

- Why it is not obvious that the Higgs and W/Z are physical particles?
- Does it matter in the standard model?
 - No. And why.
- Why it can matter beyond the standard model
- How this can be treated
 - Introducing gauge-invariant perturbation theory
 - Checking its validity

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has nonperturbative features like atoms, molecules, matter with phase structure,...
 - Bound states, phase transitions,...

What is non-perturbative?

- Strong interactions are non-perturbative
 - Like QCD
 - But not always: Asymptotic freedom
- Weak interactions can be non-perturbative
 - QED is weakly interacting, but has nonperturbative features like atoms, molecules, matter with phase structure,...
 - Bound states, phase transitions,...
- Are there (relevant) non-perturbative effects in the weak interactions and the Higgs?

Why it is not obvious that the Higgs and W/Z are physical particles

Or: What states can be gauge-invariant

Consider the Higgs sector of the standard model

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

• Ws W^a_{μ} W

• Coupling g and some numbers f^{abc}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu}h^{j})^{+} D^{\mu}_{ik}h_{k}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igW^{a}_{\mu}t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Coupling g and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- No QED: Ws and Zs are degenerate
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - \nu^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\Phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\Phi^{a}h_{j}$
- Global SU(2) Higgs custodial (flavor) symmetry
 - Acts as right-transformation on the Higgs field only $W^a_\mu \rightarrow W^a_\mu \rightarrow W^a_\mu$ $h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$

Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small

Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = v + \eta(x) = \begin{vmatrix} \phi^{1}(x) + i \phi^{2}(x) \\ v + \omega(x) + i \phi^{3}(x) \end{vmatrix} \Rightarrow \langle h \rangle = \begin{vmatrix} 0 \\ v \end{vmatrix}$$

• ηmass depends at tree-level on v

Standard approach

- Minimize action classically
 - Yields $hh^+ = v^2$ Higgs vev
 - Assume quantum corrections to this are small
- Perform global gauge transformation such that

$$h(x) = v + \eta(x) = \begin{vmatrix} \phi^{1}(x) + i \phi^{2}(x) \\ v + \omega(x) + i \phi^{3}(x) \end{vmatrix} \Rightarrow \langle h \rangle = \begin{vmatrix} 0 \\ v \end{vmatrix}$$

- ηmass depends at tree-level on v
- Perform perturbation theory

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken [Elitzur'75]
 - There are gauges where the vev always vanishes [Maas'13]
 - Perturbation theory not sensible [Lee et al.'72]

- Not all charge directions equal
 - This is not physical, but merely a choice of gauge
 - "Spontaneous gauge symmetry breaking"
 - Broken by the transformation, not by the dynamics
 - Dynamics only affect the length of the Higgs field
 - Local symmetry intact and cannot be broken [Elitzur'75]
 - There are gauges where the vev always vanishes
 - Perturbation theory not sensible [Lee et al.'72]
- Consequence: Symmetry in charge space not manifest (hidden)
 - Symmetry expressed in STIs/WTIs

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Why does perturbation theory work?

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Why does perturbation theory work?
- Mass spectrum?

Why it does not matter in the standard model

Introducing gauge-invariant perturbation theory

 Masses are determined by poles of propagators

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = <\eta^{i}(x)\eta^{j+1}(y) >$

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = <\eta^{i}(x)\eta^{j+1}(y) >$
- (Tree-level/perturbative) poles of Higgs and W

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = <\eta^{i}(x)\eta^{j+}(y) >$
- (Tree-level/perturbative) poles of Higgs and W
 - But only in a fixed gauge
 - Elementary fields are gauge-dependent
 - Without gauge fixing propagators are $\sim \delta(x-y)$

- Masses are determined by poles of propagators
- 2 propagators
 - W/Z $D^{ab}_{\mu\nu}(x-y) = \langle W^a_{\mu}(x)W^b_{\nu}(y) \rangle$
 - Degenerate without QED
 - Scalar $D_{H}^{ij}(x-y) = <\eta^{i}(x)\eta^{j+}(y) >$
- (Tree-level/perturbative) poles of Higgs and W
 - But only in a fixed gauge
 - Elementary fields are gauge-dependent
 - Without gauge fixing propagators are $\sim \delta(x-y)$
- Gauge-invariant: Non-perturbative method

Lattice calculations

• Take a finite volume – usually a hypercube

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- Artifacts
 - Finite volume/discretization

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- Artifacts
 - Finite volume/discretization
 - Masses vs. wave-lengths

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- Artifacts
 - Finite volume/discretization
 - Masses vs. wave-lengths

- Take a finite volume usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
 - Can be done numerically
 - Uses Monte-Carlo methods
- Artifacts
 - Finite volume/discretization
 - Masses vs. wave-lengths
 - Euclidean formulation

$D(p) = \langle O^+(p)O(-p) \rangle$

Masses can be inferred from propagators

$$D(p) = \langle O^+(p)O(-p) \rangle \sim \frac{1}{p^2 + m^2}$$

Masses can be inferred from propagators

$$D(p) = \langle O^+(p)O(-p) \rangle \sim \frac{1}{p^2 + m^2}$$
$$C(t) = \langle O^+(x)O(y) \rangle \sim \exp(-m\Delta t)$$

Masses can be inferred from propagators

$$D(p) = \langle O^{+}(p)O(-p) \rangle \sim \sum \frac{a_i}{p^2 + m_i^2}$$

$$C(t) = \langle O^{+}(x)O(y) \rangle \sim \sum a_i \exp(-m_i \Delta t)$$

$$\sum a_i = 1 \wedge m_0 < m_1 < \dots$$

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta

- Masses can be inferred from propagators
- Long-time behavior relevant
 - No exact results on time-like momenta

• Simpelst 0⁺ bound state $h^+(x)h(x)$

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge

• Simpelst 0⁺ bound state $h^+(x)h(x)$

- Same quantum numbers as the Higgs
 - No weak or flavor charge
- Mass is about 120 GeV

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
 - Mass is about 120 GeV

- Simpelst 0⁺ bound state $h^+(x)h(x)$
 - Same quantum numbers as the Higgs
 - No weak or flavor charge
 - Mass is about 120 GeV

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence?

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

- 1) Formulate gauge-invariant operator
 - 0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x) \eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) = c + v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$ 2 x Higgs m

2 x Higgs mass: Scattering state

[Fröhlich et al. PLB 80 Maas'12, Törek & Maas'16]

Higgs

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v^2 \langle \eta^+ (x)\eta(y) \rangle + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = c + v \langle \eta^+ (x)\eta(y) \rangle$ mass mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$ 2 x Higgs mass: Scattering state

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states
- $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta^+ (x)\eta(y) \rangle + O(\eta^3)$
 - Same poles to leading order

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states
- $\langle (h^+ h)(x)(h^+ h)(y) \rangle \overset{h=\nu+\eta}{\approx} const. + \langle \eta^+ (x)\eta(y) \rangle + O(\eta^3)$
 - Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism

- Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
 - Scheme exists to shift Higgs mass always to 120 GeV
- Coincidence? No.
 - Duality between elementary states and bound states

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta^+ (x)\eta(y) \rangle + O(\eta^3)$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Deeply-bound relativistic state
 - Mass defect~constituent mass
 - Cannot describe with quantum mechanics
 - Very different from QCD bound states
Isovector-vector state

- Vector state 1⁻ with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D_{\mu} \frac{h}{\sqrt{h^+ h}}$
 - Only in a Higgs phase close to a simple particle
 - Custodial triplet, instead of gauge triplet

Isovector-vector state

- Vector state 1⁻ with operator $tr t^a \frac{h^+}{\sqrt{h^+ h}} D_{\mu} \frac{h}{\sqrt{h^+ h}}$
 - Only in a Higgs phase close to a simple particle
 - Custodial triplet, instead of gauge triplet

Isovector-vector state

• Vector state 1⁻ with operator $tr t^a \frac{h}{\sqrt{h} + h} D_{\mu} \frac{h}{\sqrt{h} + h}$

- Only in a Higgs phase close to a simple particle
- Custodial triplet, instead of gauge triplet
- Mass about 80 GeV

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent

[Fröhlich et al.'80 Maas'12]

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

 $\langle (h + D_{\mu}h)(x)(h + D_{\mu}h)(y) \rangle$

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

$$\langle (h^{+} D_{\mu}h)(x)(h^{+} D_{\mu}h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^{3})$$

$$\partial v = 0$$

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

$$\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^3)$$

$$\partial v = 0$$

- Same poles at leading order
 - Remains true beyond leading order

- Vector state: 80 GeV
- W at tree-level: 80 GeV
 - W not scale or scheme dependent
- Same mechanism

$$\langle (h^+ D_{\mu} h)(x)(h^+ D_{\mu} h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x) W_{\mu}(y) \rangle + O(\eta^3)$$

$$\partial v = 0$$

- Same poles at leading order
 - Remains true beyond leading order
 - Exchanges a gauge for a custodial triplet

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
 - But open flavor needs a Higgs

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
 - But open flavor needs a Higgs qqqh

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
 - But open flavor needs a Higgs qqqh
- Leptons
 - Actually Higgs-lepton bound-states
 - Enormous mass defects
 - Requires confirmation
 - Except for right-handed (Dirac) neutrino

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
 - But open flavor needs a Higgs qqqh
- Leptons
 - Actually Higgs-lepton bound-states
 - Enormous mass defects
 - Requires confirmation
 - Except for right-handed (Dirac) neutrino
- Photons
 - QED similar but simpler

[Maas'12]

Collision of bound states

[Maas'12]

Collision of bound states - 'constituent' particles

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions

[Maas'12]

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions

[Maas'12]

e⁺-H bound state

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
 - Ordinary ones: Large and detected

- e⁺-H bound state
- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
 - Ordinary ones: Large and detected
 - New ones: Small, require more sensitivity

[Maas'12, Egger et al., unpublished]

• Description of impact?

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe | h\mu h\mu \rangle$

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe|h\mu h\mu \rangle = \langle ee|\mu\mu \rangle$

Ordinary contribution

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe|h\mu h\mu \rangle = \langle ee|\mu\mu \rangle + \langle \eta\eta \rangle \langle ee|\mu\mu \rangle$

- Ordinary contribution
- Modification of ordinary contribution

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe|h\mu h\mu \rangle = \langle ee|\mu\mu \rangle + \langle \eta\eta \rangle \langle ee|\mu\mu \rangle + \langle ee \rangle \langle \eta\eta|\mu\mu \rangle$

- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe|h\mu h\mu \rangle = \langle ee|\mu\mu \rangle + \langle \eta\eta \rangle \langle ee|\mu\mu \rangle + \langle ee \rangle \langle \eta\eta|\mu\mu \rangle + \dots$

- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state
- More contributions...

[Maas'12, Egger et al., unpublished]

Description of impact? Gauge-invariant perturbation theory!

 $\langle hehe|h\mu h\mu \rangle = \langle ee|\mu\mu \rangle + \langle \eta\eta \rangle \langle ee|\mu\mu \rangle + \langle ee \rangle \langle \eta\eta|\mu\mu \rangle + \dots$

- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state
- More contributions...complicated

[Maas'12, Egger et al., unpublished]

Description of impact? PDF-type language!

- Description of impact? PDF-type language!
- Interacting particles either electrons

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
- Fragmentation 100% efficient like for quarks

Why it can matter beyond the standard model

And when this can be dealt with using gauge-invariant perturbation theory

Status of the standard model

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory

Status of the standard model

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true?
Status of the standard model

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]

Status of the standard model

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]
 - Fluctuations can invalidate it

 Lattice simulations have an intrinsic cutoff – the lattice spacing a

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - "Lines of constant physics"

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - "Lines of constant physics"

Coupling(s)

Mass(es)

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - "Lines of constant physics"

Mass(es)

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - "Lines of constant physics"

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed
 - "Lines of constant physics"

- Lattice simulations have an intrinsic cutoff – the lattice spacing a
 - Full theory reached at zero lattice spacing
 - If it exists: Triviality problem
- Masses, couplings, and actions are specified at this scale
 - Numerical procedure: Calculate for several a with all independent observables fixed - "Lines of constant physics"
 - Different starting points yield different physics

Mass(es)

[Osterwalder et al.'78, Fradkin et al.'79 Caudy et al.'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Osterwalder et al.'78, Fradkin et al.'79 Caudy et al.'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Osterwalder et al.'78, Fradkin et al.'79 Caudy et al.'07]

• (Lattice-regularized)

f(Classical Higgs mass)

[Osterwalder et al.'78, Fradkin et al.'79 Caudy et al.'07]

• (Lattice-regularized) (specific phase diagram

[Osterwalder et al.'78, Fradkin et al.'79 Caudy et al.'07]

(Lattice-regularized) phase diagram continuous
(Interpretent of the set o

[Osterwalder et al.'78, Fradkin et al.'79 Caudv et al.'071

- (Lattice-regularized) f(Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges

[Osterwalder et al.'78, Fradkin et al.'79 Caudv et al.'071

- (Lattice-regularized) ((Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges
- Same asymptotic states in confinement and Higgs pseudo-phases
- Same asymptotic states irrespective of coupling strengths

[Osterwalder et al.'78, Fradkin et al.'79 Caudv et al.'071

- (Lattice-regularized) ((Classical Higgs mass) phase diagram continuous
 - Separation only in fixed gauges
- Same asymptotic states in confinement and Higgs pseudo-phases
- Same asymptotic states irrespective of coupling strengths
- Other states than 'Higgs' and 'W'?

- Each quantum number channel has a spectrum
 - Discreet in a finite volume

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states,

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states, resonances

- Each quantum number channel has a spectrum
 - Discreet in a finite volume
- States can be either stable, excited states, resonances or scattering states

Spectrum

Spectrum

Spectrum

Spectrum Scattering states Inelastic threshold: H->2H 250 200 Elastic threshold: H->2W 150 [VaD] m Ground state 100 50 0 0.1 0.05 0

[Luescher'85,'86,'90,'91]

[Luescher'85,'86,'90,'91]

0.1

0.05

0

Search: Excited Higgs

Typical spectra

[Maas, Mufti '13,'14, Evertz et al.'86, Langguth et al.'85,'86]

Spectrum Higgs-like

Typical spectra

[Maas, Mufti '13,'14, Evertz et al.'86, Langguth et al.'85,'86]

Typical spectra

[Maas, Mufti '13,'14, Evertz et al.'86, Langguth et al.'85,'86]

Typical spectra

[Maas, Mufti '13,'14, Evertz et al.'86, Langguth et al.'85,'86]

Typical spectra

Spectrum Higgs-like

.4 ^E

1.2

0.8

0.6

0.4

0.2

Spectrum QCD-like

Σ 0 ε⁵⁰⁰ [/a6] 1500 an 1.2 400 400 0.8 300 300 0.6 200 200 0.4 100 100 ____ 0.2 Reversed order 0 [N=24, κ=0.2939, β=2.4492, λ=1.036 **0**, **2**, **2**, **1** [N=24, κ=0.2954, 0 0 1, 2‡ 0 0;

- Generically different low-lying spectra
 - 0⁺ lighter in QCD-like region
 - 1⁻ lighter in Higgs-like region

Typical spectra

Spectrum Higgs-like Spectrum QCD-like [λə5] Ξ 500 کی 1500ء 1500ء ag .4 ^E П 1.2 1.2 400 400 П 0.8 0.8 300 300 0.6 0.6 200 200 0.4 0.4 100 100 ____ 0.2 0.2 Reversed order .4492, λ=1.036 **2** [N=24, κ=0.2954, [N=24, κ=0.2939, β=2 0 0 1, 0 2‡ 0;

- Generically different low-lying spectra
 - 0⁺ lighter in QCD-like region
 - 1⁻ lighter in Higgs-like region
- Coincides with gauge-dependent definitions

FMS prediction

FMS prediction

FMS prediction

Too low: Finite volume effect

Elastic decay threshold Higgs as resonance Expensive, signal very bad

Too low: Finite volume effect

Elastic decay threshold Higgs as resonance Expensive, signal very bad

Higgs and W mass agrees FMS stops working So does Brout-Englert-Higgs!

Does not coincide with weak/strong coupling transitions!

Phase diagram

Phase diagram

- Quantum effects remove BEH effect
 - Opposite does not happen

Phase diagram

- Quantum effects remove BEH effect
 - Opposite does not happen
- Interacting continuum limit? [Gies & Zambelli'15]

- Quantum effects remove BEH effect
 - Opposite does not happen
- Interacting continuum limit? [Gies & Zambelli'15]

- Quantum effects remove BEH effect
 - Opposite does not happen
- Interacting continuum limit? [Gies & Zambelli'15]
 - LCP: 0⁺, 1⁻ masses, $\alpha(200\,GeV)$ (miniMOM scheme)

Higgs mass

No strong dependence of mass range on cutoff - expected

[Maas, unpublished]

[[]Maas, unpublished]

[[]Maas, unpublished]

[Maas, unpublished]

[Maas, unpublished]

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine
 - Local and global multiplet structure must fit

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine
 - Local and global multiplet structure must fit
- Has to be checked for BSM theories

- Physical states are bound states
 - Observed in experiment
 - Described using gauge-invariant perturbation theory based on the FMS mechanism
 - Mostly the same as ordinary perturbation theory
- Is this always true? No. [Maas'15, Maas & Mufti'14]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine
 - Local and global multiplet structure must fit
- Has to be checked for BSM theories
 - Without Higgs: More subtle [Maas'15]

Example 1: 2HDM

Like the standard model Gauge-invariant and ordinary perturbation theory coincide

[Maas'15, Maas & Pedro'16]

- Additional Higgs doublet
- Enlarged custodial group

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x) \eta_h(y) \rangle + O(\eta_h^3)$

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x) \Gamma \eta_a(y) \rangle + O(\eta_a^3)$

• Splitted into 1+3 states for broken group

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x) \Gamma \eta_a(y) \rangle + O(\eta_a^3)$

Splitted into 1+3 states for broken group

• Vector triplet

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

All other states expand to scattering states

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x)\Gamma \eta_a(y) \rangle + O(\eta_a^3)$

- Splitted into 1+3 states for broken group
- Vector triplet

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

- All other states expand to scattering states
- Validity: Requires non-perturbative check
- Discrete factor groups could yield doubling
Implications for 2HDM

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet
 - Yields again perturbative spectrum

• Discrete factor groups may be a problem

• Key: Global multiplet structure diverse

Implications for 2HDM

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet
 - Yields again perturbative spectrum
 - Discrete factor groups may be a problem
- Key: Global multiplet structure diverse
- Size of fluctuations needs to be checked non-perturbatively!

Example 2: GUT-like structure

Gauge-invariant perturbation theory correct and different from ordinary perturbation theory

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup not gauge-invariant

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive Higgs, 3 massless and
 5 (1 (heavier) + 4 (lighter)) massive vectors

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive Higgs, 3 massless and
 5 (1 (heavier) + 4 (lighter)) massive vectors
 - FMS spectrum
 - 1 massive scalar, 1 massive vector
 - Same masses as Higgs and heaviest gauge boson

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive Higgs, 3 massless and
 5 (1 (heavier) + 4 (lighter)) massive vectors
 - FMS spectrum
 - 1 massive scalar, 1 massive vector
 - Same masses as Higgs and heaviest gauge boson
 - ... or something else?

Test for GUTs

Separation into Higgs-like and QCD-like

[Maas & Törek'16]

Test for GUTs

- Propagators almost tree-level
 - Expected splitting in gauge boson spectrum

Test for GUTs

- Propagators almost tree-level
 - Expected splitting in gauge boson spectrum
- Physical vector: Massive, non-degenerate

Test for GUTs

- Propagators almost tree-level
 - Expected splitting in gauge boson spectrum
- Physical vector: Massive, non-degenerate
 - Agrees with FMS prediction

Example 3: Technicolor

No gauge-invariant perturbation theory but interesting implications

 Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work
- Observable states must still be gaugeinvariant
 - Needs to create Higgs and W/Z(!) signals by (new) bound states

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work
- Observable states must still be gaugeinvariant
 - Needs to create Higgs and W/Z(!) signals by (new) bound states
 - Vectors must be lighter
 - Behavior not yet seen for strong interactions
 - Usually: Scalars and pseudoscalars

[Maas'12,'15 Törek & Maas'16]

Observable spectrum must be gauge-invariant

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- Gauge-invariant perturbation theory as a tool
 - Requires a Brout-Englert-Higgs effect
 - Yields the same results for the standard model
 - More robust
 - Mostly not much more complicated

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- Gauge-invariant perturbation theory as a tool
 - Requires a Brout-Englert-Higgs effect
 - Yields the same results for the standard model
 - More robust
 - Mostly not much more complicated
- Applicable to beyond-the standard model
 - Structural requirement: Multiplets must match
 - Dynamical requirement: Small fluctuations
 - Verification requires non-perturbative methods

Advertisment

55th International Winter School on Theoretical Physics Bound States and Resonances

13th-17th of Februrary 2017

Lecturers: I. Belyaev, C. Fischer, C. Pica, S. Prelovsek, R. Roth, A. Szczepaniak

Admont, Styria, Austria

St. Goar 2017 Bound States in QCD and Beyond II 20th-23rd of February 2017 St. Goar, Germany Registration open until 30th of November 2016