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Chapter 1

Introduction

1.1 Preliminaries

The prerequisites for this courses are quantum mechanics, and knowledge of quantum

field theory, including some basic knowledge about non-Abelian gauge theories and the

Brout-Englert-Higgs effect. The necessary basics can also be obtained in parallel in the

lectures on relativistic quantum mechanics and quantum field theory. Some knowledge

of the phenomenology of particle physics is also helpful, as can be obtained in various

lectures.

There are quite a number of good books on supersymmetry. This lecture is largely

based on

• Supersymmetrie by H. Kalka and G. Soff (Teubner)

• Supersymmetry in particle physics by I. Aitchison (Cambridge)

• The quantum theory of fields III (as well as I and II) by S. Weinberg (Cambridge)

• Fields by W. Siegel (available for free from arxiv.org/abs/hep-th/9912205)

• Supersymmetry and supergravity by J. Wess and J. Bagger (Princeton)

• Advanced topics in quantum field theory by M. Shifman (Cambridge)

This is only a subjective choice, and many other excellent texts exists. As always, one

should test these, to find the most suitable book (and presentation) for oneself.

There are also a number of reviews on the topic available on the arXiv and in journals.

Particular recommendable are

• A Supersymmetry primer by S. Martin (arxiv.org/abs/hep-ph/9709356)
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2 1.2. Why Supersymmetry?

• TASI 2002 lectures: Nonperturbative supersymmetry by J. Terning (arxiv.org/abs/hep-

th/0306119)

• The Search for Supersymmetry: Probing Physics Beyond the Standard Model by H.

Haber and G. Kane (Phys.Rept.117:75-263,1985)

• Supersymmetry, Supergravity and Particle Physics by H. Niles (Phys.Rept.110:1-

162,1984)

which, however, go significantly beyond the scope of this lecture.

1.2 Why Supersymmetry?

Supersymmetry, as will become clear during this lecture, is much more than a particular

theory. It is a conceptual idea, on which a multitude of theories rest. Supersymmet-

ric quantum field theories have furthermore unique features, not shared by any other

type of quantum field theories. They are therefore particular interesting candidates for

our understanding of nature. Also, theories more complex than quantum field theories,

like string theories, very often induce as the low-energy effective quantum field theories

supersymmetric theories. Furthermore, even in theories which are not supersymmetric,

like nuclear physics, tools based on supersymmetry can be used to simplify complicated

problems significantly. Finally, supersymmetric theories are from a purely mathematical

(physics) point of view very interesting entities, and therefore a subject worth of study in

themselves.

Though in this lecture all of these aspects will be touched upon, it will be mainly

concentrated on the application of supersymmetry to particle physics. The interest in

supersymmetry in this particular arena stems not from experimental evidence. In fact, at

the current time the results from particle physics experiments are rather discouragingly in-

dicating that we will likely not discover anything supersymmetric in nature any time soon.

But many conceptual issues in particle physics let supersymmetry appear an attractive,

albeit not necessary, solution.

These conceptual problems have mostly to do with questions of ultraviolet complete-

ness, i. e. what happens at very large energies. The standard model appears to be failing in

these regions. This is mainly signaled by the need of renormalization, i. e. the appearance

of infinities, and challenges like triviality and arbitrarily rising interaction strengths in the

Higgs sector. Though the latter may still be within the realm of the standard model to

solve, and they are just technically complicated, the former are clearly requiring a differ-
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ent physics. There are also many features of the standard model, which just are, like the

values of masses and coupling constants, for which an explanation is desirable.

But not theoretical considerations induce the desire for more. One thing which is clearly

missing in the standard model is gravity. Supersymmetry, in the form of supergravity,

provides a rather natural way of including it, though again not a uniquely necessary one.

This will be a feature which can only be touched upon in this lecture. However, it can be

shown, known as the Coleman-Mandula theorem, that supersymmetry is the only way to

combine gravity and the standard model in a non-trivial way in a quantum field theory,

where here non-trivial means not in the form of just a direct product structure.

Furthermore, during the last couple of years a number of experimental observations

have been made, which cannot be explained in the framework of the standard model and

classical general relativity. Among these are the indications for dark matter, as has been

deduced from several observables, which leads to the critical density of the universe, when

including the (classical) dark energy. Also the period of inflation at very early times cannot

be explained, though there is mounting evidence for it.

Supersymmetry offers not always a compelling solution to these problems, but often an

attractive one. Although, there are many technical details unsolved of how these solutions

should be implemented. It is therefore worthwhile to understand the basics of it. With

the upcoming next runs of the LHC, more will be said on whether nature has chosen

supersymmetry at the comparatively low energy scale of a few TeV.

However, there are also several reasons which make supersymmetry rather suspect.

The most important one is that supersymmetry is not realized in nature. Otherwise the

unambiguous prediction of supersymmetry would be that for every bosonic particle (e. g.

the photon) an object with the same mass, but different spin-statistics (for the photon

the spin-1/2 photino), should exist, which is not observed. The common explanation for

this is that supersymmetry in nature has to be broken either explicitly or spontaneously.

However, how such a breaking could proceed such that the known standard model emerges

is not known. It is only possible to parametrize this breaking, yielding an enormous amount

of free constants and coupling constants, for the standard model more than a hundred,

while the original standard model has only about thirty.

1.3 A first encounter with supersymmetry

Supersymmetry is a symmetry which links the two basic types of particles one encounters

in quantum physics1: bosons and fermions. In particular, it is possible to introduce

1Note that in two dimensions there are more options, so-called anyons, with arbitrary real spin.
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symmetry transformations in the form of operators which change a boson into a fermion

and vice versa. Supersymmetric theories are then theories which are invariant under these

transformations. This entails, of course, that such theories necessarily include both, bosons

and fermions. In fact, it turns out that the same number of bosonic and fermionic degrees

are necessary to obtain a supersymmetric theory. Hence to each particle there should

exist a superpartner. Superpartners of bosons are usually denoted by the ending ino, so

for a bosonic gluon the fermionic superpartner is called gluino. For the superpartners of

fermions an s is put in front, so the superpartner of the fermionic top quark is the bosonic

stop (and for quarks in general squarks).

Besides the conceptual interest in supersymmetric theories there is a number of phe-

nomenological consequences which make these theories highly attractive. The most inter-

esting one of these is that quite a number of divergences, which have to be removed in

ordinary quantum field theories by a complicated process called renormalization, drop out

automatically.

A simple example for this concept is given by an infinite chain of harmonic oscillators.

The Hamilton function for a harmonic oscillator with2 ω = 1 is given by

HB =
p2

2m
+
m

2
x2. (1.1)

It is useful to replace the operators p and x with the bosonic creation and annihilation

operators a and a†

a† =
√

m
2

(
x− i p

m

)
a =

√
m
2

(
x+ i p

m

)
These operators fulfill the commutation relations[

a, a†
]

= aa† − a†a = 1 (1.2)

[a, a] = [a†, a†] = 0.

which follow directly from the canonic commutation relations

[x, p] = i.

Replacing p and x in (1.1) with these new operators yields

HB =
1

2

(
a†a+ aa†

)
(1.3)

2Everything will be in natural units, i. e., ~ = c = kB = 1.
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Using the commutation relation (1.2) yields the Hamilton operator of the bosonic harmonic

oscillator

HB = a†a+
1

2

A noninteracting chain of these operators is therefore described by the sum

HB =
N∑
n=1

(
a†a+

1

2

)
.

If the number of chain elements N is sent to infinity, the contribution from the vacuum

term diverges. Of course, in this simple example it would be possible to measure everything

with respect to the vacuum energy, and just drop the diverging constant.

However, imagine one adds a harmonic oscillator, which has fermionic quanta instead

of bosonic ones. Such an oscillator is most easily obtained by replacing (1.3) with

HF =
1

2
(b†b− bb†) (1.4)

with the bosonic creation and annihilation operators replaced by their fermionic counter-

parts b† and b. These satisfy anticommutation relations3

{b, b†} = bb† + b†b = 1 (1.5)

{b, b} = {b†, b†} = 0. (1.6)

The form (1.4) can be motivated by introducing fermionic coordinates, but this will not

be done here. In the end, it is a postulate, as fermions are inherently quantum objects,

and thus the fermionic oscillator cannot be obtained by the canonical quantization of a

classical system.

Using these relations, the Hamiltonian can be recast as

HF =
M∑
n=1

(
b†b− 1

2

)
In this case the vacuum energy is negative.

Now, adding both systems with the same number of degrees of freedom, N = M , the

resulting total Hamiltonian

H = HB +HF =
N∑
n=1

(
a†a+ b†b

)
(1.7)

3This type of algebra is a Clifford algebra, not incidentally similar to the one encountered when dealing

with fermions in quantum field theory.
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has no longer a diverging vacuum energy. Actually, the Hamilton operator (1.7) is one of

the simplest supersymmetric systems. Supersymmetry here means that if one exchanges

bosons for fermions the Hamilton operator is left invariant. This will be discussed in

detail below. The mechanism to cancel the vacuum energy is a consequence of supersym-

metry, and this mechanism is one of the reasons which make supersymmetric theories very

interesting.

More generally, in a quantum-field setting this type of cancellation will yield a ’natural’

explanation why scalar particles should be of about the same mass as the other particles

in a theory, as will be discussed in detail much later.

The rest of this lecture will proceed in the following way: In the next chapter 2, the

first encounter with supersymmetry in quantum mechanics will be extended, to introduce

many of the central concepts of supersymmetry in a technically less involved setting.

After this, a short preparation in Grassmann mathematics will be made in chapter 3,

which will be necessary in many places. Then, things will turn to the first and simplest

supersymmetric theory, a non-interacting one in chapter 4. For this, a brief repetition of

fermions in quantum field theories will be necessary. Interactions in the simplest case, the

so-called Wess-Zumino model, will be introduced in chapter 5. After this first encounter

with supersymmetric field theories the concept of superspace will be introduced in chapter

6, which is very useful in constructing supersymmetric theories. To be able to discuss

supersymmetric extensions of the standard model, the introduction of supersymmetric

gauge theories is necessary, which will be done in chapter 7. Also necessary to extend to

the standard model is supersymmetry breaking, which will be discussed in chapter 8. This

is then enough to introduce the minimal supersymmetric standard model in chapter 9.

1.4 The conceptual importance of supersymmetry

After having seen how a supersymmetry theory can look like, it is now time to contemplate

what supersymmetry implies. For this, it is worthwhile to have a look at a, somewhat

hand waving, version of the Coleman-Mandula theorem.

All previous symmetries in particle physics are of either of two kinds. One are the

external symmetries, like translational and rotational ones. These are created by the

momentum and angular momentum operators. The other one are internal ones, like electric

charges. The difference between both is that external charge operators carry a Lorentz

index, while internal ones are Lorentz scalars. The natural question from a systematic

point of view is, whether there are other conserved quantities besides momentum and
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angular momentum, which have a Lorentz index4.

The Coleman-Mandula theorem essentially states that this is impossible in a quantum

field theory. Since the most general vector and anti-symmetric tensors are already assigned

to the momentum and angular momentum operator, the simplest one would be a symmetric

tensor operator Qµν . Acting with it on a single particle state would yield

Qµν |p〉 = (αpµpν + βηµν)|p〉,

where the eigenvalue is the most general one compatible with Poincare symmetry, with

eigenvalues α and β. Since a symmetry is looked for, Q must be diagonalizable simulta-

neously with the Hamiltonian, and therefore these must be momentum-independent. One

could ask what if the eigenvalues themselves would have a direction, and the single-particle

state would thus be characterized by two vectors. In this case, the scalar product of these

two vectors would single out a direction, and therefore break the isotropy of space-time,

and thus the Poincare group. Lacking any experimental evidence for this so far, this

possibility is excluded, and would anyhow alter the complete setting.

So far, there is no contradiction. Acting with Qµν on a two-particle state of two

identical particles of the type would yield

Qµν |p, q〉 = (α(pµpν + qµqν) + 2βηµν)|p, q〉.

In this case, it was assumed that Q is a one-particle operator, i. e. its charge is localized on

a particle, and the total charge is obtained by the sum of the individual charges. Though

operators of other types can be considered, even in lack of physical evidence, this would

only complicate the argument in the following, without changing the outcome. This will

therefore be ignored.

Now consider elastic scattering of these two particles. SinceQ should describe a symme-

try, the total charge before and afterwards must be the same. Furthermore, 4-momentum

4Note that certain theories, so-called conformal theories, exist, in which the Poincare group is enlarged

by scale/dilatation transformations and so-called special conformal transformations, which essentially

remap coordinates in a non-linear way. This enlarged Poincare symmetry is called the conformal group.

This extension is not an internal symmetry, but the Poincare symmetry itself is larger. Therefore, this

case is not in contradiction to the Coleman-Mandula theorem. Such theories require that the dynamics

are scaleless, and especially that all particles are massless. Since any non-trivial scattering process breaks

conformal symmetry, such theories do not have any observables. They are therefore certainly not a theory

of nature, and will therefore not be discussed here in detail. However, both from a conceptual point of

view, as well as in case the conformal symmetry is slightly broken, they are of a certain interest to particle

physics, which also not be dwelt upon here to a large extent.
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conservation must hold. This implies that

pµpν + qµqν = p′µp
′
ν + q′µq

′
ν

pµ + qµ = p′µ + q′µ

The only solution to these equations is p = p′ and q = q′ or p = q′ and q = p′. Hence

no interaction occurs, since the second possibility is indistinguishable for two identical

particles. Hence, any theory with such a conserved symmetric tensor charge would be

non-interacting, and therefore not interesting. The generalized version of this statement is

the Coleman-Mandula theorem, which includes all the subtleties and possible extensions

glossed over here.

How does supersymmetry change the situation? For this simple example of elastic

scattering, this is rather trivial. Since supersymmetry, by definition, changes the spin

of the particles, it plays no role in this process, as in an elastic scattering the particle

identities are not changed. In the more general case, it can be be shown that for the more

general Coleman-Mandula theorem it is actually an assumption that this never happens.

Hence, introducing such a symmetry violates the assumption, and therefore invalidates

the argument. Again, the complete proof is rather subtle. This leaves the question open,

whether any interesting, consistent, non-trivial, let alone experimentally relevant, theories

actually harbor supersymmetry. The second question is still open, and no experimental

evidence in strong favor of supersymmetry has so far been found.

The first question is, what this lecture is about. In the following, in very much detail,

it will be shown that there are interesting, consistent, and non-trivial supersymmetric

theories. Furthermore, it will be shown that supersymmetry is, from a conceptual point,

a fundamental change. This can already be inferred from the following simple argumen-

tation.

Since Poincare symmetry remains conserved in a supersymmetric theory, any operator

which changes a boson into a fermion must carry itself a half-integer spin, and thus be a

spinor Qa. Otherwise, the spin on the left-hand side and the right-hand side would not

be conserved. Furthermore, if it is a symmetry, it must commute with the Hamiltonian

[Qa, H] = 0. In addition, so must its anti-commutator

[{Qa, Qb} , H] = 0

In the simplest case, a spinor has two independent components, and therefore the anti-

commutator can have up to four independent components. Since two spinors form together

an object of integer spin, it must therefore be (at least) a vector. The only-vector-valued

operator, however, is the momentum operator Pµ. Therefore, one would expect that

{Qa, Qb} ∼ Pµ. (1.8)
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It will be shown that this is indeed the correct structure. However, this means that

supersymmetry enlarges indeed the Poincare symmetry non-trivially, since otherwise all

(anti)commutator relation would be closed within the supersymmetry operators Qa, there-

fore fulfilling the original goal. Moreover, the operators Qa therefore behave, in a certain

sense to be made precise later, like a square-root of the momentum operator. Similar

like the introduction of i as the square-root of −1, this concept will require to enlarge

the concept of space-time by adding additional, fermionic dimensions, giving birth to the

concept of superspace. This already shows how conceptually interesting supersymmetry

is, and that it is therefore worthwhile to pursue it for its own sake, even if no experimental

evidence in favor of it exists.

In the following, all of these concepts will be made more precise, and all the gaps will

be filled in.



Chapter 2

Supersymmetric quantum mechanics

Supersymmetry is not a concept which requires either a field theory nor does it require

special relativity. Its most simple form it takes in non-relativistic quantum mechanics.

However, as fermions are involved, quantum effects are necessary. Such things as spin

1/2-objects, and thus fermions, cannot be described in the context of a classical theory.

2.1 Generators of supersymmetry

To be able to discuss a supersymmetric theory, it is of course necessary to have a Hilbert

space which includes both bosons and fermions. One example would be the Hilbert space

of the harmonic oscillator with only one element, the simplification of (1.7),

H = a†a+ b†b. (2.1)

The Hilbert space of this Hamilton operator is given by

|nBnF 〉 (2.2)

where nB is the number of bosons and nF is the number of fermions. Note that no

interaction between bosons and fermions occur. Such an interaction is not necessary to

obtain supersymmetry. However, supersymmetry imposes very rigid constraints on any

interactions appearing in a supersymmetric theory, as will be seen later. Furthermore, the

number of degrees of freedom is the same: one bosonic and one fermionic oscillator.

The conventional bosonic creation and annihilation operators a† and a act on the

Hilbert space in the usual way as

a†|nBnF 〉 =
√
nB + 1|nB + 1nF 〉

a|nBnF 〉 =
√
nB|nB − 1nF 〉

a|0nF 〉 = 0.

10
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The number of bosonic quanta in the system therefore ranges from 0 to infinity. Due to

the Pauli principle the action of the fermionic creation and annihilation operators b† and

b is much more limited. The only possibilities are

b†|nB0〉 = |nB1〉
b|nB1〉 = |nB0〉
b†|nB1〉 = b|nB0〉 = 0.

This can be shown to be a direct consequence of the (postulated) anti-commutation rela-

tions (1.5-1.6) of b and b†. Thus, there can be only either zero or one fermionic quanta in

this system.

This delivers the complete spectrum of the theory, which is given by

H|nBnF 〉 = nB + nF .

Now, supersymmetry is based on a relation between fermions and bosons. Therefore, it

will be necessary to introduce operators which can change a boson into a fermion. Such

operators can be defined by their action on the states as

Q+|nBnF 〉 ∼ |nB − 1nF + 1〉 (2.3)

Q−|nBnF 〉 ∼ |nB + 1nF − 1〉.

Note that since the maximum number of fermionic quanta is 1, Q+ annihilates the state

with one fermionic quanta, just as the fermionic creation operator. Furthermore, the

operator Q− annihilates the fermionic vacuum, and Q+ the bosonic vacuum, where vacuum

is the state with zero quantas.

To obtain a symmetry, Q+ and Q− have to be symmetry transformation operators.

However, for a theory to be supersymmetric, its Hamilton operator must be invariant

under supersymmetry transformations, i. e.,

[H,Q±] = 0. (2.4)

To be able to check this, it is necessary to deduce the commutation relations of the bosonic

and fermionic annihilation operators with Q±. For this an explicit form of Q± in terms of

a and b is necessary. Based on the action on the base state (2.3) it can be directly inferred

that

Q+ = ab† (2.5)

Q− = a†b.
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is adequate. From this also follows that Q†± = Q∓, and both operators are adjoint to each

other. Testing now the condition (2.4) yields for Q+

[a†a+ b†b, ab†] = a†aab† − ab†a†a+ b†bab† − ab†b†b. (2.6)

Since two consecutive fermionic creation or annihilation operators always annihilate any

state, it follows that

b†b† = bb = 0.

This property of operators is called nilpotency, the operators are called nilpotent. This

is a very important concept, and will appear throughout this lecture. However, currently

this only implies that the last term in (2.6) is zero. Using the brackets (1.2) and (1.5-1.6),

it then follows

b†a†aa− b†a− b†a†aa+ ab† − ab†b†b = b†a− ab† = 0. (2.7)

Here, once more the nilpotency of b and b† was used, and the fact that bosonic and

fermionic creation and annihilation operators commute. The same can be repeated for Q−.

Hence the combined oscillator (2.1) is supersymmetric, and is called the supersymmetric

oscillator. Note that this required that the oscillator frequencies ω were identical. This is

a portent of a more general requirement of supersymmetry: In a supersymmetric particle

physics theory, for each fermion there must be a boson of the same mass, and vice versa.

That this particular theory is supersymmetric can be seen easier, as it is possible to

rewrite (2.1) in terms of Q± as

H = a†a+ b†b+ a†ab†b− b†ba†a
= aa†b†b+ a†abb†

= {ab†, a†b} = {Q+, Q−}.

From this it follows directly that

[H,Q+] = [Q+Q−, Q+] + [Q−Q+, Q+]

= Q+Q−Q+ −Q+Q+Q− +Q−Q+Q+ −Q+Q−Q+ = 0

This vanishes, as the operators Q± inherit the property of nilpotency directly from the

fermionic operators. This can be repeated for Q−, yielding the same result. As a conse-

quence, any system which is described by the Hamilton operator {Q+, Q−}, where the Q±

can now be more complex nilpotent operators, is automatically supersymmetric.
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The only now not manifest property is the hermiticity of the Hamilton operator. Defin-

ing the hermitian operators

Q1 = Q+ +Q−

Q2 = i(Q− −Q+)

this can be remedied. By explicit calculation it follows that

H = Q2
1 = Q2

2. (2.8)

Note that the hermitian operators Q1 and Q2 are no longer nilpotent. Also, since energy

eigenstates are not changed by the Hamiltonian this implies that performing twice the su-

persymmetry transformation Q1 or Q2 will return the system to its original state. Finally,

this implies that the supercharge(s) of a system, as eigenvalues of the Qi, are observable

quantities.

Furthermore, it can be directly inferred that

{Q1, Q2} = 0.

It is then possible to formulate the supersymmetric algebra of the theory as

[H,Qi] = 0 (2.9)

{Qi, Qj} = 2Hδij.

It is the first manifestation of the generic result (1.8) derived heuristically in the introduc-

tion. This algebra is always available when the Hamilton operator takes the form (2.8),

which will be done in the following. These algebras are often labeled with the number N
of linearly independent generators of supersymmetric transformations. In the present case

this number is N = 2. If there would be only a single supercharge Q with Q2 = H, the

theory would hence be a N = 1 theory. Many of the following results apply, partly slightly

modified, to system with arbitrary N . However, for simplicity, in this chapter only the

case N = 2 will be explicitly considered.

2.2 Spectrum of supersymmetric Hamilton operators

There are quite general consequences which can be deduced just from the algebra (2.9),

which implies the form (2.8) of the Hamilton operator. Note that the only properties which

have been used in the calculations of the supersymmetric operators were the nilpotency

of the operators Q±, and so the results are not restricted to simple harmonic oscillators.
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The first general consequence is that the spectrum is non-negative. This follows trivially

from the fact that (2.8) can be written as the square of a hermitian operator, which has

real eigenvalues. Given, e. g., that |q〉 is an eigenstate with eigenvalue q to the operator

Q1, it follows immediately that

H|q〉 = Q2
1|q〉 = Q1q|q〉 = q2|q〉

and thus |q〉 is an energy eigenstate with energy q2, which is positive or zero by the

hermiticity of Q1. Furthermore, let Q2 act on |q〉, yielding

Q2|q〉 = |p〉.

This state is in general not an eigenstate of Q1, although it is necessarily by virtue of (2.8)

an eigenstate of Q2
1. However, acting with Q1 on |p〉 yields

Q1|p〉 = Q1Q2|q〉 = −Q2Q1|q〉 = −qQ2|q〉 = −q|p〉. (2.10)

Here, it was assumed that q is not zero. Therefore, it is in fact an eigenstate, but to the

eigenvalue −q, |p〉 = |−q〉, so it is different from the original state |q〉. Therefore, this state

is also an eigenstate of the Hamilton operator to the same eigenvalue. Hence, for all non-

zero energies the spectrum of the Hamilton operator is doubly degenerate. Furthermore,

the states q and p differ by the application of a supersymmetry transformation. Hence, they

differ by their bosonic and fermionic content, one state has an even number of fermionic

quantas, and the other one an odd number of fermionic quanta.

2.3 Breaking supersymmetry and the Witten index

If a symmetry is exact, its generator G commutes with the Hamilton operator

[H,G] = 0. (2.11)

The operators Qi are the generators of supersymmetry. If there is a zero-energy state, this

is automatically fulfilled, because then (Q+ ± Q−)|0〉 = Qi|0〉 = H|0〉 = 0. On the other

hand, if there is no zero-energy state then for the ground-state |g〉 follows

[H,Qi]|g〉 = HQi|g〉+QiEg|g〉 = H|g′〉+QiEg|g〉 = EgQi|g〉+QiEg|g〉 = 2EgQi|g〉 6= 0.

Thus, the ground-state is not supersymmetric. Supersymmetry is then necessarily broken.

Hence, the energy of the ground state in in one-to-one correspondence with whether the

system exhibits manifest supersymmetry or not. Of course, there exists one superposition
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of the two degenerate ground states, for which [H,Qi] vanishes for one of the Qi, but not

for the other. But then the degeneracy is lifted, as now one of the Qi can be used to

distinguish both states.

This furthermore implies that if supersymmetry is unbroken the ground state has in

fact energy zero. It will be shown below that this state has to be unique. It should be

noted that there is a peculiarity associated with the fact that the Hamilton operator is

just the square of the generator of the symmetry. Since if supersymmetry is broken

Qi|0〉 6= 0⇒ Q2
i |0〉 6= 0 (2.12)

the ground state can no longer have energy zero, but must have a non-zero energy. There-

fore it is also doubly degenerate. Hence, the fact whether the ground state is degenerate

or not is therefore indicative of whether supersymmetry is broken or not. This is described

by the Witten index

∆ = tr(−1)NF .

NF is the particle number operator of fermions

NF = b†b.

Therefore, this counts the difference in total number of bosonic and fermionic states

∆ =
∑(

〈nF = 0|(−1)NF |nF = 0〉+ 〈nF = 1|(−1)NF |nF = 1〉
)

= nB − nF

where nB is the total number of bosonic states and nF is the total number of fermionic

states. All states appear doubly degenerate except at zero energy. Furthermore, these

degenerate states are related by a supersymmetry transformation, and thus have differing

fermion number. Hence, the Witten index is reduced to the difference in number of states

at zero energy,

∆ = nB(0)− nF (0).

It is therefore only nonzero if supersymmetry is intact, and zero if not. However, there are

cases where a zero Witten index does not necessarily imply that supersymmetry is broken,

just that it can be broken.

2.4 Interactions and the superpotential

To obtain a non-trivial theory, it is necessary to introduce interactions. The easiest way

to preserve the previous results, and obtain a supersymmetric theory, is to implement
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that Q± are necessarily nilpotent and fermionic in the simplest possible way. This can be

obtained by replacing the definition (2.5) by

Q+ = Ab†

Q− = A†b,

where the operators A and A† are arbitrary bosonic functions of the original operators

a and a†. In principle, they may also depend on bosonic quantities formed from b and

b†, like b†b. These would not spoil the nilpotency. For simplicity, this possibility will be

ignored here.

In this case NB is in general no longer a good quantum number, but NF remains

trivially one. So all states can be split into states with either NF = 0 or NF = 1, and can

furthermore be labeled by their energy,

H|EnF 〉 = E|EnF 〉
NF |EnF 〉 = nF |EnF 〉.

It is therefore useful to rewrite the states as two-dimensional vectors

|EnF 〉 ∼

(
|E0〉
|E1〉

)
.

In this basis, fermion operators are just matrices,

b† =

(
0 0

1 0

)

b =

(
0 1

0 0

)
,

which act as, e. g.,

b†

(
|x〉
0

)
=

(
0

|x〉

)
.

As a consequence any supersymmetric Hamilton operator has to be diagonal in this basis,

and takes the form

H =

(
A†A 0

0 AA†

)
=

1

2
{A,A†} − 1

2
[A,A†]σ3, (2.13)

where σ3 is the third of the Pauli matrices.
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Non-trivial contributions in quantum theories usually only involve the coordinates, and

not the momenta. Proceeding with the simplest way to obtain a non-trivial supersym-

metric model is therefore to replace the definition of the bosonic creation and annihilation

operators

a† =

√
m

2

(
q − i p

m

)
a =

√
m

2

(
q + i

p

m

)
with more general ones

A† =

√
1

2

(
W (q)− i p√

m

)
A =

√
1

2

(
W (q) + i

p√
m

)
.

The quantity W (q) is called the superpotential, although it is not a potential in the strict

sense, e. g. its dimension is not that of energy.

Using the relation (2.13) it is directly possible to calculate the corresponding Hamilton

operator. The anti-commutator yields

{A,A†} =
1

2

((
W − i p√

m

)(
W + i

p√
m

)
+

(
W + i

p√
m

)(
W − i p√

m

))
= W 2 +

p2

m
.

For the commutator the general relation

[p, F (q)] = −idF
dq

and the antisymmetry of the commutator is sufficient to immediately read off

[A,A†] = i

[
p√
m
,W

]
=

1√
m

dW

dq
.

The general supersymmetric Hamilton operator therefore takes the form

H =
1

2

(
p2

m
+W 2

)
− σ3

2
√
m

dW

dq
.

Supersymmetry therefore enforces a very restricted structure, since the terms proportional

to the unit matrix and to σ3 cannot be chosen independently, as would be possible in a

non-supersymmetric theory.
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It is actual possible to deduce from the asymptotic shape of the superpotential whether

supersymmetry is intact or broken. To see this, use the fact that the Hamilton operator

can be written as

H =

(
A†A 0

0 AA†

)
=

(
H1 0

0 H2

)
. (2.14)

Acting on the ground state wave function (|00〉, |01〉) with energy zero, this implies

H1|00〉 = A†A|00〉 = 0

H2|01〉 = AA†|01〉 = 0.

Because A† is adjoint to A and therefore

0 = 〈00|A†A|00〉 = (〈00|A)(A|00〉) (2.15)

and analogue for the second state, this implies

A|00〉 = 0 and A†|01〉 = 0.

It is therefore sufficient to solve the x-space differential equations(
1√
m

d

dx
±W

)〈
x
∣∣00

1

〉
= 0.

This can be solved by direct integration, yielding〈
x
∣∣00

1

〉
∼ exp

∓√m x∫
0

W (y)dy

 .

Since the wave functions must be normalizable they have to vanish when x → ±∞. Due

to the appearance of the exponential this implies that

∓
√
m

±∞∫
0

W (y)dy → −∞ (2.16)

For the corresponding wave function to vanish sufficiently fast. This is only possible for

one of the states. Thus, there exists at most only one ground state, as was discussed

before. Furthermore, there may exist none at all, if the condition (2.16) cannot be fulfilled

at all for a given potential. In particular, the condition (2.16) can only be fulfilled if the

superpotential at infinity has a different sign for x going either to positive or negative

infinity. For the same sign, the condition cannot be fulfilled. Therefore, it is simple to
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deduce for a given superpotential whether supersymmetry is exact or broken. Note that,

since the superpotential is not the potential it is not possible to shift it arbitrarily, nor

does it have an interpretation as a potential.

It is an interesting consequence that in the unbroken case it is possible to determine

the superpotential from the ground-state wave function. For this, it is only necessary to

investigate the upper component Schrödinger equation, the one with fermion number zero.

It takes the form

H1〈x|00〉 = A†A〈x|00〉 = − 1

2m

d2

dx2
〈x|00〉+

1

2

(
W 2 − 1√

m

dW

dx

)
〈x|00〉 = 0.

Since the ground-state wave function does not have any nodes, it is possible to divide by

it, obtaining

mW 2 −
√
m
dW

dx
=

1

〈x|00〉
d2

dx2
〈x|00〉

=

(
1

〈x|00〉
d

dx
〈x|00〉

)2

+
d

dx

(
1

〈x|00〉
d

dx
〈x|00〉

)
By explicit calculations, it can be shown that this differential equation of first order for

W is solved by

W = − 1√
m

d

dx
ln (〈x|00〉) . (2.17)

It should be noted that for every ordinary Hamilton operator H, a superpotential can

be constructed by solving

V =
1

2

(
W 2 − ~√

m
W ′
)
,

with V the potential of H, for the superpotential W . The latter is then used to construct

to H1 = H the H2, creating a supersymmetric system. Likewise, it can be shown that any

Hamilton oeprator can be written as H = B+B− for two adjoint operators (B+)
†

= B−,

and by setting H2 = B−B+ a supersymmetric operator is obtained. Thus, any quantum-

mechanical system can be supersymmetrized. Alternatively, of course, (2.17) can be used

to construct the supersymmetric version.

2.5 A specific example: The infinite-well case

Given the relation (2.17), it is possible to construct for all quantum mechanical systems

a supersymmetric version. This will be exemplified by the infinite well potential. The

potential is given by

V1 =

{
− π2

2mL2 for 0 ≤ x ≤ L

∞ otherwise
.
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The normalization of the potential is chosen such that the ground-state energy is zero.

The eigenvalues and eigenstates for this potential are

〈x|En〉 =

√
2

L
sin

(
(n+ 1)πx

L

)
En =

π2

2mL2
(n+ 1)2 − π2

2mL2
. (2.18)

To generate a supersymmetric system which has for states with fermion number zero

exactly these properties is now straightforward. The superpotential can be constructed

using the prescription (2.17). By direct calculation it becomes

W = − 1√
m

d

dx
ln (〈x|00〉) = − 1√

m

1

〈x|00〉
d

dx
〈x|00〉 = − π

L
√
m

cot
(πx
L

)
.

By construction, the Hamilton operator H1 is just the ordinary one. The second operator

looks much different,

H2 =
p2

m
+

1

2

(
W 2 +

1√
m

dW

dx

)
=

p2

m
+

1

2m

(
π2

L2
cot2

(πx
L

)
+
π2

L2
csc2

(πx
L

))
=

p2

m
+

π2

2mL2

(
2

sin2
(
πx
L

) − 1

)
.

Although this potential is rather complicated, it is possible to write down the eigenspec-

trum immediately. By construction, there is no zero-mode, as this one is already contained

in the spectrum of H1. Furthermore, since the system is supersymmetric, the spectrum

must be doubly degenerate. Since the conventional infinite-well potential is not degener-

ate, the operator H2 must have the same spectrum for non-vanishing energy. This also

exemplifies the possibilities supersymmetric methods may have outside supersymmetric

theories. If it is possible to find a simple super-partner for a complicated potential, it is

simple to determine the eigenspectrum of the original operator. Thus, the potential term

in H2 is also called partner-potential.

Also the eigenstates can now be constructed directly using the operators A† and A. To

obtain the ground-state of H2, it is possible to start with the first excited state of H1 and

act with A on it. This can be seen as follows by virtue of (2.14)

H2(A|n〉) = AA†A|n〉 = A(A†A|n〉) = En(A|n〉).

Here, it has been used that the Hamilton operator H1 is given by A†A. A similar relation

can also be deduced for the eigenstates of H1. Hence acting with A on an eigenstate of H1
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makes out of an eigenstate of H1 an eigenstate of H2 with the same energy. This yields

for the ground-state of H2 with the first excited state |1〉 of H1

〈x|A|1〉 = − 1√
2m

(
π

L
cot
(πx
L

)
− d

dx

)√
2

L
sin

(
2πx

L

)
= − 1√

2m

(√
2π2

L
3
2

cot
(πx
L

)
sin

(
2πx

L

)
−

√
8π2

L
3 cos

(
2πx

L

))

=

√
4π2

mL
3
2

sin2

(
2πx

L

)
.

Which has no nodes, and therefore is in fact the ground state. Note that the result needs

still to be normalized. In this way, it is possible to generate the whole set of eigenstates

of the second operator. Given these, the states(
|n0〉

0

)
and

(
0

|n1〉

)

represent eigenstates of the full supersymmetric Hamilton operator with zero and one

fermionic quanta, respectively, and energy (2.18). |n0〉 is an eigenstate of H1 with energy

En, and H2 is an eigenstate of H2 with energy En.

This concludes the introduction of supersymmetry in conventional quantum mechanics.
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Grassmann and super mathematics

Before introducing supersymmetry in field theory, it is necessary to discuss the properties

of Grassmann and supernumbers and the associated calculus. This will be necessary to

introduce fermionic fields and also to introduce later the so-called superspace formalism

which permits to write many quantities in supersymmetry in a very compact way. How-

ever, the superspace formalism is at times, due to its compactness, not simple to follow,

and many basic mechanisms are somewhat obscured. Therefore, both formalisms will be

introduced in parallel.

To some extent, this is a repetition of the machinery required for fermions in quantum

field theory. However, the addition of supernumbers justifies here a little redundancy.

3.1 Grassmann numbers

Bosonic operators and fields of the same type commute,

[a, a] = 0.

They can therefore be described with ordinary (complex) numbers. However, fermionic

operators and fields anticommute,

{b, b} = 0.

Hence a natural description should be by means of anti-commuting numbers. These num-

bers, the Grassmann numbers αa, are defined by this property, yielding the so-called

Grassmann algebra

{αa, αb} = 0

where the indices a and b serve to distinguish the numbers, and may therefore be themselves

denumerable. Note that the Grassmann algebra is different from the so-called Clifford

22
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algebra

{βa, βb} = 2δab

which is obeyed, e. g., by the γ-matrices appearing in the Dirac-equation, and therefore

also in the context of the description of fermionic fields.

A particular consequence of the Grassmann algebra is that all its elements are nilpotent,

(αa)2 = 0.

Hence, the set S of independent Grassmann numbers with a = 1, ..., N base numbers are

S = {1, αa, αa1αa2 , ..., αa1 × ...× αaN},

where all ai are different. This set contains therefore only 2N elements. There are no more

elements, as the square of every Grassmann number vanishes, and by anti-commuting

thus any product containing twice the same Grassmann number vanishes. Of course, each

element of S can be multiplied by ordinary complex numbers c, and can be added. This

is very much like the case of ordinary complex numbers. Such combinations z are called

supernumbers, and take the general form

z = c0 + caα
a +

1

2!
cabα

aαb + ...+
1

N !
ca1...aNα

a1 × ...× αaN = c0 + cS. (3.1)

Here, the factorials have been included for later simplicity, and the coefficient matrices

can be taken to be antisymmetric in all indices, as the product of αas are antisymmetric.

For N = 2 the most general supernumber is therefore

z = c0 + c1α
1 + c2α

2 + c12α
1α2,

where the antisymmetry has already been used. Sometimes the term c0 is also called body

and the remaining part soul. It is also common to split the supernumber in its odd and

even (fermionic and bosonic) part. Since any product of an even number of Grassmann

numbers commutes with other Grassmann numbers, this association is adequate. For

N = 2, e. g., the odd or fermionic contribution is

c1α
1 + c2α

2,

while the even or bosonic contribution is

c0 + c12α
1α2.

Since the prefactors can be complex, it is possible to complex conjugate a supernumber.

The conjugate of a product of Grassmann-numbers is defined as

(αa...αb)∗ = αb...αa (3.2)
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Note that this implies that a product of an even number of Grassmann numbers is imagi-

nary while an odd number is real,

α∗ = α

(αβ)∗ = βα = −αβ,

due to the anti-commutation when bringing the product back to its original order.

An important property of a supernumber z is its Grassmann parity π(z). It differen-

tiates between numbers which commute or anti-commute, and thus takes the values 0 or

1. Hence, for two supernumbers

z1z2 = (−1)π(z1)π(z2)z2z1,

the Grassmann parity can be used to determine the sign of permutations. Note that

only supernumbers with only even or odd numbers of Grassmann numbers have a defi-

nite Grassmann parity. Hence, supernumbers with definite Grassmann parity 0 or 1 are

therefore called even or odd.

Finally, a norm can be defined as

|z|2 = |c0|2 +
∞∑
k=1

∑
Permutations

1

k!
|ca1...ak |2,

such that it is possible to give meaning to the statement that a supernumber is small.

3.2 Superspace

3.2.1 Linear algebra

In superspace, each coordinate is a supernumber instead of an ordinary number. Alter-

natively, this can be regarded as a product space of an ordinary vector space times a

vector space of supernumbers without body. This is very much like the case of a complex

vector space, which can be considered as a real vector space and one consisting only of the

imaginary parts of the original complex vector space.

A more practical splitting is the one in bosonic and fermionic coordinates. In bosonic

coordinates only even products (including none at all) of Grassmann numbers appear, while

in the fermionic case there is always an odd number of Grassmann numbers. Denoting

bosonic coordinates by β and fermionic ones by φ, vectors take the form(
βi

φj

)
.
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In terms of the coefficients of a supernumber in a space with two fermionic and two bosonic

coordinates, based on the supernumber (3.1), this takes the form
c0

c12

c1

c2

 .

In the latter writing, it is important to notice that the unit vectors are not just bosonic

ones, but rather the fermionic α1 and α2. This is like introducing the vector space of

complex numbers with unit vectors 1 and i - the latter unit vector squares to -1 instead

of one, as is the standard version. Similarly, the fermionic coordinates here still anti-

commute.

Of course, this permits immediately to construct tensors of higher rank, in particular

matrices. To have the same rules for matrix multiplication, it follows that a (L + K)-

supermatrix must have the composition(
A = bosonic L× L B = fermionic K × L
C = fermionic L×K D = bosonic K ×K

)
where bosonic and fermionic refers to the fact whether the entries are bosonic or fermionic

(or even and odd, respectively). However, these matrices do have a number of properties

which make them different from ordinary ones. Also, operations like trace have to be

modified.

First of all, the transposition operation is different. The sub-product of two fermionic

sub-matrices B and C behaves as

(BC)ik = BijCjk = −CjkBij = −(CTBT )ki = (BC)Tki.

Therefore, there appears an additional minus-sign when transposing products of B- and

C-type matrices, (
A B

C D

)T

=

(
AT −CT

−BT DT

)
.

As a consequence, applying a supertransposition twice does still return the original matrix.

Though it is possible to define the inverse of a Grassmann numbers, there is no direct

possibility to determine it explicitly, but products of an even number of Grassmann num-

bers are ordinary numbers and can therefore be inverted. Therefore, the inverse matrix is

rather complicated,

M−1 =

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)
.
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That this is the correct prescription can be checked by explicit calculation,

MM−1 =

(
1 0

0 1

)
=(

A(A−BD−1C)−1 −BD−1C(A−BD−1C)−1 −B(D − CA−1B)−1 +B(D − CA−1B)−1

C(A−BD−1C)−1 − C(A−BD−1C)−1 D(D − CA−1B)−1 − CA−1B(D − CA−1B)−1

)
,

and accordingly for M−1M .

This result implies that a supernumber defined as in (3.1), which is formally a 1 × 1

matrix, has only an inverse if its pure complex part c0 is non-zero. If it has, it can be

explicitly determined as the infinite series

1

z
=

1

c0

∑(
−cS
c0

)n
,

though this is rarely needed in practice.

Also the standard operations of trace and determinant get modified. The trace changes

to the supertrace

strM = trA− trD. (3.3)

The minus sign is necessary to preserve the cyclicity of the trace

strM1M2 = tr(A1A2 +B1C2)− tr(C1B2 +D1D2)

= (A1)ij(A2)ji + (B1)ij(C2)ji − (C1)ij(B2)ji + (D1)ij(D2)ji.

The products of A and D matrices are ordinary matrices, and therefore are cyclic. However,

the products of the fermionic matrices acquire an additional minus sign when permuting

the factors, and renaming the indices,

(A2)ij(A1)ji + (B2)ij(C1)ji − (C2)ij(B1)ji + (D2)ij(D1)ji

= tr(A2A1 +B2C1)− tr(C2B1 +D2D1) = strM2M1.

For the definition of the determinant the most important feature is to preserve the fact

that the determinant of a product of matrices is a product of the respective determinants.

This can be ensured when generalizing the identity

detA = exp (tr lnA)

of conventional matrices for the definition of the superdeterminant

sdetM = exp (str lnM)
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This can be proven by the fact that the determinant should be the product of all eigenval-

ues. Since the trace is the sum of all eigenvalues λi, and these are also for a super-matrix

bosonic, it follows

exp (str lnM) = exp

(∑
iεA

lnλi −
∑
iεD

lnλi

)
= exp ln

(
ΠiεAλi
ΠiεDλi

)
=

ΠiεAλi
ΠiεDλi

. (3.4)

Note the important fact that the eigenvalues of the fermionic dimension part D appears in

the denominator rather than the numerator. This will play a crucial role in dealing with

fermions in quantum theories.

The product rule for diagonalizable matrices follows then immediately. To prove that

the superdeterminant of the product is the product of the individual determinants also in

general requires the Baker-Campbell-Hausdorff formula

expF expG = exp

(
F +G+

1

2
[F,G] +

1

12
([[F,G], G] + [F, [F,G]]) + ...

)
.

Set F = lnM1 and G = lnM2. Then it follows that

str ln(M1M2) = str ln (expF expG) = str (F +G) = str(lnM1 + lnM2).

Here, it was invested that the trace of any commutator of two matrices vanishes due to

the cyclicity of the trace. It then follows immediately that

sdet(M1M2) = exp (str ln(M1M2)) = exp str (lnM1 + lnM2) = sdetM1sdetM2 (3.5)

where the last step was possible as the supertraces are ordinary complex numbers.

To evaluate the superdeterminant explicitly, it is useful to rewrite a super-matrix as

M =

(
A B

C D

)
=

(
A 0

C 1

)(
1 A−1B

0 D − CA−1B

)
.

It then follows immediately by the product rule for determinants that

sdetM = detA det
(
D − CA−1B

)
.

A similar formula an be obtained by isolating the superdeterminant of D rather than A.

Since in both cases both factors are purely bosonic, they can be evaluated, and yield a

bosonic number, as anticipated from a product of bosonic eigenvalues.
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3.2.2 Analysis

To do analysis, it is necessary to define functions on supernumbers. First, start with

analytic functions. This is rather simple, due to the nilpotency of supernumbers. Hence,

for a function of one supervariable

z = b+ f

only, with b bosonic and f fermionic, the most general function is

F (z) = F (b) +
dF (b)

db
f.

Any higher term in the Taylor series will vanish, since f 2 = 0. Since Grassmann numbers

have no inverse, all Laurent series in f are equivalent to Taylor series. For a function of

two variables, the most general form is

F (z1, z2) = f(b1, b2) +
∂F (b1, b2)

∂b1

f1 +
∂F (b1, b2)

∂b2

f2 +
∂2F (b1, b2)

∂b1∂b2

f1f2.

There are no other terms, as any other term would have at least a square of the Grassmann

variables, which therefore vanishes.

This can therefore be extended to more general functions, which are no longer analytical

in their arguments,

F (b, f) = F0(b) + F1(b)f (3.6)

and correspondingly of two variables

F (b1, b2, f1, f2) = F0(b1, b2) + Fi(b1, b2)fi + F12(b1, b2)f1f2,

and accordingly for more than two.

The next step is to differentiate such functions. Differentiating with respect to the

bosonic variables occurs as with ordinary functions. For the differentiation with respect

to fermionic numbers, it is necessary to define a new differential operator by its action on

fermionic variables. As these can appear at most linear, it is sufficient to define

∂

∂fi
1 = 0

∂

∂fi
fj = δij (3.7)

Since the result should be the same when f1f2 is differentiated with respect to f1 irrespec-

tive of whether f1 and f2 are exchanged before derivation or not, it is necessary to declare

that the derivative anti commutes with Grassmann numbers:

∂

∂f1

f2f1 = −f2
∂

∂f1

f1 = −f2 =
∂

∂f1

(−f1f2) =
∂

∂f1

f2f1.
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Alternatively, it is possible to introduce left and right derivatives. This will not be done

here. As a consequence, the product (or Leibnitz) rule reads

∂

∂fi
(fjfk) =

(
∂

∂fi
fj

)
fk − fj

∂

∂fi
fk.

Likewise, the integration needs to be constructed differently. In fact, it is not possible to

define integration (and also differentiation) as a limiting process, since it is not possible

to divide by infinitesimal Grassmann numbers. Hence it is necessary to define integration.

As a motivation for how to define integration the requirement of translational invariance

is often used. This requires then ∫
df = 0∫
fdf = 1 (3.8)

Translational invariance follows then immediately as∫
F (b, f1 + f2)df1 =

∫
(h(b) + g(b)(f1 + f2))df1 =

∫
(h(b) + g(b)f1)df1 =

∫
F (b, f1)df1

where the second definition of (3.8) has been used. Note that also the differential anti-

commutes with Grassmann numbers. Hence, this integration definition applies for fdf . If

there is another reordering of Grassmann variables, it has to be brought into this order.

In fact, performing the remainder of the integral using (3.8) yields g(b). Hence, this defi-

nition provides translational invariance. It is an interesting consequence that integration

and differentiation thus are the same operations for Grassmann variables, as can be seen

from the comparison of (3.7) and (3.8).

A further consequence, which will be useful later on, is that multiple integrations

always projects out the coefficient of a superfunction with the same number of Grassmann

variables as integration variables, provided the same set appears. In particular,∫
(g0(b1, b2) + g1(b1, b2)f1 + g2(b1, b2)f2 + g12(b1, b2)f1f2)df1df2

=

∫
(g2(b1, b2)f2 + g12(b1, b2)f2)df1 = g12(b1, b2)

These integral relations will be useful in chapter 6 to introduce the so-called superspace

formulation of supersymmetric field theories later in such a way that supersymmetry is

directly manifest.

It is useful that also the Dirac-δ function can be expressed for Grassmann variables.

It also takes a very simple form,

δ(f1 − f2) = f1 − f2.
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This can be proven by direct application,∫
F (f1)δ(f1 − f2)df1 =

∫
((g0(b1) + g1(b1)f1)f1 − (g0(b1) + g1(b1)f1)f2)df1

= g0(b1) + g1(b1)f2 = F (f2).

Here, it was necessary to use the anticommutation relation for Grassmann variables on

the last term to bring this into the form for which the definition applies.



Chapter 4

Non-interacting supersymmetric

quantum field theories

Supersymmetric quantum mechanics is a rather nice playground to introduce the concept

of supersymmetry. Also, it is a helpful technical tool for various problems. E. g., it was

useful to solve a very complicated Hamilton operator by relating it to the partner problem

of the infinite-well potential. However, its real power as a physical concept is only unfolded

in a field theoretical context. In this case, no longer bosonic and fermionic operators are

the quantities affected by supersymmetric transformation, but particles themselves, bosons

and fermions.

4.1 Fermions

While bosons can be incorporated in supersymmetric theories rather straightforwardly, a

little more is needed in case of fermions. As has been seen in the quantum mechanical case,

supersymmetry requires the same number of bosonic and fermionic operators to appear

in the theory. The translation to field theory will be that there is the same number of

bosons and fermions in the theory. Now, fermions in particle physics are encountered, e.

g., in the form of electrons, which are described by Dirac spinors. These spinors include

not only the electron, but also its antiparticle. As both have the possibility to have spin

up or down, these are four degrees of freedom. This would require at least four bosons

to build a supersymmetric theory. This is already quite a number of particles. However,

it is also possible to construct fermions which are their own antiparticles. Therefore the

number of degrees of freedom is halved. These are called Majorana fermions. Since these

work quite a little differently than ordinary fermions, these will be introduced in this

section. However, as yet this is a purely theoretical concept. No Majorana fermions have

31
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been observed in nature so far, although there are speculations that neutrinos, which

are usually described by ordinary fermions, may be Majorana fermions, but there is no

clear experimental evidence for this. These Majorana fermions, with identical particle and

anti-particle, can mathematically also described as only one particle. This the so-called

Weyl-fermion formulation1. It is this formulation, which will be used predominantly here.

However, also the Majorana formulation is useful, and will be introduced briefly.

Note that fermions always have to have at least spin 1/2 as a consequence of the

so-called CPT-theorem (or, equivalently, Lorentz invariance). These are two degrees of

freedom. Hence, it is not possible to construct a supersymmetric theory with less than

two fermionic and two bosonic degrees of freedom, at least in four dimensions.

As the spinors describing fermions are actually complex, and only by virtue of the

equations of motion are reduced to effectively two degrees of freedom, in principle also four

bosonic degrees of freedom are needed off-shell, that is without imposing the equations of

motions. This will be ignored for now, and will only be taken up later, when it becomes

necessary to take this distinction into account when quantizing the theory.

4.1.1 Fermions, spinors, and Lorentz invariance

Supersymmetry transformations δξ will relate bosons φ and fermions ψ, i. e. in infinitesimal

form

δξφ ∼ ξψ (4.1)

with an infinitesimal parameter ξ. There is a number of observations to be made from this

seemingly innocent relation. First of all, the quantity on the left-hand side is Grassmann-

even, it is an ordinary (complex) number. The spinor ψ, describing a fermion, however,

is Grassmann-odd, it is a fermionic number. Hence, also the parameter of the supersym-

metry transformation ξ must be Grassmann-odd2, such that the combination can give

a Grassmann-even number. Secondly, a bosonic field, once more by virtue of the CPT-

theorem, can have only integer spin. But since the fermion has non-integer spin, both

sides would transform differently under Lorentz transformations. Since Lorentz symmetry

should certainly not be broken by introducing supersymmetry (as this was the reason to

introduce it at all), the parameter ξ can also not transform trivially under Lorentz trans-

1Note that in the more general case of non-supersymmetric theories there are subtle differences between

Weyl fermions and Majorana fermions, especially if the number of dimensions differ from 4. This will be

taken up later.
2Note that for Grassmann numbers infinitesimal is not a sensible notion, since ξ2 = 0, and thus the

statement ξ3 � ξ2 is wrong. When speaking of an infinitesimal transformation, it is always assumed that

ξ is given by ξ = εξ′ with ε an infinitesimal real parameter and ξ′ a pure Grassmann number.
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formations. It must also be a spinor of some kind, as is the fermion field. To be able

to exactly identify which type, a detour on spinors and Lorentz transformations will be

necessary.

4.1.1.1 Weyl spinors

The starting point is the Dirac equation

(i∂µγ
µ +m) Ψ = 0,

where Ψ is a four-component (complex) spinor, m is the mass, and γµ are the Dirac

matrices. The representation for the latter employed here is

γµ =

(
0 σ̄µ

σµ 0

)

σµ =

(
σ0

σi

)
σ̄µ =

(
σ0

−σi

)
(4.2)

where σi are the Pauli matrices and σ0 is the unit matrix. The spinor Ψ can be divided

into two two-component objects ψ and χ,

Ψ =

(
ψ

χ

)
.

These two components fulfill a set of coupled Dirac equations

(E − σipi)ψ = σµpµψ = mχ (4.3)

(E + σipi)χ = σ̄µpµχ = mψ. (4.4)

The coupling is only mediated by the mass. If the mass is zero, both equations decouple,

and the spinors ψ and χ become eigenstates of the helicity operator σipi/
√
pipi with

eigenvalues 1 and -1, respectively.

This is no longer true for finite masses. In this case, however, they are still eigenstates

of γ5, which is given by

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
.

In the zero-mass limit four-component spinors are not only eigenstates to γ5 but also of

the helicity operator. Those with γ5 eigenvalue 1 and helicity eigenvalue 1 are called
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right-handed. Those with eigenvalues -1 are called left-handed. For a general spinor Ψ it

follows

1

2
(1 + γ5)Ψ =

(
ψ

0

)
= ΨR

1

2
(1− γ5)Ψ =

(
0

χ

)
= ΨL.

The importance of the subspinors ψ and χ is that they have a definite behavior under

Lorentz transformations. These are therefore called Weyl spinors. To see this, take an

infinitesimal Lorentz transformation

E → E ′ = E − ηipi
p→ p′ = p− ε× p− ηE,

where the vectors ε parametrizes a rotation and η a boost. With the general transformation

behavior of Dirac spinors under infinitesimal Lorentz transformations

Ψ′ = Ψ +
i

2

(
εiσi − ηiσi 0

0 εiσi + ηiσi

)
Ψ (4.5)

the transformation rules

ψ → ψ′ = ψ + (iεiσi/2− ηiσi/2)ψ

χ→ χ′ = χ+ (iεiσi/2 + ηiσi/2)χ

result. The important observation is that both transform the same under rotations, as

spin 1/2 particles, but differently under boosts. Defining

V = 1 + iεiσi/2− ηiσi/2

the transformation rules simplify to

ψ′ = V ψ

χ′ = V −1†χ = (1 + iεiσi/2− ηiσi/2)−1†χ

= (1− iεiσi/2 + ηiσi/2)†χ = (1 + iεiσi/2 + ηiσi/2)χ.

Furthermore, from equations (4.3) and (4.4) it follows then that a multiplication with σµpµ

exchanges (up to a factor m) a ψ- and a χ-type-spinor, and thus changes the respective

transformation properties under Lorentz transformations.
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This is already important: Because the aim is to construct a Lorentz scalar for the

supersymmetry transformation (4.1), and to do this with only two degrees of freedom, it

is necessary to form a scalar out of Weyl spinors. For a Dirac spinor this is simple,

Ψ†γ0Ψ =
(
ψ† χ†

)(0 1

1 0

)(
ψ

χ

)
= ψ†χ+ χ†ψ,

and thus scalars are products of ψ- and χ-type spinors. So there is already one possibility

to construct a ψ from a χ, but this involves the Dirac equation and a momentum. A more

general possibility is

σ2ψ
∗′ = σ2V

∗ψ∗ = σ2(1− iεiσi∗/2− ηiσi∗/2)ψ∗ = (1 + iεiσ
i/2 + ηiσ

i/2)σ2χ = V −1†σ2ψ
∗,

where in the last step it was used that σ2 anti-commutes with the real σ1 and σ3 matrices,

but commutes with itself and is itself purely imaginary. Hence multiplying the complex-

conjugate by σ2, a process which may be recognized as charge conjugation, turns the

Weyl-spinor ψ into one of χ-type, with the corresponding changed Lorentz-transformation.

Hence, e. g., the quantity

(−iσ2ψ
∗)†ψ = (−iσ2ψ)Tψ = ψT (iσ2)ψ

is a scalar, just as desired. Similar iσ2χ
∗ transforms like a ψ, and so on. Hence transfor-

mations rules can be introduced, and corresponding translations between left-handed and

right-handed spinors.

4.1.1.2 Indices and dotted indices

However, in introducing these quantities, things became rather messy. It is therefore useful

to introduce a compact index notation. This will be done, similarly to the case of special

relativity, by the position of the indices. This notation is essentially based on the structure

of the Lorentz group.

The Lorentz group consists out of rotations J and boosts K. In general, commutators

of J and K do not vanish. However, defining skew versions of these operators

A =
1

2
(J + iK)

B =
1

2
(J − iK)

this is the case. The Lorentz algebra becomes then a direct product of two SU(2) algebras

[Ai, Aj] = εijkAk

[Bi, Bj] = εijkBk

[Ai, Bj] = 0. (4.6)
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Hence, any representation of the Lorentz group can be assigned two independent quantum

numbers, which are either integer or half-integer. E. g. scalars are then just twice the trivial

case. Left-handed and right-handed fermions, however, belong to the (1/2, 0) and (0, 1/2)

representations, vectors like the momentum belong to the (1/2, 1/2) representation, and

antisymmetric tensors like the generators of angular momentum to the (1, 0) + (0, 1) rep-

resentation. The simplification will now be based on distinguishing indices of the two

different representations.

For this purpose, define the meaning of the index position for a χ-type spinor by(
χ1

χ2

)
= iσ2χ =

(
χ2

−χ1

)
. (4.7)

Hence, given an ordinary χ-type spinor with components χ1 and χ2, the corresponding

ψ-type spinor has components χ1 and χ2.

Since scalars are obtained by multiplying χ- and ψ-type spinors, these can now be

simply obtained from two χ-type spinors α and β by

αTβ = (α1α2)

(
β1

β2

)
= α1β1 + α2β2 = αaβa.

This is very similar to the case of special relativity. Note that spinors are usually Grassmann-

valued. Hence the order is relevant. The common convention is that the indices appear

from top left to bottom right. Otherwise a minus-sign appears in the case of Grassmann-

spinors,

αaβa = −βaαa,

and correspondingly for more elements

αaβbγaδb = −αaγaβbδb = −γaαaδbβb.

From the definition (4.7), it is also possible to read-off a ’metric’ tensor, which can be

used to raise and lower an index, the totally anti-symmetric rank two tensor εab, yielding

χa = εabχb.

where ε12 = 1 and ε12 = −1.

This fixes the notation for χ-type spinors. Since there are also ψ-type spinors, it is

necessary to also introduce a corresponding notation for them. However, in general the

same notation could quickly lead to ambiguities. Therefore, a different convention is used:

ψ-type spinors receive also upper and lower indices, but these in addition have a dot,(
ψ1̇

ψ2̇

)
= −iσ2ψ =

(
−ψ2̇

ψ1̇

)
.
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It is then also possible to contract these two indices analogously to obtain a scalar, but

this time the ordering will be defined to be from bottom left to top right

αTβ = αȧβ
ȧ.

From the fact how these spinors can be contracted to form scalars, it can be read off

directly that χa transforms by multiplication with the Lorentz transformation V ∗, since

χa transforms with V −1†. On the other hand, since ψȧ transforms with V , ψȧ has to

transform with V −1T .

Otherwise the same applies as previously for the χ-type spinors. Given this index

notation, there are no ambiguities left in case of expressions with explicit indices. To be

able to separate these also without using the indices explicitly, usually ψ-type spinors are

written as ψ̄. This is not the same as the conventional Dirac-bar, and the equalities

ψ1̇ = ψ̄1̇∗

ψ2̇ = ψ̄2̇∗

hold. However, since complex conjugation is involved when it comes to treating χ-type

spinors, here the definition is

χ̄ȧ = χ∗ȧ

Therefore, a scalar out of χ-type spinors can now be written as

χ†χ = χ̄χ

and similarly

ψ†ψ = ψψ̄.

Another scalar combination, which will be often used, is

ψ̄ · χ̄ = ψ̄†χ̄ = εabψ
∗
aχ

b∗ = −ψ∗1χ∗2 − ψ∗2χ∗1.

Having now available a transformation which makes from an electron-type half spinor

a positron-like half-spinor, it is natural to investigate what happens if both are combined

into one single 4-component spinor, i. e., combining two Weyl spinors. To obtain the

correct transformation properties under Lorentz transformation, this object is

Ψ =


ψ1̇

ψ2̇

−ψ2̇∗

ψ1̇∗

 .
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Since there are only two independent degrees of freedom, the spinor Ψ cannot describe, e.

g., an electron. Its physical content is made manifest by performing a charge conjugation

CΨ =

(
0 iσ2

−iσ2 0

)(
ψ∗

−iσ2ψ

)
=

(
ψ

−iσ2ψ
∗

)
= Ψ,

i. e., it is invariant under charge conjugation and thus describes a particle which is its own

antiparticle, like the photon. Spin 1/2-particles with this property are called Majorana

fermions, and thus this is a Majorana spinor. Note that this combination is not possi-

ble for arbitrary dimensions (and arbitrary space-time manifolds), but is correct in four

dimensional Minkowski space-time. In this case, which covers almost all of this lecture,

Weyl and Majorana fermions can be used synonymously.

4.2 The simplest supersymmetric theory

This is sufficient to set the scene for a first supersymmetric quantum field theory.

As discussed previously, it will be necessary to have the same number of fermionic

and bosonic degrees of freedom. This requires at least two degrees of freedom, since it

is not possible to construct a fermion with only one. Consequently, two scalar degrees of

freedom are necessary. The simplest system with this number of degrees of freedom is a

non-interacting system of a complex scalar field φ and a free Weyl fermion χ, which will

be described by the undotted spinor. The corresponding Lagrangian is given by

L = ∂µφ†∂µφ+ iχ†σ̄µ∂µχ. (4.8)

Note that here already with the fully quantized theory will be dealt. From this the

corresponding action is constructed as

S =

∫
Ld4x.

The corresponding physics will be invariant under a supersymmetry transformation if the

action is invariant3. Since it is assumed that the fields vanish at infinity this requires invari-

ance of the Lagrangian under the supersymmetry transformation up to a total derivative.

The according supersymmetry transformations can be constructed by trial and error.

Here, they will be introduced with hindsight of the results, and afterwards their properties

will be analyzed. The transformation

A′ = A+ δA

3Actually, only up to anomalies. This possibility will be disregarded here, and is no problem for the

cases presented.
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takes for the scalar field the form

δφ = ξaχa = (−iσ2ξ)
Tχ. (4.9)

Herein, ξ is a constant, Grassmann-valued spinor. It thus anticommutes with χa. This is

necessary in order to form a scalar, complex number from χ. By dimensional analysis, ξ

has units of 1/
√

mass. The corresponding transformation law for the spinor is

δχ = −iσµξ̄∂µφ = σµσ2ξ
∗∂µφ. (4.10)

The pre-factor is fixed by the requirement that the Lagrangian is invariant under the

transformation. The combination of ξ with σµ guarantees the correct transformation

behavior of the expression under Lorentz transformation in spinor space. The derivative,

which appears, is necessary to construct a scalar under Lorentz transformation in space-

time, and to obtain the correct mass-dimension. It is the only object which can be used

for this purpose, as it is the only one which appears in the Lagrangian (4.8), besides

the scalar field. The general structure is therefore fixed by the transformation properties

under Lorentz transformation. That the pre-factors are in fact also correct can be shown

by explicit calculation,

δL = ∂µ((δφ)†)∂µφ+ ∂µφ
†∂µ(δφ) + (δχ)†iσ̄µ∂µχ+ χ†iσ̄µ∂µ(δχ) (4.11)

= i∂µχ
†σ2ξ

∗∂µφ+ iχ†σ̄νσµσ2ξ
∗∂ν∂µφ− i∂µφ†∂µ(ξTσ2χ)− iξTσ2σ

µσ̄νχ∂ν∂µφ
†

Herein partial integrations have been performed, as necessary to obtain this form. There

are two linearly independent terms, one proportional to ξ∗ and one to ξ in this expression.

Both have therefore to either individually vanish or be total derivatives. To show this, it

is helpful to note that

σ̄ν∂νσ
µ∂µ = (∂0 − σj∂j)(∂0 + σi∂

i) = ∂0∂
0 − ∂i∂i = ∂µ∂µ, (4.12)

where it has been used that σ2
i = 1. Taking now only the terms proportional to ξ∗ yields

i∂µχ
†σ2ξ

∗∂µφ+ iχ†σ2ξ
∗∂µ∂

µφ = ∂µ(χ†iσ2ξ
∗∂µφ). (4.13)

This term is therefore indeed a total derivative. Likewise, also the term proportional to

ξT can be manipulated to yield a pure total derivative. However, this is somewhat more

complicated, as the combination (4.12) is not appearing. The last term can be rewritten

as

−iξTσ2σ
µσ̄νχ∂ν∂µφ

† = ∂µ(φ†iξTσ2σ
µσ̄ν∂νχ) + φ†iξTσ2σ

µσ̄ν∂µ∂νχ



40 4.3. Supersymmetry algebra

It is then possible to use (4.12) on the last term to obtain

∂µ(φ†iξTσ2σ
ν σ̄µ∂νχ) + φ†iξTσ2∂µ∂µχ.

The first term is already a total derivative. The second term combines with the second-to-

last term of (4.11) to a total derivative. Hence, the total transformation of the Lagrangian

reads

δL = ∂µ(χ†iσ2ξ
∗∂µφ+ φ†iξTσ2σ

ν σ̄µ∂νχ+ φ†iξTσ2∂
µχ)

which is a total derivative.

Therefore, this theory is indeed supersymmetric. The set of fields φ and χ is called a

supermultiplet. To be more precise, it is a left-chiral supermultiplet, because the spinor

has been taken to be of χ-type. The χ-type spinor could be replaced with a ψ-type spinor,

yielding a right-chiral supermultiplet, without changing the supersymmetry of the theory,

although, of course, the transformation is modified.

There should be a note of caution here. Unfortunately, it will turn out that this

demonstration is insufficient to show supersymmetry of the quantized theory, and it will

be necessary to modify the Lagrangian (4.8). This problem will become apparent when

discussing the supersymmetry algebra. However, most of the calculations performed so

far can be used unchanged.

4.3 Supersymmetry algebra

It turns out that the supersymmetry transformations (4.9) and (4.10) will form an alge-

bra, similar to the algebra (2.9) of the quantum-mechanical case. This algebra can be

used to systematically construct supermultiplets, and is useful for many other purposes.

Therefore, this algebra will be constructed here, based first on the simplest examples of

supersymmetry transformations (4.9) and (4.10) and will be generalized thereafter.

4.3.1 Constructing an algebra from a symmetry transformation

Such an algebra has already been encountered in the quantum-mechanical case, and was

given by (2.9). To obtain this algebra, it is necessary to construct the supersymmetry

charges, which in turn generate the transformation. This is constructed as follows. In

general, any symmetry transformation is a unitary transformation which thus preserves

the values of observables. Thus for any field f , in general a transformation can be written

as

f ′ = UfU † (4.14)
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with U a unitary operator. Any unitary operator can be written as

U = exp(iξQ)

with Q hermitian, Q = Q†. If the transformation parameter ξ becomes infinitesimal, the

relation (4.14) can be expanded to yield

f ′ = (1 + iξQ)f(1− iξQ) = f + [iξQ, f ]

→ δf = [iξQ, f ].

In a quantum field theory, Q must again be a function of the f . To construct it, it is nec-

essary to analyze the transformation properties of the Lagrangian under the infinitesimal

transformation, which is given by

δL = ∂µK
µ (4.15)

The terms on the right-hand side can only be at most total derivatives. For simplicity,

it will be assumed that the transformation U is not inducing such terms, but it will be

necessary to include them below when returning to supersymmetry transformations, as

there such terms are present, see (4.13). If then ∂K is dropped, the variation can be

written as

0 = δL =
∂L
∂f

δf +
∂L
∂∂µf

∂µ(δf).

This can be simplified using the equation of motion for f ,

∂L
∂f

= ∂µ

(
∂L
∂∂µf

)
to yield

0 =

(
∂µ

(
∂L
∂∂µf

))
δf +

∂L
∂∂µf

∂µ(δf) = ∂µ

(
∂L
∂∂µf

δf

)
= ∂µj

µ. (4.16)

The current which has been thus defined is the symmetry current, and it is conserved. If

a total derivative ∂µK
µ exists, the definition of the symmetry current becomes

jµ =
∂L
∂∂µf

δf −Kµ (4.17)

Therefore, the charge defined as

q =

∫
ddxj0(x)

is also conserved. This derivation is also known as Noether’s theorem, stating that for any

symmetry there exists a conserved charge. Note that this charge is an operator, build from
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the field variables. It can be identified with the charge Q, which in general can be shown

by an expansion of its constituents in power-series in f and ∂µf (ensuring the invariance

of L) and the usage of the commutation relations of f . This will not been done here, but

below an explicit example for the case of supersymmetry will be discussed.

This completed, and thus with an explicit expression for generators of the transfor-

mation Q at hand, it is possible to construct the corresponding algebra by evaluating the

(anti-)commutators of Q.

4.3.2 The superalgebra

The conserved supercurrent jµ can be constructed using (4.15) and (4.16). Noting that

∂µχ
† is not appearing in the Lagrange density, only three derivatives plus the boundary

term remain to yield

jµ = −Kµ +
∂L
∂∂µφ

δφ+
∂L
∂∂µφ†

δφ† +
∂L
∂∂µχ

δχ

= −χ†iσ2ξ
∗∂µφ+ ∂νφ

†iξTσ2σ
ν σ̄µχ+ φ†iξTσ2∂µχ

−∂µφ†ξT iσ2χ+ χ†iσ2ξ
∗∂µφ+ χ†σ̄µσνiσ2ξ

∗∂νφ

Here, and in the following, the necessary contribution from the hermitian conjugate con-

tribution are not marked explicitly. This result can be directly reduced, since some terms

cancel, to

jµ = χ†σ̄µσνiσ2ξ
∗∂νφ− ∂νφ†iξTσ2σ

ν σ̄µχ

= ξT (−iσ2)Jµ + ξ∗iσ2J
µ∗

Jµ = σν σ̄µχ∂νφ
†.

Jµ is the so-called supercurrent, which forms the conserved current by a hermitian combi-

nation, similar to the probability current in ordinary quantum mechanics, iψ†∂iψ+iψ∂iψ
†.

To write the complex-conjugate part of the current, it has been used that

σ2σ
ν σ̄µ = σν σ̄µσ2

which follows by the anti-commutation rules for the Pauli matrices. This permits to

construct the supercharge

Q =

∫
d3xσνχ∂νφ

†.

This indeed generates the transformation for the fields φ and χ. To show this, the canonical

commutation relations

[φ(x, t), ∂tφ(y, t)] = iδ(x− y)

{χa(x, t), χ†b(y, t)} = δabδ(x− y), (4.18)
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and all other (anti-)commutators vanishing, can be used.

For the bosonic fields this follows as

i[ξQ, φ(x)] = i

∫
dy[ξ(σνχ(y))∂νφ

†(y), φ(x)]

= i

∫
dyξσνχ(y)[∂νφ

†(y), φ(x)] (4.19)

Since the commutator of all spatial derivatives with the field itself vanishes, only the

component ν = 0 remains,

i

∫
dyξχ(y)[∂0φ

†(y), φ(x)] =

∫
dyξχ(y)δ(x− y) = ξχ

which is exactly the form (4.9). The calculation for the transformation of φ† has to

be performed with ξ̄Q̄, and yields the transformation rule with χ̄. Consequently, the

transformation law for χ is obtained from

i[ξQ+ ξ̄Q̄, χ(x)] = −iσµ(iσ2ξ
∗)∂µφ,

and correspondingly for χ† from the complex conjugate version. To explicitly show this,

it is necessary to note that

[ξaχ
†a, χb] = ξaχ

†aχb − χbξaχa = ξaχ
†aχb + ξaχbχ

a = ξa{χ†a, χb},

since Grassmann fields and variables anticommute.

It is now possible to construct the algebra.

First of all, the (anti-)commutators

[Q̄, Q̄] = 0 [Q,Q] = 0 {Q,Q} = 0 {Q̄, Q̄} = 0

all vanish, since in all cases all appearing fields (anti-)commute. There are thus, at first

sight, one non-trivial commutator and one non-trivial anti-commutator.

For the non-vanishing cases, it is simpler to evaluate two consecutive applications of

SUSY transformations. To perform this, note first that

[q, [p, f ]] + [p, [f, q]] + [f, [q, p]] = 0.

This can be shown by direct expansion. It can be rearranged to yield

[[q, p], f ] = [q, [p, f ]]− [p, [q, f ]].

If q and p are taken to be ξQ and η̄Q̄, and f taken to be φ, this implies that the commutator

of two charges can be obtained by determining the result from two consecutive applications
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of the SUSY transformations. Using (4.9) and (4.10), it is first possible to obtain the result

for this double application. It takes the form

[ξQ+ ξ̄Q̄, [ηQ+ η̄Q̄, φ]] = −i[ξQ+ ξ̄Q̄, ηT (−iσ2)χ] = iηT (−iσ2)σµ(−iσ2ξ
∗)∂µφ. (4.20)

Subtracting both possible orders of application yields then the action of the commutator

[[ξQ+ ξ̄Q̄, ηQ+ η̄Q̄], φ] = i(ξT (−iσ2)σµ(−iσ2η
∗)− ηT (−iσ2)σµ(−iσ2ξ

∗))∂µφ.

Here it has been used that Q̄ is commuting with φ, as it does not depend on φ†.

Aside from a lengthy expression f(η, ξ), which gives the composition rule for the pa-

rameters, there is one remarkable result: The appearance of −i∂µφ, which is the action of

Pµ on φ, the momentum or generator of translations. Hence, the commutator is given by

[ξQ+ ξ̄Q̄, ηQ+ η̄Q̄] = f(η, ξ)Pµ. (4.21)

In fact, this is not all, due to aforementioned subtlety involving the fermions. This will be

postponed to later.

Though anticipated in the introductory section 1.4, the appearance of the momentum

operator seems at first surprising. However, in quantum mechanics it has been seen that

the super-charges are something like the squareroot of the Hamilton operator, which is also

applying, in the free case, to the momentum operator. This relation is hence less exotic

than might be anticipated. Still, this implies that the supercharges are also something like

the squareroot of the momentum operator, which leads to the notion of the supercharge

being translation operators in fermionic dimensions. This idea will be taken up later when

the superspace formulation will be discussed. Another important side remark is that this

result implies that making supersymmetry a local gauge symmetry this connection yields

automatically a connection to general relativity, the so-called supergravity theories.

Hence, the algebra for the SUSY-charges will not only contain the charges themselves,

but necessarily also the momentum operator. However, the relations are rather simple, as

the supercharges do not depend on space-time and thus (anti-)commute with the momen-

tum operator, as does the latter with itself.

Thus, the remaining item is the anti-commutator of Q with Q̄. For this, again the

commutator is useful, as it can be expanded as

[ηQ, ξ̄Q†] = η1ξ
∗
1(Q2Q

†
2 +Q†2Q2)− η1ξ

∗
2(Q2Q

†
1 +Q†1Q2)

−η2ξ
∗
1(Q1Q

†
2 +Q†2Q1) + η2ξ

∗
2(Q1Q

†
1 +Q†1Q1)

Thus, all possible anticommutators appear in this expression. The explicit expansion of

(4.21) is

(η2ξ
∗
2(σµ)11 − η2ξ

∗
1(σµ)12 − η1ξ

∗
2(σµ)21 + η1ξ

∗
1(σµ)22)P µ.
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Thus, by coefficient comparison the anti-commutator is directly obtained as

{Qa, Q
†
b} = (σµ)abPµ. (4.22)

This completes the algebra for the supercharges, which is in the field-theoretical case

somewhat more complicated by the appearance of the generator of translations, but also

much richer.

Again, a subtlety will require to return to these results shortly. Before this, it is useful

to collect a few more generic properties of the superalgebra, as well as of possible extensions

of this superalgebra.

4.3.3 General properties of superalgebras

The superalgebra is what is called a graded Lie algebra. In contrast to an ordinary Lie

algebra, which is characterized by its commutator relations[
ta, tb

]
= ifabctc

with algebra elements ta and structure constants fabc, it has the commutator relations[
ta, tb

}
= tatb − (−1)ηaηbtatb = ifabctc,

where the ηi are known as gradings of the elements ta, and are 0 for bosonic and 1 for

fermionic generators. Because of the symmetry properties of the left-hand-side, this implies

that fabc is zero except when ηc = ηa + ηb. Still, if the ta are Hermitian it follows that

f ∗abc = −fbac. Also a super-Jacobi identity follows

(−1)ηcηa [[ta, tb} , tc}+ (−1)ηaηb [[tb, tc} , ta}+ (−1)ηbηc [[tc, ta} , tb} = 0.

It has the usual, but graded, implication for the relation of the structure constants. Note

that the grading of a composite operator is in general given by (
∑
ηi) mod 2 with the

gradings of the constituents operators ηi. Furthermore, any transformation based on

this algebra involves necessarily a mixture of ordinary complex numbers and Grassmann

numbers, and therefore the parameters are also a graded.

However, the algebra obtained in the previous section looks somewhat different from

the quantum mechanical case (2.9), where there have been two supercharges, instead of

one, which then did not anticommute as is the case here. Also in field theories this may

happen, if there is more than one supercharge. Since in the case of multiple supercharges

there is still only one momentum operator, the corresponding superalgebras are coupled.

In general, this requires the introduction of another factor δAB, where A and B count
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the supercharges. In total, it is shown in the Haag-Lopuszanski-Sohnius theorem that the

most general superalgebra, up to rescaling of the charges, is

{QA
a , Q̄

B
b } = 2δABσ

µ
abPµ (4.23)

{QA
a , Q

B
b } = εabZ

AB, (4.24)

and there is a corresponding anti-commutator for Q̄A and Q̄B. The symbol εab is anti-

symmetric, and thus this anti-commutator couples the algebra of different supercharges.

Furthermore, there appear an additional anti-symmetric operator ZAB called the central

charges. This additional operator can be shown to commute with all other operators,

especially of internal symmetries, and must belong therefore to an Abelian U(1) group.

Still, this quantum number characterize states, if a theory contains states with non-trivial

representations. However, this can only occur if there is more than one supercharge.

Finally, the number of independent supercharges is labeled by N .

The theory with only one supercharge is thus an N = 1 theory. Cases with N > 1

are called N -extended supersymmetries. Since the full algebra also involves the Poincare

group generators, it turns out that it is not possible to have an arbitrary number of

independent supercharges. This number depends on the size of the Poincare algebra, and

thus on the number of dimensions. Furthermore, it also depends on the highest spins of

particles involved. Especially, theories above a certain N , 4 in four dimensions, require

necessarily gravitons or spin 3/2 particles. Above a certain N , 8 in four dimensions, even

objects of still higher spins are required. The latter case is not particularly interesting, as

it can be shown that a four-dimensional interacting quantum-field theory cannot include

non-trivially interacting particles of spin higher than 2. Including gravitons requires to

include gravity, a possibility which will for the moment not be considered. There is

furthermore no physical evidence (yet) for spin 3/2 particles, so this option will also be

ignored. In addition, it also requires a form of gravity. Hence, for any non-gravitational

theory in four dimensions, the maximum is N = 4. The odd values 5 and 3 generate in

four dimensions only the particle and anti-particle content of theories with larger N , and

therefore do not provide different theories: The particle and anti-particle content has to

be included to satisfy the CPT theorem, and hence other possibilities are only relevant

from a mathematical point of view, but not from a quantum-field-theoretical one.

Hence, in four dimensions there are thus besides N = 1 theories N = 2 and N = 4

theories. The additional charges provide more constraints, so theories with more super-

charges become easier to handle. However, currently there seems to exist no hint that any

other than N = 1-theories could be realized at energy scales accessible in the foreseeable

future. Thus, here primarily this case will be treated. However, given the importance of
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such more complicated theories, especially in the context of string theory, it is worthwhile

to gather here some more conceptual points about superalgebras.

All of this applies quantitatively to four dimensions. The number of independent

supercharges can actually be larger or smaller for different dimensionalities, e. g. N = 16

without gravity is possible in two dimensions.

First of all, it should be noted that any theory with N > 1 necessarily contains also

N = 1 supersymmetry. Hence, any theory with N > 1 can only be a special case of

the most general form of a N = 1 theory. The appearance of higher symmetry is then

obtained by restrictions on the type of interactions and the type of particles in the theory.

If, for a given theory, all central charges vanish, the algebra is invariant under a U(N )

rotation of the supercharges, which is true especially for N = 1. In fact, in the case of

N = 1, this R symmetry, or R parity, is just a (global) U(1) group, i. e. an arbitrary phase

of the supersymmetry charges, which is part of the full algebra by virtue of

[TR, Qα] = −i(γ5)βαQβ.

This R symmetry forms an internal symmetry group with generator TR. However, this

symmetry may be explicitly, anomalously, or even spontaneously broken, without break-

ing the supersymmetry itself4. A broken R symmetry indicates merely that the relative

orientation (and size) of the supersymmetry charges is (partly) fixed.

From the algebra (4.23-4.24) it can be read off that supercharges must have dimension

of mass
1
2 , and hence central charges of mass. This observation is of significance, as it

embodies such theories with an inherent mass-scale. In fact, it can be shown that the

mass of massive particles which form a supermultiplet in an extended supersymmetry

must obey the constraint

M ≥ 1

N
tr
√
Z†Z,

and thus there is a minimum mass. If the mass satisfies the bound, such particles are

called Bogomol’nyi-Prasad-Sommerfeld (BPS) states5.

The structure of the superalgebra involving the momentum has a large number of

consequences. This is particularly the case in theories which are scaleless, at least in

the classical case. Such theories do not have a dimensionful parameter at the classical

level, but may develop one by dimensional transmutation at the quantum level. This is

4This is not true in theories which satisfy the conformal version of the Poincare group, i. e. conformal

theories. In this case, the R symmetry needs necessarily to be intact, and the combination of supersym-

metry, conformal symmetry, and R symmetry forms together the superconformal symmetry.
5That this is the same name as for certain topological excitations in gauge theories is not coincidental.

In extended supersymmetric gauge theories both quantities are related.
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essentially an anomaly, as it stems from the non-invariance of the path integral measure

under scale transformations. If the scalelessness survives the quantization, the combination

of the scale symmetry and the supersymmetry can yield a very large symmetry group, the

superconformal group. This topic will be relegated to later.

Even if the scale symmetry is broken, the superalgebras imposes constraints. Especially,

in theories withR parity, this yields a connection between theR current and the trace of the

energy-momentum tensor, which is intimately connected to the scale violation. Especially,

various relations between R parity and scale operators remain intact even if both the R

parity and the scale symmetry are broken at the quantum level. However, because of

the Higgs sector, the standard model of particle physics is classically not scaleless, and

therefore these relation do not apply in particle physics, until an extension of the standard

model is found and experimentally supported which has both symmetries.

4.3.4 Supermultiplets

As already noted, supersymmetry requires different multiplets of particles to be present in

a theory. This is a central concept, and requires further scrutiny. To simplify the details,

once more mainly N = 1 superalgebras will be considered.

A supermultiplet is a collection of fields which transform into each other under super-

symmetry transformations. The naming convention is that a fermionic superpartner of a

field a is called a-ino, and a bosonic super-partner s-a.

One result of the algebra obtained in the previous subsections was that the momentum

operator (anti-)commutes with all supercharges. Consequently, also P 2 (anti-)commutes

with all supercharges,

[Qa, P
2] = [Q̄, P 2] = {Q,P 2} = {Q̄, P 2} = 0.

Since the application of P 2 just yields the mass of a pure state, the masses of a particle s

and its super-partner ss must be degenerate, symbolically

P 2|s〉 = m2|s〉
P 2|ss〉 = P 2Q|s〉 = QP 2|s〉 = Qm2|s〉 = m2Q|s〉 = m2|ss〉.

This is very similar to the degenerate energy levels, which were encountered in the quantum

mechanical case.

Further insight can be gained from considering the general pattern of the spin in a

supermultiplet. The first step should be to show the often assured statement that the

number of bosonic and fermionic degrees of freedom equals. Here, this will be done only
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for massless states. The procedure can be generalized to massive states, but this only

complicates matters without adding anything new.

As a starting point consider some set of massless states. Every state is then charac-

terized by its four-momentum pµ, with p2 = 0, it spin s, and its helicity h, which for a

massless particle can take only the two values h = ±s if s 6= 0 and zero otherwise.

Taking the trace of the spinor indices in (4.23) yields

QiαQ
†jα +Q†jαQiα = δijP

0.

Applying to this a rotation operator by 2π and taking the trace over states with the same

energy but different spins and helicities yields∑
sh

〈
p, s, h

∣∣(QiαQ
†jα +Q†jαQiα

)
e−2πiJ3

∣∣ p, s, h〉 = δij
∑
sh

〈
p, s, h

∣∣P 0e−2πiJ3
∣∣ p, s, h〉 .

Since the supercharges are fermionic they anticommute with the rotation operator. Fur-

thermore, the trace is cyclic, as it is a finite set of states. Thus, the expression can be

rewritten as ∑
sh

〈
p, s, h

∣∣QiαQ
†jαe−2πiJ3 −QiαQ

†jαe−2πiJ3
∣∣ p, s, h〉 = 0,

and thus also the right-hand-side must vanish. However, the right-hand-side just counts

the number of states, weighted with 1 or −1, depending on whether the states are bosonic

or fermionic. The number of helicity states differ, depending on whether the states are

massive or not, yielding ∑
s≥0

(−1)2s(2s+ 1)ns = 0 (4.25)

n0 + 2
∑
s≥0

(−1)2sns = 0, (4.26)

for the massive and the massless case, respectively. ns is the number of states with the

given spin, and n0 the number of massless spin-0 particles. The factor 2 actually does

not arise from the formula, as the trace is also well-defined when taking only one helicity

into account. It is the CPT theorem which requires to include both helicity states for a

physical theory.

In case of the massive Wess-Zumino model, the numbers are n0 = 2 and n1/2 = 1,

yielding n0 − 1(2)n1/2 = 0. Note that this therefore counts on-shell degrees of freedom.

For the massless case, the ns are the same, but this time the 2 comes from a different

place, 2 + 2(−1)1 = 0.
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So far, it is only clear that in a supermultiplet bosons and fermions must be present

with the same number of degrees of freedom, but not necessarily their relative spins, as

long as the conditions (4.25-4.26) are fulfilled. In the free example, one was a spin-0

particle and one a spin-1/2 particle. This pattern of a difference in actual spin of 1/2 is

general.

This can be seen by considering the commutation relations of the supercharges under

rotation. Since the supercharges are spinors, they must behave under a rotation δε as

δεQ = −iεσ
2
Q = iε[J,Q],

where J is the generator of rotations. In particular, for the third component follows

[J3, Q] = −1

2
σ3Q

and thus

[J3, Q1] = −1

2
Q1 [J3, Q2] =

1

2
Q2 (4.27)

for both components of the spinor Q. It then follows directly that the super-partner of

a state with total angular momentum j and third component m has third component

m± 1/2, depending on the transformed spinor component. This can be seen as

J3Q1|jm〉 = (Q1J3 − [Q1, J3])|jm〉 =

(
Q1m−

1

2
Q1

)
|jm〉 = Q1

(
m− 1

2

)
|jm〉.

Likewise, the other spinor component of Q yields the other sign, and thus raises instead of

lowers the third component. Of course, this applies vice-versa for the hermitian conjugates.

To also determine the value of j, assume a massless state with momentum (p, 0, 0, p).

The massive case is analogous, but more tedious. Start with the lowest state with m = −j.
Then, of course, the state is annihilated by Q1 and Q†2, as they would lower m further.

Also Q†1 annihilates the state, which is a more subtle result. The anti-commutator

yields the result

Q†1Q1 +Q1Q
†
1 = (σµ)11P

µ = p0 − p3,

where the minus-sign in the second term appears due to the metric. Thus〈
pj − j

∣∣∣Q†1Q1 +Q1Q
†
1

∣∣∣ pj − j〉 = p0 − p3 = p− p = 0 (4.28)

but also

〈pj − j|Q†1 = (Q1|pj − j〉)† = 0,

as discussed above. Hence the first term in (4.28) vanishes, and leaves〈
pj − j

∣∣∣Q1Q
†
1

∣∣∣ pj − j〉 = 0.
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But this is just the norm of Q†1|pj − j〉. A zero-norm state is however not appropriate

to represent a particle state6, and thus Q†1 has to annihilate the state as well, the only

alternative to obtain the same result.

This leaves only Q2|pj − j〉 as a non-zero state. This state has to be proportional to

a state of type |pj − j + 1/2〉. Since Q2 is Grassmann-valued, and therefore nil-potent, a

second application of Q2 yields again zero. Furthermore, since Q1 and Q2 anticommute,

its application also yields zero,

Q1Q2|pj − j〉 = −Q2Q1|pj − j〉 = 0.

The application of Q†1 can be calculated as in the case of (4.28). But the appearing

momentum combination is p1 +p2, being zero for the state. This leaves only Q†2. Applying

it yields

Q†2Q2|pj − j〉 = ((σµ)22P
µ −Q2Q

†
2)|pj − j〉 = (p0 + p3 + 0)|pj − j〉 = 2p|pj − j〉.

Hence, this returns the original state. Thus, the value of j in a supermultiplet can differ

only by one half, and there are only two (times the number of internal quantum number)

states in each supermultiplet. It does not specify the value of j, so it would be possible to

have a supermultiplet with j = 0 and j = 1/2, as in the example above.

Note that only the states m = 0 and m = −1/2, but not m = +1/2, the anti-

particle state, are contained in the supermultiplet. This is called a chiral supermultiplet.

Alternatively, it would be possible to have j = 1/2 and j = 1, the vector supermultiplet,

or j = 2 and j = 3/2, the gravity supermultiplet appearing in supergravity.

While algebraically the anti-state is not necessary, any reasonable quantum field theory

is required to have CPT-symmetry. Thus for any supermultiplet also the corresponding

antiparticles, the antimultiplet, have to appear in the theory as well. By this, the missing

m = 1/2 state above is introduced into the theory.

To have supermultiplets which include more states requires to work with an N > 1

algebra, where the additional independent supercharges permit further rising and lowering.

It is then possible to have supermultiplets, which include more different spin states. Also,

the absence of central charges was important, since the anti-commutator of the fields has

been used. E.g. in N = 2 SUSY, the supermultiplet contains two states with j = 0 and

two with m = ±1/2. This is also the reason why theories with N 6= 1 seem to be no good

candidates for an extension of the standard model: SUSY, as will be seen below, requires

that all superpartners transform the same under other transformations, like e. g. gauge

transformations. In an N = 2 theory, there would be a left-handed and a right-handed

6In gauge theories, this statement has to be refined.
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electron, both transforming under all symmetries in the same way. But in the standard

model, the weak interactions couple differently to left-handed and right-handed electrons,

and thus it is not compatible with N > 1 SUSY. For N = 1 SUSY, however, independent

chiral multiplets (and, thus, more particles) can be introduced to solve this problem.

Since also the quarks (and the superpartners of the gauge bosons therefore should also)

are coupled differently in the weak interactions, this applies to all matter-fields, and thus

it is not possible to enhance some particles with N = 1 and others with N > 1 SUSY.

One of the key quantities in the above discussion has been spin. However, spin is

considered usually a good quantum number because it is a well-defined observable, as it

commutes with the Hamiltonian. This is no longer precisely true when supersymmetry is

involved, and a more general concept is needed.

To find this concept, it is first important to understand what spin is in a quantum field

theory. In fact, a particle species is specified as a representation of the Poincare group

or of one of its subgroup, i. e. fields are orbits in the Poincare group. Such orbits can be

classified using Casimir invariants, as group theory shows.

One of the Casimirs is P 2, the square of the momentum operator, yielding the rest

mass of a particle7.

The spin should also appear as a second Casimir of the Poincare group, requiring again

a Poincare-invariant operator. It is obtained using the Pauli-Lubanski vector

Wµ =
1

2
εµνρσP

νMρσ, (4.29)

being, due to the Levi-Civita tensor, orthogonal to the momentum vector, and thus linearly

independent. To show that its square W 2 is actually a Casimir operator requires to show

that it commutes with both the momentum operator and the generator of rotation. Since

[Pλ,Wµ] =
1

2
εµνρσPν [Pλ,M

ρσ] =
i

2
εµνρσPν(δ

λ
ρP

σ − δσλP ρ) = 0,

already the momentum operator and the Pauli-Lubanski vector commute, so does the

square of any of the two vectors with the other vector. Since W 2 is a scalar, it also

commutes with the generator of rotations, which can be shown explicitly in the same

way. Together with the linear independence, this is sufficient that W 2 is an independent

Casimir.

7It should be noted that in a full axiomatic quantum field theory particle species may be classified

according to these invariants, but any interacting state, especially in theories with massless particles,

will not be an eigenstate of the mass operator, or other Casimirs, as any state also contains virtual

contributions from multiparticle states. Idealized ’sharp’ eigenstates of the mass operators are actually

not compatible with Poincare symmetry in an interacting quantum field theory. In practice, this fine

distinction is often irrelevant, especially when using perturbation theory only.
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To show that this vector is indeed associated with the usual spin consider its commu-

tator

[Wµ,Wν ] = iεµνρσP
ρW σ,

which can again be obtained by direct evaluation. In the rest frame only those commuta-

tors remain with µ 6= 0 and ν 6= 0, yielding

[Wi,Wj] = imεijkWk (4.30)

which is, up to a normalization, just the spin algebra. This especially implies that its

eigenvalues behave, up to a factor of m, like the ones of a spin, and indeed the eigenvalues

of W 2 are thus spin eigenvalues. A more explicit proof can be obtained by using the

explicit form of the Pauli-Lubanski vector (4.29), if desired.

In a supersymmetric theory, this is no longer true. The commutator of W µ with a

supercharge Q yields

[W µ, Q] =
1

2
εµνρσPν [Mρσ, Q] = iσµνQPν (4.31)

σµν =
i

4
(σµσ̄ν − σν σ̄µ)

and thus

[W 2, Q] = W µ[Wµ, Q] + [W µ, Q]Wµ = 2iP µσµνP
νQ

and therefore W 2 is no longer a suitable operator to characterize a particle, as it no longer

belongs to the maximal set of commuting operators.

The problem arises, because of the connection of the superalgebra and the momentum

operators. A suitable solution is therefore to generalize the Pauli-Lubanski-vector to a

quantity also involving the supercharges. As it will turn out a suitable choice is the

superspin, defined as

Sµ = W µ − 1

4
QσµQ̄.

To check this, consider the commutation relation of the second part with a supercharge[
−1

4
QσµQ̄, Q

]
= 2Qσµσ̄νPν = 2σν σ̄µQPν ,

which directly follows from the superalgebra. This implies, together with (4.31),

[Sµ, Q] = −1

2
QP µ, (4.32)
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where it has been used that (iσµν + σν σ̄µ/2) = gµν/2, as can be shown by explicit calcu-

lation. Since Sµ is Hermitian, the commutation relation with Q̄ follows directly. Further-

more, Sµ commutes with Pµ as the Pauli-Lubanski vector does and so does the supercharge.

Combining all of this together yields

[Sµ, Sν ] = iεµνρσP
ρSσ,

which reduces in the rest system in the same way as in (4.30) to

[Si, Sj] = imεijkSk.

This is again the same type of spin-algebra, characterized by eigenvalues s, as before.

Thus, the superspin acts indeed as a spin.

It then only remains to construct an adequate Casimir operator. Define for this the

antisymmetric matrix

Cµν = SµP ν − SνP µ,

which commutes with the supercharges

[Cµν , Q] = [Sµ, Q]P ν − [Sν , Q]P µ =
1

2
(−QP µP ν +QP νP µ) = 0.

Squaring this operator C2 = CµνCµν , which also commutes with the supercharges and also

with P µ, as it is a scalar. It remains to show that this Casimir is indeed different from

P 2. An explicit calculation shows

C2 = 2m2S2 − 2(SP )2

which in the rest frame for a massive particle reduces to

C2 = −2m4s(s+ 1)

where S is the superspin in the rest frame and zero, integer, or half-integer. The situation

for massless particles is as before, yielding for every spin only the corresponding helicities.

Therefore, any particle can be assigned to representations of the Poincare group with

the continuous parameters mass m2 ≥ 0 and the discrete superspin S, where the latter

coincides in the rest frame, but only there, with the usual spin. Due to this coincidence,

usually no difference is made between superspin and spin in name, and both expressions

are used synonymously. Note that

[S3,W 3] = 0,

and therefore the eigenvalues of both operators can be used to characterize the magnetic

quantum number, especially in the rest frame. Thus, the above discussed counting in the

rest frame is indeed legit.
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4.3.5 Off-shell supersymmetry

Now, it turns out that the results so far are not complete. If in (4.20) instead of φ the

superpartner χ is used, it turns out that complications arise. Thus, something has to be

modified.

To see this inconsistency, start by first performing two supersymmetry transformations

on χ

δηδξχa = [ηQ+ η̄Q̄, [ξQ+ ξ̄Q̄, χa]] = −i[ηQ+ η̄Q̄, σµ(iσ2ξ
∗)a∂µφ]

= −i(σµ(iσ2ξ
∗))a∂µ[ηQ+ η̄Q̄, φ]

= −i(σµ(iσ2ξ
∗))a(η

T (−iσ2)∂µχ). (4.33)

To simplify this further, note that for any three spinors η, ρ, λ

λaη
bρb + ηaρ

bλb + ρaλ
bηb = 0 (4.34)

holds. This follows by explicit calculation. E.g., for a = 1

λ1η1ρ2 − λ1η2ρ1 + η1ρ1λ2 − η1ρ2λ1 + ρ1λ1η2 − ρ1λ2η1 = 0.

To rearrange the terms such that they cancel always an even number of transpositions are

necessary, and thus the Grassmann nature is not changing the signs. The case a = 2 can

be shown analogously. Now, identify λ = σµ(−iσ2)ξ∗, η = η, and ρ = ∂µχ. Thus, (4.33)

can be rewritten as

δηδξχ = −i
(
ηa∂µχ

T (−iσ2)σµ(−iσ2)ξ∗ + ∂µχa(σ
µ(−iσ2ξ

∗))T (−iσ2)η
)
.

Using

(−iσ2)σµ(−iσ2) = (−σ̄µ)T , (4.35)

which can be checked by explicit calculation, shortens the expressions significantly. Per-

forming also a transposition, it then takes the form

δηδξχ = −iηa(ξ+σ̄µ∂µχ) + ∂µχa(σ
µ(−iσ2ξ

∗)T (−iσ2)η)

= −iηa(ξT σ̄µ∂µχ)− iηT (−iσ2)σµ(−iσ2)ξ∗∂µχa,

where also the second term became transposed. To construct the transformation in reverse

order is achieved by exchanging η and ξ, thus yielding

(δηδξ − δξδη)χa = i(ξT (−iσ2)σµ(−iσ2)η)∗ − ηT (−iσ2)σµ(−iσ2)ξ∗)∂µχa

+iξa(η
T σ̄µ∂µχ)− iηa(ξT σ̄µ∂µχ). (4.36)
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The first term is exactly the same as in (4.20), but with η and ξ exchanged. Hence, if this

term would be the only one, the commutator of two SUSY transformations would be, in

fact, the same irrespective of whether it acts on φ or χ, as it should. But it is not. The

two remaining terms seem to make this impossible.

However, on closer inspection it becomes apparent that in both terms the expression

σ̄µ∂µχ exists. This is precisely the equation of motion for the field χ, the Weyl equation.

Thus the two terms vanish, if the field satisfies its equation of motion. In a classical

theory, this would be sufficient. However, in a quantum theory exist virtual particles, i.

e., particles which not only not fulfill energy conservation, but also not their equations

of motions. Hence such particles, which are called off (mass-)shell, are necessary. Thus

the algebra so far is said to close only on-shell. Hence, although the theory described

by the Lagrangian (4.8) is classically supersymmetric, it is not so quantum-mechanically.

Quantum effects break the supersymmetry of this model.

Therefore, it is necessary to modify (4.8), to change the theory, to obtain one which is

also supersymmetric on the quantum level. Actually, this result is already an indication

of how this can be done. Off-shell, the number of degrees of freedom for a Weyl-fermion

is four, and not two, as there are two complex functions, one for each spinor component.

Thus, the theory cannot be supersymmetric off-shell, as the scalar field has only two

degrees of freedom. To make the theory supersymmetric off-shell, more (scalar) degrees

of freedom are necessary, which, however, do not contribute at the classical level.

This can be done by the introduction of an auxiliary scalar field F , which has to be

complex to provide two degrees of freedom. It is called auxiliary, as it has no consequence

for the classical theory. The later can be most simply achieved by giving no kinetic term

to this field. Thus, the modified Lagrangian takes the form

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F. (4.37)

It should be noted that this field has mass-dimension two, instead of one as the other

scalar field φ. The equation of motion for this additional field is

∂µ
δL
δ∂µF

− δL
δF

= F † = 0(= F ).

Thus, indeed, at the classical level it does not contribute.

Of course, if it should contribute at the quantum level, it cannot be invariant under a

SUSY transformation. The simplest (and correct) guess is that this transformation should

only be relevant off-shell. As it must make a connection to χ, the ansatz is

δξF = −iξ†σ̄µ∂µχ
δξF

† = i∂µχ
†σ̄µξ,
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where ξ has been inserted as its transpose to obtain a scalar. The appearance of the

derivative is also enforced to obtain a dimensionally consistent equation.

This induces a change in the Lagrangian under a SUSY transformation as

δLF = Fi∂µχ
†σ̄µξ − F †iξ†σ̄µ∂µχ.

This expression is not a total derivative. Hence, to obtain a supersymmetric theory addi-

tional modifications for the transformation laws of the other fields are necessary. However,

since part of the fermion term already appears, the modifications

δχ = σµσ2ξ
∗∂µφ+ ξF

δχ† = i∂µφ
†ξT (−iσ2)σµ + F †ξ†

immediately lead to cancellation of the newly appearing terms, and one additional total

derivative,

δLF = F †ξ†iσ̄µ∂µχ+ χ†iσ̄µξ∂µF + Fi∂µχ
†σ̄µξ − F †ξ†iσ̄µ∂µχ

= ∂µ(iχ†σ̄µξF ) + F †ξ†iσ̄µ∂µχ− F †ξ†iσ̄µ∂µχ
= ∂µ(iχ†σ̄µξF )

Thus, without modifying the transformation law for the φ-field, the new Lagrangian (4.37)

indeed describes a theory which is supersymmetric on-shell. To check this also off-shell, the

commutator of two SUSY transformations has to be recalculated. For this, as everything

is linear, it is only necessary to calculate the appearing additional terms. This yields

δ(δηδξχ) = δη(ξaF ) = −iξa(η†σ̄µ∂µχ).

That is indeed one of the offending terms in (4.36). Similarly,

δ(δξδηχ) = δξ(ηaF ) = −iηa(ξ†σ̄µ∂µχ),

and thus also the second term is canceled. Thus, the theory described by the Lagrangian

(4.37) is also off-shell supersymmetric. Of course, this requires a check for the transfor-

mation of F , but this is also passed, and is not providing anything new. It is therefore

skipped.

A full proof requires the recalculation of all (anti-)commutators. This is a tedious work,

but finally it turns out that the theory indeed has the same commutation relations, which

hold also off-shell. In particular, the supercurrent is not modified at all, as no kinetic term

for F appears, and the surface term and the one coming from the transformation of χ

exactly cancel. Note that the presence of these auxiliary fields require the modifications of
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the anticommutation relations for the fermions to include an additional factor (1+F ). Also,

the field F must have a non-trivial commutation relation with φ. These are consequences

of the off-shell nature of the auxiliary fields, and on-shell all this anomalous contributions

will cancel, since F vanishes. This is, however, not much different from an interacting

theory, where also the ordinary commutation relations break down.



Chapter 5

Interacting supersymmetric quantum

field theories

5.1 The Wess-Zumino model

The theory treated so far was non-interacting and, after integrating out F using its equa-

tion of motion, had a very simple particle content. Of course, any relevant theory should

be interacting. The simplest case will be constructed in this section. It is an extension of

the free theory.

The starting point is the free theory discussed previously, and hence is based on the

Lagrangian (4.37), but supplemented with a yet unspecified interaction

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F + Li(φ, φ†, χ, χ†, F, F †) + L†i .

The last term is just the hermitian conjugate of the second-to-last term, necessary to make

the Lagrangian hermitian. It is now necessary to find an interaction Lagrangian Li such

that supersymmetry is preserved.

Since the theory should be renormalizable, the maximum dimension (for the relevant

case of 3+1 dimensions) of the interaction terms is 4. The highest dimensional fields are

F and χ. Furthermore, the interaction terms should be scalars. Thus the possible form is

restricted to

Li = U(φ, φ†)F − 1

2
V (φ, φ†)χaχa.

The −1/2 is introduced for later convenience. On dimensional grounds, with F having

dimension mass2 and χ mass
3
2 , no other terms involving these fields are possible. In

principle it would appear possible to also have a term Z(φ, φ†), depending only on the

scalar fields. However, such a term could not include derivative terms. Under a SUSY

59
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transformation φ is changed into χ. Hence, the SUSY transformation will yield a term

with three φ fields and one χ field for dimensional reasons, and no derivatives or F fields.

But all kinetic terms will include at least one derivative, as well as any transformations of

the F field. The only possible term would be the one proportional to χ2. But its SUSY

transformation includes either an F field or the derivative of a φ-field. Hence none could

cancel the transformed field. Since no derivative is involved, it can also not be changed

into a total derivative, and thus such a term is forbidden.

Further, on dimensional grounds, the interaction term U can be at most quadratic in

φ and V can be at most linear.

The free part of the action is invariant under a SUSY transformation. It thus suffices

to only investigate the interacting part. Furthermore, if Li is invariant under a SUSY

transformation, so will be L†i . Thus, to start, consider only the second term. Since a

renormalizable action requires the potentials U or V to be polynomial in the fields, the

transformation rule is for either term, called Z here,

δξZ =
δZ

δφ
δξφ+

δZ

δφ†
δξφ
†.

The contribution from the SUSY transformation acting on the potential V yields

δV

δφ
(ξaχa)(χ

bχb) +
δV

δφ†
(ξȧχȧ)(χ

aχa).

Again, none of these terms can be canceled by any other contribution appearing, since

none of these can involve three times the χ field. Also, both cannot cancel each other,

since the contributions are independent. As noted, the first term can be at maximum of

the form a + bφ, and thus only a common factor. By virtue of the identity (4.34) setting

λ = ρ = η = χ it follows that this term is zero: In the case of all three spinors equal, the

terms are all identical. This, however, does not apply to the second term, as no identity

exist if one of the indices is dotted. There is no alternative other than to require that

V is not depending on φ†. Hence, the function V can be, and in four dimensions for

renormalizable theories is, a holomorphic function1 of the field φ. Being holomorphic is

a quite strong constraint on a function, and hence it is quite useful in practice to obtain

various general results for supersymmetric theories.

As an aside, this fact is of great relevance, as it turns out that it is not possible

to construct the standard model Yukawa interactions due to this limitation with only

one Higgs doublet as it is done in the non-supersymmetric standard model, but instead

1In theories with both left and right chiral supermultiplets, e. g. N = 2 theories, it is possible to also

form a further potential which depends on both, the so-called Kähler potential. Kähler potentials are, in

a sense, generalizations of holomorphic potentials, and hence also quite constraining.
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requires at least two doublets. The more detailed reason is once more the necessity to have

two independent supermultiplets to represent the left-right asymmetry of the electroweak

interaction of the standard model, and this requires ultimately the doubling of Higgs

particles in the minimal supersymmetric standard model. However, it is not required that

both have the same mass.

This is already sufficient to restrict the function V to the form

V = M + yφ.

The first term gives a mass to the fermionic fields, and the second term provides a Yukawa

interaction. It is convenient, as will be shown latter, to write a generating functional for

this term V as

V =
δW

δφδφ

with

W = B + Aφ+
1

2
Mφ2 +

1

6
yφ3. (5.1)

This function W is called the superpotential for historically reasons, and will play a central

role, as will be seen later. The linear term is not playing a role here, but can be important

for the breaking of SUSY, as will be discussed later. The constant is essentially always

irrelevant.

The next step is to consider all terms which produce a derivative term upon a SUSY

transformation. These are

−iUξ†σ̄µ∂µχ+ i
1

2
V χTσ2σ

µσ2ξ
∗∂µφ− i

1

2
V ξ†σ2σ

µTσ2χ∂µφ

= −iUξ†σ̄µ∂µχ− i
1

2
V ξ†σ2σ

µTσ2χ∂µφ− i
1

2
V ξ†σ2σ

µTσ2χ∂µφ

= −iUξ†σ̄µ∂µχ− i
1

2
V ξ†σ̄µχ∂µφ− i

1

2
V ξ†σ̄µχ∂µφ

= −iUξ†σ̄µ∂µχ− iV ξ†σ̄µχ∂µφ,

where (4.35) was used twice. The combination of derivatives of φ and χ cannot be produced

by any other contribution, since all other terms will not yield derivatives. Since neither

U nor V are vectors, there are also no possibilities for a direct cancellation of both terms.

The only alternative is thus that both terms could be combined to a total derivative. This

is possible, if

U =
δW

δφ
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as can be seen as follows

−iξ†σ̄µ (U∂µχ+ χV ∂µφ)

= −iξ†σ̄µ
(
U∂µχ+ χ∂µ

δW

δφ

)
= −iξ†σ̄µ

(
δW

δφ
∂µχ+ χ∂µ

δW

δφ

)
= −iξ†σ̄µ∂µ

(
δW

δφ
χ

)
.

This is indeed a total derivative. Hence, by virtue of the form of the superpotential (5.1)

U =
δW

δφ
= A+Mφ+

1

2
yφ2.

This fixes the interaction completely. It remains to check that also all the remaining terms

of the SUSY transformation cancel or form total derivatives. These terms are

δU

δφ
Fξaχa −

1

2
V (ξaχaF + χaξaF )

=
δ2W

δφδφ
Fξaχa −

1

2

δ2W

δφδφ
(ξaχaF + ξaχaF ) = 0,

and hence the theory is, in fact, supersymmetric. Here it has been used how spinor scalar-

products of Grassmann numbers can be interchanged, giving twice a minus-sign in the

second term.

This permits to write down the full, supersymmetric Lagrangian of the Wess-Zumino

model. It takes the form

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F + MφF − 1

2
Mχχ+

1

2
yφ2F − 1

2
yφχχ (5.2)

+ M∗φ†F † − 1

2
M∗(χχ)† +

1

2
y∗φ†2F † − 1

2
y∗φ†(χχ)†,

where linear and constant terms have been dropped, and which is now the full, supersym-

metric theory.

The appearance of three fields makes this theory already somewhat involved. However,

the field F appears only quadratically, and without derivatives in the Lagrangian remains

an auxiliary field, just as

LF = F †F +
δW

δφ
F +

δW †

δφ†
F †.

Thus, it is directly possible to select F such that it satisfies its equations of motion at the
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operator level, which read2

δLF
δF †

= F +
δW †

δφ†
= 0

δLF
δF

= F +
δW †

δφ†
= 0

This can be used to replace F in the original Lagrangian. This exchanges FδW/δφ by

δW/δφδW †/δφ†, and makes the term thus equal to its hermitian conjugate. The total

result is therefore

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ−MM∗φ†φ− 1

2
MχT (−iσ2)χ− 1

2
M∗χ†(iσ2)χ†T

−y
2

(Mφφ†2 +M∗φ†φ2)− yy∗φ2φ†2 − 1

2
(yφχaχa + y∗φ†χa†χ†a) (5.3)

There are a number of interesting observations to be made in this Lagrangian. First of all,

at tree-level it is explicit that the fermionic and the bosonic field have the same mass. Of

course, SUSY guarantees this also beyond tree-level. Secondly, the interaction-structure

is now surprisingly the one which was originally claimed to be inconsistent with SUSY.

The reason for this is that of course also in the SUSY transformations the equations of

motions for F and F † have to be used. As a consequence, these transformations are no

longer linear, thus making such an interaction possible. Finally, although two masses and

three interactions terms do appear, there are only two independent coupling constants,

M and y. That couplings for different interactions are connected in such a non-trivial

way is typical for SUSY. It was one of the reasons for hoping that SUSY would unify

the more than thirty independent masses and couplings appearing in the standard model.

Unfortunately, as will be discussed below, the necessity to break SUSY jeopardizes this,

leading, in fact, for the least complex theories to many more independent couplings and

masses, about three-four times as much.

Before discussing further implications of these results, it should be remarked that this

result generalizes directly to an arbitrary number of internal degrees of freedom of φ and

χ (and, of course, F ), such as flavor or gauge indices, as long as for each boson there is

also a fermion with the same index. Of course, also the coupling constants will then carry

indices. The superpotential takes the form

W = B + Aiφi +
1

2
Mijφiφj +

1

6
yijkφiφjφk

2In a path integral formulation, this would be equivalent to performing the integral over F explicitly,

and thereby remove it from the theory.
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and thus the general Lagrangian then takes the form

L = ∂µφ
†
i∂

µφi + χ†i iσ̄
µ∂µχi −MijM

∗
ikφ
†
jφk −

1

2
Mijχ

T
i (−iσ2)χj −

1

2
M∗

ijχ
†
i (iσ2)χ†Tj

−yijk
2

(Milφlφ
†
jφ
†
k +M∗

ilφ
†
lφjφk)− yijkyilmφjφkφ

†
lφ
†
m −

1

2
(yijkφiχ

a
jχka + y∗ijkφ

†
iχ

a†
j χ
†
ak),

and all transformation rules change accordingly.

5.1.1 Majorana form

For many actual calculations the form (5.3) of the Wess-Zumino model is actually some-

what inconvenient. It is often more useful to reexpress it in terms of Majorana fermions

Ψ =

(
(iσ2)χ∗

χ

)
,

and the bosonic fields

A =
1√
2

(φ+ φ†)

B =
1√
2

(φ− φ†).

It can then be verified by direct expansion that the new Lagrangian in terms of these fields

for a single flavor becomes

L =
1

2
Ψ̄(iγµ∂µ −M)Ψ +

1

2
∂µA∂µA−

1

2
M2A2 +

1

2
∂µB∂µB −

1

2
M2B2

−MgA(A2 +B2) +
1

2
g2(A2 +B2)2 − g(AΨ̄Ψ + iBΨ̄γ5Ψ)

where M and g = y have been chosen real for simplicity. In this representation, A and B

do no longer appear on equal footing: A is a scalar field while B is necessarily pseudoscalar,

due to its coupling to the fermions. Therefore, it can also only appear quadratic and not

linear in the three-scalar term, explaining the absence of a BA2 term. Still, despite these

differences, this is a standard Lagrangian for which the Feynman rules are known. It will

now be used to demonstrate the convenient behavior of a supersymmetric theory when it

comes to renormalization.

5.2 Feynman rules for the Wess-Zumino model

For the demonstration that supersymmetric theories have in fact better renormalization

properties than ordinary quantum field theories, it is useful to make an explicit example
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calculation at the one-loop level. For this purpose, of course, the Feynman rules are

needed, i. e. the propagators and vertices.

The propagator D of the field A is

DAA(p) =
i

p2 −M2 + iε
.

Since the quadratic term for the B has the same form, the same propagator appears

DBB(p) =
i

p2 −M2 + iε
.

The calculation for the fermionic field is more complicated, since it is necessary to invert

the matrix-valued kinetic term. The result is, however, just the same as for any other

fermion, delivering

Dχχ(p) =
i(γµp

µ +M)

p2 −M2 + iε
.

This concludes the list of propagators.

All in all, there are four three-point vertices and two four-point vertices in the Wess-

Zumino model. The first three-point vertex couples three A-fields,

ΓAAA = −6Mg.

The other three-point vertices always couple different fields,

ΓABB = −2Mg

ΓAχχ = ig

ΓBχχ = igγ5.

The four-point vertices are

ΓAAAA = 12ig2

ΓBBBB = 12ig2

ΓAABB = 4ig2.

This completes the list of the vertices, and thus the Feynman rules.

5.3 The scalar self-energy to one loop

Also in a field theory the vacuum energy in a supersymmetric theory is canceled very

much like in supersymmetric quantum mechanics. However, the corresponding explicit
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calculations are cumbersome. Therefore, the explicit calculations will be postponed until

a more general result than just a perturbative leading-order calculation can be obtained.

Another benefit of supersymmetric theories is that they solve the so-called naturalness

problem. What this explicitly means, and how it is solved, will be discussed here.

The naturalness problem is simply the observation that the Higgs particle is rather

light3, although the theory would easily permit it to be much heavier, of the order of

almost the Planck scale, without loosing its internal consistency. The reason for this

is the unconstrained nature of quantum fluctuations. Supersymmetric theories make it

much harder for the Higgs to be very heavy, in fact, its mass becomes exponentially

reduced compared to a non-supersymmetric theory. To see this explicitly, it is simplest

to perform a perturbative one-loop calculation of the scalar self-energy in a theory with

a very similar structure as the Wess-Zumino model, but with a fermion-boson coupling

which is instead chosen to be h for the moment. This can be regarded as a simple mock-up

of the electroweak sector of the standard model, dropping the gauge fields.

At leading order, there are three classes of diagrams appearing in the one-particle

irreducible set of Feynman diagrams. The first is a set of tadpole diagrams, the second

a set of one-loop graphs with internal bosonic particles, and the third the same, but

with fermionic particles. These will be calculated in turn here. The calculation will be

performed for the case of the A boson. It is similar, but a little more tedious, for the B

boson.

The mathematically most simple ones are the tadpole diagrams. There are two of them,

one with an A boson attached, and one with a B boson attached. Their contribution Πt

to the self-energy is

Πt = −12

2
g2

∫
d4p

(2π)4

1

p2 −M2 + iε
− 4

2
g2

∫
d4p

(2π)4

1

p2 −M2 + iε
, (5.4)

where the first term stems from the A-tadpole and the second one from the B-tadpole,

and the factors 1/2 are symmetry factors. The integration over p0 can be performed first

by contour-integration and using the Cauchy theorem, since

Πt = −8g2

∫
d3~p

(2π)4

∫
dp0

1

p2
0 − ~p2 −M2 + iε

= −8g2

∫
d3p

(2π)4

∞∫
−∞

dp0
1

(p0 +
√
~p2 +M2)(p0 −

√
~p2 +M2) + iε

3The mass of the Higgs is actually not a perfectly well-defined concept, and some field-theoretical

subtleties appear. However, this just recasts the problem at a higher level of complexity. Therefore, for

the sake of simplicity, here this somewhat simplified view will be used.
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This has a pole in the upper half-plane, and vanishes sufficiently fast on a half-circle

at infinity. The residue at the simple poles p0 = ±
√
~p2 +M2 is 1/(p0 ∓

√
~p2 +M2),

dropping the small contribution of iε, which only served to not have the pole on the axis.

The Cauchy theorem then yields, using polar coordinates in the final expression,

Πt =
ig2

π2

∫
~p2d|~p| 1√

~p2 +M2
.

This integral is divergent. Regularizing it by a cut-off Λ2 turns it finite. This expression

can then be calculated explicitly to yield

Πt =
ig2

π2

Λ2

√
1 +

M2

Λ2
−M2 ln

Λ + Λ
√

1 + M2

Λ2

M


≈ ig2

π2

(
Λ2 −M2 ln

(
Λ

M

)
+O(1)

)
. (5.5)

This result already shows all the structures which will also appear in the more compli-

cated diagrams below. First of all, the result is not finite as the cutoff is removed, i.e.,

by sending Λ to infinity. In fact, it is quadratically divergent. In general, thus, this ex-

pression would need to be renormalized to make it meaningful. Since the leading term

is momentum-independent, this will require a renormalization of the mass, which is thus

quadratically divergent. This is then the origin of the naturalness problem: In the process

of renormalization, the first term will be subtracted by a term −Λ2 + δm2, where the

first term will cancel the infinity, and the second term will shift the mass to its physical

value. However, even a slight change in Λ or g2 would cover even a large change in δm,

if the final physical mass is small. There is no reason why it should be small therefore,

and thus the mass is not protected. If, e.g., the first would not be present, but only the

logarithmic second one, the cancellation would be of type M2 ln
(

Λ
M

)
+ δm2. Now, even

large changes in Λ will have only little effect, and thus there is no fine-tuning involved to

obtain a small physical mass. This will be exactly what will happen in a supersymmetric

theory: The quadratic term will drop out in contrast to a non-supersymmetric one, and

thus will provide a possibility to obtain a small physical mass without fine tuning of g, Λ

and M .

The next contribution stems from the loop graphs involving a boson splitting in two.

With an incoming A boson, it can split in either two As, two Bs, or two χs. The contri-

bution from the bosonic loops are once more identical, up to a different prefactor due to

the different coupling. Their contribution is

−1

2
((6Mg)2 + (2Mg)2)

∫
d4p

(2π)4

1

p2 −M2 + iε

1

(p− q)2 −M2 + iε
,
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where the factor 1/2 is a symmetry factor and q is the external momentum of the A

particle. An explicit evaluation of this expression is possible, and discussed in many texts

on perturbation theory. This is, in particular when using a cutoff-regularization, a rather

lengthy exercise. However, to explicitly show how the naturalness problem is solved, it is

only interesting to keep the quadratically divergent piece of the contribution. However,

the integrand scales as 1/p4 for large momenta. Thus, the integral is only logarithmically

divergent, and will thus only contribute at order M2 ln(Λ/M), instead of at Λ2. For the

purpose at hand, this contribution may therefore be dropped.

This leaves the contribution with a fermion loop. It reads

−2h2

∫
d4p

(2π)4

tr((γµp
µ +M)(γν(p

ν − qν) +M))

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

The factor of 2 in front stems from the fact that for a Majorana fermion particle and

anti-particle are the same. Thus, compared to an ordinary fermion, which can only split

into particle and anti-particle to conserve fermion number, the Majorana fermion can split

into two particles, two anti-particles, or in two ways in one particle and an anti-particle, in

total providing a factor four. This cancels the symmetry factor 1/2 and lets even a factor

of 2 standing. Using the trace identities tr1 = 4, trγµ=0, and trγµγν = 4gµν this simplifies

to

−8h2

∫
d4p

(2π)4

p(p− q) +M2

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

Since the numerator scales with p2, the integral is quadratically divergent. Again, it

suffices to isolate this quadratic piece. Suppressing the iε, and rewriting the expression by

introducing a zero as

−4h2

∫
d4p

(2π)4

(p2 −M2) + ((p− q)2)−M2)− q2 + 4M2

(p2 −M2)((p− q)2 −M2)

= −4h2

∫
d4p

(2π)4

(
1

(p− q)2 −M2
+

1

p2 −M2
+

4M2 − q2

(p2 −M2)((p− q)2 −M2)

)
= −4h2

∫
d4p

(2π)4

(
1

p2 −M2
+

1

p2 −M2
+

4M2 − q2

(p2 −M2)((p− q)2 −M2)

)
,

where in the first term a change of variables p→ p+ q was made4. The last term is only

logarithmically divergent, and thus irrelevant for the present purpose. The first two terms

are identical, and of the same type as (5.4). Thus, they can be integrated in the same

manner, yielding

−ih
2

π2
Λ2 +O

(
M2 ln

Λ2

M2

)
.

4This requires some precautions, but is permitted in this case.
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This cannot cancel the previous contribution, unless g = h. However, for a supersymmetric

theory, supersymmetry dictates g = h. But then this is just the negative of (5.5), and thus

cancels exactly this contribution. Thus, all quadratic divergences appearing have canceled

exactly, and only the logarithmic divergence remains. As has been allured to earlier, this

implies a solution of the naturalness problem. In fact, it can be shown that this result also

holds in higher order perturbation theory, and only logarithmic divergences appear, thus

lower than just the superficial degree of divergence.

In fact, in the present case it is possible to reduce the number of divergences even fur-

ther. For simplicity, the calculation above has been performed with the F field integrated

out. Keeping this field explicitly, it is found (after a more tedious calculation) that the

mass of the bosons (and fermions) become finite, and the divergences are all pushed into

a wave-function renormalization. Hence, the masses of the particles become fixed, making

supersymmetric theories much more predictive (and ’natural’) than non-supersymmetric

ones.

This feature of canceling quadratic divergences is no accident, but is a general feature

of supersymmetric theories. Since fermions and bosons contribute with opposite sign,

the fact that supersymmetry requires a precise match between both species leads always

to cancellations which lower the degree of divergences. This is one of the most striking

benefits of supersymmetric theories.
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Superspace formulation

6.1 Supertranslations

After having now a first working example of a supersymmetric theory and seen its benefits,

it is necessary to understand a bit more of the formal properties of supersymmetry. The

possibly most striking feature is the somewhat mysterious relation (4.22). It is still not

very clear what the appearance of the momentum operator in the SUSY algebra signifies.

It will turn out that this connection is not accidental, and lies at the heart of a very

powerful, though somewhat formal, formulation of supersymmetric theories in the form

of the superspace formulation. This formulation will permit a more direct understanding

of why the supermultiplet is as it is, and will greatly aid in the construction of more

supersymmetric theories. For that reason, it has become the preferred formulation used

throughout the literature.

To start with the construction of the super-space formulation, note that the supercharge

Q is a hermitian operator. Thus, it is possible to construct a unitary transformation from

it by exponentiating it, taking the form1

U(θ, θ∗) = exp(iθQ) exp(iθ̄Q̄).

Note that the expressions in the exponents are of course appropriate scalar products, and

that θ and θ∗ are independent, constant spinors.

Acting with U on any operator φ yields thus a new operator φ dependent on θ and θ∗

U(θ, θ∗)φU(θ, θ∗)−1 = φ(θ, θ∗)

by definition. This is reminiscent of ordinary translations. Given the momentum operator

Pµ, and the translation operator V (x) = exp(ixP ), a field φ at some point, say 0, acquires

1The order of Q and Q̄ is purely conventional, see below.

70
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a position dependence by the same type of operation,

V (x)φ(0)V (x)† = φ(x).

Thus, in a sense, the operator U provides a field with an additional fermionic coordinate.

Of course, this interpretation is done with hindsight, as any unitary operator is providing

a field acted upon an additional degree of freedom.

That this interpretation actually makes sense can be most easily seen by applying the

operator U twice. To evaluate the operator

U(ξ, ξ∗)U(θ, θ∗) = exp(iξQ) exp(iξ̄Q̄) exp(iθQ) exp(iθ̄Q̄)

it is most convenient to use the Baker-Campbell-Hausdorff formula

exp(A) exp(B) = exp

(
A+B +

1

2
[A,B] +

1

6
[[A,B], B] + ...

)
.

The commutator of ξQ and ξ̄Q̄ for the first two factors can be reduced to the known

commutation relation (4.22) in the following way

[iξQ, iξ̄Q̄] = i2[ξaQa,−ξb∗Q†b]
= i2(−ξaQaξ

b∗Q†b + ξb∗Q†bξ
aQa)

= i2ξaξb∗(QaQ
†
b +Q+

b Qa)

= i2ξaξb∗{Qa, Q
†
b}

= i2ξaξb∗(σµ)abPµ,

where (4.22) has already been used in the end. This is an interesting result. First of all, it

is practical. Since Pµ commutes with both Q and Q† all of the higher terms in the Baker-

Campbell-Hausdorff formula vanish. Secondly, the appearance of the momentum operator,

though not unexpected, lends some support to the idea of interpreting the parameters θ

and ξ as fermionic coordinates and U as a translation operator in this fermionic space.

But to make this statement more definite, the rest of the product has to be analyzed as

well. Note that since all of the formulation has been covariant throughout the expression

iξaξb∗(σµ)ab, though looking a bit odd at first sight, has actually to be a four vector to

form again a Lorentz invariant together with Pµ. Of course, this quantity, as a product

of two Grassmann numbers, is an ordinary number, so this is also fine. Note further that

since P commutes with Q, this part can be moved freely in the full expression.
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Combining the next term is rather straight-forward,

U(ξ, ξ∗)U(θ, θ∗) = exp(i2ξaξb∗(σµ)abPµ) exp(i(ξQ+ ξ̄Q̄)) exp(iθQ) exp(iθ̄Q̄)

= exp(i2ξaξb∗(σµ)abPµ)×

× exp

(
i

(
ξQ+ ξ̄Q̄+ θQ− 1

2
[ξQ+ ξ̄Q̄, θQ]

))
exp(iθ̄Q̄)

= exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i(ξQ+ ξ̄Q̄+ θQ)) exp(iθ̄Q̄)

where it has been used that Q commutes with itself. Also, an additional factor of i2 has

been introduced. The next step is rather indirect,

exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i((ξ + θ)Q+ ξ̄Q̄)) exp(iθ̄Q̄) (6.1)

= exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i(ξ + θ)Q)×
× exp(iξ̄Q̄) exp(−i(ξaξb∗)(σµ)abPµ) exp(iθ̄Q̄)

= exp(i2ξaθb∗(σµ)abPµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄).

In the second-to-last step, the identity exp i(A + B) = exp iA exp iB exp([A,B]/2) has

been used, which follows from the Baker-Campbell-Hausdorff formula in this particular

case by moving the commutator term on the other side. Also, it has been used that Q̄

commutes with itself to combine the last two factors.

Hence, in total two consecutive operations amount to

U(ξ, ξ∗)U(θ, θ∗) = exp(i2ξaθb∗(σµ)abPµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄).

This result is not of the form U(f(ξ, ξ∗), g(θ, θ∗)), and thus the individual supertransfor-

mations do not form a group. This is not surprising, as the algebra requires that also the

momentum operator must be involved. A better ansatz is thus

U(aµ, ξ, ξ
∗) = exp(iPa) exp(iξQ) exp(iξ̄Q̄).

Since the momentum operator commutes with both Q and Q̄, it follows directly that

U(aµ, ξ, ξ
∗)U(bµ, θ, θ

∗) = exp(i(aµ + bµ + iξaθb∗(σµ)ab)Pµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄)

= U(aµ + bµ + iξaθb∗(σµ)ab, ξ + θ, ξ∗ + θ∗),

and consequently

U(xµ, ξ, ξ
∗)U(aµ, θ, θ

∗)φ(0)U(xµ, ξ, ξ
∗)−1U(aµ, θ, θ

∗)−1 = φ(xµ+aµ+iξaθb∗(σµ)ab, ξ+θ, ξ
∗+θ∗).

This then forms a group, as it should be, the group of supertranslations. The group is

not Abelian, as a minus sign appears if θ and ξ are exchanged in the parameter for the
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momentum operator. However, the ordinary translations form an Abelian subgroup of

this group of supertranslations. It is now also clear why there is a similarity to ordinary

translations, compared to other unitary transformations: The latter only form a simple

direct product group with ordinary translations, which is not so in case of the supertrans-

lations. In this case, it is a semidirect product. This also justifies to call the parameters

ξ and ξ∗ supercoordinates in an abstract superspace.

The construction of these supertranslations, and by this the definition of fermionic

supercoordinates and thus an abstract superspace, will now serve as a starting point for

the construction of supersymmetric theories using this formalism.

6.2 Coordinate representation of supercharges

6.2.1 Differentiating and integrating spinors

Before proceeding, it is necessary to discuss how to differentiate and integrate various

scalar products of spinors. A typical derivative, which will appear throughout, is

∂

∂θ1
(θbθb) =

∂

∂θ1
(−εbcθbθc) =

∂

∂θ1
(−θ1θ2 + θ2θ1) =

∂

∂θ1
(−2θ1θ2) = −2θ2 = 2θ1,

where it has been used that θa = εabθb. Similarly

∂

∂θ2
(θbθb) = 2θ1 = 2θ2.

Combining both expressions yields

∂

∂θa
(θbθb) = 2θa.

Using that χ̄ȧ = χ∗a, it is possible to obtain a similar expression for a derivative of χ̄χ̄ with

respect to χ̄ȧ,

∂

∂χ̄ȧ
(χ̄ḃχ̄

ḃ) =
∂

∂χ∗a
(χb∗χ∗b) =

∂

∂χ∗a
(εbcχ∗bχ

∗
c) = εbc(δabχ∗c − δacχ∗c) = 2εacχ∗c = 2χa∗.

Therefore, a derivative with respect to θa acts like a χa spinor, in the language of section

4.1, and a derivative with respect to θ∗a like a θ̄ȧ-type spinor.

Integrating is very much similar to this, as integration and differentiation is the same for

Grassmann variables. Denoting d2θ = dθ1dθ2 and d2θ̄ = dθ̄2̇dθ̄1̇ and finally d4θ = d2θ̄d2θ,

where the order must be kept, it is simple to integrate scalar products:∫
d2θ

1

2
θaθa =

1

2

∫
dθ1dθ2(−θ1θ2 + θ2θ1) =

1

2

∫
dθ1(θ1 + θ1) = 1,

and analogously for the θ̄ integral.
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6.2.2 Coordinate representation

Ordinarily, infinitesimal translations U(εµ) can be written in terms of a derivative

U(εµ) = exp(−iεµP µ) ≈ 1− iεµP µ = 1 + εµ∂µ. (6.2)

If the correspondence of θ and θ∗ should be taken seriously, such a differential representa-

tion for supertranslations should be possible. Hence for

U(εµ, ξ, ξ
∗)φ(xµ, θ, θ

∗)U(εµ, ξ, ξ
∗)−1 = φ(xµ, θ, θ

∗) + δφ

with εµ and ξ and ξ∗ all infinitesimal it should be possible to write for δφ

δφ = (εµ − iθaξb∗(σµ)ab)∂µφ+ ξa
∂φ

∂θa
+ ξ∗a

∂φ

∂θ∗a
.

In analogy to (6.2), this implies that in the expression

δφ = ((εµ∂µ − iθaξb∗(σµ)ab)∂µ − iξaQa − iξ∗aQa†)φ

it is necessary to identify

Qa = i
∂

∂θa
(6.3)

Qa† = i
∂

∂θ∗a
+ θb(σµ)ba∂µ. (6.4)

To form the second part of the Q† part, it is necessary to note that ξ∗aQ
a† = −ξa∗Q†a,

giving the overall sign.

This representation of Q and Q† is only making sense, if these operators fulfill the

corresponding algebra. In particular, Q and Q† must commute with themselves. That is

trivial in case of Q. Since θ and θ∗ are independent variables, this is also the case for Q†.

Furthermore, the anticommutation relation (4.22) has to be fulfilled2. This can be checked

explicitly

{Qa, Q
†
b} =

{
i
∂

∂θa
, i

∂

∂θ∗b
+ θc(σµ)cb∂µ

}
=

{
i
∂

∂θa
, i

∂

∂θ∗b

}
+

{
i
∂

∂θa
, θc(σµ)cb∂µ

}
=

{
i
∂

∂θa
, θc
}
i(σµ)cb∂µ

= i(σµ)ab∂µ = (σµ)abPµ.

2This is sufficient, as the commutator can be constructed from the anti-commutator, as has been done

backwards in section 4.3.2.
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where the fact that derivatives with respect to Grassmann variables anticommute has been

used in going from the second to the third line and furthermore that

∂θa(θ
bφ) + θb∂θaφ = (∂θaθ

b)φ+ (∂θaφ)θb + θb∂θaφ = δabφ+ (∂θaφ)θb − (∂θaφ)θb,

using the anticommutativity of Grassmann numbers. Hence, the operators (6.3) and (6.4)

are in fact a possible representation of the supersymmetry algebra, and there indeed exists

a derivative formulation for these operators. This again emphasizes the strong similarity

of the supersymmetry algebra and the translation algebra, once for fermionic and once for

bosonic coordinates in the super space.

6.3 Supermultiplets

Now, given this superspace, the first question is what the vectors in this superspace repre-

sent. The simplest vector will have only components along one of the coordinates, which

will be taken to be θ for now. Furthermore, these vectors are still functions. But their de-

pendence on the Grassmann variables is by virtue of the properties of Grassmann numbers

rather simple. Thus such a vector Φ(x, θ) can be written as

Φ(x, θ) = φ(x) + θχ(x) +
1

2
θθF (x).

The θ-variables are still spinors, and the appearing products are still scalar products.

Due to the antisymmetry of the scalar product, the last term does not vanish, though of

course quantities like θ2
a vanish. The names for the component fields have been selected

suggestively, but at the moment just represent arbitrary (bosonic or fermionic, complex)

functions. Not withstanding, the set of the field (φ, χ, F ) is called a chiral supermultiplet3.

To justify the notation, it is sufficient to have a look at the infinitesimal transformation

properties of Φ under U(0, ξ, ξ∗). Of course, a non-zero translation parameter would just

shift the x-arguments of the multiplet, and is thus only a notational complication. The

change in the field is thus, as usual, given by

δΦ = (−iξaQa − iξ∗aQa†)Φ = (−iξaQa + iξa∗Q†a)Φ

=

(
ξa

∂

∂θa
+ ξa∗

∂

∂θa∗
+ iξa∗θb(σµ)ba∂µ

)(
φ(x) + θcχc +

1

2
θcθcF

)
= δξφ+ θaδξχa +

1

2
θaθaδξF,

3Actually a left one, as only the left-type spinor χ appears.
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where the last line is by definition the change in the individual components of the super-

field. Since Φ is not depending on θa∗, the derivative with respect to this variable can be

dropped. It thus only remains to order the result by powers in θ.

At order zero, a contribution can only come from the action of the θ-derivative on the

χ term. This yields

δξφ = ξχ

for the transformation rule of the φ-field.

At order one appears

δξχa = ξaF − iξb∗(σµ)ab∂µφ = ξaF − i(iσ2ξ
∗)b(σ

µ)ab∂µφ,

giving the transformation for the χ-field.

Finally, because θa are Grassmann variables, order two is the highest possible order,

yielding

1

2
θθδξF = iξb∗θa(σµ)abθ

c∂µχc = −1

2
θθεaciξb∗(σµ)ab∂µχc

= −1

2
θθiξa∗(σTµ)abε

bc∂µχc

= −1

2
θθi(iσ2ξ

∗)a(σ
Tµ)εbc∂µχc

= −1

2
θθiξ∗d(iσ2)da(σ

Tµ)ab(iσ2)bc∂µχc

=
1

2
θθ(−i)ξ∗d(σ̄µ)dc∂µχc

=
1

2
θθ(−i)ξ†(σ̄µ)∂µχ

where it has been used that

θaθb = −1

2
εabθcθc. (6.5)

This can be shown simply by explicit calculation, keeping in mind that θa2 = 0 and

ε12 = 1 = −ε12, as well as (iσ2)cd = εcd and σ̄µ = iσ2σ
Tµiσ2.

Thus, the transformation rules for the field components are

δξφ = ξχ

δξχa = ξaF − i(iσ2ξ
∗)b(σ

µ)ab∂µφ

δξF = −iξ†(σ̄µ)∂µχ. (6.6)

These are exactly the transformation rules obtained in section 4.3.5. Thus, a chiral super-

multiplet under a supertranslation transforms in exactly the same way as the field content

of a free (or interacting, in case of the Wess-Zumino model) supersymmetric theory. This
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result already indicates that supersymmetric theories can possibly be formed by using

scalars with respect to supertranslation in much the same way as ordinary theories are

built from scalars with respect to Lorentz transformations. The following will show that

this is indeed the case. Actually, this is not exactly the way it turns out, but the idea is

similar.

6.4 Other representations

All of this can be repeated, essentially unchanged, for a right chiral multiplet, where the

dependence on θ is replaced by the one on θ∗. Including both, θ and θ∗ actually does not

provide something new, but just leads to a reducible representation. That is most easily

seen by considering the condition

∂

∂θ∗a
Φ(x, θ, θ∗) = 0.

If this condition applies to the field Φ then so does it to the transformed field δΦ, since in

the latter expression

∂

∂θ∗c
δΦ =

∂

∂θ∗c

(
−iθa(σµ)abξ

b∗∂µΦ + ξa
∂Φ

∂θa
+ ξ∗a

∂Φ

∂θ∗a

)
at no point an additional dependence on θ∗ is introduced. Hence, the fields Φ(x, θ) form an

invariant subgroup of the SUSY transformation, and likewise do Φ(x, θ∗). Any represen-

tation including a dependence on θ and θ∗ can thus be only a reducible one. Nonetheless,

this representation is useful, as it will permit to construct a free supersymmetric theory.

Before investigating this possibility, one question might arise. To introduce the super-

vectors Φ, the particular supertranslation operator

UI(x, θ, θ
∗) = exp(ixP ) exp(iθQ) exp(iθ̄Q̄),

called type I, has been used. Would it not also have been possible to use the operators

UII(x, θ, θ
∗) = exp(ixP ) exp(iθ̄Q̄) exp(iθQ)

Ur(x, θ, θ
∗) = exp(ixP ) exp(iθQ+ iθ̄Q̄)?

The answer to this question is, in fact, yes. Both alternatives could have been used. And

these would have generated different translations in the field. In fact, when using the

expression Φi = UiΦ(0, 0, 0)Ui to generate alternative superfields the relations

Φr(x, θ, θ
∗) = ΦI

(
xµ − 1

2
iθaσµabθ

b∗, θ, θ∗
)

= ΦII

(
xµ +

1

2
iθaσµabθ

b∗, θ, θ∗
)

(6.7)
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would have been found. An explicit expression, e. g. in case of the left supermultiplet

would be

Φr(x, θ, θ
∗) = φ+θχ+

1

2
θθF− 1

2
iθaσµabθ

b∗∂µφ+
1

4
i(θθ)(∂µχ

aσµabθ
b∗)− 1

16
(θθ)(θ̄θ̄)∂2φ, (6.8)

which is obtained by the Taylor-expansion in θ from the relation (6.7).

I. e., the different supertranslations lead to unitarily equivalent supervectors, which

can be transformed into each other by conventional translations, and thus a unitary trans-

formation. This already suggests that these are just unitarily equivalent representations

of the same algebra. This can be confirmed: For each possibility it is possible to find a

representation in terms of derivatives which always fulfills the SUSY algebra. Hence, all of

these representations are equivalent, and one can choose freely the most appropriate one,

which in the next section will be the type-I version.

6.5 Constructing interactions from supermultiplets

For now, lets return to the (left-)chiral superfield, and the type-I transformations.

Inspecting the transformation rules under a supertranslation of a general superfield

one thing is of particular importance: The transformation of the F -component of the

superfield, (6.6), corresponds to a total derivative. As a supertranslation is nothing else

than a SUSY transformation this implies that any term which is constructed from the

F -component of a superfield will leave the action invariant under a SUSY transforma-

tion. Hence, the question arises how to isolate this F -term, and whether any action be

constructed out of it.

The first question is already answered: This can be done by twofold integration. Due

to the rules for analysis of Grassmann variables, it follows that∫
dθ1

∫
dθ2Φ =

∫
dθ1

∫
dθ2

(
φ+ θaχa +

1

2
θaθaF

)
=

∫
dθ1(χ2 + θ1F ) = F.

Thus twofold integration is isolating exactly this part.

The answer to the second question is less obvious. A single superfield will only con-

tribute a field F . That is not producing a non-trivial theory. However, motivated by

the construction of Lorentz invariants by building scalar products, the simplest idea is to

consider a product of two superfields. This yields a superscalar

ΦΦ =

(
φ+ θχ+

1

2
θθF

)2

= φ2 + 2φθχ+ θθφF + (θχ)(θχ),
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and all other terms vanish, as they would be of higher order in θ. Using (6.5), the last

term can be rearranged to yield

θaχaθ
bχb = −θaθbχaχb =

1

2
θθεabχaχb = −1

2
θθχaχa =

1

2
(θθ)(χχ), (6.9)

and thus

ΦΦ = φ2 + 2φθχ+
1

2
θθ(2Fφ− χχ).

Isolating the F -term and multiplying with a constant M/2, which is not changing the

property of being a total derivative under SUSY transformations, yields

W2 = MφF − M

2
χχ.

However, this is a well-known quantity, it is exactly the terms quadratic in the fields in

the Lagrangian (5.2) which are not part of the free Lagrangian, and to which one has to

add, of course, also the hermitian conjugate to obtain a real action, even though both are

separately SUSY invariant.

The fact that only terms of order two in the fields could have been obtained is clear,

as only a square was evaluated. However, it is surprising at first sight that in fact all

terms quadratic to this order have been obtained. However, in the construction of the

Wess-Zumino Lagrangian the minimal set has been searched for, and this here is then the

minimal set. Note then that this implies that when stopping at this point, the Lagrangian

for a massive, but otherwise free, supersymmetric theory has been obtained, as can be

checked by integrating out F . Note that obtaining the free part of the Lagrangian, or

a massless supersymmetric theory, can also be performed by the present methods, but

requires some technical complications to be discussed later.

This suggests that it should be possible to obtain the full interaction part of the Wess-

Zumino model by also inspecting the product of three superfields, as this is the highest

power in fields appearing in (5.2). And in fact, evaluating the F -component of such a

product yields∫
d2θΦ3 = 3φ2F − φχχ+ 2φ

∫
d2θ(θχ)(θχ)

= 3φ2F − φχχ+ 2φ

∫
d2θ(−1

2
θθ)(χχ) = 3φ2F − 3φχχ.

Multiplying this with y/6 exactly produces the terms which are cubic in the fields in the

Wess-Zumino Lagrangian (5.2). Thus, this Lagrangian could equally well be written as

L = ∂µφ∂
µφ† + χ†iσ̄µ∂µχ+ F †F +

∫
d2θ(W +W †)
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with

W =
M

2
ΦΦ +

y

6
ΦΦΦ,

being the superpotential. In contrast to the one introduced in section 5.1 this superpoten-

tial now includes all interactions of the theory, not only the ones involving the φ terms.

Thus, it was indeed possible to construct the supersymmetric theory just by usage of prod-

ucts of superfields. This construction principle carries over to more complex situations,

and can be considered as the construction principle for supersymmetric theories.

The generalization to fields with an internal degree of freedom, like flavor or charge, is

straightforward, yielding a superpotential of type

W =
Mij

2
ΦiΦj +

yijk
6

ΦiΦjΦk,

just as in the case of the original treatment of the Wess-Zumino model.

In principle, the free part can be constructed in a similar manner. However, it turns

out to be surprisingly more complicated in detail. While so far only the field ΦI(x, θ, 0) has

been used, for the free part it will be necessary to use in addition the quantity Φr(x, θ, θ
∗).

The free part can then be obtained from (6.8) by the expression∫
d4θΦr(x, θ, θ

∗)†Φr(x, θ, θ
∗) = −1

4
φ†∂2φ− 1

4
∂2φφ† + F †F

+

∫
d4θ

1

4
((i(χ̄θ̄)(θθ)∂µχ

a†σµabθ
b∗ − iθaσµab∂µχ

b(θ̄θ̄)(θχ)

+∂µφ
†θaσµabθ

b∗θcσνcdθ
d∗∂νφ)

Since the action is the only quantity of interest, partial integrations are permitted. Thus

φ†∂2φ = −∂φ†∂φ. Furthermore, applying (6.9) twice yields the relation

(θ̄χ̄)(θ̄χ̄) = −1

2
(θ̄θ̄)(χ̄χ̄),

which, of course holds similarly for unbarred quantities. This can be used to reformulate

the second line to isolate products of θ2θ̄2, and also for the third line. These manipulations

together yield∫
d4θΦr(x, θ, θ

∗)†Φr(x, θ, θ
∗) =

1

2
∂µφ

†∂µφ+ F †F + iχ̄σ̄µ∂µχ+
1

2
∂µφ

†∂µφ

= ∂µφ
†∂µφ+ iχ̄σ̄µ∂µχ+ F †F,

which is exactly the Lagrangian of the free supersymmetric theory, or, more precisely, the

integration kernel of the action. Hence, the complete Wess-Zumino model Lagrangian can

be written as

L =

∫
d4θΦ†rΦr +

∫
d2θ

(
M

2
ΦIΦI +

y

6
ΦIΦIΦI

)
+

∫
d2θ̄

(
M

2
ΦIIΦII +

y

6
ΦIIΦIIΦII

)
,



Chapter 6. Superspace formulation 81

which is in fact now an expression where supersymmetry is manifest, and the last term just

creates the Hermitiean conjugate of the second-to-last term to have a hermitiean action.



Chapter 7

Supersymmetric gauge theories

All relevant theories in particle physics are actually not of the simple type consisting only

out of scalars and fermions, but are gauge theories. Therefore, to construct the standard

model it is necessary to work with supersymmetric gauge theories. Before this can be

done, it is of course necessary to introduce ordinary gauge theories. The following will

hence include a short reminder, or a crash course, in gauge theories, and is by no means

in any respect complete.

Furthermore, in the following the superspace formalism is actually less practically

useful, so it will not be used.

7.1 Supersymmetric Abelian gauge theory

7.1.1 Ordinary Abelian gauge theory

The simplest possible gauge theory is the quantum field theoretical generalization of elec-

trodynamics. In classical electrodynamics, it was possible to transform the gauge potential

Aµ by a gauge transformation

Aµ → Aµ + ∂µω,

where ω is an arbitrary function. A defining property of such gauge transformations is

the fact that they do not alter any measurable quantities. In particular, the electric and

magnetic fields ~E and ~B, which are obtained from the gauge potential by

~Ei = − ∂

∂t
Ai − ∂iA0

~Bi = (~∇× ~A)i,

82
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are invariant under such transformations. From the vector potential, it is possible to form

the field strength tensor

Fµν = ∂µAν − ∂νAµ,

which is also invariant under gauge transformations. The Maxwell equations can then be

written in the compact form

∂µF
µν = jν

∂µF νρ + ∂νF ρµ + ∂ρF µν = 0,

where jµ is the matter current. These are the equations of motions of the classical La-

grangian

L = −1

4
FµνF

µν − jµAµ.

Consistently quantizing this theory is actually highly non-trivial, and beyond the scope

of this lecture. However, for the purpose of this lecture it is only interesting how the

Lagrangian of the quantized version of this theory looks. It turns out that the first term

proportional to FµνF
µν is already the Lagrangian of the quantized electromagnetic field.

It then remains to construct the electric current. If an electron is represented by a spinor

ψ, this spinor is actually no longer invariant under a gauge transformation. However, as

in quantum mechanics, only the phase is affected by a gauge transformation. Therefore,

under a gauge transformation the spinors change as

ψ → exp(−ieω)ψ,

where the same function ω appears as for the vector potential, which is now representing

the field of the photon, and is called gauge field. Since ω is a function, the kinetic term for

an electron is no longer invariant under a gauge transformation, and has to be replaced by

iψ̄(γµ(∂µ + ieAµ))ψ.

This replacement

∂µ → ∂µ + ieAµ = Dµ

is called minimal coupling1, and Dµ the covariant derivative. This is gauge invariant, as

an explicit calculation shows,

iψ̄′(γµ(∂µ + ieA′µ))ψ′ = iψ̄ exp(ieω)γµ(∂µ(exp(−ieω)ψ) + exp(−ieω)(ieAµψ + ie∂µωψ))

= iψ̄ exp(ieω)γµ(exp(−ieω)(∂µψ − ie∂µωψ) + exp(−ieω)(ieAµψ + ie∂µωψ))

= iψ̄(γµ(∂µ + ieAµ))ψ.

1It is possible to also formulate consistent theories with non-minimal coupling. However, none of these

have so far been compatible with experiment, and they will therefore be ignored here.



84 7.1. Supersymmetric Abelian gauge theory

Thus, the (gauge-invariant) Lagrangian of QED is given by

L = −1

4
FµνF

µν + ψ̄(iγµDµ −m)ψ,

where a mass term has been added, which is trivially gauge-invariant. The second term is

thus the quantum version of the jµAµ term.

This type of gauge theories is called Abelian, as the phase factor exp(iω) with which

the gauge transformation is performed for the fermions is an element of the U(1) group.

Thus, U(1) is called the gauge group of the theory. Furthermore, the vector potential, or

gauge field, is given by a real function tensored with an element of the corresponding u(1)

algebra.

7.1.2 Supersymmetric Maxwell theory

The simplest gauge theory to construct is a supersymmetric version of the Abelian one,

neglecting the electrons for now. The photon is a boson with spin 1. Hence its super-

partner, the photino, has to be a fermion. The photon has on-shell two degrees of freedom,

so the photino has to be a Weyl fermion. Off-shell, however, the photon has three degrees

of freedom, corresponding to the three different magnetic quantum numbers possible. So

another bosonic degree of freedom is necessary to cancel all fermionic degrees of freedom.

This other off-shell bosonic degree of freedom will be the so-called D field. This shows

again the condition on the exact equality of the number of fermionic and bosonic degrees

of freedom in a supersymmetric theory on-shell and off-shell.

Will this be a flavor of quantum electron dynamics then, just with the Dirac electron

replaced by a Weyl one and one field added? The answer to this is a strict no. Since

the supersymmetry transformation just acts on the statistical nature of particles it cannot

change an uncharged photon into a charged photino. Thus, the photino has also to have

zero charge, as does the D boson. The simplest supersymmetric gauge theory is then

the free supersymmetric Maxwell theory, as there are no interactions possible between

uncharged particles. Its form has thus to be of the type

L = −1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2. (7.1)

Note that the absence of charge also implies that no covariant derivative can appear.

Hence, the photino λ has to be invariant under a gauge transformation, as D has to be.

Thus the gauge dynamics is completely contained in the photon field.

To construct the SUSY transformation for Aµ, it is necessary that is has to be real,

as Aµ is a real field. Furthermore, it has to be a Lorentz vector. Finally, since it is an
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infinitesimal transformation it has to be at most linear in the transformation parameter

ξ. The simplest quantity fulfilling these properties is

δξAµ = ξ†σ̄µλ+ λ†σ̄µξ.

As noted, the photino is a gauge scalar. It can therefore not be directly transformed

with the field Aµ, but a gauge-invariant combination of Aµ is necessary. The simplest

such quantity is Fµν . To absorb the two indices, and at the same time provide the correct

transformation properties under Lorentz transformation, the SUSY transformations should

be of the form

δξλ =
i

2
σµσ̄νξFµν + ξD

δξλ
† = − i

2
ξ†σ̄νσµFµν + ξ†D,

where the pre-factor has been chosen with hindsight. In principle, it could also be deter-

mined a-posterior, provided that otherwise these simplest forms work. The terms contain-

ing the D field have been added in analogy with the Wess-Zumino model. Finally, the

SUSY transformation for the D-boson has to vanish on-shell, and thus should be propor-

tional to the equations of motion of the other fields. Furthermore, it is a real field, and

thus its transformation rule has to respect this, similarly as for the photon. In principle,

its transformation could depend on the equations of motions of both the photon and the

photino. However, inspired by the properties of the F boson in the Wess-Zumino model

the ansatz is one depending only on the equations of motion of the photino, which is indeed

sufficient. The transformation rule such constructed is

δξD = −i(ξ†σ̄µ∂µλ− ∂µλ†σ̄µξ),

which has all of the required properties.

It remains to demonstrate that these are the correct transformation rules and that

the theory is supersymmetric. Since ξ is taken to be infinitesimal and Grassmann, it is

sufficient to evaluate the transformations once more only up to an order linear in ξ.

The transformation of the photon term yields

−1

4
δξ(FµνF

µν) = −1

4
((δξFµν)F

µν + Fµν(δξF
µν)) = −1

2
FµνδξF

µν

= −1

2
F µν(∂µδξAν − ∂νδξAµ) = −Fµν∂µδξAν = −Fµν∂µ(ξ†σ̄νλ+ λ†σ̄νξ),

where the antisymmetry of Fµν has been used. The only term which can cancel this

is the one part from the transformation of the spinors being proportional to Fµν . This
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contribution is

δ
Fµν
ξ (iλ†σ̄µ∂µλ) = i(δξλ

†)σ̄µ∂µλ+ iλ†σ̄µ∂µ(δξλ)

=
1

2

(
ξ†σ̄νσµFµν σ̄

ρ∂ρλ+ (∂ρλ
†)σ̄ρσµσ̄νξFµν

)
.

The structure of this term is already quite similar, but the product of three σs is different.

However, since the σ are Pauli matrices, it is always possible to rewrite them in terms of

single ones,

σ̄µσν σ̄ρ = gµν σ̄ρ − gµρσ̄ν + gνρσ̄µ − iεµνρσσ̄σ, (7.2)

where ε is totally antisymmetric. This simplifies the expression at lot. The contraction

gµνFµν vanishes, since g is symmetric and Fµν is antisymmetric. Because

Fµν∂ρλ = −λ(∂ρ∂µAν − ∂ρ∂νAµ),

this expression is symmetric in two indices. Thus any contraction with the ε-tensor also

vanishes. Thus, the expression reduces to

ξ†Fµν(−gνρσ̄µ + gµρσ̄ν)∂ρλ+ (∂ρλ
†)(gµρσ̄ν − gνρσ̄µ)ξFµν

= −2Fµνξ
†σ̄µ∂νλ+ 2(∂µλ†)σ̄νFµν = 2Fµν(ξ

†σ̄ν∂µλ+ ∂µλ†σ̄νξ).

This precisely cancels the contribution from the photon transformation, when combined

with the factor 1/2.

The expressions involving D are simpler. The contribution from the photino term is

δDξ (iλ†σ̄µ∂µλ) = iDξ†σ̄µ∂µλ− i∂µλ†σ̄µξD,

which cancels against the contribution from the D term

δξ
1

2
D2 = DδξD = −iD(ξ†σ̄µ∂µλ− ∂µλ†σ̄µξ).

Thus the Lagrangian (7.1) describes indeed a supersymmetric theory, consisting of the

non-interacting photon, the photino, and the D-boson.

Of course, it would once more be possible to construct the theory just from the D-

component of a super-vector. This will not be done here.

7.2 Supersymmetric Yang-Mills theory

7.2.1 Ordinary Yang-Mills theory

Although U(1) gauge theory already provides an enormous host of interesting physical

effects, e. g. solid state physics, its complexity is not sufficient to describe all the phenomena
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encountered in the standard model, e. g. nuclear physics. A sufficiently complex theory

is obtained when the Abelian gauge algebra u(1) is replaced by the non-Abelian gauge

algebra2 su(N), where N is referred to often as the number of colors. In case of the strong

interactions N is 3, and for the weak interactions it is 2.

In this case, all fields carry an additional index, a, which indicates the charge with

respect to this gauge group. E. g., the gluon index runs from 1 to 8, while the quark

index runs from 1 to 3, because the former have charges corresponding to the adjoint

representation of SU(3), and the latter to the fundamental one.

In particular, a gauge field can now be written as Aµ = Aaµτa, with τa the generators

of the algebra of the gauge group and Aaµ are the component fields of the gauge field for

each charge. The gauge transformation of a fermion field is thus

ψ → gψ

g = exp(iτaωa),

with ωa arbitrary functions and a takes the same values as for the gauge fields. The

corresponding covariant derivative is thus

Dµ = ∂µ + ieAaµτa,

with the τa in the fundamental representation of the gauge group. The corresponding

gauge transformation for the gauge fields has then to take the inhomogeneous form

Aµ → gAµg
−1 + g∂µg

−1.

The expression for Fµν is then also no longer gauge invariant, and has to be generalized to

Fµν = F a
µντa = ∂µAν − ∂νAµ − ie[Aµ, Aν ].

This quantity is still not gauge invariant, and thus neither are magnetic nor electric fields.

However, the expression

tr(FµνF
µν)

is. Hence, the Lagrangian for a non-Abelian version of QED, Yang-Mills theory without

fermions and QCD with fermions, reads

L = −1

4
tr(FµνF

µν) + ψ̄(iγµDµ −m)ψ, (7.3)

which at first looks simple, but just because the explicit form has been defined into appro-

priate quantities, and Fµν and Dµ are now matrix-valued in the group space of the gauge

group.

2In principle, a theory can be build for any Lie algebra, but only the su(N) algebra have been so far

relevant to describe experiments, and will therefore be used here exclusively.
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7.2.2 Supersymmetric version

A much more interesting theory will be the supersymmetric version of the non-Abelian

gauge theory, again neglecting the matter part. The first thing to do is to count again

degrees of freedom. The gauge field is in the adjoint representation. For SU(N) as a

gauge group there are therefore N2 − 1 independent gauge fields. On-shell, this has to be

canceled by exactly the same number of fermionic degrees of freedom, so the same number

of fermions, called gauginos. Quarks or electrons, like in the Lagrangian of the non-

supersymmetric Yang-Mills theory (7.3), are however in the fundamental representation

of the gauge group, and thus there are a different number, e. g. N for SU(N). This cannot

match, and the super-partners of the gauge fields, the gauginos, have therefore to be also

in the adjoint representation of the gauge group. Therefore, they are completely different

from ordinary matter fields like quarks or leptons. Hence, for each field in the standard

model below it will be necessary to introduce an independent superpartner.

Of course, to close the SUSY algebra also off-shell, it will again be necessary to intro-

duce additional scalars. However, also these have to be in the adjoint representation of

the gauge group. In this case, it is useful to write the Lagrangian explicitly in the index

form. This yields the Lagrangian

L = −1

4
F a
µνF

µν
a + iλ†aσ̄

µDab
µ λb +

1

2
DaDa

F a
µν = ∂µA

a
ν − ∂νAaµ − efabcAbµAcν

Dab
µ = δab∂µ + efabcAcµ, (7.4)

where fabc are the structure constants of the gauge group and Dab
µ is the covariant deriva-

tive in the adjoint representation. The gauge bosons transform in the usual way, but the

gaugino and the D-boson transform under gauge transformations in the adjoint represen-

tation. I. e., they transform like the gauge field, except without the inhomogeneous term

as gλg−1, when written as algebra elements. Thus, even the D2 term is gauge invariant,

as no derivatives are involved.

Making the ansatz

δξA
a
µ = ξ†σ̄µλ

a + λa†σ̄µξ

δξλ
a =

i

2
σµσ̄νξF a

µν + ξDa

δξλ
a† = − i

2
ξ†σ̄νσµF a

µν + ξ†Da

δξD
a = −i(ξ†σ̄µDab

µ λ
b −Dab

µ λ
†σ̄µξ)

as the most simple generalization of the Abelian case is actually working. The reason for

this is simple: After expressing everything in components, all quantities (anti-)commute.
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Furthermore, under partial integration

Dab
µ λ

bF µνa = (∂µλ
a + efabcAcµλ

b)F µνa = −λa∂µF µνa − ef bacAcµλbF µνa

= −λa∂µF µνa − efabcAcµλaF µνb = −λaDab
µ F

µνb. (7.5)

Thus, all manipulations performed in section 7.1 can be performed equally well in case

of the non-Abelian theory. Therefore, only those terms which appear in addition to the

Abelian case have to be checked.

The most simple is the modification of the D-term by the appearance of the covariant

derivative. These terms trivially cancel with the corresponding gaugino term just as in

the Abelian case, as there also a covariant derivative appears

δDξ (iλ†aσ̄
µDab

µ λb) = iDaξ
†σ̄µDab

µ λb − iDab
µ λ
†
aσ̄

µξDb

δξ
1

2
D2 = DaδξD

a = −iDa(ξ
†σ̄µDab

µ λb −Dab
µ λ
†
bσ̄

µξ).

The next contribution stems from the appearance of the covariant derivative in the gaugino

term. The contribution form the gauge boson-gaugino coupling cancels with the contribu-

tion from the self-coupling of the gauge bosons. This contribution alone gives

−1

2
F a
µνδ

AA
ξ F µν

a + δλξ (iλ†aσ̄µef
abcAµcλb)

=
efabc

2
F a
µν((ξ

†σ̄µλb + λ†bσ̄
µξ)Acν + Abµ(ξ†σ̄νλc + λ†cσ̄

νξ))

+
efabc

2
F ρσ
a (ξ†σ̄ρσσσ̄µA

µ
cλb − λ

†
bσ̄µσρσ̄σξA

µ
c ) (7.6)

The last expression can be reformulated using (7.2). Since the following proceeds identi-

cally for the contributions proportional to λ and λ†, only the former will be investigated

explicitly. Applying therefore (7.2) to the third contribution yields

efabc

2
F ρσ
a ξ†(gρσσ̄µ − gρµσ̄σ + gσµσ̄ρ − iερσµδσ̄δ)λbAµc .

The first term yields zero, as the trace of F vanishes. The contribution with the ε-

tensor vanishes, as fabcF ρσ
a Aµc is symmetric in the three Lorentz indices, and therefore

also vanishes upon contraction with the ε-tensor, as an explicit calculation shows. The

remaining two terms then exactly cancel the two terms from the transformation of F a
µν ,

just by relabeling the Lorentz indices, and shifting them appropriately up and down.

Therefore, also this contribution is not violating supersymmetry.

Then, only the term from the transformation of the gauge boson in the covariant

derivative coupling to the gauginos remains. Its transformation is

δAξ (iλ†aσ̄µef
abcAµcλc) = iefabcλ†aσ̄

µ(ξ†σ̄µλc + λ†cσ̄µξ)λb.
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This contribution contains λ cubed, and can therefore not be canceled by any other con-

tribution. However, rewriting the first term in explicit index notation yields

iefabcλ∗iaσ̄
µ
ijλbjλ

∗
ckσ̄µklξl.

The expression σ̄µijσ̄µkl is symmetric in the first and third index for each term individually,

and the expression λ∗iaλ
∗
ck is antisymmetric in exact these two indices. Therefore, this

contribution drops out, and similarly for the second contribution.

Thus, all in all this theory is supersymmetric and therefore the supersymmetric gen-

eralization of Yang-Mills theory, called often super-Yang-Mills theory, or SYM, for short.

7.3 Supersymmetric QED

The Abelian gauge theory contained only an uncharged fermion, the photino. To obtain

a supersymmetric version of QED a U(1)-charged fermion is necessary. Since this cannot

be introduced into the vector supermultiplet of the photon, the most direct way to in-

troduce it is by the addition of a chiral supermultiplet which will be coupled covariantly

to the vector supermultiplet. Of course, this introduces only a Majorana electron, but

this will be sufficient for the beginning. Of course, compensating scalar fields to make the

theory supersymmetric will be required. Hence, at least a combination of supersymmetric

Maxwell theory and Wess-Zumino theory is required.

The minimally coupled version is

L = (Dµφ)†Dµφ+ iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2. (7.7)

This theory contains now the photon, its super-partner the photino, the (Majorana) elec-

tron, its super-partner the selectron, and the auxiliary bosons F and D. In essence, this

Lagrangian is the sum of the non-interacting Wess-Zumino model and the supersymmetric

Abelian gauge theory, where in the former the derivatives have been replaced by gauge

covariant derivatives. This implies that all newly added fields, φ, χ, and F , are charged,

and transform under gauge transformations. Only the photino and the D-boson remain

uncharged.

Of course, also the derivatives appearing in the supersymmetry transformations of

electron, the selectron, and the F -boson have to be replaced by their covariant counter-

parts. Thus the minimal set of rules for the matter sector reads

δξφ = ξχ

δξχ = σµσ2ξ
∗Dµφ+ ξF

δξF = −iξ†σ̄µDµχ
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while those for the gauge sector are left unchanged

δθAµ = θ†σ̄µλ+ λ†σ̄µθ

δθλ =
i

2
σµσ̄νθFµν + θD

δθD = −i(θ†σ̄µ∂µλ− ∂µλ†σ̄µθ)

However, even with (7.5), it can then be shown that this theory is not yet supersym-

metric under these transformation. The reason is that supersymmetry requires additional

interactions as will be discussed below. The Lagrangian (7.7) is indeed, in contrast to

ordinary QED, not the most general3 one which can be written with this field content

and which is supersymmetric, gauge-invariant, and renormalizable. It is possible to add

additional interactions which do have all of these properties. However, this will require

not only a fixed constant of proportionality between ξ and θ, but also a minor change in

the transformation of the F field.

In fact, it is possible to add further interactions between the matter and the gauge

sector to (7.7). These have to be, of course, gauge-invariant, and will also be chosen to

be renormalizable. These two requirements already limit the number of possible terms

severely to the interaction terms φ†χλ, λ†χ†φ, and φ†φD. All other terms are either not

gauge-invariant, not Lorentz-invariant or not at the same time (superficially) renormaliz-

able, like terms involving F . Hence the interaction Lagrangian takes the form

A(φ†χλ+ λ†χ†φ) +Bφ†φD.

Checking all terms for their invariance under supersymmetry transformations is a long

and tedious exercise, which will not be performed here. Only those elements will be

presented, which influence either the values of A and B, or modify the supersymmetry

transformations themselves.

The first step is to check all contributions from the transformed part of the interaction

Lagrangian which are linear in the D-field. These will occur either from transformations

of the photino λ or from the term proportional to B when either of the other fields are

transformed. This yields

A(φ†χθD + θ†χ†Dφ) +B(χ†ξ†φD + φ†ξχD).

No other contribution in the Lagrangian will produce such terms which couple the matter

fields to the D-boson. Thus, these have to cancel by themselves. This is only possible if

Aθ = −Bξ, (7.8)

3Here, and in the following, Wess-Zumino-like couplings, which are in fact gauge-invariant and super-

symmetric, will be ignored.
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yielding already a constraint for the transformation parameters. Thus, in contrast to the

case when two gauge sectors are coupled, coupling two supersymmetric sectors cannot be

done independently. The reason is again that both supersymmetry transformations are

tied to the momentum transformation, thus not permitting to leave them independent.

The transformation of the φ-fields in the A-term will yield terms having only fermionic

degrees of freedom,

A((χ†ξ†)(χλ) + (λ†χ†)(ξχ)).

The only other term which can generate such a combination of the electron and the photino

field stems from the photon-electron coupling term, which reads

−qχ†σ̄µχ(δθAµ) = −qχ†σ̄µχ(θ†σ̄µλ+ λ†σ̄µθ).

This has the same field content as the previous contribution, when the relation between ξ

and θ is used, but not the same Lorentz structure. To recast the expression, the identity

(χ†σ̄µχ)(λ†σ̄µθ) = χ∗aσ̄
µ
abχbλ

∗
c σ̄µcdθd

= χ∗aχbλ
∗
cθdσ

µ
abσ̄µcd = −2χ∗aχbλ

∗
cθdδacδbd = 2(χ†λ†)(χθ),

where the involved identity for the σ-matrices follows from direct evaluation, can be used.

Evaluating the previous expression then yields

−2qθ((χ†θ†)(χλ) + (χ†λ†)(χθ)).

This implies the relation

Aξ = 2qθ. (7.9)

Together with the condition (7.8) this implies that A and B, and θ and ξ have to be

proportional to each other, the constant of proportionality involving the charge. However,

a relative factor is still permitted, and is required to be fixed. As the covariant derivative

already provided one constraint, it is not surprising that the selectron-photon coupling

term provides another one. Taking the supersymmetry transformation of the interaction

term between two selectrons and one photon yields, when taking only the transformation

of the photon field,

−iq(φ†(∂µφ)δθA
µ − (∂µφ)†φδθA

µ)

= iq((∂µφ
†)φ(θ†σ̄µλ+ λ†σ̄µθ)− φ†(∂µφ)(θ†σ̄µλ+ λ†σ̄µθ)). (7.10)

Terms with such a contribution can also be generated by both interaction terms, if in the

A case the electron and in the B case the D-boson is transformed. Specifically,

Ai(φ†(σµσ2ξ
∗∂µφ)λ+ λ†(∂µφ

†)ξTσ2σ
µφ)− iB(φ†φ(θ†σ̄µ∂µλ− (∂µλ

†)σ̄µθ)).
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To simplify this expression, the relation (4.35) can be used in both A-terms, yielding

Ai(φ†(∂µφ)ξ†σ̄µλ− (∂µφ
†)φλ†σ̄µξ)− iB(φ†φ(θ†σ̄µ∂µλ− (∂µλ

†)σ̄µθ)).

Integrating further in the B-term by parts yields

Ai(φ†(∂µφ)ξ†σ̄µλ− (∂µφ
†)φλ†σ̄µξ)− iB(((∂µφ

†)φ+ φ†(∂µφ))θ†σ̄µλ

−((∂µφ
†)φ+ φ†(∂µφ))λ†σ̄µθ). (7.11)

Now, in both contributions, (7.10) and (7.11), terms appear proportional to λ and to λ†

of the same structure. So both will be vanishing independently, if the pre-factors combine

in the same way. The prefactor of λ is

iq((∂µφ
†)φ− φ†∂µφ)θa + Aiφ†(∂µφ)ξa + iB((∂µφ

†)φ+ φ†∂µφ)θa.

This will vanish, if the conditions

qθa +Bθa = 0

−qθa + Aξa +Bθa = 0

are met. Together with the condition (7.8) and (7.9), this yields the result

A = −
√

2q

B = −q

θ = − 1√
2
ξ.

Actually, this result is not unique, and it would be possible to replace A by −A and θ by

−θ, without problems. So this can be freely chosen, and the conventional choice is the

one adopted here.

With these choices, all variations performed will be either total derivatives or will cancel

each other. However, one contribution is not working out, which is the one involving the

F -contribution from the variation of the electron in the A-term. It yields

−
√

2q(φ†ξλF + λ†ξ†F †φ) (7.12)

Since there is no other term available which contains both the selectron and the photino,

it is not possible to cancel this contribution. The only possibility is to modify the trans-

formation rule for the F -boson as

δξF = −iξ†σ̄µDµχ+
√

2qλ†ξ†φ.
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The only consequence of this modification is that the FF † term transforms, restricted to

the photino contributions, as

δλξ (FF †) =
√

2q(φ†ξλF + λ†ξ†F †φ),

canceling exactly the offending contribution.

Thus, finally the Lagrangian for supersymmetric QED reads

L = (Dµφ)†Dµφ+ iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2

−
√

2q((φ†χ)λ+ λ†(χ†φ))− qφ†φD.

A number of remarks are in order. First, though two essentially independent sectors have

been coupled, this lead not to a product structure with two independent supersymmetry

transformations, but only to one common transformation. The deeper reason for this is

the appearance of the momentum operator in both supersymmetry algebras, inevitably

coupling both. The second is that the combination of gauge symmetry and supersymmetry

required the introduction of interaction terms between both sectors to yield a supersym-

metric theory. This interaction is so strongly constrained that its structure is essentially

unique, and besides no new coupling constants appear compared to the two original theo-

ries. Again, supersymmetry is tightly constraining. Third, the equation of motion for the

D-boson yields D = qφ†φ. As a consequence, integrating out the D-boson lets a quadratic

interaction term −q2/2(φ†φ)2 appear. This is a necessary ingredient for the possibility of

a Brout-Englert-Higgs effect, driven by a selectron condensation. Thus, even the simplest

non-trivial supersymmetric gauge-theory provides much more possibilities than ordinary

QED.

It should be noted that the supersymmetry transformation derived here is not unique.

It is possible to write down a set of transformations which only involve ordinary instead of

covariant derivatives, and again a slightly modified transformation for the F boson. Both

formulations yield identically the same physical results, and especially the Lagrangian

is the same. However, for the purpose of generalizing to theories like supergravity, the

present formalism, called the de Wit-Freedman formalism, is more useful. The difference

between both sets of transformations is essentially only how gauge conditions transform

under supersymmetry transformations. In the formalism using only ordinary derivatives,

the gauge conditions are not transformed covariantly, and therefore any supersymmetry

transformation must be accompanied by a gauge transformation to also maintain the gauge

condition intact. Since gauge transformation do not change physics, it is thus rather a

matter of convenience from a physical perspective.
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7.4 Supersymmetric QCD

Again, having the standard model in mind, it is necessary to generalize supersymmetric

QED to a non-Abelian version, the simplest of which is supersymmetric QCD. However,

in the following the gauge group will not be made explicit, and thus the results are valid

for any (semi-)simple Lie group as gauge group.

Since in QCD, and in the standard model in general, the fermions are in the fundamen-

tal representation, while the gauge fields are in the adjoint representation, it is not possible

to promote somehow the matter fields to the super partners of the gauge bosons, despite

these being charged in the supersymmetric version of Yang-Mills theory. It is therefore

again necessary to introduce the matter fields as independent fields, together with their

superpartners, and couple them minimally to the gauge fields. Therefore, besides the

gauge-fields, the gluons, their superpartner, the gluinos, the D-bosons, there will be the

quarks, their superpartners, the squarks, and the F -bosons.

Fortunately, the results of supersymmetric QED, together with those for supersym-

metric Yang-Mills theory, can be generalized. It is thus possible to write down the trans-

formation rules and the Lagrangian immediately. The only item which requires some more

investigation are couplings between the fundamental and the adjoint sector. This applies

in particular to the appearing quark-gluino-squark couplings. In general, uncontracted

indices would imply a gauge-variant term, which may not appear in the Lagrangian. To

obtain appropriate contractions, it is, e. g., necessary to write instead of φ†iφiD
α the terms

φ†Dφ = φ†ταDαφ = φ†i (τ
αDα)ijφj,

where the index i takes values in the fundamental representation, while the index α takes

values in the adjoint representation. Such combinations are gauge-invariant, when traced.

Of course, this has also to be applied to the coupling term appearing in the transformation

rule for the F -boson. Taking thus the non-Abelian versions of the transformation rules as

δξφ
i = ξχi

δξχ
i = σµσ2ξ

∗Dij
µ φ

j + ξF i

δξF
i = −iξ†σ̄µDij

µ χ
j −
√

2qφiταλα†ξ†

δξA
α
µ = − 1√

2

(
ξ†σ̄µλ

α + λα†σ̄µξ
)

δξλ
α = − i

2
√

2

(
σµσ̄νξFα

µν + 2ξDα
)

δξD
α =

i√
2

(
ξ†σ̄µDαβ

µ λβ −Dαβ
µ λβ†σ̄µξ

)
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it is possible to show that the non-Abelian generalization can be constructed just by

covariantizing all derivatives, and replacing coupling terms by gauge-invariant ones. This

yields

L = −1

4
Fα
µνF

µν
α + iλα†σ̄µDαβ

µ λβ +
1

2
DαDα

+Dij
µ φjD

µ
ikφ
†
k + χ†i iσ̄

µDij
µ χj + F †i Fi

+MφiFi −
1

2
Mχiχi +

1

2
yijkφiφjFk −

1

2
yijkφiχjχk + h.c.

−
√

2e(φ†χλ+ λ†χ†φ)− gφ†φD, (7.13)

where it should be noted that inter-representation couplings equal, e. g.,

φ†χλ = φ†ταχλα = φ†iτ
α
ijχ

a
jλ

α
a

φ†φD = φ†ταφDα = φ†iτ
α
ijφjD

α.

Note that the coupling constants y acquired gauge indices in the fundamental represen-

tation. Similar to the Higgs-fermion coupling in the standard model, relations between

the different elements of y ensure gauge invariance of these couplings, and these could be

determined by explicit evaluation. Note further that the interaction between the matter

sector in the fundamental representation and the gauge-sector in the adjoint representa-

tion is completely fixed by gauge symmetry and supersymmetry, and there is no room

left for any other interaction. In particular, despite the fact that six fields interact with

altogether 11 interaction vertices, there are only three independent parameters, the mass

parameter M , the Yukawa coupling y, which is constrained by gauge symmetry, and the

gauge-coupling e. E. g., the mixed term appearing from the supersymmetry transfor-

mation of the F coupling in the Yukawa term vanishes due to the antisymmetry of the

y-matrix, which is necessary to ensure gauge invariance.

It is worthwhile to evaluate the terms including a D explicitly after using its equation

of motion, which reads
δL
δD†α

= Dα − eφ†ταφ = 0,

and similarly for F . After integrating out both the D and F field, this yields the total

self-interaction (or potential V ) of the φ field,

V = |M |2φ†φ+
1

2
e2(φ†ταφ)2 − yijky∗lmkφiφjφ

†
lφ
†
m.

This potential is positive definite, and all of the couplings are uniquely defined. Thus,

in contrast to the case of the standard model, the Higgs-potential, as this is the role

the squark plays, is completely determined due to supersymmetry. This puts, at least
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perturbatively, strong constraints on the Higgs mass in the supersymmetric version of the

standard model. This will be discussed in more detail below

One remark should be added now. It is in principle possible to add to the Lagrangian

(7.13) a further term proportional to θεµνρσF
ρσ
a F µν

a , with θ a new coupling constant, a so-

called topological term. Due to the antisymmetric tensor, any contribution of such a term

drops out in perturbation theory, and it can only contribute beyond perturbation theory.

It indeed does so, and plays an important role in topics like chiral symmetry breaking and

anomalies. This is already true in the non-supersymmetric version. However, in nature it

is experimentally known that for any such term in the standard model the parameter θ is

very small, and only an upper bound of about 10−10 is known.

However, from the point of view of supersymmetry, this term is conceptually interest-

ing. After rescaling the gauge fields with the coupling constant g, it is possible to combine

this term with the term F a
µνF

µν
a in such a way as that the whole theory now depends

entirely on the complex combination G = g + iθ, the holomorphic coupling. Unbroken

supersymmetry then ensures that the partition function, and thus any quantity, is holomor-

phic in G, which permits many highly non-trivial statements, also in the non-perturbative

domain. However, the details of this are beyond the scope of this lecture.

7.5 Gauge theories with N > 1

Gauge theories with more than one supercharge are only of very limited phenomenological

use in the context of particle physics, as for intact supersymmetry parity cannot be broken;

left-handed and right-handed fermions are treated on equal footing. Since the weak inter-

actions do break parity, this is at odds with experiment. However, they are relevant for

several reasons. One is that in some extensions of the standard model it is possible to start

without parity breaking, and such a theory could be supersymmetrized. However, these

are rather involved constructions, which do not appear very promising. Second, theories

with larger supersymmetries are more constrained, which helps in obtaining results. They

therefore can serve as better accessible, simplified models of ordinary theories. Third,

gauge theories with extended supersymmetries play an important role in the context of

string theory.

The simplest extension is the N = 2 supersymmetric version of Yang-Mills theory.

This requires the combination of a N = 1 gauge supermultiplet with a chiral multiplet.

However, because now the chiral and the gauge multiplet is related by the extended super-

symmetry, also the members of the chiral multiplet must be in the adjoint representation,

in contrast to the case of super QCD. Hence, there are the gauge field, the gauginos and
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the corresponding D field, as well as a complex adjoint scalar φ, a Majorana fermion ψ,

and the corresponding complex F fields.

The Lagrangian of this theory for a simple Lie-algebra is4

L = −(Dµφ)†Dµφ− 1

2
ψ̄γµD

µψ + F †F − 2
√

2gfabc<(λTaψcφ
†
b) + igfabcφ†bφcDa

+
1

2
D2 − 1

4
F a
µF

µν
a −

1

2
λ̄γµD

µλ+
g2θ

64π2
εµνρσF

µν
a F a

ρσ.

The theory has no free parameters, besides the gauge coupling g and the θ parameter.

The two supersymmetry transformations differ by the way on which supermultiplets they

act. One acts on the conventional two sets, but the other acts on the mixed sets (φ, λ, F )

and (A,−ψ,D), though with the same supersymmetry transformation. Furthermore, this

theory has a SU(2) R-symmetry which transforms between the two sets.

This theory supports a Higgs effect, and indeed in this case the masses of the particles

turn out to be unaffected by radiative corrections. I. e., the tree-level masses are already

exact, and saturate the BPS bound. This will not be detailed further here, but should

give an idea of how strongly the dynamics are constrained by supersymmetry.

The only further non-trivial extension possible without adding gravity is the N = 4

case. This is the combination of two N = 2 theories, which therefore has an SU(4) R-

symmetry, permitting the fields to give different supersymmetry transformations. This

theory is somewhat involved. It contains besides the gauge supermultiplet a left-chiral

supermultiplet with complex fields ψ and φ, and two more left-chiral, denoted by primes
′, multiplets and their complex conjugates. The lengthy Lagrangian, after integrating out

the auxiliary fields for brevity, reads

L = −(Dµφ)†Dµφ− (Dµφ
′)†Dµφ′ − (Dµφ

′′)†Dµφ′′ − 1

2
ψ̄γµD

µψ − 1

2
ψ̄′γµD

µψ′

−1

2
ψ̄′′γµD

µψ′′ − 1

2
λ̄γµD

µλ− 2
√

2gfabc<(φaψ
′
bψ
′′
c )− 2

√
2gfabc<(λTaψcφ

†
b)

−2
√

2gfabc<(φ′bψ
′′T
c ψa)− 2

√
2gfabc<(φ′′cψ

′T
b ψa) + 2

√
2gfabc<(ψ

′T
b λaφ

′†
c )

+2
√

2gfabc<(ψ
′′T
b λaφ

′′†
c )− 1

4
F a
µνF

µν
a +

g2θ

64π2
εµνρσF

µν
a F ρσ

a

+g2fadef bce(φaφ
†
b + φbφ

†
a)(φ

′
cφ
′
d + φ

′′†
c φ

′′†
d ) +

g2

2

∣∣∣fabc(φ′†b φ′c − φ′′bφ′′†c )
∣∣∣2

−g
2

2
fabcfadeφ†bφcφ

†
dφe + 2g2

∣∣fabcφ′bφ′′c ∣∣2
Though it does not look like it, the potential in the scalars can be symmetrized, albeit

of the expense of becoming even more lengthy. However, it is possible to rewrite the

4A term −D has to be added, if the gauge group is U(1), a case which will not be considered here.
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Lagrangian in a much shorter form by exploiting the SU(4) R symmetry. Collecting for

each color a the right-handed fermions in an SU(4) vector Ψ = (ψR, λR, ψ
′
R, ψ

′′
R) and the

scalars into an antisymmetric SU(4) tensor

Φ =


0 φ∗ φ′′ −φ′

−φ∗ 0 −φ′† −φ′′†

−φ′′ −φ′† 0 φ

φ′ φ
′′† −φ 0

 (7.14)

separately, this yields

L = −1

2
(DµΦij)a(D

µΦij)†a −
1

2
ΨT
Lia(γµD

µΨRi)a +
1

2
ΨT
Rai(γµD

µΨLi)a

−
√

2gfabc<(ΦijaΨ
T
LibΨLjc)−

g2

8

∣∣fabcΦij
b Φkl

c

∣∣2 − 1

4
F a
µνF

µν
a +

g2θ

64π2
εµνρσF

µν
a F ρσ

a ,

which is more compact, but treats the gaugino not explicitly different from the matter

particles. However, the SU(4) R-parity is manifest. In both cases, N = 2 and N = 4, the

proof of the supersymmetry is rather lengthy, and will be skipped here.

For N = 4, the potential is a sum of squares, and thus the vacuum energy is always

zero. Hence, supersymmetry remains unbroken in this theory. Furthermore, there exists

evidence that there is an exact mapping of the N = 4 theory at a given coupling to another

N = 4 theory with the same structure but with inverse coupling, thus linking a strongly

interacting and a weakly interacting theory. This is a so-called duality, which are quite

useful, if truly existing.

7.6 The β-function of super-Yang-Mills theory

A remarkable fact, stated here without proof, of super-Yang-Mills theories is that for

vanishing θ the only appearing infinity is in the one-loop correction to the β-function. As

a consequence, the one-loop form is exact, and given by

β(g) = − g3

4π2

(
11

12
C1 −

1

6
Cf

2 −
1

12
Cs

2

)
C1δcd = fabcfabd

Cf
2 δcd =

∑
fermions

trτ cτ d

Cs
2δcd =

∑
scalars

trτ cτ d,

i. e. determined by the representations of the various involved particles. Most notably,

for the N = 4 case the requirements on the involved fields balance the Ci such that the
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β-function vanishes. Hence, this theory is finite, i. e. no renormalization is necessary.

Moreover, as the β function vanishes, the coupling does not depend on the energy scale.

As a consequence, the theory is scale-free, and hence conformal. But this also means that

it lacks any kind of observables, and has thus no dynamics. However, such a behavior

makes the possibility of a duality also more plausible.

It should be noted that many supersymmetric theories beyond super-Yang-Mills theory

exhibit similar features, i. e. perturbative β-functions which contain only a finite number

of terms. In some rare cases, supersymmetry provides strong enough constraints to show

that this is true even non-perturbatively. However, such theories, which include N = 4

super-Yang-Mills theory, usually have such strict constrains that they exhibit little or no

dynamics.

7.7 Supergravity

The second important gauge theory, besides Yang-Mills theory with or without matter,

is gravity. Gravity can be considered as a gauge theory for translations. Therefore,

local supersymmetry will therefore create gravity. Without going into too much details,

especially as many questions on off-shell supergravity have not been solved, here only a

short introduction is made.

7.7.1 General relativity

Before talking about gravity in a particle physics setup, it seems appropriate to quickly

repeat the basics of classical general relativity.

The basic dynamical variable is the metric, which describes the the invariant length

element ds by

ds2 = gµνdx
µdxν .

The inverse of the metric is given by the contravariant tensor

gµνgνλ = δµλ .

As a consequence, for any derivative δ

δgµν = −gµλgνρδgλρ (7.15)

holds. The metric is assumed to be non-vanishing and has a signature such that its

determinant is negative,

g = det gµν < 0.
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The covariant volume element dV is therefore given by

dV = hd4x

h =
√
−g =

√
− det gµν > 0,

implying that h is real (hermitian), and has derivative

δh =
1

2
hgµνδgµν = −1

2
hgµνδg

µν (7.16)

as a consequence of (7.15).

The most important concept of general relativity is the covariance (or invariance) under

a general coordinate transformation xµ → x′µ (diffeomorphism) having

dx
′µ =

∂x
′µ

∂xν
dxν = Jµν dx

ν

det(J) 6= 0,

where the condition on the Jacobian J follows directly from the requirement to have an

invertible coordinate transformation everywhere. Scalars φ(x) are invariant under such

coordinate transformations, i. e., φ(x) → φ(x′). Covariant and contravariant tensors of

n-th order transform as

T ′µ...ν(x
′) =

∂xµ
∂x′α

...
∂xν
∂x′β

Tα...β(x)

T ′µ...ν(x′) =
∂x
′µ

∂xα
...
∂x
′ν

∂xβ
Tα...β(x)

respectively, and contravariant and covariant indices can be exchanged with a metric

factor, as in special relativity. As a consequence, the ordinary derivative ∂µ of a tensor

Aν of rank one or higher is not a tensor. To obtain a tensor from a differentiation the

covariant derivative must be used

DµAν = ∂µAν − ΓλµνAλ (7.17)

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν),

where Γ are the Christoffel symbols. Only the combination hAν , yielding a tensor density,

obeys

Dµ(hAν) = ∂µ(hAν).

As a consequence, covariant derivatives no longer commute, and their commutator is given

by the Riemann tensor Rλρµν as

[Dµ, Dν ]A
λ = Rλ

ρµνA
ρ

Rλ
ρµν = ∂µΓλνρ − ∂νΓλνρ + ΓλµσΓσνρ − ΓλνρΓ

σ
µρ,
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which also determines the Ricci tensor and the curvature scalar

Rµν = Rλ
νµλ

R = Rµ
µ,

respectively.

These definitions are sufficient to write down the basic dynamical equation of general

relativity, the Einstein equation

Rµν =
1

2
gµνR + gµνΛ = −κTµν

which can be derived as the Euler-Lagrange equation from the Einstein-Hilbert Lagrangian5

L =
1

2κ
hR− 1

κ
hΛ + hLM ,

where LM is the matter Lagrangian yielding the covariantly conserved energy momentum

tensor Tµν

Tµν =

(
−ηµνL+ 2

δLM
δgµν

(gµν = ηµν)

)
, (7.18)

and again κ = 16πGN is Newton’s constant, and Λ gives the cosmological constant (with

arbitrary sign).

For the purpose of quantization it is useful to rewrite the first term of the Lagrangian,

the Einstein-Hilbert contribution LE, as

LE =
1

2κ
hgµν(ΓλσλΓ

σ
µν − ΓλµσΓσνλ) + ∂µV

µ

V λ =
1

2κ
h(gµλgστ − gµσgλτ )∂µgστ .

The second term is a total derivative, and therefore quite often can be dropped.

There is an important remark to be made about classical general relativity. The pos-

sibility of making a general coordinate transformation leaving physics invariant has the

consequence that both energy and three momentum loose their meaning as physically

meaningful concepts, just like charge in a non-Abelian gauge theory. Indeed it is possible

to alter the energy of a system by performing a space-time coordinate transformation.

Only the concept of total energy (or momentum) of a localized distribution of particles

when regarded from far away in an otherwise flat space-time can be given an (approxi-

mate) physically meaning, similarly to electric charge. Therefore, many concepts which

are usually taken to be physical lose this meaning when general relativity is involved. This

carries over to any quantum version.

5In the following usually the cosmological constant term will be absorbed in the matter part.
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7.7.2 The Rarita-Schwinger field

The metric, as a symmetric tensor, describes a spin 2 object. Supersymmetrizing gravity

therefore requires a spin 3/2 field, which is the so-called Rarita-Schwinger field. This field

will be the associated gauge field for the local supersymmetry, just as the metric field is

the gauge field for the local translation symmetry.

In analogy to conventional gauge theories, the Rarita-Schwinger field is required to

transform under a local transformation as

Ψµ → Ψµ + ∂µε

where ε is a spinor-valued function. This follows in essentially the same as for vector fields

from teh representation theory of the Lorentz group. Thus, a Rarita-Schwinger field Ψ

carries both, a vector index and a spinor index. This was to be expected, as this couples

effectively a spin 1 and a spin 1/2 object to create spin 3/2, just as for the metric two

spin 1 indices are coupled to spin 2. As the supercharges are Weyl/Majorana spinors, so

are the Rarita-Schwinger components.

Since the transformation is linear, it is an Abelian gauge theory, and the corresponding

field strength tensor

Ωµν = ∂µΨν − ∂νΨµ

is therefore gauge invariant, but carries also a spinor index.

It is still necessary to postulate a Lagrangian for the theory, which is gauge-invariant.

Introducing Ψ̄ = Ψ†γ0, a possibility is

L = −Ψ̄µγ
µνρ∂νΨρ.

γµνρ =
1

2
{γµ, γρσ}

γµν =
1

2
[γµ, γν ]

As for the Maxwell case, there are no gauge-invariant, perturbatively renormalizable

further interaction terms possible. Without interactions, only non-interacting Rarita-

Schwinger fields are possible. The equation of motion is, similar to the Dirac equation,

γµνρ∂νΨρ = 0.

It follows that the Rarita-Schwinger field can have (classically) physical modes only for

d > 3, similar like the vector potential only for d > 2. This equation of motion also implies

γµΨµν = 0,
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which is Rarita-Schwinger form of the Maxwell equations. The equations of motions can

be solved in a similar way as the free Dirac equation, and creates the free-field solutions.

It is possible to add a mass term, yielding

L = −Ψ̄µ(γµνρ∂ν −mγµρ)Ψρ,

in contrast to the vector gauge fields.

7.7.3 Supergravity

The actual supergravity action is somewhat involved. Here, only the situation will be

considered without additional matter fields, as they would have to be supersymmetrized

as well. As shown above, the coupling of different matter multiplets leads to intertwining

of those, which leads to a rather involved result. Also, the cosmological constant will be

set to zero in the following.

The coupling between fermions and gravity actually is not a straightforward exercise in

itself6. The approach taken here is based on exchanging the metric in favor of a different

type of dynamical variables, the so-called vierbeins, defined as

gµν = eaµηabe
b
ν

where η is the space-time-constant Minkowski metric, and also the indices a and b run

therefore from 0 to 3. This relation implies

eµagµνe
ν
b = ηab,

i. e. the vierbein is the matrix field which yields a transformation of some given metric

to the Minkowski metric. This field is therefore sometimes also called a frame field, as it

locally transforms the metric to a Minkowski frame. Both indices of the vierbein can be

raised and lowered using the Minkowski metric.

The Lagrangian of the simplest N = 1 supergravity is then

L =
det e

2κ

(
eaµebνRµνab − Ψ̄µγ

µνρDνΨρ

)
Rµνab = ∂µωνab − ∂νωµab + ωµacω

c
ν b − ωνacω c

µ b

Dν = ∂ν +
1

4
ωνabγ

ab

ωνab = 2eµ[a∂[νe
µ]
b] − eµ[ae

σ
b]eνc∂

µecσ

6In fact, there is more than one possibility, and they differ at the quantum level. Without experimental

input, it is at the current time not possible to decide which one is correct. Here, the most prevalent

construction is chosen.
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where the brackets around the indices indicates that the expression has to be antisym-

metrized with respect to the same-type indices. It is seen that the covariant derivative

couples gravity and the Rarita-Schwinger field. This theory is therefore coupled. The in-

volvement of the vierbein also makes the Einstein-Hilbert part more involved, and modifies

the Riemann tensor, which now involves different types of indices.

The, now local, supersymmetry transformations of the fields are, without proof,

δeaµ =
1

2
ε̄γaΨµ

δΨµ = Dµε,

with the spinor 1/2 field ε(x).



Chapter 8

Supersymmetry breaking

All of the theories investigated so far have manifest supersymmetry. As a consequence, as

it was shown generally, the masses of the particles and the sparticles have to be degenerate.

This is not what is observed in nature: There is no scalar particle with unit electric charge

and the mass of the electron in nature. This is an experimentally very well established fact.

Nor has any superpartner for any known particle been found so far. Indeed, if they exist,

most of them need to be extremely heavy, significantly above 100 GeV in mass. Otherwise

the equal coupling strength to the known forces would have made them observable in

experiments long ago. Supersymmetry can therefore not be a symmetry of nature. It is

therefore necessary to break supersymmetry in some way.

For the breaking of symmetries two prominent mechanisms are available in quantum

field theories. A breaking can either be by explicit breaking or by spontaneous breaking.

There is also the breaking by quantum anomalies in the quantization process. However,

so far no really attractive, consistent, and experimentally relevant mechanisms to break

supersymmetry by anomalies has been found. This option will therefore not be followed

here.

Explicit breaking refers to the case when some term is added to the Lagrangian which

spoils the symmetry of the theory present without this term. A tree-level mass term for

quarks in QCD is such a case, where chiral symmetry is broken by this. If the term is

superrenormalizable, like a mass-term, this is not affecting the high-energy properties of

an asymptotically free theory, and the breaking is said to be soft. However, low-energy

properties may be qualitatively different. If the offending term is small compared to all

other scales of the theory, its effect is possibly weak, and the symmetry is said to be broken

mildly only. Relations due to the original symmetry may therefore be still approximately

valid. However, since interacting quantum field theories are non-linear by nature, there is

no guarantee for this.

106
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Spontaneous breaking appears when the Lagrangian is invariant under a symmetry

transformation, but the ground-state is not1. E. g., the magnetization of a ferromagnet

with no external magnetic field is an example of such a case. In field theory, QCD with

massless fermions is another example. Also there, the chiral symmetry is spontaneously

broken, yielding (approximately) the known masses of the hadrons.

Unfortunately, adding an explicit breaking is not always possible. An example is the

so-called breaking of electroweak gauge symmetry in the standard model. In this case, any

explicit breaking term will spoil renormalizability2. Also, explicit breaking terms have in

general less attractive properties, varying from theory to theory. Therefore, spontaneous

breaking is more desirable. However, any spontaneous mechanism for supersymmetry

breaking known so far is not consistent with the requirements of experiments. Therefore,

it is required to introduce explicit breaking of supersymmetry. Unfortunately, no simple

possibility is known to obtain acceptable results, and therefore many of the attractive

properties of supersymmetry are lost. In particular, almost a hundred additional coupling

constants and parameters will be necessary even for the simplest supersymmetric extension

of the standard model. This will be detailed in the next chapter. In this chapter, only the

underlying mechanisms will be discussed.

8.1 Dynamical breaking

As has already been described in the quantum-mechanical case, it is necessary for a spon-

taneous breaking of supersymmetry that some quantity ω′, which is not invariant under

supersymmetry transformations, δω′ 6= 0, must develop a vacuum expectation value3,

〈0|ω′|0〉 6= 0.

Since this implies that ω′ belongs to a supermultiplet of some kind, there exists a field ω

such that

ω′ = i[Q,ω].

As in the case of quantum mechanics, this implies

〈0|ω′|0〉 = 〈0|i[Q,ω]|0〉 = 〈0|iQω − iωQ|0〉 6= 0.

1There are some subtleties involved here what is precisely meant by ground-state in a quantum field

theory. This subtleties are often irrelevant, especially in the following discussion. Hence, they will be

glossed over.
2Actually, not superficially, but still.
3There are once more field-theoretically subtleties involved with this statement, which will be glossed

over here.



108 8.1. Dynamical breaking

Since Q is hermitian, this implies that Q|0〉 6= 0, as otherwise this expectation value would

vanish. Conversely, this implies that if supersymmetry is unbroken, the vacuum state is

uncharged with respect to supersymmetry, Q|0〉 = 0. It can be shown that this exhausts

all possibilities.

The implications of this can be obtained when noting that, as in quantum mechanics,

there exist a connection between supersymmetry generators and the Hamiltonian, and

thus the energy. The commutation relations for the Qa yield

{Q1, Q
†
1} = (σµ)11Pµ = P0 + P3

{Q2, Q
†
2} = (σµ)22Pµ = P0 − P3.

Thus the Hamiltonian H = P0 is given by

H =
1

2

(
Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2

)
.

Taking the expectation value of H yields

〈0|H|0〉 =
1

2

∑
a

(
(Qa|0〉)2 +

(
Q†a|0〉

)2
)
.

Hence, the ground-state energy for the case of unbroken supersymmetry is zero, as none

of the right-hand terms can be different from zero, as announced earlier. Since the right-

hand side is a sum of squares it also follows that in case of spontaneous supersymmetry

breaking the vacuum energy is not zero, but is larger than zero.

To detect breaking, it is necessary to specify the object ω′, which breaks the supersym-

metry. In principle, this can also be a composite operator. Such mechanisms are known,

e. g., in QCD or in technicolor models of electroweak symmetry breaking, where the Higgs

is a composite object of two fermions. Here, it will be restricted to the case where ω′ is an

elementary field. It should be kept in mind that so far no method of spontaneous super-

symmetry breaking has been found, which appears phenomenologically fully satisfactory.

Still, it is possible in principle. The situation in the non-gauge and the gauge case are a

little different, and will be treated in turn in the following.

8.1.1 The O’Raifeartaigh model

The O’Raifeartaigh model is a non-gauge model, essentially an extension of the Wess-

Zumino model, which can exhibit spontaneous supersymmetry breaking. To study the

possible elementary fields for developing a vacuum expectation value, as 〈0|ω|0〉 is exactly
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this, it is helpful to reconsider the transformations under supersymmetry in the Wess-

Zumino model

δξφ = i[ξQ, φ] = ξχ

δξχ = i[ξQ, χ] = −iσµiσ2ξ
∗∂µφ+ ξF

δξF = i[ξQ, F ] = −iξ†σ̄µ∂µχ.

Phenomenologically, so far Lorentz-symmetry-respecting models are most interesting, and

thus any condensates may not break this symmetry. This rules out already χ, ∂µχ and

∂µφ, as all of these have a definite direction. Hence, the only field remaining is the scalar

F field. The value of F is fixed by its equation of motion as

F = −δW
†

δφ†
= −

(
Mφ+

1

2
yφ2

)†
. (8.1)

The contribution of F to the Hamiltonian, and thus the interaction energy, is given by

FF †. This is a positive definite contribution. Its lowest value is achieved, as can be seen

from (8.1), exactly when all φ-fields vanish. In this case, the contribution of F to the

ground-state energy is zero, and is thus not able to break supersymmetry. It is necessary

to force F to a value different from zero. For this purpose, it is actually insufficient to

just add a constant term to (8.1). Though this formally shifts F to a value different from

zero for φ = 0, it is always possible to shift it back if φ is replaced by a non-zero, constant

value. A non-zero, constant value for all the fields will not produce kinetic energy. So, the

only other contribution could come from the Yukawa coupling to the fermions. However,

it is still permitted to set these to zero. Thus, the ground state energy becomes once more

zero, and supersymmetry is intact, despite the non-vanishing value of F and φ. This is in

fact not a contradiction: The shift in the φ-field can then be taken to be a renormalization

of the field, and the resulting theory is in fact supersymmetric.

It thus requires a more complicated approach. However, including a linear term

is already a good possibility, but it turns out to be impossible with just one flavor.

O’Raifeartaigh showed that it is possible, if there are at least three flavors. The parameters

of the superpotential are then chosen as

Ai = −gM2δi2

Mij =
m

2
(δi1δj3 + δi3δj1)

yijk =
g

3
(δi2δj3δk3 + δi3δj2δk3 + δi3δj3δk2),

with g, m, and M real and positive, yielding a superpotential

W = mφ1φ3 + gφ2(φ2
3 −M2).
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As the Wess-Zumino-Lagrangian is supersymmetric for any form of the superpotential, this

choice is not breaking supersymmetry explicitly. However, even at tree-level the minimum

energy is non-zero, thus supersymmetry is spontaneously broken. This can be seen as

follows. The equations of motion for the three F †i fields take the form

F †1 = −mφ3

F †2 = −g(φ2
3 −M2)

F †3 = −mφ1 − 2gφ2φ3,

and correspondingly for the Fi. From these equations of motion it follows that, at least

at tree-level, either the field F1 or the field F2 will have a vacuum expectation value.

This cannot be shifted away by a wave-function renormalization of φ3, since anything

shifting F1 to zero will shift F2 to a non-zero value. Putting it differently, these equations

of motions force F1 and F2 to have different values. Since the contribution of F to the

vacuum energy is a sum of squares of type FiF
†
i , at least the contribution from one flavor

is always non-zero.

The contribution of the Yukawa term may at first seem to be a tempting possibility

to change the situation. However, this would require that the field χ acquires a vacuum

expectation value. This would require that the vacuum has to have a non-zero spinor com-

ponent, as then 〈0|χi|0〉 would be non-zero. This would clearly break Lorentz invariance,

and is thus not admissible.

It therefore remains to minimize the potential energy with respect to the fields φi and

Fi. Writing the potential explicitly yields

V =
∑
i

FiF
†
i = m2|φ3|2 + g2|φ2

3 −M2|2 + |mφ1 + 2gφ2φ3|2. (8.2)

This has to be minimal for the vacuum state. Since φ1 can always be chosen such that

the third term vanishes, it remains to check the first two terms. Rewriting the expression

in terms of the real part A and the imaginary part B of φ3 yields the expression

V = g2M4 + (m2 − 2g2M2)A2 + (m2 + 2g2M2)B2 + g4(A2 +B2)2.

If the first expression is positive, i. e. m2 ≥ 2g2M2, the lowest values of V is achieved for

A = B = 0. Otherwise, a solution with A and B non-zero exists. This provides little

qualitative new results for the present purpose, and so only the first case will be treated.

In this case, φ3 = 0, and consequently thus φ1 = 0. The value of φ2 is not constrained

at all, and φ2 could take, in principle, any value. Therefore, it is called a flat direction of

the potential. Under certain circumstances, this may pose a problem in the form of an

instability, but this is of no interest here.
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With this result, F2 acquires a vacuum expectation value of size gM2, and the vacuum

energy is the positive value g2M4. Since M has the dimension of mass, this vacuum energy

at the same time gives the scale of supersymmetry breaking. If g would be of order one,

M = 1 TeV would, e. g., signal a breaking of supersymmetry at the scale 1 TeV, which

would be accessible at the LHC.

It is noteworthy that

0 6= 〈0|[Q,χ]|0〉 =
∑
n

(〈0|Q|n〉〈n|χ|0〉 − 〈0|χ|n〉〈n|Q|0〉).

Since Q and χ are both fermionic, this implies that there exists a state |n〉, which must

also be fermionic, which couples to the vacuum by the generator Q such that 〈0|Q|n〉 is

non-zero. Since it couples in such a way to the vacuum, it can be shown that it is massless.

This is the SUSY version of the Goldstone theorem, which differs by the appearance of

a massless fermionic mode from the conventional one. That is, of course, due to the fact

that the supercharge is fermionic.

Since the mass-matrix of the superpotential has only entries in the (13)-submatrix, this

implies that the flavor 2 fermion is massless, and can take this role. Due to the relation to

the Goldstone theorem, it is called goldstino, though there is no Goldstone boson in the

theory. Consequently, also the boson φ2 is not having a mass. This correlates to the fact

that φ2 is the flat direction in the superpotential: Moving in this direction is not costing

any energy, similar to a Goldstone excitation in conventional theories.

That supersymmetry is indeed broken can also be seen explicitly by the masses of the

remaining two flavors. By diagonalizing the mass-term for the other two fermion flavors,

it is directly obtained that there exists two linear combinations, both with masses m. The

mass-terms for the scalars are obtained by taking the quadratic terms of the potential

(8.2), yielding

m2φ3φ
†
3 + gM2(φ2

3 + φ†23 ) +m2φ1φ
†
1.

This confirms the masslessness of the φ2 boson. Furthermore, real and imaginary part of

the flavor 1 have mass m2. The flavor 3 has real and imaginary parts with different masses,

m2 ± gM2. This already implies that the supermultiplets are no longer mass-degenerate,

and supersymmetry is indeed broken.

However, when summing up everything, it turns out that the relation∑
scalars

m2
s = 0+0+m2 +m2 +m2 +gM2 +m2−gM2 = 2

∑
fermions

m2
f = 2(0+m2 +m2) (8.3)

holds. Note that the complex scalars correspond to two scalar particles, while each Weyl

fermion represents one particle with two different spin orientation. It turns out that
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this relations holds generally for this (F -type) spontaneous breaking of supersymmetry.

However, this implies that the masses of the particles and their super-partners have to be

quite similar. As a consequence, such a mechanism is not suitable for the standard model,

since otherwise already super-partners would have been observed4. More fundamentally,

when constructing the minimal supersymmetric standard model, it will turn out that

there is no gauge-invariant scalar field which could play the role of the second flavor in

this model. Since the superpotential has to be gauge-invariant term-by-term, it is thus

not possible to have a linear term in that case in the superpotential, and this type of

spontaneous supersymmetry breaking is not permitted.

8.1.2 Spontaneous breaking of supersymmetry in gauge theories

Interactions are necessary for a spontaneous breaking of supersymmetry. The simplest

non-trivial case of a gauge theory is that of supersymmetric QED. In the matter sector,

the breaking of supersymmetry can only proceed once more due to a Wess-Zumino-like

interaction, which is not present in supersymmetric QED. Therefore, the field F cannot

develop a vacuum expectation value, and neither the electron nor the selectron are possible

candidates, due to the arguments in the preceding section. Inspecting the remaining

transformation rules

i[ξQ,Aµ] = − 1√
2

(ξ†σ̄µλ+ λ†σ̄µξ)

i[ξQ, λ] = − i

2
√

2
σµσ̄νFµνξ +

1√
2
ξD

i[ξ,D] =
i√
2

(ξ†σ̄µ∂µλ− (∂µλ)†σ̄µξ),

then, by the same reasoning as before, suggests that the only field which can provide a

scalar condensate is the D-field. However, the contribution of the D-boson to the potential

is just eDφ†φ, and the equation of motion is D = eφ†φ. Thus, there is no sum of terms,

as in the Wess-Zumino case, which can be exploited to construct a potential which offers

the possibility for supersymmetry breaking.

However, there is another possibility, the addition of the so-called Fayet-Iliopoulos

term. In this case, the D-sector of the Lagrangian is replaced by

LD = M2D +
1

2
D2 − gDφ†φ.

4Adding an additional heavy fourth generation may seem at first sight a tempting possibility to evade

this constraint. However, it can be shown that for the charge structure of the standard model further

constraints exist which forces always at least one super-partner to be light enough to be already detected.
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The D-field is gauge-invariant, thus this Lagrangian is also still gauge-invariant. Further-

more, the SUSY transformation of D is a total derivative, and thus any linear term in

D is also not spoiling supersymmetry, and this Lagrangian is therefore a perfectly valid

extension of supersymmetric QED. The new equation of motion for D is then

D = −M2 + gφφ,

yielding the contribution
1

2
(−M2 + gφ†φ)2 (8.4)

to the Hamiltonian’s potential energy. The sign of g can be selected freely. If g is greater

than zero, then a minimum of this potential energy5 is obtained at |φ| = M/
√
g. In this

case, the potential energy contribution is zero, and supersymmetry is unbroken. However,

the scalar condensate is equivalent to a Higgs-effect, giving the bosons a mass. But if

g < 0, then the minimum is obtained for 〈φ〉 = 0, with a potential energy contribution

which is non-zero, M4/2. Thus, supersymmetry is broken in this case, and the D field

acquires the expectation value −M2.

As a consequence, the selectron field acquires a mass by its interaction with the D-

field, but the other fields remain massless, in particular the photon, the photino, and

the electron. Thus, the degeneration in the mass spectrum of the matter fields is indeed

broken, signaling consistently the breakdown of supersymmetry. Note that the sum-rule

(8.3) cannot be applied here, as this supersymmetry breaking proceeds by a different

mechanism.

Unfortunately, this mechanism cannot be extended to non-Abelian gauge groups, as

in this case the D field is no longer gauge-invariant, and neither is its supersymmetry

transformation anymore a total derivative. Thus, in the non-Abelian case, supersymmetry

breaking by the Fayet-Iliopoulos mechanism is not possible.

Also utilizing then just the QED sector of the standard model is not an option: In the

standard model the single φ†φ in (8.4) is replaced with a sum over all fields carrying electric

charge, and with their respective positive and negative charges. Thus, the corresponding

minimum would be obtained by some of the squark and slepton fields developing a vacuum

expectation value, and some not. As a consequence, in the standard model case, the

breaking of supersymmetry with a Fayet-Iliopoulos term would imply the breaking of the

electromagnetic and color gauge symmetries, which is not compatible with experiment.

5Note that the arguments on which fields can acquire such a vacuum expectation values are no longer

valid anymore, since instead of the supersymmetry transformations for this case the gauge transformation

have to be investigated.
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Therefore, also this second mechanism of spontaneous breaking of supersymmetry is not

viable for the standard model, and it is necessary to turn to explicit breaking.

The only alternative would be if there would exist another, yet unknown, additional

interaction, coupling weakly to the standard model, a so-called hidden sector. This could

be used to obtain supersymmetry breaking by this mechanism. However, this requires

a model which goes significantly beyond the minimal supersymmetric standard model

discussed below.

8.2 Explicit breaking

Thus, at the present time, no satisfactory mechanism exists for the breaking of super-

symmetry. Therefore, it is necessary to parametrize this lack of knowledge in the form

of explicitly supersymmetry breaking terms6. However, if some of the specific properties

of supersymmetric theories, in particular the better renormalization properties and the

protection of the scalar masses, should be retained, it is not possible to add arbitrary

terms to the Lagrangian.

To ensure the survival, or at least only minor modification, of these properties, it is

necessary to restrict the explicit supersymmetry breaking contributions to soft contribu-

tions. Soft contributions are such contributions which become less and less relevant with

increasing energy in an asymptotically free theory. This ensures that supersymmetry be-

comes effectively restored at large energies. To ensure such a property, it is necessary that

the terms contain coupling constants which have a positive energy dimensions. In case of

the theories discussed so far, these can appear in the form of two types of terms.

One type of such terms are masses which do not emerge from a superpotential. In par-

ticular, such terms are allowed even without integrating out the F -bosons. Such masses

are possible for both, the bosonic and the fermionic fields, but not for the auxiliary fields,

as their mass dimensions are not permitting renormalizable mass terms. However, these

cannot appear for gauge bosons, as in standard gauge theories. Thus, e. g., in the super-

symmetric QCD, such terms would be of type

−1

2

(
mλλλ+mχχχ+m†λλ

†λ† +m†χχ
†χ† + 2m2

φφ
†φ
)

Note that all mass terms are gauge-invariant. Also, since this is an effective parametriza-

tion, all masses, mλ, mχ, and mφ, are independent parameters. Furthermore, these masses

may be complex. When the F -field would be integrated out, the additional mass terms

for the electrons and the selectrons would mix with those introduced above. Not only is

6Of course, it cannot be excluded that supersymmetry in nature is in fact explicitly broken.
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such a Lagrangian not explicitly supersymmetric anymore, but, since the super-partners

are no longer mass-degenerate, also the spectrum is manifestly no longer supersymmetric.

Furthermore, an additional possibility are three-boson couplings. These couplings

would be of type

aijkφiφjφk + bijkφ
†
iφjφk + cijkφ

†
iφ
†
jφk + dijkφ

†
iφ
†
jφ
†
k,

where, of course, not all couplings are independent, but are constrained by gauge-invariance.

That such couplings break supersymmetry is evident, as they not include the particles and

their super-partners equally.

All in all, to the three independent parameters of the supersymmetric QCD, the gauge

coupling, and the two Wess-Zumino parameters g and M , four more have emerged, three

masses, and at least one three-boson coupling. All of these additions are in fact super-

symmetry breaking. Inside such a model, there is no possibility to predict the values of

the additional coupling constants. However, in cases where the (broken) supersymmetric

theory is just the low-energy limit of a unified theory at some higher scale, this underly-

ing theory can provide such predictions, at least partially. E. g., in the cases above, the

expectation values of fields have been obtained in terms of the masses and the coupling

constants of the fields, or vice versa.

This already closes the list of possible soft supersymmetry breaking terms, although

for specific models much more possibilities may exist.

8.3 Breaking by mediation

As has been seen, non-explicit supersymmetry-breaking faces the problem that the re-

lation between particles are inconsistent with experiment. Explicit breaking, however,

introduces numerous additional parameters. A compromise is supersymmetry-breaking

by mediation. In this case, dynamical breaking of supersymmetry is made possible by

additional particles and interactions. Thereby the problem of experimentally unwanted

breaking of electromagnetism or the strong interaction as well as relations like (8.3) can

be circumvented. Furthermore, this usually requires much less parameters as an explicit

breaking, and provides a dynamical origin.

Of course, just adding more generations or variously charged particles will not solve

the problem. Though this may circumvent the simple sumrule (8.3), this will lead to other

problems, like too strong Yukawa-interactions for the additional generations to be easily

compatible with the observed Higgs particle, or conflicts with further sum-rules specific

to the standard model. Also, breaking of the electromagnetic and strong interaction can

usually not be avoided in this way.
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The alternative is then the addition of a complete new sector of particles, including

their own interactions. This sector is arranged such that supersymmetry breaking is

possible. To communicate this to the standard model requires some kind of interaction.

This is performed by so-called messengers. These are further, usually again additional,

particles, which are made quite heavy, significantly above the electroweak scale. In this

way, even small breakings will be able to introduce substantial effects. This is usually done

by resolving the explicit breaking parameters into effective vertices of interactions with

this messenger particles. This can be achieved in a similar way as in the Higgs and weak

interaction effects at low-energy, where both effects only appear as point-interaction, in

the form of the fermion masses and the effective four-fermion interaction of the effective

Fermi theory.

This procedure seems still to be an ad hoc resolution of the problem. To embed this

in a less ad-hoc framework, two particular possibilities have been pursued.

One is gauge mediation. In this case it is assumed that the three standard-model

gauge interactions are just part of one unified gauge-interaction at high scales, and so is

the supersymmetry-breaking sector. The breaking of this master gauge theory has then

separated the standard-model, and fractured it into three interactions, and the breaking

sector at some high-scale. The surplus gauge-bosons at this high scale then usually have

masses of the breaking scale, but still interact with both sectors. In this way they can act

as messengers. While this scenario is in general very attractive, as it solves many problems

of the standard model, it also has its own problems. Especially, the larger mass hierarchies

emerging in this case are usually accidental, and not well understood.

An alternative is gravity-mediated supersymmetry-breaking, where the gravitino acts

as messenger. As this setup requires a full super-gravity theory, it will not be detailed

here any further. However, it appears phenomenologically somewhat more appealing,

as it is compatible with experimental results with rather little effort, mainly due to the

weak interaction of gravity. It usually leads to keV-scale gravitinos, but since they couple

gravitationally, and thus very weak, this is not at odds with phenomenology.



Chapter 9

A primer on the minimal

supersymmetric standard model

9.1 The Higgs sector of the standard model

Before developing its supersymmetric extension, there is another part of the standard

model, besides gauge theories, which should be briefly repeated. This is the Higgs sector,

with the associated Brout-Englert-Higgs (BEH) effect. One additional effect is the mixing

between the weak interactions, or weak isospin, an SU(2) Yang-Mills theory, with QED,

the U(1) gauge theory. Though independent, both parts are intertwined with the BEH

effect in the standard model, and should therefore be discussed in parallel.

Begin by considering the SU(2)×U(1) part of the standard model with one scalar

field that transforms as an isodoublet under the weak isospin group SU(2) and under the

hypercharge group U(1). The covariant derivative is given by

iDµ = i∂µ − giW a
µQa − ghBµ

y

2

= i∂µ − giW+
µ Q

− − giW−
µ Q

+ − giW 3
µQ

3 − ghBµ
y

2

with the charge basis expressions

Q± =
(Q1 ± iQ2)√

2

W±
µ =

W 1
µ ± iW 2

µ√
2

.

Note there are two gauge coupling constants, gi and gh for the subgroups SU(2) and

U(1), respectively, which are independent. The hypercharge y of the particles are, in the

117
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standard model, an arbitrary number, and have to be fixed by experiment. The Qa are

the generators of the gauge group SU(2), and satisfy the algebra

[Qa, Qb] = iεabcQ
c

within the representation t of the matter field on which the covariant derivative acts. In

the standard model, these are either the fundamental representation t = 1/2, i. e. doublets,

and thus the Qa = τa are just the Pauli matrices, or singlets t = 0, in which case it is the

trivial representation with the Qa = 0.

Returning to the gauge bosons, linear combinations

W 3
µ = Zµ cos θW + Aµ sin θW

Bµ = −Zµ sin θW + Aµ cos θW

can be written where Zµ (Aµ) is the Z-boson (photon). Then the coupling constant e is

defined as

gi sin θW = e = gh cos θW , (9.1)

implying the relation
1

e2
=

1

g2
i

+
1

g2
h

.

This definition (9.1) introduces the weak mixing, or Weinberg, angle

tan θW =
gh
gi
.

The conventional electric charge, determining the strength of the coupling to the photon

field Aµ, is thus defined as

eQ = e
(
Q3 +

y

2
1
)
, (9.2)

where 1 is the unit matrix in the appropriate representation of the field, i. e. either the

number one or the two-dimensional unit matrix.

The total charge assignment for all the standard model particles is then

• Left-handed neutrinos: t = 1/2, t3 = 1/2, y = −1 (Q = 0), color singlet

• Left-handed leptons: t = 1/2, t3 = −1/2, y = −1 (Q = −1), color singlet

• Right-handed neutrinos: t = 0, y = 0 (Q = 0), color singlet

• Right-handed leptons: t = 0, y = −2 (Q = −1), color singlet

• Left-handed up-type (u, c, t) quarks: t = 1/2, t3 = 1/2, y = 1/3 (Q = 2/3), color

triplet
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• Left-handed down-type (d, s, b) quarks: t = 1/2, t3 = −1/2, y = 1/3 (Q = −1/3),

color triplet

• Right-handed up-type quarks: t = 0, y = 4/3 (Q = 2/3), color triplet

• Right-handed down-type quarks: t = 0, y = −2/3 (Q = −1/3), color triplet

• W+: t = 1, t3 = 1, y = 0 (Q = 1), color singlet

• W−: t = 1, t3 = −1, y = 0 (Q = −1), color singlet

• Z: t = 1, t3 = 0, y = 0 (Q = 0), color singlet

• γ: t = 0, y = 0 (Q = 0), color singlet

• Gluon: t = 0, y = 0 (Q = 0), color octet

• Higgs: t = 1/2, t3 = ±1/2, y = 1 (Q = 0,+1), color singlet

Note that the right-handed neutrinos have no charge and participate in the gauge in-

teractions only by neutrino oscillations, i. e., by admixtures due to the leptonic PNMS

matrix an their interaction with the Higgs boson. Any theory beyond the standard model,

including supersymmetry, has to reproduce this assignment at low energies.

It is now possible to discuss the BEH effect in more detail. The complex doublet of

scalar Higgs-bosons can be written as

H =

(
φ0

φ−

)
and the Lagrangian for H takes the form

LH = (DµH)†(DµH)− V (H†H) (9.3)

with some (renormalizable) potential V . To generate the masses in the standard model

it must be assumed that (the quantum version of) the Higgs potential has an unstable

extremum for H = 0 and a nontrivial minimum, e. g.

V (H) =
λ

2
(H†H − v2)2 (9.4)

The Higgs boson then develops1 a vacuum expectation value v. It is always possible to

find a gauge in which v is real and oriented along the upper component, and thus to be

1The following are, in fact, gauge-dependent statements. It is always possible to find a gauge in which

v = 0. However, in such gauges, e. g. the W boson will have zero mass to all orders in perturbation theory.

If one wants to use perturbation theory to describe experiments, these gauges are not suitable. Hence,

in the following it will always be understood that a gauge has been chosen where a non-zero vacuum

expectation value is possible.
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annihilated by the electric charge to make it neutral,

〈H〉 =

(
v

0

)
.

In the conventions used here, the value of v is v = (2GF )−1/2 ≈ 250 GeV, where GF is

Fermi’s constant. Note that the operator Q defined by (9.2) acting on the Higgs vacuum

expectation value yields zero, which implies that the condensate is uncharged, and this

implies that the photon remains massless.

Inserting the decomposition of H into vacuum expectation value v and quantum fluc-

tuations h = H − v into (9.3) generates the masses of the weak gauge bosons as

L = 1/2(∂h)†∂h+ 1/2M2
WW

+
µ W

µ− + 1/2M2
ZZµZ

µ − 1/2M2
Hhh

†

−
√
λ

2
MH(h2h† + (h†)2h)− 1

8
λ(hh†)2

+1/2

(
hh† +

MH

λ
(h+ h†)

)
(g2
iW

+
µ W

µ− + (g2
h + g2

i )ZµZ
µ) + ...

MH = v
√

2λ

MW =
giv

2

MZ =
v

2

√
g2

2 + g2
1 =

MW

cos θW
.

Here, the electromagnetic interaction and other terms have been dropped for clarity. This

Lagrangian also exhibits the coupling of the Higgs field h to itself and to the W and Z

fields. It implies that the Higgs mass is just a rewriting of the four-Higgs coupling, and

either has to be measured to fix the other. Of course, measuring both independently is a

check of the theory.

The matter fields couple with maximal parity violation to the weak gauge fields, i. e.

their covariant derivatives have the form, for, e. g. the left-handed weak isospin doublet

of bottom and top quark ΨL = (t, b)L

Ψ̄Liγ
µDµΨL = Ψ̄Liγ

µ∂µΨL −
1√
2
t̄γµ

1− γ5

2
bW µ + − 1√

2
b̄γµ

1− γ5

2
tW µ −

−2e

3
t̄γµ

1− γ5

2
tAµ +

e

3
b̄γµ

1− γ5

2
bAµ − Ψ̄Le tan θγµΨLZµ,

The problem with a conventional mass term would be that it contains the combination

Ψ̄LΨR, with ΨR being the sum of the right-handed bottom and top, which is not a singlet

under weak isospin transformation, and thus would make the Lagrangian gauge-dependent,

yielding a theory which is not physical.
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This can be remedied by the addition of a Yukawa-type interaction between the

fermions and the Higgs of the form:

gtΨ̄L ·HtR + gbΨ̄L ·H†bR,

where · indicates a scalar product in isospin space, and which couples the left- and right-

handed fermions to the Higgs field. This combination is gauge-invariant and physically

sensible for arbitrary Yukawa couplings gb and gt. When the Higgs develops its vacuum

expectation value, masses mt = gtv and mb = gbv arise for the top and bottom quarks,

respectively. This mechanism is replicated for both the other quarks and all leptons,

though it is experimentally yet unclear whether one of the neutrinos is massless. Either

possibility is consistent with the standard model and this mechanism.

9.2 The supersymmetric minimal supersymmetric stan-

dard model

From the previous examples of simple theories it is clear that a supersymmetry trans-

formation cannot change any quantum number of a field other than the spin. In the

standard model, however, none of the bosons has the same quantum numbers as any of

the fermions. Hence, to obtain a supersymmetric version of the standard model, it will be

necessary to construct for each particle in the standard model a new super-partner. Of

course, additional fields need also be included, like appropriate F -bosons and D-bosons.

Here, the supersymmetric version of the standard model with the least number of ad-

ditional fields will be introduced, the so-called minimal supersymmetric standard model

(MSSM). Furthermore, since no viable low-energy supersymmetry breaking mechanism for

such a theory is (yet) known, supersymmetry will be broken explicitly. This will require

roughly 100 new parameters. This may seem a weakness at first. However, the advantage

is that any kind of supersymmetry at high energies can be accommodated by such a theory.

Hence, if there are no additional particles or sectors, for which no experimental evidence

exists so far, any supersymmetric high-energy theory will look at accessible energies like

this minimal-supersymmetric standard model.

The MSSM requires the following new particles

• The photon is uncharged. Therefore, its super-partner has also to be uncharged, and

to be a Weyl fermion, to provide two degrees of freedom. It is called the photino

• The eight gluons carry adjoint color charges. This requires eight Weyl fermions

carrying adjoint color charges as well, and are called gluinos
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• Though massive, the same is true for the weak bosons, leading to the charged super-

partners of the W-bosons, the winos, and of the Z-boson, the zino, together the

binos. Except for the photino all gauginos, the gluinos and the binos, interact

through covariant derivatives with the original gauge-fields

• Assuming that all neutrinos are massive, no distinction between left-handed and

right-handed leptons is necessary, except for the parity-violating weak interactions.

However, no new interactions should be introduced due to the superpartners, and

hence the superpartners cannot be spin-1 bosons, which would be needed to be

gauged. Therefore these superpartners are taken to be scalars, called the sneutrinos,

the selectron, the smuon, and the stau, together the sleptons

• The same applies to quarks, requiring the fundamentally charged squarks

• The Higgs requires a fermionic superpartner, the higgsino. However, requiring super-

symmetry forbids that the Higgs has the same type of coupling to all the standard

model fields. Therefore, a second set of Higgs particles is necessary, with their cor-

responding super-partners. These are the only new particles required which are not

introduced as superpartners of existing particles

• Of course, a plethora of auxiliary D and F bosons will be necessary

It is necessary to discuss the formulation of these fields, and the resulting Lagrangian, in

more in detail.

The electroweak interactions act differently on left-handed and right-handed fermions.

It thus fits naturally to use independent left- and right-handed chiral multiplets to repre-

sent the fermions, together with their bosonic superpartners, the sfermions. However, both

Weyl-spinors can be combined into a single Dirac-spinor, as the total number of degrees

of freedom match. The electroweak interaction can then couple by means of the usual

1± γ5 coupling asymmetrically to both components. In this context, it is often useful to

use the fact that a charge-conjugated right-handed spinor is equivalent to a left-handed

one, as discussed previously, permitting to use exclusively left-handed chiral multiplets,

where appropriate charge-conjugations are included.

Furthermore, for each flavor it is necessary to introduced two chiral multiplets, giving

a total of 12 supermultiplets for the quarks and the leptons each. The mixing of quark

and lepton flavors proceeds in the same way as in the standard model. This requires thus

already the same number of parameters for two CKM-matrices as in the standard model.

The gauge-bosons are much simpler to introduce. Again, a gauge-multiplet is needed

for the eight gluons. As electroweak symmetry breaking is not yet implemented, and
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actually cannot without breaking supersymmetry as well as noted below, there is actually

a SU(2) gauge multiplet and an U(1) gauge multiplet, which do not yet represent the weak

gauge bosons and the photon. Instead, before mixing, these are called W± and W 0, and

B. Only after mixing, the W 0 and the B combine to the Z and the conventional photon.

Concerning interactions, there are, of course, the three independent gauge couplings

of the strong, weak, and electromagnetic forces, to be denoted by g, g′ and e. After elec-

troweak symmetry breaking, g′ and e will mix, just as in the standard model. Note that

the coupling of the gauge multiplets and the chiral multiplets will induce additional inter-

actions, as in case of supersymmetric QED and QCD. However, no additional parameters

are introduced by this.

It remains to choose the superpotential for the 24 chiral multiplets, and to introduce the

Higgs fields. The parity violating weak interactions imply that a mass-term, the component

of the superpotential proportional to χχ, is not gauge-invariant, since a product of two

Weyl-spinors of the type χχ is not, if only the left-hand-type component is transformed

under such a gauge transformation. This is just as in the standard model. Therefore,

it is not possible, also in the MSSM, to introduce masses for the fermions by a tree-

level term. Again, the only possibility will be one generated dynamically by the coupling

to the Higgs field2. There, however, a problem occurs. In the standard model this is

mediated by a Yukawa-type coupling of the Higgs field to the fermions. However, it

is necessary, for the sake of gauge-invariance, to couple the two weak charge states of

the fermions differently, one to the Higgs field, and one to its complex conjugate. This

is not possible in a supersymmetric theory, as the holomorphic superpotential can only

depend on the field, and not its complex conjugate. It is therefore necessary to couple

both weak charge states to different Higgs fields. This makes it possible to provide a

gauge-invariant Yukawa-coupling for both states, but requires that there are two instead

of one complex Higgs doublets in the MSSM. Furthermore, also these fields need to be

part of chiral supermultiplets, and therefore their partners, the higgssinos, are introduced

as Weyl fermions. However, for the Higgs bosons, which have no chirality, the limitations

on a mass-term do not apply, and one can therefore be included in the superpotential.

Before writing down the superpotential explicitly, it is necessary to fix the notation.

Left-handed Quark fields will be denoted by u, d, ..., and squark fields by Q̃ = ũ, d̃, ....

Note that always a u and d-type quark form a doublet with respect to the weak inter-

actions, and equivalently the squarks. Right-handed quarks are denoted as ū, d̄, ... and

the corresponding squarks as ˜̄q = ˜̄u, ˜̄d, .... These form singlets with respect to the weak

2Actually, a gaugino condensation would also be possible, if a way would be known how to trigger it

and reconcile the result with the known phenomenology of the standard model.
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interactions. This notation corresponds to left-handed fields, which are obtained from the

original right-handed fields, to be denoted by, e. g. uR, by charge conjugation. The index

L for left-handed will always be suppressed. Likewise, the left-handed leptonic doublets,

including an electron-type and a neutrino-type fermion, are denoted as ν, e, ..., and the

corresponding sleptons as L = ν̃, ẽ, .... Consequently, the right-handed leptons are denoted

as ν̄, ē, ... and the singlet sleptons as ˜̄l = ˜̄ν, ˜̄e, .... The two Higgs doublets are denoted by

Hu and Hd, denoting to which type of particle they couple. The corresponding higgsinos

are denoted by H̃u and H̃d. In contradistinction to the quarks, where the doublet con-

sists out of a component of u and d-quarks, the doublets for the Higgs are formed in the

form H+
u and H0

u, and H0
d and H−d . The reason for this is that after giving a vacuum

expectation value to the Higgs-field and expanding all terms of the potentials, effective

mass-terms for the u-type quarks will then finally couple only to Hu-type Higgs fields,

and so on. The remaining fields are the gluons g with super-partner gluinos g̃, the gauge

W -bosons W with super-partner winos W̃ , and the gauge field B with its super-partner

bino B̃. After mixing, the usual W -bosons W± with superpartner winos W̃±, the Z-boson

with superpartner zino Z̃ and the photon γ with the photino γ̃ will be obtained.

With this notation, it is possible to write down the superpotential for the MSSM as

W = ỹiju ˜̄uiQ̃jHu − ỹijd ˜̄diQ̃jHd + ỹijν¯̃eiL̃jHu − ỹije ˜̄eiL̃jHd + µHuHd, (9.5)

where gauge-indices have been left implicit on both, the couplings and the fields, and the

auxiliary fields have already been integrated out. The appearing Yukawa-couplings y are

the same as in the standard model. In particular, vanishing neutrino masses would be

implemented by yijν = 0. If only the masses of the heaviest particles, the top, bottom, and

the τ should be retained, this requires that all y-components would be zero, except for

y33
u = yb, y

33
d = yt and y33

e = yτ , leaving gauge indices implicit. The choice of this potential

is not unique, but the one for which the MSSM is most similar to the standard model.

In principle, it would also be possible to add contributions like

λijke L̃iL̃j ˜̄ek + λijkL L̃iQ̃j
˜̄dk + µiLL̃iHu (9.6)

and

λijkB ˜̄ui
˜̄dj

˜̄dk. (9.7)

In all cases, these are couplings of squarks and/or sleptons. Since these carry the same

charges as their counterparts, they will also carry the same lepton and baryon numbers.

As a consequence, the squarks Q̃ from the multiplets including the particle-like left-handed

quarks carry baryon number B = 1/3, while those from the anti-particle-like right-handed

chiral multiplets carry baryon number −1/3. Similarly, the fields L̃ carry lepton number
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L = 1 and ē -1. Thus the interaction vertices in (9.6) violate lepton number conservation

and the ones of (9.7) baryon number conservation. On principal grounds, there is nothing

wrong with this, as both quantities are violated by non-perturbative effects also in the

standard model. However, these violations are very tiny, even below nowadays experi-

mental detection limit. Interaction vertices like (9.6) and (9.7), on the other hand, would

provide very strong, and experimentally excluded, violations of both numbers, as long as

the coupling constants λi and µL would not be tuned to extremely small values. Such a

fine-tuning is undesirable.

However, such direct terms could be excluded, if all particles in the MSSM would carry

an additional multiplicatively conserved quantity, called R-parity, which is defined as

R = (−1)3B+L+2s,

with s the spin. This is just the discrete Z2 subgroup of the U(1) R-symmetry of an N = 1

supersymmetry, which is retained even after supersymmetry breaking in the MSSM.

Such a quantum number would be violated by interaction terms like (9.6) and (9.7),

and these are therefore forbidden3. The contribution 2s in the definition of R implies

that particles and their super-partners always carry opposite R-parity. This has some

profound consequences. One is that the lightest superparticle (LSP) cannot decay into

ordinary particles. It is thus stable. This is actually an unexpected bonus: If this particle

would be electromagnetically uncharged, it is a natural dark matter candidate. However,

it has also to be uncharged with respect to strong interactions, as otherwise it would be

bound in nuclei. This is not observed, at least as long as its mass is not extremely high,

which would be undesirable, as then all superparticles would be very massive, preventing

a solution of the naturalness problem by supersymmetry. Therefore, it interacts only very

weakly, and is thus hard to detect. Not surprisingly, it has not be detected so far, if it

exists.

Summarizing, the assumption of R-parity restricts the superpotential to the form (9.5),

and thus fixes the MSSM completely.

Returning then to this remaining possible superpotential (9.5), the parameter µ char-

acterizes the masses of the Higgs and higgsinos. In comparison to the standard model with

two independent parameters in the Higgs sector, this is the only new parameter entering

the theory when including the Higgs sector and keeping supersymmetry unbroken. The

self-interaction of the Higgs field will be entirely determined, due to supersymmetry, just

by the already included parameters, thus having potentially less parameters than in case

of the standard model.
3A non-perturbative violation of R-parity notwithstanding, as for baryon and lepton number in the

standard model.
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Unfortunately, there is a catch. Writing all gauge components explicitly, the mass term

for the Higgs takes the form

µHuHd = µabHa
uH

b
d = µεabH

a
uH

b
d,

where the index structure of the parameter µ is dictated by gauge invariance. The corre-

sponding interaction terms in the Lagrangian are then of the form

δW

δHi

F i + h.c. = µ(H1
uF

2
d +H2

dF
1
u −H2

uF
1
d −H1

dF
2
u ) + h.c..

Integrating out all F -bosons in the Higgs sector yields the mass term for the Higgs, just

as in the Wess-Zumino model. This produces

|µ|2(H i
uH

i†
u +H i

dH
i†
d ).

This implies firstly that both Higgs doublets are mass-degenerate. More seriously, it

implies that this common mass is positive. In the conventional treatment of electro-

weak symmetry, however, a negative mass is mandatory to obtain a perturbatively valid

description of electroweak symmetry. Since the appearance of the positive mass is a direct

consequence of supersymmetry, as was seen in case of the Wess-Zumino model, there seems

to be no possibility to have at the same time perturbative symmetry breaking and intact

supersymmetry. One alternative would be non-perturbative effects, which has not been

excluded so far. However, it seems somewhat more likely that it is not possible to have

unbroken supersymmetry but so-called broken gauge symmetry simultaneously, and this

has lead to a search for a common origin of both phenomena.

After analyzing the features which make the MSSM different from the standard model,

it is instructive to see how the standard-model-type interactions are still present.

This is straightforward in the case of the gauge-boson self-interactions, as these are

automatically included in the non-Abelian field-strength tensors appearing already in the

supersymmetric version of Yang-Mills theory, (7.4). It is more interesting to investigate

how the usual Dirac-type quarks and gluons and their coupling to the strong and weak

interactions are recovered.

The simpler case is the parity-preserving strong interactions. Due to the gauge-

covariant derivative, the coupling of a quark-type left-handed Weyl-fermion is

−1

2
gχ†qσ̄

µAµχq = −1

2
gχ†qiσ̄µA

µ
ijχqj, (9.8)

where in the second expression the gauge indices are made explicit, keeping in mind that

Aµ = ταAαµ is matrix-valued. The right-handed contribution can be rewritten as a left-
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handed Weyl fermion by virtue of charge conjugation,

ψu = χcq̄ = iσ2χ
∗
q̄.

χq̄ = −iσ2χ
c∗
q̄

The original coupling of the right-handed fermion, which will be the anti-particle, is

1

2
gχ†q̄σ̄

µA∗µχq̄ =
1

2
g(−iσ2χ

c∗
q̄ )†σ̄µA∗µ(−iσ2χ

c∗
q̄ )

= −1

2
gχcTq̄ σ2σ̄µσ2A

∗
µχ

c∗
q̄ = −1

2
gχc†q̄ σ

µAµχ
c
q̄. (9.9)

In the last step, it has been used that σ2σ̄
µσ2 = −σµT , and that A∗µ = ATµ , since the Aµ

are hermitian. The remaining step is just rewriting everything in indices and rearranging.

Combining (9.8) and (9.9) yields

−1

2
g(χc†q̄ σ

µAµχ
c
q̄ + χ†qσ̄

µAµχq) = −1

2
gΨ̄γµAµΨ

with ΨT = (χcq̄χ). This is precisely the way an ordinary Dirac quark Ψ would couple

covariantly to gluons. Hence, by combining two chiral multiplets and one gauge multiplet,

it is possible to recover the couplings of the standard model strong interactions.

The electromagnetic interaction, which is also parity-preserving, emerges in the same

way, just that the photon field is not matrix-valued.

The weak interaction violates parity maximally by just coupling to the left-handed

components. In the standard model, its coupling is given by

−1

2
g′Ψ̄e

1− γ5

2
γµWµ

1− γ5

2
Ψ.

However, the action of (1− γ5)/2 on any spinor is to yield

1− γ5

2

(
χē

χe

)
=

(
0

χe

)
,

and thus reduces the Dirac-spinor to its left-handed component. Thus, only the coupling

−1

2
gχ†eσ̄

µWµχe

remains. This is precisely the coupling of a left-handed chiral multiplet to a gauge multi-

plet. It is therefore sufficient just to gauge the left-handed chiral multiplets with the weak

interactions to obtain the standard-model-type coupling. In addition also inter-generation

mixing has to be included, but this proceeds in the same way as in the the standard-model,

and is therefore not treated explicitly. This concludes the list of standard model couplings.
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9.3 Breaking the supersymmetry in the MSSM

This concludes the list of additional particles and interactions required for the MSSM.

As discussed previously, unbroken supersymmetry requires the particles and their super-

partners to have the same mass. This implies that the superpartners should have been

observed if this is the case, as the selectron should also have only a mass of about 511

keV, as the electron, and must couple in the same way to electromagnetic interactions.

Therefore, it would have to be produced at the same rate in, e. g., electromagnetic pion

decays as electrons. This is not the case, and therefore supersymmetry must be (com-

pletely) broken. Explicit searches in particle physics experiments actually imply that the

superpartners are much heavier than their partners of the standard model, as non has

been discovered so far. This puts limits on most masses above several hundred of GeV.

Hence, supersymmetry is necessarily strongly broken in nature. This also removes F -term

breaking as a possibility in the standard model.

Since no mechanism is yet known how to generate supersymmetry breaking in a way

which would be in a accordance with all observations, and without internal contradictions,

this breaking is only parametrized in the MSSM, and requires a large number of additional

free parameters. Together with the original about 30 parameters of the standard model,

these are then more than a 130 free parameters in the MSSM. Exactly, there are 105

additional parameters in the MSSM, not counting contributions from massive neutrinos.

These parameters include masses for all the non-standard model superpartners, that

is squarks and sleptons, as well as photinos, gluinos, winos, and binos. Only for the Hig-

gsinos it is not possible to construct a gauge-invariant additional mass-term, due to the

chirality of the weak interactions, in much the same way as for quarks and leptons in the

standard model. One advantage is, however, offered by the introduction of these free mass

parameters: It is possible to introduce a negative mass for the Higgs particles, reinstanti-

ating the same way to describe the breaking of electroweak symmetry as in the standard

model. That again highlights how electroweak symmetry breaking and supersymmetry

breaking may be connected. These masses also permit to shift all superpartners to such

scales as they are in accordance with the observed limits so far. However, if the masses

would be much larger than the scale of electroweak symmetry breaking, i. e., 250 GeV,

it would again be very hard to obtain results in agreement with the observations without

fine-tuning. However, such mass-matrices should not have large off-diagonal elements, i.

e., the corresponding CKM-matrices should be almost diagonal. Otherwise, mixing would

produce flavor mixing also for the standard model particles exceeding significantly the

observed amount.

In addition, it is possible to introduce triple-scalar couplings. These can couple at will
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the squarks, sleptons, and the Higgs bosons in any gauge-invariant way. Again, obser-

vational limits restrict the magnitude of these couplings. Furthermore, some couplings,

in particular certain inter-family couplings, are very unlikely to emerge in any kind of

proposed supersymmetry breaking mechanism, and therefore are usually omitted.

Finally, the mass-matrices in the Higgs sector may have off-diagonal elements, without

introducing mixing in the quark sector. This are contributions of the type

b(H1
uH

2
d −H2

uH
1
d) + h.c.,

where the mass parameter b may also be complex.

The arbitrariness of these enormous amount of coupling constants can be reduced, if

some model of underlying supersymmetry breaking is assumed. One, rather often, invoked

one is that the minimal supersymmetric standard model is the low-energy limit of a super-

gravity theory, the so-called mSUGRA scenario. Though by now experimentally ruled out,

it is still interesting as the simplest representative of such types of models.

In the mSUGRA case, it is, e. g., predicted, that the masses of the superpartners of

the gauge-boson superpartners should be degenerate,

Mg̃ = MW̃ = MB̃ = m1/2, (9.10)

and also the masses of the squarks and sleptons should be without mixing and degenerate

m2
Q̃

= m2
q̃ = m2

L̃
= m2

l̃
= m2

01, (9.11)

and these masses also with the ones of the Higgs particles,

m2
H = m2

0.

Furthermore, all trilinear bosonic couplings would be degenerate, with the same value

A0. If the phase of all three parameters, A0, m1/2, and m0 would be the same, also CP

violation would not differ from the one of the standard model. The latter is an important

constraint, as the experimental limits on such violations are very stringent, although not

yet threatening to rule out the MSSM proper.

Of course, as the theory interacts, all of these parameters are only degenerate in such a

way at the scale where supersymmetry breaks. Since the various flavors couple differently

in the standard model, and thus in the minimal supersymmetric standard model, the

parameters will again differ in general at the electroweak scale, or any lower scale than

the supersymmetry breaking scale.
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9.4 MSSM phenomenology

9.4.1 Coupling unification and running parameters

In the electroweak theory it is found that at some energy scale the electromagnetic and the

weak coupling become both of the same value. This is known as electroweak unification.

Of course, if also the strong coupling would become of the same value at the same energy,

this would strongly indicate that all three couplings originate from one coupling at this

unification scale, and become different at low energies because the gauge group to which

the unified coupling corresponds becomes broken at this unification scale. This is also the

idea behind so-called grand-unified theories (GUT) that at large energies there exists one

gauge-group, say SU(5), which becomes broken by a Higgs effect, similar to that one in

the standard model, to yield the product gauge group SU(3)×SU(2)×U(1) of the standard

model at the unification scale. This unification is of course also interesting, as any evidence

of it would support the idea of gauge-mediated supersymmetry-breaking.

To check, whether such a unification actually occurs, it is necessary to determine the

running of the effective coupling constants with the energy (renormalization) scale. There

are three couplings4, the strong one g, the weak one g′, and the electromagnetic one. It

is always possible to write the electromagnetic one as e/ sin θW . The angle θW is known

as the Weinberg angle. In the standard model its value originates from the electroweak

symmetry breaking. Its measured value is 28.7°. The relevant couplings are then

α1(Q) = g(Q)2

4π
=Q=mZ 0.119 (9.12)

α2(Q) = g′(Q)2

4π
=Q=mZ 0.0338 (9.13)

α3(Q) = 5
3

e(Q)2

4π cos2 θW
=Q=mZ 0.0169 (9.14)

In this case the appropriate mixed combination for the electromagnetic coupling has been

used. The factor 5/3 appears as in an Abelian gauge theory there is a certain freedom in

redefining the charge and the generator of gauge transformation not present in non-Abelian

gauge theories. It has been set here to a conventional value, which would be expected if

the standard model product gauge groups would indeed originate from a common one at

high energies.

To one-loop order, all coupling constants evolve according to the renormalization group

equation
dαi
d lnQ

= − βi
2π
α2
i , (9.15)

4Other couplings, like the Higgs-self-coupling or the Yukawa couplings do not unify at this scale.
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where βi is the first coefficient in a Taylor expansion of the so-called β-function for the

coupling i. For a non-Abelian coupling its value is given by

βi =
11

3
CA −

2

3
CAn

a
f −

1

3
nf −

1

6
ns,

where CA is the adjoint or second Casimir of the gauge group with value N for a SU(N)

group. The numbers naf , nf , and ns are the number of adjoint fermionic chirality states,

fundamental fermionic chirality states and the number of complex scalars charged under

this coupling, respectively. In the Abelian case, the value of βi is given by

βi = −2

3

∑
f

Y 2
f −

1

3

∑
s

Y 2
s ,

with Yf and Ys the charge of fermions and scalars with respect to the interaction. This

stems from the fact that the charge for matter minimally coupled to an Abelian gauge-field

can be chosen freely, while this is not the case for a non-Abelian case. The fact that the Yf

and Ys are rational numbers in the standard model is another indication for the U(1) part

of the standard model to be emerged from some other gauge group by symmetry breaking.

As the coefficients of the β-functions do not depend on the couplings themselves, the

differential equation (9.15) is readily integrated to yield

αi(Q)−1 = αi(Q0)−1 +
βi
2π

ln
Q

Q0

,

where αi(Q0) is the initial condition, the value of the coupling at some reference scale Q0.

As already indicated in (9.12-9.14), this reference scale will be the Z-boson mass, as all

three couplings have been measured with rather good precision at this scale at LEP and

LEP2.

The question to be posed is now whether the three couplings αi(Q) have at some energy

Q the same value. To obtain a condition, it is most simple to use the linear system of

equations to eliminate Q and αi(Q) in favor of the known measured values. This yields

the conditional equation

Bx =
α3(mZ)−1 − α2(mZ)−1

α2(mZ)−1 − α1(mZ)−1
=
β2 − β3

β1 − β2

= Bt.

With the values given in (9.12-9.14) the left-hand side is readily evaluated to be Bx = 0.72.

The right-hand side depends only on the β-functions, and therefore to this order only on

the particle content of the theory.

In the standard model, there are no scalars charged under the N = 3 strong interac-

tions, but 12 chirality states of fermions, yielding β1 = 7. The positive value indicates
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that the strong sector is described by an asymptotically free theory. For the N = 2 weak

interactions, there are 12 left-handed chiral states (6 quarks and 6 leptons), and one Higgs

field, yielding β2 = 19/6. Taking all electromagnetically charged particles, and the nor-

malization factor 5/3, into account, β3 = −41/10. Note that also some components of the

Higgs field are electromagnetically charged. Evaluating Bt yields 115/218 ≈ 0.528. Thus,

in the standard model, to this order the couplings will not match. This is also not changed

in higher orders of perturbation theory.

The situation changes in the MSSM. For β1, there are now in addition the gluinos,

giving one species of adjoint fermionic chiralities, and 12 squarks, yielding β1 = 3. The

same applies to the weak case with one species of adjoint winos and zinos, 12 sleptons

and squarks, two higgsinos and one additional Higgs doublet. Altogether this yields β2 =

−1. The change of sign is remarkably, indicating that the supersymmetric weak sector is

no longer asymptotically free, as is the case in the standard model. The anti-screening

contributed from the additional degrees of freedom is sufficient to change the behavior of

the theory qualitatively. The case of β3 finally changes to −33/5, after all bookkeeping is

done. Together, this yields Bt = 5/7 = 0.714. This is much closer to the desired value of

0.72, yielding support for the fact that the MSSM emerges from a unified theory. Taking

this result to obtain the unification scale, it turns out to be QU ≈ 2.2× 1016 GeV, which

is an enormously large scale, though still significantly below the Planck scale of 1019 GeV.

This result is not changing qualitatively, if the calculation is performed to higher order nor

if the effects from supersymmetry breaking and breaking of the presumed unifying gauge

group is taken into account. Thus the MSSM, without adding any constraint, seems a

natural candidate for a theory emerging from a grand unified one, being one reason for its

popularity and of supersymmetry in general. However, exact unification is never achieved

in the MSSM, and therefore requires further contributions to occur.

These results suggest to also examine the running of other parameters as well. In

particular, the parameters appearing due to the soft breaking of supersymmetry are par-

ticularly interesting, as their behavior will be the effect which obscures supersymmetry in

nature, if it exists.

The first interesting quantity is the mass of the gauge-boson superpartners, the gaug-

inos. The running is given by a very similar expression as for the coupling constants,

dMi

d lnQ
= − βi

2π
αiMi.

The β-function can be eliminated using the equation for the running of the coupling (9.15).

This yields the equation

0 =
1

αi

dMi

d lnQ
− Mi

α2
i

dαi
d lnQ

=
d

d lnQ

Mi

αi
.



Chapter 9. A primer on the minimal supersymmetric standard model 133

This implies immediately that the ratio of the gaugino mass for the gauge group i divided

by the corresponding gauge coupling is not running, i. e., it is renormalization group-

invariant.

If there exists a scale mU at which the theory unifies, like suggested by the running of

the couplings, then also the masses of the gauginos should be equal. As discussed previ-

ously, this would be the case in supergravity as the origin of the minimal supersymmetric

standard model. This would yield

Mi(mU)

αi(mU)
=

m1/2

αU(mU)
,

and since the ratios are renormalization-group invariant it follows that

M1(Q)

α1(Q)
=
M2(Q)

α2(Q)
=
M2(Q)

α2(Q)
.

Since the αi are known, e. g., at Q = mZ , it is possible to deduce the ratio of the gaugino

masses at the Z-mass, yielding

M3(mZ) = α3(mZ)
α2(mZ)

M2(mZ) ≈ 1

2
M2 (9.16)

M1(mZ) = α1(mZ)
α2(mZ)

M2(mZ) ≈ 7

2
M2.

This implies that the masses of the gluinos to the winos to the bino behave as 7 : 2 : 1.

This implies that the gluino is the heaviest of the gauginos. Note that the masses are not

necessarily the masses of the original gauge bosons in the electroweak sector. The bino and

the winos will together with the higgsinos form the final mass eigenstates. Therefore, the

running of the parameters will provide already guiding predictions on how supersymmetry

breaking is provided in nature, if the observed mass pattern of these particles matches

this prediction, provided once more that higher-order and non-perturbative corrections

are small.

An even more phenomenologically relevant result is obtained by the investigation of

the scalar masses, i. e., the masses of the Higgs, the squarks, and the sleptons. Retaining

only the top-quark Yukawa coupling yt, which dominates all other Yukawa couplings at

one loop, and a unified three-scalar coupling A0 the corresponding third-generation and
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Higgs evolution equations are given by

dm2
Hu

d lnQ
=

1

4π

(
3Xt

4π
− 6α2M

2
2 −

6

5
α3M

2
3

)
(9.17)

dm2
Hd

d lnQ
=

1

4π

(
−6α2M

2
2 −

6

5
α3M

2
3

)
dm2

t̃L

d lnQ
=

1

4π

(
Xt

4π
− 32

3
α1M

2
1 − 6α2M

2
2 −

2

15
α3M

2
3

)
(9.18)

dm2
t̃R

d lnQ
=

1

4π

(
2Xt

4π
− 32

3
α1M

2
1 −

32

15
α3M

2
3

)
(9.19)

Xt = 2|yt|2
(
m2
Hu +m2

t̃l
+m2

t̃r
+ A2

0

)
.

A number of remarks are in order. The quantity Xt emerges from the Yukawa couplings

to the top quark. Therefore, the down-type Higgs doublet will, to leading order, not

couple, and therefore its evolution equation will not depend on this strictly positive quan-

tity. Furthermore, the Higgs fields couple to leading order not to the strong interaction,

while the squarks do. Hence the former have no term depending on α1, while the latter

do. Similarly, only squarks from the left-handed chiral multiplet couple directly to the

weak interactions, and therefore receive contributions from the weak interaction propor-

tional to α2. Still, all of these particles couple electromagnetically, and therefore receive

contributions proportional to α3.

Since all couplings αi are strictly positive, the values of the masses can only decrease

by the top-quark contribution Xt when lowering the scale Q. In particular, this implies

that the mass of Hd will, at this order, only increase or at best stay constant. The

strongest decrease will be observed for the Hu contribution, as the factor three in front

of Xt magnifies the effect. Furthermore, the largest counteracting contribution (72 = 49

and 22 = 4 and the largest α1!) due to the gluino term is absent for the Higgs fields.

Therefore, the mass of the Hu will decreases fastest from its unification value
√
µ2 +m2

0

at the unification scale. In fact, this decrease may be sufficiently strong to drive the mass

parameter negative at the electroweak scale. This would trigger electroweak symmetry

breaking by the same mechanism as in the ordinary standard model. Using parameters

which prevent the squark masses from becoming negative, and thus preserving vitally

the color gauge symmetry, this indeed happens. Again, explicitly broken, but unified,

supersymmetry provides the correct low-energy phenomenology of the standard model.
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9.4.2 The electroweak sector

One of the most interesting questions in contemporary standard model physics is the

origin of the value of the mass of the Higgs boson. In the standard model, this is an

essentially independent parameter. However, in the minimal supersymmetric extension of

the standard model, this parameter is less arbitrary, due to the absence of the hierarchy

problem, and the fact that part of the Higgs couplings are determined by supersymmetry,

like the four-Higgs coupling.

To determine the Higgs mass, it is first necessary to determine the electroweak symme-

try breaking pattern. To do this, the first step is an investigation of the Higgs potential.

This is more complicated than in the standard model case, due to the presence of a second

Higgs doublet.

At tree-level, the quadratic term for the Higgs fields is determined by the contribution

from the supersymmetric invariant term, and the two contributions from explicit breaking,

yielding together

V1 = (|µ|2+m2
Hu)(H+

u H
+†
u +H0

uH
0+
u )+(|µ|2+m2

Hd
)(H0

dH
0†
d +H−d H

−†
u )+b(H+

u H
−
d −H

0
uH

0
d)+h.c.,

where the Higgs fields are labeled by their electric instead of the hypercharge. The pa-

rameters m2
Hi

can have, despite their appearance, both signs.

The quadratic part of the potential originates from two contributions. Both are from

the D and F couplings for the groups under which the Higgs fields are charged, the weak

isospin group SU(2) and the hypercharge group U(1). Since these contributions are four-

point vertices, there are no contributions from explicit supersymmetry breaking. Thus,

the quartic part of the potential takes the form

V2 =
e2 + g′2

8
(H+

u H
+†
u +H0

uH
0+
u −H0

dH
0†
d −H

−
d H

−†
d )2 +

g′2

8
|H+

u H
0†
d +H0

uH
−†
d |

2,

where g′ is the gauge coupling of the weak isospin gauge group and e the one of the weak

hypercharge group.

To obtain the experimentally measured electroweak phenomenology, this potential has

to have a non-trivial minimum, especially if all other fields vanish. The latter also implies

that the cubic coupling appearing in the Lagrangian due to the supersymmetry breaking

are not relevant for this question, as they always involve at least one other field.

It is possible to simplify this question. The expressions are invariant under a local gauge

transformation, as is the complete Lagrangian. If therefore any of the fields has a non-

vanishing value at the minimum, it is always possible to perform a gauge transformation

such that a specific component has this, and the other ones vanish. Choosing then H+
u to
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be zero, the potential must be extremal at this value of H+
u , thus

d(V1 + V2)

dH+
u

|H+
u =0 = 0.

Performing this derivative yields the condition

bH−d +
g2

2
H0†
d H

0†
u H

−
d = 0,

which can be fulfilled by either H−d = 0 or a condition on the neutral component. Already

from the fact that the electric symmetry may not be broken, it follows that the first

possibility is adequate. However, the second alternative would in fact also not lead to a

satisfactory formation of an extremum. Therefore, only the electrically neutral components

of both Higgs doublets matter.

In this case, the potential simplifies to

V = (|µ|2+m2
Hu)|H0

u|2+(|µ|2+m2
Hd

)|H0
d |2−(bH0

uH
0
d+b∗H0†

u H
0†
d )+

e2 + g
′2

8
(|H0

u|2−|H0
d |2)2.

(9.20)

In contrast to the standard model the four-Higgs coupling is fixed, and rather small,

about 0.065. The latter is already indicative for a rather light Higgs boson, as will be seen

below. The phase of b can be included in the Higgs fields, making itself real. Furthermore,

if the Higgs fields would have a complex expectation value, the masses of the squarks and

sleptons would become complex as well, which implies CP violation. Such an effect would

have been measured, and therefore should not be permitted. Therefore, H0
u and H0

d must

also be real. If there should exist a non-trivial minimum, this implies that the product

H0
uH

0
d must be positive, as otherwise all terms would be positive. By a global U(1) gauge

transformation, both fields can then be chosen to be positive.

The direction H0
u = H0

d is pathologically, as the highest-order term vanishes, a so-

called flat direction. For the potential to be still bounded from below, thus providing a

perturbatively stable vacuum state, requires

2|µ|2 +m2
Hu +m2

Hd
> 2b(> 0).

Therefore, not the masses of both H0
u and H0

d can be negative simultaneously.
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Studying furthermore systematically the derivatives yields

∂V

∂Hu

= 2(|µ|2 +m2
Hu)H0

u − bH0
d +

e2 + g
′2

4
H0
u(H02

u −H02
d ) (9.21)

∂V

∂Hd

= 2(|µ|2 +m2
Hd

)H0
d − bH0

u −
e2 + g

′2

4
H0
d(H02

u −H02
d ) (9.22)

∂2V

∂H2
u

= 2(|µ|2 +m2
Hu) +

e2 + g
′2

4
(3H02

u −H02
d )

∂2V

∂H2
d

= 2(|µ|2 +m2
Hd

) +
e2 + g

′2

4
(H02

u − 3H02
d )

∂2V

∂Hu∂Hd

= −b− e2 + g
′2

2
H0
uH

0
d =

∂2V

∂Hd∂Hu

. (9.23)

If both masses would have the same sign, H0
u = H0

d = 0 could be a minimum, which is not

helpful for the present purpose. Hence, either must be negative such that not all second

derivatives have the same sign. This behavior is supported by the fact that only one of

the masses is driven to potentially negative values by the renormalization group flow, as

discussed previously.

It is not possible to restrict the solution and the parameters further just from the

Lagrangian at this point. However, it is experimentally possible to fix at least a particular

combination of the associated vacuum expectation values 〈H0
u〉 and 〈H0

d〉. Studying the

coupling to the electroweak gauge bosons, the term which will produce the mass is the

quartic one originating from the covariant derivative terms

(DµHu)
†(DµHu) + (DµHd)

†(DµHd)

Dµ = ∂µ + ig′Wµ + ieBµ,

where the coupling matrices have been included into the gauge fields. This yields the

quartic contributions

(ig′Wµ + ieBµ)Hu(ig
′W µ + ieBµ)Hu + (ig′Wµ + ieBµ)Hd(ig

′W µ + ieBµ)Hd.

Introducing the combination W±
µ = W 1

µ ± W 2
µ , Zµ = (−eBµ + g′W µ

3 )/(e2 + g
′2) (and

correspondingly the photon γµ = (eBµ + g′W µ
3 )/(e2 + g

′2)), performing the algebra, and

setting the Higgs fields to their vacuum expectation values yields5(
1

2
(e2 + g

′2)ZµZ
µ +

1

2
g2(W+

µ W
µ+ +W−

µ W
µ−)

)
(〈H0

u〉2 + 〈H0
d〉2). (9.24)

Thus, this yields the tree-level masses for the electroweak gauge bosons. The value for the

combined condensate is therefore, according to experiment, (174 GeV)2.

5Which should be again understood to choosing a particular gauge.
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It is furthermore possible to determine mass-bounds for the Higgs6. This is a bit more

complicated than in the standard model case, as both Higgs fields will mix. Is is therefore

useful to discuss this first for the example of two scalar fields φ1,2, which both condense

with vacuum expectation values v1,2, and which interact through some potential V (φ1, φ2).

The corresponding Lagrangian is then

L = ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 − V (φ1, φ2).

Since the setting is perturbative, it is possible to expand V around the minima φi = vi to

obtain the masses and keeping only terms quadratic, yielding

L2 = ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 −
1

2

∂2V

∂φ2
1

(φ1 − v1)2

−1

2

∂2V

∂φ2
2

(φ2 − v2)2 − ∂2V

∂φ1∂φ2

(φ1 − v1)(φ2 − v2). (9.25)

This can be simplified by setting

Φi =
√

2(φi − vi)

as

L2 = −1

2
ΦT∂2Φ− ΦTMΦ

with

M =
1

2

(
∂2V
∂φ21

∂2V
∂φ1∂φ2

∂2V
∂φ1∂φ2

∂2V
∂φ22

)
.

Since the mass-matrix M is real and symmetric, it can be diagonalized by some orthogonal

matrix

U =

(
cosα − sinα

sinα cosα

)
,

which can be used to change the basis for the fields as(
φ+

φ−

)
= UΦ.

If the eigenvalues of M are given by m2
±, the resulting Lagrangian takes the form

L2 = −1

2
(φ+∂

2φ+ + φ−∂
2φ− +m2

+φ
2
+ +m2

−φ
2
−),

6It should be noted that in the following implicitly unitary gauge has been chosen. For the calculations

performed, this is not relevant, except that it permits to expand Hu and Hd around their vacuum expec-

tation value. However, the results are therefore not necessarily gauge-invariant, and should be interpreted

with caution.
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thus making the masses for the newly defined fields explicit. It should be noted that the

matrix M has to be evaluated at φi = vi.

Returning to the Higgs fields in the minimal supersymmetric standard model, there

are eight instead of two fields, but only two out of the eight have a non-vanishing vacuum

expectation value. Examples of the relevant derivatives are given in (9.21-9.23). Using

furthermore that the vanishing of the first derivatives implies certain relations for the

values of 〈Hu〉 and 〈Hd〉, it is possible to simplify the ensuing expressions algebraically.

Finally, defining

tan β =
〈Hu〉
〈Hd〉

,

the resulting expressions become relatively simple. It is furthermore useful that the mass-

matrix assumes a block-diagonal form, so that it is possible to reduce the complexity

further by studying only doublets at each time.

The first doublet to be studied are the (non-condensing) imaginary parts of H0
u and

H0
d . The corresponding mass-matrix takes the form

Mi0 =

(
b cot β b

b b tan β

)
,

which has eigenvalues m2
+ = 0 and m2

− = 2b/ sin(2β). The massless mode, as it is un-

charged, will become effectively the longitudinal component of the Z0. The combination

√
2(cos β=(H0

u) + sin β=(H0
D))

is the eigenvector to the second eigenvalue. This mass-eigenstate is commonly referred to

as the A0, and is a pseudo-scalar. This is an uncharged second Higgs field (the first one

will be one of the condensed ones). It is one of the extra Higgs particles not present in the

standard model. In practical calculations, the parameter b is often traded for the mass of

this particle, m− = mA0 .

The next pair is H+
u and H+

d . The corresponding mass-matrix is given by

M+− =

b cot β +
g
′2〈H0

d〉
2

2
b+

g
′2〈H0

u〉〈H0
d〉

2

b+
g
′2〈H0

u〉〈H0
d〉

2
b tan β + g2〈H0

u〉2
2

 .

The eigenvalues are 0 and m2
W+m2

A0 , where mW can be read off from (9.24). The positively

charged and massless field combination of H+
u and H−†d , the latter having positive charge

as an anti-particle, will therefore become the longitudinal component of the W+. The

other state, usually just called H+, corresponds to a positively charged Higgs particle,

which is not appearing in the standard model. In much the same way the doublet H+†
u
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and H−d yield the longitudinal component of the W− and another negatively charged Higgs

particle H− also absent from the standard model.

Finally, the mass-matrix for the condensing real parts of H0
u and H0

d is given by

M =

(
b cot β +m2

Z sin2 β −b− m2
Z sin(2β)

2

−b− m2
Z sin(2β)

2
b tan β +m2

Z cos2 β

)

with eigenvalues

m2
h0 =

1

2

(
m2
A0 +m2

Z −
√

(m2
A0 +M2

Z)2 − 4m2
A0m2

Z cos2(2β)

)
m2
H0 =

1

2

(
m2
A0 +m2

Z +
√

(m2
A0 +M2

Z)2 − 4m2
A0m2

Z cos2(2β)

)
for the two eigenstates h0 and H0, giving two more neutral, scalar Higgs particles. So

instead of the one of the standard model, there are two in the minimal supersymmetric

standard model.

The masses for the fieldsA0, H± andH0 are all containing a contributionmA0

√
2b/sin(2β),

which is unconstrained, and could, in principle, become arbitrarily large. This is not the

case for the mass of h0. If the A0 mass would be small, it is possible to expand the root,

yielding

m2
h0 ≈ m2

A0 cos2(2β) ≤ m2
A0 .

For large masses of the A0 it becomes

m2
h0 ≈ m2

Z cos2(2β) ≤ m2
Z , (9.26)

where only the experimental known mass of the Z-boson enters. Thus, though the bounds

are not known, the mass is constrained. Since the experimental bounds for the A0 indicate

a rather large mass, the second expression (9.26) is more appropriate. Unfortunately, such

a low mass for the lightest neutral Higgs boson is excluded experimentally. Even if the

more precise formulas would be used, instead of the approximate ones, the situation is not

improving qualitatively.

That could have been already a dismissal of the minimal version of a supersymmetric

standard model. However, the leading quantum correction to this bound yields

m2
h0 ≤ m2

Z +
3m4

t

2π2(〈Hu〉2 + 〈Hd〉2)
ln

√
m2
t̃1

+m2
t̃2√

2mt

, (9.27)

where mt is the known top quark mass and mt̃i are the masses of the staus after mixing be-

tween the left and right multiplets occurred, which, in principle, can be different. Already
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for masses of the order of the experimentally excluded stau masses the bound is increased

by these radiative corrections above the Higgs mass. On the one hand, this is good for the

minimal supersymmetric standard model, but on the other hand this implies that leading

order corrections are large, and subleading corrections may be relevant. This reduces the

predictiveness of the bound, as then the other parameters enter in various ways.

There is a further problem with the corrections (9.27) to the Higgs mass. Consider

once more the conditions (9.21-9.22) for the appearance of a Higgs condensate. Combining

both equations to remove the parameter b, and use the tree-level masses for the weak gauge

bosons (9.24), yields the condition for condensation as

1

2
m2
Z = −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
.

For example let tan β become large, i. e., the condensate 〈Hu〉 is much larger than the

condensate 〈Hd〉. Then the condition becomes

1

2
m2
Z = −|µ|2 −m2

Hu .

Both parameters on the right-hand side are not constrained immediately by physics. How-

ever, if both parameters would be much larger than the mass of the Z boson, it would

be necessary for them to cancel almost exactly. If this would be the case, it would im-

mediately raise the same questions as in the original fine-tuning problem of the standard

model if the Higgs mass would be much larger than the ones of the weak bosons. This

is therefore also called the little fine-tuning or hierarchy problem. The experimentally

established mass of the Higgs is, in fact, borderline. Together with the large lower limits

for the masses of the other sparticles, the MSSM, though still consistent with experiment,

becomes in fact increasingly fine-tuned, therefore abolishing its original motivation. Still,

it is not excluded, and may yet describe nature.

That this is indeed somewhat of a problem becomes apparent when considering the

renormalization constant for the mass of the Higgs boson, which is given by the integral

of (9.17), and is approximately

δm2
Hu ≈ −

3y2
t

8π2
(m2

t̃1
+m2

t̃2
) ln

 √
2ΛU√

m2
t̃1

+m2
t̃2

 , (9.28)

where it was assumed that the stau masses give the dominant contributions, due to the

condition (9.27). The value of the unification scale is still of the order of 1015 GeV. If there-

fore the mass shift due to the leading quantum corrections should be small, this yields

approximately that the geometric average of the stau masses should not be larger than



142 9.4. MSSM phenomenology

about 150 GeV. Otherwise the quantum corrections alone would produce a fine-tuning

problem. This condition is, however, in violation of the bound of 500 GeV necessary to

shift the h0 Higgs boson out of the current experimental reach. Therefore, it cannot be per-

mitted. Shifting then the stau masses to the required value yields a mass correction large

compared to the Z-mass, actually, it becomes exponentially worse due to the logarithmic

dependence. Thus a fine-tuning problem arises. Whether this constitutes a problem, or

just an aesthetic displeasure, is not only a question of personal taste. It also is a challenge

to understand whether nature prefers for what reasons theories with or without finetuning.

9.4.3 Mass spectrum

So far, the masses of the Higgs bosons and the electroweak bosons have been calculated.

The gluons also remain massless, in accordance with observation. The remaining mass

spectrum for the minimal supersymmetric standard model at tree-level will be discussed

in the following.

The first particles are the remaining ones from the standard model. These have to

acquire, of course, their observed masses. Due to the parity violating nature of the weak

interactions, these masses can effectively arise only due to the Yukawa interaction with the

Higgs particles. In unitary gauge, these couplings can be split into a contribution which

contains only the Higgs vacuum expectation values

yχχH = yχχ〈H〉+ yχχ(H − 〈h〉)

and behave therefore as mass terms. Thus, the masses are given by

muct = yuct〈Hu〉 = yuct

√
2mW sin β

g′

mdsb = ydsb〈Hd〉 = ydsb

√
2mW cos β

g′

meµτ = yeµτ 〈Hd〉 = yeµτ

√
2mW cos β

g′

mνeνµντ = yνeνµντ 〈Hu〉 = yνeνµντ

√
2mW sin β

g′
.

The twelve Yukawa couplings are all free parameters of the minimal supersymmetric stan-

dard model. As is visible, it strongly depends on the value of β, whether these couplings

are strong, preventing perturbative descriptions, or weak enough that at sufficiently high

energies perturbation theory is adequate.

The situation for the gluinos is actually simpler. Since the color symmetry is unbroken,

no other fermions exist with the quantum numbers of the gluinos, and they do not couple
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to the parity violating weak interactions. Thus, the only contribution comes from the

explicit supersymmetry breaking term

−1

2
M1g̃g̃ −

1

2
M∗

1 g̃
†g̃†.

The mass parameter can be complex in general, but the corresponding tree-level mass will

just be its absolute value. Therefore, the value of the mass of the gluinos is unconstrained

in the minimal supersymmetric standard model, but by virtue of relation (9.16) it is tied

to the masses of the other gauginos in case of unification.

The situation becomes more complicated for the so-called neutralinos, the super-

partners of W 0 and B, the wino W̃ 0 and the bino B̃. These fermions are electrically

uncharged, and can both mix, similar to their standard-model versions. Furthermore,

the neutral superpartners of the two Higgs fields, the higgsinos H̃0
d and H̃0

u are both also

fermionic and uncharged. Hence, these can mix with the binos and the winos as well. The

gauge eigenstate is therefore

G̃0T = (B̃, W̃ 0, H̃0
d , H̃

0
u).

The most direct mixing is due to the interaction mediated by the weak F -boson in the

Wess-Zumino-like contribution to the superpotential, which leads to the contributions

1

2
µ(H̃0

uH̃
0
d + H̃0

dH̃
0
u) +

1

2
µ∗(H̃0†

u H̃
0†
d + H̃0†

d H̃
0†
u ).

Furthermore, the weak gauge symmetry and supersymmetry demand the existence of

couplings of the generic type

−
√

2g′HuH̃uW̃ = −
√

2g′(Hu + 〈Hu〉)H̃uW̃ (9.29)

to ensure supersymmetry in the super Yang-Mills part of the weak symmetry. If the

Higgs fields condense, these yield a mixing term proportional to the condensates. The

condensate is uncharged, and therefore this mixing can only combine two neutral fields or

two of opposite charge. Hence, only the fields H̃0
d and H̃0

u will mix with the neutral wino

and the bino by this mechanism. Finally, the wino and the bino can have masses due to

the explicit supersymmetry breaking, similar to the gluinos,

−1

2
M2W̃

0W̃ 0 − 1

2
M3B̃B̃ + h.c..

No such contribution exist for the higgsinos, as it is not possible to write down such a

term while preserving explicitly the weak gauge symmetry. Hence, the total mass-matrix,
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with all mixing terms, takes the form

−1

2
G̃0MG̃0G̃0 + h.c.

MG̃0 =


M3 0 − cos β sin θWmZ sin β sin θWmZ

0 M2 cos β cos θWmZ − sin β cos θWmZ

− cos β sin θWmZ cos β cos θWmZ 0 −µ
sin β sin θWmZ − sin β cos θWmZ −µ 0

 .

Thus, all four fields mix. The mass eigenstates are denoted by χ̃i with i = 1, ..., 4, and

are called neutralinos. These particles interact only weakly, like the neutrinos, and hence

their name. Since the a-priori unknown parameters M2, M3 and µ, as well as β, enter

their mass matrix, their masses cannot be predicted. However, if any of the neutralinos

would be the lightest supersymmetric particles, then by virtue of R-parity conservation

it would be stable. Since it interacts so weakly, it would be a perfect candidate for dark

matter, which cannot be provided by neutrinos since their mass is too small. In fact, at

least for some range of parameters the masses of the neutralinos would be such that they

are perfectly compatible with the properties required for cold, non-baryonic, dark matter.

A similar situation arises for the charged counterpart of the neutralinos, the charginos.

These stem from the mixing of the charged higgsinos and the charged winos. Since the

positively and negatively charged particles cannot mix, two doublets appear instead of one

quartet,

G̃+ =

(
W̃+

H̃+
u

)

G̃− =

(
W̃−

H̃−d

)
(9.30)

where the charged winos are linear combinations W̃ 1 ± iW̃ 2 of the off-diagonal winos.

Similar as in the case of the neutralinos, there is a contribution from the weak F -term

and the condensation of the neutral Higgs fields from the super Yang-Mills action, which

mixes both components of each doublet. Finally, there is again the explicit supersymmetry

breaking mass of the winos. All in all, the corresponding mass term is

−1

2
(G̃+TMT

G̃±
G̃− + G̃−TMG̃±G̃

+) + h.c. (9.31)

MG̃± =

(
M2

√
2 sin βmW√

2 cos βmW µ

)
.
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The structure of the mass term is dictated by the (hypercharge) gauge symmetry. To

obtain the masses, it is necessary to diagonalize the mass-matrix, and identify the actual

masses. Unitary matrices V and U can be taken to transform the charged gauge eigenstates

into the chargino mass eigenstates

χ̃+ = V G̃+

χ̃− = UG̃−.

To obtain the mass eigenstates, U and V will be chosen such that U∗MG̃±V
−1 is diagonal,

as is required to have a diagonal structure in both terms in (9.31). However, when de-

termining the associated propagators, from which the pole mass can be read off, not the

quantity U∗MG̃±V
−1 appears, but rather the quadratic version V X†XV −1 = UXX†UT ,

as a consequence of the inversion and the structure of a fermion propagator. The equality

follows trivial from linear algebra. Performing the algebra leads to masses of the charginos

|mχ̃±i
|2 =

1

2

(
M2

2 + |µ|2 + 2m2
W )∓

√
(M2

2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin(2β)|2
)

where the upper and lower sign refer to the two members of each charged doublet. There-

fore there is always one pair of oppositely charged charginos having the same mass, as

would be expected from CPT.

Thus remains the largest group of additional particles, the sfermion superpartners of

the fermionic standard model particles. These contain the squarks and sleptons. For-

tunately, due to the presence of the strong charge, squarks and sleptons will not mix.

However, the three families within each sector could in principle mix. Since such mixings

would have to be very small to be not in conflict with flavor changing currents observed

in experiments, these will be neglected7. Furthermore, compared to the scale of the su-

persymmetric parameters, only the Yukawa couplings of the third family can give any

significant contribution, and will only be considered in this case. Therefore, the first two

and the third family will be treated in turns.

If a common mass at some unification scale can be expected then the masses will run

7In fact, the absence of strong mixing sets strong limits on the properties of the mass matrices in the

squark and slepton sector. Since these are only parameters in the MSSM, this raises the questions why the

should be so specifically shaped. It is often assumed that whatever mechanism drives the flavor physics

of the standard model will also be responsible for this feature of the MSSM.
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according to

m2
q̃L

= m2
0 +K1 +K2 +

1

9
K3

m2
ũR,c̃R

= m2
0 +K1 +

16

9
K3

m2
d̃R,s̃R

= m2
0 +K1 +

4

9
K3

m2
l̃L

= m2
0 +K2 +K3

m2
ẽR,µ̃R

= m2
0 + 4K3

m2
˜νeR, ˜νµR

= m2
0.

The contributions Ki are the ones from the various interactions, weighted accordingly

with the corresponding weak isospin and hypercharge quantum numbers. Since to this

order the Yukawa interactions can be neglected, there are only the contributions from the

interactions which all tend to increase the mass, except for the right handed sneutrinos to

this order. The strong interaction K1 will give the largest contribution. Hence, the squark

masses will tend to be larger than the slepton masses.

On top of these contributions stemming purely from the soft breaking of the super-

symmetry, there are again additional effects from the coupling to the Higgs fields. This

coupling arises, since the equation of motion for the (weak isospin) D boson yields

D = g′(q̃†q̃† + l̃†l̃† +H†uHu +H†dHd),

which by virtue of the term D2 in the Lagrangian yield terms of the type

(q̃†q̃)g′2(〈H0
u〉2 − 〈H0

d〉2).

Similarly, the hypercharge D boson contributes

e2−y
2

(q̃†q̃)(〈H0
u〉2 − 〈H0

d〉2),

where y is the corresponding weak hypercharge. In total the contribution ∆f̃ for each

sfermion with weak isospin quantum number t3 and charge c = y/2 + t3 is

∆f̃ = m2
Z cos(2β)

(
t3 − c sin2 θW .)

As a consequence the weak isospin splittings give a measure of β as

m2
d̃L
−m2

ũL
= m2

ẽL
−m2

ν̃e = −m2
W cos(2β),

and in the same manner for the second family. This constraint could be used to experimen-

tally verify and/or predict parameters of the theory. The present experimental constraints

favor a rather large β, such that the down-type sfermions would be heavier.
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There is a third source for the masses of the sfermions. These are due to contributions

from the F -bosons of chiral multiplets and the associated superpotential. However, when

neglecting all but third-family Yukawa couplings, this will only contribute in case of the

third family, which will be considered now. The contributions in the superpotential are,

e. g., for the stop from the right-handed top

W = ytt̃Rt̃LH
0
u.

Integrating out the associated F field by its equation of motion yields a term

−y2
t t̃
†
Lt̃LH

0
uH

0†
u = −y2

t t̃
†
Lt̃L〈H

0
u〉2 − y2

t t̃
+
L t̃L(H0

uH
0†
u − 〈H0

u〉2).

Thus, the stop gets a further contribution yt〈H0
u〉 to its mass, which is exactly the same

mass as for the top. Thus, the stop has at least as much mass as the top. An equivalent

contribution also appears for the stop from the right-handed multiplet, and actually for

all other multiplets. That this mass is the same as for the super-partners is not surprising,

as it emerges from the supersymmetric part of the action, and thus will not spoil the mass

degeneracy of the super-partners. However, due to the term µH0
uH

0
d , there is also a mixing

between the left-handed and right-handed stops,

µmt cot β(t̃†Rt̃L + t̃†Lt̃R)− A0mt(t̃
†
Rt̃L + t̃†Lt̃R) (9.32)

and for all other squarks and sleptons as well. The second term appears from the soft

supersymmetry breaking trilinear scalar couplings. Hence, the mass eigenstates are not

the charge eigenstates for the third top. Within this approximation, this is not the case

for the first two families. These effects come on top of the mass contributions discussed

previously for the first two families.

The total mass term for the stop is therefore

−(t̃†Lt̃
†
R)Mt̃

(
t̃L

t̃R

)
with the mass matrix

Mt̃L
=

(
m2
t̃

+m2
t +

(
1
2
− 2

3
sin2 θW

)
m2
Z cos(2β) m2

t (A0 − µ cos β)

m2
t (A0 − µ cot β) m2

t̃R
+m2

t − 2
3

sin2 θWm
2
Z cos(2β)

)
.

In contrast to the first two families, the mt̃ terms are now given by

m2
t̃L

= xt +m2
0 +K1 +K2 +

1

9
K3

m2
t̃R

= xt +m2
0 +K1 +

16

9
K3
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where the xt term stems from the Xt contribution in the evolution equations (9.18) and

(9.19). As in the case of the Higgs fields, the mass-matrix has to be diagonalized. Since mt

appears in the off-diagonal entries the mixing will be very strong, as long as A0 and µ cos β

are not surprisingly similar. In particular, the off-diagonal elements may be negative, and

together with the contribution xt this effect tends to decrease the stop masses. In fact,

in most scenarios the stop will be the lightest of the squarks, and in some regions of the

parameter space the mass would be driven to negative values and thus initiate the breaking

of color symmetry, excluding these values for the parameters.

The situation for the sbottom, stau, and stau sneutrino is similar, just that all pa-

rameters are exchanged for their equivalent of that type. The mixing in these cases will

be much smaller, since mb, mτ and mντ are all much smaller, and could be neglected. In

particular, also the contribution xt will be essentially negligible, and therefore the masses

of these super-partners will be larger than the ones of the stops.
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