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Abstract (English Version)

In standard perturbation theory massive gauge bosons, like the W- and Z-Bosons
of the Electroweak interaction, are usually described by the gauge dependent el-
ementary fields. Although they are, due to their gauge dependence, intrinsically
unphysical, the results from perturbation theory agree very well with experiments.
In contrast to standard perturbation theory we consider genuinely gauge invariant
objects, i.e. composite states of the elementary fields, to describe the physical
particles. Using a simplified lattice field theoretic description of the Electroweak-
Higgs sector, we investigate the spectrum and the behavior of scattering processes
in the physical scalar singlet channel. Therefore, we use a Lüscher analysis, which
is commonly used in Lattice-QCD, to calculate phase shifts. These can be com-
pared to experiment and standard perturbation theory. Due to the low amount of
the used statistics, the results of this work are inconclusive. The obtained phase
shifts in different parts of the phase space indicate that a resonance above the
elastic threshold may still be possible in the gauge invariant description.

Abstract (Deutsche Fassung)

In Standard-Störungstheorie werden massive Eichbosonen, wie die W- und Z-
Bosonen der elektroschwachen Wechselwirkung, normalerweise durch die eichab-
hängigen Elementarfelder beschrieben. Obwohl diese aufgrund ihrer Eichabhängig-
keit inhärent unphysikalisch sind, stimmen die Ergebnisse der Störungstheorie sehr
gut mit den Experimenten überein. Hier betrachten wir stattdessen echt eichinvari-
ante Objekte, d.h. zusammengesetzte Zustände der Elementarfelder, zur Beschrei-
bung der physikalischen Teilchen. Mit einer vereinfachten gitterfeldtheoretischen
Beschreibung des Elektroschwach-Higgs-Sektors untersuchen wir das Spektrum
und das Verhalten von Streuprozessen im physikalischen Skalar-Singlet-Kanal.
Dazu verwenden wir eine Lüscher-Analyse, die üblicherweise in der Lattice-QCD
verwendet wird, um Phasenverschiebungen zu berechnen, welche sich mit dem Ex-
periment und der Standard-Störungstheorie vergleichen lassen. Bisher sind die
Ergebnisse dieser Arbeit aufgrund des geringen Umfangs der verwendeten Statis-
tik nicht schlüssig. Die erhaltenen Phasenverschiebungen in verschiedenen Teilen
des Phasenraums deuten darauf hin, dass eine Resonanz oberhalb der elastischen
Schwelle in der eichinvarianten Beschreibung noch möglich sein könnte.

I



Acknowledgments

Here I would like to thank a lot of people, who always helped me when I needed it
the most. This work, and especially my whole studies up to now, would not have
been possible without anyone of you.

First, I want to thank my advisor Prof. Axel Maas, who always answered all
my questions in great detail, encouraged me (probably unconsciously) in times of
slow progress and also deepened my understanding of physics very much.

I also owe a lot to the PhD students in my office, who made it a pleasure to
be there. Special thanks go to Oliver Orasch, who helped me with all sorts of
programming problems and other stuff, and Vincenzo Afferrante, who explained
also a lot of background information for this thesis’ topic to me. Apart from the
PhD students, I also want to thank my friends from my earlier studies, without
whom I would not be this far by now.

Furthermore, I want to thank my family who made all of this possible. Espe-
cially my parents Claudia Weselak and Thomas Riederer, who always supported
me on all areas during my studies. Also I want to thank my stepfather Werner
Weselak, who introduced me to the scientific/engineering world and thus sparked
my interest in physics.

Finally, I want to thank my fiancée Eva Janderka simply for everything. Thank
you for all your support, thank you for encouraging me to keep on working, thank
you for all the time we have spent together and thank you for making my life
something special. And although you do not understand a lot of this work it
would not have been possible without you. I love you.

II



Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master‘s thesis.

Date Signature

III



Table of Contents

Abstract I

Acknowledgments II

Affidavit III

1 Introduction 1

2 SU(2)-Yang-Mills-Higgs Theory 4

2.1 Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Brout-Englert-Higgs mechanism . . . . . . . . . . . . . . . . . . . . 6

2.3 Electroweak-Higgs Sector . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Perturbation theory and the FMS-mechanism . . . . . . . . 9

2.3.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Lattice Field Theory 14

3.1 Lattice Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Variational Analysis . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Lüscher Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Scattering Processes . . . . . . . . . . . . . . . . . . . . . . 19

4 Implementation 22

4.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 APE smearing . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IV



TABLE OF CONTENTS

4.2.2 Operator-Basis . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Spectrum Extraction & Lüscher Analysis . . . . . . . . . . . . . . . 26

4.4 Lattice Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Results 36

5.1 Energy Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Energy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Lüscher Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Lüscher Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 48

A Generalized Zeta-function Zd
lm(r, q2) 50

B Statistics 53

C Vector Channel Spectra 54

Bibliography 57

V



Chapter 1

Introduction

In elementary particle physics we try to answer the questions “What is matter
made of” and “How does it interact” at a fundamental level. The best answer
so far is given by the Standard Model of Particle Physics [1], which has been
verified in various experiments [2]. Though being very successful in predicting the
outcome of elementary particle experiments it still has its limits. For example,
a combination with gravity, described by general relativity, was not possible up
to this day and there are also some discrepancies between theory and experiment
like the famous gµ − 2 anomaly. These problems motivate the search for Beyond
the Standard Model theories, which are expected to solve the problems while also
encapsulating the Standard Model in some way.

However, to be able to find such theories it is necessary to first fully understand
the Standard Model on its own. The Standard Model is a Quantum Field Theory
which is invariant under some gauge symmetry. It is thus called a Gauge Theory.
To investigate the theory it can be divided into separate sectors describing the three
fundamental interactions: electromagnetic, strong and weak interaction. Apart
from these there is one additional and very special sector in the Standard Model,
the Higgs-Sector. This part contains the Higgs-Boson and the so-called Brout-
Englert-Higgs mechanism [3, 4] which is needed to provide masses for the gauge
bosons. Nevertheless, apart from giving masses to the bosons this also introduces
some complications to the theory, which are often glossed over.

To study this problem we focus on the Electroweak-Higgs sector of the Standard
Model, since this part contains the W- and Z-Bosons, the only massive gauge
bosons. The fundamentals of gauge theories and especially of this sector will be
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CHAPTER 1. INTRODUCTION

introduced in Chapter 2 of this work. As will be seen gauge theories are essentially
build only from local (gauge) and global symmetries of the dynamical systems.
However, if a quantity does depend on the gauge symmetry transformation it
cannot be a physical observable. This will also be topic of Chapter 2.

The occurring problem is that the masses of the gauge and the Higgs bosons,
as well as the gauge bosons themself are such ‘gauge-dependent’ quantities. Thus
the W- and Z-Bosons are not physical objects and should not be observable at
all. But in experiments we have clear evidence that these particles indeed exist
[2]. To solve this contradiction the physical objects need to be ‘gauge-invariant’,
which can only be achieved by considering composite particles, i.e. bound states.
This can be compared to some extent, to quantum mechanics where the gauge-
dependent wave function ψ is not an observable and only the expectation value
|ψ|2 can be observed.

Due to the success of using gauge-dependent quantities it is necessary to find a
link between the gauge-invariant composite particles, describing the physical ob-
servables, and the elementary fields which are usually used to describe particle
physics phenomenology. This connection has been found by Fröhlich-Morchio-
Strocchi [5, 6] already back in the 1980’s and is called gauge-invariant pertur-
bation theory. Since then several studies [7–9] have been carried out to confirm
this approach. However, apart from solving the before-mentioned problem, this
approach also allows for very small deviations in some observable quantities and
additional contributions in scattering processes, due to the bound state nature of
the particles.

To study this behavior one needs to do non-perturbative calculations, since
bound-states cannot be described by standard perturbation theory. A common
method, which already has been very successful in describing Quantum-Chromo-
Dynamics (the theory of the strong interactions), is to use so-called lattice sim-
ulations. The background for this topic will therefore be introduced in Chapter
3. According to the work by Lüscher [10–13] it is possible to directly extract
informations on scattering processes from these lattice simulations.

The aim of this work is to investigate the scattering processes in the physical
Higgs to WW* channel, which will be directly accessible at the HL-LHC [14].
Therefore we use genuinely gauge-invariant objects to describe the particles in a
lattice formulation of the simplified Weak-Higgs sector. By doing so, we will be
able to find possible deviations from standard perturbation theory, like additional
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CHAPTER 1. INTRODUCTION

resonances or differing decay widths, which would significantly alter the search for
Beyond the Standard Model Physics.
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Chapter 2

SU(2)-Yang-Mills-Higgs Theory

In this chapter we will give an introduction to the basic aspects of Quantum
Field Theory needed for the calculations in the following chapters. To simplify
the discussion we will start by introducing Gauge Theories as well as the Brout-
Englert-Higgs mechanism from a general point of view and finally combine these
into a SU(2)-Yang-Mills-Higgs Theory. From this theory it will then be possible
to derive the phenomenology of the (Electro-)Weak interaction in the Standard
Model. For this we follow closely [15, 16].

2.1 Gauge Theories

The earliest gauge theory to be studied was (classical) electrodynamics and already
from this theory it has been clear, that there exists a deep connection between
symmetries and the dynamical behavior of field theories. The probably most im-
portant finding was that it is possible to directly derive the Lagrangian, which
is used to describe the dynamics of field theories, from postulating a U(1) gauge
invariance and requiring the equations of motion for the electrons to be the Dirac
equation (see [15]). Starting from this Lagrangian the theory has then been quan-
tized and thus led to Quantum-Electro-Dynamics (QED), which has been able to
describe the electromagnetic interaction as a Quantum Field Theory. Generaliz-
ing the procedure by replacing the abelian structure of the gauge theory with a
non-abelian one1 resulted in so-called Yang-Mills theories [17] which turned out to

1To be more precise the algebra corresponding to the gauge group needs to be a reductive,
compact Lie Algebra
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

be the fundamental building blocks of the Standard Model.

For later reference and to clarify the conventions in this work we will now
shortly present the derivation of a massless scalar Yang-Mills theory. We start by
introducing some scalar fields φi and a gauge transformation G(x) of these fields

Lφ = (∂µφ)†(∂µφ) φi(x)→ Gij(x)φj(x) (1)

The latin indices in the equations are omitted if it is intuitively clear how they are
contracted. For any Lie algebra the connection between the algebra and the group
elements is given by the exponential map

G(x) = exp(iαa(x)T a) (2)

with αa(x) some local coefficients and T a the generators of the group in some repre-
sentation. As an explicit example, for the fundamental representation of the SU(2)

group the generators are related to the Pauli matrices σa by T a = σa

2
. To keep

the Lagrangian of eq. (1) invariant (gauge invariant) under this transformation it
is necessary to replace the usual derivative ∂µ by a covariant derivative

Dµ = ∂µ − igWµ (3)

with the parameter g as the coupling constant and Wµ an additionally introduced
field. This field needs to transform under the gauge group according to Wµ(x)→
G(x)Wµ(x)G(x)−1 − i

g
[∂µG(x)]G(x)−1 which finally makes the Lagrangian gauge

invariant. Since this field is by construction a part of the algebra it can be expanded
as Wµ = W a

µT
a, where W a

µ are commonly known as the gauge fields. Therefore,
there are always as many gauge fields as there are generators of the algebra.

To arrive at a self-consistent theory it is also necessary to include the kinetic
term of the gauge fields in the Lagrangian which is described by the Yang-Mills
Lagrangian

LYM = −1

4
W a
µνW

aµν (4)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν (5)

with W a
µν being the field strength tensor and fabc the structure constants of the
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

gauge group. The full Lagrangian for a massless scalar Yang-Mills theory reads as

L = −1

4
W a
µνW

aµν + (Dµφ)†(Dµφ) (6)

Before continuing with the next part, some remarks need to be made about
eq. (6). First of all, the Yang-Mills Lagrangian as described in eq. (4) is not
the only possible gauge invariant combination for the kinetics of the gauge fields.
However, it is essentially the same as used in electrodynamics, apart from the
more involved algebraic structure, and due to the great success of this theory it is
a reasonable approach to use the same structure for other gauge theories as well.

Second, while the whole description here has been done without choosing a
specific group or representation it turns out that the gauge fields W a

µ always lie in
the adjoint representation of the chosen algebra. That this is indeed the case can
be easily seen by inserting eq. (2) into the transformation of Wµ and obtaining a
relation for the gauge field transformation, which contains the covariant deriva-
tive in the adjoint representation. Also one should always keep in mind that the
gauge fields are by construction gauge dependent objects which will be discussed
in greater detail later on.

Finally, we are still at a classical level and therefore it makes no sense to talk
about particles or the problems which occur by quantizing non-abelian gauge theo-
ries. However, to motivate the following section it is necessary to consider particles
to some extent. Therefore, already with the quantization in mind (which will be
dealt with in a later chapter), we will assume now that there exists a connection
between the Lagrangian from above and particles observed at the laboratories.

2.2 Brout-Englert-Higgs mechanism

The ambiguity which now occurs is that the previously derived theory describes
only the dynamics of massless particles, but from experiments we know that most
of the particles are massive [2]. For the scalar particles φi in eq. (6) it is straight
forward to introduce a mass term by adding a term which is bilinear in the fields
and thus gauge invariant Lmφ = −m2φ†φ (for more details see [15]). By adding the
same term for the gauge fields LmW = −m2W a†

µ W
µa, which is needed for massive

gauge bosons like the W-Boson, there occurs a contradiction. Due to the more
involved gauge transformation of W a

µ compared to φi, this term breaks the gauge
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

symmetry and thus L → L′ 6= L. Therefore, one might consider to step away from
gauge theories for massive gauge bosons and try something different. By simply
dropping this requirement but still keeping the same structure we arrive at an
Lagrangian known as the Proca-Lagrangian. This theory however suffers from an
unitarity violation problem for large energy scales [18]. This means it can only be
an effective theory for a specific energy scale (e.g. the ρ-Meson in QCD).

To keep gauge invariance one needs to find a mechanism which dynamically
creates the masses for the gauge fields at low energies but does not break the
symmetry. One possible way of achieving this is given by the Brout-Englert-Higgs
mechanism [3, 4]. Assume again the Lagrangian in eq. (6) with an additional gauge
invariant potential term of the form

V
(
φ†φ
)

= −λ
(
φ†φ− f 2

)2 (7)

with some parameters λ and f . This potential exhibits a minimum at φ†φ = f 2

and for a perturbative treatment of the theory, which is usually done, calculations
need to be carried out near the minimum. To do so the field has to be redefined
according to

φi(x) = vni + hi(x) (8)

with vi = vni a constant field such that |v| = f and h(x) the fluctuation field
satisfying 〈h〉 = 0. Adding first the potential from eq. (7) to eq. (6) and inserting
the split from above yields the following Lagrangian

L = −1

4
W a
µνW

aµν + (Dµh)†(Dµh) + g2f 2W †
µW

µ − 2λf 2|h|2 + V ′ (9)

with V ′ collecting all additional mixing terms of h andWµ. This potential describes
the interactions between those fields and is not of interest for now. The remaining
Lagrangian however shows an interesting structure which is best studied term by
term. The first term remains unchanged and still describes the dynamical behavior
of the gauge bosons. For the second term the scalar fields φi have been replaced
by the fluctuation fields hi which therefore become the new dynamical degrees
of freedom in this theory. The final two terms are bilinear in the corresponding
fields and therefore are mass terms with masses mW ∝ gf for the gauge field and
mh ∝

√
λf for the fluctuation field.

One essential part that has been glossed over so far is what happens to the

7



CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

gauge invariance. At first sight the Lagrangian now is not invariant anymore
under the gauge transformation for the new scalar field hi(x) → Gij(x)hj(x).
The symmetry seems to be broken and this is usually referred to as Spontaneous
Symmetry Breaking (SSB) for theories with a BEH-effect. Actually, the gauge
symmetry is just hidden since this effect only occurs due to a redefinition of the
fields. By using more involved transformations acting on the fields it can be
seen that the symmetry is still fully intact. However, to stay in consent with the
standard literature on this topic we will keep the same nomenclature, though being
misleading. Additionally, it is also possible to construct the shift such that the
resulting Lagrangian stays invariant under some subgroup of the original gauge
group. This partial breaking is of great importance in the Standard Model to
explain the massless Photon and the massive W- and Z-Bosons.

Usually, by breaking a symmetry one introduces additional massless scalar
fields, depending on the number of broken group generators, to the theory known
as Goldstone-Bosons [19]. At least for breaking global symmetries this is the case.
However, since we are breaking a gauge symmetry these massless fields can be ab-
sorbed into the gauge fields by a gauge transformation. It is exactly this procedure
of fixing the gauge such that the Goldstone fields vanish and therefore producing
massive vector fields which lies at the core of the BEH-mechanism. Although not
previously mentioned, gauge fixing has been implicitly done in eq. (8)2 and there-
fore yielded massive gauge fields. One needs to keep in mind, that the occurring
mass terms for the gauge fields are only due to this specific gauge fixing. In fact
it is possible to construct gauges in which |v| = 0 and thus we would be left again
with massless gauge fields. For further discussions of the BEH-mechanism and the
corresponding problems, we refer to [1, 16, 20].

2.3 Electroweak-Higgs Sector

Finally we have now introduced all the necessary pieces for the Electroweak-Higgs
sector of the Standard Model which is described by a SU(2)W ×U(1)γ-Yang-Mills-
Higgs-Theory. The SU(2)W part is responsible for the weak interaction while
U(1)γ part describes the weak hypercharge. The BEH-mechanism breaks this
group SU(2)W ×U(1)γ → U(1)em, which essentially describes QED with the mass-

2Note that the shift has been fixed even though φi(x) = exp {iαa(x)T a}(vni + hi(x)) would
also be possible
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

less photon as the force carrier plus 3 massive gauge bosons mediating the weak
interaction known as W±- and Z-Boson and one Higgs-Boson. To study this the-
ory in its full extent can however be very intricate and therefore we will be only
considering the Weak-Higgs-Sector, leaving out the hypercharge symmetry and the
already excluded Fermions. This theory differs from experiments mainly by the
mass-degeneracy of all 3 gauge bosons, because the mass difference between W±-
and the Z-Boson is (nearly) entirely generated by QED.

The Weak-Higgs-Sector is described by a SU(2) gauge theory and consists of a
complex scalar doublet φ in the fundamental representation, which exhibits four
real degrees of freedom. The gauge invariant Lagrangian is given by

L = −1

4
W a
µνW

aµν + (Dµφ)†(Dµφ)− λ
(
φ†φ− f 2

)2 (10)

with the previously used definition for the covariant derivative Dµ and the group
transformations for φ andWµ. Additionally to the gauge symmetry the Lagrangian
also remains invariant under a global SU(2) symmetry transformation acting only
on the scalar field, known as the custodial symmetry. As already pointed out above,
the scalar field contains four degrees of freedom and by that the free (ungauged)
theory is actually invariant under the O(4) symmetry. This group is isomorphic
to SU(2) × SU(2) and by promoting one to a gauge group the other remains as a
global symmetry. It is exactly this group which will allow us later on to arrange
the physical particles in the same multiplet structures as the elementary fields in
the Lagrangian and to make an identification of them.

2.3.1 Perturbation theory and the FMS-mechanism

Before carrying on the discussion to physical particles, a few words need to be
said about quantizing such a theory. First of all, this theory suffers from the same
difficulties as all gauge quantum field theories. When quantizing such theories
using the path-integral formalism

〈O〉 =
1

Z

∫
DφiDW a

µe
i
∫

d4xLO Z =

∫
DφiDW a

µe
i
∫

d4xL (11)

the integral over the gauge group usually diverges. The two possibilities of solving
this problem is either fixing the gauge by a Faddeev-Popov procedure [20] or by
making the integral finite by using a lattice formulation, as will be done later

9



CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

in this work. In the continuum one needs to be very careful when choosing the
gauge of this theory as discussed in [16]. Non-aligned gauges, like the covariant
gauges, lead to a vanishing Higgs vacuum expectation value |〈φ〉| (VEV) and thus
massless gauge bosons. Only aligned gauges, like the ’t Hooft gauges which fix
the direction of the VEV, allow for non-zero gauge field masses. Second, after
the quantization has been carried out, the theory is still renormalizable [21] but
the renormalization scheme needs to ensure the relation |〈φ〉| = |v| = f between
the Higgs VEV, the constant background field and the parameter f from the
Lagrangian in eq. (10). This makes the theory a well-defined QFT3 and allows
us to discuss the phenomenology of the Weak-Higgs-Sector by using perturbation
theory for calculating experimental accessible quantities. One example would be
the phase shift in the H → WW∗ channel, which will be the main interest of this
work.

The problem that arises with this perturbative approach to the theory is the
highly unphysical nature of the masses and the bosons themself. That this is indeed
the case, can be seen from two different perspectives. Either, it is possible to argue,
that only by fixing the gauge, and thus breaking the gauge symmetry explicitly, it is
possible to obtain massive bosons. However, this choice is an artificial one inserted
by hand such that the particles are massive, although observables should not be
dependent on this choice. The other argument describes the case without gauge
fixing and thus is necessary for the lattice formulation of the theory. For all gauge
dependent quantities, like v or W a

µ , the expectation value in eq. (11) vanishes.
This happens because a group contains for each element also the inverse one and
by integrating over the whole group these cancel each other exactly. Therefore,
quantities with an open gauge index cannot be physical observables and only fully
contracted operators (i.e. composite states) yield non-vanishing expectation values
and should be considered as physically meaningful.

In standard perturbation theory this is often ignored and the gauge dependent
elementary fields of the Lagrangian are used to describe physical particles. Al-
though, choosing the wrong starting point for the description, perturbation theory
agrees strikingly well with experiments. Thus there seems to be a disagreement
between a rigorous quantum field theoretic approach and the experimentally sup-
ported perturbative approach. Let us consider for instance the physical Higgs

3At least from the point of perturbation theory. For a non-perturbative treatment additional
problems like the Gribov-Singer ambiguity [22, 23] arise.
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

particle. In standard perturbation theory the scalar field φ(x) is used for this,
while a gauge-invariant operator with the same quantum numbers JP = 0+ (spin
and parity) is constructed by φ†(x)φ(x). Though being two completely different
operators there is an intrinsic connection between them due to the special sym-
metry structure of the theory. As already mentioned the theory exhibits a SU(2)

gauge symmetry and a (global) SU(2) custodial symmetry. This specific group
structure allows to map the operators of the gauge group (gauge multiplets and
custodial singlets) onto operators of the custodial groups (gauge singlets and cus-
todial multiplets), which then yield similar results. This connection shows that
there exists an exact rewriting of the physical gauge invariant states in terms of the
gauge dependent states. This was originally devised by Fröhlich-Morchio-Strocchi
in [5, 6] and is called the FMS mechanism. Application of the FMS-mechanism
and followed by perturbation theory, which is known under the name gauge invari-
ant perturbation theory (GIPT) [24], shows that the composite operator yields the
same mass as the elementary ones to leading order. This procedure can also be
carried out for the other particles in the theory, like the W-Bosons, yielding similar
results. That GIPT can be used to connect rigorous quantum field theory with
phenomenology has been extensively tested in several works [7–9]. Therefore, when
talking about particles in this work, we always consider the gauge-invariant oper-
ators and not the elementary fields of the Lagrangian. Further, the classification
by quantum numbers spin J and parity P gets and additional custodial number c
and will be denoted in the form JPc , like 0+

1 for the physical Higgs particle.

The aim of this work is now to study the influence of those higher order devia-
tions from standard perturbation theory on scattering processes, especially the one
in the scalar singlet channel 0+

1 (H → WW ∗). Therefore, we consider several dif-
ferent Higgs masses to investigate the Standard Model case and also some Beyond-
Standard Model theories (BSM) as well, which need additional Higgs Bosons. Also
the total decay width, which is well known from perturbation theory [20], could
exhibit differences and therefore would alter measurements at the experimental
facilities. Additionally, the theory allows in principal for resonances in the scat-
tering channel and could therefore alter the observable particle spectrum. This
therefore needs to be invested carefully, to correctly identify new particles at the
experiments. Otherwise these could be interpreted as BSM-particles, although
they are described by SM physics. This search for resonances has already been
done for a different channel in [25], which showed no substantial deviations from
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CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

standard perturbation theory so far.

2.3.2 Phase diagram

Before continuing with actual calculations it is still necessary to discuss the phase
diagram of the theory. The theory contains three independent free parameters: g
the gauge coupling, λ the Higgs self-coupling strength and f the strength of the
potential determining the Higgs vacuum expectation value v after gauge-fixing.
Depending on these parameters the theory exhibits different behaviors and in fact
previous lattice studies suggest that it can be divided into two regions, a QCD-like
and a BEH-like one [26], though with a gauge-dependent border. The QCD-like,
as the name suggests, is dominated by a QCD-like behavior and exhibits confined
bound-states [27]. However, in this phase there is no BEH-effect observed and
by that the ground state of the theory is in the 0+

1 channel, corresponding to the
Higgs particle. This region of the phase diagram will not be considered here, since
it does not allow for a non-vanishing VEV and thus gauge invariant perturbation
theory is not possible. The second region, where the ground state is in the 1−3

vector channel, corresponding to the gauge bosons, allows for a BEH-effect and
thus will be the one of interest. Though, being two different phases, it has been
shown that for our specific theory the phase diagram is smoothly-connected [28]
and therefore no phase transition occurs, at least for the lattice theory considered
in the following chapters. This means that the phases only show quantitative
different behaviors and not qualitative ones.

In the past, there have already been a lot of investigations of the phase space
mostly using lattice calculations [26, 29, 30]. For this work, following [31], we will
now introduce a further separation of the BEH-like domain into sections where
different physics could be expected. These are classified by the ground state mass
in the 0+

1 channel according to the experimental Higgs mass mH ≈ 125 GeV and
the W-Boson mass mW ≈ 80.375 GeV.

• light-Higgs region: 85 GeV < m0+1
< 115 GeV

• physical-Higgs region: 115 GeV < m0+1
< 135 GeV

• heavy-Higgs region: 135 GeV < m0+1
< 155 GeV

• threshold region: 155 GeV < m0+1
< 170 GeV

12



CHAPTER 2. SU(2)-YANG-MILLS-HIGGS THEORY

Notice that the physical-Higgs region is chosen as a 10 GeV interval around the
experimental mass, due to the absence of the W-Z mass splitting and thus can
also alter the Higgs mass. The two regions of interest here are the physical-Higgs
region and the threshold region. For the physical region the motivation is clearly
the possible comparison of the results from gauge-invariant perturbation theory
with standard perturbation theory as well as with experiments, which could yield
deeper insight into each approach. The threshold region is motivated from two
aspects. First, for the mass of the Higgs exceeding twice the gauge boson mass
there should be no stable state anymore. Standard perturbation theory suggest
that there is still a resonance possible [20] but it is unclear if this is also the
case for the non-perturbative approach. Second, there exist several BSM theories
which suggest additional Higgs-Bosons at higher masses. If the results in this
work differ from standard perturbation theory, this has direct implications on the
search for those particles. For instance a much larger decay width would make
the particle very hard to identify at the experiments. To study this theory in a
non-perturbative way, we will switch now to the lattice formulation of the theory.
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Chapter 3

Lattice Field Theory

In the previous chapter we have introduced the theory from a general point of
view and motivated the need for gauge invariant and thus composite operators to
describe the physical particles. However, composite operators are genuinely non-
perturbative objects and therefore a suitable method is needed, which is provided
by Lattice field theory. Using a lattice approach it is possible to obtain energy
spectra for bound state objects and to investigate their scattering properties. Due
to the smoothly connected phase diagram, as pointed out previously, it is also legit
to make conclusions about the continuum behavior from the lattice calculations1.

This chapter introduces the necessary mathematical framework for performing
the lattice calculations in this work. It is however assumed that the reader is, to
some extent, familiar with lattice field theory. Otherwise we refer to [32, 33] for an
introduction to this topic. First, the discretized lattice action of our theory will be
introduced. From the action it will be possible to extract the correlation functions
and the energy spectrum for each lattice setup. This is further improved using
a so-called variational analysis to obtain informations on higher energy levels,
like excited states or resonances. Finally, as proposed by Lüscher in [10–13], a
method to calculate the continuum energy spectrum and scattering phase shifts
from differently sized lattices will be presented.

1Of course, apart from the usual discretization artifacts and continuum limit problems, which
all lattice theories exhibit.
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CHAPTER 3. LATTICE FIELD THEORY

3.1 Lattice Action

The (euclidean) lattice action of the Weak-Higgs sector can be derived by a
straightforward discretization of eq. (10). However, a more stable version as out-
lined in [33] and already used in [31], is considered here.

S =
∑
x∈Λ

[
β

(
1− 1

2

∑
µ<ν

Re{Tr {Uµν(x)}}

)
+ φ†(x)φ(x) + γ

(
φ†(x)φ(x)− 1

)2

−κ
∑
µ

(
φ†(x)Uµ(x)φ(x+ eµ) + φ†(x+ eµ)U †µ(x)φ(x)

)]
(12)

with Λ the set of all lattice points for a 4-dimensional lattice with lattice spacing
a and a volume V = N4. Further abbreviations and relations are

Uµν(x) = Uµ(x)Uν(x+ eµ)U †µ(x+ eν)U
†
ν(x) (13)

Wµ =
i

2ag

(
U †µ(x)− Uµ(x)

)
+O

(
a2
)

(14)

β =
4

g2
(15)

−a2m2
0 =

1− 2γ

κ
− 8 (16)

γ = κ2λ (17)

with Uµ = exp{igaWµ} the gauge link, eµ a unit vector in the µ-direction and
β, κ and γ the lattice coupling parameters at the cutoff 1/a. m2

0 = 2λf 2, λ and
g are the bare parameters of the continuum version in eq. (10). Both the Higgs
field and the gauge links are defined such that they are periodic in all directions
Φ(x+Nµ) = Φ(x). Also note that the gauge links, which are the dynamical
quantities in a lattice theory, are now group-valued and not algebra-valued as in
the continuum. Therefore they are described by SU(2) matrices and transform
under gauge transformations as

Uµ(x)→ G(x)Uµ(x)G†(x+ eµ) (18)

with G(x) also SU(2) matrices as defined in eq. (2).

Choosing a physical scale for the theory is due to the phase diagram, as de-
scribed above, not entirely trivial. However, in this work we will always be in-
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CHAPTER 3. LATTICE FIELD THEORY

terested in the BEH-like domain of the phase space and thus the lowest energy
level has to be in the 1−3 channel, corresponding to the physical W-Boson. Thus
the scale will always be chosen such that the mass of this state is 80.375 GeV,
according to the measured W-Boson mass [2]. Therefore we need to analyze the
energy spectrum to find this mass.

3.2 Spectroscopy

For a spectroscopic analysis of the theory the following lattice relations are em-
ployed

〈O〉 =
1

NC

∑
C

e−SO (19)

C(∆t) =
〈
O(t+ ∆t)O†(t)

〉
=
∑
n

| 〈0|O|n〉|2e−En∆t (20)

where the first equation introduces a weighted sum over all configurations C cre-
ated in Monte-Carlo simulations and the second equation is used to interpret the
correlator C(∆t) in terms of energy levels En in lattice units. It should be men-
tioned that it is assumed that the expansion coefficients in eq. (20) are positive
and non-vanishing. Further the correlation function has to be independent of the
time step t in the expectation value because of time invariance of the theory. This
can be used to improve the statistics by a factor Nt, by averaging over all time
slices. Assuming the energy levels En to be sorted in the order En ≤ En+1 it turns
out, that for sufficiently large ∆t, the correlator is dominated by the ground state
of the theory.

C(∆t) =
∑
n

| 〈0|O|n〉|2e−En∆t
∆t�E−1

1≈ const. · e−E0∆t (21)

So far other additional arguments of the operators O have been left out intention-
ally. Though being possible to work in position space, it is more convenient to use
momentum space and therefore a Fourier transformation needs to be applied to
the operators

O(t, ~p) =
∑
x∈Λ

ei~p~xO(t, ~x) (22)
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CHAPTER 3. LATTICE FIELD THEORY

Employing a so-called zero momentum projection ~p = ~0, the energy in eq. (21)
becomes simply the mass M of the particle with the same quantum numbers as
the operator. Thus the mass can be extracted from the exponential decay of
the correlator at sufficiently large times. For small times the excited state will
also contribute to the correlator and alter the exponential behavior. However,
since the correlator is symmetric in time C(∆t) = C(Nt −∆t) it will also deviate
from the exponential form near ∆t = Nt/2 and it is more reliable to replace the
exponential in eq. (20) with an cosh(En(∆t−Nt/2)). To make the full behavior
more accessible, one introduces an effective mass, or as we will call it here an
effective energy Eeff by

Eeff

(
∆t+

1

2

)
= ln

(
C(∆t)

C(∆t+ 1)

)
(23)

This effective energy usually contains a plateau somewhere in the region 0 < ∆t <

Nt/2 which corresponds to the ground state energy E0. However, often one is
also interested in the higher energy levels of the theory. There are several possible
techniques to extract those [32] and the one we are using is called a Variational
analysis.

3.2.1 Variational Analysis

For the variational analysis one exploits the fact, that on the lattice all operators
with the correct quantum numbers are suitable to describe a particle. However,
then this particular operator also describes all possible states in this channel and
not only the one of interest. This can already be seen from the higher energy
contributions in eq. (20). To avoid this problem and to disentangle the energy
levels it is necessary to consider multiple operators and their cross correlations.
Therefore one can introduce a correlator matrix Cij(∆t) by

Cij(∆t) =
〈
Oi(t+ ∆t)O†j(t)

〉
=
∑
n

〈0|Oi|n〉 〈n|O†j |0〉 e−En∆t (24)

for a set of N operators Oi, i = 1, . . . , N . From the right hand side it has been
shown [12, 34], that diagonalizing this matrix allows to disentangle the physical
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CHAPTER 3. LATTICE FIELD THEORY

states to some extent. The eigenvalues λ(k)(∆t) behave as

λ(k)(∆t) ∝ e−Ek∆t
[
1 +O

(
e−∆Ek∆t

)]
(25)

with ∆Ek the distance to next nearest energy level. To improve it even further it
is possible to consider the generalized, or preconditioned, eigenvalue problem for
some time step ∆t0 < ∆t. Usually it is chosen to be 0 to perform an analyzation
for all other time steps.

C(∆t)~v = λC(∆t0)~v (26)

The improvement in this case is due to the suppression of higher excited states
because of their larger contribution to smaller times. Also, usually the matrix
values can cover several orders of magnitude and thus preconditioning makes the
procedure numerically more stable by scaling all entries to similar orders of mag-
nitude.

Concerning the operator basis used for the correlation matrix it can be said,
that a larger number of interpolators improves the result in general. However, one
needs to be careful, because often by increasing the basis also the statistical noise is
increased and thus alters the diagonalization procedure. Hence, it is recommended
to choose the operator basis such, that the overlap with the ground state is suitably
large, they are linearly independent and are very close to the expected physical
content of the eigenstates. Additionally, the eigenvectors ~v of the problem can be
used to determine which operator contributes the most to each state and by that
choose the best operator basis. This will be discussed in greater detail once we
have finished with the theoretical background.

3.3 Lüscher Analysis

Calculating the effective energy from eq. (23) for all obtained eigenvalues, the
energy spectrum can be extracted by fitting either the plateaus to a constant or
the full curve to a sum of cosh functions with different masses. Which method to
choose clearly depends on several factors like the noise of the effective energy, the
used lattice size and how good the disentanglement has worked. For this work we
will show an example spectrum extraction in the next chapter. However, apart
from obtaining the energies there is also a problem in interpreting them as infinite
volume quantities. For a more general overview on the topic we recommend [35].
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3.3.1 Energy Spectrum

There are mainly two problems of extracting the infinite volume energy spectrum
from the lattice. The first is that due to the discretization of the theory finite
volume quantities get additional corrections compared to the physical ones. To
avoid this complication we will assume in the following that the lattice spacing
a is small enough, such that these discretization artifacts can be neglected. The
second problem appearing however is different and unavoidable. On a lattice with
a finite extent N in any direction the quantum fluctuations around the particle
are restricted to a small region. This restriction, and also wrap around effects on
very small lattices, distort the particle and thus alters the mass. According to a
work by Lüscher [10] the relation for a stable bound state of two particles of mass
m behaves as

MB(N) = mB +
3g2

16πm2
BbN

e
−

√
m2−

m2
B
4
bN

+O
(
e−m

′
BaN
)

(27)

with MB(N) the lattice size dependent bound state energy/mass, mB the infinite
volume quantity, g the coupling of the binding interaction, b the scattering length
and m′B the next higher state. Thus the energy levels approach the infinite volume
limit exponentially fast with increasing lattice size. As already induced above,
this relation only holds for stable bound states or in other words, with energies
up to the elastic threshold 2m. For resonances the extrapolation does not work as
simple but it is possible to obtain other properties like the continuums phase shift
δl or the decay width Γ.

3.3.2 Scattering Processes

The idea behind extracting scattering process informations from lattice theory
can be made intuitively clear. Contrasting to the continuum, where scattering
processes are always considered for particles being infinitely separated before and
after the collision, this can not be assumed for the lattice since they are restricted
to a box. Therefore, the particles on a lattice will always be interacting, to some
extent, and by that the energy levels are distorted. From this distortion it is
possible to extract informations about the binding or scattering process, since it is
the same type of information. Again due to a work of Lüscher [11, 13] a connection
between the lattice and the continuum has been found using perturbation theory.
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The central quantity of a scattering process is the phase shift δl which contains
all informations on the scattering of partial waves of angular momentum l. For
this work, since we are only interested in the 0+

1 channel, we have only spinless
particles with vanishing center-of-mass momentum and so l = 0.

The interesting part of the spectrum is now the energy region between the
elastic and the inelastic threshold. The elastic threshold is given by the lightest
two particle scattering state in the spectrum, and the inelastic by the next higher
appearing scattering state. In the case of the considered theory in eq. (12) with the
parameters such that the theory is in the BEH-like domain of the phase diagram,
the elastic threshold is the scattering state of two 1−3 particles (i.e. the physical
W-Boson) and the inelastic threshold is given by either four 1−3 or two 0+

1 particles
(i.e. the physical Higgs-Boson).

Returning to the general case there will be energy levels in the region described
by

En = 2
√
m2 + ~p2

n (28)

with m the infinite-volume mass of the decay products and ~pn some momenta.
Without any interactions these would be normal lattice momenta given by integer
multiples of 2π/N . However, the interaction will alter these momenta and it is
instructive to define

~p2
n =

(
qn

2π

N

)2

⇒ q2
n =

(
N

2π

)2
[(

En
2

)2

−m2

]
(29)

with qn usually a non-integer number, describing the deviation from the non-
interacting behavior. This quantity can be determined, ones the lattice size de-
pendent energy levels En and the infinite volume masses m are known. From this
numbers it is then possible to calculate the phase shift as pointed out in [13]. For
our case the relation is given by

tan(δ0(qn)) =
π

3
2 qn

Z~000(1, q2
n)

(30)

but can be generalized for other systems as is done in [36, 37]. The function
Z~dlm(r, q2

n) is a purely geometric function and sometimes called a generalized/mod-
ified Zeta function. As the index names suggest l is the spin and m the spin
projection quantum number while ~d is connected to the center-of-mass momen-
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tum of the scattering state. The function takes the form

Z~dlm
(
r, q2

n

)
=
∑
~x∈P~d

|~x|lYlm(~x)

(~x2 − q2
n)r

(31)

P~d =

{
~x ∈ R3

∣∣∣∣∣ ~x = ~m +
~d

2
, ~m ∈ Z3

}

with Ylm the usual spherical harmonics. For r = 1, as used in eq. (30), the sum does
not converge but can be analytically continued. Since there are several possibilities
how to do this it is discussed in appendix A.

Often it is more convenient to consider the scattering width Γ(s) or the coupling
g(s) as function of the center-of-mass energy s = E2

CM . These are related to the
phase shifts, for Breit-Wigner like resonances by the following formulas [36, 38]

√
sΓ(s) cot(δl(s)) = M2 − s (32)

|~p|3√
s

cot(δl(s)) =
6π

g(s)2

(
M2 − s

)
(33)

Γ(s) =
|~p|3

s

g(s)2

6π
(34)

The first two equations connect the quantities directly to the phase shift and the
last equation shows the connection between them. Usually the coupling constant
is more of interest since it does not contain phase space effects compared to the
width. Additionally, the right hand side of eq. (33) can be approximated by a
linear fit f(s) = b + cs, with b again the scattering length already introduced in
eq. (27). Thus it can be used as a consistency check of the calculations.
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Chapter 4

Implementation

In the previous chapters we have introduced the motivation and the necessary
mathematical tools for this work. This chapter gives the information on how the
methods have been implemented and how the calculations with the corresponding
error propagation have been carried out. All data for this work, if not already
present, has been created by Axel Maas using the same C++ routine as in [9, 31].
Therefore, when possible, comparisons of the results have been done for validation
of the analyzation procedure. The remaining analysis followed similar steps as
lined out in [36, 39, 40].

4.1 Simulation Details

The creation of configurations is done in a Monte Carlo simulation (see [32] for
an introduction) with different algorithms for the gauge links and the Higgs field
in eq. (12). For the gauge links a combination of a heat-bath step and five over-
relaxation sweeps has been used. In between each of these six gauge link updates
one Metropolis sweep for the Higgs field has been performed. Therefore a Gaus-
sian approval, tuned adaptively to a 50 % acceptance probability, has been used.
These 12 sweeps together constitute one single update for the field configurations.
The auto-correlation of the plaquette is of the order of 1 or less such updates.
Therefore, N (lattice size) such updates separate one measurement of the gauge
invariant observables, to reduce the auto-correlation time. For the thermalization
2(10N + 300) such updates have been performed before the first measurements
were done. Additionally, to reduce the noise and correlations many independent
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runs have been used for the analyzation.

4.2 Operators

As already pointed out previously, it is necessary to carefully choose the operator
basis for the variational analysis. The used operators should be multiplets of the
custodial symmetry, which can be used to classify the physical particles, i.e. the
Higgs- and W-Boson. Additionally, a procedure called smearing has been applied
on the elementary fields in eq. (12) before performing measurements.

4.2.1 APE smearing

To reduce the noise of the operators it is useful to apply a technique called smearing
on the fields before actual measuring the operators. There are several different
possibilities of smearing the fields, but the one we are using is called APE smearing
[41, 42]. Smearing can be applied multiple times to the operators and always yields
new independent ones. Therefore it is possible to construct multiple operators
from one field and thus can be used for a variational analysis. However, it should
be mentioned that after N smearing steps, wrap around effects occur and this
should be avoided. In our work a maximum of 4 smearing steps is applied before
calculating the operators. The APE smearing yields for the Higgs fields and the
gauge links after n ≥ 1 smearing steps with α = 0.55 and d = 4:

U (n)
µ (x) =

1√
det
(
R

(n)
µ (x)

)R(n)
µ (x)

(35)

R(n)
µ (x) =αU (n−1)

µ (x) +
1− α

2(d− 1)
×

×
∑
µ6=ν

[
U (n−1)
ν (x+ eµ)U (n−1)†

µ (x+ eν)U
(n−1)†
ν (x))+

+U (n−1)†
ν (x+ eµ − eν)U (n−1)†

µ (x− eν)U (n−1)
ν (x− eν)

]
(36)

φ(n)(x) =
1

1 + 2(d− 1)

[
φ(n−1)(x)+

+
∑
µ

(
U (n−1)
µ (x)φ(n−1)(x+ eµ) + U (n−1)

µ (x− eµ)φ(n−1)(x− eµ)
)] (37)
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4.2.2 Operator-Basis

For our analysis we considered a number of basic operators in the 0+
1 and the 1−3

channel of the custodial symmetry [16, 31]. These local operators are

OH(x) = φ†(x)φ(x) (38)

OW (x) = Tr
{
Uµ(x)Uν(x+ eµ)U †µ(x+ eν)U

†
ν(x)

}
(39)

O0+n
(x) =

3∑
µ=1

Tr

{
X†(x)√

det(X(x))
Uµ(x)

X(x+ eµ)√
det(X(x+ eµ))

}
(40)

O0+(x) =
3∑

µ=1

Tr
{
X†(x)Uµ(x)X(x+ eµ)

}
(41)

Oa
1−n µ

(x) = Tr

{
τa

X†(x)√
det(X(x))

Uµ(x)
X(x+ eµ)√

det(X(x+ eµ))

}
(42)

Oa1−µ(x) = Tr
{
τaX†(x)Uµ(x)X(x+ eµ)

}
(43)

with eqs. (38)–(41) in the 0+
1 channel and eqs. (42)–(43) in the 1−3 channel. They

can be interpreted as the following physical objects

• OH describes the two-Higgs bound-state considered as the physical Higgs
particle

• OW describes a W-ball and corresponds to the squared field strength tensor
in the continuum

• O0+
(n)

have no direct physical connections but yield a very stable signal [30]

• Oa
1−
(n)
µ
are the vector triplets and thus are considered as the physical W-Boson

These interpretations have to be understood in the sense of an expected large
overlap between the lattice operators and the physical observables. One needs to
keep in mind, that all states in a channel are contributing to all operators.

From the local operators the momentum space O(~p) versions have then been
obtained as described in eq. (22). From these operators we constructed the follow-
ing operator basis used for the variational analysis in the 1−3 channel

O1−3 a
1−10µ =

O
(0−4)a

1−µ

(
~0
)

O(0−4)a

1−n µ

(
~0
) (44)
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The used basis is rather small compared to the one in [31]. However, since we are
only interested in the ground state mass for this channel to calculate the phase
shift in the 0+

1 channel, this is sufficient. This has been validated by comparison
with previously calculated masses from a larger operator basis. For the 0+

1 channel
the basis is chosen much larger.

O0+1
1−90 =



O(0−4)
W (~p)

O(0−4)
ρ (~p)

O(0−4)

0+ (~p)

O(0−4)

0+n
(~p)

O(0−4)a

1−µ (−~p)O(0−4)a

1−µ (~p)

O(0−4)a

1−n µ
(−~p)O(0−4)a

1−n µ
(~p)


such that |~p|2 = 0

O(0−4)
W (−~p)O(0−4)

W (~p)

O(0−4)
ρ (−~p)O(0−4)

ρ (~p)

O(0−4)

0+ (−~p)O(0−4)

0+ (~p)

O(0−4)

0+n
(−~p)O(0−4)

0+n
(~p)

O(0−4)a

1−µ (−~p)O(0−4)a

1−µ (~p)

O(0−4)a

1−n µ
(−~p)O(0−4)a

1−n µ
(~p)


such that |~p|2 = 1, 2

(45)

where the numbers (0− 4) in the exponents on the right hand side indicate the
applied smearing steps. The different absolute momentum values need to be un-
derstood in ascending order, i.e. O0+1

31−60 corresponds to |~p|2 = 1. Additionally to
the operators above also the two (or more) particle operators have been considered

O0+1
91−180 =

(
O0+1

1−90

)2

(46)

to find the inelastic threshold.

The first thing to notice about eqs. (44)–(46) is that the final operator basis
always has zero momentum. Therefore the variational and the Lüscher analysis can
be done as described in the previous chapter, without taking relative momenta into
account. However, it still turns out to be useful to include the operators with back-
to-back momenta in the basis, since they are reducing the noise for the non-zero
momentum energy levels in the threshold region, which are the interesting ones
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for the phase shifts. Also zero momentum operator means that the imaginary part
should always be zero and therefore the complex conjugation in eq. (20) will not
change them. That the imaginary part needs always to be zero has also been used
to validate the calculations.

Second, intuitively a basis such large should be way too noisy for the variational
analysis to yield reliable results. However, in our calculations it seemed to be no
problem at all. Since there is no systematic approach to finding the best basis, i.e.
a subset of the operators, so far, this has also been tried to achieve in this work.
The first approach of simply excluding operators either showed no difference in the
spectrum or it got worse. This statement however needs to be taken very carefully
since of course it was not feasible to do a variational analysis for all 2180−1 possible
subsystems and compare them. Therefore only very noisy operators and those
which are expected to contribute at very high energies in the spectrum, like the
4-W operators 110 to 120 and above in the basis, were excluded. Other approaches
have not been tested very carefully since slightly improving the statistics yielded
much better results than a rather complicated preselection.

4.3 Spectrum Extraction & Lüscher Analysis

To clarify how the calculations in this work have been done, we will present now
one example calculation for the parameter set β = 4, κ = 0.2708 and γ = 1 as
used in eq. (12). This case has been chosen since it exhibits all necessary steps and
possible complications that occurred during calculations. Further, the statistics for
this set has already been very high (See appendix B) before producing additional
data for this work and thus has also been the prototype for our calculations.

Since the data for this work has been provided, we start with the operators
as stated in eqs. (44)–(46). Before calculating correlation matrices one needs to
remove the disconnected parts from the operators to get only the connected cor-
relators, since otherwise a constant would be added to eq. (20). This would make
the spectroscopic analysis very involved. Therefore each operator gets modified by

Õji (t, ~p) = Oji (t, ~p)− 〈Oi(t, ~p)〉 for j = 1, . . . , NC (47)

〈Oi(t, ~p)〉 =
1

NC

NC∑
j=1

Oji (t, ~p) (48)
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with i the index describing the operators in eqs. (44)–(46), j the configuration
number and NC the number of configurations used. For the operators with an
open gauge and space-time index in the 1−3 channel eq. (44) this has to be done
for each index individually. However, since the the expectation value eq. (48) for
gauge dependent objects should vanish, as motivated earlier, the operators should
stay the same. In practical calculations it turned out that the expectation value
of this operators is indeed at the order of the numerical precision. For practical
reasons we will now omit the tilde (∼) on top of the operators and implicitly
assume the disconnected parts to be subtracted.

For the calculation of the scattering properties the first step is to set the scale
for the given parameter set. Therefore we need to know the ground state mass
in the 1−3 channel which is calculated from a variational analysis. The correlation
matrix with applied time slice averaging is constructed by

C
1−3
ij (∆t) =

1

Nt

Nt−1∑
t=0

〈
O1−3 a
i µ (t)O1−3 a

j µ (t+ ∆t)
〉

=
1

Nt

Nt−1∑
t=0

C
1−3
ij (t,∆t) (49)

with C1−3
ij (t,∆t) the correlator for the time slice t. Here the time argument t+ ∆t

is taken modNt and to reduce numerical errors also the expectation value with
swapped time arguments has been averaged over. Since one configuration on its
own has no physical meaning we take the time slice correlators as the stochastic
variables and thus the error ∆Cij(∆t) of the correlation matrix is just the standard
error

∆Cij(∆t) =

√√√√ 1

Nt(Nt − 1)

Nt−1∑
t=0

[Cij(t,∆t)− Cij(∆t)]2 (50)

where the channel has been omitted since it does not make any difference and will
be applied in the same way for the 0+

1 channel later on.

To calculate the energy levels, the Nt matrices have been diagonalized with the
previously described preconditioning by the first time step Cij(0). The eigenvalues
λi(∆t) are therefore the eigenvalues of the generalized eigenvalue problem and are
always normalized to 1 for ∆t = 0. To calculate the errors for the eigenvalues we
also calculated the generalized eigenvalues for the matrices plus/minus the errors
given in eq. (50). However, since the diagonalization of a matrix is highly non-
linear it is possible that the calculated errors of the eigenvalues are smaller, larger
or twisted compared to the actual eigenvalue. Therefore it is necessary to sort
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Fig. 1: Correlator (upper) and effective energy (lower) plots for N = 24 in the
1−3 channel. Unphysical correlator values have been omitted. The effective energy
plot contains only the two lowest energy states. See text for details.

those three possible values for each eigenvalue λi(∆t) to get the error bounds.
Before calculating the effective Energy according to eq. (23) it is useful to get rid
off unphysical values for the disentangled correlators. The values are considered
as unphysical if they are either smaller than 0 or not monotonically decreasing
within the error bounds. That both those conditions need to be met can be easily
seen from the functional form of eq. (20) which does not allow for those cases.
Additionally when a value at time ∆t′ is unphysical all values at larger ∆t are also
omitted.

After this preselection is done we can plug in the values into eq. (23) and
calculate the energy levels for each lattice size N . The error of the effective energy
has been calculated from error propagation and is given by

∆Eeff

(
∆t+

1

2

)
=

∆C(t)

|C(t)|
+

∆C(t+ 1)

|C(t+ 1)|
(51)

which in our case has to be used for each of the eigenvalues λi(∆t) instead of
C(∆t).
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Fig. 2: Excited (upper) and ground state (lower) fits for N = 24 in the 1−3 channel.
Dashed lines are fits with error bounds of the fit indicated by ribbons. See text
for details.

For the analyzation of the ground state in this channel we always considered
the two lowest effective energies as shown in fig. 1 with relative errors smaller
than 50 %. The reason for also taking into account the second state is because it
is possible that the energy levels are crossing. To correctly identify which curve
corresponds to which energy level one needs to look at the eigenvectors of the
diagonalization. Usually the eigenvectors corresponding to a specific eigenvalue
should not change over time. A change in the eigenvector components means that
this is probably not the right eigenvalue for the energy level anymore. In this work
it was sufficient to order the effective energies for each time step individually. This
is probably due to the large basis which disentangles the states very well.

To extract the energy of the states the effective energies need to be fitted.
Therefore the effective energy curves have been fitted by the following model func-
tion for the correlator.

Cfit(∆t) = A1 cosh

(
m1

(
∆t− Nt

2

))
+ A2 cosh

(
m2

(
∆t− Nt

2

))
(52)
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with mi the energies in lattice units and Ai some coefficients. This form is simply
motivated by a two-state correlator as described in eq. (20), which should contain
the dominant ground level and a combination of all higher contaminations. For
the actual fitting process this correlator has been inserted in the effective energy
formula yielding a three parameter dependent fit function, which is expected to
be more reliable than fitting exponential behaviors

Efit
eff = ln

(
cosh

(
m1

(
t− Nt

2

))
+ A′2 cosh

(
m2

(
t− Nt

2

))
cosh

(
m1

(
t+ 1− Nt

2

))
+ A′2 cosh

(
m2

(
t+ 1− Nt

2

))) (53)

with the coefficient A′2 describing the relative contribution of both states.

The fitting procedure consisted of two steps. First, a simple one state fit has
been performed, i.e. fixing A′2 and m2 to 0, to get a rough estimate of the ground
state energy. To already exclude the higher state contaminations to some extent,
we used a linear increasing fit weight for the data points. These have been chosen
such that the first point at ∆t = 0.5 had a weight of 0.1 and the last accessible point
a weight of 1. The result of the first fit has then been used as a starting point to fit
the two-state behavior with the same weighting. Without this preconditioning the
problem is too ill-conditioned and the results would not be reliable. For almost all
cases the lowest state of the two-state fit stayed close to the one of the one-state
fit. The results for the two energy levels in fig. 1 are shown in fig. 2.

The errors of the fit parameters have been calculated by fitting also the upper
and the lower bounds of the effective energies using the same procedure. The
deviations of the fit functions for low energies in fig. 2 can be explained by only
using a two-state ansatz for the correlator and by the weighting of the data points.
However, for large ∆t values the fitted function and the data points agree very
well und thus the resulting fit parameter for the ground state is reasonable.

For the infinite volume mass this needs to be done for several different volumes.
In this case we used the lattice sizes N = {8, 12, 16, 20, 24, 28, 32}. Beyond N = 32

computing time becomes way too large, but since the lattice mass approaches the
infinite volume mass exponentially fast with the lattice size, as seen in eq. (27),
it is not necessary to consider even larger lattices. Also for the largest lattice,
usually the statistics were lower than for the other lattices and therefore the fit
results also got larger errors as can be seen in fig. 3.

The fit function used to calculate the infinite volume mass is modeled with
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Fig. 3: Extracted energy spectrum for the 1−3 channel over the inverse Lattice size
N . For fit details see text.

respect to eq. (27)
E0(N) = minf + a1e

−a2N (54)

with ai some fit parameters and minf the infinite volume mass. The errors of
the fit parameters have been calculated by the fitting routine. To assure that
the errors are large enough, again a weighted fit has been used, this time with the
weights given by the data point errors as is usually done. However, since the errors
are asymmetric the weights have been determined by the larger error of the two
directions.

This results in an infinite volume mass and inverse lattice spacing for the 1−3

channel of

m
1−3
inf = (0.152± 0.002) a−1 !

= 80.375 GeV ⇒ a−1 = 528 GeV (55)

which sets the scale of this theory (see table 1 in the following chapter for com-
parison).

For the scattering phase shift in the 0+
1 the same procedure needs to be repeated
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Fig. 4: Effective energy plot for N = 24 in the 0+
1 channel. Unphysical energy

values have been omitted. The effective energy plot contains only the two lowest
energy states. The correlator plot has been omitted, since it does not give any
additional informations. See text for details.

for a different correlation matrix. The full matrix is given by

C
0+1
ij (∆t) =

1

Nt

Nt−1∑
t=0

〈
O0+1
i (t)O0+1

j (t+ ∆t)
〉

=
1

Nt

Nt−1∑
t=0

C
0+1
ij (t,∆t) (56)

which is a symmetric matrix of size 180 × 180 and the operators are again the
connected ones (see eq. (47)). In this channel the before mentioned energy level
crossing occurs more often than in the 1−3 channel. However, most of the times
the eigenvectors were too noisy to make a clear statement on the energy levels.

In fig. 4 it can be already seen, that it is not clear if the energy level identi-
fication has been done correct for ∆t ≥ 2. Since we are mainly interested at the
region were ∆t is large the point at ∆t = 2.5 has been ignored for the fits of both
energy levels in fig. 5.

Combining the results from the 1−3 channel with the spectrum in the 0+
1 yields

the following ground state mass as obtained from fig. 6

m
0+1
inf = (0.2244± 0.0006) a−1 = (118.5± 0.4) GeV (57)

Thus the infinite volume mass in the scalar singlet channel lies in the physical-
Higgs region.

The resulting spectrum of the scalar singlet channel in fig. 6 shows qualitatively
good agreement with the expected spectrum. For large lattices, i.e. farther left
on the plot, the statistics have not been good enough for the fit routine to yield a
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Fig. 5: Excited (upper) and ground state (lower) fits for N = 24 in the 0+
1 channel.

Dashed lines are fits with error bounds of the fit indicated by ribbons. See text
for details.

conclusive separation of the ground state and the first scattering state. However,
for the smallest lattice the value is in perfect agreement with the expectation. Also
the two-particle bound state, giving the inelastic threshold, is identifiable by naive
state counting. It also seems, that depending on the lattice size, the first state
above the ground state to be found is either the elastic or the inelastic threshold.
For the intermediate lattice sizes the ground state and the scattering state are
very close and could not be separately identified. This should be however possible
to overcome by improving statistics or the fitting routine. The points above the
inelastic threshold are not of much interest for this work, but it is encouraging to
see them agree with the expected spectrum in most parts.

The problem with this data set, while being a perfect prototype for the energy
spectrum extraction, is that there is no significant data point in the threshold
region and thus a phase shift analysis is not possible. Also the naive finite mo-
mentum states already left the threshold region before the point N = 32, which
should give some points in the region if it were flatter. Therefore, it is necessary
to consider different parameter sets for a phase shift analysis.
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Fig. 6: Extracted energy spectrum for the 0+
1 channel over the inverse Lattice size

N . For fit details see text. Also the elastic threshold (black dashed), the inelastic
threshold (lower on of black dotted or dashed-dotted) and the two lowest finite
momentum scattering states (green and blue solid) have been added.

4.4 Lattice Parameters

Choosing the right parameter set for the analysis is a very important task and
needs to be carefully done. For this work we wanted the parameter sets to fulfill
several purposes and had to choose them such that

1. the theory is in the BEH-like domain, i.e. the ground state is in the 1−3

channel

2. the ground state of the 0+
1 channel can be classified as either a Higgs in the

light-, physical- and threshold-region of the phase diagram

3. there are at least some energy levels in the threshold region for our lattice
sizes

In fact the third point is the most important, but it is not directly predictable.
The idea therefore is to choose a suitable lattice spacing in a way that the finite
momentum states stay below the inelastic threshold up to the values reachable
with the affordable lattice sizes. To still assure the point two one needs to fix the
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ratio of the groundstate masses in the vector and the scalar channel and then find
a maximum lattice spacing. The upper bounds which have been found for the
lattice spacings in the different Higgs-regions are given by

• light-Higgs region: a−1 . 150 GeV

• physical-Higgs region: a−1 . 350 GeV

• heavy-Higgs region: a−1 . 450 GeV

• threshold-Higgs region: a−1 . 500 GeV

where it has been used that at least the first finite momentum state has a minimum
of two points (for the L = {32, 28} lattices) in the threshold region.

With the knowledge of this upper bounds for the lattice spacing and previous
phase space studies of the theory [31] it was possible to find parameters satisfying
all three criteria from above. These parameter sets have been analyzed as described
above and used for a phase shift analysis.

35



Chapter 5

Results

This chapter combines the findings of this work in the separate phase space regions
as described in the introductory chapters. The analyzed parameter sets have been
chosen as described previously and are listed in table 1 below. The used statistics
are listed in appendix B.

Tab. 1: Analyzed Parameter Sets

Set Name Region β κ γ α200 GeV a−1 \GeV N

Example physical 4.0000 0.2708 1.000 0.119 505 8:4:32
Energy 1 threshold 3.8000 0.2679 1.000 0.153 620 8:8:32
Energy 2 light 2.7984 0.2927 1.343 0.664 471 8:8:32
Energy 3 physical 2.7984 0.2927 1.317 0.605 453 8:4:32
Energy 4 threshold 3.8000 0.2736 1.000 0.128 448 8:8:32
Energy 5 threshold 3.4258 0.2922 1.380 0.157 395 8:8:32
Energy 6 threshold 2.7984 0.2954 1.239 0.492 323 8:8:32
Energy 7 physical 2.4964 0.2939 1.036 0.718 271 8:8:32
Lüscher 1 threshold 2.7984 0.2984 1.317 0.492 323 8:8:32
Lüscher 2 threshold 2.8859 0.2981 1.334 0.448 322 8:8:32
Lüscher 3 physical 4.0000 0.2850 0.970 0.219 309 8:4:32
Lüscher 4 physical 4.0000 0.3000 1.000 0.211 255 8:4:32

The parameters in the table are the expected phase space region, the lattice
parameters β, κ and γ, the weak coupling α200 GeV at the given minimal momentum,
the inverse lattice spacing a−1 from the 1−3 ground state masses and the used lattice
sizes written in the form Nl : Ns : Nu = {N = Nl + nNs | n ∈ N0 ∧N ≤ Nu }.
The values for a−1, α200 GeV and the expected region are the results of previous
investigations [31]. These can differ from the results shown here due to the different
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operator basis. However, the inverse lattice spacing should always be roughly the
same. Therefore the parameter sets are divided into two categories: Lüscher and
Energy. For those named Lüscher it has been possible to do a phase shift analysis,
while those named Energy do not contain data points in the threshold region. This
will be discussed for each case individually. Also it should be noted that the sets
do not follow a line of constant physics, which is already intended to be seen by
the different regions they are describing.

For each parameter set the spectra in the 1−3 and the 0+
1 channel have been

calculated as explicitly shown in the previous chapter for the set Example. Since
there is no Lüscher analysis possible this set will not be resumed here. For the
other sets it is then straightforward to calculate the phase shift in the scalar singlet
channel by plugging all data points from the threshold region into eq. (29) and
subsequently into eq. (30). For an error estimation of the phase shift the error
bounds of the energy levels in the threshold regions have also been used separately
to calculate phase shifts. This gives a rough estimate of the error region but still
leaves place for improvement (using for instance a Bootstrap method).

5.1 Energy Spectra

5.1.1 Energy Sets

For the parameter sets in the Energy part of table 1 we obtained the masses in
the 1−3 and the 0+

1 channel as listed below

Tab. 2: Mass results for the Energy parameter sets

Set Name am1−3
am0+1

mH \GeV a−1 \GeV Region
Energy 1 0.114± 0.003 0.200± 0.002 141± 1 705 heavy
Energy 2 0.151± 0.007 0.17 ± 0.06 91± 32 532 light
Energy 3 0.171± 0.003 0.228± 0.001 107± 1 470 light
Energy 4 0.177± 0.002 0.243± 0.001 110± 1 454 light
Energy 5 0.199± 0.004 0.287± 0.007 116± 3 404 physical
Energy 6 0.244± 0.006 0.29 ± 0.02 95± 7 329 light
Energy 7 0.286± 0.010 0.336± 0.003 95± 1 281 light

Comparing table 1 and table 2 we see that for all sets the mass in scalar singlet
channel became lower and thus falls into another region. Therefore also no phase
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Fig. 7: Parameter Set: Energy1. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

Fig. 8: Parameter Set: Energy2. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.
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Fig. 9: Parameter Set: Energy3. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

Fig. 10: Parameter Set: Energy4. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.
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shift analysis is possible since the inverse lattice spacings are too large for the newly
found regions. Except for the sets Energy1 and Energy2 the lattice spacings are
less than 10 % of the given values in table 1 and are usually within the range of the
error for the mass. The reasons for the large differences in the phase space regions
for the parameter sets can be various. First, the regions given in table 1 have been
obtained only from the L = 24 lattice and no infinite volume extrapolation has
been done. However, as can be seen in figs. 7–13 the fits are very flat and thus
this should not alter the results to this extent. In the vector triplet channel these
fits are not always flat. This explains the large difference in the inverse lattice
spacing for Energy1 and Energy2 since the scale is also set by the vector triplet
mass on the L = 24 lattice. The spectra and the fits of these sets are shown in
appendix C. Second, for the calculation of the ground state mass there has only a
very small operator subset been used (see [31]). Therefore the large basis used in
this work, disentangles the energy levels much more and thus the fitting has less
higher order contaminations, which explains that the mass becomes lower. Third,
it has to be noted, that probably the errors of the infinite volume extrapolations
are underestimated. This is the result of the weighted fit, which reduces the impact
of data points with large errors on the fit. However, by that also the calculated
error is less effected by those points and thus results in a small uncertainty region.
This can be seen in figs. 7–13, since the fit error does not always cover the error
bounds of all data points. Finally, also the low statistics and few lattice sizes used
for these parameter sets (compared to the Lüscher sets) alters the whole spectrum.
We chose to not improve the statistics for a further analyzation of these spectra,
since according to these results no phase shift analysis would be possible.

What also needs to be discussed are the outliers in figs. 7–13 which are located
close to zero energy. All of them have been excluded from the ground state fits
because of their unphysical nature. These low energy points are always due to one
of two reasons. For low energy points and small lattices, i.e. L = {8, 12} in fig. 10
and fig. 11, there were too few points for a reliable three parameter fit as shown
in eq. (53). Therefore, the fit procedure effectively turns it into a one parameter
problem by setting one energy level close to zero. The other low energy points
for larger lattices, i.e. L = {20, 24, 32} in figs. 7–11, are due to a similar problem
though of different origin. For these lattices the statistics were not good enough
for the fitting routine to find a sufficient solution for three parameters. Also in
this case one energy in the fit function is tuned to small energies and effectively
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Fig. 11: Parameter Set: Energy5. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

Fig. 12: Parameter Set: Energy6. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.
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Fig. 13: Parameter Set: Energy7. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

only one parameter is being fitted. Additionally this is being complicated by the
already mentioned energy level mixing. This usually became relevant for larger
lattices with low statistics and therefore only very few points in the effective energy
plots were usable for the fits. Summing it up, all low energy points are numerical
artifacts and do not correspond to low energy levels in this work and thus all these
parameter sets lie in the BEH-like domain of the phase space.

5.1.2 Lüscher Sets

For the parameter sets in the Lüscher part of table 1 we obtained the masses in
the 1−3 and the 0+

1 channel as listed below

Tab. 3: Mass results for the Lüscher parameter sets

Set Name am1−3
am0+1

mH \GeV a−1 \GeV Region
Lüscher 1 0.245± 0.004 0.276± 0.010 91± 4 328 light
Lüscher 2 0.245± 0.003 0.314± 0.007 103± 3 328 light
Lüscher 3 0.254± 0.001 0.372± 0.005 118± 2 317 physical
Lüscher 4 0.311± 0.002 0.503± 0.001 130± 1 259 physical
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Fig. 14: Parameter Set: Lüscher1. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

Fig. 15: Parameter Set: Lüscher2. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

43



CHAPTER 5. RESULTS

For this parameter sets all the inverse lattice spacings are in perfect agreement
with the ones in table 1. In this case the ground state in the vector channel
showed almost now deviation for the L = 24 lattice compared to the infinite
volume mass and thus the lattice spacings agree. Also again some regions differ
from the previously found ones, but since the inverse lattice spacings are small
enough, it is still possible to do the phase shift analysis. In figs. 14–17 we see
that for all data sets the finite momentum states leave the threshold region after
reaching the accessible area of our lattice sizes.

Again the same considerations from the previous section concerning the masses
apply here. One additional problem occurring for these sets is that for the larger
lattices it becomes more difficult to separate the ground state and the first scat-
tering state (i.e. the elastic threshold) in the fits. This is best seen in figs. 16
and 17, where the data points are tending towards the threshold for larger lat-
tices. However, this effect does not alter the calculation of the infinite volume
mass significantly since due to their larger errors they give a smaller contribution
to the fits. To reduce this effect, it would be necessary to increase statistics and
also consider more than only the two lowest energy states for fitting, as described
in the previous chapter. However, in these cases the the third state has been too
noisy for fitting and thus has not been done.

5.2 Lüscher Analysis

From the data points in figs. 14–17 in the threshold region it is now possible to
obtain the phase shift information using eq. (29) and eq. (30). The generalized
zeta function has been evaluated as described in appendix A.

The resulting phase shift for the different parameter sets are shown in fig. 18.
In all figures the energy axis is limited to the threshold region, because outside
of this region the Lüscher analysis does not work. Therefore some error bars are
leaving the plot pane if the energy level also leaves the elastic region. For instance
compare fig. 16, where two error bars cross the elastic threshold, with fig. 18c. The
error bars on the y-axis are a bit more involved. Due to the periodic behavior of
the tan-function in eq. (30) it is not possible to have phase shifts larger than π or
smaller than 0. This periodicity has to be reflected onto the error bars. Therefore,
a value whose errorbar exceeds π by ∆e is also compatible with being in the range
[0,∆e]. This periodic condition has also been implemented in fig. 18.
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Fig. 16: Parameter Set: Lüscher3. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.

Fig. 17: Parameter Set: Lüscher4. Extracted energy spectrum for the 0+
1 channel

over the inverse Lattice size N . Also the elastic threshold (black dashed), the
inelastic threshold (lower on of black dotted or dashed-dotted) and the two lowest
finite momentum scattering states (green and blue solid) have been added.
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(a) Parameter Set: Lüscher1 (b) Parameter Set: Lüscher2

(c) Parameter Set: Lüscher3 (d) Parameter Set: Lüscher4

Fig. 18: Phase shifts in rad for the given parameter sets in the 0+
1 channel over

the Energy in lattice units. The x-axis is limited to the threshold region while
the y-axis is periodic in π. For details see text. The black dashed line indicates a
phase shift value of π/2.

In fact there is no point in the threshold region for Lüscher1 and thus no points
in fig. 18a. However, currently higher statistics are produced and it is expected to
yield some points in this region.

For Luescher2, as shown in fig. 18b, there are only two points which are not
very reliable due to the large errors. Though, it seems that the phase shift is not
crossing π/2 and thus no resonance is found for this parameter set.

The last two parameter sets Lüscher3 and Lüscher4 are quite different. Al-
though again the error bars are relatively large, there are points above π/2. For
Lüscher3 in fig. 18c there is one point in the upper part of the plot and the er-
ror bars are not compatible with values below π/2. To verify that this point is
indeed in the error range more statistics is needed. However, without some points
in the intermediate energy range of the threshold region it is not possible to ex-
actly calculate the position and the width of the resonance without very large
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uncertainties.

In the Lüscher4 case there are enough points in the interesting region and
also one very stable point is located near π/2 which should make it possible to
locate the position of the resonance very clear. To verify that this is indeed a
resonance it is necessary to clarify the phase shift values of the other points in the
threshold region. Since they are all compatible with values above and below π/2

it is not possible to make a conclusive statement about the location and width of
the possible resonance.

Since, all datasets are inconclusive with the current amount of statistics it
is also not possible to do the fits for the coupling and decay width as stated in
eq. (33) and eq. (34). However, with improved statistics these sets could exhibit
a resonance for a physical-Higgs (Lüscher3 and Lüscher4 ), while Lüscher2 also
seems to be a parameter near to the physical-Higgs region where no resonance
occurs.
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Conclusion

In this thesis we have investigated the energy spectrum of a SU(2)-Yang-Mills-
Higgs theory in the scalar singlet channel for various phase space points. Therefore
we considered genuinely gauge-invariant operators in the scalar singlet 0+

1 and
the vector triplet 1−3 channel of the custodial symmetry, where the groundstate
represents the physical Higgs-Boson and W-Bosons of the Electroweak interaction
respectively. This has been done by using a variational analysis for suitably large
operator bases in both channels as shown in section 4.2.2.

The obtained groundstate masses in the vector triplet channel were all in agree-
ment with previous studies in [31] as can be seen table 2 and table 3. This shows
that using a much a smaller basis than the one in [31] is already sufficient, if one
is only interested in the ground state, as expected. Additionally, also for most
parameter sets it is not necessary to do the infinite volume extrapolation for the
mass, since in most cases the masses on the largest lattices coincided with the
infinite volume quantities. Nevertheless, this should always be checked and the
finite volume mass has to be considered only as a rough estimate of.

In the scalar singlet channel the groundstate masses differed from previous
investigations and always got smaller as can be seen by comparing the phase space
regions in table 1 with table 2 and table 3. This is mainly due to two reasons.
First, in this work we used a very large operator basis in this channel. Therefore
the effective energy curves contains less contaminations from higher energy levels
and thus gets flatter. By that the masses can be extracted more stable and are
usually smaller than the ones obtained from smaller operator bases. Second, we
also have used in this channel an infinite volume extrapolation for the masses
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and thus the infinite volume mass is smaller or equal to the mass obtained on the
largest lattice. Again we want to point out, that all regions and masses in previous
investigations have been obtained from the N = 24 lattice.

For some parameter sets it has been possible to do a Lüscher analysis as is
shown in section 5.1.2 and to obtain phase shift values (see fig. 18) in the elastic
region of the energy spectrum. The results from these calculations are inconclu-
sive by now, since the error bars do not permit to clearly identify the behavior.
However, from the present amount of statistics it seems that a resonance above
the elastic threshold is possible for the investigated theory. This is indicated by
the phaseshift crossing the value π/2 in fig. 18c and fig. 18d. To verify that this is
indeed the case further investigations need to be carried out.

To sum it up, we have shown in this work that the obtained energy spectrum in
the scalar singlet channel of the SU(2)-Yang-Mills-Higgs theory for gauge-invariant
composite operators (i.e. custodial multiplets) coincides with the spectrum from
standard perturbation theory. By simple state counting there appeared no addi-
tional stable states in the spectrum. However, the results of this work also suggest
that it is possible to find resonances above the elastic threshold.

For future computations on this work, it would be necessary to first improve
statistics for the cases where a Lüscher analysis has been possible. Additionally
also the error estimation could be improved by applying some sort of Bootstrap
methods. This may already be sufficient to reduce the uncertainties in the phase
shift values. For the cases where resonances appear the next step would be to
repeat these calculations along lines of constant physics. From these results one
can calculate the mass, the width and the coupling of the resonance as pointed
out in section 3.3.2. These possible resonances need to be studied very carefully,
since otherwise if they show up in experiments they could be falsely identified as
non-standard-model particles.
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Generalized Zeta-function Zd
lm

(
r, q2

)
Here we want to present the analytical continuation and numerical evaluation of
the zeta function Zd

lm(r, q2) defined in eq. (31). This has already been discussed by
Lüscher in [11, 13] and on several other occasions [37, 43] for different system, i.e.
moving reference frames. However, we follow here [44], where a faster converging
version is presented. Additionally, it turned out that the final formula given in
[44] for the l = m = 0 and ~d = ~0 case includes a typographical error. Therefore,
we will present now the derivation of a numerically stable, analytically continued
zeta function in the rest frame for the case of spinless particles, following [44]. For
comparison we will also state the final, slower converging formula derived in [37].

The definition of the zeta function Zd
00(r, q2) is

Z~d00

(
r, q2

n

)
=

1√
4π

∑
~x∈P~d

1

(~x2 − q2
n)r

(58)

P~d =

{
~x ∈ R3

∣∣∣∣∣ ~x = ~m +
~d

2
, ~m ∈ Z3

}

and takes on finite values for Re{r} > 3/2. For the scattering phase shift formula
in eq. (30) we need r = 1 and thus an analytic continuation. First we split the
sum into two parts

∑
~x

1

(~x2 − q2
n)r

=
∑
~x2<q2n

1

(~x2 − q2
n)r

+
∑
~x2>q2n

1

(~x2 − q2
n)r

(59)

with ~x ∈ P~d. For the second sum, the denominator is always larger zero and thus
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it is possible to rewrite it in the following way

∑
~x2>q2n

1

(~x2 − q2
n)r

=
∑
~x2>q2n

1

Γ(r)

∫ ∞
0

dt

(~x2 − q2
n)

(
t

~x2 − q2
n

)r−1

e−t =

=
1

Γ(r)

∑
~x2>q2n

∫ ∞
0

duur−1e−u(~x
2−q2n) =

=
1

Γ(r)

∑
~x2>q2n

[∫ 1

0

duur−1e−u(~x
2−q2n) +

∫ ∞
1

duur−1e−u(~x
2−q2n)

]
=

=
1

Γ(r)

∫ 1

0

duur−1euq
2
n

∑
~x2

e−u~x
2 −

∑
~x2<q2n

1

(~x2 − q2
n)r

+
r∑
j=1

1

(s− j)!

(60)

where the second term in the last line exactly cancels the first term in eq. (59).
For the first term we can use Poisson’s summation formula∑

~n∈Z3

f(~n) =
∑
~n∈Z3

∫
d3r f(~r)ei2π~n~r (61)

and by integrating over ~r and explicitly inserting ~x from eq. (58) we arrive at

1

Γ(r)

∫ 1

0

duur−1euq
2
n

∑
~x2

e−u~x
2

=
1

Γ(r)

∫ 1

0

duur−1euq
2
n

(π
u

) 3
2
∑
~m∈Z3

(−1) ~m
~de−

π2 ~m2

u

(62)
The divergence at r = 1 is due to the ~m = ~0 term in the sum. Splitting the sum
in a divergent and a finite part finally allows us to separate the divergence and to
analytically continue the function∫ 1

0

duur−1euq
2
n

(π
u

) 3
2

= π
3
2

∞∑
k=0

(q2
n)
k

k!

∫ 1

0

duur−
3
2

+k−1 = π
3
2

∞∑
k=0

(q2
n)
k

k!

1

r + k − 3/2

(63)
which only works for r > 3/2. However, the right hand side takes a finite value
for r = 1 and thus can be used for continuation. The final expression for the zeta
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function for r = 1 is

√
4πZ~d00

(
r, q2

n

)
=
∑
~x2

e−(~x2−q2n)

(~x2 − q2
n)

+ π
3
2

∞∑
k=0

(q2
n)
k

k!

1

k − 1/2
+

+

∫ 1

0

du euq
2
n

(π
u

) 3
2
∑
~m∈Z3

′
(−1) ~m

~de−
π2 ~m2

u (64)

The first term here is due to the heat kernel regularization used to make the
sum convergent by analytical continuation. The summation

∑
~m∈Z3

′ intends that
~m = ~0 has been left out.

Inserting also ~d = ~0 into the formula yields finally a numerically stable fast
converging representation of the generalized zeta function as needed in eq. (30).

√
4πZ~d00

(
r, q2

n

)
=
∑
~m∈Z3

e−( ~m2−q2n)

( ~m2 − q2
n)

+ π
3
2

∞∑
k=0

(q2
n)
k

k!

1

k − 1/2
+

+

∫ 1

0

du euq
2
n

(π
u

) 3
2
∑
~m∈Z3

′
e−

π2 ~m2

u (65)

Note, that here the first sum does include ~m = ~0 not as stated in [44]. That this
is indeed the correct form can be seen by comparison with [37, 43].

The implementation used in this work follows eq. (65) and has been verified
by comparison with values obtained as described in [37]. In this paper a different
expression for eq. (63) is given by∫ 1

0

duur−1euq
2
n

(π
u

) 3
2

= −2π
3
2 +

∫ 1

0

du
(
euq

2
n − 1

)(π
u

) 3
2 (66)

and both yielded numerically the same results but the integral version converged
much slower. Additionally the zeros of the generalized zeta function have been
compared with those stated in [39] and they agreed.
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Statistics

In the following table the used amount of statistics for each parameter set accord-
ing to table 1 is shown. The measurement of one configuration has always been
separated as described in section 4.1. For Lüscher3 the datasets for N = 28 have
been corrupted and could not be used for the analyzation.

Tab. 4: Number of used configurations for the Parameter Sets

N 8 12 16 20 24 28 32
Example 95616 85558 81270 86760 172104 79638 12118
Energy 1 95616 - 81270 - 14325 - 11027
Energy 2 122160 - 119168 - 144053 - 17595
Energy 3 107488 121344 106848 91200 220837 87570 14425
Energy 4 123152 - 119840 - 43375 - 15798
Energy 5 92364 - 82390 - 131803 - 17339
Energy 6 81360 - 74140 - 98156 - 16745
Energy 7 162305 - 159400 - 93543 - 29331
Lüscher 1 137265 - 127990 - 121872 - 19665
Lüscher 2 208274 - 149740 - 107923 - 18343
Lüscher 3 291968 86460 259489 130640 199023 - 19772
Lüscher 4 464912 147122 238648 167890 232215 109667 29749
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Vector Channel Spectra

In this appendix we present the additional calculated energy spectra in the 1−3

channel for the data sets with large discrepancies compared to previous studies.
The parameter sets are named as stated in table 1.

Fig. 19: Parameter Set: Energy1. Extracted energy spectrum for the 1−3 channel
over the inverse Lattice size N .

In fig. 19 we see, that the energy levels show a strong volume dependency and
therefore the masses at the used lattices differ from the infinite volume mass. The
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Fig. 20: Parameter Set: Energy2. Extracted energy spectrum for the 1−3 channel
over the inverse Lattice size N .

full fit results according to eq. (54) for this parameter set are

minf = 0.114± 0.003 a1 = 1.504+0.14
−0.13 a2 = 0.197+0.010

−0.009 (67)

which yields for L = 24

M(L = 24) =
(
0.1273+0.008

−0.007

)
a−1 ⇒ a−1 = 631 GeV (68)

and would set the scale. This inverse lattice spacing is again in perfect agreement
with table 1 and explains the discrepancy in table 2 for the set Energy1.

In fig. 20 we see, that the energy levels show also a strong volume dependency
and therefore the masses at the used lattices differ again from the infinite volume
mass. The full fit results according to eq. (54) for this parameter set are

minf = 0.151± 0.007 a1 = 1.69± 0.23 a2 = 0.19± 0.02 (69)

which yields for L = 24

M(L = 24) = (0.17± 0.02) a−1 ⇒ a−1 = 472 GeV (70)
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and would set the scale. This inverse lattice spacing is again in perfect agreement
with table 1 and explains the discrepancy in table 2 for the set Energy2.
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