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Abstract

The objective of this bachelor thesis is the study of possible Higgs-PDFs as well as the
Higgs contingent in the proton, which is postulated by a quantized, non-abelian gauge
theory with an active Brout-Englert-Higgs effect. This theory leads to a formulation
with bound states, when treated non-perturbatively. For this reason, the general event
generator HERWIG++ will be used to simulate the proton-proton-collisions at the LHC,
focussing on the two final states most sensitive to the Higgs (tt̄ and tt̄Z). The results
are then plotted and analysed in order to find the highest possible amount of Higgs in
the proton and the corresponding form of the Higgs-PDF.
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1. Introduction

Identifying symmetries is the aim of particle physics. Symmetries are expressed by an
invariance of the action integral and Noether’s theorem states that every symmetry in
the action corresponds to a conserved quantity of the theory. We can distinguish between
space-time symmetries and internal symmetries. Latter ones are the basis of gauge the-
ory. The principle of gauge theory reaches back to Einstein’s dream of a unification of
all fundamental forces in nature. Based on his special and general theory of relativ-
ity, Hermann Weyl proposed in 1919 his idea of gauge invariance. Although his initial
theory failed, the idea of a local gauge symmetry survived, since Maxwell’s equations
are invariant under such gauge transformations and those same turn out to be a very
useful mathematical construct to simplify otherwise difficult to solve physical problems.
The final breakthrough of gauge theories occurred when Geradus ’t Hooft proved in the
1970s that Yang-Mills theories (non-abelian gauge theories) are renormalizable even if the
symmetry is spontaneously broken. Nowadays modern particle physics is inconceivable
without this mathematical stroke of genius and the all too well known standard model
(SM) of particle physics is also a gauge theory with the gauge group SU(3)×SU(2)×U(1).

In this thesis, we will be concentrating on a quantized, non-abelian gauge theory with
an active Brout-Englert-Higgs effect, which requires, using non-perturbative methods, a
formulation with composite states. The aim is to simulate the proton-proton-collisions at
the LHC (CERN) to formulate predictions that could substantiate the thesis statement.
For this reason, we will be looking at possible forms of a Higgs-PDF-function for a Higgs
in the proton.

In the first “theoretical” part we will be covering the underlying concept as well as the
importance of the Higgs concerning this matter. Accordingly, for this purpose, there will
be given a more general insight in event generators and the concept of PDFs.

In the subsequent "technical" part the details of the simulation with HERWIG++ will
be discussed and the required Feynman diagrams illustrated.

The results of our studies can be seen in chapter 4, followed by a final summary including
an outlook for future theses.
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2. Theoretical Part

2.1. Theory

This first part should give a brief insight in the theory and motivation behind the attempt
of finding a suitable Higgs-PDF for proton-proton-collisions. For further information, I
would like to refer to

[1] A. Maas, (2017), 1712.04721

[2] Master thesis; Simon Fernbach; “Higgs-PDF study in proton-proton collisions”

A common mathematical formalism to insert redundant degrees of freedom in the La-
grangian of a field theory is the formulation as a gauge theory. Since the fields themselves
are not directly measurable, but some of the quantities are, different configurations of a
field can lead to identical observable quantities. The transformation between such fields
are called gauge transformations, and the unchanged quantities are then gauge-invariant.
The physics, however, may not depend on such transformations and therefore has to be
gauge-independent.

Formulating the theory to be gauge-independent is, relatively spoken, easy for abelian
theories, because in this case the field strength tensor is gauge-invariant (e.g.: QED). On
the other hand, non-abelian theories have a gauge-variant field strength tensor and hence
the theory cannot be formulated in terms of equivalents of electric/magnetic fields and
charge since, as a consequence, they are not physically observable. The standard model
is such a non-abelian gauge theory with the symmetry group SU(3)×SU(2)×U(1) and
a total of 12 gauge bosons (one photon, 3 weak bosons and 8 gluons).

For quantum theories the gauge theory has to be quantized. As a result, some of the
symmetries of the classical theory cannot be maintained and we obtain anomalies:

• Scale anomaly: breaks conformal symmetry;

• Chiral anomaly: violates the conservation of the axial current; e.g.: Adler-Bell-
Jackiw anomalies; as a result, the neutral pion decays into two photons

• Gauge anomaly: have to be extinguished for a valid gauge theory

There are several methods for quantization, inter alia, canonical ones and ones based
on the path integral formalism. To actually calculate any quantities of the theory one
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2. Theoretical Part

can distinguish between perturbative schemes (cf. [3] for further information) and non-
perturbative schemes (e.g.: lattice gauge theory) to do so. In our case, a path integral
formulation was used. As a consequence, the elementary fields and correlation functions
are gauge-variant. In perturbation theory this is fixed by the BRST symmetry, but for
a non-perturbation theory, due to the Gribov-Singer ambiguity, we have to introduce
composite fields/ bound states to regain gauge-independence.

A good candidate to form such composite states is the Higgs, as it is an uncharged, weak
isospin-doublet particle with Spin zero. To calculate the masses of the bound state, one
can apply the “gauge-invariant perturbation theory”, a method developed by Fröhlich,
Morchio and Strocchi (FMS). The precondition for its use is an active Brout-Englert-
Higgs (BEH) effect. The basic rules of the concept can be described in the following
steps [1]:

1. Formulating gauge-invariant operators and forming the correlation functions (e.g.:
propagator)

O(x) = (φ†φ)(x) ................. operator with φ(x) the Higgs field (2.1)

〈O†O〉 ................. propagator ................... (2.2)

2. Gauge fixing with a non-vanishing vacuum expectation value: in this case ‘t Hooft
gauge

φ(x) = v + η(x) ................. ‘t Hooft gauge with fluctuation field η (2.3)

3. Expanding the Higgs field (if contained) around fluctuations

〈O†(x)O(y)〉 = (2.4)

= v2〈η(x)η(y)〉+ (2.5)

+ v〈η†(x)η†(y)η(y) + η†(y)η†(x)η(x)〉+ 〈η†(x)η(x)η†(y)η(y)〉 (2.6)

4. Apply perturbation theory on the right-hand side of equation (2.4)

Non-perturbatively only the sum of (2.5) and (2.6) is physical, because of BRST sym-
metry breaking. Standard perturbation theory, comparatively, would mean to keep only
(2.5) and expand this in a perturbative series.
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2. Theoretical Part

Applying the gauge-invariant perturbation theory on scattering processes, this implies
that we can identify the scattering states with bound states and hence they can be seen
as resonances in cross-sections. While in LO (leading order) these resonances would
match the elementary particle resonances, for higher orders of perturbation theory we
can expect to see the impact of the bound states.

Easier than to actually calculate the right-hand side of equation (2.4) by using lattice
theory, is the use of PDFs (parton density functions), which are sufficient for our purpose,
since we are only interested in the question, if a Higgs exists in the proton and what the
impact of its contribution would be. Because of the role it plays in the collisions at the
LHC, we will take a closer look at the proton, which, as a baryon, cannot be described
gauge-independently in the standard model only using quarks. The simplest way to gain
gauge-independence is by adding a Higgs. For this reason, we will study proton-proton-
collisions, which will be simulated using the event generator HERWIG++. In the next
section there will be given a more general insight in event generators, followed by an
introduction to PDFs.

2.2. Event Generator

Event Generators are specific programs that create high- energy events in a simulation.
They represent an intermediate step between theoretical theses, first-principle calcula-
tions and experiments. The most popular general-purpose generators at the moment are
HERWIG(++) and PYTHIA. In course of this bachelor’s thesis, there will be made use
of HERWIG++, which, in contrast to its predecessor version HERWIG, is written in
C++ and has several improvements regarding the physics as well as the structure of the
simulation. Most notable in this context is the extension of the hadron-hadron collisions.

Figure 2.1.: comparison between real life and virtual reality (according to Sjöstrand, Tor-
björn [4])
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2. Theoretical Part

In Figure 2.1 the way from producing events to analyze them is shown as a comparison
of reality and virtual reality. The Event Generator takes the place of the machine in
producing the events. Afterwards, the produced data is handed over to a detector sim-
ulation equivalent to the detector in real life, which observes and stores the events. The
stored data is then passed on to the event reconstruction software and later to programs
for physics analysis, where the real and simulated data is compared. It is able to choose
a direct way from the virtual event production to the analysis software, which is quicker,
but also a rather dirty way. In the picture above there are some familiar examples for
each step cited in black fonts.

If we take a closer look at the event production itself, we have to deal with the details
of the structure of an event first. Imagine in our case two protons moving towards each
other. Since protons belong to the group of hadrons (baryons, to be precise), they consist
of several components: quarks, gluons and, based on the thesis considerations, a Higgs.

The distribution of these constituents of the two incoming beams is described by the
parton density/distribution function.

Figure 2.2.: incoming beams

The constituents of the incoming beams react with each other by a hard subprocess,
which is described by matrix elements (ME). As a result of the collision of the partons,
new particles are generated depending on the type of incoming particle.

Figure 2.3.: hard subprocess between an up-quark and a gluon
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Since many of these particles are unstable, they decay soon after. As a consequence,
these so-called resonance decays, that are correlated with the hard subprocess, have to
be considered in the calculations. This can be done perturbatively. (cf. Figure 2.4)

Figure 2.4.: resonance decay: The W-boson decays in a quark-antiquark-pair

This simple case is complicated by the fact, that the incoming particles carry colour
charge, which results in the possibility of radiation of gluons (, just as charge-carrying
particles can radiate photons). This so-called initial-state radiation produces space-like
parton showers.

As well as the incoming particles, also the outgoing particles can radiate. We call this
final-state radiation, which ends up as time-like parton showers.

Figure 2.5.: initial- (orange) and final-state (blue) radiation
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2. Theoretical Part

The outgoing particles (including the remnant beams) are connected by colour-confinement
strings. After a limited distance, they begin to form primary hadrons with their colour-
partner (hadronization). Most of these hadrons are unstable and decay further.

Because protons do contain several partons and a lot more are produced through initial-
and final-state radiation, it is possible that it comes to multiple parton-parton interac-
tions.

Quantum mechanics tells us that every possible event is going to happen, with a higher or
lower probability. To generate the events as close to nature as possible, event generators
make use of the Monte Carlo (MC) method. The final cross-section is then calculated
from the cross-section of the hard subprocess multiplied by the total probability for the
event, whereby the latter one is the product of the single probability for each of the steps
described above.

σfinal state = σhard subprocess · Ptotal; hard subprocess → final state (2.7)

where,

Ptotal =
∏
i

Pi = Presonance decay · Pinitial-sate radiation · Pfinal-sate radiation·

Pmultiple interactions · Premnants · Phadronization · Pdecays (2.8)

Sometimes it is better to choose a specialised generator, like in our case MadGraph,
which produces the hard subprocess, and then use a Les Houches Interface (based on
the Les Houches Accords) to include the output in the general-purpose generator (here:
HERWIG++), that makes the further calculations.

In the next section, the importance of PDFs and the assumptions that have been made
for the Higgs-PDF will be described.

2.3. Parton density function

PDF is short for Parton Density/ Distribution Function. The name parton was intro-
duced by Richard Feynman in the 1960s to describe the inner structure of hadrons, which
turned out to be quarks and gluons. Nowadays the word parton is generally used for any
constituents that make up a hadron, including virtual states, such as quark-antiquark-
pairs.

Analogous to the case of elastic scattering, the cross-section for an inelastic scattering
depends upon two so-called structure functions F1 and F2, describing the magnetic and

7



2. Theoretical Part

electrical interaction. F2 is the Fourier transform of the charge distribution and for
Spin-12 particles is connected to F1 via the Callan-Gross relation:

F2(x) = 2xF1(x) (2.9)

Here x is the Lorentz-invariant Bjorken x scaling variable, defined by:

x =
Q2

2Mv
(2.10)

describing the momentum fraction of the parton. Q2(= | − q2|) is the squared four-
momentum-transfer, M the mass and v the energy loss between the scattering particles.
For the inelastic scattering, the invariant Mass W is greater than M , Q2 is less than
2Mv and hence 0 < x < 1. In the special case of elastic scattering W = M , Q2 = 2Mv
and therefor x = 1.

In QCD (quantum chromodynamics) scale-independence is not necessarily given anymore
and hence the structure functions will be written as Fi(x,Q), with Q =

√
Q2 the scaling

variable. In leading-order (LO) approximation we obtain:

Fi(x,Q) =
∑
a

cai fa(x,Q) (2.11)

Here cai is the coupling constant of a parton a and fa is the parton density function of
this parton, which describes the probability of finding a parton a at momentum fraction
x and probing scale Q.

The sum over all parton momentums has to equal the total hadronic momentum and
therefore we can formulate a completeness relation, that is independent of the viewed
energy scale Q:

∑
a

1∫
0

xfa(x,Q)dx = 1 (2.12)

The total cross-section is then calculated by convoluting the patronic cross-sections with
the PDFs:

σtotal =
∑
a,b

∫
dx1dx2f

A
a (x,Q)fBb (x,Q)⊗ σa,b (2.13)

While the evolution of the PDFs is perturbative and can be obtained by solving the
DGLAP equations, the initial conditions of the PDFs are non-perturbative and not yet
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2. Theoretical Part

calculable. Though, recently some progress has been made in the field of lattice QCD
using the large-momentum effective field theory (LaMET) framework.

In general, the procedure of finding the PDF starts with a parametrisation of the same
at a low scale, whose evolution is then calculated with the DGLAP scheme and fitted to
the experimental data. For the parametrisation one can make a good guess or use the
neural network PDF (NNPDF) methodology. Latter one, at first sight, seems to avoid
an arbitrarily chosen function as a starting point but does have some ambiguity in the
procedure itself.

In this Bachelor thesis we assume that the Higgs-PDF resembles the form of a gluon-PDF:

fHiggs = xa · (1− x)b (2.14)

, varying the variables a from -2 to 2 and b from 0 to 2 with a step width of 0.1.

In comparison, a typical gluon-PDF looks as follows:

fgluon = (2, 62 + 9, 17x)(1− x)5,9 (2.15)

Figure 2.6.: PDFs of gluon (xfg), up-quark (xfu), down-quark (xfd) and strange-quark
(xfs)

1

1https://en.wikipedia.org/wiki/Parton_(particle_physics)#/media/File:CTEQ6_parton_distributio
n_functions.png (02.08.2019; 11:35h)
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3. Technical Part

In this technical part we will be discussing the details of the usage of HERWIG++ for our
purpose. As already mentioned, we are interested in proton-proton-collisions, simulating
the actual events at the LHC. After HERWIG++ is running as a virtual environment
on the computer, we first have to build the Rivet (Robust Independent Validation of
Experiment and Theory) Analysis Plugin and then read in the input files (HH.in, GH.in,
sm.in) for the different subprocesses. This produces the output files (HH.run, GH.run,
sm.run) that contain all the details of the event generator we have just set up before. By
running these files (command: Herwig run _.run -N number), we can finally generate the
events and with the command line part -N number, the number of events can be varied.

For time-related reasons, we ran the program with only 1000 events. Even though this
produces useful data, we have to take into account the high uncertainty that comes with
our output when analyzing the results.

Since the Higgs strongly interacts with the top-quark [5], we will be focusing on the
following process: pp→ tt̄.

Adding a Z-boson to the final state makes the process more sensitive to the Higgs, due
to a number of extra Feynman diagrams with HHH and ZH coupling. Therefore, we will
also take a look at: pp→ tt̄Z.

In the Appendix (A) one can find the code of the PYTHON script and bash file, that
manage the control of the event generator as well as the calculation and plot of the
cross-sections over the percentage of Higgs in the proton. In the following table, the used
setting parameters are listed for a better overview.

Table 3.1.: setting parameters
process pp→ tt̄ pp→ tt̄Z

Number of events 1000

Form of the Higgs-PDF
fHiggs = xa · (1− x)b

a [-2;2]
b [0;2]

Experimental error 3% 13%

In Figure 3.1 to 3.12 you can see the Feynman diagrams (LO) produced by the specialized
generator MadGraph for the tt̄ and the tt̄Z process, respectively.
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3. Technical Part

Figure 3.1.: Feynman diagrams for uū→ tt̄

Figure 3.2.: Feynman diagrams for dd̄→ tt̄

Figure 3.3.: Feynman diagrams for cc̄→ tt̄

Figure 3.4.: Feynman diagrams for ss̄→ tt̄
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Figure 3.5.: Feynman diagrams for bb̄→ tt̄

Figure 3.6.: Feynman diagrams for gg → tt̄
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Figure 3.7.: Feynman diagrams for uū→ tt̄Z
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Figure 3.8.: Feynman diagrams for dd̄→ tt̄Z
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Figure 3.9.: Feynman diagrams for cc̄→ tt̄Z
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Figure 3.10.: Feynman diagrams for ss̄→ tt̄Z
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Figure 3.11.: Feynman diagrams for bb̄→ tt̄Z
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Figure 3.12.: Feynman diagrams for gg → tt̄Z
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4. Results

From the raw output data calculated by HERWIG++, the intersections have been cal-
culated, that mark the limit of allowed Higgs percentage within the proton without
changing the cross-sections within the current experimental error bounds (c.f. Table
3.1). An exemplary plot is given in Figure 4.1 for better understanding.

Figure 4.1.: example plot

Figure 4.1 shows an example of how the cross-section plotted over the amount of Higgs in
the proton as a percentage could look like. We can see that there are two intersections in
the permitted range. The two red dashed/dotted lines symbolize the experimental error
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4. Results

bounds, while the grey coloured band around the cross-section function represents the
error made by the MC (Monte Carlo) simulation of HERWIG++. The errors occuring
due to the event generator depend on a set number of events and will hereafter be referred
to as “simulation errors”.

4.1. Intersections

Because of the strong graphics toolbox, the three-dimensional plots have been made with
MATLAB instead of PYTHON.

Let us first take a look at the results of the tt̄-process, which are shown in the figures
below.

Figure 4.2.: interpolation over intersection-points for the process pp→ tt̄
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4. Results

Figure 4.3.: intersection-points for the process pp→ tt̄ including simulation errors

Figure 4.4.: intersection-points for the process pp→ tt̄ including experimental errors
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4. Results

In order to get a better overview of the distribution of the values for allowed Higgs
percentage, a histogram plot for Figure 4.3 and Figure 4.4 has been made:

Figure 4.5.: histogram plot for the visualisation of the distribution of c-values for the
process pp→ tt̄

We can summarize the information gained from the graphical analysis thusly:

• The calculations only produce valid values for the first intersection (0 < c < 1).

• Most of the Higgs-PDFs yield to a Higgs percentage of 0-3%, while there exists an
area where the allowed percentage reaches almost 100%.

• Within the experimental errors, a lower amount of Higgs in the proton seems to be
favoured, while within the simulation errors a larger amount seems to be possible.
This discrepancy can be traced back to the simulation error itself, which is still
large as a consequence of the rather low chosen number of events.

After analysing the results of the process pp→ tt̄ , we can now take a look at the more
sensitive process pp→ tt̄Z.
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4. Results

Figure 4.6.: interpolation over intersection-points for the process pp→ tt̄Z

Figure 4.7.: intersection-points for the process pp→ tt̄Z including simulation errors
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Figure 4.8.: intersection-points for the process pp→ tt̄Z including experimental errors

For this process as well, a histogram plot has been made for better visualisation of the
distribution of c-values:

Figure 4.9.: histogram plot for the process pp→ tt̄Z
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The results of the process pp→ tt̄Z can be summed up to the following points:

• Again only one valid intersection.

• Histogram plot states a preference for a Higgs amount of around 0-2% for most of
the used Higgs-PDFs.

• The area with a high percentage of Higgs is getting shifted to higher values for a
and b compared to the former process.

Table 4.1.: summary of the most important results
process pp→ tt̄ pp→ tt̄Z
Area with the highest amount
of Higgs in the proton

a -1 to 2 a 0.5 to 2
b 0 to 2 b 1 to 2

Most used Higgs-PDFs yield to
a Higgs percentage of: 0-3% 0-2%

4.2. Comparison between tt̄ and tt̄Z

Since the histogram only shows a trend of the used Higgs-PDFs regarding the distribution
of c-values, to get information about the most suitable PDF and the maximum possible
amount of Higgs in the proton thereof, we have to compare the two processes. In order
to do so, for each data point in our set of PDFs for the two processes, the minimum
c-value has been evaluated. Figuratively spoken we tried to find the intersection curve
of the two interpolation surfaces (tt̄ and tt̄Z). Afterwards, the maximum of this set has
been calculated. The results can be seen in the figures below.

Figure 4.10.: comparison plot including the experimental errors
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Figure 4.11.: comparison plot including the simulation errors

Figure 4.12.: comparison plot including experimental and simulation errors

As we can see in Figure 4.10, the comparison including the experimental errors yields to a
maximum amount of Higgs of 2,56% for the Higgs-PDF fHiggs = x0.5 · (1−x)1.6. We also
notice a huge difference to the results of the comparison plot including the simulation
errors (18,92%). This can be traced back to the fact that only 1000 events have been used
in HERWIG++ and therefore the error is still very large. To make a more trustworthy
prediction, the event generator has been run a second time with 10000 events in the area
of interest, a ∈ [0.5, 2] and b ∈ [1.5, 2]. The gained data has been analysed analogously
to the description above and the resulting comparison plots can be seen below.
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Figure 4.13.: comparison plot including the experimental errors for the second run with
10000 events

Figure 4.14.: comparison plot including the simulation errors for the second run with
10000 events
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Figure 4.15.: comparison plot including experimental and simulation errors for the second
run with 10000 events

As a result, we can see that the difference between the comparison plots with experimen-
tal and simulation errors has been narrowed and it seems likely that the actual Higgs
percentage is about 2,8% within the current error bounds.

Assuming that the final result will not be differing too much from the one with 10000
events and included experimental errors as we increase the number of events furthermore
and hence minimize the simulation error, we can note the following:

The Higgs-PDF would have the form

fHiggs = x0.5 · (1− x)1.6

and yield to a maximum Higgs percentage in the proton of 2,844%.

In the following, there will be shown what the Higgs-PDF would look like in this case
and in the also quiet promising case of a Higgs-PDF of the form fHiggs = x1.1 · (1−x)1.7.
Since we can still expect some deviations from the result, the nearby PDF-functions have
been plotted as well.

28



4. Results

Figure 4.16.: most likely forms of the Higgs-PDF

Figure 4.17.: Higgs-PDF of the form fHiggs = x0.5 · (1− x)1.6
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Figure 4.18.: Higgs-PDF of the form fHiggs = x1.1 · (1− x)1.7
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5. Summary

In this thesis, the form of the Higgs-PDF in the proton has been studied. For this reason,
the event generator HERWIG++ has been used to simulate the proton-proton-collisions
at the LHC, taking a variation of different power functions as an input parameter. The
exact form of the used function as well as the varied parameters are cited in chapter 3.
Since the Higgs strongly interacts with the top-quark, we focussed on the process pp→ tt̄
as well as the process pp→ tt̄Z due to its higher sensitivity to the Higgs (3).

To find the most likely form of the Higgs-PDF, the intersections have been calculated
from the raw data-output of the event generator, that mark the limit of the allowed Higgs
percentage within the proton without changing the cross-sections within the current
experimental error bound. Subsequently the results of the two processes have been
compared, which led to the Higgs-PDF:

fHiggs = x0.5 · (1− x)1.6

, which states a maximum Higgs percentage in the proton of 2,844%. A much higher
amount of Higgs in the proton seems unlikely for this sort of Higgs-PDF.

The plot of the most promising Higgs-PDF cited above indicates, that at large x-values
the up-quark stays the dominant part in the proton, while the Higgs amount evens out
at a range similar to the down-quark. Depending on the exact values for a and b in the
function fHiggs = xa · (1−x)b, the peak of the Higgs-PDF gets shifted either to a slightly
higher or lower x-value.

As a consequence of limited time, there is still a lot of potential left in improving the
precision of the simulation by running the event generator with more events in the area
of interest (a ∈ [0.5, 2] and b ∈ [1.5, 2.0]) and using a finer subdivision of the varied
parameters of the PDF-function.

It should be mentioned, that due to some bugs in the event generators software, the exact
results will differ quantitatively, but not qualitatively from the results stated here.

Future research could be focussing on a different form of a possible Higgs-PDF, taking
into account the results of this thesis and the ones of Simon Fernbach’s master thesis
([2]). Considering the planned building of a new circular collider at CERN (the FCC),
it might become possible to reduce the current experimental limitations furthermore in
future theses.
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A. Code

Python Code:
1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Wed May 22 08:59:42 2019
5

6 @author: franziska
7 """
8

9 import numpy as np
10 import os
11 import glob
12 import subprocess
13 import re
14 import matplotlib.pyplot as plt
15 import shutil
16

17 #%%
18 ###################
19 #used functions:
20 ###################
21

22 #checks if file is empty:
23

24 def is_non_zero_file(fpath):
25 return os.path.isfile(fpath) and os.path.getsize(fpath) > 0
26

27 # calculates number of digits after decimal point
28

29 def num_after_point(x):
30 st = str(x)
31 if not ’.’ in st:
32 return 0
33 return len(st) - st.index(’.’) - 1
34

35

36 def findSignDig(numb):
37

38 #returns significant digits as integer
39 #if significant numbers are after ’.’ , a minus is added before the

returned value
40 #positive returned values are the numbers of digits before the ’.’
41 #also numbers in scientific notation can be put as input parameter
42
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43 numb1 = float(numb)
44 numb = str(numb1)
45

46 if not ’.’ in numb:
47 return len(numb)
48 else:
49

50 while numb[len(numb) -1] == ’0’:
51 numb = numb [:-1]
52

53 if (len(numb) - numb.index(’.’) -1) == 0:
54 numb = numb [:-1]
55 return len(numb)
56 else:
57 return -(len(numb) - numb.index(’.’) - 1)
58

59 #functions for plot:
60

61 def sig_tot(c):
62 return ((1-c)**2)*(sm*10**( -9)) +(1-c)*c*(GH*10**( -9)) +(c**2)*(HH

*10**( -9))
63

64 def sig_err1(c):
65 return ((1-c)**2) *((sm*10**( -9))+( sm_err *10**( -9))) +(1-c)*c*((GH

*10**( -9))+( GH_err *10**( -9))) +(c**2) *((HH*10**( -9))+( HH_err *10**( -9))
)

66

67 def sig_err2(c):
68 return ((1-c)**2) *((sm*10**( -9))-(sm_err *10**( -9))) +(1-c)*c*((GH

*10**( -9)) -(GH_err *10**( -9))) +(c**2) *((HH*10**( -9))-(HH_err *10**( -9))
)

69

70

71 # solve quadratic equation (intersections):
72

73 def quadsol(a,b,c):
74 q = -0.5*(b+np.sign(b)*np.sqrt(b*b-4.0*a*c))
75 x1 = q/a
76 x2 = c/q
77 return x1, x2
78

79 #%%
80

81 # initializing lists for intersections:
82

83 c1 = [] #intersections at 1
84 c2 = []
85 c1_exerru = [] #intersections at 1 + experimental error
86 c2_exerru = []
87 c1_exerrd = [] #intersections at 1 - experimental error
88 c2_exerrd = []
89 c1_err1 = [] #intersections +err at 1
90 c2_err1 = []
91 c1_err1u = [] #intersections +err at 1 + experimental error
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92 c2_err1u = []
93 c1_err1d = [] #intersections +err at 1 - experimental error
94 c2_err1d = []
95 c1_err2 = [] #intersections -err at 1
96 c2_err2 = []
97 c1_err2u = [] #intersections -err at 1 + experimental error
98 c2_err2u = []
99 c1_err2d = [] #intersections -err at 1 - experimental error

100 c2_err2d = []
101

102 a_list = []
103 b_list = []
104

105 #%%
106

107 ##############
108 #generate PDF
109 ##############
110

111 #generate coeff. for PDF
112

113 start_a = -2.0
114 stop_a = 2.0
115 step_a = 0.1
116 i_a = int(((stop_a -start_a)/step_a)+1)
117 #print(i_a)
118

119 a = np.linspace(start_a ,stop_a ,i_a)
120

121 start_b = 0.0
122 stop_b = 2.0
123 step_b = 0.1
124 i_b = int(((stop_b -start_b)/step_b)+1)
125 #print(i_b)
126

127 b = np.linspace(start_b ,stop_b ,i_b)
128

129

130 #generate PDF x^a*(1-x)^b
131

132 PDF_new = []
133 ab_list = []
134

135 for an in a:
136 for bn in b:
137

138 an = round(an ,1)
139 bn =round(bn ,1)
140 ab_list.append ([an ,bn])
141

142 PDF_New = ’ return x*(pow(x ,{:3.1f})*pow ((1.L-x) ,{:3.1f}));\n’.
format(an, bn)

143 PDF_new.append(PDF_New)
144
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145 #%%
146

147 ################
148 #replace PDF
149 ################
150

151

152 # call HiggsPDF.cc and read old PDF:
153

154 for outfile in glob.glob(os.path.join(’/home/franziska/Dokumente/
herwigfiles ’,’HiggsPDF.cc’)):

155 data = open(outfile ,’r’)
156 f = data.readlines ()
157 PDF_old = f[39]
158

159

160 # replace old PDF with new one:
161

162 for outfile in glob.glob(os.path.join(’/home/franziska/Dokumente/
herwigfiles ’,’HiggsPDF.cc’)):

163 f = open(outfile ,’r’)
164 filedata = f.read()
165 f.close()
166

167 index = 0;
168

169 for line in PDF_new:
170 print(’\033[1;34 mMessage: New PDF is used! \033[1;m’)
171 newdata = filedata.replace(PDF_old ,line)
172

173 for outfile in glob.glob(os.path.join(’/home/franziska/Dokumente/
herwigfiles ’,’HiggsPDF.cc’)):

174 f = open(outfile ,’w’)
175 f.write(newdata)
176 f.close()
177

178

179 ##############################
180 # change to home directory:
181 ##############################
182

183 os.chdir(’/home/franziska/Dokumente/herwigfiles/’)
184

185 ###################################
186 #start Herwig and generate events
187 ###################################
188

189 #call shell script:
190 subprocess.call([’./run.sh’])
191

192 ############################
193 #stop if no data exists or file ist empty:
194 ############################
195 str_out= {’HH.out’,’GH.out’,’sm.out’}
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196

197 if any(os.path.isfile(’/home/franziska/Dokumente/herwigfiles/’ +i) ==
False for i in str_out):

198 index +=1
199 continue
200

201 files = [’GH.hepmc’,’GH.log’,’GH.out’,’GH.tex’,’GH.yoda’,’GH -EvtGen.
log’,’HH.hepmc ’,’HH.log’,’HH.out’,’HH.tex’,’HH.yoda’,’HH-EvtGen.log’,’
sm.hepmc ’,’sm.log’,’sm.out’,’sm.tex’,’sm.yoda’,’sm-EvtGen.log’]

202

203 if any(is_non_zero_file(’/home/franziska/Dokumente/herwigfiles/’ +i)
== False for i in str_out):

204 for doc in files:
205 try:
206 os.chdir(’/home/franziska/Dokumente/herwigfiles/’)
207 subprocess.call([’rm’,doc])
208 except:
209 continue
210 index +=1
211 continue
212 else:
213 pass
214

215 ##########################
216 #save a and b:
217 ##########################
218

219 a_list.append(ab_list[index ][0])
220 b_list.append(ab_list[index ][1])
221 index +=1
222

223 ################################
224 #make new output directory:
225 ################################
226 i = 0
227 exists = True
228

229 while exists == True:
230 i +=1
231 exists = os.path.isdir(’/home/franziska/Dokumente/herwigfiles/

output/out%i’ %i)
232

233 os.chdir(’/home/franziska/Dokumente/herwigfiles/output/’)
234 name = ’out%i’ %i
235 subprocess.call([’mkdir’,name])
236

237 path = ’/home/franziska/Dokumente/herwigfiles/output/’+name
238

239 ########################
240 #save PDF to txt file
241 ########################
242 path_txt = path +’/PDF.txt’
243 file = open(path_txt ,’w’)
244 file.write(line)
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245 file.close ()
246

247 ######################
248 #read output files:
249 ######################
250

251 # extract sigma_total in nb (!) of out -file
252

253 for outfile in glob.glob(os.path.join(’/home/franziska/Dokumente/
herwigfiles ’,’*.out’)):

254 data = open(outfile ,’r’)
255

256 f = data.readlines ()
257 l = len(f) -2
258 s = f[l]
259 number = re.compile(’ -?\ *[0 -9]+\.?[0 -9]*(?:[ Ee]\ *-?\ *[0 -9]+)?’

)
260 si = [float(x) for x in re.findall(number ,s[61:78])]
261 print(si)
262

263 name = s[3:7]
264 if name == ’h0 ,h’:
265

266 HH1 = ’%ie%a’ %(si[0],si[2])
267 HH ,x = [float(x) for x in re.findall(number ,HH1)]
268

269 HH = si [0]*10** si[2]
270

271 if num_after_point(HH) > abs(si[2]) +10:
272 HH = round(HH ,int(abs(si[2]))) # eliminate round

-off errors
273

274 if not si[2] == 0: # calculate right
amount of digits for error

275 HH_err= si [1]*10** si[2]
276 else:
277 d = findSignDig(HH)
278 if d > 0:
279 HH_err = si [1]*10**(d-1)
280 else:
281 HH_err = si [1]*10**(d)
282

283

284 elif name ==’g,g-’:
285

286 sm1 = ’%ie%a’ %(si[0],si[2])
287 sm ,x = [float(x) for x in re.findall(number ,sm1)]
288

289 sm = si [0]*10** si[2]
290

291 if num_after_point(sm) > abs(si[2]) +10:
292 sm = round(sm ,int(abs(si[2]))) # eliminate round

-off errors
293
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294 if not si[2] == 0: # calculate right
amount of digits for error

295 sm_err= si [1]*10** si[2]
296 else:
297 d = findSignDig(sm)
298 if d > 0:
299 sm_err = si [1]*10**(d-1)
300 else:
301 sm_err = si [1]*10**(d)
302

303

304 else:
305 GH1 = ’%ie%a’ %(si[0],si[2])
306 GH ,x = [float(x) for x in re.findall(number ,GH1)]
307

308 GH = si [0]*10** si[2]
309

310 if num_after_point(GH) > abs(si[2]) +10:
311 GH = round(GH ,int(abs(si[2]))) # eliminate round

-off errors
312

313 if not si[2] == 0: # calculate right
amount of digits for error

314 GH_err= si [1]*10** si[2]
315 else:
316 d = findSignDig(GH)
317 if d > 0:
318 GH_err = si [1]*10**(d-1)
319 else:
320 GH_err = si [1]*10**(d)
321

322

323

324 #########################
325 #calculate total sigma
326 #########################
327 path_fig = path + ’/sig_tot.png’
328

329 c = np.linspace (0,1 ,100)
330

331 plt.clf()
332 # plt.plot(c,sig_tot(c))
333 # plt.axhline(y=sig_tot (0)*0.9, color=’r’,linestyle=’-.’,linewidth =

0.5)
334 # plt.axhline(y=sig_tot (0)*1.1, color=’r’,linestyle=’-.’,linewidth =

0.5)
335 # plt.fill_between(c,sig_err1(c),sig_err2(c),color=’gray ’,alpha =0.2)
336 #
337 # plt.axis(xmin = 0,xmax = 1, ymin=0, ymax = 1e-9)
338 # plt.xlabel(’c (amount of Higgs)/percentage ’)
339 # plt.ylabel(r’$\sigma_{total }/ Barn$ ’)
340 # plt.savefig(path_fig)
341

342 plt.plot(c,( sig_tot(c)/(sm*10** -9)))
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343 plt.axhline(y=0.97 , color=’r’,linestyle=’-.’,linewidth = 0.5)
344 plt.axhline(y=1.03 , color=’r’,linestyle=’-.’,linewidth = 0.5)
345 plt.fill_between(c,( sig_err1(c)/(sm*10** -9)),(sig_err2(c)/(sm*10** -9)

),color=’gray’,alpha =0.2)
346

347 plt.axis(xmin = 0,xmax = 1)
348 plt.xlabel(’c (amount of Higgs)/percentage ’)
349 plt.ylabel(r’$\frac{\ sigma_{total }}{\ sigma_{sm}}$’ +’ /Barn’)
350 plt.savefig(path_fig)
351

352 #####################################
353 # nb in b:
354 ####################################
355

356 HH = HH*10** -9
357 HH_err = HH_err *10** -9
358 GH = GH*10** -9
359 GH_err = GH_err *10** -9
360 sm = sm*10** -9
361 sm_err = sm_err *10** -9
362

363 print(’\033[1;34 mMessage: generated values: \033[1;m’)
364 print(’HH = ’, HH)
365 print(’HH_err = ’, HH_err)
366 print(’GH = ’,GH)
367 print(’GH_err = ’, GH_err)
368 print(’sm = ’,sm)
369 print(’sm_err = ’,sm_err)
370 print(" ")
371

372 ######################################
373 # Calculate intersections:
374 #####################################
375 abz = [1 ,1.03 ,0.97]
376 a_arr = "(HH-GH+sm)/sm", "((HH+HH_err) - (GH+GH_err) + (sm+sm_err))/

sm", "((HH -HH_err) - (GH-GH_err) + (sm-sm_err))/sm"
377

378 for a in a_arr:
379 if a == "(HH -GH+sm)/sm":
380 a = (HH-GH+sm)/sm
381 b = (GH -2*sm)/(sm)
382 for i in abz:
383 c = 1-i
384 x1 ,x2 = quadsol(a,b,c);
385 if i == 1:
386 #print("c1 = ", x1 , " c2 = ",x2)
387 c1.append(x1); c2.append(x2);
388 elif i == 1.03:
389 #print(" c1_exerru = ", x1, " c2_exerru = ",x2)
390 c1_exerru.append(x1); c2_exerru.append(x2);
391 else:
392 #print(" c1_exerrd = ", x1, " c2_exerrd = ",x2)
393 c1_exerrd.append(x1); c2_exerrd.append(x2);
394
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395 elif a == "((HH+HH_err) - (GH+GH_err) + (sm+sm_err))/sm":
396 a = ((HH+HH_err) - (GH+GH_err) + (sm+sm_err))/sm
397 b = ((GH+GH_err) -2*(sm+sm_err))/(sm)
398 for i in abz:
399 c = ((sm+sm_err)/(sm))-i
400 x1 ,x2 = quadsol(a,b,c);
401 if i == 1:
402 #print(" c1_err1 = ", x1 , " c2_err1 = ",x2)
403 c1_err1.append(x1); c2_err1.append(x2);
404 elif i == 1.03:
405 #print(" c1_err1u = ", x1 , " c2_err1u = ",x2)
406 c1_err1u.append(x1); c2_err1u.append(x2);
407 else:
408 #print(" c1_err1d = ", x1 , " c2_err1d = ",x2)
409 c1_err1d.append(x1); c2_err1d.append(x2);
410

411 else:
412 a = ((HH-HH_err) - (GH -GH_err) + (sm -sm_err))/sm
413 b = ((GH-GH_err) -2*(sm -sm_err))/(sm)
414 for i in abz:
415 c = ((sm-sm_err)/(sm))-i
416 x1 ,x2 = quadsol(a,b,c);
417 if i == 1:
418 #print(" c1_err2 = ", x1 , " c2_err2 = ",x2)
419 c1_err2.append(x1); c2_err2.append(x2);
420 elif i == 1.03:
421 #print(" c1_err2u = ", x1 , " c2_err2u = ",x2)
422 c1_err2u.append(x1); c2_err2u.append(x2);
423 else:
424 print("c1_err2d = ", x1 , " c2_err2d = ",x2)
425 c1_err2d.append(x1); c2_err2d.append(x2);
426

427

428 #########################################
429 #save all generated files to out file:
430 #########################################
431 os.chdir(’/home/franziska/Dokumente/herwigfiles ’)
432

433 files = [’GH.hepmc’,’GH.log’,’GH.out’,’GH.tex’,’GH.yoda’,’GH -EvtGen.
log’,’HH.hepmc ’,’HH.log’,’HH.out’,’HH.tex’,’HH.yoda’,’HH-EvtGen.log’,’
sm.hepmc ’,’sm.log’,’sm.out’,’sm.tex’,’sm.yoda’,’sm-EvtGen.log’]

434

435 for f in files:
436 try:
437 shutil.move(f,path)
438 except:
439 continue
440

441

442 #################################################
443 # store calculated intersections in .dat -file:
444 #################################################
445

446 print(len(a_list))
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447 print(len(b_list))
448 print(len(c1))
449 print(len(c2))
450 print(len(c1_exerru))
451 print(len(c2_exerru))
452 print(len(c1_exerrd))
453 print(len(c2_exerrd))
454 print(len(c1_err1))
455 print(len(c2_err1))
456 print(len(c1_err1u))
457 print(len(c2_err1u))
458 print(len(c1_err1d))
459 print(len(c2_err1d))
460 print(len(c1_err2))
461 print(len(c2_err2))
462 print(len(c1_err2u))
463 print(len(c2_err2u))
464 print(len(c1_err2d))
465 print(len(c2_err2d))
466

467

468 surfplot_1 = np.column_stack ((a_list ,b_list ,c1 ,c2))
469 header1 = "a,b,c1 , c2"
470 np.savetxt("/home/franziska/Dokumente/herwigfiles/Auswertung/surfplot_1.

dat",surfplot_1 ,header = header1)
471

472 values1 = np.column_stack ((c1_exerru ,c2_exerru ,c1_exerrd ,c2_exerrd))
473 header2 = "c1_exerru , c2_exerru , c1_exerrd , c2_exerrd"
474 np.savetxt("/home/franziska/Dokumente/herwigfiles/Auswertung/surfplot_2.

dat",values1 ,header = header2)
475

476 values2 = np.column_stack ((c1_err1 ,c2_err1 ,c1_err1u ,c2_err1u ,c1_err1d ,
c2_err1d))

477 header3 = "c1_err1 ,c2_err1 ,c1_err1u ,c2_err1u ,c1_err1d ,c2_err1d"
478 np.savetxt("/home/franziska/Dokumente/herwigfiles/Auswertung/surfplot_3.

dat",values2 ,header = header3)
479

480 values3 = np.column_stack ((c1_err2 ,c2_err2 ,c1_err2u ,c2_err2u ,c1_err2d ,
c2_err2d))

481 header4 = "c1_err2 ,c2_err2 ,c1_err2u ,c2_err2u ,c1_err2d ,c2_err2d"
482 np.savetxt("/home/franziska/Dokumente/herwigfiles/Auswertung/surfplot_4.

dat",values3 ,header = header4)
483

484

485

486 surfplot = np.column_stack ((a_list ,b_list ,c1 ,c2 ,c1_exerru ,c2_exerru ,
c1_exerrd ,c2_exerrd ,c1_err1 ,c2_err1 ,c1_err1u ,c2_err1u ,c1_err1d ,
c2_err1d ,c1_err2 ,c2_err2 ,c1_err2u ,c2_err2u ,c1_err2d ,c2_err2d))

487 header = "a,b,c1 , c2, c1_exerru , c2_exerru , c1_exerrd , c2_exerrd , c1_err1
, c2_err1 , c1_err1u , c2_err1u , c1_err1d , c2_err1d , c1_err2 , c2_err2 ,
c1_err2u , c2_err2u , c1_err2d , c2_err2d\n"

488 np.savetxt("/home/franziska/Dokumente/herwigfiles/Auswertung/surfplot.dat
",surfplot ,header = header)
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bash file:
1 #!/bin/bash
2

3 ve() { source $1/bin/activate; } #shell function to activate virtualenv
4

5 ve /usr/local/herwig #activate herwig
6

7 #Plugin:
8 make IntrinsicHiggs.so
9 rivet -buildplugin TTBAR.cc

10 export RIVET_ANALYSIS_PATH =/home/franziska/Dokumente/herwigfiles/
11

12 find -type d -name ’*scratch*’ -exec rm -rf {} \;
13

14 #event generator:
15 Herwig read HH.in
16 Herwig run HH.run -N 1000
17

18 find -type d -name ’*scratch*’ -exec rm -rf {} \;
19

20 Herwig read GH.in
21 Herwig run GH.run -N 1000
22

23 find -type d -name ’*scratch*’ -exec rm -rf {} \;
24

25 Herwig read sm.in
26 Herwig run sm.run -N 1000

Analogue Code for the other process!
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