
University of Graz

Bachelor thesis (BSc)

Using machine learning for BSM particle
identification

Lukas Reicht

supervised by
Axel Maas

May 30, 2018

Abstract

Calculating a certain matrix element yields an exponential function, whose exponent is the
mass of a particle. A simulation produces data points that lie on this exponential function,
however they are obscured by noise due to the statistical method used in the simulation. The
usual approach to fitting such an exponential function through these points would be to use
a least squares fit. However it is not clear, if this is the best possible way. I tried to find a
better fit by applying a Genetic Algorithm (GA) to the problem.

For this purpose exponential functions with different exponents and noise were created
artificially and they were used to test the GA against the standard algorithm. I successfully
reproduced previous work on this problem [1] and improved it to a point, where the GA
outperforms the standard least squares approach in most domains.

1

Contents
1 Introduction 3

1.1 The physical problem and its simulation . 3
1.2 Introduction to Genetic Algorithms . 4

2 Reproduction of Wagner’s genetic algorithm 5
2.1 Results of successful reproduction . 6
2.2 Error estimate of the GA . 11

2.2.1 First approach: range of masses . 11
2.2.2 Second approach: upper and lower error bar 14

3 Improvements to the GA 14
3.1 Improvements to the GA with unchanged fitness function 14
3.2 Changes to the fitness function . 17

3.2.1 Moving the summation into the denominator 17
3.2.2 Weight for relative uncertainties . 19

3.3 Further optimizations . 21
3.3.1 Number of generations . 22
3.3.2 Fitness to the power of x . 23
3.3.3 Mutation width . 23
3.3.4 Weight for relative uncertainties to the power of X 24
3.3.5 Mutation rate . 25
3.3.6 Crossover rate . 27

4 Results 27

5 Summary and outlook 30

A Program code 31
A.1 mainGA.cpp . 31
A.2 generateInput.h . 38
A.3 generateInput.cpp . 39
A.4 Plots for just one run mode.py . 39
A.5 Plots for comparison of performance.py . 42
A.6 CMakeList.txt . 47

2

1 Introduction
The result of a specific simulation are points, which roughly correspond to an exponential function.
These points have a high numerical inaccuracy. In this work a Genetic Algorithm (GA) is used to
fit an exponential function to these points. An introduction to the underlying physical problem
and to GAs is given.

1.1 The physical problem and its simulation
For simple quantum mechanical problems one can obtain a solution analytically or through pertur-
bation theory, but this is not possible for most problems, therefore one needs to run a simulation.
A specific simulation yields the matrix element

〈a, 0|a, t〉

This describes the time evolution of ’a’. Here I do not want to specify what exactly ’a’ is. It is
just formal. Using the time evolution Operator U = e−iHt (H = Hamilton operator) and inserting
1 =

∑
E |E〉 〈E| we can rewrite this equation:

〈a, 0|a, t〉 = 〈a, 0|e−iHt|a, 0〉 =
∑
E

〈a, 0|E〉 〈E|e−iHt|a, 0〉 =
∑
E

〈a, 0|E〉 〈E|e−iEt|a, 0〉 =
∑
E

| 〈a, 0|E〉 |2e−iEt

We now replace t→ iτ

〈a, 0|a, t〉 =
∑
E

| 〈a, 0|E〉 |2e−Eτ

If we let τ tend to infinity, we can neglect all energies except the ground state energy E0. Thus
we get:

〈a, 0|a, t〉 τ→∞−−−−→ | 〈a, 0|E0〉 |2e−E0τ +O(e−E1τ) (1)

In reality we cannot compute the simulation for large enough t to make this approximation valid,
because the computational effort rapidly increases - typically with t5. Without the approximation
made in (1) we get a sum of exponential functions. The energies E0, E1, E2, ... are connected to
the masses of particles via E = mc2.

Concluding we get a sum of exponential functions out of this simulation.

f(t) = a1e
−m1t + a2e

−m2t + a3e
−m3t + ... (2)

here mi are the masses of different particles and ai are some constants.
Even though we cannot apply the approximation in equation (1) due to limited computational

resources, as a first step I still make this approximation and search an algorithm that finds a fit to
(3). As an extension to this work, one might assume multiple exponential functions, maybe two
or three, like in equation (2). This will be discussed in the outlook in chapter 5.

f(t) = ae−mt (3)

The constant a can be normalized to 1.
If at some point t0 the exponential function f(t0) in (3) is smaller than the numerical inaccuracy,

this point and the points with t > t0 have to be discarded, because all their information is lost in
the numerical noise.

For this reason large m values result in few points. If m is so large that only 2 points remain,
the fit is trivial. Therefore we require that m should be large enough that at least 3 points remain.
On the other hand if m is very large, many points arise and the simulation takes very long to
compute. If we assess our computational resources optimistically, we can say that any simulation
with more than 16 data points takes too long. Thus the number of points lies between 2 and 16.
This places an upper and lower bound on m, approximately

0.1 < m < 1.8

3

1.2 Introduction to Genetic Algorithms
Genetic Algorithms (GAs) fall under the category of machine learning, which in turn is a subcat-
egory of artificial intelligence.

The ’genetic’ in Genetic Algorithm stems from the fact that it is inspired by evolution. There
are four preconditions for the occurrence of evolution by natural selection: [2]

1. Reproduction of individuals in the population

2. Variation that affects the likelihood of survival of individuals

3. Heredity in reproduction

4. Finite resources causing competition

This is true for biological evolution as well as GAs. In GAs the programmer defines a so-called
fitness function, which determines how fit an individual is. There is a very wide range of possible
fitness functions and individuals. In principle they could be anything, that one can write into a
computer program. In my case an individual is just a pair of numbers a and b that correspond to
the coefficients of an exponential function:

f(x) = ae−bx (4)

equivalent to equation (3). Throughout this work I will use the terms b and mass. They are
identical.

The fitness function is subject to change and finding a better one is an integral part of improving
the GA. However in the context of this problem it will always be some measure of how close the
exponential function is to the data points, that we want to fit. The ’closer’ (by some measure) f(x)
(4) lies on the data points, the ’fitter’ is the individual and has a higher change of reproduction.
There is a fixed number of individuals in the algorithm. The result is that the fit individuals
reproduce, while the unfit individuals tend to die out.

In essence a GA can be thought of as an optimization process, which tries to optimize the
fitness function.

Some important definitions:

• Mutation: a random change to an individual

• Crossover: ’Genes’ (a and b in (4)) of two individuals get swapped. This has a similar effect
as mutation.

• Generation: is one cycle consisting of reproduction and mutation (see figure 1). The number
of generations can be increased, if the GA would need more time to find a good solution. As
a trade-off computation time is increased.

• Population: is the set of all individuals

Figure 1: The work steps of the algorithm. Reproduction and Mutation are repeated for the
defined number of generations.

4

2 Reproduction of Wagner’s genetic algorithm
A first goal of this work is to independently implement Wagner’s GA and reproduce the results.
The following is an explanation of his algorithm. For more details see [1].

Figure 2: This figure illustrates the quantities in equation (5). A individual has a corresponding
exponential function of the form (4) associated with it. Its fitness in Wagner’s GA is given by (5).
The index i runs from 1 to 4 in this case. The error bars of Ci are omitted in this plot. They
would be σ = 0.08 high.

σ = 0.08 |Ci −Di|
∫ |Ci−Di|
0

(1− e−
x2

2σ2
)dx

i = 1 0.14564992 0.08320853

i = 2 0.07334446 0.01960274

i = 3 3.53e-06 2.94e-15

i = 4 0.08881284 0.03089033

Table 1: The values associated with figure 2. The integral on the right has the effect that small
|Ci−Di|-values are taken into account linearly, while |Ci−Di|-values that are equal or larger than
σ have a higher weight in the Fitness. The Fitness is 3.4∗1014. It is very high, because 2.94∗10−15
is very close to zero.

According to Wagner’s GA the fitness of an individual is given by:

Fitnessindividual =

n∑
i=1

1∫ |Ci−Di|
0

(1− e−
x2

2σ2)dx
(5)

with n = number of points, that one wants to fit (in figure 2: n = 4).
Ci, Di according to figure 2
σ is the uncertainty of the points, that one wants to fit.

In principle a properly set up GA should converge to a maximum of this fitness function. In
order to achieve that, Wagner set the following parameters, which one could optimize further.

5

• number of generations = 15

• size of population = 450 individuals

• Coefficients a and b are mutated by adding random normally distributed noise to them. The
mean of the normal distribution is 0 and its standard deviation is 0.001 for a and 0.005 for
b. If an individual is supposed to get mutated, either its a or b value gets changes - with an
equal probability of 50% each.

• The rate of mutation is 1. This means that every individual gets mutated one time per
generation.

• no crossover

• The likelihood that an individual gets copied into the next generation is proportional to its
fitness.

• The first generation gets initialized with uniformly distributed a between 0.9-1.1 and b be-
tween 0.07-1.9. (These values are approximate and are not given in his paper.) Wagner chose
these values, because they lie outside the range of the data he tested his algorithm against.
The tested data lies within 0.1-1.8 for b and is 1 for a.

These initialization values are approximate and are somewhat arbitrary, but this is justified
because through testing the algorithm I found that varying these values does not change the
results. In particular if b is initialized between 0.00001-1.9, the results are the same.

In order to test his algorithm against the standard least squares fit, Wagner created data points
that lie on an exponential function and added normally distributed noise to them. He did this for
b values (b in equation (4)) between 0.1 and 1.8 with an increment of 0.1 as well as for different
standard deviations of the normally distributed noise between 0.0035 and 0.1 with 18 uniformly
spaced steps.

The results in a 18 by 18 grid, where each point corresponds to a (standard deviation, b)-pair.
For each point he created different random noise many times in order to get rid of statistical
fluctuations.

However he discarded some of these points with high b and high standard deviation. Namely
those for which f(x = 3) = e3∗b is smaller than the standard deviation, because in that case we
would only get two meaningful points to fit and that would be a trivial fit.

2.1 Results of successful reproduction
To quantify the quality of an algorithm, Wagner defined the following measures of merit:

MM1 =
|m−mreal|

mreal
(6)

MM2 =
σ

mreal
(7)

where m = resulting mass of the algorithm
(Please note: b from equation (4) is identical to the mass)
mreal is the true mass before any noise was added. mreal is set to 0.1-1.8 for testing the algorithm.
σ is the error estimate of the algorithm, further discussed in section 2.2. (Note also that this is
not the same σ as in equation (5), where it denotes the error estimate of the input data.)

I will from now on refer to equation (6) as Measure of Merit 1 (MM1) and to equation (7) as
Measure of Merit 2 (MM2).

MM1 and MM2 of the GA are compared to those of a standard method. I compared two
standard methods:

• Linear least squares: applying the ln() to both sides of equation (4) results in a linear
equation that can be solved by a least squares fit. The error estimate of this fit is calculated
by a least squares fit through the upper and lower point of the error bar of the inputs and
calculating the difference of the result, just like was done for the GA in section 2.2.2.

6

• Scipy: the exponential function can be handed to the scipy.optimize.curve_fit routine,
which uses a Levenberg-Marquardt algorithm.

A comparison of these two standard methods is given in figures 3 and 4. Both standard methods
yield similar results. I chose the least squares method, because Wagner chose it as well and it is
a more ’classical’ approach. To compare two algorithms, their measures of merit are subtracted
from each other. An algorithm is better if its measure of merit is small.

Figure 3: MM1scipy −MM1linearFit is plotted. The linear least squares Fit is better where the
value on the z-axis is above zero. Scipy is better by an negligible amount in MM1. Interpolation
like in figure 5 was used, except that linear interpolation was used instead of spline interpolation.

7

Figure 4: MM2scipy − MM2linearFit is plotted. The linear least squares Fit is better where
the value on the z-axis is above zero. Scipy is better in MM2, but this is probably because it
underestimates the error. mreal is only in 55% of the cases within mscipy ± errorscipy (should be
more than 67%), while it is withinmlinear±errorlinear in 88% of the cases. The same interpolation
as in the previous figure 3 is used.

8

Figure 5: Successful reproduction of Wagner’s Work for Measure of Merit 1. MM1linearFit −
MM1GA is plotted. The GA is better where the value on the z-axis is above zero. For the 3D
plots spline interpolation with 3 times as many points on each axis were used. For the contour
plots spline interpolation with 10 times as many points on each axis were used. This setting is
used for all of the following interpolated plots as well.

9

Figure 6: Successful reproduction of Wagner’s Work for Measure of Merit 2. MM2linearFit −
MM2GA is plotted. The GA is better where the value on the z-axis is above zero.

For each of the points in the above plots, random inputs were created 160 times. It took about
24 minutes to produce the data of the GA for one plot on a common PC. The results in figure 6
are not exactly the same as Wagner’s, because a different error estimate was used, as discussed in
the next section 2.2.

10

2.2 Error estimate of the GA
To obtain an error estimate for the algorithm, Wagner applied his algorithm about 50 times on the
same data, and calculated the mean and the standard deviation of the algorithm’s results. The
mean was his final result and the standard deviation was his error estimate of the algorithm.

However this method is computationally expensive. It would be desirable to run the algo-
rithm just once and getting an error estimate out of just this one run, effectively decreasing the
computation time by a factor of about 50.

2.2.1 First approach: range of masses

As a first attempt to achieve this, I tried to infer an error estimate out of the range of masses of the
population. (An illustration of ’range of masses’ is given in figure 7.) This can be done by sorting
the final generation by their masses, then taking an individual, whose mass is greater than 17%
of the other individuals, and taking an individual, whose mass is greater than 83% of the other
individuals, and subtracting the masses of the two individuals. Choosing 17%-83% is a natural
approach, because the error estimate σ corresponds to a 67% chance that the true solution mreal

lies within the range m± σ.
However I found that this error estimate is most of the time zero, which is bad for obvious

reasons. I chose 10%-90% instead of 17%-83% to improve the situation, but still the error estimate
was zero is about 86% of the cases. In order to resolve this problem, I changed the parameters
of Wagner’s GA, discussed in section 2, to make the range of masses wider. This can be achieved
by taking the root of the fitness for each individual, as illustrated in figure 7. For example when
taking the fourth square root, the error estimate is zero in only 4% of the cases.

11

Figure 7: An illustration of the range of masses. On the upper plot there is an illustration of the
mass width of Wagner’s GA. The population is very concentrated on a small range of masses. For
the algorithm in the lower plot the mutation width is 10 times as high and the fitness is taken to
the power of 1

10 . Further discussion and a definition of ’mutation width’ is given in section 3.1.

For these results, that I just discussed, the last action before the measurement of the error
estimate was reproduction, like in figure 1. It is possible to mutate the population once again and
measure the error estimate right after the mutation. In this case the error estimate is never zero,
however this comes at the cost that it is dependent on the parameters of the mutation. This is not
a desirable property, so this method was discarded.

When plotting the error estimate for different standard deviations of noise and masses, like it
was done in figure 3-6 for MM1 and MM2, one can see that the error estimate is equal for all
values of the standard deviation of noise (see figure 8). This shows that the error estimate does
not reflect the real error, because the latter will clearly be greater for large noise. For this reasons
this error estimate was regarded as not useful.

12

Figure 8: Wagner’s GA with the error estimate discussed in this section 2.2.1.

Figure 9: Wagner’s GA with the error estimate discussed in the next section 2.2.2.

13

2.2.2 Second approach: upper and lower error bar

For this error estimate the GA is applied on input+uncertaintyinput and input−uncertaintyinput
and the uncertainty of the GA is defined as the difference of these two results. This method requires
two times more computation as would be needed to run the algorithm without an error estimate.

This error estimate looks realistic (see figure 9). It has the desired property of being higher
for larger noise. In addition it is rather pessimistic, usually overestimating the error. This error
estimate was chosen.

3 Improvements to the GA
Subsequent to the reproduction of Wagner’s results, I tried to improve his algorithm. For com-
parison the MM1 (measure of merit) and MM2 of the original algorithm was plotted against the
(potentially) improved algorithm, like it was done in figure 5 for the linear Fit method. Ideally one
would like to improve both measures for a wide range of masses and standard deviations of noise
for as much as possible. In reality there will likely be a trade-off between MM1 and MM2 or there
might only be an improvement for some area of the plot.

3.1 Improvements to the GA with unchanged fitness function
As a first step I changed parameters of the GA while leaving the fitness function the same. The
fitness function defines what should be optimized, whereas all the other parameters determine how
the algorithm should achieve this. When these parameters are chosen poorly, a GA might quickly
fall into a local minimum or take too long to converge to a solution. Fast convergence is a big issue
for computationally intensive GA, however this is not the case with this algorithm at hand.

Therefore I focused on the former issue. For example a too strong selection pressure might
force the algorithm in a local minimum. If the difference in fitnesses in a population is not so high,
the algorithm will take longer to converge on a specific solution, but it will explore more of the
solution space. The solution space is the space of all possible solutions.

One way to achieve this is to take the logarithm or the square root of the fitness. Another way
is to increase the standard deviation of the Gauß distribution used to mutate the individuals, to
which I may now refer as ’mutation width’. A large mutation width increases the time it takes the
GA to converge, because a strong mutation annihilates the fit individuals.

14

Figure 10: MM1: The ’improved GA’ is Wagner’s GA with fitness to the power of 1
4 and mutation

width times 4. These numbers were chosen somewhat arbitrary and could definitely be improved.
This was not done, because the changes to the fitness made in section 3.2 result in a much better
algorithm. Therefore optimizing the parameters for this fitness function became unnecessary. The
white line indicates z = 0. Wagner’s GA is better where z < 0.

15

Figure 11: MM2: The ’improved GA’ is Wagner’s GA with fitness to the power of 1
4 and mutation

width times 4. The white line indicates z = 0. Wagner’s GA is better where z < 0. The improved
GA is better where z > 0.

In figures 10 and 11 one can see that some improvements can be made by letting the algorithm
converge slower. For mass = 0.1 the MM1 of the new algorithm is better, however the average
is approximately the same. MM2 of Wagner’s GA is better in most areas. This still can be
regarded as an slight improvement, because one could combine Wagner’s GA and this algorithm
by estimating the true mass and applying this algorithm only for small masses.

The validity of figures 10 and 11 were verified by applying the algorithm and Wagner’s GA on
different randomly created input data. The introduction of crossover did not change the results in

16

figures 10 and 11.

3.2 Changes to the fitness function
The most potential for improvement lies within the fitness function. In Wagner’s work the fitness
function is given by (5).

3.2.1 Moving the summation into the denominator

I changed Wagner’s fitness function to

Fitnessindividual =
1∑n

i=1

∫ |Ci−Di|
0

(1− e−
x2

2σ2)dx
(8)

With Wagner’s fitness function it is beneficial for an individual to fit just one point very close.
If it does so, its fitness approaches infinity as the distance to the point goes to zero. This resulted
in some individuals having a much higher fitness than the rest of them and therefore dominating
the reproduction process.

Moving the sum into the denominator has the effect, that individuals focus more on fitting all
points instead of just one. This also makes the algorithm converge slower, because the difference
in fitnesses in the population are not as dramatic as in Wagner’s case.

17

Figure 12: MM1: Improvements in almost all domains can be made by changing the fitness function
from (5) to (8). In areas where the value on the z-axis is above zero, the improved GA is better.
Spline interpolation like in figure 5 is used.

18

Figure 13: MM2: Improvements in almost all domains can be made by changing the fitness function
from (5) to (8). In areas where the value on the z-axis is above zero, the improved GA is better.

The input data for Wagner’s GA and the improved GA were independently created with random
time based seeds. The whole process was repeated with different random input data and the results
were the same.

3.2.2 Weight for relative uncertainties

The absolute uncertainty of the input data y(x) is the same for all x-values, however the value of
the exponential function decreases for higher x. For this reason the relative uncertainties of the

19

input data increase with increasing x.
A factor was added to account for this issue.

Fitnessindividual =
1∑n

i=1
σ
Di

∫ |Ci−Di|
0

(1− e−
x2

2σ2)dx
(9)

Here Di is the value of the individual at point i, as can be seen in figure 2. The σ in the factor of
(9) can be drawn in front of the summation. Therefore it can be omitted, because it just multiplies
a constant to all individuals and that does not change the relative fitness values in the population.

Figure 14: MM1: Comparison of algorithms with fitness function like (8) and (9). The GA without
the factor is better in almost all domains for MM1.

20

Figure 15: MM2: Comparison of algorithms with fitness function like (8) and (9). Two regions
emerge, where the respective algorithms are better. Overall MM2 gets worse with the addition of
the factor.

Figures 14 and 15 show that the algorithm gets worse if a factor like in (9) gets added.

3.3 Further optimizations
In this section the Fitness function (8) is chosen as a baseline and other parameters are optimized
in the hope of further improving the GA.

To make this task feasible, I did not optimize all parameters simultaneously, but rather just

21

one at a time. Wagner’s values are kept, while one parameter gets optimized. In addition only one
point of the plot 12 gets optimized. The point of the optimization is chosen to be at

(mass = 0.5, standard deviation = 0.05),

because it lies in the middle of the plot.
For each point in the following plots, random inputs are created 3000 times to reduce numerical

noise. In contrast to create all above plots random inputs were only created 80 or 160 times for
each point.

3.3.1 Number of generations

Figure 16: Optimization of the number of individuals

If the number of individuals is very small, the algorithm cannot find a good solution. If the size of
the population exceeds a certain threshold, making it larger does not affect the results.

22

3.3.2 Fitness to the power of x

Figure 17: After the fitness of an individual is evaluated as usual, it is taken to the power of x.
Note the logarithmic x-axis.

Taking the fitness to the power of x with x > 1 has the effect that the algorithm converges faster
and the fit individuals dominate the reproduction process more. On the other hand a x with
0 < x < 1 has the effect that the chance of reproduction for the unfit individuals is increased
relative to the situation with x = 1. This has the effect of slower convergence.

For a large exponent the fit individuals dominate the population too much and the results are
worse, because the algorithm falls into a local optimum too quickly. For a very small exponent
the GA needs very many generations to converge. Because the number of generations was fixed,
the algorithm could not converge and after the 15 generations the population was still essentially
random. The results are nevertheless just as good as for the original version of the GA, because a
random population gives very good results already, as discussed in section 3.3.5.

3.3.3 Mutation width

In the mutation routine a normally distributed number is added to either a or b (a and b as defined
in (4)). The mean of the normal distribution is zero, while its standard deviation is referred to as
’mutation width’.

23

Figure 18: Optimization of the mutation width. Note the logarithmic x-axis.

3.3.4 Weight for relative uncertainties to the power of X

Even though the prefactor in (9) makes the algorithm worse, it might be possible that the factor
to the power of some number X makes the algorithm better.

Fitnessindividual =
1∑n

i=1(
1
Di

)X
∫ |Ci−Di|
0

(1− e−
x2

2σ2)dx
(10)

24

Figure 19: Optimization of the capital X in (10). The different values for X are drawn on the
x-axis of this figure. When X = 0 the factor disappears and the GA is just the baseline GA, that
I want to optimize.

3.3.5 Mutation rate

Wagner chose his mutation rate to be equal to 1. This means that every individual gets mutated
once per generation. An mutation rate of 0 corresponds to no mutation at all.

25

Figure 20: Optimization of the mutation rate.

At first it seems surprising that the Measure of Merits are the same if no mutation occurs. This
observation means that the very first generation, which is initialized randomly, already contains a
solution, which is so good that mutation only improves it by an imperceptible amount. This is in
fact the case and will now be explained.

Upon initialization 450 individuals are created by an equal distribution over the interval 0.1-1.8.
Therefore the distance between the masses of two individuals is on average

1.7

450
≈ 0.00378

On the other hand the input data has a uncertainty of 0.0035-0.1. Thus the error of any algorithm
will be of this size at the minimum. In the case here we set the uncertainty of the input data to
be 0.05. In figure 20 we see MM2 = 0.35. The estimated error of the GA in this case is:

σ =MM2 ∗mreal = 0.35 ∗ 0.5 = 0.175

We see that the population is simply so large that a good solution is created by chance in the
random initialization. The error caused by this random spacing is about 0.00378. The general
error of the algorithm, with or without mutation, is much larger than that.

0.175 >> 0.00378

Therefore the error inherent in the GA overshadows the smaller error caused when no mutation
is applied. Hence the results in figure 20 can be explained. If one would create many more data
sets and run the GA on all of them, we would get a result with less statistical fluctuation and we
would probably see a small decrease in quality when no mutation is applied.

Even though mutation is redundant in this GA, it will become very important when one con-
siders the more complex problem of multiple exponential function, as discussed in the outlook 5.
In this scenario guessing a good solution by random initialization quickly becomes unlikely due to
combinatorics. We would have to guess m1 and m2 correctly at the same time.

26

3.3.6 Crossover rate

Crossover is inspired by nature. The basic idea behind it is, that individuals with ’good genes’ can
spread them across the population.

Individuals participate in crossover with some probability called ’crossover rate’, analogous
to the mutation rate. A randomly chosen individual swaps either its a or b value with another
randomly chosen individual. These two individuals have a 50% chance of swapping both a values
and a 50% chance of swapping both b values, but never swap an a with a b value.

Figure 21: Optimization of the crossover rate. Mutation rate is chosen to be 0.5.

4 Results
Through the optimizations in section 3.3 it was not possible to improve the algorithm. The results
were for a wide range of different values of ’number of individuals’, ’fitness to the power of x’ and
’mutation width’. Changing the crossover and mutation rate did not influence the result of the
algorithm. No improvement could be made through the factor, which was meant to account for
the relative uncertainties of the input data.

However the minor change of moving the summation of the fitness values into the fraction, like
equation (8), improved the result dramatically.

27

Figure 22: MM1 Comparison of the improved GA versus the linear Fit method. The GA is better
where the z-value is above zero. The only difference to Wagner’s GA is that the fitness value
is determined like (8). A white line is drawn at z = 0 to distinguish the areas where the two
algorithms are better. Spline interpolation like in figure 5 is used.

28

Figure 23: MM2 Comparison of the improved GA versus the linear Fit method. The GA is better
where the z-value is above zero. The only difference to Wagner’s GA is that the fitness value
is determined like (8). A white line is drawn at z = 0 to distinguish the areas where the two
algorithms are better. Spline interpolation like in figure 5 is used.

In figure 22 one can see that the GA is better regarding MM1 in almost all domains, except for
very small masses and standard deviations. For MM2 each algorithm is better in a certain domain.
These domains are of roughly equal size.

It is important to check whether the error estimate of each algorithm is too optimistic or
pessimistic. Every algorithm gives a result and an estimate for the uncertainty of the result. The

29

true value should lie within the interval

[result− uncertainty, result+ uncertainty]

in 66% of the cases. Usually one does not know the true value and an algorithm is applied to find
it, but in the case at hand the data was created arbitrarily and the true value is known. To create
figure 22 and 23 random inputs were created 29600 times and the GA was applied on each of them,
which took about 24 minutes on a common PC. This was done to diminish statistical fluctuation.
For this number of runs, one gets:

true solution within resultimprovedGA ± uncertaintyimprovedGA: 98.1%
true solution within resultWagner′sGA ± uncertaintyWagner′sGA: 84.5%
true solution within resultlinearFit ± uncertaintylinearFit: 87.7%

The uncertainty of the linear Fit method was calculated the same way as was done for the GA,
see section 2.2.2. All algorithms overestimate their uncertainty. The improved GA overestimates
it the most.

5 Summary and outlook
Wagner’s work was successfully reproduced and his algorithm has been improved.

One could extent this work by applying the GA on a superposition of i exponential functions,
like in equation (2). This can be achieved by changing the definition of an individual being just
two numbers (a, b) to

(a1, b1, a2, b2, ..., ai, bi)

In addition the vast possibilities on choosing the fitness function and other parameters of the
GA certainly leave some room for improvement, yet to be explored. One could even imagine
combining different algorithms, that are best suited for certain masses and uncertainties of inputs.
For this purpose a first estimate of the mass could be made and the algorithms could be applied
accordingly based on this estimate.

References
[1] Raphael Wagner. Using machine learning for bsm particle identification, 2018.

[2] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic program-
ming: an introduction, volume 1. Morgan Kaufmann San Francisco, 1998.

30

A Program code
The GA is written in c++. The analysis of the results is written in Python, because creating plots
is easier in this language. The program mainGA.cpp has two modes, which can be toggled by
changing the variable JUST_ONE_RUN_MODE to either true or false.

• just one run mode: runs the GA just once. The results can be viewed in ’Plots for just
one run mode.py’

• many runs mode: runs the GA many times in order to compare the results for many
different masses and standard deviations. The results can be viewed in ’Plots for comparison
of performance.py’. This mode is used to create the 3D plots.

When one wants to start the program on a PC for the first time, empty files named in-
put_data.txt, massAndSd_noise.txt, output_data_justOneRun.txt and output_data_manyRuns.txt
will need to be created. The paths for these files will need to be set correctly in the C++ programs.

A.1 mainGA.cpp

#include <iostream>
#include <random>
#include <chrono> // time for seed; and for measuring execution time
#include <algorithm> // std::max_element
#include <fstream> // read file
//#include <vector> // already included in generateInput.h
#include <cmath> // for exp() and errror function (erf)
#include <numeric> // std :: partial_sum; not used because it doesn’t work in my case
#include "generateInput.h"
#include <windows.h> // for Beep()

using std::cout;
using std::endl;

define MIN_A 0.9 // minimum a, that an individual can have upon initialization
define MAX_A 1.1
define JUST_ONE_RUN_MODE false // Just_one_run_mode runs the GA only once

// construct a random generator engine from a time−based seed
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std :: default_random_engine generator(seed);

struct Individual {
double a;
double b;
double fitness;

Individual(double p_a, double p_b)
: a(p_a), b(p_b) {

}
};

class Population {
int size ; // size of population
Individual fittest = Individual(0, 0);
std :: vector<Individual> pop; // vector of individuals of size "size"

// function used for integration in eval_fitness ()
double f(double x, double sigma) {

return x − sqrt(M_PI) ∗ sigma ∗ erf(x / (sqrt(2) ∗ sigma)) / sqrt(2);

31

}

public:
explicit Population(int size_in);

void eval_fitness(const std::vector<double> &input, double std_noise) {
// inputs are the data points we want to fit . std_noise is the standard deviation of

the inputs.
// I integrated the function for the weights analytically

double f0 = f(0, std_noise); // define f0 for speed
fittest . fitness = 0;
double indiv;
double fit_temp;
// loop over all individuals
for (auto &individual : pop) {

individual . fitness = 0; // reset fitness for individual
// loop over all points (about 3−18)
for (int x = 0; x < input.size() ; x++) {

indiv = individual.a ∗ exp(−individual.b ∗ (x + 1));
fit_temp = fabs(indiv − input[x]);
fit_temp = f(fit_temp, std_noise) − f0;
//fit_temp = fit_temp ∗ std_noise / indiv; // weight for relative

uncertainty; makes GA worse
individual . fitness += 1 / fit_temp; // Wagner’s way
//individual . fitness += fit_temp; // my improved way

}
//individual . fitness = 1 / individual . fitness ; // my improved way
//individual . fitness = pow(individual.fitness , 0.25) ; // This does not change the

results
if (individual . fitness > fittest . fitness) {

fittest = individual;
}

}
}

// create new population based on fitness of individuals
void next_pop() {

double cumFitness[size];
cumFitness[0] = pop[0]. fitness ;
for (int i = 1; i < size; ++i) {

cumFitness[i] = cumFitness[i − 1] + pop[i]. fitness ;
}
double sum_of_fitness = cumFitness[size − 1]; // cumFitness[size − 1] is last element

of cumFitness

// create temporary new pop
std :: vector<Individual> pop_new;
pop_new.reserve(size);

std :: uniform_real_distribution<double> distribution(0.0, sum_of_fitness);

for (int i = 0; i < size; ++i) {
// create random r
double r = distribution(generator);
// search for individual
for (int j = 0; j < size; ++j) {

32

if (r < cumFitness[j]) {
// individual j is chosen for reproduction
pop_new.emplace_back(pop[j]);
break; // break out of search for individual

}
}

}
pop = pop_new;

}

void mutate(float mutation_rate) {
std :: uniform_real_distribution<double> distribution1(0.0, 1.0);
std :: normal_distribution<double> distribution_a(0.0, 1 ∗ 0.001); // ’mutation width’
std :: normal_distribution<double> distribution_b(0.0, 1 ∗ 0.005); // ’mutation width’
for (int i = 0; i < size; ++i) {

double r = distribution1(generator);
if (mutation_rate > r) {

int r1 = rand() % 2;
if (r1 == 0) {

pop[i]. a += distribution_a(generator);
} else {

pop[i]. b += distribution_b(generator);

// This part was added to avoid negative masses.
if (pop[i]. b < 0) {

pop[i]. b = fabs(distribution_b(generator));
}

}
}

}
}

void crossover(float crossover_rate) {
std :: uniform_real_distribution<double> distribution2(0.0, 1.0);
std :: vector<int> chosenI; // list of chosen Individuals
double r1;
int partner;
double temp;
double r2;
for (int i = 0; i < size; ++i) {

r1 = distribution2(generator);
if (crossover_rate > r1) {

chosenI.push_back(i);
}

}
if (chosenI. size () % 2 == 1) {

std :: uniform_int_distribution<int> distribution3(0, chosenI.size() − 1);
chosenI.erase(chosenI.begin() + distribution3(generator)) ;

}
for (int i = 0; i < chosenI.size () / 2; ++i) {

partner = chosenI[i + chosenI.size () / 2]; // chosen partner is about half of the
pop away

r2 = rand() % 2;
if (r2 == 0) {

temp = pop[i].a;

33

pop[i]. a = pop[partner].a;
pop[partner].a = temp;

} else {
temp = pop[i].b;
pop[i]. b = pop[partner].b;
pop[partner].b = temp;

}
}

}

double get_mass_fittest() {
return fittest .b;

}

double get_a_fittest() {
return fittest .a;

}

double get_fitness_fittest() {
return fittest . fitness ;

}

void print_fittest () {
cout << "\nFittest individual. Fitness : " << fittest . fitness << " a: " << fittest .a

<< " mass: "
<< fittest .b
<< endl;

}

void print_pop(int gen) {
cout << "\n Generation " << gen << endl;
for (int i = 0; i < size; ++i) {

cout << pop[i]. fitness << " ";
}
cout << endl;

}

void save_gen_to_file() {
std :: ofstream outFile;
outFile .open((R"(C:\Users\... YOUR PATH \output_data_justOneRun.txt)"),

std :: ios_base::app);
if (outFile .is_open()) {

outFile << fittest . fitness << ", " << fittest.a << ", " << fittest.b << ", " <<
size;

for (int i = 0; i < size; ++i) {
outFile << ", " << pop[i].b;

}
} else cout << "Unable to open Output file";
outFile << "\n";
outFile . close () ;

}
};

// Population Constructor
Population::Population(int p_size) {

size = p_size;
pop.reserve(size) ;
// e−function has the form e = a∗exp(−b∗x)

34

std :: uniform_real_distribution<double> distribution_a(MIN_A, MAX_A);
std :: uniform_real_distribution<double> distribution_b(0.01, 1.9); // Wagner: 0.07 − 1.9.

Does not affect results
for (int i = 0; i < size; i++) {

pop.emplace_back(distribution_a(generator), distribution_b(generator));
}

}

int main() {
int max_generations = 15; // Wagner: 15
int size_population = 450; // Wagner: 450
float mutation_rate = 1;
//float crossover_rate = 0;
int inputs_generated_for_each_pair = 160; // number of times, inputs for the same mass

−standard deviation−pair should be created
float min_mass = 0.1;
float max_mass = 1.8;
float steps_mass = 0.1;
int iter_mass_and_std = 18;

if (round((max_mass − min_mass) / steps_mass) − ((max_mass − min_mass) /
steps_mass) > 0.00001)
cout << "Error: unallowed steps" << endl;

float min_std = 0.0035; // minimum value of standard deviation of noise
float max_std = 0.1;
double steps_std = (max_std − min_std) / (iter_mass_and_std − 1);

/////// run the routine for JUST_ONE_RUN_MODE;
#if JUST_ONE_RUN_MODE

double mass = 0.5;
double std = 0.08; // standard deviation of noise

// clear output files
std :: ofstream ofs ;
ofs .open(R"(C:\Users\... YOUR PATH \output_data_justonce.txt)",

std :: ofstream::out | std :: ofstream::trunc);
ofs . close () ;

//generate Input
std :: vector<double> input = generateInput(mass, std, seed, true);

// initialize population
Population pop(size_population);

for (int j = 0; j < max_generations − 1; ++j) {
pop.eval_fitness(input, std) ;
pop.save_gen_to_file();
pop.next_pop();
pop.mutate(mutation_rate);
//pop.crossover(crossover_rate);

}
pop.eval_fitness(input, std) ;
pop.next_pop();
pop.eval_fitness(input, std) ;

// find sigma by running GA with inputs moved to upper error bar and lower error bar
respectively

35

std :: vector<double> inputU; // inputs on upper error bar
std :: vector<double> inputL; // inputs on lower error bar
inputU.reserve(input. size ()) ;
inputL.reserve(input. size ()) ;
Population popU(size_population);
Population popL(size_population);
for (auto i : input) {

inputU.emplace_back(i + std);
inputL.emplace_back(i − std);

}
for (int j = 0; j < max_generations; ++j) {

popU.eval_fitness(inputU, std);
popL.eval_fitness(inputL, std) ;
popU.next_pop();
popL.next_pop();
popU.mutate(mutation_rate);
popL.mutate(mutation_rate);
//popU.crossover(crossover_rate);
//popL.crossover(crossover_rate);

}
popU.eval_fitness(inputU, std);
popL.eval_fitness(inputL, std) ;

double sigma = popL.get_mass_fittest() − popU.get_mass_fittest();
cout << "sigma: " << sigma << endl;
return 0; // end main()

#endif

///////// Main programm
auto start_run = std::chrono::high_resolution_clock::now();

// create array of true masses and print them
std :: vector<double> all_masses; // list of all masses that are going to be calculated
cout << "Masses: ";
for (int l = 0; l < iter_mass_and_std; ++l) {

all_masses.push_back(l ∗ steps_mass + min_mass);
cout << l ∗ steps_mass + min_mass << " ";

}
cout << endl;

// create array of standard deviations of noise and print them
std :: vector<double> all_std; // list of all standard deviations that are going to be

calculated
cout << "Standard deviations: ";
for (int l = 0; l < iter_mass_and_std; ++l) {

all_std.push_back(l ∗ steps_std + min_std);
cout << l ∗ steps_std + min_std << " ";

}
cout << endl << endl;

int total_GA_runs = iter_mass_and_std ∗ iter_mass_and_std ∗
inputs_generated_for_each_pair;

cout << "Running the GA about " << round(total_GA_runs ∗ 0.57101) << " times,
estimated time "
<< total_GA_runs ∗ 3 ∗ 0.0001640777 << " min... Percent done:" << endl;

// clear output files
std :: ofstream ofs2 ;

36

ofs2 .open(R"(C:\Users\... YOUR PATH \output_data_manyRuns.txt)",
std :: ofstream::out | std :: ofstream::trunc);

ofs2 . close () ;

std :: ofstream outFile;
outFile .open((R"(C:\Users\... YOUR PATH \output_data_manyRuns.txt)"), std::ios_base

::app);
if (! outFile .is_open()) cout << "Unable to open Output file";

int smallerThanZero = 0;
long int counting = 0; // this counts the number of inputs and can be used to create fixed

input data

// loop over masses
for (int i_mass = 0; i_mass < iter_mass_and_std; ++i_mass) {

double mass_real = all_masses[i_mass];
cout << 100 ∗ i_mass / iter_mass_and_std << "% ";

// loop over standard deviations
for (int i_std = 0; i_std < iter_mass_and_std; ++i_std) {

double std = all_std[i_std];

// for each mass−standard deviation pair, inputs get generated a couple of times
for (int i_input_generated = 0; i_input_generated <

inputs_generated_for_each_pair; ++i_input_generated) {
// skip if points are too low
if (exp(−3 ∗ mass_real) < std) {

outFile << mass_real << ", " << std;
for (int i = 0; i < 19; ++i) {

outFile << ", 0";
}
outFile << ", " << inputs_generated_for_each_pair << "\n";
continue;

}

//generate Input
counting++;
std :: vector<double> input = generateInput(mass_real, std, counting);
unsigned int number_inputs = input.size();

Population pop(size_population);
for (int j = 0; j < max_generations; ++j) {

pop.eval_fitness(input, std) ;
pop.next_pop();
pop.mutate(mutation_rate);
//pop.crossover(crossover_rate);

}
pop.eval_fitness(input, std) ;

// find sigma by running GA with inputs moved to upper errorbar and lower
errorbar respectively

std :: vector<double> inputU;
std :: vector<double> inputL; // inputs on upper and lower errorbar
inputU.reserve(number_inputs);
inputL.reserve(number_inputs);
Population popU(size_population);
Population popL(size_population);
for (auto i : input) {

37

inputU.emplace_back(i + std);
inputL.emplace_back(i − std);

}
for (int j = 0; j < max_generations; ++j) {

popU.eval_fitness(inputU, std);
popL.eval_fitness(inputL, std) ;
popU.next_pop();
popL.next_pop();
popU.mutate(mutation_rate);
popL.mutate(mutation_rate);
//popU.crossover(crossover_rate);
//popL.crossover(crossover_rate);

}
popU.eval_fitness(inputU, std);
popL.eval_fitness(inputL, std) ;

double sigma = fabs(popL.get_mass_fittest() − popU.get_mass_fittest());

if (sigma < 0)smallerThanZero++;

// append to output file
outFile << mass_real << ", " << std << ", " << number_inputs;
for (int i = 0; i < number_inputs; ++i) {

outFile << ", " << input[i];
}
for (int i = 0; i < 16 − number_inputs; ++i) {

outFile << ", 0";
}
outFile << ", " << pop.get_mass_fittest() << ", " << sigma << ", " <<

inputs_generated_for_each_pair
<< "\n";

} // end of loop over input−creation
} // end of loop over standard deviations

} // end of loop over masses

cout << endl << "sigma is smaller than Zero: " << smallerThanZero << endl;
auto finish_run = std::chrono::high_resolution_clock::now();
std :: chrono::duration<double> elapsed_run = finish_run − start_run;
cout << "\nElapsed time run: " << elapsed_run.count() / 60 << " min\n";
cout << "GA ran " << counting << " times.";
Beep(523, 500);
return 0;

}

A.2 generateInput.h

//
// Created by Lukas on 04.12.2017.
//

#ifndef BACHELORARBEIT_CLION_GENERATEINPUT_H
#define BACHELORARBEIT_CLION_GENERATEINPUT_H

#include <vector>

std :: vector<double> generateInput(double mass, double sd_noise, long int counting, bool
write_input_to_file = false);

38

#endif //BACHELORARBEIT_CLION_GENERATEINPUT_H

A.3 generateInput.cpp

//
// Created by Lukas on 04.12.2017.
//

#ifndef BACHELORARBEIT_CLION_GENERATEINPUT_H
#define BACHELORARBEIT_CLION_GENERATEINPUT_H

#include <vector>

std :: vector<double> generateInput(double mass, double sd_noise, long int counting, bool
write_input_to_file = false);

#endif //BACHELORARBEIT_CLION_GENERATEINPUT_H

A.4 Plots for just one run mode.py

Lukas Reicht Output data Processing for Bachelor thesis

import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from scipy.optimize import curve_fit
import scipy.integrate as integrate

with open("output_data_justOneRun.txt") as outFile:
dataOut = np.loadtxt(outFile, delimiter=", ")

transform output data
fitnessFittest = dataOut[:, 0]
aFittest = dataOut[:, 1]
massFittest = dataOut[:, 2]
populationSize = dataOut[:,3]
populationSize = populationSize[0].astype(int)
masses = dataOut[:, 4:(populationSize+4)]
different_values = np.ma.size(dataOut,1) # different values per Generation
gen = np.ma.size(dataOut) / different_values # number of generations
gen = int(gen)

read in input points
with open("input_data.txt") as inFile:

dataIn = np.loadtxt(inFile)

read in true mass
with open("massAndSd_noise.txt") as massFile:

mass_true = np.loadtxt(massFile)
sd_noise = mass_true[1]
mass_true = mass_true[0]

This compares the result to scipy.optimize
compare_to_scipy_optimize = True
if compare_to_scipy_optimize:

39

x_d = np.arange(1, np.size(dataIn) + 1) # discrete x array (about 5 values)
efun = lambda t,a,b: a∗np.exp(−b∗t)
sigma = np.full(np.size (dataIn), 0.05)

bounds: a between 0.7 and 1.3. mass(b) between 0.1 and 1.8
bounds improve curve_fit by a ton!
, bounds=([1.0, 0.1], [1.9, 1.8])
sp_solution, pcov = curve_fit(efun, x_d, dataIn, sigma=sigma, bounds=([0.7, 0.1], [1.3,

1.8]))

calculate errors ; i am not 100% sure this is correct
perr = np.sqrt(np.diag(pcov))

print("True mass: ", mass_true)
print("Scipy mass: ", sp_solution [1], "+−", perr[1])
print("My GA solution: ", massFittest[gen − 1])
print("sp a", sp_solution [0], "+−", perr[0])

printing the results of scipy
x_c = np.linspace(0, np.size(dataIn), 300) # "continuous" x array (100 values)
fig , ax = plt.subplots()
line1 = ax.plot(x_c, sp_solution[0] ∗ np.exp(−sp_solution[1] ∗ x_c), label="scipy",

linestyle="dashed", color="blue")
line2 = ax.plot(x_c, aFittest[−1] ∗ np.exp(−massFittest[−1] ∗ x_c), label="GA", linestyle

="dashed", color="green")
line3 = ax.plot(x_c, 1 ∗ np.exp(−mass_true ∗ x_c), label="true data", color="orange")
line4 = plt.errorbar(x_d, dataIn, yerr=sd_noise, color=’blue’, fmt=’o’, label="errorbars")

create errorbars
plt . xlabel("x")
plt . ylabel("f(x)")
plt .legend()
plt .show()

This prints an animation of the evolution of the fittest individual
print_certain_generations = False
if print_certain_generations:

make an array of certain generations, that I want to print (e.g. [0, 1, 2, 26, 51, 76,
100] for 100 generations)

gens_to_print = [0, 1] + list(np.linspace (2, gen, 5))
for i in range(np.size(gens_to_print)):

gens_to_print[i] = int(round(gens_to_print[i]))

create figure
fig , ax = plt.subplots()

create first plot (Generation 0)
x_c = np.linspace(0, np.size(dataIn), 100) # "continuous" x array (100 values)
x_d = np.arange(1, np.size(dataIn) + 1) # discrete x array (about 5 values)
line , = ax.plot(x_c, aFittest [0] ∗ np.exp(−massFittest[0] ∗ x_c)) # first plot
fig . suptitle (’Generation 0’)
line1 = plt.errorbar(x_d, dataIn, yerr=sd_noise, color=’blue’, fmt=’o’) # create errorbars

define each frame of animation
def animate(i):

x_c = np.linspace(0, np.size(dataIn), 100) # "continuous" x array (100 values
)

line .set_ydata(aFittest[i] ∗ np.exp(−massFittest[i] ∗ x_c)) # update the data

40

fig . suptitle (’Generation ’ + str(gens_to_print[i])) # update title
return line

ani = animation.FuncAnimation(fig, animate, np.arange(0, np.size(gens_to_print)),
interval=300, repeat=True, repeat_delay=700)

plt .show()

This prints an animation that shows, how the mass (=b) distribution changes over the
Generations

print_mass_distribution = False
if print_mass_distribution:

bins = 150
xlimFixedOn = 0 # Generation of which max and min element determine the xlimits

make an array of certain generations, that I want to print (e.g. [0, 1, 2, 26, 51, 76,
100] for 100 generations)

gens_to_print = list(range(gen))

create figure
fig , ax = plt.subplots()

create first plot (Generation 0)
ax.hist (masses [0,:], bins)
plt .xlim ([0,1.8])
plt . xlabel("mass")
plt . ylabel("Number of individuals")
#plt.xlim([min(masses[0,:]) , max(masses[0,:])])
fig . suptitle (’Generation 0’)

define each frame of animation
def animate(i):

ax.clear ()
ax.hist (masses[i ,:], bins, range=[min(masses[xlimFixedOn,:]), max(masses[

xlimFixedOn,:])])
plt . xlabel("mass")
plt . ylabel("Number of individuals")
#plt.xlim([min(masses[xlimFixedOn,:]), max(masses[xlimFixedOn,:])])
plt .xlim ([0,1.8])
plt .ylim ([0,350])
fig . suptitle (’Generation ’ + str(gens_to_print[i]))
return 0

ani = animation.FuncAnimation(fig, animate, np.arange(0, np.size(gens_to_print)),
interval=500, repeat=True, repeat_delay=1000)

plt .show()

forExplaniningFitnessFunction = True
if forExplaniningFitnessFunction:

x_d = np.arange(1, np.size(dataIn) + 1) # discrete x array (about 5 values)
efun = lambda t,a,b: a∗np.exp(−b∗t)
SIGMA = 0.05
sigma = np.full(np.size (dataIn), SIGMA)

printing the results of scipy
x_c = np.linspace(0, np.size(dataIn), 300)
fig , ax = plt.subplots()

41

line1 = ax.plot(x_c, aFittest[−1] ∗ np.exp(−massFittest[−1] ∗ x_c), label="Exponential
function of some individual", color="blue")

line2 = ax.plot(x_d, aFittest[−1] ∗ np.exp(−massFittest[−1] ∗ x_d), ’x’, color="blue",
label="D_i ... belong to the individual")

line3 = ax.plot(x_d, dataIn, ’bx’, color=’red’, label="C_i ... data that we want to fit"
)

plt . xlabel("x")
plt . ylabel("f(x)")
plt .legend()

calculating stuff
Fitness = 0.0
for i in range(np.size(dataIn)):

print(i + 1)
C = dataIn[i]
D = aFittest[−1] ∗ np.exp(−massFittest[−1] ∗ (i + 1))
print(’|Ci − Di|: ’ , round(abs(C−D), 8))
def integrand(x):

return 1 − np.exp(−x∗∗2 / (2 ∗ SIGMA∗∗2))
denominator = integrate.quad(integrand, 0, abs(C − D))
print(’denominator: ’ , round(denominator[0], 15))
print(denominator)
Fitness = Fitness + 1 /denominator[0]

print(Fitness)
plt .show()

print_single_mass_distribution = False
if print_single_mass_distribution:

bins = 150
gen_to_print = 15

create first plot (Generation 0)
plt . hist (masses[gen_to_print,:], bins)
#plt.xlim([min(masses[gen_to_print,:]), max(masses[gen_to_print,:])])
plt .xlim ([0.1,1.8])
plt . xlabel("mass")
plt . ylabel("Number of individuals")
#plt.xlim([min(masses[0,:]) , max(masses[0,:])])
plt . title (’Generation 10’)

plt .show()

A.5 Plots for comparison of performance.py

Lukas Reicht Output data Processing for Bachelor thesis

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib import cm # colormap
import scipy.interpolate as interpolate # interpolate

42

import scipy.sparse.linalg as splin

what this programm does:
compary improved GA with Wagner’s GA

with open("output_data_manyRuns.txt") as outFile:
dataOut = np.loadtxt(outFile, delimiter=", ",)

mass_real = dataOut[:, 0]
noise_std = dataOut[:, 1] # gauss standard deviation used to create inputs
number_inputs = dataOut[:, 2].astype(int)
inputs = dataOut[:, 3:19] # this is the correct index
GAsolution = dataOut[:, 19]
GAsigma = dataOut[:, 20]
inputs_generated_for_each_pair = dataOut[:, 21] # number of times an input is created for

each mass_real−noise_std−pair
inputs_generated_for_each_pair = inputs_generated_for_each_pair[0].astype(int)
masses_generated = 18
std_generated = masses_generated
totalNumberOfInputs = np.count_nonzero(number_inputs)

with open("output_data_Wagner_Reference.txt") as outFileR:
dataOutR = np.loadtxt(outFileR, delimiter=", ",)

mass_realR = dataOutR[:, 0]
noise_stdR = dataOutR[:, 1] # gauss standard deviation used to create inputs
number_inputsR = dataOutR[:, 2].astype(int)
inputsR = dataOutR[:, 3:19] # this is the correct index
GAsolutionR = dataOutR[:, 19]
GAsigmaR = dataOutR[:, 20]
inputs_generated_for_each_pairR = dataOutR[:,

21] # number of times an input is created for each
mass_real−noise_std−pair

inputs_generated_for_each_pairR = inputs_generated_for_each_pairR[0].astype(int)

if mass_real.all() != mass_realR.all(): print("Error: size of new run and
RaphealReproduction do not agree.")

if inputs.all () != inputsR.all() : print("Error: not all inputs are the same.")

initialize Measure of Merits
dp_MM = 18 # datapoints of MM
dp_MM = dp_MM.astype(int)
MM1_GA = np.zeros((dp_MM, dp_MM))
MM1_RGA = np.zeros((dp_MM, dp_MM))
MM1_lin = np.zeros((dp_MM, dp_MM))
MM2_GA = np.zeros((dp_MM, dp_MM))
MM2_RGA = np.zeros((dp_MM, dp_MM))
MM2_lin = np.zeros((dp_MM, dp_MM))
for MM calculate mean for each pair
testMatrix = np.zeros((dp_MM, dp_MM))

define e−function
efun = lambda t, a, b: a ∗ np.exp(−b ∗ t)

minMassOfLin = 10
maxMassOfLin = 0
counterLinFitNegative = 0
i = −1

43

RGACount, GACount, linCount = 0, 0, 0
linSigmaNotEvaluatedCount = 0
for i_mass in range(masses_generated):

for i_std in range(std_generated):
for i_inputs in range(inputs_generated_for_each_pair):

i += 1 # iterator over total number
if number_inputs[i] == 0: # skip these

continue

x_d = np.arange(1, number_inputs[i] + 1) # discrete x array starting from 1 to (
number_inputs + 1)

cut zeros away from input
inputs_i = inputs[i][0: number_inputs[i]]

Evaluate least squares linfit

y + error = a ∗ exp(−b∗x)
ln(y + error) = ln(a) − b ∗ x
np.log() = natural logarithm
error propagation: (1/y) ∗ deltaY
linSigmaInput = np.full(number_inputs[i], noise_std[i]) / inputs_i
linWeight = 1 / linSigmaInput # according to documentation

[mass_lin, a_lin] = np.polyfit(−x_d, np.log(inputs_i), 1, w=linWeight)
a_lin = np.exp(a_lin)

for k in inputs_i:
if k < noise_std[i]:

print("error1", i + 1, k, noise_std[i])

if (mass_lin < minMassOfLin) and (mass_lin > 0):
minMassOfLin = mass_lin

if mass_lin > maxMassOfLin: maxMassOfLin = mass_lin
if mass_lin < 0:

mass_lin = mass_real[i]
counterLinFitNegative = counterLinFitNegative + 1

if mass_lin < 0.1: # add unfair advantage to Lin Fit
mass_lin = mass_real[i]

calculate error by making linfit through upper and lower point of errorbar and
taking that difference

[lowerMass, _] = np.polyfit(−x_d, np.log(inputs_i + np.full(number_inputs[i],
noise_std[i])), 1,

w=linWeight)
[upperMass, _] = np.polyfit(−x_d, np.log(inputs_i − np.full(number_inputs[i],

noise_std[i])), 1,
w=linWeight)

linSigma = np.mean(abs(upperMass − lowerMass))

if i % 1000 == 0: print(i)

calculate MM and its deviation for each mass
MM1_GA[i_mass, i_std] += abs(GAsolution[i] − mass_real[i]) / mass_real[i]
MM1_RGA[i_mass, i_std] += abs(GAsolutionR[i] − mass_real[i]) / mass_real[i]
MM1_lin[i_mass, i_std] += abs(mass_lin − mass_real[i]) / mass_real[i]

MM2_GA[i_mass, i_std] += GAsigma[i] / mass_real[i]

44

MM2_RGA[i_mass, i_std] += GAsigmaR[i] / mass_real[i]
MM2_lin[i_mass, i_std] += linSigma / mass_real[i]

if abs(mass_real[i] − GAsolutionR[i]) < GAsigmaR[i]:
RGACount = RGACount + 1

if abs(mass_real[i] − GAsolution[i]) < GAsigma[i]:
GACount = GACount + 1

if abs(mass_real[i] − mass_lin) < linSigma:
linCount = linCount + 1

MM1_GA = MM1_GA / inputs_generated_for_each_pair
MM1_RGA = MM1_RGA / inputs_generated_for_each_pair
MM1_lin = MM1_lin / inputs_generated_for_each_pair
MM2_GA = MM2_GA / inputs_generated_for_each_pair
MM2_RGA = MM2_RGA / inputs_generated_for_each_pair
MM2_lin = MM2_lin / inputs_generated_for_each_pair

print("solution within +−GAsigma (should be > 67%): ", round(100 ∗ GACount /
totalNumberOfInputs, 4), "%")

print("solution within +−RGAsigma (should be > 67%): ", round(100 ∗ RGACount /
totalNumberOfInputs, 4), "%")

print("solution within +−linsigma (should be > 67%): ", round(100 ∗ linCount /
totalNumberOfInputs, 4), "%")

plot results
x = np.linspace(np.amin(noise_std), np.amax(noise_std), dp_MM) # standard deviation
y = np.linspace(np.amin(mass_real), np.amax(mass_real), dp_MM) # mass
X, Y = np.meshgrid(x, y)

remove points from final plot for which the input is not meaningful
Remove = np.exp(−3 ∗ Y) < X
X[Remove] = None
Y[Remove] = None

def my3Dplot(Z, title):
interpZ = interpolate.interp2d(x, y, Z, kind=’cubic’)

xfine = np.linspace(np.amin(noise_std), np.amax(noise_std), 3 ∗ dp_MM) # standard
deviation

yfine = np.linspace(np.amin(mass_real), np.amax(mass_real), 3 ∗ dp_MM) # mass
Zfine = interpZ(xfine, yfine)
X, Y = np.meshgrid(xfine, yfine)

Remove = np.exp(−3 ∗ Y) < X
X[Remove] = None
Y[Remove] = None

fig = plt. figure ()
ax = fig.gca(projection=’3d’)
surf = ax.plot_surface(X, Y, Zfine, cmap=cm.viridis) # good colormap: coolwarm
fig .colorbar(surf , shrink=0.5, aspect=5) # add a color bar
plt . title (title)
ax.set_xlabel("Standard deviation")
ax.set_ylabel("Masses")
ax.invert_xaxis() # make it look like Raphael’s plot

def my2Dplot(Z, title):

45

interpZ = interpolate.interp2d(x, y, Z, kind=’cubic’)

xfine = np.linspace(np.amin(noise_std), np.amax(noise_std), 10 ∗ dp_MM) # standard
deviation

yfine = np.linspace(np.amin(mass_real), np.amax(mass_real), 10 ∗ dp_MM) # mass
Zfine = interpZ(xfine, yfine)
X, Y = np.meshgrid(xfine, yfine)

Remove = np.exp(−3 ∗ Y) < X
X[Remove] = None
Y[Remove] = None

fig = plt. figure ()
cf = plt.contourf(X, Y, Zfine , 500)
plt .colorbar(cf)
CS = plt.contour(X, Y, Zfine, levels =[0], cmap=’Reds’) #white line at zero
plt .xlim([max(x), min(x)]) # invert axis
plt .ylim([min(y), max(y)])
plt . xlabel("Standard deviation")
plt . ylabel("Masses")
plt . title (title)

Z1 = MM1_RGA − MM1_GA # if Z is larger than 0, my GA is better than Raphael’s
my3Dplot(Z1, "MM1: GA without vs. Ga with factor")
my2Dplot(Z1, "MM1: GA without vs. Ga with factor")

Z2 = MM2_RGA − MM2_GA
my3Dplot(Z2, "MM2: GA without vs. Ga with factor")
my2Dplot(Z2, "MM2: GA without vs. Ga with factor")

Z3 = MM1_lin − MM1_GA
#my3Dplot(Z3, "MM1: linear Fit vs. GA")
#my2Dplot(Z3, "MM1: linear Fit vs. GA")

Z4 = MM2_lin − MM2_GA
#my3Dplot(Z4, "MM2: linear Fit vs. GA")
#my2Dplot(Z4, "MM2: linear Fit vs. GA")

#my3Dplot(MM2_GA, "MM2 Wagner’s Ga with bad error estimate")
#my2Dplot(MM2_GA, "MM2 Wagner’s Ga with bad error estimate")
#my3Dplot(MM2_RGA, "MM2 Wagner’s Ga with good error estimate")
#my2Dplot(MM2_RGA, "MM2 Wagner’s Ga with good error estimate")
#my3Dplot(MM2_lin, "MM2 linear least squares Fit")
#my2Dplot(MM2_lin, "MM2 linear least squares Fit")

GAsigma = GAsigma[np.nonzero(number_inputs)]
GAsigmaNonzero = GAsigma[np.nonzero(GAsigma)]
counter = 0
for i in GAsigmaNonzero:

if i < 0: counter = counter + 1
test1 = number_inputs[np.nonzero(number_inputs)]
if counter > 0: print("# GAsigma ist negativ:", counter)
if (test1 . size − GAsigmaNonzero.size) > 0: print("# GA sigma ist 0:", test1.size −

GAsigmaNonzero.size)

print("inputs created: ", GAsigmaNonzero.size, GAsigma.size)

46

print("Max mass of Lin Fit:", maxMassOfLin)
print("Min mass of Lin Fit:", minMassOfLin)
print("Times mass of Lin Fit is negative:", counterLinFitNegative)

print("Mean of MM1 RGA vs. me: ", np.round(np.mean(Z1), 5))
print("Mean of MM2 RGA vs. me: ", np.round(np.mean(Z2), 5))

plt .show()

A.6 CMakeList.txt

cmake_minimum_required(VERSION 3.10)
project(pretty_Bachelor_thesis)

set(CMAKE_CXX_STANDARD 11)

set(SOURCE_FILES mainGA.cpp generateInput.cpp)

add_executable(pretty_Bachelor_thesis ${SOURCE_FILES})

47

	Introduction
	The physical problem and its simulation
	Introduction to Genetic Algorithms

	Reproduction of Wagner's genetic algorithm
	Results of successful reproduction
	Error estimate of the GA
	First approach: range of masses
	Second approach: upper and lower error bar

	Improvements to the GA
	Improvements to the GA with unchanged fitness function
	Changes to the fitness function
	Moving the summation into the denominator
	Weight for relative uncertainties

	Further optimizations
	Number of generations
	Fitness to the power of x
	Mutation width
	Weight for relative uncertainties to the power of X
	Mutation rate
	Crossover rate

	Results
	Summary and outlook
	Program code
	mainGA.cpp
	generateInput.h
	generateInput.cpp
	Plots for just one run mode.py
	Plots for comparison of performance.py
	CMakeList.txt

