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Chapter 1

Introduction

Gauge theories play a fundamental role in all of modern fundamental physics, but are

at the same time enigmatic and challenging. The aim of this lecture is to provide an

introduction to their quantum version, in the form of quantum gauge theories.

It turns out that a suitable language for these kind of theories is the path integral,

which will therefore be introduced in chapter 2. This will be done in a first step for

non-gauge theories, as this substantially simplifies it.

Gauge theories will be then introduced only in chapter 3, starting with the extension of

classical electrodynamics to quantum electro dynamics (QED). QED is a special case of a

gauge theory, as it is related to an Abelian structure. The generalization to so-called non-

Abelian gauge theories, or Yang-Mills theories, is necessary in particle physics, as they turn

out to be a building block of the standard model. In fact, even classical general relativity

can be considered to be a gauge theory of related type, and thus will any quantum version

of it. Classical Yang-Mills theory will be introduced in chapter 4.

Only in chapter 5 will Yang-Mills theory be quantized, as this requires much more

techniques due to the non-Abelian nature. In fact, it will only be possible at this stage

to quantize the theory at the level of perturbation theory. However, as both in practice

and for the sake of concept formation perturbation theory is invaluable, this is anyhow a

necessary step. This will be continued in chapter 6, where various perturbative processes

will be discussed in detail. As at loop level also in gauge theories divergences arise, this

will not be possible without an extensive discussion of this topic.

After this, it is possible to delve into gauge theories beyond perturbation theory in

chapter 7. This issue is indeed challenging, and not entirely solved until today. This

will lead also to questions what are the physical degrees of freedom of gauge theories

beyond perturbation theory, and will show that gauge symmetry leads to deeper ontological

problems as well. Here QED will be again a role model, as it is possible to spell out both

1
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the problem and solution in this case explicitly, although at the price of exponentially more

complicated calculations. It will then be seen how this problem translates to non-Abelian

gauge theories, and where the resolution becomes more involved.

This lecture will not be able to cover actual calculations beyond perturbation theory,

as the necessary methods are quiet involved, and thus deserve lectures of their own. These

are available for lattice gauge theory and for functional methods, although this is not an

exhaustive list of possible methods. Some other methods will be encountered in more

specialized lectures.

Finally, two generically important aspects, topology in chapter 8 and anomalies in

chapter 9, will round out the discussion of gauge theories. However, gauge theories are a

vast subject, and thus many issues can only be treated superficially. Especially, concrete

realizations of gauge theories as theories of, e. g., the strong and weak forces require their

own dedicated lecture. There is also a vast literature on gauge theories. In the preparation

of this course, the following books and review articles have been used:

� Peskin et al. “An introduction to quantum field theory”, Perseus

� Böhm et al. “Gauge theories”, Teubner

� O’Raifertaigh, “Group structure of gauge theories”, Cambridge

� Weinberg, “The quantum theory of fields I+II”, Cambridge

� DeWitt, “The global approach to quantum field theory”, Oxford

� Haag, “Local quantum physics”, Springer

� Lavelle et al., “Constituent quarks from QCD”, Phys. Rept. 279

� Maas, “Gauges bosons at zero and finite temperatures”, Phys. Rept. 524

� Maas, “Brout-Englert-Higgs physics”, PPNP 106

Of course, these are my personal choices, and not necessarily the best ones to learn the

topic from. Thus, I strongly recommend that any student should test various books and

choose the one best suited for their own purposes.



Chapter 2

Path integral

While gauge theories can be formulated in canonical quantization this is at least cumber-

some. As a consequence, it is used little in practice, and not every issue has even been

treated in this approach. The path integral is a much more natural framework for gauge

theories, which will become especially visible in chapter 5. Thus, it will be used exclusively

in this lecture.

In this chapter, the basic formulation of the path integral will be briefly reviewed,

together with the necessary tools to treat both bosonic and fermionic particles. The

application of perturbation theory and the derivation of Feynman rules will be discussed

in chapter 6.

2.1 Heuristic introduction

The path integral formulation is as axiomatic as is canonical quantization, it cannot be

derived. However, it is possible to motivate it.

This is done most easily by defining it as a limiting procedure, using a so-called lattice

regularization. As the name implies, it works by replacing space-time with a finite lattice

of discrete points. This technique will reappear again later in section 6.2.8, and actually

is useful also for doing calculations in quantum field theories. For the moment, it is,

however, just a tool to define a limiting process. The approach is therefore quite similar

to what is done by defining the path integral in quantum mechanics by creating it from

a product of propagators. It is actually possible to define, even mathematically rigorous

in the non-interacting case, the path integral directly in the continuum. However, this

requires more general ways of integrating, so-called Ito integration, as quantum fields are

usually non-continuously differentiable functions, which cannot be treated by Riemann

integration.

3



4 2.1. Heuristic introduction

In fact, it is best to start with the quantum mechanics version, but in a different than

usual way. The heuristic reasoning is then as follows. Take a quantum-mechanical particle

which moves in time T from a point a of origin to a point b of measurement. This is

not yet making any statement about the path the particle followed. In fact, in quantum

mechanics, due to the superposition principle, a-priori no path is preferred. Therefore, the

transition amplitude U for this process must be expressible as

U (a, b, T ) =
∑

All paths

ei·Phase (2.1)

which are weighted by a generic phase associated with the path. Since all paths are equal

from the quantum mechanical point of view, this phase must be real. Thus it remains

only to determine this phase. Based on the correspondence principle, in the classical limit

the classical path must be most important. Thus, to reduce interference effects, the phase

should be minimal for the classical path. A function which implements this is the classical

action S, determined as

S =

∫

Cba

dtL,

where the integral is over the classical path Cba from a to b. If the classical path is now

replaced with some arbitrary path Cb
a, again connecting the points a and b, the action can

be considered to be a functional of the path Cb
a and the classical Lagrange function L. Of

course, it is always possible to add a constant to the action without altering the result.

Rewriting the sum as a functional integral over all paths, this yields already the definition

of the functional integral

U (a, b, T ) =
∑

Cba

eiS[C
b
a] ≡

∫

DCb
ae
iS[CbA].

This defines the quantum mechanical path integral in a symbolic way.

It then remains to give this functional integral a mathematically concise meaning, such

that it becomes a mathematical description of how to determine this transition amplitude.

It is here where the lattice comes into play. However, for arbitrary interacting theories,

there are still conceptual and practical problems, so that the following remains often an

unproven procedure.

The starting point was the transition amplitude. In quantum mechanics, this amplitude

is given by

U(a, b, T = tN − t0) =
〈

a, tN
∣

∣e−iHT
∣

∣ b, t0
〉

.



Chapter 2. Path integral 5

In the next step, insert at intermediate times a sum, or integral in cases of a continuous

spectrum, over all states

U(a, b, T ) =
∑

i

〈

a, tN
∣

∣e−iH(tN−t1)
∣

∣ i, t1
〉 〈

i, t1
∣

∣e−iH(t1−t0)
∣

∣ b, t0
〉

.

By this, the transition amplitude is expressed by a sum over all possible intermediate

states, already quite in the spirit of (2.1). To fully embrace the idea, divide the time

interval into N steps of size ǫ = T/N , where N is large and will later be send to infinity.

That is actually already a lattice in time. This yields

U(a, b, T ) =
∑

j

∑

ij

〈

a, tN
∣

∣e−iHǫ
∣

∣ iN−1, tN−1

〉

...
〈

i1, t1
∣

∣e−iHǫ
∣

∣ b, t0
〉

=

∫

Πidqi
〈

qa, tN
∣

∣e−iHǫ
∣

∣ qN−1, tN−1

〉

...
〈

q1, t1
∣

∣e−iHǫ
∣

∣ qb, t0
〉

, (2.2)

where in the second line the result was rewritten in terms of a set of continuous eigenstates

of the (generalized) position operator Qi. These are therefore N−1 integrals. In this way,

the time is given a lattice structure. Space is still a continuum, which extends over all

space.

If, as is the case for all systems of interest in the following, the Hamiltonian separates

as

H =
1

2
P 2
i + V (Q),

where the Pi and Qi are the M canonically conjugated momenta, then for ǫ arbitrarily

small the Baker-Campbell-Hausdorff formula

expF expG = exp

(

F +G+
1

2
[F,G] +

1

12
([[F,G], G] + [F, [F,G]]) + ...

)

.

yields

e−iHǫ ≈ e−
iǫ
2
P 2
i e−iǫV ,

i. e. for infinitesimally small time steps the exponentials can be separated. Assuming the

states to be eigenstates of the position operator and furthermore inserting a complete set of

(also continuous) momentum eigenstates allows to rewrite the transition matrix elements

as ordinary functions

〈

qi+1, ti+1

∣

∣e−iHǫ
∣

∣ qi, ti
〉

= e−ǫV (qi)

∫

Πj

dpij
2π

Πke
−iǫ

(

pi2
k
2

−ipk
q
i+1
k

−qik
ǫ

)

, (2.3)

where products run over the number of independent coordinatesM . The infinitesimal step

(2.3) is also known as the transfer matrix, which transfers the system from one time to



6 2.1. Heuristic introduction

another. In fact, even if the Hamilton operator is not known, but only the transfer matrix,

it is possible to construct the full transition amplitude, as this only requires to create a

product over all transfer matrices.

Defining

DpDq = ΠN
i Π

M
j

dpijdq
i
j

2π
, (2.4)

and thus in total 2NM integration measures yields the first formulation of the path integral

U(a, b, T ) =

∫

DpDqe−ǫpk
q
i+1
j

−qij

ǫ e−iǫH(pij ,q
j)

Defining
qi+1
j − qij
ǫ

= dtq
i
j

and performing the Gaussian integrals over the momenta yields

U(a, b, T ) =

∫

Dqei
∑N ǫL(qij ,dtq

i
j)
N→∞
=

∫

DqeiS

Dq = ΠN
i Π

M
j

dqij√
2πǫ

,

where L is the Lagrange function of the system, thus arriving at the original idea (2.1).

Considering the result in detail, it is important to note one important feature. The

definition requires to chose any straight line between every point at every time. Thus, in

general paths will contribute which are not differentiable. This is a very important insight:

Quantum physics differs from classical physics not only by including all possible paths,

but also by including not only differentiable paths. This is in stark contrast to Hamilton’s

principle of classical mechanics.

Passing now to a field theory, the transition is the same as in classical mechanics: The

paths are replaced by the fields, the Lagrange function by the Lagrangian density, and

the action is an integral over space-time. Of particular importance is then the partition

function

Z =

∫

Dφei
∫

ddxL(φ,∂µφ), (2.5)

where the integral is over all possible field configurations, i. e. the set of all possible values

of the fields at every space-time point, including any non-differentiable ones1. Since any

field configuration includes the time-dependence, the path-integral can be considered as an

integral over all possible field configurations, and thus histories of the universe described

1In fact, it can be shown that those are the dominating one. Making sense out of this expression in

the continuum is highly non-trivial and requires to pass from Riemann integrals to different definitions of

integrals, but this is not the subject of this lecture.
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by the Lagrangian L, from the infinite past to the infinite future. Thus, the path integral

makes the absence of locality in quantum physics quite manifest. The partition function

(2.5) is essentially the transition function from the vacuum to the vacuum. It is important

to note that in the whole setup the field variables are no longer operators, like in canonical

quantization, but ordinary functions.

It is also important to note that the integration is over all possible field configurations.

Thus, in contrast to the beginning and end of the paths in the quantum-mechanical case,

there are no boundary conditions imposed. Of course, if desired, additional boundary

conditions can be imposed, as can be any kind of underlying space-time manifold. But

for any set of boundary conditions and/or any change of manifold a different theory will

result. Neither of this will be done in this lecture.

While the vacuum-to-vacuum transition amplitude is a very useful quantity, what is

really important are the expectation values of the correlation functions. These can be

determined in a very similar way as before to be

〈T (φ(x1)...φ(xn))〉 =
∫

Dφφ(x1)...φ(xn)ei
∫

ddxL(φ,∂µφ). (2.6)

It is here implicitly assumed that Z = 1, i. e. that the measure of the path integral is

normalized such that the expectation value of unity is one, 〈1〉 = 1. Otherwise

〈Tφ(x1)...φ(xn)〉 =
∫

Dφφ(x1)...φ(xn)eiS[φ]
∫

DφeiS[φ] , (2.7)

holds.

There are two important remarks. This can be seen by noting that the fields are

evaluated at fixed times, and therefore evaluate to functions of the positions in their

respective transfer matrix elements (2.3). Thus, any expectation value is a path integral

over the fields as ordinary functions weighted by the phase. Because these are now ordinary

functions neither normal ordering nor time ordering is necessary. Especially, the result is

automatically both. Conversely, their ordering inside the path integral on the right-hand

side of (2.6) is arbitrary2.

2.2 Functional analysis

So far, any explicit calculation with the path integral would require to go back to the

limiting prescription (2.2). This would be quite awkward. Fortunately, this is usually not

2But note section 2.3.
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necessary, and it is often possible to work with the path integral in much the same way as

with ordinary integrals.

How to do so falls into the mathematical purview of functional analysis and distribution

theory to provide any level of rigor. For most applications in physics, little of this rigor is

necessary. Thus, here results will be collected, which are useful to work in an operational

way with the path integral, but they will not be proven. Rather, the corresponding

mathematical literature and/or lectures can provide this, where desired and necessary.

Nonetheless, it is advised that, with all simplicity the following seems to bring, one should

always be wary that many issues run much deeper.

The starting point before defining functional integration is the definition of a functional

derivative. The basic ingredient for a functional derivative δ are the definitions

δ1

δφ(x)
= 0

δφ(y)

δφ(x)
= δ(x− y)

δ

δφ(x)
(α(y)β(z)) =

δα(y)

δφ(x)
β(z) + α(x)

δβ(z)

δφ(x)
,

in analogy to conventional derivatives. The last identity is known as the Leibnitz rule.

Consequently, a power series of a functional is defined as

F [φ] =
∞
∑

n=0

∫

dx1...dxn
1

n!
T (x1, ..., xn)φ(x1)...φ(xn),

where the coefficients of an ordinary power series are now replaced by coefficient functions

T . In particular, they can be obtained as

T (x1, ..., xn) =
δn

δφ(x1)...δφ(xn)
F [φ]

∣

∣

∣

∣

φ=0

.

This defines the most important concepts for differentiation. If not stated otherwise, it

will be assumed in the following that any functional can be written as functional Taylor

series. Just as with ordinary functions, this is not guaranteed.

Concerning the functional integrals, they are as usually defined to be the inverse oper-

ation to functional derivatives. Therefore, integration proceeds as usual. In most practical

cases, the relevant functional are either polynomials or can be expanded in a power series,

and then functional integrals are straight-forward generalizations of the usual integrals.

In particular
∫

Dφ = φ(x)
∫

Dφφ =
1

2
φ(x)2,
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where the first expression implies that δ
∫

equals not to one, but equals a δ-function.

Of particular importance are Gaussian integrals, i. e. the generalization of

∞
∫

−∞

dx√
π
e−ax

2

=
1√
a
. (2.8)

The result can be either obtained from the power series expansion or directly gleaned from

the finite-dimensional generalization of Gaussian integrals, which is given by

∞
∫

−∞

dx1√
π
...

∞
∫

−∞

dxn√
π
e−x

TAx =
1√
detA

,

with an arbitrary matrix A, though for a finite result the square-root of its determinant

must be invertible, i. e., no zero eigenvalues may be present.

The functional generalization is then
∫

Dφe−
∫

dxdyφ(x)A(x,y)φ(y) =
1

√

detA(x, y)
,

where A may now be operator-valued. Especially derivative operators will appear in this

context later. The determinant of such an operator can be evaluated by the expression

detA = exp tr log(A),

just like for matrices, which is of great practical relevance. Herein, both the logarithm and

the exponential of an operator are defined by the usual power series of these operations3.

Alternatively, detA can be expressed in terms of the solutions of the eigenvalue equations
∫

dyA(x, y)φ(y) = λφ(x),

where the eigenvalues λ can form a (complex) continuum, and finite, or even infinite,

degeneracies are possible. The determinant is then given as the product of all eigenvalues.

An important property is the definition that a functional integral is translationally

invariant. Thus, for an arbitrary functional F and an arbitrary function η and constant α
∫

DφF [φ+ αη]
φ→φ−αη

=

∫

DφF [φ] (2.9)

holds by definition.

3This implies that problems may arise, as this is not always justified. In fact, there exist operators for

which even the trace is not well defined. Even though this rarely plays a role in the following, caution is

in general advised.
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From these properties follows the validity of the substitution rule as

∫

DφF [φ] =

∫

Dψ det

(

δφ

δψ

)

F [φ [ψ]] ,

where the Jacobi determinant det(δφ/δψ) appears. In case of a linear transformation

φ(x) =

∫

dyη(x, y)ψ(y),

the determinant is just det η(x, y) of the infinite-dimensional matrix η(x, y) with the indices

x and y.

Combining all of the above allows for a different way of calculating correlations func-

tions than by direct evaluation of (2.7). For this, introduce4 a so-called (external) source

j(x), and replace

iS[φ] → iS[φ] +

∫

ddxφ(x)j(x).

Thus, the partition function will become a functional of j(x). Then a more elegant way

to express correlation functions is by

〈Tφ(x1)...φ(xn)〉 =
1

Z [0]

∫

DφeiS[φ]+
∫

ddxφ(x)j(x) φ(x1)...φ(xn)

∣

∣

∣

∣

j=0

=
1

Z [0]

∫

Dφ δn

δj(x1)...δj(xn)
eiS[φ]+

∫

ddxφ(x)j(x)

∣

∣

∣

∣

j=0

=
1

Z [0]

δn

δj(x1)...δj(xn)
Z [j]

∣

∣

∣

∣

j=0

.

Note that it was assumed that functional derivation and integration commute, and that

often the normalization Z[0] = 1 is chosen. From this generating functional Z [j] it is

possible to determine also generating functionals for connected and amputated vertex

functions, as will be discussed in chapter 6.

Furthermore, this permits to reconstruct the original path-integral, or generating func-

tional, as

Z[j] =

∞
∑

n=0

∫

ddx1...d
dxn〈Tφ(x1)...φ(xn)〉j(x1)...j(xn), (2.10)

which can be proven by comparing both expressions in an expansion term-by-term. This

reconstruction theorem can be readily generalized to theories with more than one field.

4There are subtleties involved, if the source breaks any symmetry explicitly. Then the limit of vanishing

source may be different from the situation at zero source. This will not play a role in this lecture, but

does sometimes in applications.
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2.3 Fermions

The previous treatment permits the description of both scalar fields and gauge fields, and

any other kinds of bosonic fields. However, it is insufficient when treating fermionic fields.

The reason is that the classical action appears, which in its current form cannot take into

account the Pauli principle, and thus that fermions have to anticommute. In the canonical

quantization procedure, this is imposed by the canonical anti-commutation relation. In

the path integral formulation, this is achieved by replacing the classical fermionic fields

with classically anti-commuting fields. This is done by replacing ordinary numbers with

Grassmann numbers. These concepts will also play an important role in gauge theories

even without fermions, as will be seen in chapter 5.

2.3.1 Grassmann variables

The starting point is to define anti-commuting numbers, αa, by the property

{αa, αb} = 0 (2.11)

where the indices a and b serve to distinguish the numbers. In particular, all these number

are nilpotent,

(αa)2 = 0.

Hence, the set S of independent, so-called, Grassmann numbers with a = 1, ..., N base

numbers are

S = {1, αa, αa1αa2 , ..., αa1 × ...× αaN},

where all αi are different. This set contains therefore only 2N elements. Of course, each

element of S can be multiplied by ordinary complex numbers c, and can be added. This

is very much like the case of ordinary complex numbers or matrices. Such combinations z

take the general form

z = c0 + caα
a +

1

2!
cabα

aαb + ... +
1

N !
ca1...aNα

a1 × ...× αaN . (2.12)

Here, the factorials have been included for later simplicity, and the coefficient matrices

can be taken to be antisymmetric in all indices, as the product of αas are antisymmetric.

For N = 2 the most general Grassmann number is therefore

z = c0 + c1α
1 + c2α

2 + c12α
1α2,

where the antisymmetry has already been used. It is also common to split such numbers

in their (Grassmann-)odd and (Grassmann-)even part. Since any product of an even
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number of Grassmann numbers commutes with other Grassmann numbers, this association

is adequate. Note that there is no possibility to invert a Grassmann number, but products

of an even number of Grassmann numbers are ordinary numbers and can therefore be

inverted.

The conjugate of a product of complex Grassmann-numbers, with independent real

and imaginary part, is defined as

(αa...αb)∗ = (αb)∗...(αa)∗ (2.13)

Note that the Grassmann algebra (2.11) is different from the so-called Clifford algebra

{βa, βb} = 2ηab

which is obeyed, e. g., by the γ-matrices appearing in the Dirac-equation, and therefore

also in the context of the description of fermionic fields.

To do analysis, it is necessary to define functions on Grassmann numbers. First,

start with analytic functions. This is rather simple, due to the nilpotency of Grassmann

numbers. Hence, for a function of one Grassmann variable

z = b+ f

only, with b even and f odd, the most general function is

F (z) = F (b) +
dF (b)

db
f.

Any higher term in the Taylor series will vanish, since f 2 = 0. Since Grassmann numbers

have no inverse, all Laurent series in f are equivalent to a Taylor series. For a function of

two variables, it is

F (z1, z2) = f(b1, b2) +
∂F (b1, b2)

∂b1
f1 +

∂F (b1, b2)

∂b2
f2 +

1

2

∂2F (b1, b2)

∂b1∂b2
f1f2.

There are no other terms, as any other term would have at least a square of the Grassmann

variables, which therefore vanishes. Note that the last term is not zero because F (b1, b2) 6=
F (b2, b1) in general, but even if this is the case, it is not a summation.

This can be extended to more general functions, which are no longer analytical in their

arguments,

F (b, f) = F0(b) + F1(b)f (2.14)

and correspondingly of more variables

F (b1, b2, f1, f2) = F0(b1, b2) + Fi(b1, b2)fi + F12(b1, b2)f1f2.
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The next step is to differentiate such functions. Note that the function F12 has no definite

symmetry under the exchange of the indices, though by using an antisymmetric general-

ization this term can be again written as Fijfifj if Fij is anti-symmetric.

Differentiating with respect to the ordinary variables occurs as with ordinary functions.

For the differentiation with respect to Grassmann numbers, it is necessary to define a new

differential operator by its action on Grassmann variables. As these can appear at most

linear, it is sufficient to define

∂

∂fi
1 = 0

∂

∂fi
fj = δij (2.15)

Since the result should be the same when f1f2 is differentiated with respect to f1 irrespec-

tive of whether f1 and f2 are exchanged before derivation or not, it is necessary to declare

that the derivative anticommutes with Grassmann numbers:

∂

∂f1
f2f1 = −f2

∂

∂f1
f1 = −f2 =

∂

∂f1
(−f1f2) =

∂

∂f1
f2f1.

Alternatively, it is possible to introduce left and right derivatives. This will not be done

here. As a consequence, the generalized product (or Leibnitz) rule reads

∂

∂fi
(fjfk) =

(

∂

∂fi
fj

)

fk − fj
∂

∂fi
fk.

In this context, it is useful to define the Grassmann parity π of a quantity to be zero if

the number is Grassmann-even and one if it is Grassmann-odd. Then the Leibnitz rule

can be written as

∂x(ab) = (∂xa)b+ (−1)π(a)π(∂x)a∂xb

as this will always generate the correct relative sign.

Likewise, the integration needs to be constructed differently. In fact, it is not possible

to define integration (and also differentiation) as a limiting process, since it is not possible

to divide by infinitesimal Grassmann numbers. Hence it is necessary to define integration.

As a motivation for how to define integration the requirement of translational invariance

is often used. This requires

∫

df = 0
∫

dff = 1 (2.16)
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Translational invariance follows then immediately as

∫

df1F (b, f1 + f2) =

∫

df1(h(b) + g(b)(f1 + f2)) =

∫

df1(h(b) + g(b)f1) =

∫

df1F (b, f1)

where the second definition of (2.16) has been used. Note that also the differential anti-

commutes with Grassmann numbers. Hence, this integration definition applies for dff . If

there is another reordering of Grassmann variables, it has to be brought into this order.

In fact, performing the remainder of the integral using (2.16) yields g(b). It is an inter-

esting consequence that integration and differentiation thus are the same operations for

Grassmann variables, as can be seen from the comparison of (2.15) and (2.16).

2.3.2 Fermionic matter

To describe fermionic matter requires then to replace all fields describing fermions by fields

of Grassmann variables. I. e., a Dirac fermion field is described by a spinor ψ(x) with

components ψa(x) being Grassmann-odd functions of x. This implies that ψa(x)ψa(x) = 0

(where summation may or may not be implied), as such functions at the same space-time

points are nilpotent. This implements the Pauli principle, as thus every time two Grass-

mann quantities coincide at the same space-time point the result automatically vanishes.

If in this way in the Lagrangians the fermion fields are replaced by Grassmann-odd

functions, the use of the rules for integration and differentiation can be extended in a

straightforward way to the path integral. Especially, the most important relation necessary

later on is again the Gaussian integral over Grassmann fields. To illustrate the use of

Grassmann functions, this will be calculated in detail. The starting point is the integral

∫

dα∗dα exp(α∗Aα),

with some ordinary number A. The Taylor expansion of this expression is

∫

dα∗dα exp(α∗Aα) =

∫

dα∗dαα∗Aα,

and any terms linear or constant in the Grassmann variables will vanish during the in-

tegration, and likewise all higher-order terms will be zero, since α2 = α∗2 = 0. In the

next step, it is necessary to be very careful in the ordering of the integrals, as also the

differentials anti-commute with the variables. To act with dα on the variable α requires

to anti-commute it with α∗ and dα∗ first, giving a factor of (−1)2,

∫

dαdα∗α∗Aα = −
∫

dα∗dαα∗Aα =

∫

dα∗α∗Adαα =

∫

dα∗α∗A = A (2.17)
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which is remarkably different from the normal Gaussian integral (2.8), as it returns A

instead of A−1/2.

It can be likewise shown, that the generalization to many variables yields detA instead

of (detA)−1/2. Similarly, it can be shown that for the substitution rule the inverse Jacobian

appears, instead of the usual Jacobian.

2.4 Free particles and generating functionals

As a useful first example, consider the Lagrangian of a free particle. I. e. either

L =
1

2
φ(∂2 +m2)φ

for a real, scalar particle and

L = iψ (γµ∂µ −m)ψ

for a free fermion.

The propagator of these particles is the two-point correlation function. For the scalar

follows

〈φ(z)φ(y)〉 =
∫

Dφφ(z)φ(y)eiS+
∫

ddxjφ

∣

∣

∣

∣

j=0

=
δ2

δj(z)δj(y)

∫

DφeiS+
∫

ddxjφ

∣

∣

∣

∣

j=0

.

This can be either directly integrated, or by completing the square. In either way, the

result in momentum space is5

〈φ(z)φ(y)〉 = i3

(p2 −m2 + iǫ)3
.

The third power is now at first surprising. This comes from the fact that this is actually

the full correlation function. Determining the amputated and connected one, assuming

〈φ〉 = 0, which is justified for reasons to become clear in section 3.1, the corresponding

propagator is

D(p) =
i

p2 −m2 + iǫ
= Γ−1

2 (p).

Note that this is the inverse two-point vertex function Γ2.

To avoid the explicit amputation and selection of connected parts, it is useful to in-

troduce further generating functionals, beside (2.10). The generating functional, or free

energy, W of connected correlation functions can be defined in a similar way. Because of

5The iǫ prescription is necessary to avoid singularities which would render the determinant ill-defined.
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(2.10) and the relation between connected and disconnected correlation functions it follows

that the function W defined as

eW [j] = Z[j] =

∞
∑

n=0

∫

ddx1...d
dxn〈Tφ(x1)...φ(xn)〉cj(x1)...j(xn)

creates all connected correlation functions. This implies that for the free case

W = − i

2

∫

ddxj(x)
1

∂2µ +m2
j(x)

as in this case it can be explicitly exponentiated, and

D(p) =
δ2eW

δj(p)δj(−p)

∣

∣

∣

∣

j=0

= eW





δ2W

δj(p)δj(−p)

∣

∣

∣

∣

j=0

+

(

δW

δj(p)

∣

∣

∣

∣

j=0

)2


 ,

giving the ordinary propagator without need for removal of disconnected pieces. It is

actual the inverse two-point vertex function, as it still needs to be amputated, i. e. two

propagators for each external line to be removed, i. e. multiplied essentially by D−2. To

avoid this, it is useful to pass to the vertex functions.

The vertex functions, i. e. the amputated and connected correlation functions, can be

obtained from a Legendre transformation of W . Define the quantum effective action as

Γ[α] =
∞
∑

n=0

∫

ddx1...d
dxnΓn(x1, ..., xn)α(x1)...α(xn) (2.18)

with

iΓ = −i
∫

ddxj(x)α(x) +W [j[α]]

α = −iδW
δj

−j =
δΓ

δj
.

By explicit insertion it can be shown that

Γ = −1

2

∫

ddxα(x)(∂2 +m2)α(x)

in the free case, and thus equals the action. Hence the name of Γ. Of course, in general Γ

is not just the classical action, but the infinite series (2.18).

To see that this is correct, consider the two-point function,

δd(x−y) = δα(x)

δα(y)
= −i δ

δα(y)

δW

δj(x)
=

∫

ddz
δ2W

δj(x)δj(z)

δj(z)

δα(y)
= −

∫

ddz
δ2W

δj(x)δj(z)

δ2Γ

δα(y)δα(z)
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where in the second-to-last step the functional chain rule was used. In momentum space

this implies
δ2W

δj(p)δj(−p)
δ2Γ

δα(p)δα(−p) = 1

and thus the 2-point vertex function is indeed the inverse propagator.

All of this goes unchanged for the fermion, yielding

D(p) = i
γµp

µ +m

p2 −m2 + iǫ

in which the γ-matrices are involved. Thus, this propagator is actually matrix-valued.



Chapter 3

Abelian gauge theories

As will be seen, gauge theories come in different flavors. However, in all cases, in the end

the same geometrical structures appear, just their geometric complexity differs. Thus, it

is always helpful to start out with the theory with the simplest geometrical structure. As

will be seen, this is the quantum version of Maxwell theory, i. e. a theory just of electric

and magnetic fields. In fact, this theory is trivial in the sense that it is not interacting.

Thus, akin to the case of the free scalar and fermions, this will be the simplest example

of a gauge theory.

It is worth mentioning that every theory describing elementary particles with a spin

greater than 1/2 seems to necessarily involve gauge degrees of freedom, if a local descrip-

tion, i. e. one in which no multi-position integrals appear in the action, is required. Why

this is so is as of yet unknown. But what this implies will be discussed in great detail in

due course.

3.1 Global symmetries

Before discussing gauge symmetries it is useful to repeat a few statements about global

symmetries. This will be taken up again in more details in section 4.2, but some prelimi-

nary remarks are necessary for the following.

In the simplest case at the classical level, a symmetry is any (infinitesimal) transfor-

mation of a set of fields φa

φa → φ
′a = φa + δAabφb = (1 + δA)abφb (3.1)

such that the action is invariant. It is important here that it is sufficient that the action is

invariant, not the Lagrangian itself. Thus, the Lagrangian can be allowed to change by a

total derivative, which vanishes upon integration. Herein δ is an infinitesimal parameter,

18
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and the matrix A is usually required to be symmetric or hermitian, but this depends on

the action in question. Consider, as a simple case, the Lagrangian for N interacting, real

scalar fields

L =
1

2
φa(∂2 +m2)φa − λ(φaφa)2. (3.2)

This so-called linear σ-model is invariant for transformations in which 1 + A is an O(N)

matrix. Such a symmetry is called global, as it changes the fields at every space-time point

in the same way. It is therefore also said that it acts in an internal space. In contradis-

tinction, the gauge symmetry of classical electrodynamics is called a local symmetry, as it

changes the vector potential at every space-time point in a different way.

From such a situation follows Noether’s theorem. This theorem is one of the central

reasons why symmetries are so important in physics, as it will imply that there is a con-

served charge associated with any such global symmetry. Such conserved quantities are of

central importance for both theoretical and practical reasons. Practical, because exploit-

ing conservation laws is very helpful in solving problems. Theoretical, because conserved

quantities define the properties of a system. In addition, the generalized Wigner-Eckart

theorem will allow to deduce complicated tensor structures based on such symmetries

alone.

Essentially, Noether’s theorem boils down to the fact that if the action is invariant

under the transformation, and thus a variation of a generalized coordinate, the variation

can be used to derive a conserved quantity. For this purpose, assume that A is symmetric

or hermitian. Then a finite transformation is obtained by exponentiation, yielding

φ
′a =

(

eδA
)ab

φb =
(

eδAφ
)a

Because A is real or hermitian, it defines an observable in a quantum theory. It is thus

usually called the associated charge operator, and the observables are the charge. Indeed,

electric charge will be defined in this way later. In fact, it will even be possible later that

A itself will depend on (integrals of) the fields.

But for the moment the aim is to see that this implies a conserved quantity. To

construct it, it is necessary to analyze the transformation properties of the Lagrangian

under the infinitesimal transformation, which is given by

δL = ∂µK
µ,

i. e. zero up to a total derivative is allowed, as mentioned above. Of course, Kµ = 0 is also

allowed. It must also hold that

δL =
∂L
∂φa

δφa +
∂L

∂∂µφa
∂µ(δφa) = ∂µK

µ.
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This can be simplified using the equation of motion for φa,

∂L
∂φa

= ∂µ

(

∂L
∂∂µφa

)

to yield
(

∂µ

(

∂L
∂∂µφa

))

δφa +
∂L

∂∂µφa
∂µ(δφa) = ∂µ

(

∂L
∂∂µφa

δφa
)

= ∂µJ
µ. (3.3)

This defines a current. The current which has been thus defined is the symmetry current,

or Noether current. Finally, this implies that

jµ = Jµ −Kµ

needs to define a conserved current, as

δS =

∫

ddx∂µj
µ = 0

for the transformation to act as a symmetry. Especially, this implies that

Q =

∫

ddxj0

defines a conserved charge.

If the theory is quantized, there are some remarks. The first is to ask, whether also the

measure of the path integral is invariant under (3.1). If this is not the case, as so-called

anomaly arises, which will be discussed in more detail in chapter 9. If not explicitly stated

otherwise, this will assumed to be not the case.

The next is any quantity made up from tensor products has to obey the Wigner-Eckart

theorem. This essentially says that any quantity transforming like a representation of a

symmetry can be rewritten in terms of the invariant tensors of the symmetry. E. g.

〈

φaφb
〉

=
〈

δabf
〉

,

where f is invariant under transformations. It is an exercise in group theory to find the

full structure for more complex objects, or to show that this is the only one for two such

indices. This will be discussed a bit more in detail later, but will mainly be relegated to

the corresponding lecture on advanced mathematics. The quantity f , which is invariant

under symmetry transformations, is called a form factor or dressing function.

Because the theory is invariant under the symmetry, there is no direction in the internal

space preferred. Thus, formally,

〈

φa(p)φb(−p)
〉

∼ δabδ(p) (3.4)
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but it is possible to determine f by computing

δab
〈

φaφb
〉

= 〈δaaf〉 ∼ 〈f〉 6= 0

which is, in general, non-zero. Thus, when determining the propagator for the case λ = 0

in (3.2), it would at first sight be just (3.4). However, one usually writes

〈

φa(p)φb(−p)
〉

=
iδab

p2 −m2 + iǫ
(3.5)

with the implicit understanding that this makes only sense when ultimately contracting

everything such that an invariant quantity, in this case the ordinary propagator without

tensor structure, would arise.

If the symmetry is not exact for whatever reason, this becomes more involved. This is

beyond the scope of this lecture, and more can be learned in the lecture on hadron physics

and electroweak physics. Here, except for the case of anomalies, all symmetries will be

assumed to be unbroken, but statements like (3.5) will be made continuously.

3.2 Classical Maxwell theory

The archetypal gauge theory is Maxwell theory, i. e. the theory of electromagnetic fields.

It is encapsulated in the classical Lagrangian

L = −1

4
FµνF

µν (3.6)

Fµν = ∂µAν − ∂νAµ

with the gauge field Aµ and the field-strength tensor Fµν . From it the three-dimensional

electric and magnetic fields can be derived as

Ei = F0i = −Fi0 = ∂0Ai − ∂iA0 (3.7)

Bi = ǫijkFjk = ǫijk∂jAk (3.8)

with the Latin indices running only over the spatial components.

This theory is a gauge theory, because its Lagrangian is invariant under the so-called

gauge transformation

Aµ → Agµ = Aµ + ∂µg(x) (3.9)

with g(x) an arbitrary function. This is similar to (3.1), except for the appearance of

a function rather than a constant. Because the transformation is thus different at every

space-time point, this is called a local, or gauge, symmetry. Because the g(x), being
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ordinary functions, are commuting at every space-time point, this is called an Abelian

gauge theory.

It is noteworthy that Fµν , and thus ~E and ~B, are invariant under gauge transformations,

i. e. they do not change when a gauge transformation is applied,

F g
µν = ∂µA

g
ν − ∂νA

g
µ = Fµν + ∂µ∂νg(x)− ∂ν∂µg(x) = Fµν .

A quantity which behaves like this is called gauge-invariant . Since gauge transformations

are a free choice, gauge invariance is a necessary condition for a quantity to be physical.

Especially, since the electromagnetic fields are measurable, they need to be gauge-invariant.

The classical equations of motion for this theory are the Maxwell equations

∂µFµν = 0

1

2
ǫµνρσ∂νFρσ = 0,

where the latter identity is sometimes also called (a) Jacobi identity. The quantity

∗Fµν = ǫµνρσFρσ is called also the Hodge dual or the dual field strength tensor. It will

reappear again in chapter 8. Both follow immediately from the antisymmetry of the field

strength tensor. The only classical solutions of this theory is the vacuum as well as free

electromagnetic waves, depending on the boundary conditions.

The gauge freedom (3.9) can be used to implement conditions, so-called gauge condi-

tions, on the field. E. g., the Landau (or in the classical case also Lorentz and sometimes

radiation) gauge is defined as

∂µA
µ = 0. (3.10)

I. e. the gauge freedom (3.9) is used to transform any given gauge field such that the

condition (3.10) applies.

It is not possible to implement any gauge condition, which can always be written as

a function or functional C[Aµ, xµ] such that C[Aµ, xµ] = 0. It is only possible, if for any

arbitrary field configuration Aµ a function g(x) exists such that C[Agµ, xµ] = 0 can be

satisfied. Depending on the form of C[Aµ, xµ] guaranteeing this can be an exercise in

algebra, (partial) differential equations, or worse.

To see that the Landau gauge condition is well defined, consider

0 = ∂µAgµ = ∂µA
µ + ∂2g.

This is a wave equation for g with an inhomogeneity. Since the theory of partial differential

equations implies that there exists a solution for any inhomogeneity, this implies that the

Landau gauge is well defined.
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Note, however, that it may happen that a gauge condition does not fully fixes the gauge

freedom. E. g., the Landau gauge condition does not do so, as any gauge transformation

satisfying a free-wave equation ∂2g = 0, a so-called harmonic gauge transformation, does

not change it. Imposing as boundary conditions that the (gauge) fields vanishes at (spatial)

infinity removes also this ambiguity, and fixes the gauge completely.

In fact, it can be useful to leave a certain degree of gauge freedom. E. g., the Coulomb

gauge condition ∂iAi = 0 is only defined up to purely time-dependent gauge transforma-

tions. There is thus a whole class of functions satisfying the Coulomb gauge condition.

Another examples are axial gauges with some fixed vector nµ such that nµA
µ = 0. Such

gauges can already simplify calculations considerably in certain cases.

In classical physics, it is not necessary to discuss further the residual freedom. Any will

do equally well, and often one can do without entirely. This will need to be discussed in

more detail in the quantum theory, which will be done in section 7.1, where the situation

is somewhat more involved.

It should, however, be noted that any term which would give a mass to the gauge

bosons, e. g. mAµA
µ, cannot be added to the Lagrangian, as it will immediately break

gauge invariances, as can be seen immediately by calculation. In fact, (3.6) is the unique

gauge-invariant Lagrangian renormalizable by power-counting in four dimensions. Thus,

any additional interactions compatible with gauge invariance would lead to a much more

involved theory. Thus, Abelian gauge theories are non-interacting and exactly massless

without matter.

3.3 Quantization of Maxwell theory

In principle, quantizing Maxwell theory is now performed by writing down the path integral

(2.5) and use (2.7) to calculate correlation functions. That’s it. Unfortunately, there is a

twist to this for gauge theories, which comes in two levels of escalation.

Start with the naive quantization of the free Maxwell theory with the classical La-

grangian (3.6) by writing down the generating functional

Z[jµ] =

∫

DAµ exp
(

iS[Aµ] + i

∫

ddxjµA
µ

)

S[Aµ] =

∫

ddxL,

where the normalization has been absorbed into the measure for convenience. This integral

is just a Gaussian one. Hence, it should be possible to integrate it. Explicitly, it takes the
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form

Z[jµ] =

∫

DAµ exp
(

i

∫

ddx

(

1

2
Aµ(gµν∂

2 − ∂µ∂ν)A
ν + jµAµ

))

. (3.11)

However, it is not possible to perform this integral, since this would require the matrix

gµν∂
2 − ∂µ∂ν (3.12)

to be invertible, which is not the case. This can be seen directly by the fact that its

momentum-space version gµνk
2 − kµkν is a projection operator which vanishes when con-

tracted with kµ.

An alternative way to understand the problem is to note that any gauge transformation

(3.9) leaves S invariant, and, as a shift, also does not influence the measure. Thus, there

are flat directions of the integral, and thus the integral diverges when integrating along

this direction. This is a kind of divergence also the renormalization program cannot make

meaningful, as it cannot be absorbed in a parameter. After all, there is no parameter in

Maxwell theory. Thus, at first sight, it seems to be impossible to find a well-defined path

integral for Maxwell theory.

There are only few possibilities to escape. One is to perform the quantization on a

discrete space-time grid in a finite volume, determine only gauge-invariant observables and

only after this take the continuum and infinite-volume limit. This is in most cases only

feasible numerically, but then a rather successful approach, so called Lattice Monte Carlo

simulations of lattice gauge theory. This approach is a subject of a separate lecture.

Another one is to determine only quantities which are invariant under gauge trans-

formations. Classically, this is perfectly feasible, as an explicit formulation only in terms

of electric and magnetic fields, both manifestly gauge-invariant, shows. At the quantum

level, however, this is not so easy. After all, this amounts to replacing the vector potential

by the electromagnetic fields. The Jacobian then involves solving the partial differential

equations (3.7-3.8), yielding non-trivial integrals, and ultimately leading to a non-local

action. Still, this is possible, though very, very painful. It is, however, far too painful

for the kind of generalization of gauge theories needed in particle physics, and even for

QED in practical problems far too complicated. Thus, while reassuring that it would be

conceptually possible, is not a practical solution.

In this context one may wonder why not directly integrating over the electromagnetic

fields in the path integral (3.11) instead of the gauge fields. This is an inequivalent path

integral to the one obtained by solving (3.7-3.8) as a variable transformation in (3.11).

Interestingly, while mathematically perfectly feasible and doable, this does not yield a

quantum theory compatible with experiments. Why this is so is a very good, and unsolved,

question. It is a purely empirical outcome. This is even more surprising as the gauge-fields
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are classically an irrelevant technical tool, and actually introduce redundancies. They are

thus quite the opposite to what is usually done in classical mechanics, the reduction to

generalized coordinates. Still, if one wants to base the construction of the theory on

experiment, one is therefore stuck with (3.11).

There is a third option, and the one to be used in this lecture. As the possibility to

introduce gauge conditions such as (3.10) shows, the additional degrees of freedom over

which is integrated do not carry physical information1. The aim is therefore to separate off

this unphysical degrees of freedom in a way which allows to remove it. In the end, this will

lead to a(n infinite) prefactor of the path integral, which drops out when normalizing the

partition function at zero source to unity. Even though unphysical information is removed,

this is not equivalent to introduce a gauge-invariant formulation. Any gauge condition will

define one distinct way of removing the superfluous degrees of freedom, but eventually one

still works with the gauge fields Aµ. But this field will differ for every gauge condition,

and therefore depends on the gauge condition. But this difference depends only on the

gauge condition, and will therefore drop out in gauge-invariant quantities, making them

physical. In the end, and this becomes more clearer in section 4.2, this is essential the

same as introducing a coordinate system, and considering the gauge fields as components,

while gauge-invariant quantities are quantities like lengths, which do not depend on the

coordinate system. And thus it is equally admissible.

In a very rough way, the three options can also be cast into this language: Lattice Monte

Carlo simulations sample a subset of coordinate systems, and averages over the choices. By

using a finite number of choices the infinity of choices does not pose a problem. Removing

the gauge fields is calculating coordinate-independent, which is always more painful. And

gauge-fixing is just working in a choice of coordinate which is fixed once and for all.

After these initial remarks, it is now time to actually perform this gauge-fixing, and

quantize Maxwell theory. To this end select, as in classical electrodynamics, a gauge

condition C[Aµ, x] = 0 which selects uniquely the gauge field. I. e., for a set of gauge-fields

related by gauge transformations (3.9) there is one and only one, but also at least one,

which satisfies the condition C when going through all possible gs. This is actually not a

necessary condition to make progress, and it will be relaxed later on. But for the moment,

it makes the calculation simplest. Also, when generalizing the concept, this is also not so

simple, as will be explored in detail in section 7.1.

An example of such a condition is, e. g., the Landau gauge (3.10), which in this language

1While this is obvious at the classical level, this remains true at the quantum level because of the

demand that also at the quantum level physics is independent of the observer.
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takes the form, suppressing from now on possible explicit dependencies on xµ,

0 = C[Aµ] = ∂µAµ. (3.13)

To make the path integral well-defined, it is then necessary to get rid of all the gauge

transformed fields which do not satisfy this condition. Then just one representative for

each physically inequivalent field configuration is left2.

The question is now how to enforce this in practice. To do this consider the functional

generalization of the Dirac-δ function. The expression

∆[Aµ]
−1 =

∫

Dgδ(C[Agµ])

contains an integration over all gauge-transformations g for a fixed physical field configura-

tion Aµ, but by the δ-function only the weight of the one configuration satisfying the gauge

condition is selected. Hence, when performing the change of variables g → g + g′ with

some gauge transformation g′ it remains unchanged by definition: The functional integral

is translationally invariant. As a consequence, ∆ is actually gauge-invariant. Evaluating

it at the gauge-transformed configuration Ag
′

µ yields

∆[Ag
′

µ ]
−1 =

∫

Dgδ(C[Ag+g′µ ]) =

∫

D(g − g′)δ(C[Agµ])

=

∫

Dgδ(C[Agµ]) = ∆[Aµ]
−1.

Inverting ∆, the relation

1 = ∆[Aµ]

∫

Dgδ(C[Agµ]) (3.14)

is found.

Inserting this into the functional integral yields

Z =

∫

DAµ∆[Aµ]

∫

Dgδ(C[Agµ]) exp(iS[Aµ])

=

∫

Dg
∫

DAg′µ∆[Ag
′

µ ]δ(C[A
g+g′

µ ]) exp(iS[Ag
′

µ ])

=

∫

Dg
∫

DAµ∆[Aµ]δ(C[Aµ]) exp(iS[Aµ]) (3.15)

In the second line, a gauge transformation of the integration variable Aµ is performed. In

the last line the inner variables of integration have been changed from Ag
′

µ to A−g−g′

µ and it

2Note that this does not fix the harmonic part of the gauge transformations. However, they form a

measure zero part of the whole set of gauge transformations, and therefore do not matter. Also, in any

perturbative calculation the fields drop to zero at infinity, and thus in this case by definition they are

excluded.
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has been used that all expressions, except the δ-function, are invariant. Hence, the integral

over g is not influencing anymore the remaining integral, and contributes only a factor,

which can be removed by appropriate normalization of the functional integral. In addition,

it would have been possible to also replace the action by any gauge-invariant functional, in

particular expressions involving some observable f in the form f [Aµ] exp(iS[Aµ]). Thus,

gauge-fixing is not affecting the value of gauge-invariant observables. Due to the δ-function,

on the other hand, now only gauge-inequivalent field configurations contribute, making the

functional integral well-defined.

It remains to clarify the role of the functional ∆. It was demanded that it is always

possible to resolve the condition C[Agµ] = 0 to obtain g as a function of C. Then, by

exchanging C and g as variables of integration, it is found that

∆[Aµ]
−1 =

∫

DC
(

det
δC

δg

)−1

δ(C) =

(

det
δC[Aµ, x]

δg

)−1

C=0

,

The appearing determinant is just the corresponding Jacobian. Thus, the function ∆ is

given by

∆[Aµ] =

(

det
δC[Aµ, x]

δg(y)

)

C=0

= detM(x, y). (3.16)

The Jacobian has the name Faddeev-Popov operator, abbreviated by M , and the deter-

minant goes by the name of Faddeev-Popov determinant.

A more explicit expression is obtained by using the chain rule

M(x, y) =
δC[Aµ, x]

δg(y)
=

∫

ddz
δC[Aµ, x]

δAµ(z)

δAµ(z)

δg(y)

=

∫

ddz
δC[Aµ, x]

δAµ(z)
∂yµδ(y − z) = −∂yµ

δC[Aµ, x]

δAµ(y)
. (3.17)

To proceed further, a choice of C is necessary. If C is a local gauge condition, i. e. only

involving the fields and their derivatives, the Faddeev-Popov operator will be local, i. e.

M ∼ δ(x− y).

If this is not the case, the resulting theory will be inherently non-local. Such a local choice

is always possible in perturbation theory. Choosing, e. g., the Landau gauge C = ∂µAµ = 0

yields

M(x, y) = −∂2δ(x− y). (3.18)

Due to the presence of the δ-function the functional det∆ can then be replaced by detM

in the path integral. Note that the result (3.18) is independent of the field variables. Thus,

this factor can be absorbed in the normalization constant. But then the original problem is
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solved and everything is complete. However, the resulting integral has always the implicit

Landau gauge condition to be taken into account. Especially, this implies that the gauge

field is always transverse.

This is implicit, and thus somewhat cumbersome. It can be made more explicit by

taking a detour. To do so select as gauge condition

C = D[Aµ, x] + Λ(x) (3.19)

for some arbitrary function Λ. In general, this will make Lorentz symmetry not manifest.

This can be recovered by integrating the path integral over all possible values of Λ with

some arbitrary integrable weight function. Since the path integral will not depend on Λ, as

this is a gauge choice, the integration is only an arbitrary normalization. Using a Gaussian

weight, the path integral then takes the form

Z =

∫

DΛDAµ exp
(

− i

2ξ

∫

ddxΛ2

)

detMδ(C) exp(iS)

=

∫

DAµ detM exp

(

iS − i

2ξ

∫

ddxD2

)

,

where the δ-function has been used in the second step. For the most common choice

D = ∂µA
µ, the so-called covariant gauges or Rξ gauges, this yields the final expression

Z =

∫

DAµ exp
(

iS − i

2ξ

∫

ddx(∂µA
µ)2
)

. (3.20)

This additional term has the consequence that the Gaussian integral is now well-defined,

since the appearing matrix is changed to

gµν∂
2 − ∂µ∂ν → gµν∂

2 −
(

1− 1

ξ

)

∂µ∂ν , (3.21)

which can be inverted. The appearing parameter ξ, the so-called gauge parameter, is

arbitrary, and can be chosen at will, defining the gauge. Furthermore, the ever-so popular

Landau gauge corresponds to the limit ξ → 0, as this is corresponding to the case where

all of the weight of the weight-function is concentrated only on the gauge copy satisfying

∂µAµ = 0. However, in principle this limit may only be taken at the end of the calculation,

as it appears to recover the non-invertible original operator (3.12) in Maxwell theory. The

choice ξ = 1 is known as Feynman gauge.

Of course, this is only the result for a particular class of gauges, and many others exist.

In particular, it is possible to chose conditions C which include also the matter fields

explicitly or which are not even Lorentz invariant, like the Coulomb gauge
∑3

i=1 ∂iAi = 0
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or axial gauges nµAµ = 0 with some arbitrary vector nµ. However, these kind of gauges

have particular problems, as the gauge conditions themselves are not invariant under

Lorentz transformation. E. g., the Coulomb gauge condition can be removed by a suitable

Lorentz boost. They therefore introduce additional problems. To avoid these, in this

lecture only Lorentz covariant gauges will be discussed. A source for more information on

non-covariant gauges in perturbation theory is, e. g., Burnel, Springer (2008).

This process has at no place involved explicitly any matter fields. They will be added

now.

3.4 Gauge-dependent correlation functions

There is now one subtlety. What is the propagator of the photon, the answer to the

question that started all of this? Because the matrix (3.21) is now invertible, this seems

to be obvious. But it is not.

To understand what is happening, it is best to go back to the beginning. The photon

propagator is the expectation value

〈Aµ(x)Aν(y)〉 =
∫

DAρAµAνeiS.

Irrespective of the issues with gauge symmetry, this expression will yield zero. The reason

is, as noted before, that because space-time is isotropic, there is no preferred direction.

Thus, a tensor cannot be non-zero. To avoid this problem, it is necessary to contract AµAν

with an invariant tensor of the Lorentz group. There are two symmetric rank two tensors

suitable for the task, gµν and pµpν .

Denoting either of them as Pµν , the actual object to calculate is

〈P µνAµ(x)Aν(y)〉 =
∫

DAρP µνAµAνe
iS, (3.22)

twice, once for each possible choice of Pµν . This object is well-defined from the space-time

perspective, but not from the gauge symmetry perspective. This puts one on the path of

section 3.3.

But before gauge-fixing, it is an interesting question to ask what happens if one tries to

calculate the expression (3.22) by brute force. This can be done, and the result is actually

∼ δ(x−y). The reason is that for any gauge field configuration with some value Aµ(x0) at

the fixed position x0, there exists a gauge transformation, which is only non-vanishing at

x0, such that the value of the gauge transformed gauge field is −Aµ(x0). In this way, any

integration over the full gauge group yields zero. The only exception can happen if x = y,
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because then this is essentially the square of the gauge field, and thus positive. Hence,

the propagator is only non-vanishing at coinciding space-time points. This argument can

be extended to any gauge-dependent correlation function. Thus, without gauge-fixing

all gauge-dependent quantities vanish up to expressions proportional to δ(xi − xj) for its

arguments.

But this should be remedied by gauge-fixing. But it is not as simple. The decisive

step is the expression (3.15). Here, the integral
∫

Dg was absorbed in the normalization,

because none of the remaining expressions depended on them, because all were gauge-

invariant. This is no longer true, if the integral is taken over gauge-dependent quantities,

like the photon propagator. Thus, the gauge transformation integral can then no longer be

separated as a factor, and be removed. Thus, the whole procedure of gauge-fixing seems

to break down for gauge-dependent quantities.

There if fortunately a solution to this. The expression (3.15) can also be interpreted

differently for any gauge-invariant observable f(Aµ). Denoting the set of all gauge field

configurations, including all gauge-transformed field configurations, as Ω, the following

expressions are identical

1

N

∫

Ω

DAµf(Aµ) exp(iS[Aµ]) (3.23)

=
1

N

∫

Ω/Ωc

Dg
∫

Ωc

DAµ∆[Aµ]δ(C[Aµ])f(Aµ) exp(iS[Aµ])

=
1

N ′

∫

Ω

DAµ∆[Aµ]δ(C[Aµ])f(Aµ) exp(iS[Aµ])

=
1

N ′′

∫

Ωc

DAµ∆[Aµ]f(Aµ) exp(iS[Aµ]),

where Ωc is the set of all gauge field configurations satisfying the gauge condition Cc.

Thus, gauge-invariant expectation values are the same, whether they are calculated over

the whole gauge field configuration space or whether over a restricted gauge-field configu-

ration space, provided the Faddeev-Popov determinant is included to compensate for the

geometric structure of the restricted space. Thus, on the level of gauge-invariant quanti-

ties, all expressions describe the same theory. The normalization constants differ, but can

always chosen such that 〈1〉 = 1.

However, for gauge-dependent observables the expressions are not equivalent, for the

arguments given above. In the first two lines, they vanish, but not in the third and fourth

lines. Thus, from a purely mathematical point of view, these theories are distinct. From

the point of physics, there is just an infinite number of equivalent quantum theories, the
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one without gauge fixing and the infinitely many choices of Ωc, which all give the same

observables.

Alternatively, this can also be taken to imply that any choice of theory with the action

S ′ = S − i ln∆c gives the same observable quantities, provided they are integrated over

the corresponding configuration set Ωc, either directly implemented as integration range

or by a δ-function. In either way, this leads ultimately to the expression (3.20). Note that

gauges like the linear-covariant gauges then can be considered to be averages over theories

with different Ωc.

This infinite degeneracy of quantum theories is a consequence of working with redun-

dant variables. If it would be technically possible to go to generalized variables, just one

theory would remain. Hence, the degeneracy should rather be considered to be a choice

of suitable variables for technical purposes than any physical meaning. At any rate, for

the purpose of this lecture, expressions like (3.20) will be used as the definition of the

quantum theory, while, e. g., lattice calculations rather start at (3.23). But, as was just

shown, both yield eventually the same results for observables.

3.5 Matter fields

So far, the theory only contained the electromagnetic fields. It remains to introduce

electrically charge matter particles. Again, this requires a postulate, which is then justified

empirically. For this purpose, matter fields, whether they are bosonic φ or fermions ψ, are

required to transform under a gauge transformation as

φg(x) = eieg(x)φ(x), (3.24)

i. e. by a pure phase factor. In this a new, arbitrary, constant, e appears. This also requires

the matter fields to be complex. A term not involving derivatives, e. g. a mass term mφ†φ

is trivially invariant under a gauge transformation.

This is different for a kinetic term,

∂µφ
g = eieg (∂µ + ie∂µg)φ,

and thus neither a kinetic term for bosons (∂µφ)
†∂µφ nor for fermions ψ̄γµ∂µψ can be

alone gauge-invariant. This can be changed by introducing a covariant derivative

Dg
µφ

g = (∂µ − ieAgµ)φ
g = eieg (∂µ + ie∂g − ieAµ + ie∂µg)φ = eiegDµφ, (3.25)

which transforms now like a matter field. Thus, by replacing all derivatives by covariant

derivatives a gauge-invariant Lagrangian of Maxwell fields and matter is obtained. As
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this is the simplest, but not the only, possibility to do so, this is called minimal coupling.

Indeed, it is again experiment which tells that this is correct.

It should be noted that (3.25) induces an interaction vertex between the matter and

the gauge field, with a coupling strength e. At lowest order in the low-energy limit,

the so-called Thomson limit, this is just the classical interaction of an electron with the

electromagnetic field. This justifies to call this quantity electric charge. It should be noted

that for every matter field there can be arbitrarily different electric charges, as long as the

respective covariant derivatives and gauge transformations use the same. Thus, electric

charge is not fixed by the theory.

Quantizing this theory is now straightforward, as at no point the gauge freedom is

interfering with the additional term, though, of course, any gauge transformation applied

to the gauge field needs to be applied also to the matter field. Other than that, quantization

can be performed in the same way in the presence of matter fields, no matter whether they

are fermionic or bosonic. Since the local gauge freedom has been taken care of already,

no further problems arise, and to quantize QED, it is only necessary to replace the action

by the one of QED, and to also integrate about the (Grassmann-valued) fermion fields,

yielding

Z =

∫

DAµDψfDψ̄f exp
(

−i
∫

ddx

(

1

4
FµνF

µν −
∑

f

ψ̄f (iγ
µDf

µ −mf)ψf +
1

2ξ
(∂µA

µ)2

))

,(3.26)

from which now calculations can be performed. How this can be done in practice will be

discussed after extending the quantization process to generalized gauge theories, so-called

Yang-Mills theories, in section 4.3. The index f indicates that multiple fermion fields,

so-called flavors, can be present. E. g. proton and electron to describe a hydrogen atom.

Each of them has potentially different masses mf and different electric charges ef (thus

the index at the covariant derivative).

As an interesting remark, when comparing the global symmetries of section 3.1 and the

gauge transformation (3.24), it becomes clear that when making g(x) position-independent,

g, the gauge transformation is a global U(1) transformation, a phase eig. In this case, the

covariant derivative can again be reduced to the ordinary derivative, without loosing the

invariance under the now global symmetry. Thus, global symmetries appear at first sight

as a special case of local symmetries. Historically, this is often seen in the other way: Any

theory with a global symmetry can be turned into a gauge theory by making the symmetry

local. This is certainly correct as well. However, there is no smooth limit between both

cases, as there is no notion of a gauge theory with bounded ∂µg(x). Thus, global and local

symmetries are a binary distinction. This will be discussed in more detail in chapter 7.
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Classical non-Abelian gauge theories

4.1 Some basics of group theory

Maxwell theory was based on the idea that at every space-time points the elements of a

real vector could be changed by a gauge transformation. To cover also the other forces

observed so far in nature requires to generalize this concept. It turns out that it requires

to allow for fields which are tensor-valued in some abstract internal space, just like with

global symmetries, rather than just real functions. This requires some basic amount of

group theory and the associated theory of algebras, which will be collected here. In fact,

also the global case of section 3.1 can be put usually in the context of group theory.

Start with a group. A group G is a set of elements g with an associative operation ·,
which maps two elements g and h of the set into an element of the set, g ·h ∈ G, and there

exists a unique identity element e as well as a unique inverse element g−1 to every element

g, such that g · g−1 = g−1 · g = e and e · g = g · e = g. Note that the operation does not

need, but can, be commutative. If it is not, g · h 6= h · g, the group is called non-Abelian,

and otherwise Abelian.

A mapping of the elements g of the set to a linear operator or tensor D(g) in a vector

space such that the group structure is conserved, D(g)D(h) = D(g · h), is called a repre-

sentation1. Such a representation needs not to be faithful, i. e. D(g) = D(h) is allowed,

provided the action of the operation is still represented correctly. However, note that not

every group can be represented non-trivially, i. e. other than setting D(g) = 1 for all

g, in every vector space. Sometimes the vector space needs to have a certain number of

dimensions and/or needs to be complex.

Generalizations of Maxwell theory are then constructed by having fields which no

1This is not the only possible type of representation, but the only one needed here.

33
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longer map a space-time position to a (complex) (Grassmann) number, but to such a

linear operator or are vectors in the corresponding internal vector space. It is important

to note that the corresponding vector space is not position space, but an additional vector

space.

For quantum field theory the most relevant subclass of groups are the so-called Lie

groups. They are characterized in the following way: Given a matrix representation of a

Lie group, it is possible to write

D(g) = eiτ
aφa , (4.1)

with the τa called the generators of the group and the φa are real numbers. The generators

can be chosen hermitian, i. e., τa = τ †a . Note that, by definition2, D(g−1) = D(g)†. The

τa are thus base vectors of a different (third) vector space, the algebra. An algebra is a

vector space in which in addition a combination of two base vectors is defined such that

this forms a group. E. g. in a matrix representation this would required that the τa are

a closed set under forming commutators. In addition, as they form a vector space, they

need also to be a group under matrix addition and multiplication with an arbitrary scalar.

The algebras of Lie groups are called Lie algebras. Note that the representation (4.1)

defines also a representation of the generators, and thus the algebra in the same vector

space. This vector space is different than the one which is spanned by the generators.

In the following, groups will be denoted by capital letters, and algebras by small letters.

To be a Lie group, the generators must satisfy tr(τaτ b) > 0. Otherwise, the group is not

compact, which especially implies the absence of finite-dimensional representation fulfilling

D(g−1) = D(g)†.

For finite-dimensional Lie algebras there exists a definite number of generators, N ,

giving the dimension of the algebra vector space. It is also defined to be the dimension of

the group, N = dim G. It is important to note that the number N is independent of the

actual dimension of the vector space of the representation of the group always the same.

Thus, depending on the vector space in which the representation is constructed, also the

τa will be matrices of different dimensions. Note that because of (4.1), a generic group

element can be expanded for infinitesimal φa as 1 + iτaφa. Thus the algebra describes

infinitesimal group elements around the identity. It is thus also called a continuous group.

Continuous groups are a special case of groups, and Lie groups are again a special group

of continuous groups, as further restrictions will apply.

Moreover, for the representation to respect the group structure it can be shown that

the τa respect the commutation relations
[

τa, τ b
]

= ifabcτ
c.

2Again, this is not necessary, but all that is needed for this lecture.
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with the anti-symmetric structure constants fabc. This algebra is fulfilled no matter the

dimensionality of the actual matrices. Thus, the algebra can eventually be defined also in

an abstract way without choosing actual matrices. Because of this, an actual matrix form

of the generators is also called a representation. The structure constants fulfill the Jacobi

identity

fabef cde + facef dbe + fadef bce = 0. (4.2)

Note that the position at top or bottom (covariant and contravariant) of the indices is

of no relevance for the Lie algebras encountered in the standard model, but can become

important in more general settings.

It should be noted that multiple groups can have the same algebra. Groups having

the same algebra differ by a so-called center, ZG , which satisfies for any z ∈ ZG that

[z,D(g)] = 0. E. g., it can be shown that SU(2) and SO(3) both have the same algebra,

and differ only by the discrete group Z2 = {1,−1}. The difference in the groups comes

about in which vector spaces a (faithful) representation is possible in which form, and

whether the representations form a simply connected space or not. While interesting,

these subtle points will only be returned to if need be, which is in most cases in field

theory not the case.

An example is the su(2) algebra, with N = 3, having thus three generators. As a

two-dimensional, complex representation the Pauli matrices,

τ 1 =

(

0 1

1 0

)

τ 2 =

(

0 −i
i 0

)

τ 3 =

(

1 0

0 −1

)

. (4.3)

are usually chosen. Of course, any unitarily equivalent representation will do as well, as

this only corresponds to a change of basis in the vector space defined by the generators.

Here, it should be noted once more that several vector spaces play a role: The space-time

vector space, the vector space in which the representation of a group exists, and the vector

space which is defined by the algebra. In this example, the space-time vector space is

the usual d-dimensional one, the representation vector space is two-dimensional, and the

vector space defined by the generators is three-dimensional. For this particular case

D(g) = 1ω0 + τaωa

with ω2
i = 1. However, it is not true in general that the generators can be used so simply

to create the representation of the group elements.
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There is only a denumerable infinite number of Lie algebras (and Lie groups) which can

be constructed in this way. One are the N -dimensional special unitary groups with algebra

su(N), and the simplest group representation SU(N) of unitary, unimodular matrices. The

second set are the symplectic algebras sp(2N) which are transformations leaving a metric

of alternating signature invariant, and thus are even-dimensional. Finally, there are the

special orthogonal algebras so(N), known from conventional rotations. Besides these, there

are five exceptional algebras g2, f4, and e6, e7, and e8. The u(1) algebra of Maxwell theory

fits also into this scheme, the u(1) group is the special case of all fabc being zero, and the

algebra being one-dimensional. This is equivalent to so(2).

The most relevant algebras for the standard model are su(2) and su(3). Though po-

tentially any (Lie) algebra/group can be used to construct a valid quantum field theory,

this lecture will mostly concentrate on the case of su(N). Thus, for the sake of simplicity,

in the following mostly the expressions for su(N) will be given. Others can be obtained in

a straightforward way.

The su(2) algebra has the total-antisymmetric Levi-Civita tensor as structure constant,

fabc = ǫabc with ǫabc = 1. The algebra su(3) has as non-vanishing structure constants

f 123 = 1

f 458 = f 678 =

√
3

2

f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 =
1

2
,

and the corresponding ones with permuted indices. There is some arbitrary normalization

possible, and the values here are therefore conventional. From these, also the generators for

the eight-dimensional algebra su(3) can be constructed, the so-called Gell-Mann matrices,

τ 1 =







0 1 0

1 0 0

0 0 0






τ 2 =







0 −i 0

i 0 0

0 0 0






τ 3 =







1 0 0

0 −1 0

0 0 0







τ 4 =







0 0 1

0 0 0

1 0 0






τ 5 =







0 0 −i
0 0 0

i 0 0






τ 6 =







0 0 0

0 0 1

0 1 0







τ 7 =







0 0 0

0 0 −i
0 i 0






τ 8 =

1√
3







1 0 0

0 1 0

0 0 −2






. (4.4)

In general, there are N2 − 1 base vectors for su(N), but the dependency for the other

algebras is different.
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Generators, which are diagonal as matrices, and therefore commute with each other,

are said to be in the Cartan subalgebra or subgroup of the algebra or group, respectively.

For su(2), this is only one generator, for su(3) there are two. The size of the Cartan

subalgebra is called the rank of the group.

The lowest-dimensional realization of the commutation relations is called the funda-

mental representations of the algebra or group. Since the commutation relations are

invariant under unitary transformations, it is possible to select a particular convenient

realization. Note, however, that there may be more than one unitarily inequivalent funda-

mental representations. For su(2), there is only one. For su(3), they are two, the second

one created by using the −λa∗ matrices. In general, the number of fundamental represen-

tations equals the rank of the group. Not all fundamental representations need to be of

same dimensionalities, but a concise characterization will not be introduced here.

It also possible to give representations of the algebras with higher-dimensional matrices.

The next simple one is the so-called adjoint representations with the matrices

(Aa)ij = −ifaij ,

which are three-dimensional for su(2) and eight-dimensional for su(3). There are also cases

in which the fundamental and the adjoint representation coincide. There are an infinite

number of further representations with increasing dimensionality, which will not be needed

here.

Further useful quantities are given by the Dynkin index TR for an arbitrary represen-

tation R (R being e. g. τ or A)

trRaRb = δabTR,

and the Casimirs CR

Ra
ijR

a
jk = δikCR, (4.5)

being for su(N) (N2 − 1)/(2N) for the fundamental representation and N for the adjoint

representation.

To perform a path-integral quantization of a theory involving Lie algebras, it will be

necessary to integrate over a group. This can be done using the Haar measure, defined for

group elements g = exp(θaτa) as

dg = I(θ)ΠN
a=1dθ

a,

where I is the actual Haar integral measure. The Haar measure is invariant under a

variable transformation using a different group-element, i. e., for g → gg′ with an arbitrary

different, but fixed, group element g′ no Jacobian appears. This replaces the translational
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invariance of the measure of ordinary integrals. Furthermore, the Haar measure is defined

such that
∫

G

dg = 1,

i. e., an integral over the complete group yields unity. The measure I can be shown to be

I(θ) =
1

VG
detM

g−1 ∂g

∂θa
= iτ bM ba (4.6)

VG =

∫

G

detMΠN
a=1dθ

a

where the second line is an implicit definition, and VG is the appropriate normalization.

As an example, group elements of SU(2) can be written as

g = ei
θaτ

a

2 =

(

cos η1
2
+ i sin η1

2
cos η2 ie−iη3 sin η1

2
sin η2

ieiη3 sin η1
2
sin η2 cos η1

2
− i sin η1

2
cos η2

)

, (4.7)

where the three-dimensional vector θa with maximum length of 2π due to the periodicity

of the exponential has been decomposed into polar coordinates with η1 and η3 ranging

from 0 to 2π and η2 to π. Using the implicit definition (4.6), this yields the Haar measure

for SU(2)

dg =
4

VG
sin2 η1

2
dη1 sin η2dη2dη3,

and the group volume VG has a value of 16π2.

4.2 Orbit structure

This brief section will analyze some implications of groups and group structures when

applying group elements to something, usually the vectors of the vector space in which a

representation is defined. It should be noted, however, that the following could be also

defined without an actual representation, as long as the action of a group element on some-

thing is defined. But within this lecture this will always be realized in a representation.

4.2.1 Orbits

The basic concept is that of an orbit. Take a single vector v of the vector space in question.

Then an orbit, sometimes also called group orbit, O = {D(g)v} is defined as the set of

all vectors obtained under application of all group elements from this single vector. In a
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sense, this generalizes the concept of a ray. An example are the hyperspheres which are

obtained under the application of the rotation groups on a single vector pointing to the

surface of the hypersphere, e. g. in R
2 the orbit of (1, 0)T would be (cosα, sinα)T under

the two-dimensional rotation group.

This structure has a number of consequences. First, the group is itself an orbit, as group

elements can be applied to group elements by the group composition. Always starting from

the unit element the whole group is created as a single group orbit. Second, any set on

which a group acts can be decomposed into distinct orbits, though the number of orbits

does not need to be countable. Third, group invariants, i. e. elements of the vector space

satisfying D(g)v = v, are trivial, i. e. one element, orbits. Fourth, cosets of a subgroup H

of a group G, i. e. the set of all elements of type gh or hg, are orbits as well. Note that

in general, except for invariant subgroups, left and right cosets are not identical, and thus

the orbits of left and right cosets are not identical.

From the point of physics, it is useful that orbits can also be classified by their invariant

tensors. An invariant tensor of rank n is a tensor T in the representation space of the group

which satisfies D1(g)...Dn(g)T = T , i. e. it remains invariant under application of group

elements. E. g. in the simplest case of SO(n) and the vector representation, the invariant

tensor is proportional to the unit matrix. An invariant tensor yields a characterization of

an orbit, i. e. a quantity which is different for different orbits. In the example this is the

length of the vector, which is invariant under rotation, and thus characterizes an orbit.

Since representations can have more than one invariant tensor, orbits may have more

than one invariant to characterize them. Then, two orbits do only agree if they agree in

all the quantities characterized by invariant tensors. E. g. for the tensor representation

of SU(3), build from matrices Vab = vavb with v in the fundamental representation, there

are two invariant tensors. Therefore, there are two quantities for any orbit which are

invariant under the action of the group. One is again the length. The other is a more

complicated quantity, which follows from the fact that every matrix of this representation

satisfies dcabVab = 0, and d is hence a traceless, symmetric tensor.

4.2.2 (Non-)linear representations

Though most of the previous has dealt with linear representations, i. e. representations

where group elements g have been mapped to matrix representations D(g) such that they

act as

D(g)abxb

on the elements x of the representation (Hilbert) space. This is not necessary.
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The only requirement for a representation is actually that it maintains the group com-

position law. Thus, it is possible to formulate a non-linear representation

fa(x, g),

provided

f(f(x, g), h) = f(x, g · h)
where the group composition is maintained. Then, this map is a non-linear representation.

Though non-linear representation of groups (and algebras) are rare, they are sometimes

encountered. This will be, e. g., the case in section 5.2.

4.2.3 The little group

Given some vector v, it is possible that there is a subgroup H of the original group G for

which every subgroup element h satisfies

D(h)v = v

and thus this particular vector is invariant under a subgroup, and this identifies a suborbit.

The subgroup H is then referred to as the little group, sometimes also stability group or

isotropy group, of the vector v. Note that a little group of a continuous group can be both

discrete and continuous. Orbits with the same little group are collected, and called strata.

A straightforward example is the rotation group SO(3) in its three-dimensional rep-

resentation. The vector v = ez has then as little group SO(2), all the rotations in the

x-y plane. Note that the little groups are representation-dependent. E. g. in the trivial

representation, all orbits have the full group as little group. For SU(2) in the fundamental

representation, there is only one non-trivial type of little group, with the little group being

just the trivial group containing only the unit element. The reason is that for every vector

in the fundamental representation, there is an SU(2) transformation which transforms it

into a unit vector in one direction, and thus all of them are not invariant. In the adjoint

representation, there is again only a single non-trivial type of little group, but with little

group U(1), as there a phase is free.

In physics, this becomes especially important if there is a physical reason, like an

external magnetic field in a spin system, which is fixed. Then a spin system, which had

previously some higher symmetry group, will have a lower symmetry group, which is the

little group defined by the direction of the magnetic field. The little group is called in this

context also the residual symmetry group.

In general, there is an infinite number of orbits, but only a finite number of subgroups.

As an example, for the group SO(n) and vector representations there is a trivial type of
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little group given by the orbit v = 0, which has as little group the original group. All

vectors of non-zero length have only SO(n− 1) as little group, the rotations around them.

Thus all vectors of non-zero, but fixed, length belong to the same type of little group.

For symmetric rank two tensor representations, the little groups of SO(n) are different,

and the strata can be classified by the number of degenerate eigenvalues, as the spectrum

is invariant under rotations, but the ordering is not. Similar, but more complicated,

considerations apply to both more complex representations and other groups like SU(n).

Note that the orbits of a little group H are in one-to-one correspondence to the coset

G/H , as the remaining group elements will transform them into each other.

The little groups can also be characterized by the invariants of an orbit. Given any

orbit φ, then an invariant is defined by

I(D(g)φ) = I(φ),

where D(g) is any group element. Thus, the action of an invariant on an orbit is invariant

under any group transformation. E. g., once more the length of a vector for SO(n) is such

an invariant. As noted, there can be multiple invariants, which can be labeled by an index.

It is possible to ask what are the extrema of the invariants with respect to the orbits,

∂I(φ)

∂φ
= 0,

that is which orbits maximize the invariant. The solution to this question is known as

Morse theory. E. g., for the length of a vector, I(φ) = φ†φ, the only extremum is the

trivial vector φ = 0.

Since in physics potentials in the Lagrangian (or Hamiltonian) formulation are in-

variants of the symmetry groups, often but not always the second-order invariant, Morse

theory is actually equivalent to looking for extrema, and thus (metastable) equilibrium

of potentials. Since potentials often also break some larger group to a smaller group, the

question thus turns into the question of finding the little groups, and types of little groups,

given some higher-order invariant.

4.3 Yang-Mills theory

It is now possible to generalize Maxwell theory to the basic building block of essentially all

gauge theories, Yang-Mills theory. This is done by upgrading the gauge fields of Maxwell

theory to a tensor product of a vector field times a Lie algebra. This will be done here

for an arbitrary gauge algebra, though the dimension of the algebra will be referred to as

colors. Specializing the gauge algebra will then define a concrete gauge theory. E. g. for
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QCD it is su(3). Effectively, the gauge field will assign for each point in space-time for

every direction an element of a Lie algebra.

How this happens is actually rather direct. In Maxwell theory, the gauge fields were

a product of the (trivial) generator of u(1), being 1, and the gauge field Aµ. Thus, the

vector space spanned by the u(1) algebra are just the ordinary real numbers. Thus, for

a theory including a Lie algebra the generator will be replaced by the generators of the

group, i. e., the gauge fields will be given as

Aµ(x) = Aaµ(x)τa (4.8)

with the generators τa. Note that at this point the generators are not in any specific

representation. Rather, the gauge fields are currently vectors in the vector space of the

algebra, and the Aaµ are the components. The x-dependence merely states that a different

vector of the algebra space is associated with every space-time point. I. e. gauge fields are

elements of the vector space spanned by the generators of the Lie algebra.

Hence, there are dimG gauge fields in a Yang-Mills theory. Most of the following can

be done essentially completely abstract, i. e. without choosing a particular representation

for the generators. However, it is usually practical to chose a representation, usually the

lowest-dimensional one. Then the τa are matrices of size the lowest-dimensional funda-

mental representation. E. g., for su(N) these are N ×N matrices, like the Pauli matrices

(4.3) or the Gell-Mann matrices (4.4).

It then remains to construct a gauge-invariant action for Yang-Mills theory, which

generalizes Maxwell theory. This is again an axiomatic process, which can be motivated

by various geometric arguments, which will be discussed in section 4.4, but in the end

remain a postulate. It is experiment which vindicates the following.

Since the gauge field is now Lie-algebra-valued, so will be any gauge transformation

function being a vector in the algebra space, τaωa(x), from which the group-valued unitary

gauge transformation

G(x) = exp (igτaωa(x)) (4.9)

is obtained. Again, this does not yet specify a representation. The gauge transformation

is now defined to act on the gauge fields as

Aµ → GAµG
−1 +G∂µG

−1, (4.10)

which in infinitesimal form reads for the gauge fields Aaµ

Aaµ → Aaµ +Dab
µ ωb (4.11)

Dab
µ = δab∂µ − gfabcA

c
µ. (4.12)
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Note that this requires the gauge transformation (4.9) to be in the same representation

as the generators, if a representation is required. Note that (4.10) is inhomogenous, as

is the Abelian version (3.9), in the sense that a field-independent term arises. The Dab
µ

is called the covariant derivative in the adjoint representation of the gauge group. The

adjoint stems from the appearance of the structure constants. Note, however, that this is

a relation in terms of coordinates in the algebra space, and is not yet requiring a choice

of representation.

There are two remarkable facts about this. On the on hand, there appears an arbitrary

constant g in both (4.9) and (4.12). This constant will later turn out to take the place

of the conventional electric charge as the coupling constant of Yang-Mills theory. The

second is that the transformation is no longer linear, but there appears a product, even in

the infinitesimal case, of the gauge field and the gauge transformation function ωa. This

non-linearity gives rise to all kind of technical complications.

This more involved structure requires also a change of the field-strength tensor, to

obtain a gauge-invariant theory in the end. The field strength tensor of Yang-Mills theory

is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] = F a
µντa = (∂µA

a
ν − ∂νA

a
µ + gfabcAbµAcν)τa. (4.13)

The field-strength tensor is again a vector in the gauge algebra. There are two more

remarkable facts about this field strength tensor. One is that it is no longer linear in

the gauge fields, but that there appears an interaction term: Gauge fields in a Yang-

Mills theory interact with each other, and the theory is even without matter non-trivial.

Furthermore, the appearance of g confirms its interpretation as a coupling constant. The

second is that a quick calculation shows that this expression is not gauge-invariant, in

contrast to Maxwell theory. The reason is the non-commutativity of the algebra-valued

gauge fields.

However, the combination

tr(FµνF
µν) = F a

µνF
µν
a

is. To see this, it is useful to first establish the behavior of Fµν . Under an infinitesimal

transformation, it follows that the additional terms transform as

1

g
∂µD

ab
ν ω

b − ∂νD
ab
µ ω

b + fabc(AbµD
cd
ν ω

d + AcνD
bd
µ ω

d)

=
1

g
(∂µ∂ν − ∂ν∂µ)ω

a + fabc(∂µA
c
νω

b − ∂νA
c
µω

b) + fabc(Abµ∂νω
c + Acν∂µω

b)

+gfabc(f cdeAbµA
e
νω

d + f bdeAcνA
e
µω

d)

= fabcF b
µνω

c,
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where it has been used that

(∂µ∂ν − ∂ν∂µ)ω
a = 0

(∂µA
c
ν − ∂νA

c
µ)ω

b + Acν∂µω
b −Acµ∂νω

b + Abµ∂νω
c + Acν∂µω

b = (∂µA
c
ν − ∂νA

c
µ)ω

b

(4.14)

fabcf cdeAbµA
e
νω

d + fabcf bdeAeµA
c
νω

d = (fadbf ceb + faebf bdc)AdµA
e
νω

c

= fabcf debAdµA
e
νω

c.

Here the anti-symmetry of the structure constants and the Jacobi identity (4.2) has been

used. Note that it was essential that in (4.14) the coupling constant appearing in the

gauge transformation and in the field strength tensor was identical.

Thus it remains to form the product of the two field strength tensors. To leading order,

only one is transformed, yielding

fabcF b
µνF

aµνωc.

Since F a
µν is antisymmetric in the Lorentz indices, this vanishes, since the quadratic con-

traction is then symmetric in a and b. This implies that the field-strength tensor transforms

homogeneously under a non-infinitesimal gauge transformation, in contrast to the fields

themselves, as

Fµν → GFµνG
−1,

i. e. like a similarity transformation in the algebra space.

Thus, in analogy to Maxwell theory, the Lagrangian

L = −1

4
tr(FµνF

µν) = −1

4
F a
µνF

µν
a ,

defines a suitable gauge-invariant object, which defines Yang-Mills theory. Though it looks

simple at first, it is a highly non-trivial theory, as it includes the interaction of three and

four gauge bosons.

Another consequence of the gauge-variance of the field strength tensor is that color-

electric and color-magnetic fields are gauge-variant as well, and they can thus not be

measured: Yang-Mills theories do not manifest themselves as observable fields nor as

observable color waves. From this follows also that color charge is gauge-variant and thus

not observable, in contrast to electric charge. The only type of gauge-invariant observables

in Yang-Mills theory are bound-states, and their interactions and behavior. However, after

fixing a gauge, it is of course possible to make statements also about the gauge bosons, and

even use experiments to indirectly say something about the properties of gauge bosons in

a particular gauge. Much more will be said on this topic during this lecture.
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4.4 Yang-Mills theory as geometry

As noted in section 4.3, it is possible to attach a geometrical interpretation to gauge fields.

For this, it is best to understand a little bit more what gauge transformations and gauge

fixing really are.

The definition (4.8) is actually the statement that at every point in space a tensor in

a vector space is attached. I. e., for every point in space exists a vector in an additional

vector space. Go first back to the Abelian case. There at every point of Minkowski space

M
4 is also attached the vector space R

4, i. e. the total3 vector space is M
4 × R

4. The

vector x is an element of M4, and each component of the vector Aµ is an element of R.

Thus, Aµ(x) assigns to each element of M a vector of elements of R. Thus, to every point

of M4 four vectors in the algebra space R are assigned.

Now, every vector space can have a basis. This basis can be chosen independently inM
4

and each of the four algebra spaces R. However, as linear algebra shows, comparing vector

components makes only sense if the same basis is chosen. Basis-independent quantities, e.

g. the length, can be compared without referring to a basis.

A gauge transformation (3.9) in this picture translates the components of the vector

Aµ(x) independently at every space-time point. It is just a translation, as a quantity

∂µg(x) is added to every component, not a rotation. Especially, none of the components

of Aµ(x) is mixed. Thus, a gauge-transformation is a translation in R. If g(x) would

not depend on x, everything would be simple, as this would be a global transformation,

and thus the gauge fields at different points in M
4 would still be comparable. But the

translation is now different at every point. Thus, because of a gauge transformation, it

is no longer possible to compare two vectors in R at different points in M
4. Note that

technically in principle every vector in each R could be transformed differently, i. e. with a

vector-valued gauge transformation rather than a divergence. However, this would break

Poincare invariance in M
4, and is thus not suitable to describe physics.

In this view, the covariant derivative in section 4.5 will play an important role, as it

will be seen to just compensate for these translations. But before going there, it is useful

to have a closer look still at Maxwell theory.

The first is the role of gauge-invariant quantities, like the electromagnetic fields (3.7-

3.8). They are constructed such that position-dependent translations in R drop out. They

are independent of the position in R, and therefore local translations do not affect them.

They are invariants in the internal vector space R.

The second, immediate, question is, what is about local rotations mixing components

3Total because here the path integral formalism is used. If an operator-based formulation would be

used in addition a state space would appear.
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of the vectors in R? Could (3.9) be extended to also include rotations? This would mix

transformations in M
4 and R. Obviously, electromagnetic fields would not be invariant

under such a rotation. This would contradict experiment, and therefore such rotations

should not be part of the theory. This is ensured by the theory itself: The Maxwell action

is not invariant under such rotations. Could they be added? In principle, it could be

possible to construct such a gauge theory. But so far the need did not arise.

The third question comes from the insight that if this is all about a change of basis,

why bother? Why not work exclusively with invariant quantities? After all, this is what

classical mechanics teaches: Any remaining degree of freedom is nothing but a redundancy

which can be eliminated by passing to suitable generalized coordinates. And classical

electrodynamics shows that is indeed possible. The answer to this is one of practicality.

In fact, it is possible to eliminate gauge fields altogether. Some things have even been

calculated in this way, especially the infamous Aharanov-Bohm effect. But in general,

especially when going to Yang-Mills theory, this becomes practically essentially impossible.

Thus, introducing redundancy by having gauge fields as auxiliary degrees of freedom,

paying with the appearance of the internal vector space, is practically the better choice.

Moreover, any formulation without gauge fields turns out to be inherently non-local, to

be able to include effects like the Pauli principle, entanglement, and others. While not

a real conceptual problem, this is an almost insurmountable practical one. The obvious

follow-up question is then why this kind of redundant variables, and not some other. The

answer is that this has been the one that works. Others may exist, but none has been

found making it easier.

The fourth is what the role of gauge-fixing then is. Gauge-fixing is essentially elimi-

nating the freedom of redefining the basis. Especially in a gauge like Landau gauge, where

there is one and only one solution for the gauge condition (at least perturbatively) no

freedom is left. Thus, gauge-fixing is nothing more than fixing the basis in R once and for

all. And then, of course, also a comparison of vector components makes sense. But, as

with any basis choices, physics cannot depend on it. That this choice of basis gets as in-

volved as seen in section 3.3 is merely a consequence of having to deal with the integration

over all possible coordinate systems, a feature which is due to the path integral a genuine

quantum problem.

Fifth, when passing to Yang-Mills theory, the situation becomes only technically more

involved. The simple translations of (3.9) become replaced by the non-linear transforma-

tion (4.10) in the vector space spanned by the Lie algebra. Thus, R becomes replaced

by V, the vector space of the Lie algebra. Because the geometric structure of such vector

spaces is very involved, this has a lot of technical complications, as will be seen throughout



Chapter 4. Classical non-Abelian gauge theories 47

the lecture. But on a conceptual level, this does not change anything.

Finally, it should be remarked that if one would allow for position-dependent trans-

lations in M
4, this would yield general relativity. Thus, the concept coming with gauge

theories underlie the two central theories of modern physics, the standard model of particle

physics and general relativity. All of the things said here then also apply to space-time

and space-time coordinates, and it is necessary to pass to coordinate-invariant quantities.

This is already the case in classical general relativity, as much as in classical electrody-

namics. Also there one needs to work with gauge-invariant quantities, the generalization

of electromagnetic fields, and no longer with coordinates, as they are no longer physical.

How to do so at the quantum level has not yet been fully understand, and this is the

quest for quantum gravity. This is the topic of a different lecture, and thus here only the

translations in R, and its generalizations V, will be considered, and not in M
4.

4.5 Matter, representations, and coupling universal-

ity

After having the generalization of Maxwell theory for the gauge fields, the next step is to

generalize section 3.5. I. e., introducing matter interacting with the gauge fields, just like

electrons do with the electromagnetic field. In the following, it will be irrelevant, whether

the matter are (pseudo)scalars, fermions, or have other spin assignments, though this of

course influences details of the Lagrangian structure to form Lorentz scalars.

In addition, the following will use the concept of minimal coupling, which is a direct

generalization of minimal coupling in QED, i. e. it will work using a covariant derivative

only slightly generalized from the QED version. While there may be other possibilities to

introduce gauge theories so far this is the only type consistent with any experimentally

known theory. For this reason, this lecture is exclusively devoted to this class of gauge

theories. They are also arguably the simplest version, and still more than complicated

enough to be not fully understood until today.

QED is an Abelian gauge theory. For an Abelian group structure, every irreducible

representation is one-dimensional. I. e. everything boils down to sets of independent

functions, not vectors. Thus, everything ultimately boils down to allow for phase rotations

of the matter fields under a gauge transformation, φ → eigω(x)φ, where g is some arbitrary

constant. This implies that φ needs to be complex. In fact, from the vantage point of

global symmetries of section 3.1, this is having a global U(1) symmetry, and making it

local. This is indeed also the usual way of creating a gauge theory: Take a matter theory
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with global symmetry, and making the group, or some subgroup of it, local4. Now, any

generalization of phase transitions will still leave combinations of the type φ†φ invariant

under a gauge transformation, but not a kinetic term involving ∂µ. Thus, ordinary kinetic

terms involving φ†∂µφ are no longer gauge-invariant. But this need to be, as discussed in

section 4.4.

The origin of this problem is that ∂µ is not only involving the field φ at some position

x. Because of the limiting procedure defining a derivative, it also involves information

from some nearby region. But because of the gauge freedom, the coordinate systems

even at two nearby points can be different. And because the field changes under gauge

transformations, it is like vector components, and they can only be combined if calculated

in the same coordinate system.

It is thus necessary to somehow compensate for the possible change of coordinate

system. Go back to QED. This can be achieved by introducing again a covariant derivative

Dµ, which has the property that under a gauge transformation it behaves as Dµφ →
eigω(x)Dµφ, i. e. that applied to the field the whole object transforms as a field. Then,

the combinations appearing in kinetic terms become again gauge-invariant. Because of

this the covariant derivative is also called parallel transporter, because it makes the field

comparable.

This requires that the covariant derivative itself transforms as

Dµ → eigω(x)Dµe
−igω(x).

If it would be just the ordinary derivative, this would yield

eigω(x)∂µe
−igω(x) = ∂µ − ig∂µω(x).

Thus, a mismatch ∂µω(x) arises. But this is precisely of the same form as (3.9). Thus, a

covariant derivative defined as

Dµ = ∂µ + igAµ (4.15)

has exactly the desired properties. Because this implies that the gauge field connects the

nearby points to compensate for the change of coordinate system, the gauge field is also

called connection in a more mathematical context. And this is exactly what appears also in

(3.26), in QED. It should be noted that the constant g has been arbitrary, but parametrizes

the strength of the coupling between the gauge field and the matter field. However, as

long as the constant is the same for the gauge transformation and the covariant derivative,

4If a subgroup is made local, and the original group was not simple, some global group remains.

However, this will not be relevant throughout most of this lecture, but plays a very important role in

actual theories.
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it is arbitrary, and needs to be measured to be fixed. At the same time, it can be different

for different matter fields.

This is the procedure of minimal coupling: Chose a matter field with global symmetry

group, gauge the symmetry group or a subgroup, and fill in covariant derivatives with

couplings taken from experiment. That’s it, this is how the standard program for con-

structing a gauge theory from a non-gauge theory works. It should be noted, however,

that even if the gauge fields are redundant degrees of freedom, the ungauged and gauged

theories differ qualitatively. If passing to appropriate generalized coordinates it is not the

ungauged theory, which arises, but a more complicated one. Moreover, the matter fields

are now gauge-dependent. Thus, just as the gauge fields themselves, they depend on a

choice of coordinate system, and are hence no longer physical degrees of freedom, as they

were in the ungauged theory. How to remove the gauge field again will be discussed later,

and what then are physical degrees of freedom.

The recipe to put matter into Yang-Mills theories is quite similar, but for two impor-

tant details. The first is that a non-Abelian gauge theory has many different irreducible

representations, and especially many higher-dimensional ones. It is thus necessary to chose

the representation for the theory with the global symmetry. Any choice is possible, and

experiment will dictate which one is necessary.

Choosing some representation R, this representation is n-dimensional. The generators

in this representation are then N n × n matrices τRa , and group elements can be written

as exp(igτRa ωa(x)/2). The factor 2 is here a convenient normalization. Any matter field is

then an n-dimensional vector5 φi. A gauge transformation then acts as

φi →
(

exp

(

ig
τRa
2
ωa(x)

))

ij

φj . (4.16)

Note that this is still a translation in the vector space spanned by the algebra, but in the

vector space of the representation, i. e. in which the matter fields are defined, this is a

(kind of) rotation. There can be multiple matter fields, each of which can be in a different

representation. However, as will be seen below, the constant g in (4.16) is needed to be

the same.

Just as before, combinations like φ†
aφa are invariant under such transformations, but

φ†
a∂µφa are not, and require the introduction of a covariant derivative. This covariant

derivative is defined as

Dij
µ = δij∂µ − i

g

2
Aaµ(τ

R
a )

ij .

5Depending on algebra and representation this vector can be real or complex, which will not matter

here.
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The important difference to the covariant derivative in the QED case (4.15) is that here the

same coupling constant g appears as in the Yang-Mills field strength tensor (4.13). This

is the second important difference to the Abelian case, and is called coupling universality.

The reason is that in the gauge transformation of the Yang-Mills field (4.11) the covariant

derivative in the adjoint representation appears, which also involves the coupling constant.

This term is absent in the Abelian case, as the structure constants vanish for an Abelian

gauge theory.

To see that this is necessary, consider the fundamental case. Assume that there would

be a difference, and the matter would couple with the coupling constant q instead of g. For

good measure, also allow that the gauge transformation for the matter could be modified

by some factor. Then

(

δij∂µ − i
q

2
Aa

′

µ τ
a
ij

)(

δjk + i
p

2
τ bjkα

b
)

= δik∂µ −
iq

2
Aaµτ

a
jk +

ip

2
τ bik(∂µα

b + αb∂µ) +
pq

4
Aaµτ

a
ijτ

bjkαb − iq

g2
Dab
µ τ

a
jkα

b

p= q
g

= δik∂µ −
iq

2
Aaµτ

a
jk +

q2

4g
Aaµτ

a
ijτ

b
jkα

b − iq

2
fabcAcµτ

a
jkα

b +
iq

2g
τ bikα

b∂µ

q=g
= δik∂µ −

ig

2
Aaµτ

a
ik +

g

2
Aaµτ

b
ijτ

a
jkα

b + iτ bikα
b∂µ

=

(

δij +
i

2
τ bijα

b

)(

δjk∂µ −
ig

2
Aaµτ

a
jk

)

.

Thus, the gauge transformation needs to be of the form (4.16) and the coupling constants

need to be the same.

This has very far reaching consequences for any particle physics theory. It determines

that the interaction strength of the gauge bosons and between the matter and the gauge

bosons is uniquely related. This is a unambiguous prediction, which is experimentally

testable. The other is that not every classical non-Abelian gauge theory can be consistently

quantized, as will be discussed in chapter 9. The latter has, e. g., implications to the

equality of the electric charges of electrons and protons, as is discussed in the lectures on

electroweak physics or physics beyond the standard model.

In much of the following, the gauge algebra/group will be su(N)/SU(N) with matter in

the fundamental representation. This is the situation encountered in the standard model.

It is also technically often the simplest case. A generalization to arbitrary representations

and gauge algebras/group is usually straightforward, often just a replacement of numerical

factors and constant matrices.

There is one important distinction to note. If a representation is not complex, as

is the case for all representations of SU(N > 2), but (pseudo)real, matter particles and
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antiparticles are not independent. Rather, they are the same, possibly up to a phase. This

will play an important role in section 7.3.2, where physical states, especially bound states,

will be constructed.

It has also a second implication, if there are multiple fields in the same representation.

If there are multiple fields in the same representation and with otherwise the same quantum

numbers they can be transformed into each other by an additional symmetry transforma-

tion6. This is called a flavor symmetry7. The group associated with this symmetry will

depend on whether the gauge group representation of the matter fields is complex, real,

or pseudoreal. If the matter is fermionic, this flavor symmetry can also be combined with

the corresponding chiral symmetry in different ways, depending on the type of represen-

tation. However, as this is otherwise not part of the gauge symmetry, and the possibilities

quickly proliferate, this issue is treated in lectures for particular implementations of gauge

theories.

6Provided no other terms in the Lagrangian, like mass-terms or non-gauge interaction terms, break

this symmetry explicitly.
7Or, especially when it comes to the Higgs, custodial symmetry.



Chapter 5

Perturbative quantization of

Yang-Mills theory

So far, Yang-Mills theory was treated entirely classically. It is now time to quantize it.

In principle, this would appear to be a straightforward extension of section 3.3. However,

this is not the case, for two reasons. The first is the appearance of the self-interaction in

(4.13). This will require additional steps, and will ultimately lead to the introduction of

auxiliary fields. The other is that the non-Abelian nature will introduce a problem when

constructing the non-Abelian Faddeev-Popov determinant (3.16), as (3.14) will turn out to

be a far more non-trivial statement. This second set of problems turn out to be actually

not appearing in perturbation theory. Therefore, to deal with one problem at a time,

here only a perturbative quantization, i. e. only valid when doing perturbation theory,

will be done. The extension beyond perturbation theory will be done in chapter 7. This

makes sense, as essentially all the concepts introduced in the perturbative quantization will

find their counter-part beyond perturbation theory, but at the expense of more technical

difficulties. Thus, such a two-stage approach is particularly suitable for concept building.

5.1 Quantization

For the same reasons as for Maxwell theory in section 3.3 also in Yang-Mills theory flat

directions appear. As there, different possibilities are available to cope with the problem,

of which gauge-fixing will be the method of choice here. As in the case of Maxwell theory

this will be restricted to gauge conditions, which will not involve the matter fields in a

manifest way. Thus, the following is the same for any matter content of the theory1, and

1Examples of gauge conditions which involve the matter fields explicitly are discussed in the lecture

on electroweak physics.

52
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the matter fields need not be included explicitly. Furthermore, only the class of covariant

gauges will be discussed in detail, though other (non-covariant) gauges have also been

studied intensively in the literature, e. g. Coulomb or axial gauges. As they introduce a

host of additional technical complexities, without yet any obvious and simple gains, this

topic is beyond the scope of this lecture.

The first step is again to select a gauge condition, but this time one for every gauge

field, Ca[Aaµ, x] = 0, e. g. again the Landau gauge2 Ca = ∂µAaµ. The next steps are then

the same as for QED, only keeping in mind to drag the additional indices along, and that

the integration over gauge transformations is now performed using the Haar measure. This

continues until reaching the expression

Z =

∫

DG
∫

DAaµ∆[Aaµ]δ(C
a[Aaµ]) exp(iS[A

a
µ]) (5.1)

in which for QED ∆ could essentially be absorbed in the measure. For non-Abelian gauge

theories, this is not possible. For a non-Abelian gauge field, the functional ∆ is given by3

∆[Aaµ] =

(

det
δCa[Aµ, x])

δθb(y)

)

Ca=0

= detMab(x, y). (5.2)

with the non-Abelian Faddeev-Popov operator Mab.

A more explicit expression is again obtained using the chain rule

Mab(x, y) =
δCa(x)

δθb(y)
=

∫

d4z
δCa(x)

δAcµ(z)

δAcµ(z)

δθb(y)

=

∫

d4z
δCa(x)

δAcµ(z)
Dcb
µ δ(y − z) =

δCa(x)

δAcµ(y)
Dcb
µ (y). (5.3)

The important difference to the Abelian case (3.17) is the appearance of the covariant

derivative instead of the ordinary one. As a consequence, the gauge field itself appears in

the Faddeev-Popov operator for any gauge condition4. This is what makes it impossible

to get rid of the Faddeev-Popov determinant in the same way as in Maxwell theory.

To proceed further, a choice of Ca is necessary. This will again be covariant gauges,

selected by the condition Ca = Da + Λa(= ∂µA
µ
a + Λa) for some arbitrary functions Λa.

2For simplicity, here only gauge conditions linear in the group indices are used. Of course, in general

gauge conditions can also depend on gluon fields with a different index than their own.
3This determinant can be zero outside perturbation theory, see again section 7.1.
4The covariant derivative has even perturbatively zero modes, and can thus not be inverted to get rid

of this problem.
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The path integral then takes the form

Z =

∫

DΛaDAaµ exp
(

− i

2ξ

∫

d4xΛaΛa

)

detMδ(C) exp(iS)

=

∫

DAaµ detM exp

(

iS − i

2ξ

∫

d4xDaDa

)

, (5.4)

for a Gaussian weight, and the δ-function has been used in the second step. The arbitrary

parameter ξ is again called the gauge parameter. As the remaining determinant of the

Faddeev-Popov operator is a highly non-local object, the current expression is unsuited

for most calculations.

This determinant can be recast, by introducing auxiliary fields, as an exponential.

Using the rules of Grassmann numbers it follows immediately that

detM ∼
∫

DcaDc̄a exp
(

−i
∫

d4xd4yc̄a(x)M
ab(x, y)cb(y)

)

, (5.5)

where the auxiliary (Faddeev-Popov) ghost and antighost fields c and c̄ are Grassmann-

valued scalar fields. Note that c† = c and (ic̄)† = ic̄ holds, and there is no relation between

ghost and antighosts, despite their (historic) names5. Since the ghosts are just auxiliary

fields, Spin and Grassmann parity assignments are not at odds with the spin-statistics

theorem. As a consequence the sign of the kinetic term of the ghosts is wrong compared

to ordinary scalars, a sign of this unphysical spin-statistic relation. If the condition Da is

local in the fields, the Faddeev-Popov operator will be proportional to δ(x − y), and the

ghost action will become local.

It is furthermore often useful to introduce an additional auxiliary field, the real, scalar

Nakanishi-Lautrup field ba. This is obtained by rewriting

exp

(

− i

2ξ

∫

d4xDaDa

)

∼
∫

Dba exp
(

i

∫

d4x

(

ξ

2
baba + baD

a

))

.

Upon using the equation of motion for the b field, the original version is recovered.

The final expression for the gauge-fixed path integral then reads

Z =

∫

DAaµDbaDcaDc̄a exp
(

iS +

∫

d4x

(

ξ

2
baba + baD

a

)

−
∫

d4xd4yc̄a(x)Mab(x, y)cb(y)

)

.

(5.6)

Choosing the gauge Da = ∂µAaµ = 0, this takes the form

Z =

∫

DAaµDbaDcaDc̄a exp
(

iS + i

∫

d4x

(

ξ

2
baba + ba∂µA

µ
a

)

− i

∫

d4xc̄a∂µDab
µ c

b

)

.

5Though there is a relation in Landau gauge, but not in general covariant gauges.
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Furthermore, the ever-so popular Landau gauge corresponds to the limit ξ → 0, as this is

corresponding to the case where all of the weight of the weight-function is concentrated

only on the gauge copy satisfying ∂µAaµ = 0. However, in principle this limit may only be

taken at the end of the calculation.

To return to QED, it is sufficient to notice that in this case

Dab
µ φ

b → ∂µφ,

and thus the ghost term takes the form

−i
∫

d4xc̄a∂2ca.

Hence, the ghosts decouple, and will not take part in any dynamical calculations. However,

their contribution can still be important, e. g., in thermodynamics. The decoupling of the

ghosts is not a universal statement. Choosing a gauge condition which is not linear in the

gauge fields will also in an Abelian theory introduce interactions.

This program can be performed in a much more formal and general way, the so-called

anti-field method. This will be introduced in section 5.3. It is also possible, but much

more tedious and less developed, using canonical quantization. This will therefore not be

done in this lecture.

To include matter fields requires just to add their contribution to the Lagrangian, and

to integrate over them, as they have not been involved in the gauge-fixing procedure, just

like in section 3.5. Also, the same applies for gauge-dependent correlation functions as for

the Abelian theory in section 3.4.

5.2 BRST and asymptotic states

As stated, the chromoelectric and chromomagnetic fields themselves are no longer physical

in a Yang-Mills theory. It thus requires some other method to identify physical degrees of

freedom, and a more general construction of the physical state space is required.

A possibility to establish the physical state space is by use of the BRST (Becchi-Rouet-

Stora-Tyutin) symmetry, which is a residual symmetry after gauge-fixing. Perturbatively,

it permits to separate physical from unphysical fields. In the so-called Kugo-Ojima con-

struction it is attempted to extend this construction beyond perturbation theory, though

whether this is possible has not yet been settled. In fact, there are many more issues to

be considered beyond perturbation theory, which will be addressed in chapter 7.
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5.2.1 BRST symmetry

The starting point for the discussion is the gauge-fixed Lagrangian with Nakanishi-Lautrup

fields included

L = −1

4
F a
µνF

µν
a +

ξ

2
baba + baDa −

∫

d4zūa(x)
δDa

δAcν
Dcb
ν ub(z).

Herein the gauge condition is encoded in the condition Ca = Da[Aµ, x] − Λa(x) = 0.

Furthermore, matter fields are ignored, as they will not alter the discussion qualitatively.

Their contributions will be reinstantiated later.

Gauge-fixing actually did not fix the gauge completely. One freedom is that if Da ≡
Da[Aaµ] only depends on gauge fields of the same color a explicitly there is a global gauge

transformation still possible, i. e. a space-time independent rotation G 6= G(x). This just

states that there is no global color direction preferred by the gauge choice.

But there is also another symmetry. As will be seen, it is related to the fact that

covariant gauges, except for Landau gauge, average over gauge copies. The symmetry will

be related to gauge transformations between two different copies over which is averaged,

accompanied by a readjustment of the Jacobian, and thus the ghost fields. It is hence a

global symmetry, as the averaging was not done in a space-time-dependent fashion. This

will be the BRST symmetry. The existence of this symmetry is far from obvious.

It is here best to work backwards, i. e. starting from the known form of the BRST

symmetry. The associated infinitesimal BRST transformation δB is defined as

δBA
a
µ = λDab

µ ub = λsAaµ (5.7)

δBu
a = −λ g

2
fabcubuc = λsua (5.8)

δBū
a = λba = λsūa (5.9)

δBb
a = 0 = λsba. (5.10)

Herein, λ is an infinitesimal Grassmann number, i. e., it anticommutes with the ghost fields.

This is a very different form than usual symmetries, which involve only non-Grassmann

parameters, and has thus some quite unique properties.

As a consequence, this so-called BRST transformation s has to obey the generalized

Leibnitz rule

s(FG) = (sF )G+ (−1)Grassmann parity of FFsG,

with Grassmann parity of an object is 1 if it is Grassmann odd, i. e. contains an odd

number of Grassmann numbers, and 0 otherwise.

Showing the invariance is simple for the classical Lagrangian, as the transformation

for the gauge boson is just an ordinary gauge transformation with gauge parameter λua,
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which is an ordinary real function. This is the manifestation of what has been said above

that this is a transformation between the different gauge copies.

That the remaining gauge-fixing part of the Lagrangian is invariant under a BRST

transformation can be seen as follows. The quadratic term in ba is trivially invariant. The

second term from the gauge-fixing part transforms as

s(baDa) = ba
∫

d4y
δDa

δAbµ
sAbµ = ba

∫

d4y
δDa

δAbµ
Dbc
µ uc.

To determine the transformation of the ghost-part, there are four components on which

the transformation acts. The first is when s acts on the anti-ghost. This yields

−s(ūa(x))
∫

d4z
δDa

δAbν
Dbc
ν uc(z) = −ba

∫

d4z
δDa

δAbν
Dbc
ν uc(z).

It therefore precisely cancels the contribution from the second part of the gauge-fixing

term.

The next is the action on the gauge-fixing condition,
∫

d4ys

(

δDa

δAbν(y)

)

Dbc
ν uc =

∫

d4yd4z
δDa

δAbν(y)δA
d
ρ(z)

(sAdρ(z))D
bc
ν uc(y)

=

∫

d4yd4z
δDa

δAbν(y)δA
d
ρ(z)

Dde
ρ ue(z)D

bc
ν uc(y) = 0.

In linear gauges, like the covariant gauges, it immediately vanishes since the second deriva-

tive of the gauge condition is zero. In non-linear gauges, this becomes more complicated,

and in general requires the exploitation of various symmetry properties, depending on the

actual gauge condition.

The two remaining terms can be treated together as

s(Dab
µ ub) = ∂µsu

a − gfabc ((sA
c
µ)ub + Acµsub)

= −g
2
∂µ(f

abcubuc)− gfabcD
cd
µ udub − gfabcfbdeA

c
µu

due

=
g

2
fabc (∂µ(ubu

c)− 2ub∂µuc − 2g(f cdeA
e
µudub + gf de

b Acµudue)).

The first two terms cancel each other, after adequate relabeling of indices. The last two

terms can be rearranged by index permutation such that the Jacobi identity can be used

so that they vanish as well,

=
g

2
fabc(ub∂

µuc + (∂µub)uc − 2ub∂
µuc)

+g(fabcf decA
µ
eudub + fabcf decA

µ
eudub + fabcf decA

µ
b udue)

= g(fabcf decAµeudub + fadcf ebcAµeudub + faecf dbcAµeudub)

= g(fabef cde + facef dbe + fadef bce)A
µ
cudub = 0,
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for which a number of index rearrangements and relabellings are necessary, taking always

the Grassmannian nature of the ghosts duly into account. Hence, indeed the gauge-fixed

Lagrangian is BRST-invariant.

An amazing property of the BRST symmetry is that it is nilpotent, i. e., s2 = 0. This

follows immediately from a direct application. The previous calculation already showed

that

0 = s(Dab
µ u

b) = s2Aaµ.

It is trivial for the anti-ghost and the auxiliary ba field by construction. For the ghost it

immediately follows by

s2ua ∼ s(fabcubuc) ∼ fabcf de
b udueuc − fabcf de

c ubudue = fabcf de
b (udueuc + ucudue) = 0.

The last step is not trivial, but follows from the fact that the ghost product is Grassman-

nian in nature, and only non-zero if all three indices are different, and thus behaves as an

anti-symmetric tensor ǫcde.

There is even more possible. It holds that the gauge-fixing part of the Lagrangian can

be written as

Lf = s

(

ūa
(

ξ

2
ba +Da

))

(5.11)

=
ξ

2
baba + baDa + ūa

∫

d4y
δDa

δAbµ(y)
Dbc
µ ub(y).

Hence, the gauge-fixing part of the Lagrangian is BRST-invariant, since s2 = 0. This can

be generalized to other gauge conditions by adding arbitrary so-called BRST-exact terms

s(ūaFa) with F
a arbitrary to the Lagrangian. The factor of ū is necessary to compensate

the ghost of the BRST transformation, since any term in the Lagrangian must have a

net number of zero ghosts. This extension leads to the so-called anti-field formalism for

gauge-fixing, which will be discussed in more detail in section 5.3.

The BRST transformation for matter fields also take the form of a gauge transformation

with the parameter λua. Therefore, all matter Lagrangian contributions automatically

satisfy invariance under a BRST transformation. For a fermionic or bosonic matter field

φ in representation τa it takes the form

δBφ
i = λiguaτ ija φj

s2φi = igτ ija s(u
aφj) = igτ ija

(g

2
fabcubucφj + iguaubτ

b
jkφ

k
)

∼ g2
{

τa, τ b
}ij

uaubφj = 0,

where in the second-to-last step the relation between structure constants and generators

has been used backwards, permitting to combine both terms into the symmetric anti-

commutator. The combination with the anti-symmetric ghost product yields then zero.



Chapter 5. Perturbative quantization of Yang-Mills theory 59

5.2.2 Constructing the physical state space

The following discussion shows how to explicitly construct the state space using BRST

symmetry. It extends thereby the Gupta-Bleuler construction of QED, and it can be

directly extended to include also matter fields.

5.2.2.1 Negative-norm states

The first concept in constructing the physical state space is the realization of the presence

of states which do not have a positive norm. The simplest example is already given in

Maxwell theory. Choose, e. g., Feynman gauge, i. e. ξ = 1. The corresponding propagator

is then given by Gaussian integration as

〈A†
µ(x)Aν(y)〉 = δabgµν

∫

d4p

(2π)4
eip(x−y)

p2 + iǫ
= −δabgµν

∫

d3p

2(2π)3|~p|e
−ipi(x−y)i .

The norm of a state

Ψ(x) =

∫

d4xf(x)A0(x) |0〉 =
∫

d4xd4p

(2π)4
eip0x0−pixif(p)A0(x) |0〉 ,

with f(x) an arbitrary weight function, created from the vacuum by the operator Aµ then

reads

|Ψ|2 =
∫

d4x

∫

d4y〈A†
0(x)A0(y)〉f †(x)f(x) = −

∫

d3p

2|~p|f
†(p)f(p) < 0.

Hence, there are negative (and zero) norm states present in the state space. These cannot

contribute to the physical state space, or otherwise the probability interpretation of the

theory will be lost. Or at least, it must be shown that the time evolution is only connecting

physical, i. e. with positive definite norm, initial states to physical final states6.

5.2.2.2 BRST algebra

That they indeed do not contribute can be shown using the BRST symmetry. In fact, it

will be shown that

QB |ψ〉phys = 0, (5.12)

[QB, ψ]± = sψ.

6The precise characterization of what is a final state beyond perturbation theory is open. One pos-

sibility, discussed before, is a non-perturbative extension of the construction to follow. Another one

characterizes all physical states by the necessary condition to be invariant under renormalization - after

all, physics should be independent of the scale at which it is measured. However, whether this condition

is sufficient, in particular beyond perturbation theory, is also not clear. Bound states with non-zero ghost

number, e. g., may also possess this property, though may not be viable physical states.
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will be sufficient to define the physical state space, where the second line defines the BRST

charge QB. The ± indicate commutator or anticommutator, depending on whether ψ is

bosonic (commutator) or fermionic (anticommutator). The BRST charge QB can also be

defined from the Noether current. It is given by

QB =

∫

d3x

(

baD
ab
0 ub − ua∂0b

a +
1

2
gfabcubuc∂0ūa

)

.

It is fermionic. Since s2 = 0 it directly follows that Q2
B = 0 as well.

The BRST charge has evidently a ghost number of 1, i. e., the total number of ghost

fields minus the one of anti-ghosts is 1. This ghost number, similarly to fermion number,

is actually a conserved quantum number of the theory. It is due to the invariance of the

Lagrangian under the scale transformation

ua → eαua

ūa → e−αūa,

with real parameter α. Note that such a scale transformation is possible since ua and ūa

are independent fields. Furthermore for a hermitian Lagrangian the relations

u† = u

ū† = −ū

hold, as noted above. This symmetry is a new symmetry, in contrast to the residual global

color symmetry and BRST symmetry itself. It is not related to a gauge transformation,

as it does not change the gauge fields, it acts as an identity transformation on them. Its

origin is that an additional auxiliary degree of freedom has been introduced with the ghost

fields, their relative length. Hence, the relative length of the ghost fields is a redundant

degree of freedom, and could be integrated out without affecting the physical content of

the theory. In reality, this reduces again practicality, and it is not done.

As a consequence of the presence of this symmetry, also the BRST transformation and

charge have ghost number 1, and are Hermitian. Together, they form the BRST algebra

{QBRST, QBRST} = 0 (5.13)

[iQG, QBRST] = QBRST (5.14)

[iQG, iQG] = 0 (5.15)

as can be seen from an explicit calculation.
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5.2.2.3 State space

Since the Lagrangian is invariant under BRST transformation, so is the Hamiltonian, and

therefore also the time evolution and thus the S-matrix,

[QB, H ] = 0

[QB, S] = 0.

Hence, if in fact the BRST symmetry is manifest7, and the condition (5.12) defines the

physical subspace that is already sufficient to show that physical states will only evolve

into physical states. It remains to see what kind of states satisfy (5.12).

Because the BRST charge is nilpotent the state space can be separated in three sub-

spaces:

� States which are not annihilated by QB, V2 = {|ψ〉 |QB |ψ〉 6= 0}.

� States which are obtained by QB from V2, V0 = {|φ〉 | |φ〉 = QB |ψ〉 , |ψ〉 ǫV2}. As a

consequence QBV0 = 0.

� States which are annihilated by QB but do not belong to V0, V1 = {|χ〉 |QB |χ〉 =

0, |χ〉 6= QB |ψ〉 , ∀ |ψ〉 ǫV2}.

The states in V2 do not satisfy (5.12), and therefore would not be physical. The union of

the two other states form the physical subspace,

Vp = V0 ∪ V1.

It is this subspace which is invariant under time evolution. It is not trivial to show that

all states in this space have positive semi-definite norm, but this is possible. This will be

used here without proof. However, all states in V0 have zero norm, and have no overlap

with the states in V1,

〈φ|φ〉 = 〈φ|QB|ψ〉 = 0

〈φ|χ〉 = 〈ψ|QB|χ〉 = 0.

Since matrix elements are formed in this way the states in V0 do not contribute, and every

state in Vp is thus represented by an equivalence class of states characterized by a distinct

7The consequences of a not manifest BRST are far from trivial, and the non-perturbative status of

BRST symmetry is still under discussion, though there is quite some evidence that if it can be defined it

is well defined. But how to define it is not finally settled.
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state from V1 to which an arbitrary state from V0 can be added, and thus a ray of states.

Therefore, the physical Hilbert space Hp can be defined as the quotient space

Hp = Vp/V0 =
KerQB

ImQB
,

the so-called cohomology of the operator QB. Therefore, all states in Hp have positive

norm, provided that the states in V1 have.

It is useful to introduce the notation that an element of the kernel of a nilpotent

operator is called closed or a cocycle. Thus, a closed element vanishes when acted upon

with the operator. An element in the image of a nilpotent operator is called exact or

coboundary.

5.2.2.4 Asymptotic space

To define the theory in the vacuum, use can be made of asymptotic states, in perturbation

theory usually known as in and out states. A corresponding physical asymptotic state ψap
must therefore obey

sψap = 0.

In the following, the classification of the fields will be done in this form for perturbation

theory. In this case, this will finally amount to discarding essentially all composite fields.

Beyond perturbation theory, this is no longer possible, as cluster decomposition in general

no longer holds in gauge theories. How to proceed beyond perturbation theory is not yet

completely understood, see chapter 7.

To obtain the asymptotic fields, start with the BRST variation of a given Green’s

functions. Asymptotic states are defined to be the pole-part of the asymptotic field. To

obtain these, consider a propagator

〈T (sψi)ψk〉 .

In this case, the indices i sum all space-time and internal indices and T is the time-ordering.

Since in perturbation theory all interactions are assumed to cease for asymptotic states,

the BRST transformation become linear in the fields

sψi → sψai = Cikψ
a
k .

Furthermore, by comparison with the previous calculation, the coefficients can be defined

as

Cil 〈Tψlψk〉 = 〈T (sψi)ψk〉 =
1

Z[0]

iδ2

δJsψiδJψk
Z[J ]
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at least asymptotically. Note that the source coupled to sψi is necessarily the one for a

composite operator. Since in this case the Green’s functions will be dominated by the

on-shell (pole) part, only those coefficients will be relevant where sψi and ψk have the

same mass.

The interesting question is then the form of these asymptotic propagators appearing.

In case of the gauge field

sAlaµ (x) =

∫

d4yRlm
µ (x, y)uma(y), (5.16)

where the index a stands for asymptotic. That only u appears is due to the fact that the

ghost is the parameter of the BRST transformation. The propagator then has the form

Rab
µ =

〈

T (sAaaµ )ūb
〉

= −
〈

TAaaµ sū
b
〉

.

The later identity is correct, since

s(AB) = (sA)B + (−1)gBAsB (5.17)

and the fact that a physical vacuum expectation value for any pure BRST variation, s(AB)

vanishes, 〈s(AB)〉 = 0. It then follows further

−
〈

TAaµb
b
〉

= −1

ξ

〈

TAaµC
b
〉

=
1

ξ

〈

TAaµA
c
ν

〉

φνbc =
1

ξ
Dac
µνφ

ν
bc (5.18)

where it was assumed in the second-to-last step that the gauge-fixing condition Ca is linear

in the field, Ca = φbcν A
ν , and the appearance of partial derivatives has been compensated

for by a change of sign. This is therefore a statement for all contributions not-orthogonal

to φbcν .

Now, because of Lorentz and (global) gauge invariance, it must be possible to rewrite

Rab
µ = δab∂µR.

Therefore, asymptotically

δab∂µR =
1

ξ
Dac
µνφ

ν
cb = −〈TAaµbb〉 (5.19)

must hold. The gluon propagator is asymptotically the free one. The right-hand side

equals precisely the mixed propagator of the free Aµ and ba field. This one is given by

δab∂µδ(x − y), as can be read off directly from the Lagrangian. Therefore, R = δ(x − y)

to obtain equality. Reinserting this into (5.16) yields

sAaaµ = ∂µu
a.



64 5.2. BRST and asymptotic states

For the ghost the asymptotic BRST transformation vanishes, since its BRST transform is

of ghost number 2. There is no single particle state with such a ghost number. The BRST

transformed of the anti-ghost field is already linear, yielding

sAaaµ = ∂µu
a

suaa = 0

sūaa = baa

sbaa = 0,

for the full list of asymptotic BRST transformed fields. Unsurprisingly, these are exactly

the BRST transformations of the free fields.

From this follows that the longitudinal component of Aµ, since ∂µ gives a direction

parallel to the momentum, is not annihilated by s, nor is the anti-ghost annihilated by

the BRST transformation. They belong therefore to V2. The ghost and the Nakanishi-

Lautrup field are both generated as the results from BRST transformations, and therefore

belong to V0. Since they are generated from states in V2 it is said they form a quartet with

parent states being the longitudinal gluon and the anti-ghost and the daughter states being

the ghost and the Nakanishi-Lautrup field. Therefore, these fields not belonging to the

physical spectrum, are said to be removed from the spectrum by the quartet mechanism.

Note that the equation of motion for the field ba makes it equivalent to the divergence of

the gluon field, which can be taken to be a constraint for the time-like gluon. Therefore,

the absence of the Nakanishi-Lautrup field from the physical spectrum implies the absence

of the time-like gluon. Finally, the transverse gluon fields are annihilated by the BRST

transformation but do not appear as daughter states, they are therefore physical. In

general gauges, the second unphysical degree of freedom will be the one constrained by the

gauge-fixing condition to which ba is tied, while the two remaining polarization directions,

whichever they are, will belong to V1.

Of course, the gauge bosons cannot be physical, since they are not gauge-invariant.

Therefore, their removal from the spectrum must proceed by another mechanism, which

is therefore necessarily beyond perturbation theory. A proposal for a similar construction

also applying to the gauge bosons has been given by Kugo and Ojima, though its validity

has not yet satisfactorily been established, see chapter 7.

The introduction of matter fields ψ follows along the same lines. It turns out that all

of the components belong to V1, i. e., sψ = 0, without ψ appearing on any right-hand

side, and therefore all matter degrees of freedom are perturbatively physically. This can

be directly seen as their gauge, and consequently BRST, transformation is

δψa = iguaτaijψj ,



Chapter 5. Perturbative quantization of Yang-Mills theory 65

and hence its free-field (g = 0) result is sψai = 0. This is expected, since no asymptotic

physical bound-state with ghost and fermion number one exists.

Similar as for the gauge boson, this cannot be completely correct, and has to change

non-perturbatively.

5.3 General anti-field approach

The previous construction can be generalized in a way which is both illuminating the

underlying structures more as well as is useful in many practical calculations, especially

in more complicated theories. This is the so-called anti-field formalism8.

5.3.1 Structure of gauge symmetries

To start out, it is useful to generalize the concept of gauge theories. In fact, to handle the

types beyond the Yang-Mills type requires a formulation like the antifield formulation, at

least as far as has been established.

5.3.1.1 Yang-Mills type

The type encountered so far was the Yang-Mills type with gauge transformation

Aaµ(x)
′ = Aaµ(x) + δǫA

a
µ (5.20)

δǫA
a
µ(x) = Dµǫ

a(x) = ∂µǫ
a + fabcA

b
µǫ
c(x), (5.21)

where ǫc(x) is a set of arbitrary functions, the gauge parameters. In these theories, the

commutator of infinitesimal gauge transformations reads

[δε, δη] X = δξX, ξa = fabcε
bηc (5.22)

with ε, η, ξ are gauge parameters and where X can be any field. It follows that the

algebra of the gauge transformations closes, i. e. is valid, off-shell as the commutator of

the gauge transformations is again a gauge transformation of the same type. Alternatively,

this could be stated in the form that the algebra holds for any values of the fields.

8This section follows strongly A. Fuster, M. Henneaux, A. Maas, “BRST Quantization: a short review”

(Int. J. Geo. Meth. Mod. Phys., Vol. 2, No. 5 (2005) 939-963, hep-th/0506098).
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5.3.1.2 Closure only on-shell

Off-shell closure holds for Yang-Mills gauge theories but is not a general feature of gauge

systems. The gauge transformations might close only when the equations of motion hold.

Notable examples where this is the case are extended supergravity theories. Rather than

discussing the gauge structure of supergravities, which is rather intricate, “closure only

on-shell” is illustrated in the case of a much simpler (but of no direct physical interest)

system. Start with the Lagrangian

L =
1

2
(q̇1 − q̇2 − q̇3)2 =

1

2
ẏ2, y = q1 − q2 − q3 (5.23)

for a model with three coordinates q1, q2 and q3. L is invariant under two different sets of

gauge transformations, which can be taken to be

δεq
1 = ε+ εq2ÿ, δεq

2 = ε, δεq
3 = εq2ÿ (5.24)

and

δηq
1 = 0, δηq

2 = η, δηq
3 = −η (5.25)

The commutators of the gauge transformations on the fields are given by

[δε, δη] q
1 = εηÿ, [δε, δη] q

2 = 0, [δε, δη] q
3 = εηÿ. (5.26)

From (5.23), the equation of motion for y is ÿ = 0. Thus, the algebra of the gauge

transformations (5.24) and (5.25) is closed (and, in fact, Abelian) only up to equations of

motion, i.e., only on-shell. Otherwise, it cannot be expressed only in terms of the fields

qi, but requires their derivatives, and thus canonical conjugated momenta, as well.

5.3.1.3 Reducible gauge theories

The gauge transformations might also be “reducible”, i.e., dependent. Consider a theory

of an Abelian antisymmetric tensor field Bµν = −Bνµ. Following the construction of

Yang-Mills theory, the field strength tensor is now rank three and is found to be

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν .

A Lagrangian

L = − 1

12
HµνρH

µνρ (5.27)

can be constructed which is invariant under gauge transformations

δΛBµν = ∂µΛν − ∂νΛµ
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where Λ is the gauge parameter. These transformations vanish for a class of parameters

Λµ = ∂µǫ (5.28)

meaning that the gauge transformations Λµ are not all independent. Such gauge trans-

formations are called reducible, and the corresponding gauge theory is said to be re-

ducible. Such antisymmetric tensor fields define a natural generalization of electromag-

netism, Aµ → Bµν and occur in many models of unification. The main difference with

electromagnetism being the irreducibility of the latter.

Reducibility could be stacked. If, e. g., ǫ in (5.28) in turn obeys some equation, this

would be a second level of reducibility, and so on.

5.3.1.4 Reducibility on-shell

The last version is the possibility that the reducibility of the gauge transformations holds

only on-shell. This therefore combines the previous two cases. Adding to (5.27) an auxil-

iary field Aµ leads to

L =
1

12
Aµε

µνρσHνρσ −
1

8
AµA

µ.

This Lagrangian reduces to (5.27) by inserting the equation of motion for Aµ,

Aµ =
1

3
εµνρσHνρσ.

The Lagrangian is invariant under gauge transformations of the form

δΛBµν = ∂µΛν − ∂νΛµ (5.29)

δΛAµ = 0. (5.30)

Thus, nothing yet happened for the Abelian case. Upgrading this to a non-Abelian case

by considering, like in the Yang-Mills case, Lie-algebra-valued fields Aµ = AaµTa and

Bµν = Ba
µντa requires again to introduce covariant derivatives instead of partial derivatives,

∂µ → Dµ. This is the so-called Freedman-Townsend model.

It can now be shown that in this model the gauge transformations vanish for parameters

Λµ = Dµǫ. But now, this vanishing occurs only if the equations of motion are satisfied.

This is due to [Dµ, Dν ] ∝ Fµν , and Fµν = 0 is the equation of motion for B. The theory

is said in that case to be reducible on-shell.

5.3.2 BRST construction revisited

In section 5.2.1 it was observed that the complete gauge-fixing part could be rewritten

as (5.11), i. e. as a BRST transformation of something. It is possible to generalize this
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observation, and to show that every gauge-fixing prescription can be rewritten in terms of

a BRST-exact term. This could be alternatively phrased as that it is possible to specify a

gauge by the part of the gauge symmetry it does not fix, at least at the perturbative level.

To do so, consider a gauge theory of fields ϕi described by a classical action S0(ϕ
i).

The equations of motion constrain the fields classically to certain trajectories, denoted by

Σ. Now, let the action be invariant under (infinitesimal) gauge transformations

δεϕ
i = Ri

αε
α. (5.31)

where R can contain derivatives or the fields themselves, as has been the case so far.

However, it is allowed that the gauge transformation functions ǫ could also be Grassmann-

type, which occurs, e. g., in supergravity theories. But here this will only require to keep

track of exchanges of fields, introducing an occasional power of −1.

Assume the theory to be (on-shell) reducible, with no reducibility on the reducibility

functions. In such a case there are relations among the gauge parameters but no relations

among the relations, i. e. there exists statements like (5.28), but there are no further

relations involving the ǫ. In general, such relations take the form9

Zα
∆R

i
α = C ij

∆

δS0

δϕj
,

with some matrices Z and C, and the on-shell relations appear due to Euler-Lagrange

equation on the right-hand side.

Pure ghost number Anti-field number Total ghost number

ϕi 0 0 0

cα 1 0 1

c∆ 2 0 2

ϕ∗
i 0 1 −1

c∗α 0 2 −2

c∗∆ 0 3 −3

Table 5.1: Quantum numbers for the different field types. The total ghost number is

defined as pure ghost number minus anti-field number.

9Note that here, and in most of the expressions in this section, δ is a total derivative. Thus δS
δφ

=
δ′S
δφ

− ∂ δ
′S
δ∂φ

+ ... where the δ′ are partial derivatives. Thus, the sum terminates for field theories usually

after the second term, and yields the Euler-Lagrange equations, and thus the equations of motion. The

minus sign appears from the partial integration when removing the variational part of the field, just like

in classical mechanics, and leads to alternating signs in each term.
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Now, rather then to try to incorporate this into the path integral, and localize the

results using ghost fields, this will be done in reverse order. I. e., get the ghost fields first,

and show how they can be used to implement the gauge condition. For each commuting

(anticommuting) gauge parameter εα fermionic (bosonic) ghost variable cα are introduced.

Also introduce ghosts of ghosts c∆, one for each (independent) reducibility identity of the

theory. The set of original fields, ghosts and ghosts of ghosts are collectively denoted

as ΦA. In addition, the configuration space is doubled by adding conjugate fields with

respect to each of the Φs by introducing so-called anti-fields Φ∗
A. They are postulated

to have opposite (Grassmann) parity. Gradings, i. e. charges under the various counting

symmetries, are assigned to the various fields as displayed in table 5.1. Note that neitehr

antighost fields nor Nakanishi-Lautrup fields appear at this stage. They will be added

later.

For the following it is useful to define the antibracket for functionals of fields F (ΦA,Φ∗
A),

G(ΦA,Φ∗
A) as

(F,G) =
δRF

δΦA
δLG

δΦ∗
A

− δRF

δΦ∗
A

δLG

δΦA
.

It is hence an extension of the usual Poisson bracket, but now involving fields and the

corresponding anti-fields instead of conjugated variables. Here L (respectively R) refers

to the standard left (respectively right) derivative. These are related as

δRF

δ(field)
≡ (−1)εfield(εF+1) δLF

δ(field)
,

where ε denotes the Grassmann-parity.

The antibracket has the following properties:

� (F,G) = −(−1)(εF+1)(εG+1)(G,F ), where εF = 0 (1) for F bosonic (fermionic); the

anti-bracket is symmetric if both F and G are bosonic, and antisymmetric otherwise.

� Jacobi identity, (−1)(εF+1)(εH+1)(F, (G,H)) + cyclic permutations = 0

� (FG,H) = F (G,H)+(F,H)G (−1)εG(εH+1); (F,GH) = (F,G)H+G(F,H) (−1)εG(εF+1)

� The ghost number of (F,G) is the sum of the ghost numbers of F and G

which can all be shown by straightforward explicit calculations.

The BRST transformation of any functional F (ΦA,Φ∗
A) can be written in terms of

antibrackets,

sF = (S, F ).

The generating function S(ΦA,Φ∗
A) of the BRST transformation is sometimes called the

generalized action. The reason for this will become evident later.
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The BRST transformation is nilpotent of order two, which takes the form

(S, S) = 0.

This equation is called the (classical) master equation.

The generalized action, and thus both the BRST transformation and the solution to

the classical master equation, can be obtained constructively. It can be shown to be unique

up to canonical transformations. This construction yields a, not necessarily finite sum,

and is given by

S = S0 + S1 + S2 + . . .

S0 ≡ classical action, S1 = ϕ∗
iR

i
αc
α, S2 = c∗αZ

α
∆c

∆ + . . .

The proof of this statement (including the reducible case) is involved, and will be skipped,

but yields all higher terms as well. At the perturbative level S is under quite mild as-

sumptions local in the fields and their derivatives.

The solution S of the master equation is key to the BRST-antifield formalism. It can

be written down explicitly for the Yang-Mills theory and the Abelian antisymmetric model

introduced earlier. In the Yang-Mills case it is given by

S = −1

4

∫

dnx F a
µνF

µν
a +

∫

dnx A∗µ
aDµc

a +
1

2

∫

dnx c∗af
a
bcc

bcc (5.32)

and for the antisymmetric Abelian tensor by

S = − 1

12

∫

dnx HµνρH
µνρ +

∫

dnx B∗µν(∂µcν − ∂νcµ) +

∫

dnx c∗µ∂µc

In those cases, the solution S of the master equation is linear in the antifields. For gauge

systems with an “open algebra”, i. e. for which the gauge transformations closes only

on-shell, or for on-shell reducible gauge theories, the solution of the master equation is

more complicated. It contains terms that are non-linear in the antifields. These terms

are essential for getting the correct gauge fixed action below. Without them, one would

not derive the correct Feynman rules leading to perturbatively gauge-independent matrix

elements.

5.3.3 Observables

It is now time to substantiate the claim

H0(s) ≃ Observables (5.33)
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where the BRST differential is given by sF = (S, F ). In particular,

sΦA = (S,ΦA) = −δ
RS

δΦ∗
A

= −
∑

k

δRSk
δΦ∗

A

(5.34)

sΦ∗
A = (S,Φ∗

A) =
δRS

δΦA
=
∑

k

δRSk
δΦA

. (5.35)

Note that the ghost number of S is 0, the ghost number of the BRST transformation is

1 as well as the one of the antibracket, so that the gradings of both sides of the equation

sF = (S, F ) match. Again, a full proof of (5.33) is far too lengthy. Instead, only the key

ingredients that underlie it will be given.

To that end, the BRST transformations of all the variables according to the antifield

number is expanded. This leads to

s = δ + γ +
∑

i>0

si. (5.36)

The first term δ has antifield number -1 and is called the Koszul-Tate differential, the

second term γ has antifield number 0 and is called the longitudinal differential, and the

next terms si have antifield number i. Although the expansion stops at δ+γ for Yang-Mills

theory, see (5.32), higher order terms are present for gauge theories with an open algebra,

or on-shell reducible theories.

Explicitly, the Koszul-Tate differential satisfies δϕi = 0, as there is no field operator of

anti-field number -1 and δϕ∗
i = δS0/δϕ

i . For the longitudinal differential it follows in the

same way that10

γϕi = Ri
αc
α. (5.37)

Note that

0 = s2 = δ2 + {δ, γ}+ (γ2 + {δ, s1}) + .... (5.38)

In this equation each term has to vanish separately, as each term is of different antifield

number.

Let A be a BRST-closed function(al), sA = 0. As seen already in section 5.2 the

equivalence class

A ∼ A+ sB. (5.39)

10In the following R will be assumed to be a local operator. However, in general it can contain also

integrations, i. e.

γϕi(x) =

∫

ddyRiα(y, x)c
α(y),

which would require somewhat more lengthy expressions throughout, though would change little.
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plays an important role. Since dealing with observables, the only relevant operators are of

ghost number 0, thus A needs to have total ghost number zero and B total ghost number

−1. The latter can only be satisfied, if B contains at least one anti-field. Expanding A

and B in antifield number yields

A =
∑

k≥0

Ak = A0 + A1 + A2 + ...

B =
∑

k≥1

Bk = B1 +B2 +B3 + ...

Acting with s on A using the expansion (5.36) then gives

(δ + γ + ...)(A0 + A1 + ...) = (γA0 + δA1) + ...,

where the term in parentheses collects all antifield number zero contributions. The con-

dition sA = 0 implies that this term must vanish on its own and thus γA0 = −δA1.

Furthermore,

A+ sB = A+ (δ + γ + ...)B = (A0 + δB1) + ...

where the last term in parentheses is again the antifield zero contribution. Using (5.35),

δB1 =
δB1

δΦ∗

δS0

δΦi
,

implies that the second term of the antifield zero contribution in A+sB vanishes when the

equations of motions are fulfilled, i.e. on-shell. A similar property holds for δA1. There is

therefore a clear connection of δ to the dynamics and the equations of motions.

From (5.37) and the fact that γ is a derivative, this yields11

γA0 =
δA0

δϕi
Ri
αc
α.

As this is a gauge transformation (with gauge parameters replaced by the ghosts), γA0

vanishes if A0 is gauge-invariant. Thus, the longitudinal differential is associated with

gauge transformations. A necessary condition for A to be BRST-closed is thus that its

first term A0 be gauge-invariant on-shell. And furthermore, two such A0s are equivalent

when they coincide on-shell.

It turns out that the condition on A0 is also sufficient for A to be BRST-closed, in the

sense that given an A0 that is gauge-invariant on-shell, it can be completed by terms A1,

A2 ... of higher antifield number such that sA = 0.

11A0 can only depend on φi, as it has pure ghost and antifield number 0.
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To summarize: the term that determines the cohomological class of a BRST cocycle is

the first term A0. This term must be an observable, in that it must be gauge invariant on-

shell. It can therefore be concluded that H0(s) captures indeed the concept of observables.

The differential δ reduces therefore the on-shell functions to the set of all gauge-invariant

functions.

5.3.4 Application as gauge-fixing to the path integral

Consider first the Yang-Mills case. To perform actual path-integral calculations, it is

necessary to gauge-fix the theory, as discussed in section 5.1. In comparison to section 5.1

so far the antighost field and the Nakanishi-Lautrup fields are missing, while having all

the additional anti-fields. While both approaches can be used in this case independently,

it is very convenient to combine them. Thus, add as additional fields the antighost c̄a and

Nakanishi-Lautrup fields ba, together with their antifields. They transform still as sc̄a ∼ ba

and sba = 0. Take c̄a and ba have ghost number -1 and 0, respectively. The corresponding

antifields c̄a∗ and ba∗ have thus ghost number 0 and -1, respectively. It can then again

be shown that both fields are BRST exact. Hence the cohomology is not altered by the

introduction of these new variables. In particular, the set of observables is not affected.

The solution of the master equation with the new variables included reads, for Yang-Mills

theory,

S = −1

4

∫

dnxF a
µνF

µν
a +

∫

dnxAµ∗a Dµc
a +

1

2

∫

dnxc∗af
a
bcc

bcc − i

∫

dnxc̄∗aba. (5.40)

The last term is called the non-minimal part.

From this generalized action the gauge-fixed action Sψ will be constructed. It will be

shown later that the generating functional

Z =

∫

DΦA exp

(

i

~
Sψ[Φ

A]

)

, (5.41)

does then not depend on the choice of the functional ψ. Here, ψ is called the (yet un-

specified) gauge-fixing fermion, and has Grassmann-parity 1 (hence its name) and ghost

number -1. In (5.41), the notation

ΦA = (AAµ , c
A, c̄A, bA)

Φ∗
A = (AA∗µ , cA∗, c̄A∗, bA∗),

has been used.

The gauge-fixed action Sψ[Φ
A] is now defined as

Sψ[Φ
A] = S

[

ΦA,Φ∗
A =

δψ

δΦA

]

,
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i. e. it is the generalized action with the anti-fields fixed by the derivatives of the gauge-

fixing fermions with respect to the fields. Before turning to the proof that this is correct,

it is helpful to illustrate (5.41) by showing how the gauge-fixing fermion ψ can be used to

reproduce the familiar expressions for the path integral of the Yang-Mills theory, (5.40).

A possible choice, which leads to non-degenerate propagators for all fields and ghosts,

is given by

ψ = i

∫

dnxc̄a
(

Fa +
α

2
ba
)

, (5.42)

where Fa is the gauge condition, e.g. Fa = ∂µAaµ for covariant gauges and α is the gauge

parameter. This yields

c̄a∗ = δψ
δc̄a

= i
(

Fa +
α

2
ba
)

A∗
aµ = δψ

δAaµ
= −i∂µc̄a

ba∗ = δψ
δba

= i
α

2
c̄a

c∗a = δψ
δca

= 0.

This leads to the familiar gauge-fixed Yang-Mills action

Sψ[A
a
µ, c

a, c̄a, ba] =

∫

dnx

(

−1

4
F a
µνF

µν
a − i∂µc̄aDµc

a +
(

Fa +
α

2
ba
)

ba

)

,

as was obtained by the Faddeev-Popov procedure in section 5.1. The conventional Landau

gauge is recovered by taking the limit α→ 0. As the resulting path integral can be written

as
∫

D[Aaµc̄
aca]δ(∂µAaµ)e

( i
~
Sψ [A

a
µ,c̄

a,ca]),

the transversality of the gauge boson is directly implemented. Landau gauge is thus called

a strict gauge. An example of a non-strict gauge is Feynman gauge, α = 1, in which case

the equations of motion do not imply Fa = 0 but yield instead ba ∼ Fa.

The choice of the gauge-fixing fermion is arbitrary. E. g. to ψ a term ∼ c̄ac̄bc
c can be

added, which yields quartic ghost couplings. Quartic ghost renormalizations may even be

needed without such explicit terms, e.g. when using Fa = ∂µAaµ + dabcA
b
µA

µc, where dabc
is a symmetric tensor in color space.

By appropriately choosing the gauge fixing fermion, the path integral can be reduced

to an expression that involves only the (perturbatively) physical (transverse) degrees of

freedom and which is manifestly unitary in the (perturbative) physical subspace. Inde-

pendence on the choice of ψ (still to be proved) guarantees then that the expression (5.41)

is correct.
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As a final point, note that in order for (5.41) to be indeed independent on the choice

of ψ, it is necessary that the measure is BRST invariant. This can be investigated using

the operator ∆,

∆ = (−1)ǫA
δL

δΦA
δL

δΦ∗
A

. (5.43)

The BRST transformation can be written as

ΦA → ΦA
′

= ΦA + (µS,ΦA) = ΦA − (ΦA, S)µ = ΦA − δLS

δΦ∗
A

µ,

where µ is a constant, anti-commuting parameter. The Jacobian12 of this transformation

is given by

JAB =
δLΦA

′

δΦB
= δAB − δL

δΦB
δLS

δΦ∗
A

µ.

Therefore the measure transforms as

DΦA → det J DΦA
′

.

For an infinitesimal transformation, this can be approximated by the super-trace, i. e. a

trace with negative signs for fermionic quantities,

det J ≈ 1 + str

(

− δLδLS

δΦBδΦA∗
µ

)

= 1− (−1)ǫA
δLδLS

δΦAδΦA∗
µ = 1 +∆S.

It follows that the measure is BRST-invariant if, and only if, ∆S = 0. The property

∆S = 0 can be shown by explicit calculation for pure Yang-Mills theory. The more

general case will be treated later.

5.3.5 Beyond Yang-Mills theory

The results of section 5.3.4 generalizes straightforwardly to gauge theories other than

Yang-Mills theory. The solution of the master equation S is of the form

S = S0 + φ∗
iR

i
αc
α + ...,

where S0 is the classical action. The second term is uniquely determined by the gauge

transformation (5.31), and all further terms depend on the specific theory. While the

expansion of the solution of the master equation stops at antifield number one in the

12As the Jacobian involves commuting and anti-commuting fields, the Jacobian “determinant” is actu-

ally a so-called super-determinant sdet, where additional minus signs arise from anticommuting fermionic

quantities.
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Yang-Mills case, higher order terms appear in the case of open gauge systems. It is again

often convenient to extend to the non-minimal sector by introducing c̄α and bα and the

corresponding antifields in a similar manner to what has been done in the case of Yang-

Mills theory.

Assuming again ∆S = 0, the quantized theory follows from a path integral

Z =

∫

DΦA exp

(

i

~
Sψ[Φ

A]

)

.

Sψ is the solution S of the master equation

(S, S) = 0, (5.44)

in which the antifields have been eliminated by use of the gauge-fixing fermion ψ as before,

Sψ[Φ
A] = Sψ

[

ΦA,Φ∗
A =

δψ

δΦA

]

. (5.45)

The gauge-fixing fermion has again odd Grassmann-parity and ghost number -1. It is in

perturbation theory given by a local expression

ψ =

∫

dnxχ(ΦA, ∂µΦ
A, ..., ∂µ1 ...∂µkΦ

A).

For theories with an open algebra, the terms quadratic in the antifields will lead to quartic

(or higher) ghost-antighost vertices in the gauge-fixed action. While these terms are a

gauge-dependent option in the Yang-Mills case, they have an unavoidable character (in

relativistic gauges) for open gauge algebras. These terms, which follow directly from the

general construction of the gauge-fixed action, cannot be obtained through the exponen-

tiation of a determinant, since this procedure always produces an expression which is

quadratic in the ghosts.

A useful concept is that of gauge-fixed BRST transformation, which is what s becomes

after gauge-fixing. It is denoted by sψ and defined as

sψΦ
A = (sΦA)|Φ∗

A=δψ/δΦ
A .

Note that s2ψ = 0 is in general only valid on the gauge-fixed shell, i.e. for field configurations

satisfying δSψ/δΦ
A = 0.

If S is linear in the antifields, i.e. if the gauge algebra closes off-shell, sψΦ
A = sΦA.

This follows directly from

sΦA = (S,ΦA) = −δ
RS

δΦ∗
A

, (5.46)
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which is independent of the antifields, if S depends only linearly on the antifields. In that

case s2ψ = 0 even off-shell provided all variables are kept. This is the case in Yang-Mills

theory13.

If S is linear in the antifields, one may in fact write it as

S = S0 − (sΦA)Φ∗
A,

by virtue of (5.46). The gauge- fixed version is then

Sψ = S0 − (sψΦ
A)

δψ

δΦA
= S0 − sψψ. (5.47)

Therefore sψSψ = 0, as the first term is BRST invariant, and the second term is annihilated

by sψ by virtue of s2ψ = 0, which holds off-shell when S is linear in the antifields. The

property sψSψ = 0 is actually quite general and holds even when S is not linear in the

antifields. It can be proved directly as follows,

sψSψ = (sψΦ
A)
δLSψ
δΦA

= −δ
RS

δΦ∗
A

δLSψ
δΦA

.

The left-derivative in this expression is a total derivative, as Sψ depends on ΦA directly

and through the gauge-fixing fermion. Using the chain rule, this yields by virtue of (5.45)

−δ
RS

δΦ∗
A

(

δS

δΦA
+

δ2ψ

δΦAδΦB
δS

δΦ∗
B

)

= 0.

The second term vanishes because the product of the functional derivatives of S have a

symmetry in (A, B) opposite to that of the second functional derivative of ψ. The first

term vanishes by the master equation, thus proving the claim.

5.3.6 Quantum Master Equation

In order to prove perturbative gauge independence of the expressions given above, it is

necessary to discuss two important features of the path integral.

First, assume that a theory of fields χα is given, governed by the action S[χα], with

no gauge invariance. This could be the gauge-fixed action. Expectation values are, after

proper normalization, calculated as

〈F 〉 =
∫

DχF exp

(

i

~
S[χ]

)

, (5.48)

13In Yang-Mills theory, often the auxiliary fields ba are eliminated by means of their own equations of

motion. Then off-shell nilpotency on the antighosts is lost, for which sc̄a ∼ ba, even though s2ψ = 0 is true

off-shell beforehand.
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where ~ has been reinstantiated temporarily. The so-called Dyson-Schwinger equations

can be directly derived from the vanishing of the path integral of a total derivative14
∫

Dχ δ

δχα

(

Fe
i
~
S
)

= 0.

This leads to
〈

δF

δχα
+
i

~
F
δS

δχα

〉

= 0,

which is equivalent to
〈

F
δS

δχα

〉

= i~

〈

δF

δχα

〉

. (5.49)

This expression contains in the left-hand side the expectation values of the classical equa-

tions of motions. In the classical limit ~ → 0, the right-hand side vanishes and the classical

equations of motion hold.

Second, if χα is changed under a transformation, χα → χα + ǫα, where ǫα depends on

the fields, the expectation value (5.48) is in general not invariant. Furthermore, invariance

of the classical action is not sufficient to guarantee that the path integral is invariant. Also

the measure needs to be invariant.

Especially, this raises the question whether the measure is BRST invariant, which can

be tested with the methods outlined in section 5.3.4. If this test failed, it is necessary to

modify (5.48) to reestablish a meaningful quantum theory. This may be possible, in some

cases, by taking a different measure15. This requirement is crucial, since BRST symmetry

guarantees gauge-independence of the results.

Assume that there are non-trivial measure terms. They can be exponentiated16 into

the action. Since there is an overall (1/~) in front of S, the measure terms appear as

quantum corrections to S. So, this replaces effectively the classical action by a “quantum

action”

W = S + ~M1 + ~
2M2 + ..., (5.50)

where the functionals Mi stem from non-trivial measure factors. The theorem disccused

below states that quantum averages are gauge-independent if the master equation (5.44)

is replaced by the “quantum master equation”

1

2
(W,W ) = i~∆W, (5.51)

14Which is itself a consequence of translation invariance of the measure, and which is part of the

definition of the path integral.
15Usually, the measure is taken to be the naive measure. However, it is part of the definition of a

quantum theory, and may actually be chosen differently. This leads potentially to different results for

observables, and ultimately experiment would decide which one describes a given system.
16This requires the absence of zero modes in a suitable sense. It is exactly here where (additional)

non-perturbative problems may arise.
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where ∆ is defined in (5.43). Note that if ∆S = 0, the Jacobian is unity for the BRST

transformation and W might then be taken equal to S. The quantum master equation

then reduces to the classical master equation (5.44), which is solved by S. However, while

there is always a solution to the classical master equation, the solution to the quantum

master equation might get obstructed, creating a gauge anomaly to be discussed in chapter

9. For the moment it is assumed that this is not the case.

This leads to the general rules for computing expectation values of observables (in-

cluding of 1). These are the quantum averages, weighted by exp(iW/~), of the BRST

observables corrected by the addition of appropriate ~ (and possibly also higher) order

terms. Namely, consider a classical observable A0. Construct its (in fact, one of its)

BRST-invariant extension A = A0 + ghost terms, so that (S,A) = 0. The BRST cocycle

A has to be augmented as

A→ α = A0 + ~B1 + ~
2B2 + ...

where the terms of order ~ and higher must be such that σα = 0, where σ is defined as

σα = (W,α)− i~∆α,

with W the solution of the quantum master equation (5.51). Note that the B-terms

supersede the ghost terms needed classically to fulfill (S,A) = 0. The operator σ is then

the quantum generalization of the BRST variation s. The ψ-independent expectation

value 〈A0〉 of the observable A0[φ
i] is computed from α as

〈A0〉 =
∫

DΦAα

(

ΦA,Φ∗
A =

δψ

δΦA

)

exp

(

i

~
W

[

ΦA,Φ∗
A =

δψ

δΦA

])

. (5.52)

The claim is that this expectation value does not depend on the choice of the gauge-fixing

fermion, i. e.

ψ′ = ψ + δψ ≡ ψ + µ (5.53)

〈A0〉ψ′ = 〈A0〉ψ ,

where µ is an arbitrary modification of ψ.

To prove the claim, denote the argument of the path integral (5.52) by V for conve-

nience in the following. It can be shown straightforwardly that

∆V = 0 ⇔ σα = 0.

Now, perform the variation of the gauge fixing functional (5.53). The variation of the

quantum average (5.52) is equal to
∫

DΦ
δLµ

δΦA
δLV

δΦ∗
A

. (5.54)
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To evaluate this expression, note that

δL

δΦA

(

µ
δLV

δΦ∗
A

)

=
δLµ

δΦA
δLV

δΦ∗
A

+ (−1)ǫA
δLδLV

δΦAδΦ∗
A

.

The derivatives are total ones. Denoting partial derivatives by a prime ’, the last term can

be rewritten as

δLδLV

δΦAδΦ∗
A

=
δ
′LδLV

δ′ΦAδΦ∗
A

+
δ2ψ

δΦAδΦB
δLδLV

δΦ∗
BδΦ

∗
A

= ∆V = 0.

As in the case of equation (5.48), the second term vanishes by parity arguments. Thus

the integral (5.54) can be rewritten as a total derivative in field space, which vanishes in

view of translation invariance of the standard measure. Therefore the path integral does

not get modified if one changes the gauge-fixing fermion, as claimed.

Given A0, its BRST extension is determined up to a BRST exact term sB, see (5.39).

This ambiguity can be extended to higher orders in ~ as

α→ α + σβ.

It can been shown straightforwardly that

(σβ) exp

(

i

~
W

)

∼ ∆

(

β exp

(

i

~
W

))

.

As the right-hand side is a total derivative by its definition, (5.43), the path-integral over

the left-hand side vanishes
∫

DΦσβ exp

(

i

~
W

)

= 0.

Therefore adding any element in the image of σ does not alter the quantum averages. The

path integral associates a unique answer to a given cohomological class of σ, i.e., does not

depend on the choice of representative.

Note that the ambiguity in α, given A0, is more than just adding a σ-trivial term to α.

At each order in ~ a new non-trivial observable can be added since this does not modify

the classical limit. This addition is relevant, in the sense that it changes the expectation

value by terms of order ~ or higher. A similar ambiguity exists for the quantum measure

(i.e., the M1, M2 etc. terms in W ). These terms do not spoil BRST invariance and must

be determined by other criteria, e. g. experiment.

5.4 Ward-Takahashi and Slavnov-Taylor identities

If a theory has a symmetry, irrespective whether it is global or local and whether it is

explicit or hidden, this symmetry implies that certain changes can be made to the fields
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with well-defined consequences. From this results similar well-defined consequences for the

correlation functions. In particular, this implies certain relations between combinations of

correlation functions, so-called Ward-Takahashi or rigid identities for global symmetries,

and Slavnov-Taylor identities for local symmetries.

These identities have two particular useful purposes. One is that it is possible from

the knowledge of some correlation functions to infer knowledge about other correlation

functions. The second use is that by checking the identities after a calculation it is possible

to determine whether errors occurred, being them either of numerical origin, by some glitch

in the calculation, or by the approximations made. Unfortunately the fulfillment of the

identities is only a necessary condition for the absence of errors, not a sufficient one. It

is always possible that some errors cancel each other in the identities, so care has to be

taken when interpreting a check using such identities.

5.4.1 Ward-Takahashi identities

Take a theory with only bosonic fields for simplicity, otherwise additional factors of minus

one will appear due to the Grassmann nature of fermionic fields. Let the theory be

symmetric under the change

φ → φ′ = φ+ δφ = φ+ ǫf(φ, x), (5.55)

with ǫ infinitesimal. Then the generating functional Z [J ] should not change, i. e., δZ

should be zero. This variation

δF (φ) =
δF

δφ
δφ =

δF

δφ
ǫf

acts on two components in the path integral. One on the action itself, which yields

1

ǫ
δ
(

eiS+i
∫

ddxJφ
)

= i

(

δS

δφ
+ J

)

ǫfeiS+i
∫

ddxJφ,

to first order in ǫ. The second is the measure. The shift (5.55) is a variable transformation,

which generates a Jacobian determinant. This Jacobian determinant can also be expanded

in ǫ, yielding

det
δφ′

δφ
= det

(

1 +
δǫf

δφ

)

= 1 + ǫ
δf

δφ
+O(ǫ2).

Together, this yields the variation

0 =
1

ǫ
δZ =

∫

Dφ
(

δf

δφ
+ i

(

δS

δφ
+ J

)

f

)

eiS+i
∫

ddxJφ. (5.56)
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Differentiating this expression once with respect to the source and setting the sources

afterwards to zero yields an expression connecting different correlation functions. E. g.,

performing a single derivative will yield

〈

Tφ(y)
δf(φ, x)

δφ(x)

〉

+ i

〈

φ(y)
δS

δφ(x)
f

〉

+ 〈Tf〉 = 0.

In general, there will not only be one field involved, but many fields, numerated by a field

index i. In this case, expression (5.56) takes the form

0 =

∫

Dφi
(

δfk
δφk

+ i

(

δS

δφk
+ Jk

)

fk

)

eiS+i
∫

ddxJφ,

i. e., it becomes a sum over all fields. Deriving this expression in total n times for any

sequence of field types il yields the set of all Ward-Takahashi identities, sometimes also

called rigid identities given that global symmetries are sometimes called rigid symmetries,

〈

TΠn
l=1φil(xl)

δfk
δφk(y)

〉

+ i

〈

TΠn
l=1φil(xl)

δS

δφk(y)
fk

〉

+

n
∑

m=1

〈

Πm−1
l=1 φil(xl)fimΠ

n
r=m+1φir(xr)

〉

= 0. (5.57)

To obtain practical cases requires to insert an action with a certain invariance.

Take as an example the action for the so-called linear σ-model (or φ4 model) with

positive mass squared,

L =
1

2
(∂µφ)

†∂µφ+
1

2
m2φ†φ− λ(φ†φ)2.

The transformation function is then fi = ∓iφi, where i = 1 refers to φ and i = 2 refers

to φ†. The derivative of f actually vanishes in this case, since the Jacobian matrix under

a linear shift of the fields is zero, by the definition of translational invariance of the path

integral (2.9). This is not necessarily the case, and they cause so-called anomalies to be

discussed in chapter 9.

Furthermore, the action is invariant under the global symmetry transformation. This

implies
∂S[φi + ǫfi]

∂ǫ
= 0 =

∫

ddx
δS

δφi

∂(φi + ǫfi)

∂ǫ
=

∫

ddx
δS

δφi
fi,

and thus also the second term in (5.56) vanishes. Hence, only the third term remains,

which can be conveniently written as

0 = δ 〈TΠn
l=1φil〉 , (5.58)
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which are called Ward identities in this context. E. g., at level n = 2, this identity implies

〈T (δφ(x))φ(y)†〉+ 〈Tφ(x)δφ(y)†〉 = 〈φ(x)φ(y)†〉 − 〈φ(x)φ(y)†〉 = 0,

which seems rather trivial. However, when rewriting the theory in terms of a scalar σ field

and a pseudoscalar χ field, i. e. φ = σ + iχ, this implies

〈Tδσχ〉+ 〈Tσδχ〉 = 〈χχ〉 − 〈σσ〉 = 0,

which implies that the propagators of both fields are identical, when, as here, no global

symmetry breaking is included. At tree-level, this is immediately visible, but gives a

constraint for the results beyond tree-level.

Of course, this is a rather simple result, and much more interesting ones are obtained

at higher order and/or for more complicated theories. E. g., when the transformation is

taken to be field-independent, but local, the quantum version of the equations of motion,

the Dyson-Schwinger equations (5.49), are once more obtained, as will be exploited below.

5.4.2 Slavnov-Taylor identities

Of course, it is possible to perform the same for a local symmetry, a gauge symmetry. This

yields the so-called Slavnov-Taylor identities (STIs). However, it is rather useful to take a

different route to obtain them. In particular, the BRST symmetry will be very useful to

obtain them much more directly than before.

Take a gauge-fixed theory, in which a BRST symmetry is well-defined and local, i.

e., with a gauge-fixing condition at most linear in the fields. Since the vacuum state is

physical and thus BRST-invariant, s|0〉 = 0, it follows immediately that

0 = 〈s(TΠlφl)〉 =
∑

k

σk〈T ((Πl<kφl)(sφk)(Πm>kφm))〉

where φl stands for any of the fields in the theory, σk is +1 if the expression Πl<kφl is

Grassmann-even, and −1 if it is Grassmann-odd.

A non-trivial example for the usefulness of such an identity is given when regarding

the BRST transformation of the two-point correlator 〈T ūa(x)Db
[

Aaµ, y
]

〉, where Db is the

gauge-fixing condition. This yields

0 = 〈s
(

T ūa(x)Db
[

Aaµ, y
])

〉 = 〈T (sūa(x))Db
[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉
= 〈Tba(x)Db

[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉

= −1

ξ
〈TDa

[

Aaµ, x
]

Db
[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉
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where in the last line the equation of motion for the Nakanishi-Lautrup field has been used.

The next step is to identify the action of the BRST transformation on the gauge-fixing

condition. The BRST transformation annihilates any pure functions not depending on the

fields by definition. Thus, it requires only to specify the action on the gauge condition Da.

The result depends on the choice of this condition, and here one will be chosen which

is linear in the gauge fields, Da = fabµ A
µ
b , though f may contain derivatives, though it will

not contain integrals in the following. This yields

0 = −1

ξ
fµacf

ν
bd〈TAcµAdν〉 − 〈T ūa(x)(sf bcµ Aµc )〉

= −1

ξ
fµacf

ν
bdD

cd
µν − 〈T ūa(x)f bcµ Dµ

cdu
d〉 = −1

ξ
fµacf

ν
bdD

cd
µν −

〈

T ūa(x)
δS

δūc

〉

, (5.59)

where Dcd
µν is the gauge boson’s propagator.

To determine the second expression, the Dyson-Schwinger equations (5.49) can be used.

It is useful to derive them here somewhat more explicitly than in section 5.3.6. Since the

path integral is by definition translational-invariant, it follows that

0 =

∫

Dφ δ

iδφ
eiS+i

∫

ddxJφ =

∫

Dφ
(

δS

δφ
+ J

)

eiS+i
∫

ddxJφ =

〈

T

(

δS

δφ(x)
+ J(x)

)〉

.

Differentiating this expression with respect to J(y) yields

0 =

〈

T

(

iφ(y)
δS

δφ(x)
+ iJ(x)φ(y) +

δJ(x)

δJ(y)

)〉

J→0
= i

〈

Tφ
δS

δφ

〉

+ δ(x− y), (5.60)

where the limit of J → 0 has been taken in the last step17.

Thus, an expression like the second term in (5.59) is just a δ function. In the present

case, taking the color indices and the Grassmannian nature of the ghost into account, this

finally yields

fµacf
ν
bdD

cd
µν = iξδabδ(x− y),

or for the linear covariant gauges fabµ = δab∂µ in momentum space

pµpνDab
µν(p) = −iξδab. (5.61)

Thus, the gauge boson propagator’s longitudinal part has only a trivial momentum-

dependence. This result could also be derived using functional derivatives or directly

from the gauge condition, and therefore holds irrespective of the calculational scheme,

and in particular beyond perturbation theory.

17Beyond perturbation theory there are subtleties associated with this limit.
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In the same manner more complicated STIs can be derived. In general, they connect

n-point, n + 1-point, and n + 2-point correlation functions. They are very useful in per-

turbation theory, as the n + 2-point contributions turn out to be always of higher order

in the coupling constant than the order at which a perturbative calculation is performed.

Beyond perturbation theory, however, their usefulness diminishes quickly.



Chapter 6

Perturbative treatment

6.1 Perturbation theory

The most basic method to calculate physical quantities is perturbation theory. The prime

example are cross-sections. However, as will become clear when deriving their perturbative

evaluation, there are many problems which cannot be addressed using this method.

6.1.1 Cross-sections and decays

The primary quantities of interest at experiments are cross-sections and decay processes.

The basic starting point is the same object as in non-gauge theories, the partial differential

cross section dσ, which has for two incoming particles of mass Mi and momenta pi and n

outgoing particles of momenta qi the form

dσ =
1

4
√

(p1p2)2 −M1M2

(2π)4δ

(

p1 + p2 −
∑

i

qi

)

d3~q1
(2π)3Eq1

× ...× d3~qn
(2π)3Eqn

|Mfi|2,

where M is the transition matrix element between the incoming state i and the outgoing

state f . This formula can be generalized to also more than two incoming particles. How-

ever, in practice it is very hard in experiments to get any appreciable amount of three-

particle collisions, so this plays little role in experimental physics. It is of much more

importance in other environments, like the interior of a sun, where the enormous particle

fluxes can compensate for the difficulties of colliding three or more particles. However,

even in these cases four and more particle collisions are unlikely.

More interesting is the situation with a single particle in the initial state, which decays

into an n-particle final state. The corresponding cross section is then called dΓ, and given

86
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by

dΓ =
1

2Ep
(2π)4δ

(

p−
∑

i

qi

)

d3~q1
(2π)3Eq1

× ...× d3~qn
(2π)3Eqn

|Mfi|2.

To get the total values for dσ and dΓ, they have to be integrated over the final momenta

qi for a particular channel, i. e., a particular final state. If identical particles occur, their

interchange has to be taken into account, which adds a factor 1/m! where m is the number

of such identical particles. These give the cross-section for a particular channel, i. e., set of

particles in the final state. The final results are obtained after summing over all possible

channels.

The central question of quantum field theory is therefore reduced to the calculation of

the transition matrix elements M. These are defined as

〈f |S|i〉 = 〈f |i〉+ i(2π)4δ(pi − pf)Mfi, (6.1)

where pf and pi are the total initial and final state momenta, and S is the S-matrix, which

is perturbatively1 defined as the time-ordered product of the interaction Lagrangian as

S = Tei
∫

ddxLI

where LI contains only the parts of the Lagrangian which are more than quadratic in the

fields, and the time-ordering operator T is defined as

T (ψ(x)ψ(y)) = θ(x0 − y0)ψ(x)ψ(y)± θ(y0 − x0)ψ(y)ψ(x),

where the minus sign applies if both fields are fermionic. The generalization to an arbitrary

number of fields leads then to Wick’s theorem.

Since the S-matrix is nothing more than just the time evolution operator, this expres-

sion is just given by correlation functions of the operators creating and annihilating the

initial and final state, respectively. E. g., for a two muon to two electron process, the

expression is the correlation function

〈µµ|S|ee〉 = ReRµ〈T (µµe†e†)〉,

where the Ri are field normalization factors to be discussed latter. The resulting expression

is a vacuum-to-vacuum transition amplitude, a so-called correlation function or Green’s

function. Calculation of these functions is therefore everything necessary to calculate the

transition matrix element. This will now be done in perturbation theory using the path

integral formalism.

1Non-perturbatively one is stuck as formulating the process using correlation functions, and then

evaluating the full expression (2.7) for a given process. This leads also to interesting questions about how

to define the initial and final state, some of which will be discussed in chapter 7.
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6.1.2 General construction

Already by construction, time-ordered correlation functions can be calculated using the

path integral as

〈Tφ1...φn〉 =
∫

Dφφ1...φne
iS[φ,J ]

∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

. (6.2)

However, this is so far only a tautology, as this gives no constructive way of calculating

actually the correlation functions. The method of choice used here will be perturbation

theory. This essentially boils down to expanding the exponential in the fields, giving essen-

tially an infinite series of quasi-Gaussian integrals. The result is that the transition matrix

elements are determined by a sum over correlation functions in a theory with quadratic

action. Such an expansion of the field is essentially an expansion around zero field val-

ues, and thus assumes that the field amplitudes are small. Hence, this is a perturbative

approach.

To do this, split the Lagrangian into a quadratic part L2 and a remainder part LI ,
which includes all the interactions. This yields for the generating functional

Z [J ] =

∫

Dφei
∫

ddxLIei
∫

ddx(L2+Jφ)

= ei
∫

ddxLI[ δ
iδJ ]
∫

Dφei
∫

ddx(L2+Jφ).

This is only a rewriting of the expression, and is still exact. The argument of LI is just

indicating that all appearances of the field have been replaced by the derivative with

respect to the source. To see the equivalence, take as an example a theory with cubic

interaction term

LI =
λ

3!
φ3
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and expand the exponential

ei
∫

ddxLI[ δ
iδJ ]
∫

Dφei
∫

ddx(L2+Jφ)

=

∫

Dφ
∑

n

1

n!

(

λ

3!
i

∫

ddy
δ3

iδJ(y)3

)n

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!

δ2

iδJ(y)2
δi
∫

ddxJφ

iδJ(y)
+ ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!

δ2

iδJ(y)2

∫

ddxφδ(x− y) + ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!
φ

δ2

iδJ(y)2
+ ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!
φ3 + ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
∑

n

1

n!

(

λ

3!
i

∫

ddyφ3(y)

)n

ei
∫

ddx(L2+Jφ)

=

∫

Dφei
∫

ddxLIei
∫

ddx(L2+Jφ).

Such manipulations are very helpful in general.

To proceed it is necessary to perform the remaining shifted Gaussian integral. This

can be readily generalized from the formula for ordinary numbers,

∫

dxe−
1
4
xax+bx = 2

√

π

a
e
b2

a .

This yields
∫

Dφei
∫

ddx(φ(x)(Ω−iǫ/2)φ(x)+J(x)φ(x)) =

∫

Dφei
∫

ddx(φ(x)Ωφ(x))e−
i
2

∫

ddxddyJ(x)∆(x−y)J(y)

= Z2 [0] e
− i

2

∫

ddxddyJ(x)∆(x−y)J(y). (6.3)

There are a number of points to take into account. Ω is just the quadratic part of the

Lagrangian, e. g., for a free scalar field it is just (−∂2 − m2)/2. The addition of the

term iǫ is actually needed to make the integral convergent, and has to be carried through

all calculations. This can also be formally justified when using canonical quantization.

Secondly, the so-called Feynman propagator ∆ is defined such that

(2Ω− iǫ)∆(x − y) = iδd(x− y).

That it depends only on the difference x− y comes from the assumption of translational

invariance, which applies to the standard model. For a scalar particle of mass M and thus
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Ω = (−∂2 −M2)/2, this Feynman propagator takes, after Fourier transformation,

(−∂2 −M2 + iǫ)

∫

ddpeip(x−y)∆(p) = i

∫

ddpeip(x−y)

∫

ddpeip(x−y)(p2 −M2 + iǫ)∆(p) = i

∫

ddpeip(x−y)

(6.4)

the form

∆(p) =
i

p2 −M2 + iǫ
, (6.5)

which is more useful for a calculation than the rather involved position space expression,

which can actually only be described in form of a tempered distribution. Thirdly, the

factor Z2 [0] in front of the integral containing the Feynman propagator is just the factor

1/a in the conventional integral, conveniently rewritten as an exponential. This factor

will cancel partly the denominator in (6.2) when taking the limit J → 0 at the end of the

calculation.

This is then sufficient to write down a perturbative calculation of an arbitrary corre-

lation function. Take, for example, a model of a single scalar particle with interaction

LI = − λ

4!
φ4.

The perturbative expression up to linear order in λ/4! for a process involving two particles

in the initial and final state, essentially elastic scattering, is then

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉

=

∫

Dφφ(x1)φ(x2)φ(x3)φ(x4)eiS[φ,J ]
∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

=
1

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
ei
∫

ddxLI[ δ
iδJ ]e−

i
2

∫

ddxddyJ(x)∆(x−y)J(y)

∣

∣

∣

∣

J=0

.

The next step is to expand both exponentials, the first in a formal power series in LI , and
the second one in the conventional exponential series2,

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(

∑

n

1

n!

(

λ

4!
i

∫

ddy
δ4

iδJ(y)4

)n
)

×

×
(

∑

m

1

m!

(

− i

2

∫

ddxddyJ(x)∆(x− y)J(y)

)

)∣

∣

∣

∣

∣

J=0

.

2It is this operation - expanding in a power series and swapping summation and (functional integration)
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Both are polynomial in the sources. The expansion of the exponential of the interaction

Lagrangian yields terms with zero, four, eight,... derivatives with respect to the sources.

The second term produces terms with zero, two, four,... powers of the sources. Since the

sources are set to zero at the end, only terms without sources will remain. Thus, to order

zero in the interaction Lagrangian only the term with four sources will survive the external

derivative. To first order in the interaction Lagrangian only the term with eight powers

of the sources will survive.

To this order in the expansion, the expression takes therefore the form

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(

1

2!

(

− i

2

∫

ddxddyJ(x)∆(x− y)J(y)

)2

−iλ
4!

∫

ddz
1

4!

δ4

δJ(z)4

(

− i

2

∫

ddxddyJ(z)∆(x− y)J(y)

)4

+O(λ2)

)

.

In principle, taking the derivatives is straight-forward. However, e. g., the first term is

given by the expression

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫

ddy1d
dy2d

dy3d
dy4J(y1)∆(y1− y2)J(y2)J(y3)∆(y3− y4)J(y4).

The first derivative, with respect to J(x4) could act equally well on all four sources under

the integral. It will therefore provide four terms. Correspondingly, the second derivative

can act on three different terms, making this 12 terms, and so on, giving in total 24 terms,

with all possible combinations, or partitions, of the four arguments.

To illustrate the process, two steps for a particular combination will be investigated.

- which is not valid beyond perturbation theory. The mechanism can be seen by an example,

∞ >
e

1
λ

2
√
λ
K 1

4

(

1

8λ

)

=

∫

dxe−x
2
−λx4

=

∫

dx
∑

i

(−1)iλix4i

i!
e−x

2 6=
∑

i

(−1)iλi

i!

∫

dxx4i exp−x
2

=
∑

i

(−1)iλi
(

1 + (−1)4i
)

i!2
Γ

(

2i+
1

2

)

=
∑

i

√
π(−1)iλi(4i− 1)!!

i!2
2i+1

2

=
√
π

(

1− 3λ

2
√
2
+

105λ2

8
√
2

− 3465λ3

16
√
2

+
675675λ4

128
√
2

+ ...+O
(

(λi)i√
i

))

= ∞,

whereKn is the modified Bessel function of the second kind. The reason is the lack of absolute convergence

of the series, which does not permit the exchange of integration and summation. Note that for λ < 1

the first few lines appear to converge, but this changes starting from terms of order 1/λ. Conversely, this

shows that the limit λ → 0 is not smooth. The generalization of this is known as Haag’s theorem, that

for any non-interacting field theory the free theory and the interacting one are not unitarily equivalent,

as will be encountered again in chapter 7. In fact, note that the correct result has an essential singularity

in λ, making the absence of a smotth limit explicit.
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The first derivative acts as

δ

δJ(x4)

∫

ddxddyJ(x)∆(x− y)J(y)

=

∫

ddxddyδd(x− x4)∆(x− y)J(y) + ... =

∫

dy∆(x4 − y)J(y) + ..., (6.6)

where the points indicate further contributions. For the action of the next derivative, there

are two possibilities. Either it acts on the same factor of the product of the integrals, or

on a different one. Take first the possibility of the same factor. If it is a distinct factor,

this just provides the same action. If it is the same factor, this immediately yields

δ

δJ(x3)

∫

ddy∆(x4 − y)J(y) =

∫

ddy∆(x4 − y)δd(y − x3) = ∆(x4 − x3)

In total, this yields for the term proportional to λ0 = 1

A = −
∑

Pijkl

∆(xi − xj)∆(xl − xk), (6.7)

where Pijkl indicates that the sum is over all 4! possible permutations of the index set

{ijkl}.
The situation becomes somewhat more complicated for the terms proportional to λ,

since now multiple derivatives with respect to the same source J(x) appears. Again, a

single such derivative acts like (6.6). A difference occurs when the second derivative occurs.

This can either act again on another factor, but it could also act on the same factor. The

first case just produces another factor of type (6.6). The second situation is different, and

yields
δ

δJ(z)

∫

ddy∆(z − y)J(y) =

∫

ddy∆(z − y)δd(y − z) = ∆(z − z) (6.8)

which appears to look like ∆(0). However, this not quite the case, as will be visible later.

In particular, the expression ∆(0) cannot be easily interpreted. Furthermore, an integral

over z still appears. It is therefore useful to keep first explicit terms of ∆(z − z) in the

following.

After a slight change in notation, there will then be 8! possibilities for the order λ

contribution. However, many of them turn out to be identical, yielding in total three

further contributions

λB = −iλ
∫

ddx∆(x− x1)∆(x− x2)∆(x− x3)∆(x− x4) (6.9)

λC = −iλ
2

∑

Pijkl

∆(xi − xj)

∫

ddx∆(x− x)∆(x− xk)∆(x− xl) (6.10)

λAD = −iλ
8

∫

ddx∆(x− x)∆(x− x)
∑

Pijkl

∆(xi − xj)∆(xk − xl). (6.11)
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These four terms have simple interpretations, if each factor of ∆ is considered to be

a particle propagating along the connecting line of x − y. Then, the first term (6.7)

corresponds to the interference pattern of identical particles when they are observed at

two different initial and final positions: Since the particles are identical, any combination

is possible, including that one particle vanishes and the other one appears. This can be

visualized by using a line to symbolize a factor of ∆, and draw all possible combinations

between the four points.

Similar interpretations hold for the three remaining terms (6.9-6.11). The expression

(6.9) contains for each factor of ∆ a common point. This can be taken to be just a meeting

of all four particles at a common vertex point x. Since there appears a pre-factor of λ, it

can be said that the four particles couple with a strength λ, thus also the name coupling

constant for λ. Such an interaction vertex could be denoted by a dot.

The third term (6.10) can be seen as one particle just propagating, while the second

particle has an interesting behavior: It emits at an intermediate point a particle, and

reabsorbs it then. Such a virtual particle contributes to a cloud of virtual emission and

absorption processes, which becomes more common at higher orders. Pictorially, this

corresponds to a loop in the propagation, which again harbors an interaction vertex.

The last contribution is different, as when drawing lines there appears an additional

graph, which is disconnected from the initial and final positions, and has the form of the

number eight. Such a disconnected diagram is also called vacuum contribution, as it is

not connected to any external input, and is thus a property of the vacuum alone.

In general, the expression (6.7-6.11) are very cumbersome to deal with in position

space. It is therefore more useful to perform a Fourier transformation, and perform the

calculations in momentum space. In particular, this removes many of the cumbersome

sums over partitions. How to switch to momentum space will be discussed in more detail

after taking care of the remaining factor Z2 [0] /Z [0].

Since the current calculation is a perturbative calculation, it is adequate to also expand

Z2 [0] /Z [0] in λ. This can be most directly done again using the formula (6.3). Thus, the

factor Z2 cancels immediately, and the remaining expansion terms are, up to combinatorial

factors, very similar as before. Its inverse is thus given, to order λ, by

Z [0]

Z2 [0]
= 1 +

iλ

23

∫

ddx∆(x− x)∆(x− x) +O(λ2) = 1 + λD.
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This term is easily identified as the prefactor appearing in (6.11). To order λ, this yields

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉 =
A+ λ(B + C + AD)

1 + λD
+O(λ2)

= (A+ λ(B + C + AD))(1− λD) +O(λ2) = A + λ(B + C + AD)− λAD +O(λ2)

= A+ λ(B + C) +O(λ2).

Thus, to order λ, the term with a disconnected contribution is canceled. It turns out

that this is a generic result, and that all diagrams with disconnected contribution in a

perturbative expansion always cancel, and a general proof can be constructed in a very

similar way to this evaluation in φ4 theory up to leading order. However, this is beyond

the scope of this lecture.

As stated, the explicit expression in position space turns out to be very awkward to

use in actual calculation, and their evaluation in momentum space is preferable. This can

be done using the expression for the Feynman propagator in momentum space, (6.5). The

total sum then becomes

(2π)d
∫

ddp1

(2π)
d
2

ddp2

(2π)
d
2

ddp3

(2π)
d
2

ddp4

(2π)
d
2

e−i(p1x1+p2x2+p3x3+p4x4) ×

×





∑

Pijkl

(2π)dδd(pk + pl)δ
d(pi + pj)

i

p2i −m2

i

p2k −m2

−iλδd(p1 + p2 + p3 + p4)
i

p21 −m2

i

p22 −m2

i

p23 −m2

i

p2 −m2

−(2π)dλ

2

∑

PIjkl

δd(pi + pj)δ
d(pk + pl)

i

p2i −m2

i

p2k −m2

i

p2l −m2

∫

ddq

(2π)
d
2

i

q2 −m2



 .

Note that the iǫ contributions have not been written explicitly in the propagators, but

left implicit. This is the standard conventions for such a representation of a perturbative

expression. Of course, if the result is desired in momentum space rather than position

space, which is normally the case, the Fourier transformation can be dropped.

The result already shows a number of regularities, which can be generalized to the so-

called Feynman rules, which permit to directly translate from a graphical representation to

the mathematical expression in perturbation theory. These can be derived rather generally,

though this becomes rather cumbersome. Here, these will be stated simply without proof:

� Select the type and number of all external lines

� Determine the order (in all coupling constants, i. e., in all vertices) to which the

process should be evaluated
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� Draw all possible diagrams connecting in all possible ways the external lines with up

to order vertices, and add them

� For each line, write a propagator of this particle type

� For each vertex, write the interaction vertex, i. e. essentially δnLI/δφn, for each

� Impose the conservation of all quantities, including momentum, conserved by a giving

vertex at each vertex. This can be most directly done by following each input

conserved quantity through the whole diagram until its final result

� Integrate over all undetermined momenta, i. e., each momentum running through a

loop

� For each closed fermion loop, multiply the term by minus one, because of the Grass-

mann nature

� Lines, which are attached to the outside of a diagram, receive a further propagator

of the corresponding type

Two things can further facilitate the result. On the one hand, any diagram will be zero, if

any conservation law is not respected by the transition from initial to final state. However,

in such cases also the perturbative vertices vanish identically. Secondly, there are many

diagrams, which are identical up to reordering, as in the previous example. They can be

collected, and normalized using so-called symmetry factors.

It can be immediately shown that the previous results can be obtained from these

rules, as an explicit example of the more general Feynman rules. In general, the necessary

propagators and vertices can be derived from the classical (possibly gauge-fixed) action as

iΓφ
a1
1 ...φann (x1, ..., xn) =

iδnS

δφa11 (x1)...δφann

∣

∣

∣

∣

φi=0

,

which afterwards can be transformed to momentum space by a Fourier transformation.

The conservation of momenta and other quantum numbers will then appear as suitable

δ-functions, which are usually factored of and manually imposed afterwards. For the

propagators, it is still necessary to invert the results, see section 2.4.

Perturbative calculations in Yang-Mills theory with scalar and fermion fields in some

representation can be performed in essentially the same way. It is just necessary to replace

it with the corresponding propagators and vertices derived in the same way from the



96 6.1. Perturbation theory

Lagrangian. These are the propagators for the gauge bosons, ghosts, fermions, and scalars

Dab
µν =

−iδab
k2 + iǫ

(

gµν − (1− ξ)
kµkν
k2

)

Dab
G =

iδab

p2 + iǫ

Dij
F = δij

i(pµγ
µ +m)

p2 −m2 + iǫ
=

iδij
pµγµ −m+ iǫ

Dij
S =

iδij

p2 −m2 + iǫ
,

respectively. There are in addition 3-point vertices of fermions and scalars and gauge

bosons, three gauge bosons, and ghost and gauge bosons

Γgqq̄(p, q, k)aijµ = igγµtaij

Γgss̄(p, q, k)aijµ = igtaij(q + k)µ

Γggg(p, q, k)abcµνρ = gfabc(gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν)

Γūgu(p, q, k)abcµ = gfabcpµ,

respectively, and the four-gauge-boson vertex and the two-gauge boson-two-scalar vertex3

Γgggg(p, q, k, l)abcdµνρσ = −ig2(fabef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ) + fadef bce(gµνgρσ − gµρgνσ))

Γss̄gg(p, q, k, l)ijabµν = ig2gµνδabδij

and all momenta defined incoming. Note that because ghosts obey Fermi statistics closed

ghost loops also receive a minus sign. If the Nakanishi-Lautrup field remains, further rules

are appearing. Especially the propagators become matrix-like, as there are now two-point

vertices changing the gauge field to an auxiliary field.

Returning to the scalar theory, perturbative calculations can be further simplified by

passing to connected, amputated diagrams.

The so-called connected diagrams are diagrams in which all lines are connected with

each other. In the previous case, the result can be symbolically written as

∆∆+∆∆′ +Π, (6.12)

where ∆ is a propagator, ∆′ is a propagator with a loop attached, and Π is the graph

where all four lines are connected. This is called the full correlation function. Of course,

3If the scalar is in the adjoint or any other representation a more complex gauge structure emerges.
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∆ and ∆′ can also be determined from the two-point function 〈Tφφ〉, to the same order,

and therefore contain no new information. The only new contribution for the four-point

function at this order of perturbation theory is Π. It would therefore be useful, if it is

possible to only calculate this contribution, instead of the whole one. Indeed, it can be

shown that for a correlation function with n external legs

G(x1, ..., xn) = Gc(x1, ..., xn) +
∑

Gc(xi, ..., xj)Gc(xj , ..., xk)

+
∑

Gc(xi, ..., xj)Gc(xk, ..., xl)Gc(xm, ..., xn) + ... (6.13)

where the sums are over all possible ways to split the index set {xi} in two, three,...

subsets. Furthermore, every connected correlation function Gc, i. e. anyone which cannot

be written as a product of two or more other connected correlation functions, is a series

in the coupling constant. Thus, in the present case,

G(x1, x2, x3, x4) = Gc(x1, x2, x3, x4) +
∑

Pijkl

Gc(xi, xj)Gc(xk, xl)

Gc(x, y) = ∆(x− y) + ∆′(x− y),

where again the ∆ is the propagator, and ∆′ is the propagator to order λ, which includes

the attached loop, and Gc is the only diagram with all points connected. Contributions

proportional to ∆
′2 have to be dropped, as they are of higher order in the perturbative

expansion. This relation can be inverted to obtain the connected correlation functions from

the other, but it is more interesting to calculate just the connected, and then calculate the

complete one by the formula (6.13).

Finally, all external lines have the propagators attached to them, they are called non-

amputated. Removing this yields the amputated correlation functions Γ, which can imme-

diately yield again the non-amputated one. Thus, it is sufficient to calculate the amputated

ones. In the same way, explicit momentum conserving factors can always be reinstantiated.

Thus, the calculation of the four-point function boils finally down to the calculation of

the amputated, connected two-point function to order λ, and the amputated, connected

four-point function. These are just given by

Γc(p, q) = −iλ
∫

ddr

(2π)4
i

r2 −m2

Γc(p, q, k, l) = −iλ, (6.14)

rather simple expressions indeed. Only missing is the explicit form of the contribution

from ∆′. However, it requires renormalization, and will be discussed in section 6.2. These

are also called proper or vertex correlation functions. In fact, for the four-point vertex

function to leading order in λ, the entire result is given by (6.14).
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There is a further possibility to reduce the effort of perturbative calculations, though

these do not reduce it further for the present example. It is rather simple to imagine situ-

ations, were it is possible to cut a single internal line to obtain two separate graphs. Such

graphs are called one-particle reducible. It can be shown that it is sufficient two know all

graphs, which cannot be separated in such a way, so-called one-particle irreducible graphs

(1PI), to obtain all relevant results, and to reconstruct also the one-particle reducible

ones. The generic connection can again be illustrated. Take two graphs which are 1PI,

say graphs A(p, q) and B(k, l). They can be joined to a one-particle reducible graph by

A(p, q)∆(q)B(q, l),

i. e., by the insertion of a propagator. This can be repeated as necessary.

Thus, the final addition to the Feynman rules is

� Identify in all the diagrams the connected, amputated 1PI graphs. Calculate these,

and the result can be obtained by just multiplying and adding the results together

such as to obtain the original graphs

Note that the construction can be extended further, to so-called nPI graphs. However,

their recombination is in general no longer possible by multiplications, but usually involves

integration over intermediate momenta. This is beyond the scope of this lecture.

From this construction it follows that there are two distinct classes of perturbative

calculations. One is the class of so-called tree-level calculations, in which no loops appear.

Since graphs without loops are always one-particle reducible, they can always be cut so

long as only to consist out of vertex and propagator expressions. On the other hand,

this implies that a tree-level calculation can always be written as just a multiplication

of propagators and vertices, without any integration. These contributions turn out to be

furthermore the classical contribution, i. e., whatever remains when taking the limit of

~ → 0. Nonetheless, even tree-level calculations, in particular for many external particles,

can become very cumbersome, and both a technical as well as a logistical problem.

The second type of diagrams are all graphs with loops. Since they vanish in the classical

limit, this implies that these are the quantum, or also radiative, corrections to a process.

The integrals make an evaluation much more complicated. Furthermore, the integrals are

usually not finite, leading to the necessity of the renormalization process to be discussed

now.
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6.2 Renormalization

So far, all calculations have been (essentially) at tree-level, i. e., no integrations have been

necessary, as are required by the Feynman rules if loops appear. Such loop expressions

are always of higher order in the coupling constants than the corresponding tree-level

diagrams. However, experimental precision is sufficiently high to be sensitive to loop

contributions, so-called radiative corrections. In fact, for QCD next-to-next-to-next-to-

leading order (N3LO) precision is already required, and for some quantities in QED even

N10LO results are available4.

One of the generic problems of such loop corrections is that the corresponding integrals

are usually divergent. At first sight, this might seem to invalidate the theory. However, it

turns out that it is possible to make the integrals convergent without introducing additional

parameters into the theory, albeit at the price that the theory still looses its validity at

some high cutoff-scale. Since this scale can be pushed to very high energies, this is of little

practical importance, as it can anyway not be assumed that conventional gauge theories

could be theories of everything, since they do not include gravity.

To make sense out of such a theory requires then two basic steps. One is a prescription

how to regularize integrals, i. e., how to map their divergent value to a finite value. For

this purpose of regularization the integrals are made convergent by the introduction of

some parameter, and the original divergence is recovered when sending this parameter to

a particular limit. As a result, all quantities calculated will depend on this parameter.

The second step, the so-called renormalization, gives a prescription how to redefine the

theory such as to loose the dependence on this extra parameter, the so-called renormaliza-

tion scheme, without recovering the original divergence. The consequence of this program,

and the particular renormalization scheme used, is that quantities like masses or coupling

constants can no longer be interpreted as static quantities, but will depend on the scale

at which they are measured. It is said that they become running. However, measurable

quantities, like a cross-section, turn out not to depend on the measurement scale, at least

for an exact calculation. Unfortunately, most calculations are not exact in general, and in

particular for the standard model. As a consequence, a dependence on the scale may be

left.

4Note that in the standard model context calculations may be at different order in the various appearing

couplings, as the quantitative contributions, due to the differing sizes of the relevant couplings, are vastly

different. Thus, often calculations are done to the orders such that the quantitative contributions of all

involved interactions are of roughly the same size, rather than of the same order.
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6.2.1 Cutoff regularization

To illustrate the concept of regularization, it is useful to go to a simple model, the Yukawa

model of a scalar φ and a fermion χ. This model appears throughout strong interaction

physics, where the fermions are often interpreted as either quarks or nucleons, and the

bosons as mesons. The simplest case with just one flavor each has a Lagrangian given by

L =
1

2
∂µφ∂

µφ+ χ̄i(γµ∂µ −m)χ− M

2

2

φ2 − λ

4!
φ4 − yφχ̄χ.

Hence there are two masses, m and M , and two coupling constants y and λ. With two

flavors of fermions, representing the nucleons, and three flavors of mesons, representing

the pions, this model gives already a first reasonable approximation of nuclear physics.

Start with the self-energy of the scalar particle to order O(λ1, y0). In this case, there

is only one diagram contributing, a so-called tadpole diagram. This is also exactly the

diagram apperaing in the evaluation of ∆′ in section 6.1 in (6.12). Hence, the result for

this quantity will be obtained now.

Its value is

Πλ
φ = −λ

2

∫

d4p

(2π)4
1

p2 −M2 + iǫ
, (6.15)

where the factor 1/2 is a symmetry factor. The integration over p0 can be performed first

by contour-integration and using the Cauchy theorem, since

Πλ
φ = −λ

2

∫

d3~p

(2π)4

∫

dp0
1

p20 − ~p2 −M2 + iǫ

= −λ
2

∫

d3p

(2π)4

∞
∫

−∞

dp0
1

(p0 +
√

~p2 +M2)(p0 −
√

~p2 +M2) + iǫ

This has a pole in the upper half-plane, and vanishes sufficiently fast on a half-circle

at infinity. The residue at the simple poles p0 = ±
√

~p2 +M2 is 1/(p0 ∓
√

~p2 +M2),

dropping the small contribution of iǫ, which only served to not have the pole on the axis.

The Cauchy theorem then yields, using polar coordinates in the final expression,

Πλ
φ =

iλ

4π2

∞
∫

0

~p2d|~p| 1
√

~p2 +M2
.

This integral is divergent, as announced. It is also the only contribution at this order of

perturbation theory, so there is no cancellation possible to remove this divergence. To

make sense of it, it is necessary to regularize it. The most straight-forward possibility is

to replace the upper integral limit ∞ by a large, but finite number Λ, the so-called cutoff

regularization.
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The integral can then be calculated explicitly to yield

Πλ
φ =

iλ

4π2



Λ2

√

1 +
M2

Λ2
−M2 ln





Λ + Λ
√

1 + M2

Λ2

M







 . (6.16)

As can be seen, the integral diverges with the cutoff Λ quadratically, and has in addition

a sub-leading divergence logarithmically in Λ. Still, as long as the limit is not performed,

the result is finite, independent of the momentum, but explicitly dependent on Λ.

6.2.2 Renormalization prescription

To remove this dependence, it is worthwhile to investigate the total structure of the two-

point function Γφφ, which is just the propagator Dφφ. Amputation of the unamputated

equation

Γφφ = Dφφ(p
2 −M2 +Πφ)Dφφ

yields the expression for the amputated and connected two-point function by division,

giving
1

Dφφ
= p2 −M2 +Πφ.

However, in a perturbative setting the self-energy is assumed to be small. Thus, it is

possible to expand the self-energy, and replace it as

1

Dφφ

= p2 −M2 +Πλ
φ. (6.17)

To leading order the propagator is then given by

Dφφ =
p2 −M2 +Πλ

φ

(p2 −M2 + iǫ)2
.

Instead of using this approximate expression it is possible to use the inversion of the

expression (6.17),

Dφφ =
1

p2 −M2 +Πλ
φ + iǫ

.

This results in the so-called resummed propagator, as it contains contributions which are

of higher-order in the coupling constant.

Diagrammatically, it corresponds to an infinite series of diagrams with an ever-increasing

number of tadpole attachments. This already illustrates that this is only a partial resum-

mation of the perturbative series, since at order λ2 there are also other types of diagrams

contributing. Thus, this looses some of the systematics of the perturbative expression,

and it is necessary to be wary with it.
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Nonetheless, for the current purpose, it is more transparent to work with the expression

(6.17). As is seen from the result (6.16), the contribution Πλ
φ is momentum-independent

and dependent on the cutoff Λ. If it would be finite, it could be interpreted as a change

of the mass M , since then the expression would have the form

p2 −M2 − δM2 → p2 −M2
R

with the renormalized mass

MR =
√
M2 + δM2.

The actual mass of a φ particle, which would be measured in an experiment, would then

be MR, instead of the bare mass M . In fact, since the experimental measurement is the

only knowledge available on the theory, it is mandatory that the bare parameters of the

theory, like the bare mass M , are adjusted such that the resulting renormalized mass MR

agrees with experiment5.

Now, since the actual bare parameters cannot be measured, there is nothing which

prevents us to set it to

M2 =M2
R − δM2,

with the experimental input MR. This automatically fulfills the requirement to reproduce

the experiment. In particular, since M is not an observable quantity, there is no reason

for it to be finite, and independent of the cutoff Λ. Thus, it is possible to absorb the

infinity of the divergent integral in unobservable bare parameters of the theory. This can

be arranged already at the level of the Lagrangian by replacing

M

2

2

φ2 → MR

2

2

φ2 − δM2

2
φ2.

The second term is a so-called counter-term, and it depends on the actual order of the cal-

culation. E. g., at tree-level, it would be zero. This replacement is called a renormalization

scheme.

6.2.3 Counter-term structure

It is actually not the the only contribution which appears. If the calculation is extended

to also include corrections up to O(λ, y2), there is a second diagram contributing to the

self-energy, which is due to a loop of the fermions. The expression then takes the form

Πλ,y2

φ = Πλ
φ +Πy2

φ ,

5This implies that the bare parameters have to be adapted at each order of perturbation theory

calculated.
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with the fermionic contribution given by

Πy2

φ = −y
2

2

∫

d4p

(2π)4
tr((γµp

µ +M)(γν(p
ν − qν) +M))

(p2 −M2 + iǫ)((p− q)2 −M2 + iǫ)
.

Using the trace identities tr1 = 4, trγµ=0, and trγµγν = 4gµν this simplifies to

−y
2

2

∫

d4p

(2π)4
p(p− q) +M2

(p2 −M2 + iǫ)((p− q)2 −M2 + iǫ)
.

Since the numerator scales with p2, the integral is quadratically divergent. Suppressing the

iǫ, the expression can be rewritten by introducing a zero and then shifting the integration

argument, as

−y
2

2

∫

d4p

(2π)4
(p2 −m2) + ((p− q)2)−m2)− q2 + 4m2

(p2 −m2)((p− q)2 −m2)

= −y
2

2

∫

d4p

(2π)4

(

1

(p− q)2 −m2
+

1

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)

= −y
2

2

∫

d4p

(2π)4

(

2

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)

,

Such integrals can be performed using a number of analytical tricks. However, for the

present purpose this will not be necessary. This will be taken up in section 6.3. It is

sufficient to observe that the resulting integral, just by counting powers of integration

momenta, will have the form

Πy2

φ = c1Λ
2 + (c2m

2 + c3q
2) ln

Λ

m
+ f(m2, q2),

where f is some finite function when Λ is send to infinity, and depends on both λ and y,

as do the constants ci.

The first two terms have again the same structure as the tadpole contribution (6.15).

However, the third term is different, as it does depend explicitly on the momentum. There-

fore, it cannot be absorbed into a mass renormalization. However, it can be absorbed in

a renormalization of the kinetic term. If in the Lagrangian the modification

∂µφ∂
µφ→ ∂µφ∂

µφ+ δZφ∂µφ∂
µφ = Zφ∂µφ∂

µφ,

is performed, the kinetic term of the field φ has been renormalized by a factor Zφ. Choosing

δZφ = −c3 ln
Λ

m
,

this will remove the divergence. By this the field amplitude is arranged to agree with the

experimental one by the introduction of the wave-function renormalization Z
1
2
φ .
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Performing further calculations, it turns out that similar changes have to be performed

for the remaining bare parameters m, λ, and y, yielding a renormalized fermion mass mR,

and renormalized couplings λR and yR. Thus, including these counter-terms yields the

renormalized Lagrangian

LR =
1

2
∂µφ∂

µφ+ χ̄i(γµ∂µ −mR)χ− MR

2

2

φ2 − λR
4!
φ4 − yRφχ̄χ

+
δZφ
2
∂µφ∂

µφ+ χ̄i(δZχγ
µ∂µ − δm)χ− δM

2

2

φ2 − δλ

4!
φ4 − δyφχ̄χ.

It should be noted that always certain products of fields appear together with a parameter

of the theory. Thus, often explicit factors of various Zs are introduced such that not

kinetic terms are renormalized, but rather the field itself, in the sense of an amplitude

renormalization. In this case, explicit factors of Z
1/2
i are multiplied for each field in the

counter-term Lagrangian, and the counter-terms δM , δm, δλ, and δy are redefined by

appropriate factors of Z
−1/2
i . This is, however, conventional, but the more common case.

Also, it is usual that δx is rather defined as

δx = Zxx = (1 + δZx)x,

i. e. as a multiplicative factor to the original quantity. However, Zx may then depend

again on x, even in the form of 1/x. E. g., renormalized QED reads then

LQED = −1

4
FµνF

µν − 1

2ξ
(∂µAµ)

2 + ψ̄(iγµ +m)ψ + eAµψ̄γ
µψ

−δZA
4
FµνF

µν −
ZA
Zξ

− 1

2ξ
(∂µA

µ)2 + δZψψ̄iγ
µ∂µψ − (ZψZm − 1)mψ̄ψ

+(ZeZ
− 1

2
A Zψ − 1)eAµψ̄γ

µψ.

In this case all parameters, m, e, and ξ, as well as Aµ and ψ have been multiplicatively

renormalized. It should be noted that also the ghost fields would have to be renormalized,

if they would not decouple in QED. The extension of this to the non-Abelian case is hence

a straightforward generalization.

The remaining question is then whether this is sufficient, or whether further terms, e. g.

a sixth power of the fields, would be necessary, or whether non-multiplicative terms would

appear. It can be shown that in perturbation theory in four dimensions for any gauge

theory of the Yang-Mills type with parameters with at least zero energy dimension, i. e.

dimensionless couplings, masses, or couplings with dimensions of energy to some positive

power, it is always possible to perform the renormalization with a finite number of terms.

Thus, the process is finite, and for QED actually complete at this stage. This is called
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renormalizability by power-counting. However, this is only proven in perturbation theory,

and though it is commonly assumed to hold also beyond perturbation theory, a proof is

lacking.

The general proof, also for dimensions different than four, and more complex theories

is possible, but beyond the current scope. However, for most quantum gauge theories in

four dimensions with non-trivial dynamics and observable bound states renormalization is

necessary.

6.2.4 Renormalization schemes

So far, the counter terms have been identified by direct comparison. However, assume

that the propagator has finally the form

D =
c2 − d2 + 2p2

p4 + (d2 − c2)p2 − c2d2
.

Such a propagator has no longer the form of a conventional free particle. It is thus not

clear how to determine, e. g., δm, such that it represents the mass of a particle. Thus, it

is necessary to give a more precise definition of what physical mass means. Since such a

mass would be expected as a pole, one possibility would be to choose it as the smallest

momentum at which the propagator has a simple pole. In this case, this would imply

mR = d,

and thus the counter-terms can be arranged such that this equality holds. This is called

a pole scheme.

It becomes much more ambiguous for the coupling constants, as they are not associ-

ated with some pole. For the electromagnetic charge, it still seems reasonable to choose its

macroscopic value, i. e., the one known from classical physics, which is the so-called Thom-

son limit. A similar definition cannot be made for, e. g., the strong coupling. Another

possibility is therefore, e. g., to choose6

ΓAψ̄ψ(p, q, p+ q)
!
= e,

for two arbitrarily chosen momenta. This already shows that a certain ambiguity is intro-

duced, because a scale µ is introduced, which is proportional to p, at a fixed ratio of p and

q. It is even more ambiguous when it comes to identify conditions for the wave-function

renormalization.

6The Thomson limit is this expression at p = q = 0.
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In fact, it turns out that the conditions chosen are arbitrary, i. e., any genuinely

measurable quantity is not depending on this choice7. Thus, any choice will do. Any such

set of choices is called a renormalization scheme, and it is possible to express quantities

using one renormalization scheme by results in a different renormalization scheme. For

QED, e. g., it is possible to define the following set of renormalization conditions

(

p2gµν − pµpν
)

p2=µ2
Dµν
AA(µ

2) = i (6.18)

µ2gµνD
µν
AA(µ

2) = iξ (6.19)

trDψψ(µ
2) = im(µ2) (6.20)

(trγµp
µDψψ)(µ

2) = i16µ2 (6.21)

ΓAψ̄ψ(µ2, µ2, µ2) = ie(µ2) (6.22)

Note that there is no condition that involves a mass of the photon. The corresponding

counter-term would violate gauge-invariance, as a term ∼ A2
µ is not gauge-invariant. The

condition (6.19) follows actually directly from the QED version of the STI (5.61). There

are two remarkable, and generic, features in this description.

One is that in the definition of the renormalization constants appears a scale µ, the so-

called renormalization scale. Its value is arbitrary, but it cannot be removed. Of course, it

would be possible to choose for each of the five conditions (6.18-6.22) a different scale, but

these would then differ only by constant prefactors multiplying the single scale. Since this

scale is arbitrary, nothing which is observable can depend on it. This observation is the

basis for the so-called renormalization-group approach, which uses this knowledge and by

forming derivatives on renormalization-scale-invariant quantities determines (functional)

differential equations, which are useful for determining properties of correlation functions.

There is a further consequence of this scale. If a theory like Yang-Mills theory is

taken, there appears no dimensionful parameter at the classical level, and the theory is

classically scale-invariant. However, when the renormalization conditions are imposed,

this is no longer the case, since they involve this scale. Since this scale is a manifestation

of the ultraviolet divergences, and thus incompleteness of the theory, it is thus created in

the quantization process. It is thus said that the classical scale invariance is broken by

quantum effects, a process also referred to as dimensional transmutation. In a sense, it is a

global anomaly, as the quantization process itself is breaking the classical scale symmetry8.

7Actually, any quantity which is renormalized cannot be measured directly. The only direct measure-

ments possible measure either cross sections, masses, or decay rates in one form or the other, and permit

then an indirect determination of the parameters.
8As a side remark, it should be noted that the exact masslessness of the photon can be shown to

be a consequence of this broken scale symmetry in massless QED. In this case the photon becomes the

Goldstone boson of the breaking of the global scale symmetry.
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This perspective will be further discussed in chapter 9.

The second feature is that the mass of the electron and the electric charge now depend

on the renormalization, and thus energy scale, by virtue of the renormalization condi-

tions (6.20) and (6.22). Thus, the parameters of the theory become energy-dependent,

and out of a set of theories with fixed parameters e and m a single theory with energy-

dependent parameters emerges. These energy-dependent quantities are therefore called

running. Some more properties of this feature will be discussed in section 6.4. Note that

masses manifest themselves as poles in correlation functions, and only in the pole scheme

this explicitly enters, while (6.20) is actually only indirectly related to this pole. There is

also a problem with masses for gauge-dependent elementary fields, which will be discussed

in more detail in chapter 7. In the end, everything which depends on the choice of scheme

and scale are not physical. However, measurements can nonetheless be used to determine

them within a fixed scheme as a function of the scale, using a prescription like (6.18-6.22).

And thus one can, e. g., plot the energy-dependence of such a quantity. However, the plot

is only meaningful after fixing the renormalization scheme.

When changing to Yang-Mills theory, there are more renormalization conditions, due

to the ghosts, and if there is more than one matter type. However, because of coupling

unification further vertices do not all renormalize independently. Only those appearing

at the Lagrangian level require usually independent conditions. A vertex like a two-

fermion-two-ghost vertex, which arises at loop level, will not need an independent counter

term, though it will need to be renormalized. This distinguishes the so-called primitively

divergent quantities from those whose renormalization could be determined in terms of

others. In practice, however, this may actually be very involved.

As a consequence, standardized renormalization schemes have been developed, which

are commonly used, and are therefore usually not made explicit. These schemes have been

tailored for particular purposes, and must be looked up, if a calculation is to be compared

to preexisting results. However, to compare to the commonly used schemes, it is necessary

to introduce another type of regularization, dimensional regularization. Before doing so in

section 6.2.7, it is useful to linger a little more on general properties of renormalization.

6.2.5 Renormalization group

As discussed in section 6.2.4, in the renormalization process a renormalization scale µ is

introduced. However, the choice of this scale was arbitrary, at least as long as µ > 0. As a

consequence, any physical observables should not depend on this scale. Especially, it must

be permissible to shift this scale µ → µ + δµ without affecting observables. Of course,

since this scale was used to define the renormalized parameters, this will induce a shift in
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all the parameters p of the theory p→ p+ δp, in Yang-Mills theory the gauge coupling g

and the masses of the matter fields m. This will also induce a shift in the field amplitudes

δZ, as these are also renormalized.

Consider a single field. The latter implies that a vertex function

Γn = 〈φ1...φn〉

will be shifted under an infinitesimal transformation in µ to first order as

Γn → (1 + nδZ)Γn (6.23)

A dependence on different fields will just induce a sum of the different shifts. However,

simultaneously, the correlation function is a function of the parameters of the theory,

and of the renormalization scale. E. g., the renormalized propagators depend only on

the renormalized parameters g and m, and the renormalization scale µ. Also any wave-

function renormalization is entirely given in terms of these quantities. Thus, (6.23) must

also be given by9

nδZΓn = dΓn =
∂Γn

∂µ
δµ+

∂Γn

∂g
δg +

∂Γn

∂m
δm.

To remove the explicit dependence on δµ, usually the redefinitions

β = µ
δg

δµ
(6.24)

βm =
µ

m

δm

δµ

γ = µ
δZ

δµ

are performed, called β functions or γ anomalous dimensions. The particular correlation

function no longer appears. Hence, these are universal functions of the coupling constant,

masses, and the renormalization scale only. However, they are not unique. Since the

dependence on the renormalization scale implies that they depend on the way how it is

fixed, and therefore on the renormalization scheme.

This form is known as the/a Callan-Symanzik equation

(

µ
∂

∂µ
+ β

∂

∂g
+ βmm

∂

∂m
− nγ

)

Γn = 0, (6.25)

which is an exact equation the correlation function has to fulfill. Especially, if the functions

β, βm, and γ would be known, then it would be possible to determine its running with

9If there are more parameters, like the gauge parameter, further terms appear. This is right now an

unnecessary complication.
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the renormalization scale µ. Setting e. g. all momenta equal to µ, like it is done in certain

renormalization schemes, this would provide limited knowledge on the full momentum

dependence of Γn.

These equations can alternatively be derived in an integrated form. Since for any

multiplicatively renormalized vertex function10

Γ0 = ΠiZ
ni
i Γ,

where i enumerates the fields, and the ni counts the times a field appears in the related

expectation value. The vertex function Γ0 only depends on the unrenormalized quantities,

while Γ is the renormalized one. Since the left-hand side does not depend on µ, neither

does the right-hand side. Taking a total derivative on the right hand side with respect to

µ also yields (6.25).

The situation becomes particularly simple in a mass-independent scheme, i. e. where

all renormalization conditions do not involve any mass explicitly11. Then in the equation

(6.25) the functions do not depend on any ratios µ/m, and the equation can be integrated

using the method of characteristics, yielding

Γ(µ, α,m,Q) = exp



−
∑

i

ni

ᾱ
∫

α

dx
γi(x)

β(x)



Γ(µ̄, ᾱ, m̄, Q),

where the barred quantities are the initial conditions. The most important point is that

the dependence on Q is not involved. The importance of this becomes even more evident

when rescaling all dimensionful quantities by a common factor, especially by µ̄ such that

the initial condition becomes µ̄ independent. This yields

Γ(µ, α,m,Q) = µ̄dΓ exp



−
∑

i

ni

ᾱ
∫

α

dx
γi(x)

β(x)



Γ

(

1, ᾱ,
m̄

µ̄
,
Q

µ̄

)

= exp





ᾱ
∫

α

dx

(

dΓ
β(x)

−
∑

i

ni
γi(x)

β(x)

)



Γ

(

1, ᾱ,
m̄

µ̄
,
Q

µ̄

)

where dΓ is the naive/canonical/engineering dimension of Γ, i. e. the one obtained by just

counting the dimensions of the fields in the expectation value. In the second line, the

10Note that under certain conditions there may be mixing between various vertex functions under

renormalization. Then this is a matrix equation. This complication will not be considered here. Also a

dependence on the gauge-parameter is skipped over here, but can be considered if necessary.
11Such schemes have their own problems due to threshold effects, but this of no importance for the

present case.
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relation (6.24) has been used to include the canonical dimension into the exponent. Since

without renormalization all γi vanish, they modify the canonical dimension. Thus the

name anomalous dimension.

A very interesting case arises if the function either has only one momentum scale Q

or all momenta are equal, i. e. the so-called symmetric configuration. Then by setting

µ̄ = Q, the equation describes the dependency on Q alone. Since due to the γi, this is not

a scaling just with QdΓ , since the limits of the integral now implicitly depend on Q, this

shows how the classical scaling at m = 0 is broken due to quantum corrections.

Of course, the dependence of the relevant functions can, e. g., be obtained first in fixed-

order perturbation theory, and then be used to integrate the equation. This yields so-called

renormalization-group improved results, where the name ’group’ is here of historical origin

only. Still, the whole process can be remapped to a half-group.

E. g. for Yang-Mills theory coupled to Nf fermions in the fundamental representation

it follows to NLO

Q2 dα

dQ2
= β(α(Q2)) ≈ −α2

∑

i

βiα
i

β0 =
11

3
CA − 4

3
NfTR (6.26)

Q2

m̄(Q2)

dm̄(Q2)

dQ2
= γm(α(Q

2)) ≈ −α
∑

i

γiα
i (6.27)

γ0 = CRξ

where β0 and γ0 (and also β1) are the same in all mass-independent renormalization

schemes, while the futher expansion coefficients are not. The approximation indicates

that this will not capture any non-perturbative contributions. As discussed later in sec-

tion 6.4, this yields, e. g., the running of the coupling.

6.2.6 Gauge-symmetry-breaking regulators

The cut-off regularization discussed in section 6.2.1 is by no means the only possibility.

There exist quite a plethora of different regularization methods, which are all consistent.

However, almost all of these prescriptions are in conflict with symmetries, in particular

gauge symmetries. This is not a problem in principle. It will only yield that there are

more counter-terms, which break the symmetries. Thus the symmetries are not manifest

anymore at the level of the renormalized Lagrangian, but only at the level of physical

observables, like cross-sections. This also modifies the STIs and WTIs, as they reflect this

breaking.



Chapter 6. Perturbative treatment 111

However the modified STIs and the additional counter-terms make this rather cum-

bersome in many practical applications. The cut-off regularization is one example of such

a regularization prescription which breaks the gauge symmetry in intermediate steps. E.

g., when using a pure cutoff-regularization with cutoff Λ, the gauge boson tadpole term

will yield a term proportional12 Λd−2, but proportional to the structure gµν . Likewise,

the other one-loop parts have similar structures. As an example, doing the calculations

explicitly for the three-dimensional case, the full self-energy to one-loop order in Landau

gauge reads

Πab
µν = −δab g

2CA
64p

(

gµν +
pµpν
p2

)

− g2CAΛ

6π2p2
δabgµν

−δab g
2CA
32p

(

5gµν − 6
pµpν
p2

)

− 4g2CAΛ

6π2p2
δabgµν +

2g2CAΛ

3π2p2
δabgµν

= δab
11g2CA
64p

(

gµν −
pµpν
p2

)

− g2CAΛ

6π2p2
δabgµν , (6.28)

where in the first step the first two term comes from the ghost loop, the third and fourth

one from the gluon loop, and the fifth from the tadpole. This violates the not modified

Slavnov-Taylor identity (5.61), as

pµpνD
ab
µν = −g

2CAΛ

6π2
δab

which should yield zero on the right-hand in Landau gauge. Thus, cutoff regularization

breaks gauge invariance. This can be remedied by adding a counter term

Lc =
g2CAΛ

6π2
AµaA

a
µ

to the Lagrangian, which also violates gauge invariance, as it is effectively an (infinite) mass

term for the gauge boson. This additional counter-term cancels the effect, and restores

the Slavnov-Taylor identity, and thus gauge invariance at the quantum level. Thus, gauge

invariance is allowed to be broken by the regulator, provided the renormalization ensures

that gauge invariance is maintained in the renormalized theory. As this example shows,

this is usually technically involved.

However, any regulator has some problems involved. Most regulators break some

symmetry. Others are only applicable under certain assumptions. These are usually

violated beyond perturbation theory, but are satisfied within perturbation theory. In

such a situation it is possible to establish regularization procedures which are consistent

with all symmetries, albeit being restricted to perturbation theory. Since the results after

12In two dimensions this will be logarithmic.
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renormalization is again independent of the regularization procedure13, this should not

affect the final outcome.

6.2.7 Dimensional regularization

An example of such a perturbatively well-defined regulator prescription is so-called di-

mensional regularization. It leaves all symmetries manifest. The price to be paid is the

assumption that correlation functions are analytic functions of the dimensionality. That

this is violated beyond perturbation theory can be seen from the fact that two-dimensional

Yang-Mills theory is actually a trivial theory, which can be solved exactly. There are no

physical degrees of freedom, as there are no transverse polarizations. Therefore, even at

the level of perturbation theory, it is only a theory of gauge-fixing, and the physical state

space is empty. Because of the exact solvability, this result can be demonstrated non-

perturbatively: There is only one physical state: An empty vacuum. As the theory is

interacting for higher dimensions, this implies a non-analyticity at two dimensions, and

thus the assumption is violated. Thus, this regulator will not work non-perturbatively

without also inducing problems.

But for perturbation theory it is without problems. In fact, it is perturbatively so

well working that it has become the mainstay of perturbative calculations, even though it

requires that the analytic structure of the appearing correlation functions has to be known,

and that the presence of anomalies and chiral symmetries requires very special attention.

The name dimensional regularization stems from the fact that an integral is analyti-

cally continued away from the number of dimensions in which it should be evaluated to

a dimensionality in which it is finite, then evaluated, and finally the result is analytically

continued back to the original number of dimensions. In this process, the change of dimen-

sions is entirely formal, and therefore not restricted to an integer number of dimensions.

The original divergences then appear as poles of the type 1/δ with δ being the distance

to the desired dimensionality. These poles correspond to the explicit appearances of the

cutoffs, e. g. in equation (6.15), when a cutoff regularization is performed.

The rules for dimensional regularization can be given mathematically quite precisely.

The first part of the prescription is to set any integral to zero, which does not depend

explicitly on a scale,
∫

ddk(k2)α = 0. (6.29)

For integrals involving a scale, take the following example, which is continued to D being

13At least for renormalizable theories.
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different from the target number of dimensions d

A =
1

iπ2

∫

ddk
1

(k2 −m2 + iǫ)r
→ Ar =

Md−D

iπ2

∫

dDk

(2π)D−d

1

(k2 −m2 + iǫ)r
. (6.30)

The original, unregularized integral is obtained in the limit D → d. Since this is only a

regularization, the total value of Ar should not change its energy dimensions, and there-

fore a dimensional regularization scale M is introduced. This is nothing but the usual

dimensional transmutation. This integral is convergent for D < 2r. Performing a Wick

rotation, i. e., replacing formally k0 → ik0, yields

Ar =
(2πM)d−D

π2

∫

dDk
(−1)r

(k2 +m2 + iǫ)r
=

(2πM)d−D

π2

∫

kD−1d|k|dΩD
(−1)r

(k2 +m2 + iǫ)r
,

which is for a finite integral always permitted. Using the rotational invariance, the angular

integral can be performed yielding the volume of a D-dimensional unit-sphere,

∫

dΩD =
2π

D
2

Γ
(

D
2

) (6.31)

Γ(z) =

∞
∫

0

tz−1e−tdt.

Of course, a sphere is only a geometric object in the conventional sense for D being integer.

The expression (6.31) is therefore taken to define the volume of a sphere in non-integer

dimensions.

The remaining integral is then elementary, and can be solved using Cauchy’s theorem,

to yield

Ar = (4πM2)
d−D

2
Γ
(

r − D
2

)

Γ(r)
(−1)r(m2)

D
2
−r.

So far, this result is valid in D < 2r dimensions. To obtain the originally desired dimen-

sionality, replace D = d− 2δ,

Ar = (4πM2)δ
Γ
(

r − d
2
+ δ
)

Γ(r)
(−1)r(m2)

d
2
−r−δ.

Ar is now expanded for small δ, as the desired limit is δ → 0. For the case of r = 1, i. e.,

for a massive tadpole like (6.15), the expansion in δ yields

Ar = m2

(

1

δ
− γ + ln 4π − ln

m2

M2
+ 1

)

+O(δ), (6.32)

where γ is the Euler constant γ ≈ 0.577. This expression has a simple pole in δ, replacing

the divergence on the explicit cut-off.
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From now on, the procedure is essentially identically to the cut-off regularization:

Renormalization is performed, with the divergent terms being absorbed in counter-terms.

If just the term 1/δ is absorbed the corresponding renormalization scheme is called minimal

subtraction (MS), but more commonly the (almost always appearing) combination

1

δ
− γ + ln 4π

is absorbed by the counter-terms. This is the so-called modified minimal subtraction

scheme, denoted by MS, the standard scheme of most perturbative calculations.

Similarly, it is possible to calculate any kind of other diagram. For example, a massless

loop integral in the MS-scheme takes the form

∫

ddq

(2π)d
q2α(q − p)2β =

1

(4π)
d
2

Γ(−α− β − d
2
)Γ(d

2
+ α)Γ(d

2
+ β)

Γ(d+ α + β)Γ(−α)Γ(−β) p2(
d
2
+α+β), (6.33)

and so on. It is usually possible to reduce given loop integrals by appropriate transforma-

tions into one of several master integrals, for which the dimensional regularization results

are known, and can be found either in books or some tables in review articles.

An important insight is that an expansion of Γ will always yield terms like 1/δ, and

never terms like 1/δ2. Thus, the apparent divergences are of different orders than, e. g.,

in cutoff regularization, showing explicitly the difference.

In comparison, the result (6.28) in dimensional regularization reads

Πab
µν = −δab g

2CA
64p

(

δµν +
pµpν
p2

)

− δab
g2CA
32p

(

5δµν − 6
pµpν
p2

)

+ 0

=

(

δµν −
pµpν
p2

)

δab
(

1− 11g2CA
64p

)

,

and thus has the same, finite14, transverse part than the one obtained in cutoff regular-

ization, but is directly compatible with the STI (5.61).

6.2.8 Lattice and infrared regularization

An alternative to violating gauge invariance with a cutoff regulator is violating Poincare

symmetry using a lattice as a regulator. There are two distinct advantages compared

to the cutoff regulation. The consequences of Poincare symmetry are much more easily

to estimate, like angular momentum, than of gauge invariance violation. The reason

is that Poincare invariance is a global symmetry, rather than a local one. This also

14In three dimensions Yang-Mills theory is superrenormalizable, and thus the correlation function itself

is, after renormalization, finite.
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implies the second advantage. Once gauge invariance is broken, the results even for gauge-

invariant quantities will depend on the choice of gauge until gauge invariance is restored

by renormalization. Because most calculations are approximate, this restoration is usually

not exactly possible, leading to residual violations, and thus dependence on the choice of

gauge.

Of course, there is a disadvantage. A lattice is obtained by making space-time discrete.

This implies that integrals become sums and various directions are different, e. g., diag-

onally between two lattice points compared to along the edge of a lattice. This leads to

much more involved tensor structures, and severely more complicated calculations. Thus,

this approach usually lends itself easier for numerical calculations, so-called lattice simu-

lations, than for analytical calculations. Even though there are exceptions to this rule. As

even the numerical simulations are very involved, a description of them will be relegated

to the corresponding lecture.

Once this is done, the results will be depending on the distance of the lattice points,

the lattice spacing. In the renormalization this dependence has then to be removed, just

as always a dependence on the regulator has to be removed. However, this has now also

to be done numerically, leading to technical problems, which are also beyond the scope of

the present lecture.

There is, however, one element of further importance. For any numerical simulations

the number of points has to become finite. Thus, in addition the volume has to be made

finite.

However, a finite volume has also an interesting further advantage. Because a finite

volume restricts the maximum distance this will regulate also the infrared, not only the

ultraviolet, of integrals. Thus, in theories in which there are spurious infrared divergences,

e. g. in loop integrals with massless particles, they will be regulated. Because wave-

lengths are limited, every particle is massive in a finite volume. Of course, this implies

a dependence on the volume of the results. Taking the limit of the volume to infinity

afterwards should then be possible without additional renormalization. After all, flat

Minkowski space with infinite volume is the arena where particle physics is defined. Thus,

these regularization is here only a technical tool. In fact, imposing a finite volume can

also be combined with different regulators than a lattice regularization.

This becomes especially important when using approximate methods. Especially many

infrared divergences in gauge theories emerge only in perturbative calculations, and are an

artifact of them. Then, such regulators are necessary, and have to be dealt with carefully.
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6.2.9 Composite operators

When dealing with gauge theories beyond perturbation theory, it will be seen that com-

posite states, i. e. products of fields evaluated at the same point, become very important.

E. g. the simplest composite operator to describe positronium is ψ̄(x)ψ(x), where ψ is

the electron field. They describe, e. g., bound states. They also play a role in various

perturbative settings.

However, such a product is usually ill-defined at the quantum level. As a consequence,

such operators are usually not renormalized just by renormalizing the field operators in-

dividually, but require further (multiplicative) renormalization, i. e.

(ψ̄(x)ψ(x))R = ZψZcψ̄(x)ψ(x),

where Zψ are the wave-function renormalizations of the fields ψ, and Zc is the additionally

required renormalization constant.

But since in a renormalizable theory only a finite number of counter-terms are required,

this divergence cannot be an independent one. It must thus be expressible in terms of the

other renormalization constants. In fact, in the present case it turns out to be related to

the mass renormalization, as this is the same composite operator as the mass term in the

Lagrangian. Thus, it must be given by the inverse of the fermion mass renormalization,

and hence mψ̄(x)ψ(x) is actually finite and renormalization-group and renormalization-

scheme invariant, and thus observable.

This still leaves the question of how to calculate Zc. Of course, one possibility, often

the simplest one, is not to search explicitly for the relation to the other renormaliza-

tion constants. Instead, the composite operator is directly calculated and renormalized

independently. Since the divergence structure is unique, this will introduce at most an

ambiguity in the prefactor, which can be fixed by comparison to an observable quan-

tity. Actually, this may even be the quickest path to determine the relation to the other

renormalization constants by reverse engineering the functional dependency on the other

renormalization constants based on the divergence structure.

It is, of course, also possible to systematically derive the relations. The starting point

is to add a source term for the composite operator to the action, e. g.

Ls =
∫

d4xχ(x)ψ̄(x)ψ(x).

Correlation functions of the composite operator are then obtained by derivatives with

respect to the new source χ(x). In this case, the term has the same structure as a mass-term

with x-dependent mass χ(x). Thus, this term contributes to the mass of the fermions, and
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thus its renormalization is fixed together with the mass renormalization of the fermions.

This is how the relation to the mass-renormalization of the fermions comes about.

In case of composite operators with more than two fields, however, the situation quickly

deteriorates. Since formally the term is non-renormalizable, at least for fermions, this

implies that formally all possible counter-terms with the appropriate mass-dimension have

to be included. These are fixed in the same way as in any non-renormalizable theory.

The only exception is that as the sources of the composite operators are send to zero at

the end of the calculations, these counter-terms are actually not free, but fixed by the

remainder. Nonetheless, calculating them is as complicated as in any non-renormalizable

theory, and therefore in practice this way is rarely done. Especially, since there is no

general construction principle for interesting theories which avoids these troubles.

6.3 Examples of perturbative calculations

In the following some processes will be discussed, to enhance familiarity with the details

of the procedures and add a number of technical tricks to the tool set. Only Yang-Mills

theory will be considered, though without explicitly specifiying the gauge group. As the

most relevant case is four dimensions, and issues like renormalization are specific for every

dimension, the following will be done only in four dimensions, and using dimensional

regularization and in the MS scheme.

Also, there are additional issues in both lower and higher dimensions, which would

lead astray at this point. E. g., perturbation theory works in three dimensions only up to

one-loop order, and in two dimensions not all, because of infrared singularities, and in five

dimensions Yang-Mills theory is perturbatively non-renormalizable.

6.3.1 Ghost self-energy

The simpelst possibile 1-loop process in Yang-Mills theory is the one-loop correction of

the ghost propagator, as it involes only a single diagram: a so-called rainbow diagram,

where the ghost emits during propagation a gluon, which it later absorbs again. Using the

Feynman rules of section 6.1.2, the relevant expression for this diagram is

Πab
G (p) =

g2fadcf bfeδceδdf

(4π)d

∫

d4q(p+ q)µ
1

q2 + iǫ

(

gµν − (1− ξ)
qµqν
q2

)

1

(p+ q)2 + iǫ
pν

where it has been used that ghost, antighost, and gluon are all distinct, and thus no

symmetry factors appear. To simplify matters, ξ = 0, i. e. Landau gauge, will be used in

the following.
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Because the gluon propagator is then a transverse projector, the part proportional to

qµ drops out, and the result is

Πab
G (p) =

g2fadcf bdc

(4π)d

∫

d4q
1

q2 + iǫ

(

p2 − (pq)2

q2

)

1

(p+ q)2 + iǫ

The prefactor can be reduced using (4.5). This leads to two separate contributions

Πab
G (p) =

g2CAδ
ab

(4π)d

∫

d4q

(

p2

q2(p+ q)2 + iǫ
+

(pq)2

q4(p+ q)2 + iǫ

)

(6.34)

The first term is already of the type (6.33), and could be directly calculated. The second

has not yet the form.

The second term is a so-called tensor integral, call it Bµν for the moment, as it is of

the form pµpνB
µν(p), if the external momenta are pulled out of the integral. Using the

fact that the integral will be eventually regulated, and thus is finite, Lorentz symmetry

requires

Bµν(p) = gµνB00(p
2) + pµpνB11(p

2)

Using transverse and longitudinal projectors, this yields

B00 =
1

d− 1

(

gµν −
pµpν
p2

)

Bµν (6.35)

B11 =
1

d− 1

1

p2

(

d
pµpν
p2

− gµν

)

Bµν , (6.36)

where d is the dimension.

To get more generally applicable formulas for latter use, introduce for a moment masses

m1 and m2 for the gluon and ghost. Rewrite then

qp =
1

2

(

((q + p)2 −m2
2)− (k2 −m2

1)− p2 +m2
2 −m2

1

)

.

With this, the integral kernel becomes that of a one-loop scalar integral, i. e. one with

momentum dependencies only in the denumerator. This structure can be tackled directly

with Feynman parameters, and afterwards with dimensional regularization.

To do so, proceed as follow. Consider first a simpler integral

B0 =
(2πµ)4−d

iπ2

∫

ddq
1

(q2 −m2
1)((q + p)2 −m2

2)
,

which will anyway be needed to express the final solution in a compact way, and also is

the first term in (6.34). Using the Feynman parameterization

1

D1D2
=

1
∫

0

dx
1

((1− x)D1 + xD2)2
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it follows that

B0 =
(2πµ)4−d

iπ2

∫

ddqdx
1

(q2 + 2xqp+ x(p2 −m2
2)− (1− x)m2

1)
2

This integral is dimensionally regulated, and therefore finite. It is thus allowed to perform

the shift q → q − xp, yielding

B0 =
(2πµ)4−d

iπ2

∫

ddqdx
1

(q2 − x2p2 + x(p2 −m2
2)− (1− x)m2

1)
2
.

The momentum integral is now the tadpole integral of type (6.30) for r = 2, although

with an x-dependent mass over which still has to be integrated,

B0 = (4πµ2)δΓ(δ)

1
∫

0

dx
1

(x2p2 − x(p2 −m2
2 +m2

1) +m2
1)
δ
.

Because δ is infinitesimal, the fraction can be expanded by

1

ax
= 1− x ln a +

1

2
(x ln a)2 +O(x)

yielding to leading non-trivial order

B0 =
1

δ
− γ + ln(4π)−

∫

dx ln
x2p2 − x(p2 −m2

2 +m2
1) +m2

1 − iǫ

µ2
+O(δ),

where the iǫ has been made explicit, as this is important to select the correct Riemann

sheet for the integration of the logarithm. The final integral is non-trivial but elementary,

and can be found in either tables or solved by further, lengthy, substitutions. The final

result is

B0 =
1

δ
− γ + ln(4π) + 2− ln

m1m2

µ2
+
m2

1 −m2
2

p2
ln
m2

m1
− m1m2

p2

(

1

r
− r

)

ln r

r =
1

2m1m2

(

m2
1 +m2

2 − p2 − iǫ±
√

(p2 −m2
1 −m2

2 + iǫ)2 − 4m2
1m

2
2

)

.

This structure is the same as in non-gauge theories: The result has a cut, starting at

p2 = (m1 +m2)
2 with a non-vanishing imaginary part due to the decay of the particle as

soon as sufficient energy is available. Because the gauge bosons and ghosts are massless,

this will yield that there is a cut starting at zero. This feature gives rise to infrared

singularities in more complicated processes, which need a more elaborate framework to

be dealt with in general. Here, however, it will be sufficient to just keep the masses long

enough to regularize all expressions. The final result will be independent of them.
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Returning to the original problem, B00 from (6.35) can now be expressed as

B00 =
1

2(d− 1)

(

A0(m
2
2) + 2m2

1B0 + (p2 +m2
1 −m2

2)B1

)

,

where A0 is the tadpole integral (6.32)

A0(m
2) = m2

(

1

δ
− γ + ln(4π)− ln

m2

µ2
+ 1

)

+O(δ)

and B1 is a similarily obtained integral as B0,

B1 =
(2πµ)4−d

iπ2

1

2p2

∫

ddq
2pq

(q2 −m2
1)((p+ q)2 −m2

2)

=
1

2p2
(

A0(m
2
1) + A0(m

2
2)− (p2 +m2

1 −m2
2)B0

)

.

Likewise, B11 from (6.36) is given by

B11 =
1

2(d− 1)p2
(

(d− 2)A0(m2)− 2m2
1B0 − d(p2 +m2

1 −m2
2)B1

)

.

and thus completes the needed integrals.

Before continuing, it will be necessary to obtain the zero-mass limits of these integrals.

Because A0 is a tadpole integral, it vanishes at zero mass, according to the dimensional

regularization rule (6.29). For the Bi it is needed that, after setting m1 = m2 = m

r =
iǫ− p2 ±

√

(p2 + iǫ)2

2m2
+ 1∓ iǫ(1 + p2)

√

(p2 + iǫ)2
∓ m2

√

(p2 + iǫ)2
+O(m3).

This yields eventually

B0 =
1

δ
− γ + ln(4π) + 2− ln

(

p2

µ2

)

,

and thus up to a constant term, which can be absorbed in the renormalization, a loga-

rithmic behavior with momentum. As B1 and the Bii are determined in turn by B0, this

completely fixes the result at zero mass. Note that, as advertised above, the result has a

cut starting at zero momentum. Physically, this corresponds to the splitting of a massless

particle into two massless particles.

The renormalized result for the ghost self-energy can now be constructed along the

same lines. However, because of the second term

Πab
G (p) =

g2CAδ
ab

(4π)d

∫

d4q

(

p2

q2(p+ q)2 + iǫ
+

(pq)2

q4(p+ q)2 + iǫ

)
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this cannot be done using the expressions Bi and Bii, as it effectively involves three

propagators, a so-called triangle integral. It is possible to solve them for finite masses in

the same was as the Bi integrals. However, this becomes quite tedious.

Fortunately, this is not necessary, because the ghost self-energy can be recast into the

form of (6.33). For this note that pq can be rewritten as

pq = −1

2

(

(p− q)2 − p2 − q2
)

.

Then, with a change of q → −q, the ghost self-energy becomes a sum of terms of the type

(6.33),

Πab
G (p) = −g

2CAδ
ab

(4π)d

∫

d4q

(

p2

q2(p− q)2 + iǫ
+

((p− q)2 − p2 − q2)
2

4q4(p− q)2 + iǫ

)

.

Applying (6.33) yields

Πab
G (p) = −g

2CAδ
abp2

(4π)
d
2

(

p2

µ2

)( d2−2)
(

Γ
(

2− d
2

)

Γ
(

d
2
− 1
)2

Γ(d− 2)Γ(1)2

+
1

4

(

Γ
(

d
2
− 1
)

Γ
(

d
2
− 1
)

Γ
(

d
2

)

Γ(0)Γ(1)Γ(d− 1)
− 2

Γ
(

2− d
2

)

Γ
(

d
2
− 2
)

Γ
(

d
2

)

Γ(0)Γ(2)Γ(d− 2)

Γ
(

3− d
2

)

Γ
(

d
2
− 2
)

Γ
(

d
2
− 1
)

Γ(1)Γ(2)Γ(d− 3)
+

Γ
(

1− d
2

)

Γ
(

d
2
− 2
)

Γ
(

d
2
+ 1
)

Γ(−1)Γ(2)Γ(d− 1)

−2
Γ
(

1− d
2

)

Γ
(

d
2
− 1
)

Γ
(

d
2

)

Γ(0)Γ(1)Γ(d− 1)
+ 2

Γ
(

2− d
2

)

Γ
(

d
2
− 1
)2

Γ(1)Γ(d− 2)

))

.

Combining everything, and performing the limit of d→ 4− ǫ and neglecting O(ǫ), yields

Πab
G (p) = −g

2CAδ
ab

(4π)2
p2
(

1 + ǫ ln(4π) + ǫ ln
p2

µ2

)(

1

ǫ
+ 2− γ +

1

4

(

3

ǫ
+

13

2
− γ

))

= −g
2CAδ

ab

(4π)2
p2
(

1

ǫ

7

4
+

14

8
ln
p2

µ2
+

29 + ln(4π)(14)− 10γ

8

)

.

This has precisely the anticipated structure,

a

ǫ
+ b+ c ln

p2

µ2
.

Setting the counterterm to

δZ̃3 = −a
ǫ
− b

yields the final result for the renormalized selfenergy

Πab
G (p) = −g

2CAδ
ab

(4π)2
p2
7

4
ln
p2

µ2
,
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which is, unsurprisingly, gauge-dependent.

Performing the resummation yields the final ghost propagator to order g2 using the

tree-level propagator G0 = −1/p2 to obtain

Gab(p) = δabG0

∞
∑

n=0

(ΠG0)
n =

δab

1
G0

− Π
= − δab

p2
(

1 + g2CA
(4π)2

7
4
ln p2

µ2

)

6.4 Running couplings, Landau poles, and asymp-

totic freedom

An equation like (6.22) defines an energy dependence of the coupling constant, a so-called

running coupling constant. Generically, resummed perturbation theory to second order

yields an expression like

α(q2) =
g(q2)2

4π
=

α(µ2)

1 + α(µ2)
4π

β0 ln
q2

µ2

≡ 4π

β0 ln
q2

Λ2

(6.37)

for the gauge coupling g.

The equation (6.37) implies that once the coupling is fixed to experiment at µ, and an

expression like (6.22) is evaluated at a different momentum q, the right-hand-side is given

in terms of α(µ2) by this expression (6.37). Besides the explicit value of the renormalization

scale and the experimental input at this scale there appears a pure number β0. This is

the so-called first coefficient of the β-function, which is defined by the ordinary differential

equation fulfilled by g as

dg

d lnµ
= β(g) = −β0

g3

16π2
+O(g5),

and it can be determined, e. g., by evaluating perturbatively to this order the right-hand-

side of (6.22). The values of β0 depends on the gauge group, as well as the type and

representation of the matter fields which couple to the interaction in question. Actually,

β0 could in principle depend on the renormalization scheme, but does not do so in theories

with a single type of matter in the fundamental representation. This actually also applies to

the next expansion coefficient of the β function, β1, but is no longer true for higher orders.

It is also only true in schemes which are mass-independent, i. e. where all renormalization

conditions do not involve explicitly any mass.

Before evaluating β0, the right-hand-side of (6.37) should be noted. There, the various

constants have been combined into a single scale Λ, making the dependency of the theory

on a single input parameter manifest. This is the so-called scale of the theory, which
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also sets a typical scale for processes in the theory. E. g., it is about a 50 MeV-1 GeV for

QCD, though its precise value depends on the renormalization scheme and the order of the

perturbative calculation, and then called ΛQCD. It also makes manifest the dimensional

transmutation, as it makes explicit that a dimensionless constant, the gauge coupling, is

actually given in terms of a dimensionful quantity, Λ.

Returning to β0, it can be evaluated to yield, e. g. for a QCD-like theory,

β0 =
11

3
CA − 2

3
Nf (6.38)

where CA is the adjoint Casimir of the gauge group, and Nf counts the number of fermion

flavors in the fundamental representation. Other types of particles or other representations

would yield a different value. For QCD this yields β0 = 7, if all masses are neglected, i.

e., at very high energies.

There are a few generic features of (6.37). First of all, since Λ is a finite number,

the running couplings have divergences at momenta q2 = Λ2. These are artifacts of

perturbation theory, and called Landau poles. They indicate that at the latest at momenta

q2 ≈ Λ2 perturbation theory will fail. Beyond perturbation theory these Landau poles

vanish for all theories which can be defined reasonably beyond perturbation theory. In the

region where the coupling remains positive, perturbation theory could be applicable. in

QCD, this is at energies higher than Λ2 for less than 17 flavors and the other way around

for more flavors, in QED it is at energies lower than Λ2.

This provides another surprise. If it is the domain above Λ the theory becomes weaker

interacting at large energies, until the interactions cease altogether at infinite energy.

Such a behavior is known as asymptotic freedom, since the theory is non-interacting for

asymptotically large energies. Conversely, if the interaction strength increases at high

energies, like in QED, this implies that perturbation theory will eventually break down.

There are three known possibilities then.

The first is that this indicates that the theory at the quantum level is non-interacting,

i. e. that quantum interferences averages out all interactions. In such a case the theory

is called trivial. This seems to be the case for QED. However, to show that this hap-

pens requires usually non-perturbative methods to cope with the strong increase in the

interactions.

The second possibility is that just perturbation theory breaks down, and non-perturbative

methods are necessary. This seems to be the case, e. g., for quantum gravity. The theory

remains then well-defined.

The third is that just higher orders become relevant. E. g. the next order in the
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β-function in the same theory is

β1 =
34

3
C2
A − 20

6
CANf − 2CFNf .

It now depends on the actual value of the various quantities appearing, but this can change

the sign of the β-function once more. In addition, there is also the possibility that the sum

is vanishing. Then the running coupling achieves a finite value at the extremes of momenta

ranges. This is called asymptotic safety. If this happens at the perturbative level, this is

called a Banks-Zak fixed point. This behavior could also occur non-perturbatively, which

is called a Wilson-Fisher fix point. The prior scenario is e. g. realized in some scenarios

beyond the standard model in which the Higgs is composite, while the latter one seems to

be realized in quantum gravity.

Similar equations like (6.38) actually hold also for all other renormalization-dependent

parameters. E. g., the masses of the particles all decrease with the measured momenta.

Thus, the masses of particles become less and less relevant the higher the energy.



Chapter 7

Quantization beyond perturbation

theory

Perturbation theory can be cast in a multitude of different ways. There are, however, two

very important features, which turn out to be crucial in seeing its limitation. One is that

it is inherently a small field expansion. This is of less importance in the present context,

but plays a role, e. g., in electroweak physics.

The other is that it assumes that correlation functions, and thus by the reconstruction

theorem (2.10) the partition sum, is (functionally) expandable in a Taylor series in the

coupling constants and sources. As a consequence, the only asymptotically appearing

states are the elementary ones, as discussed in section 5.2.2. That this cannot be the full

story can be seen by a simple consideration: Consider QED with protons and electrons.

The hydrogen atom is a stable state, but does not belong to the perturbative asymptotic

state space, and should therefore not exist. This is, obviously, a contradiction.

The reason is that it can be shown that the state space of the free theory, to which

perturbation theory is analytically connected by a smooth deformation, is not unitarily

equivalent to the interacting theory. This is known as Haag’s theorem, see also footnote 2 in

chapter 6. Thus, the free theory cannot be analytically connected to the interacting one,

and thus correlation functions are necessarily non-analytic functions of the parameters.

Likewise, the quantum effective action does not need to be an analytic function of the

sources.

Thus, to fully capture a theory requires more than just standard perturbation theory.

This does not imply that these effects are necessarily quantitatively important for any

question. In fact, many questions within the standard model have been treated entirely

perturbatively, and agree with experiment to enormous precision. But there are other

cases, where the same approach fails miserably.

125
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Thus, it is generically necessary to treat also gauge theories beyond perturbation theory.

This induces a host of additional problems already in the quantization process, which will

be discussed here. It should be noted that this is not a fully solved problem yet, and thus

the following may change or need amendments in the future.

7.1 The Gribov-Singer ambiguity

At the root of the problems is the so-called Gribov problem, or more generally the Gribov-

Singer ambiguity. It is genuine non-perturbative, and starts already with the quantization

procedure. The reason is that some of the conditions in section 5.1 turn out to be insuffi-

cient non-perturbatively.

The main problem starts with the realization that local conditions, like the covariant

gauges, do not have unique solutions beyond perturbation theory. This can be most easily

seen in gauges where perturbatively there is one and only solution, like in the Landau

gauge. The additional solutions are called Gribov copies. Thus, the statement of the

existence of Gribov copies takes there the form that the gauge condition ∂µA
µ
a = 0 has

more than one solution beyond perturbation theory. It is for this important to realize that

any non-perturbative treatment has to start from the gauge transformation (4.10) rather

than from the infinitesimal one (4.11). Using the latter implies the assumption that it is

always possible to construct gauge transformations from consecutive infinitesimal ones. It

is this assumption which actually breaks down in non-Abelian gauge theories. Thus, also

any proofs of the uniqueness of gauge conditions based on (4.11) are not necessarily valid

when considering (4.10).

To be concrete, consider su(2) Yang-Mills theory. An example is given by the so-called

instanton field configuration

Aaµ = 2ηaµν
xν

g2 (x2 + ρ2)

ηaµν =











εaµν for µ, ν = 1, 2, 3

δaµ for ν = 4

−δaν for µ = 4

,

which will appear in chapter 8. It satisfies the Landau gauge condition, just because it is

essentially a four-dimensional rotation. Acting with the gauge transformation

G(x) =
τµrµ
r

τµ =

(

~τ

−i

)

,
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on it transforms it into

Aµ =
2λ2

g2r2(r2 + λ2)
τ̄µνr

ν

τ̄µν =
1

4i
(τ̄µτν − τ̄ντµ).

Though this field configuration has a different radial behavior, it remains essentially a

rotation, and therefore also satisfies the Landau gauge condition. The field configura-

tion depends inversely on the gauge coupling, and can thus not be expanded in it in a

perturbative series, showing that this is a genuinely on-perturbative effect.

This can also be seen from the fact that the gauge transformation (7.1) is not continu-

ously deformable to a unit matrix. It is hence not obtainable from a series of infinitesimal

gauge transformation, it is a so-called large gauge transformation. This is actually neces-

sary. Since the perturbative construction proves that there is no infinitesimally adjacent

gauge transformation to the Landau gauge, and it is therefore unique, any additional

gauge copies have to be separated by a large gauge transformation. There are many more

explicit examples known in the literature.

The origin of the problem is that a non-Abelian gauge group has a non-trivial struc-

ture. Especially, in a generic non-Abelian group it is impossible to cover the whole group

with a single coordinate system1. The simplest example is the gauge group SU(2). It is

equivalent to the surface of a 3-sphere. Such a surface cannot be described with a single

coordinate system, as it would be ill-defined at least at one pole, and at least two coor-

dinate systems are necessary. A change of coordinate system is, however, not continous,

and cannot be done by infinitesimal steps - otherwise it would be possibly to construct a

global coordinate system. Hence, on such a structure, not every point is reachable by a

succession of infinitesimal steps.

A unique gauge condition would require to identify at each point in space-time a single

point on this sphere, to identify a unique representative of the gauge orbit. Perturbatively,

this is no problem, as the assumption of a small coupling translates into the requirement

of a small field amplitude, and therefore at all points in space and time the field values

are close to the same point on the sphere. Non-perturbatively, large field amplitudes are

possible, and therefore the field can be anywhere on the sphere. Thus, different coordinate

systems are required for different points in space and time. This is in principle possible,

but such a global information cannot be provided using a local gauge condition, i. e. a

gauge condition which involves only the fields and derivatives, but requires global input,

1This is also the reason why an Abelian gauge theory is not affected. U(1) is isomorphic to a circle,

which can be covered by a single coordinate system.
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like integrals over the field. After all, the coordinate systems at different, possibly far,

separated points in space and time are required. A formal proof of this for the class of

covariant gauges has been established by Singer, but the argument already shows that the

problem will surface for any local gauge condition.

Though this seems to be a formidable problem, it is rather a practical than a conceptual

problem. Using gauge conditions which involve integrals over the gauge fields, it is always

possible to construct gauge conditions, which are not ambiguous. It is straightforward

to implement such gauge conditions in lattice calculations. However, they become very

quickly very expensive in terms of computing time, it may even be exponentially expensive,

when the volume is increased. The reason is that using an integrated gauge condition

implies that an integral equation has to be satisfied, which becomes numerically more

expensive the more lattice points there are.

The situation in the continuum is even worse, and little is known about practical

solutions to the problem. To understand it better, it is best to concentrate on the best-

studied case, the Landau gauge. To understand how to solve the problem requires to

better understand where it affects the perturbative quantization procedure in section 5.1.

The problem is exactly located in the expression (5.1). It is obtained by the inversion of

the operator ∆ in (3.14). This object appears as the Faddeev-Popov determinant (5.2).

Inverting it is only possible if, and only if, the Faddeev-Popov operator has no zero modes,

i. e. in Landau gauge

∂µD
µ
abω

b = λωa,

where the functions ωa appear in the gauge transformation (4.9) has no non-trivial solu-

tions for λ = 0. But, e. g., (7.1) is exactly such a zero mode. This can be immediately seen,

as for any gauge-transformed field Aωµ the Landau gauge condition evaluates infinitesimally

as

∂µAaωµ = ∂µAaµ + ∂µDab
µ ω

b (7.1)

and thus infinitesimally any Gribov copy is obtained from another Landau-gauge con-

figuration exactly by a gauge transformation being a zero mode of the Faddeev-Popov

operator. So far, it is unclear how many Gribov copies of any given field configuration

exist, but any attempt at counting suggest that there may be an infinite number of copies.

Unfortunately, the problem becomes worse. It turns out that there are further Gri-

bov copies which even have negative eigenvalues. These again arise only for large gauge

transformations, and thus do not appear in perturbation theory. However, they imply can-

cellations in an expression like (5.1). Exactly these cancellations will ultimately modify

which states are physical in non-Abelian gauge theories, and thus can be observed.

At this point, it is important to understand the scope of the problem: It is a practical



Chapter 7. Quantization beyond perturbation theory 129

problem. The basic idea of gauge fixing works just fine: Choosing a coordinate system. It

is just that specifying one is more complicated than expected. Especially, the idea that a

local condition, like (3.13), is insufficient, and there are many, probably infinitely many,

coordinate systems satisfying this choice. Singer’s result amplifies this problem by stating

that a unique choice is not possible using a local condition in field space.

Thus, the problem is ’only’ how to select a coordinate system, i. e. gauge, such that

it is useful. Of course, just like covariant gauges (3.19) average eventually over all pos-

sible choices Λ, a first idea could be to just average over all Gribov copies. Such gauges

are called Fujikawa-Hirschfeld gauges. While conceptually a possible solution the arising

cancellations due to the sign of the Faddeev-Popov determinant has yet prevented any

practical use of such a solution.

The alternative is to further tighten the perturbative gauge conditions by imposing

further conditions. Of course, these conditions must still be such that at least one rep-

resentative of every orbit can satisfy them2. Showing that this is possible is occasionally

already a non-trivial problem. So far, no final and proven solution exists. Therefore here

an example, Landau gauge, will be discussed, which is among the best studied so far, to

give a flavor of how to proceed.

To get a visual idea of what is going on, it is useful to imagine the field configuration

space as a three-dimensional ordinary space. Then every gauge-orbit is a curve in this

space, which do not intersect and fill the space densely. Every point along a curve is

a full field configuration, and gauge transformations move along the curves. Imposing

now a perturbative unique gauge condition, in the present example the Landau gauge

condition (3.13), means to introduce a hypersurface into this space, which cuts every

curve orthogonally3. Because of the orthogonality any infinitesimal gauge transformation

moves along the curves outside the hypersurface, and thus the corresponding gauge copies

no longer satisfy the gauge condition.

Gribov copies arise now because the curves cut this perturbative gauge-fixing hyper-

surface multiple times, but always at finite distances on the curve and always orthogonally,

and thus without violation of the perturbative gauge condition. The discrete, though pos-

sible denumerable infinite, set of intersection points makes up the residual gauge orbit.

The aim must therefore be to add conditions, or a sequence of conditions, which remove

these additional intersection points. For this it is useful to understand the structure of the

2Various gauge conditions involving non-local information have been constructed over time. However,

they are usually practical only in the numerical context of lattice simulations, and will therefore not be

covered here, as the goal here are continuum methods. There are also some examples for the case of two

dimensions, in which Yang-Mills theory is trivial and exactly solvable.
3In the context of general relativity, this is also known as a foliation.
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hypersurface, which depends, of course, on the perturbative gauge condition.

As the appearance of Gribov copies is linked to the zero modes by (7.1), it is not

surprising to find that these are also instrumental in structuring the hypersurface. The

first Gribov region is defined by the requirement that the Faddeev-Popov operator (5.3) is

strictly positive semi-definite, i. e., all of its eigenvalues are zero or positive. This region

can be shown to be bounded in terms of the field amplitudes and convex, and the Faddeev-

Popov operator has zero eigenvalues only on the boundary of this region, the so-called first

Gribov horizon. It can be shown that all gauge orbits pass at least once through the first

Gribov region. That is very important, and must be fulfilled by any gauge condition,

since otherwise physical information is lost by implementing it. The boundedness is a

remarkable fact, as it implies that when calculating physical observables no arbitrarily

large field fluctuations have to be taken into account. It contains the origin of field-space,

and thus perturbation theory, as well. This follows from the fact that in the vacuum

case (5.3) reduces to the positive semi-definite Laplacian. Thus by restricting to the first

Gribov region, ordinary perturbation theory is always included.

Besides this first Gribov region, the remainder of the residual gauge orbit is a set of

further Gribov regions. These are separated by further concentric Gribov horizons, each

having more and more negative eigenvalues. The number of negative eigenvalues increases

by one by passing the horizons, but stays constant inside. It is expected that every residual

gauge orbit passes through every Gribov region, though there is not yet an explicit proof

of this.

The first step is then to restrict the path integral to the first Gribov region. This

restriction can be implemented using a functional θ-function in the perturbative gauge-

fixed path integral (5.6)

〈Q〉 = lim
ξ→0

∫

DAµDcDc̄θ
(

−∂µDab
µ

)

Q(Aµ, c, c̄)e
−
∫

d4xLg (7.2)

θ
(

−∂µDab
µ

)

= Π
i
θ(λi),

where λi is the ith eigenvalue of the Faddeev-Popov operator (5.3). Thus, only if all

eigenvalues are positive or zero the θ-function contributes, requiring that the definition

θ(0) = 1 has to be made for the step function. Note that the restriction is actually neces-

sary, as otherwise the formal inversion of the Faddeev-Popov operator in (3.14) becomes

problematic. The horizon also needs special care during the inversion. It is essentially a

zero-over-zero problem, needing a well-define regularization, something which is also not

yet fully formally under control.

Unfortunately, a unique, method-independent prescription how to effectively imple-

ment this restriction to the first Gribov region explicitly has not yet been constructed.
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There are, however, a number of possibilities, which have been explored.

E. g. one proposal for how to implement this restriction using additional ghost fields,

and thus in a similar way as in perturbation theory, has been made by approximating

the θ-function by a δ-function with the argument that in a high-dimensional space only

the boundary contains an appreciable part of the volume. This generates the so-called

Zwanziger Lagrangian. However, due to subtleties related to the definition of the step-

function it is not yet proven that this is a valid procedure, though it has many interest-

ing properties. Furthermore, no Gribov copy, or any gauge copy in general, is preferred

compared to another. It would thus be completely legitimate to always chose the inner-

most Gribov copy for each gauge orbit. If (almost) all gauge orbits have a representative

away from the Gribov horizon, this would yield distinctively different results for gauge-

dependent quantities, e. g. the expectation value of the lowest Faddeev-Popov eigenvalue.

Thus, such a replacement is already implementing a certain selection of Gribov copies,

and thus corresponds to an extended gauge-fixing procedure. This is completely correct,

provided (almost) all gauge orbits have Gribov copies on the Gribov horizon. Though not

proven, this appears very likely.

However, even after restricting to the first Gribov region, the remainders of the residual

gauge orbits still possess a large number of Gribov copies. In particular, also on the horizon

such additional copies arise, which make the replacement using a δ-function an even more

non-trivial attempt.

This set of Gribov copies in the first Gribov region will also be denoted as the residual

gauge orbit in the following, to avoid the term residual of the residual gauge orbit. In fact,

in an infinite volume this number is likely infinite, and in a finite volume V it appears

to be a rapidly rising function of V . Actually, counting Gribov copies is in practice a

non-trivial problem, since two Gribov copies are different if and only if they differ at least

at one space-time point after factorizing all possible global gauge transformations and all

space-time transformations. This implies that for the decision whether two representatives

of a gauge orbit are identical or Gribov copies, it is required to compare their field values

at every space-time point4. It is also in general non-trivial how to find all Gribov copies,

so that they can be counted5.

Once more, it should be noted that one Gribov copy has no intrinsic difference com-

4It appears that Gribov copies differ from each other over some large domain, so in practice already

a coarse search can yield that two candidates are different. However, to ensure that they are the same

requires a check of the whole space-time point by point.
5It should be noted that, though two dimensions has trivial dynamics, gauge fixing has the same

subtleties as in higher dimensions. Two-dimensional Yang-Mills theory is therefore an ideal laboratory to

study these issues without the obscuring dynamics.
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pared to another Gribov copy, since they are physically equivalent. Thus any choice of

a Gribov copy to represent the residual gauge orbit is equally acceptable. This is nicely

illustrated by using stochastic quantization. Stochastic quantization is an alternative,

but equivalent, formulation, of the path integral as a stochastic process, where additional

dynamics occur in an additional, fictitious time. The equilibrated results for correlation

functions are then the ordinary correlation functions. In this approach it is found that

there is no stochastic force acting along a gauge orbit, and thus in the stochastic equili-

bration process no point on a gauge orbit is preferred. This, of course, is just in disguise

the problems encountered when defining the path integral, which require to introduce a

gauge condition in the first place.

As stated, the residual gauge orbits inside the first Gribov horizon possess further

Gribov copies. It is therefore necessary to specify a gauge further. There are two strategies

mainly in use currently for that purpose. The first method is essentially a stochastic

approach. In this case, instead of specifying conditions for selecting a Gribov copy, a

random Gribov copy is chosen for each residual gauge orbit. This prescription, termed the

minimal Landau gauge, therefore averages over Gribov-copy-dependent properties when

calculating correlation functions. Assuming the choice to be ergodic, unbiased, and well-

behaved, this implies that this prescription is equivalent to averaging over the residual

gauge orbit. However, a constructive prescription how to make this choice in a path integral

formulation is only developing. Precise definitions of this gauge therefore exist only as

operational definitions in terms of algorithms in lattice gauge theory. The second approach

attempts to characterize Gribov copies and make a choice based on these characteristics.

One possibility will be discussed as an example.

The central element of all operational definitions of the Landau gauge is the fact that

any Gribov copy in the first Gribov region maximizes the functional

F [A] = 1− 1

V

∫

ddxAaµA
a
µ (7.3)

〈F [A]〉 = 1− Ng

2dπd/2Γ
(

1 + d
2

)

V

∫

dppd−1Dµaa
µ (p)

Dab
µν = 〈AaµAbν〉,

on each configuration, where Dab
µν is again the (full) gauge boson propagator. This implies

that this gauge minimizes the integrated weight of the gluon propagator. That this is

indeed satisfying the Landau gauge conditions follows from the fact that the first derivative

of (7.3) is the Landau gauge condition, and the Hessian is the Faddeev-Popov operator.

If any given algorithm finds one of all the maxima with equal probability, it would be

a faithful representation of the distribution along the residual gauge orbit, and also be
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ergodic. The fact that there are multiple Gribov copies inside the first Gribov region

translates into the statement that the functional (7.3) has multiple maxima.

An alternative way to choose a representative on the residual gauge orbit is then

absolute Landau gauge, which makes a very definite choice rather than a random choice.

This gauge choice is derived from the following observation. The functional (7.3) has, up

to topological identifications, a unique absolute maximum. The resulting set of absolute

maxima, called the fundamental modular domain or region is by definition embedded in

the first Gribov region, and includes the origin. It is less trivial to show that it is also

convex and bounded, and thus connected. It can furthermore be shown that part of

the boundary of the fundamental modular domain coincides with the Gribov horizon in

the thermodynamic limit only. All possibly remaining degenerate absolute minima are

on the boundary. This boundary has actually a quite rough structure, including wedge

singularities, and the topological configurations to be discussed in chapter 8 are located

there. By construction, in this region the gauge boson propagator has its least integrated

weight.

Based on this observation, the absolute Landau gauge is defined as selecting the Gribov

copy which belongs to the fundamental modular domain. This condition can be realized

by either checking the absolute minimization of (7.3) explicitly or by the introduction of a

suitable weight factor in the path integral. In case the residual gauge orbit has more than

one Gribov copy on the boundary of the fundamental modular domain, again a random

choice is made. It should be noted that if the thermodynamic arguments made before were

correct, the absolute Landau gauge and the minimal Landau gauge will coincide in the

thermodynamic limit if the non-overlapping parts of the Gribov horizon are of measure

zero.

Both these descriptions belong to a larger class of descriptions. It is obtained by

rewriting the path integral in the expression (7.2) as

〈O〉 = lim
ξ→0

∫

DAµDcDc̄O(Aµ, c, c̄)Θ(−∂µDab
µ )e−

∫

d4xLgw(Aµ, c, c̄), (7.4)

where w is an appropriately chosen weight functions, which includes a normalization such

that any observable remains unchanged. The minimal Landau gauge corresponds to the

choice w = 1, i. e. averaging over the first Gribov region with a flat weight. The absolute

Landau gauge takes the form

w2 = exp

(

N2 −
λ2
V

∫

ddxAaµA
µ
a

)

. (7.5)

where the Ni are appropriately chosen normalizations and the limit of λ2 → ∞ has to be

taken. The opposite limit λ2 → 0 recovers the minimal Landau gauge. These weights can



134 7.2. Non-perturbative BRST symmetry

also depend on other fields. Another possibility discussed in the literature is

w1 = exp

(

N1 +
λ1
V

∫

ddxddy∂xµ c̄
a(x)∂µy c

a(y)

)

(7.6)

involving the ghost fields. It is important to note that all these gauges include non-local

information, both from the Θ function, as well as from the integrals. In a sense, minimal

Landau gauge is special, as there all non-localities stem from the Θ function alone, another

justification of its name.

Even if (7.4) turns out to be well-defined, this is not yet sufficient for making it useful

in practical calculations. The conditions (7.5) and (7.6) appear to translate into boundary

conditions of, e. g., the Dyson-Schwinger equations (5.49). Thus, these equations would

have multiple solutions, each corresponding to different gauges, and the corresponding

boundary conditions will select among them. Conversely this implies that such equations

for gauge-invariant quantities would have only a single solution, no matter what gauge-

dependent quantities are input. It is at the current time not yet clear whether this is

indeed how it works.

However, this also shows how the problem is vanishing in perturbation theory once

more. The perturbative series is not a self-consistency equation like the Dyson-Schwinger

equation, but a functional, i. e. creates a unique solution, and always has a non-negative

Faddeev-Popov operator.

7.2 Non-perturbative BRST symmetry

As section 5.2 has shown BRST symmetry is instrumental in establishing the physical

state space. However, the Gribov-Singer ambiguity also breaks perturbative BRST sym-

metry. This is once more best seen in Landau gauge. Consider the BRST transformations

(5.7-5.10). The BRST transformations of the gauge field, (5.7), is an ordinary gauge trans-

formation, which is just a bit strange because the gauge transformation function ξub is

constructed from the gauge field. However, because the perturbative Landau gauge has

a unique solution this transformation cannot be anything but the identity transformation

for the gauge field. Thus, any gauge transformation which would change the gauge field

would automatically break Landau gauge. Thus, the remaining transformations (5.8-5.10)

may alter the ghost fields and the Nakanishi-Lautrup fields, but cannot do anything on

the gauge field. This implies that if the ghost and the Nakanishi-Lautrup field would be

integrated out, the whole path integral would become trivial under a BRST transforma-

tion, as the Faddeev-Popov determinant must also be invariant as it then only involves

the gauge boson field.
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This already immediately implies that Gribov copies modify the situation, as both the

gauge field and the Faddeev-Popov determinant changes when changing from one Gribov

copy to another. Especially, as these can be applied before introducing the ghosts and

Nakanishi-Lautrup field, they act not differently than a BRST transformation, except that

they are not perturbative BRST transformations.

On the other hand, since the BRST transformation should not alter the Landau gauge

condition, it follows for the BRST transformed field that

0 = ∂µ(Aaµ + δBA
a
µ) = ∂µδBA

a
µ = ∂µDab

µ (λub)

and thus a valid BRST transformation in Landau gauge requires that the Faddeev-Popov

operator has a zero mode, and thus breaks the perturbative quantization in section 5.1, just

as expected from the Gribov-Singer ambiguity in section 7.1, and shows that the BRST

transformation in Landau gauge really just transfers between different Gribov copies.

To understand this importance, it is necessary to interject a few more words on the

concept of broken symmetries.

A symmetry of a classical system, i. e. of the Lagrangian, which remains unbroken in

the quantization process can still be broken dynamically, i. e. spontaneously. To describe

this, in the following the language of correlation functions will again be used. In terms of

correlation functions, a symmetry is unbroken, if under a symmetry transformation of the

Lagrangian for fields φi

φi → φi + δφi (7.7)

all correlation functions remain invariant as well. This implies that the correlation func-

tions of operators not invariant under (7.7), e. g. 〈φi〉, have to vanish identical. If these

conditions are not fulfilled, the symmetry is broken.

In case of a gauge theory, it is necessary to differentiate between gauge-invariant and

non-gauge-invariant correlation functions. If only gauge-dependent correlation functions

show a behavior indicating the breakdown of a symmetry, this cannot have any measurable

consequences. If the affected symmetry is a global part of the gauge symmetry6, it can be

argued that this is a mere artifact of the description, and the symmetry is, in fact, intact.

This is the combination of observations which will be used here.

Before continuing, it is worthwhile to discuss the question of observing a broken symme-

try. Naively, when just performing the path integral, all correlation functions non-invariant

under some global symmetry will always vanish. The trivial reason is just that no direc-

tion of the global symmetry is preferred without an explicit breaking. This can only be

6Any local part cannot be broken anyhow. This can be proven exactly, and is known as Elitzur’s

theorem. In fact, explicit breaking would yield a gauge anomaly, and thus observable quantities would

depend on the gauge, which is not desirable for a theory describing physics.
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remedied by introducing an explicit breaking when determining the correlation functions,

and performing the limit of zero explicit breaking afterwards. This is done, e. g., by the

introduction of an external field.

Put it otherwise, spontaneous breaking is observed by preventing the system to reach

all possible targets of a symmetry transformations by an external field equally likely. As

a consequence, the correlation functions are no longer unbiased averages over all field

configurations linked by a symmetry transformation, and therefore no longer invariant

under such transformations.

In fact, in an experimental observation an absolute direction is never observed. E.

g., take a magnet’s magnetization. The orientation is measured relative to a reference

orientation, e. g., compared to a different magnet. This reference orientation plays the role

of the explicit breaking. Thus, an equivalent way of observing the breaking of a symmetry

is to use operators invariant under a global symmetry transformation, but measuring the

relative orientation of two operators not being separately invariant. One such operator for

a magnet would be the averaged magnetization correlator,

CMM = 〈MM〉 (7.8)

M =
∑

i

si

where the si are the local spins, and thus M is the configuration-wise polarization. Since

the latter is only non-zero in the broken phase, the correlator can only then be non-zero.

The same concept together with the Fujikawa-Hirschfeld gauge can be used to recover7

a well-defined non-perturbative BRST symmetry, obeying the same algebra (5.13-5.15)

as the perturbative version. The BRST transformations (5.7-5.10) are, in fact, just an

ordinary gauge transformation for the gauge boson fields. This becomes evident when the

ghost fields are integrated out. Leaving matter aside, the integrand of the path integral

only involves the gauge boson fields. The BRST symmetry is thus not changing physical

observables. Thus, the only non-trivial action can be a gauge transformation. The explicit

form after integrating out the ghosts is, even perturbatively, very complicated, and non-

local. What happens is essentially just a gauge transformation between the different

gauge copies satisfying the covariant gauge condition. This implies that the Gaussian

weight function will also change such as to alter the weight of the gauge copy appropriately.

Furthermore, in the Landau gauge case the perturbative BRST transformation can only be

the identity transformation, as there is one and only one configuration perturbatively which

7The following is not mathematical rigorous, but there are possibilities, using lattice gauge theory, to

make it much more so.
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satisfies the Landau gauge condition. This is especially so, as the BRST transformation

does not change the gauge parameter.

Beyond perturbation theory, the situation changes by the appearance of Gribov copies.

Especially, since there is now more than one gauge copy satisfying the Landau gauge

condition, the BRST transformation is no longer an identity transformation in Landau

gauge.

Now, concentrate again on Landau gauge. By construction, any BRST transformation

will not change the Landau gauge condition, because of the anti-ghost equation of motion.

This implies that BRST transformations mediate between different Landau-gauge Gribov

copies. If an extended gauge condition, like minimal Landau gauge, selects only a subset

of Gribov copies, it is possible that a BRST transformation leads out of this set, and thus

BRST symmetry appears broken: The correlation functions are no longer invariant. How-

ever, this breaking is again introduced by an additional gauge condition, which specializes

the Landau gauge further to the minimal Landau gauge.

To restore invariance, it is necessary to choose a gauge which is respecting BRST. This

requires to include all8 possible targets of a BRST transformation, i. e. all Gribov copies.

But this is just a Fujikawa-Hirschfeld-Landau type gauge. By averaging over all Gribov

copies, the correlation functions are also averages over all possible BRST-transformed

versions of them. Thus, they will be invariant under BRST transformations. Thus BRST

symmetry can be regained just as any other global (gauge) symmetry. Whether there

exist relative alignment operators and what their interpretation would be is an interesting

question, in particular whether they show the existence of broken and unbroken phases,

and if yes, under which circumstances. This is not yet known. However, similar insights

as presented here for Landau gauge are not available yet for covariant gauges. It is thus

unclear, whether this construction holds beyond Landau gauge, though there is no hint

that this should not be the case.

This leaves the question what occurs in the other non-perturbative completions of the

Landau gauge. That is not yet well understood. However, the following argument may

give a guide-line. If the condition restricts to a set of Gribov copies, like the minimal

Landau gauge, there is still a residual gauge symmetry which links this set. To the

best of our current knowledge, this symmetry will likely not be a local transformation,

i. e. its transformation rules will involve integrals. This makes any construction at least

complicated, though likely not impossible. The only exception may be those cases where

really a single gauge copy is identified, like in the case of the fundamental modular region.

8It would of course be interesting to know if there exist any subsets of Gribov copies such that BRST

would remain intact within these subsets. But this is unknown.
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How to proceed in this case is yet unclear. But by analogy it is likely that BRST symmetry

then works like in the perturbative Landau gauge, i. e. its acts only on the ghost fields

non-trivially.

However, this does not yet makes statements whether BRST symmetry also continues

to define physical states. For this also the linearity of the asymptotic states in the elemen-

tary fields was necessary in section 5.2.2.4. Beyond perturbation theory, this is no longer

true, and asymptotic states can be composite. This requires to classify gauge-invariant

states first.

7.3 Gauge-invariance beyond perturbation theory

As the previous discussion shows, it is not possible to just simply extend the construction

of section 5.2.2 to identify physical degrees of freedom. Especially, beyond perturbation

theory asymptotic states are not necessarily anymore just the elementary states, but can

now be composite. Just think of the hydrogen atom in QED. Thus, the argument that

there is no target available for the BRST transformation is no longer valid9. Especially,

the transverse projected part of sAaµ is

(

gµν −
pµpν
p2

)

Dµab(λcb) = gfabcub
(

gµν −
pµpν
p2

)

Aνc,

which is only in the limit g → 0 zero, and thus non-perturbatively the gauge field belongs

to V2, rather than V1, and is thus unphysical, if BRST would work. Also, the basic

assumption of perturbation theory that asymptotic fields can only be linear combinations

of the elmentary fields breaks down.

Thus, this requires to construct physical states in a different way. The obvious choice

is to have only gauge-invariant states as physical states, as they are automatically also

BRST invariant, as this is only a particular gauge transformation. The natural question

is then, whether there exists a kind of ’gauge-invariant’, or at least non-perturbatively

BRST-invariant if BRST symmetry exists, version of the gauge bosons or of the matter

fields. As it turns out, the answer to this is quite different for Abelian and non-Abelian

gauge theories.

9Alternatively, it can be shown that a unitary time evolution cannot yield free fields, and thus asymp-

totic states need to be interacting. This is once more Haag’s theorem at work.
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7.3.1 Abelian gauge theories and the Dirac phase

Consider first the Abelian gauge field, which transforms according to (3.9), Aµ → A′
µ =

Aµ + ∂µg. If the gauge field is contracted with a transverse projector, this yields for the

gauge-transformed field in momentum space
(

gµν −
pµpν
p2

)

Aµ
′

=

(

gµν −
pµpν
p2

)

(Aµ + pµg(p)) =

(

gµν −
pµpν
p2

)

Aµ.

Thus, the transverse projected gauge-field is invariant under a gauge transformation. The

longitudinal part behaves like

pµpν
p2

Aµ
′

=
pµpν
p2

Aµ +
pν
p2
g(p)

and thus carries all the changes, but does also include (longitudinal) information from the

gauge field.

To get rid of this part, define a physical photon field APµ as

APµ =

(

gµν −
pµpν
p2

)

Aν ,

which is manifestly transverse, and thus has only two degrees of freedom, and is invariant

under gauge transformations. Seems to be pretty simple, but there is a catch.

This catch appears when trying to invert the Fourier transform, and return to position

space. This yields
∫

d4pAPµ (p)e
ipx =

∫

d4p

(

gµν −
pµpν
p2

)

Aν(p)eipx.

Now, this is no longer a simple expression, because of the factor 1/p2. Rather, what is

needed is a an integral over all of space of Aµ(x),

APµ (x) = gµν

∫

d4yδ(x− y)Aν(y)− 1

4π

∫

d4y
∂µ∂ν
|x− y|A

ν(y) (7.9)

= gµνA
ν(x)− 1

4π

∫

d4y
∂µ∂ν
|x− y|A

ν(y).

Because
(

gµν

∫

d4yδ(x− y)− 1

4π

∫

d4y
∂µ∂ν
|x− y|

)

∂νg(y)

= ∂µg(x)−
1

4π

∫

d4y
∂2∂µg(y)

|x− y| = ∂µg − ∂µg = 0, (7.10)

the so defined field is indeed gauge-invariant. However, it is not a local object anymore,

as the second integral is not reduced. Thus passing to a physical vector field implies even
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in QED giving up locality. Note that the physical field is entirely transverse, as any other

contraction of it vanishes by construction. Thus, it carries only two degrees of freedom

(in four dimensions). In fact, as the non-local term is essentially a solution to the partial

differential equations determining the vector potential at fixed electric and magnetic field,

it is possible to regain an expression in terms of these fields.

Likewise, it is possible to construct an electron field with such a non-local construction.

Define the Dirac phase

D(x) = exp



−ie
∞
∫

x

dyµAµ(y)





which transforms under a gauge transformation using

exp



−ie
∞
∫

x

dyµ∂µg(y)



 = exp(−ieg(x)) (7.11)

just opposite to a matter field. Thus, given a matter field ψ(x), the combination

ψP (x) = D(x)ψ(x) (7.12)

creates a gauge-invariant, physical state, e. g. an observable electron.

This expression is again non-local, as the line integral starts at infinity and connects

to some point x. This connection is called a Dirac string. It can be shown that the results

of physical processes cannot depend on the detailed form of the Dirac string. However, it

punctuates any sphere around x, and thus creates non-contractible paths. Hence, it can

also not simply be dismissed. Such a situation, where non-locality is reduced to a single

point on any sphere around some local position x is called almost local. Note that the

Dirac phase acts like an inverse transporter in the sense of section 4.5. Thus, what the

Dirac string actually does is compensating for the arbitrary changes of coordinate systems.

While the field (7.12) is thus the physical electron, and should be used in actual calcu-

lations, this can often be reduced to the usual perturbative electron. If the gauge field has

a small enough amplitude such that the line integral is of order one, then the Dirac phase

can be expanded in the electric coupling constant, yielding 1 + O(e). Thus, any effects

from this dressing are of one order higher in the coupling constant than when using the

usual elementary field. Hence, in a purely perturbative construction the dressing can be

neglected. However, if the line integral of the fields becomes large, of order 1/e, this is no

longer possible. Thus, at strong fields it is necessary to work with (7.12) even in a weakly

coupled Abelian gauge theory.

Similar statements hold when considering the physical vector field (7.9). The integrated

amplitude is small, if the field is well localized and has also locally a small amplitude. Then
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the gauge field can be approximated by a δ-function, for which the integral can be solved,

yielding just the local field. Hence, the physical field becomes the unphysical field in the

small amplitude limit.

7.3.2 Composite states as physical degree of freedoms

When turning to a non-Abelian gauge theories, the first idea would be to do also just (7.9)

and (7.12). That is, unfortunately, not possible. The reason is that now the transformation

formulas involve the covariant, rather than the ordinary, derivative. Thus, the calculation

(7.10) does not work out, and involves an integral over the gauge field. Likewise, (7.11)

does not work, as it involves now also an integral over the gauge field.

Of course, it is tempting to add further terms to the Dirac phase or consider a more

involved kernel than ∂µ∂ν/x
2 to counter these effect. At least in the sense of an infinite

series, this appears to be possible at first. However, it turns out that this series requires

an explicit inversion of the Faddeev-Popov operator. Because of the apperance of zero

modes due to Gribov copies, see section 7.1, this is not possible. Except in perturbation

theory, because there no such zero modes exist. Hence, in perturbation theory such a

construction, in the sense of an asymptotic series, is possible. But only then. And in

fact, in the same sense as before this reduces the physical states to the elmentary ones

in a perturbative expansion, and just yields results which are consistent with the BRST

construction of chapter 5. Beyond perturbation theory, this is no longer possible.

Hence, beyond perturbation theory it is necessary10 to construct gauge-invariant states

differently. The key to this are composite operators. Operators like

O(x) = φ†(x)φ(x) (7.13)

are manifestly gauge-invariant, even beyond perturbation theory. Likewise any operator

build from combinations of the field strength tensor in a similar manner is gauge invariant,

e. g. the action itself. Furthermore, so-called Wilson lines

W (Cx→y) = exp






−ig

∫

Cx→y

dxµA
µ






,

transform like

W (x, y) → g(x)W (x, y)g(y)−1,

10Note that, despite overhelming circumstantial evidence, there is no rigourous proof that no alternative

exists. Thus, while unlikely, it cannot (yet) be excluded that an analogous construction to the Dirac phase

is possible in the non-Abelian case.
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where Cx→y is a path connecting the points x and y. Therefore bilocal objects

O(x, y) = φ†(y)W (y, x)φ(x) (7.14)

are also gauge-invariant. Likewise more complicated objects can be build. Note that the

important difference between the Wilson line and the Dirac phase is that even if either

endpoint is send to infinity there is still a factor g(∞) under a gauge transformation. It

is this fact that the Wilson line in a non-Abelian gauge theory transforms bilocal rather

than local as the Dirac phase does, which differentiates between the Abelian case and the

non-Abelian case.

Especially, this shows again how in perturbation theory the elementary fields become

physical. To leading order in the coupling constant the Wilson line is again 1. Thus, an

expression like (7.14) reduces to φ†(y)φ(x), but the expectation value of this is merely the

propagator of the elementary particle. Hence, extended gauge-invariant objectes become

independent elementary particles in perturbation theory.

This allows also to interpret (7.13) as being two particles at the same place. And this

is only a localized bound state. Hence, such operatores describe bound states.

Of course, determining the properties of such bound states, or bilocal or more com-

plicated objects, then formally requires non-perturbative methods11. This will not be

detailed here, but is relegated to the corresponding lectures, e. g. lattice field theory or

functional methods. And, of course, if the bound state characteristic is only a minor dis-

turbance, this can still be done perturbatively. E. g. at a couple of hundred of GeVs in

both QCD and QED the corrections due to the Dirac phase and Wilson lines are negligbly

small when it comes to cross sections. This can be intuitevly understood12: Shooting

particles at each other at such energies they will pass each other so quickly that the bound

state formation time is just far too long to have any relevance. Still, any field-theoretical

sound approach should at least formulate the starting point of a calculation of any ob-

servable quantity first in terms of also non-perturbatively gauge-invariant quantities, and

then systematically develop these expression when doing a perturbative calculation. This

may lead to potentially different results then if just using the Feynman rules. E. g. the

situation at LHC with colliding protons is described by the gauge-invariant initial protons,

which are then decomposed into quarks by a technique called factorization, rather than

with just three asymptotically non-interacting quarks. This would, e. g., totally miss the

gluon content of the proton, which is actually the most relevant contribution at typical

LHC energies.

11In the presence of a Brout-Englert-Higgs effect there is some way to circumvent this. See the lecture

on electroweak physics for details
12A word of caution: In other theories this statement may be misleading.
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7.3.3 Gauge invariance as redundancy

The previous discussion should have shown that a physical problem needs to be formulated

in a manifestly gauge-invariant way. Especially, gauge-dependent quantities cannot be used

to characterize physical processes. In QED, it is explicitly possible to transform to such

degrees of freedom by (7.9) and (7.12), while in non-Abelian gauge theories composite

operators are necessary. Of course, also in QED the non-localities can be foregone by

using composite operators only.

It is thus possible to formulate the problem in terms of gauge-invariant quantities. In

QED, it is actually possible to transform the path integral into the variables (7.9) and

(7.12), i. e. physical degrees of freedom. Of course, because of the Dirac string, this will

no longer lead to a local Lagrangian. On the other hand, the Dirac string explains how

a non-local effect like the Aharnov-Bohm effect can emerge, or how Bell’s inequalities

can be understood. Still, the resulting formalism is cumbersome at least, and technically

practically impossible to use at worst. The situation is worse for the non-Abelian case.

It appears possible to rewrite the path integral in terms of a sum over all possible closed

Wilson loops, i. e. Wilson lines in which the path is closed. Howevere, there is an infinity

of such Wilson loops, and thus there would be an infinite number of integration variables

in the path integral. Thus, while conceptually interesting, this is practically essentially

irrelevant.

Still, both aspects together shows that gauge degres of freedom are, indeed, just auxil-

liary fields, which can be removed. This is done at the expense of a non-local formulation

of quantum theory, and thus essentially insurmountable technical complications at the

current time. But it shows that gauge degrees of freedom are unphysical, and a problem

needs to be formulated manifestly gauge-invariantly before gauge degrees of freedom can

then be used to solve it in a technically convenient way.

7.3.4 Asymptotic state space

To complete the discussion, this leads to the question ofobservable states. In principle

now all physically observable states need to be described by gauge-invariant operators. At

the same time, gauge-dependent operators can still describe asymptotic states, but they

will belong to an unphysical (gauge-dependent) state space. Thus, just like in section 5.2,

the total space is split into two. The total space has an indefinite metric, and contains all

gauge-dependent states. The gauge-invariant ones are in the physical subspace, which is a

Hilbert space. In principle, this Hilbert space would be sufficient to describe all of physics,

but at the expense of being governed by non-local dynamics. Gauge-dependent states
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cannot evolve into gauge-invariant, and vice-versa, as the S-matrix itself is gauge-invariant,

and can thus not change gauge-dependency. Thus, all observable states (and thus any

particles) need to be gauge-invariant, especially in the sense of asymptotic states. In non-

Abelian gauge theories, these are composite, and thus need in general a non-perturbative

description, though in special cases this may not be quantitatively relevant.



Chapter 8

Topology

8.1 Topological excitations

While matter particles, gauge bosons and bound states are states which consists out of

a few valence particles, i. e. particles which define their quantum numbers, non-Abelian

gauge theories can also support other states. Especially, it can support states which are

genuine collective excitations of gauge bosons, with or without matter, which can no longer

be identified individually. Such states are usually highly unstable. However, some such

excitations are stabilized by geometric effects, and then called topological excitations, for

reasons to be explored in the following.

The most prominent of these excitations are so-called instantons. Though it is not

possible to directly observe instantons, their effects can be identified, e. g., in lattice

calculations through various techniques. To understand them, it is best to first investigate

similar excitations in quantum mechanics.

8.1.1 Instantons in quantum mechanics

8.1.1.1 Leading order

The starting point is a one-dimensional double-well potential

V (x) = λ
(

x2 − η2
)2

This potential has two degenerate ground states centered around ±η. These are two clas-

sically separated vacua for particles with kinetic energies less than λη4. The quantization

can be done using the WKB approximation. Then the wave function is assumed as

ψ (x) = eiΦ(x)

145
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where

Φ (x) = ±
x
∫

dx′p (x′) +O (~) (8.1)

p (x) =
√
2m
√

E − V (x)

where m is the mass of the particle and E is its energy. The WKB approximation re-

sults from an expansion in ~, here only taken to lowest order. If quantization is done

around both minima, two degenerate solutions are found. However, this is not quantum

mechanically true, and tunneling will mix both states. The new ground state will be the

symmetric combination of both single states, and the first excited state will be the anti-

symmetric combination. During tunneling, the WKB solutions do not oscillate, but decay

exponentially.

An analogous expansion of the quantum-mechanical path integral around the classical

path can be done. The imaginary values of p of the WKB approximation can equivalently

be replaced by imaginary time, a so-called Wick rotation. The Green’s function describing

the tunneling is then given by

〈

−η|e−iHt|η
〉

=

∫

Dre−S,

where r is the path and S the action. The path associated with the solution of the classical

equations of motion in imaginary time gives then the maximum contribution to the path

integral.

The path integral can be expanded around this path as a correction factor. After the

Wick rotation is performed, the classical equation of motion for the tunneling path is given

by

m
d2x

dτ 2
=
dV

dx
or equivalently by the conservation of energy for the lowest classical energy state, where

E = 0,
m

2

(

dx

dτ

)2

− V (x) = 0

yielding after separation of variables

dτ =
1

√

2λ
m
(x2 − η2)2

dx =
1

η2
√

2λ
m

1

1− x2

η2

dx =
1

η
√

2λ
m

1

1− u2
du.

This can be integrated and yields

τ − τ0 =
1

η
√

2λ
m

tanh−1 x

η



Chapter 8. Topology 147

where both integration constants have been absorbed in τ0. This yields for the classical

path

xcl (τ) = η tanh
(ω

2
(τ − τ0)

)

(8.2)

ω2 =
8η2λ

m
(8.3)

The solution goes from xcl (−∞) = −η to xcl (∞) = η, and hence describes the tunneling

of the lowest classical energy state from one classical allowed position to the other. τ0 is

a free parameter and describes the localization of the tunneling in imaginary time. The

solution is well localized in time. The path (8.2) is referred to as an instanton. Its reverse

−xcl (τ) is referred to as an anti-instanton.

The action of this path is

S0 =

∞
∫

−∞

dτ

(

m

2

(

dx

dτ

)2

+ V (x)

)

Rescaling ω
2
(τ − τ0) → τ this yields

S0 =

∞
∫

−∞

dτ

(

mη2ω

4

1

cosh4 τ
+

2λη4

ω

(

tanh2 τ − 1
)2
)

=
mη2ω

3
+

8λη4

3ω
=
m2ω3

12λ

It is convenient to scale such, that m = ω = 1 and to change the potential to V (x) =

λx2 (x+ 2η)2. The action is then 1
12λ

and the condition λ≪ 1 controls the validity of the

semi-classical expansion.

To calculate the tunneling amplitude, the exponent of the path integral is expanded

around the classical path

〈

0|e−Hτ |2η
〉

= e−S0

∫

D [δr] e
− 1

2
δx δ

2S
δx2

∣

∣

∣

xcl

δx+O(δx3)
(8.4)

Note that the linear term vanishes, since the classical path already minimizes the action.

It is implicitly assumed, that τ is smaller than the typical lifetime of an instanton, oth-

erwise modes with more than one instanton would have to be taken into account. It is

also assumed that τ is nevertheless large enough to allow the semi-classical WKB approx-

imation. The tunneling is hence proportional to exp (−S0). The proportionality constant

requires the calculation of higher orders.
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8.1.1.2 Higher-order corrections

To take fluctuations into account, it is necessary to calculate the second factor up to order

O (δx2) in (8.4). The functional derivative of the action gives the operator

O = − d2

dτ 2
+
d2V

dx2

∣

∣

∣

∣

x=xcl

The path integral is Gaussian in δx. As the integral is Gaussian, it can be calculated by

reverting to its definition as a limit of Riemann integrals, yielding

∏

s

(
∫

dxs

)

e
− 1

2

∑

i,j

xiOijxj
= (2π)

n
2

1√
detO

The determinant can be calculated by finding the eigenvalues of O. This task is rather

typical for calculations involving topological excitations, and warrants therefore a rather

detailed investigation.

Since determinants are products of eigenvalues, this amounts to solving the eigenvalue

equation

εnxn (τ) = Oxn (τ)

=

(

− d2

dτ 2
+ λ

d

dx

(

4x
(

x2 − η2
))

∣

∣

∣

∣

x=xcl

)

xn (τ)

=

(

− d2

dτ 2
+

3

2
ω2 tanh2

(ω

2
(τ − τ0)

)

− 1

2
ω2

)

xn (τ) .

Using 1− 1
cosh2 x

= tanh2 x and resetting τ − τ0 → τ and xn (τ + τ0) → xn (τ) yields

(

− d2

dτ 2
+ ω2

(

1− 3

2 cosh2
(

ωτ
2

)

))

xn (τ) = εnxn (τ)

The solutions to this Schrödinger-type equation are known. They can be found by the

following procedure

0 =

(

− d2

dτ 2
− 2

3ω2

4

cosh2
(

ωτ
2

) − 2
1

2

(

εn − ω2
)

)

xn

=
d

dy

(

(

1− y2
) dxn
dy

)

+

(

s (s+ 1)− En
1− y2

)

y

where en = 1
2
(εn − ω2), En = 2

ω

√−2en, y = tanhωτ/2, and s contains all remaining

constants. Making then the ansatz

xn =
(

1− y2
)
En
2 w (y)
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yields

0 = u (1− u)
d2w

dy2
+ (En + 1) (1− 2u)

dw

dy
− (En − s) (En + s+ 1)

with u = (1− y) /2.

This is the differential equation for a hypergeometric function and the solutions are

xn = (1− y)
En
2 F

(

En − s, En + s+ 1, En + 1,
1− y

2

)

For a finite wave function it is required that s = En + n with n < 2.

Hence only two bound states arise, 0 and 1. The original energy is then

εn = ω2

(

−1

4
(s− n)2 + 1

)

ε0 = 0

ε1 =
3

4
ω2

There is in addition a scattering continuum. The normalized eigenfunction for ε0 is

x0 (τ) =

√

3ω

8

1

cosh2 ωτ
2

which can be verified by insertion.

The presence of a zero-mode, i. e. ε0 = 0, results in a vanishing determinant and hence

in an infinite tunneling amplitude. This can only be interpreted in such a way that the

fluctuations in direction of the zero mode are not small, and the expansion in terms of a

Gaussian is invalid. The integration in the direction of the zero mode path must hence be

done exactly. To do this, the paths are parametrized by

x (τ) =
∑

n

cnxn (τ)

Noting further that

d

dτ0
xcl (τ − τ0) = −ωη

2

1

cosh2
(

ω
2
(τ − τ0)

) = −ω
√

S0x0 (τ)

where again τ − τ0 was taken into τ . By replacing the integration over the expansion part

of c0 by

dx =
dx

dτ0
dτ0

and using that the expansion takes only into account fluctuations around the classical path

dx =
dx

dτ0
dτ0 ≈

dxcl
dτ0

dτ0 = −ω
√

S0x0 (τ) dτ0

dx

x0
= −ω

√

S0dτ0
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simplifies the problem further. Finally, using

dx = x0dc0 =⇒ dc0 = −ω
√

S0dτ0

the functional integral can now be rewritten from integrals about different space points to

an integral over all possible combinations of ci and hence

∏

s

∫

dxs =
∏

n

∫

dcn

each coefficient contributes its eigenvalue to the operator. This method where the contin-

uous variable is replaced by a product over eigenfunction expansion coefficient will also be

a recurring procedure later on.

Hence the result for the propagator to this order is

−
(

∏

n>0

2π

εn

)
1
2

ω

√

S0

2π

∫

dτ0

The first factor is the determinant with the zero mode excluded. The minus sign is of no

importance, since the tunneling probability is given by the square of the amplitude. The

result increases linearly with time, the size of the instanton, leading to a finite transition

probability per unit time.

To calculate the remaining determinant, it is convenient to restrict the calculation to

a finite time interval [−τm/2, τm/2] and impose boundary conditions at the edge of the

interval as xn (±τm/2) = 0. Since there is a continuum of eigenvalues, the product diverges

to 0. This divergence is controlled by the largest eigenvalues, which are independent of the

specific shape of the potential and do not correspond to tunneling events. To factor these

continuum states independent of the potential out, the determinant can be normalized by

the harmonic oscillator, which exhibits the same shape at large eigenvalues. This is again

a routine manipulation often used, and yields





det
(

− d2

dτ2
+ V ′′ (xcl)

)

det
(

− d2

dτ2
+ ω2

)





− 1
2

= −ω
√

S0

2π

(
∫

dτ0

)





det′
(

− d2

dτ2
+ V ′′ (xcl)

)

1
ω2 det

′
(

− d2

dτ2
+ ω2

)





− 1
2

where det′ denotes the determinant without the lowest mode. The lowest eigenvalue of the

harmonic oscillator equation is given simply by ω2/2. The next eigenvalue of the upper

determinant is 3ω2/4. For the harmonic oscillator the next value is ω2 up to corrections of

order 1/τm, which are not important for the limit of τm → ∞. For these eigenvalues of the

oscillator the boundary conditions are important. Both exhibit furthermore a continuous
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spectrum. The solutions to the V ′′ (xcl) potential are known. The potential itself is

localized, so the solutions are plane waves for τ → ±∞. One solution is hence xp (τ) ∼
exp (ipτ) for the limit of τ → ∞. For τ → −∞ the wave becomes

xp (τ) ∼ eipτ+iδp

eiδp =
1 + i p

ω

1− i p
ω

1 + 2i p
ω

1− 2i p
ω

(8.5)

where the phase shift is provided by the potential. The phase shift is known from scattering

theory. There is no reflection for the plane wave. The second independent solution is

obtained when reversing τ → −τ . The spectrum of eigenfunctions is then obtained by

imposing the boundary conditions

pnτm − δpn = πn

The solutions of this equation will be denoted by p′. In case of the harmonic oscillator

there is no phase shift, since the second derivative is constant and the boundary conditions

impose

pnτm = πn (8.6)

The ratio of the determinants is then given by

∏

n>1

ω2 + p′2n
ω2 + p2n

= e

∑

n
ln
ω2+p′2n
ω2+p2n

Changing from summation over n to integration over p, which delivers by (8.6) a factor

τm/π, and setting δp/τm = p′n − pn, which is small, it is possible to obtain by expanding

e
τm
π

∫∞
0 dp ln

ω2+p2+2p
δp
τm

ω2+p2 = e
τm
π

∫∞
0 dp

2pδp

τm(ω2+p2)

δp depends also on p. Integrating by parts delivers

∞
∫

0

dp
2pδp

(ω2 + p2)
= δp ln

(

ω2 + p2
)∣

∣

∞

0
−

∞
∫

0

dp ln
(

ω2 + p2
) dδp
dp

= δp ln
(

ω2 + p2
)∣

∣

∞

0
−

∞
∫

0

dp ln
(

ω2 + p2
) 6ω3 + 12ωp2

ω4 + 5ω2p2 + 4p4

This leads to

1

π

∞
∫

0

dp
2pδp

τm (ω2 + p2)
= −1

6

(

27 tanh−1 1

2
− 6 + 22F1

(

1

2
, 2,

5

2
,
1

4

)

+ 6 ln 3 + 24 lnω

)

= C (ω)
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Where 2F1 is again a hypergeometric function. Additionally the first term vanishes by

virtue of (8.5). This value will be referred to as C (ω) . The value of exp (C (ω)) is for

ω = 1 just 1/9. The final tunneling amplitude is then

〈

−η|e−Hτm |+ η
〉

= O

〈

−η|e−HOτm |η
〉

O

(
√

S0

2π

√

4

3

√

1

eC(ω)

)

e−S0 (ωτm)

= −
(
√

ω

π
e−

ωτm
2

)

(
√

2S0

3π

√

1

eC(ω)

)

e−S0 (ωτm) (8.7)

where φa is the ground state wave function localized at a. The last factor comes from

the zero mode integration, the factor in front of it from the instanton solution. The first

factor comes from the lowest state harmonic oscillator and the second is the ratio of the

two determinants. The result is proportional to the time interval τm and hence there is

a finite tunneling probability per unit time. The harmonic oscillator part comes from the

normalization.

From (8.7) the ground state splitting ∆E can be read off, by using the following

expansion. The two ground states can be approximated by ψ0 = (φ−η (x) + φη (x)) /
√
2

and ψ1 = (φ−η (x)− φη (x)) /
√
2. Then the tunneling amplitude is approximately

〈

−η|e−Hτm |η
〉

≈ ψ∗
0 (−η)ψ0 (η) e

−E0τm + ψ∗
1 (−η)ψ1 (η) e

−(E0+∆E)τ

=
1

2
(φ∗

−η (−η)φ−η (η) + φ∗
−η (−η)φη (η) + φ∗

η (−η)φ−η (η) + φ∗
η (−η)φη (η))

+
1

2
(φ∗

−η (−η)φ−η (η)− φ∗
−η (−η)φη (η)− φ∗

η (−η)φ−η (η) + φ∗
η (−η)φη (η))e−∆Eτm

If ∆Eτm is small, the result is then

〈

−η|e−Hτm |η
〉

≈ 1

2
φ∗
−η (−η)φη (η) (∆Eτm) (8.8)

here uneven terms in η and −η in argument and index can be neglected, since they are

small compared to the even terms. The first part is the harmonic oscillator overlap, and

the level splitting is hence approximately

∆E ≈ ω

(
√

2S0

3π

√

1

eC(ω)

)

e−S0 .

If the assumptions break down, multiple instantons and their interactions become impor-

tant.

8.1.1.3 Corrections at two loop order

The procedure described can be continued to higher orders. The mathematics involved

get then more and more tedious, so only some remarkable results from two loop order will
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be cited here. The loop correction is essentially achieved by calculating the correlation

function in presence of one instanton. The modifications lead to

exp (−S0) → exp

(

−S0 −
71

72

1

S0

)

Since the correction is negative and of order one implies, that for S0 ≈ 1, the one loop

approximation breaks down. Since S0 ∼ ω3

λ
, this is already the case for moderately high

barriers. The minus sign implies that the one loop order overestimates the tunneling

probability.

8.1.1.4 Instanton-Anti-Instanton interactions

As already mentioned, anti-instantons are instanton paths traversed in reversed time di-

rection. A pair of instanton and anti-instanton relates over a topologically trivial path

(the same path traversed once in each direction), the same vacua. This interaction leads

to the tunneling amplitude

〈

η|e−Hτm |η
〉

=
τm
2πλ

∫

dτeSIA(τ)

The prefactor comes from the instanton density (there must be two in the time interval

τm). The instanton-anti-instanton action SIA can be calculated from a path as

SIA =
1

2λ

(

1

3
− 2e|τI−τA| +O

(

e2|τI−τA|
)

)

following the classical tunneling path in both directions. The parameter τ0 may be different

for instanton τI and anti-instanton τA. If τI − τA ≫ 1, SIA tends to 2S0 while for τI −
τA ≈ 0 it tends to 0. In the latter case however the instanton solution is not a good

approximation, since the relevant time scales do not allow anymore a (semi-)classical

treatment. There are methods using steepest ascent to solve this problem numerical. By

analytical continuation in the coupling constant
√
2λ, and after redefining the perturbative

expansion, an analytical calculation is possible for (E0 + E1) /2. This can be compared to

the single instanton solution above, where ∆E can be calculated.

8.1.1.5 Fermions

If light fermions are introduced and coupled by V ′′ to the potential, there are two in-

teresting effects visible: First, tunneling is only possible, if the fermion number changes

during the tunneling. Second, the fermions introduce long range attractive forces between

instantons and anti-instantons leading to formation of instanton-anti-instanton states.
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8.1.2 Yang-Mills theory

8.1.2.1 Topology

It is convenient for the treatment of Yang-Mills theories to use the following definitions,

normalizations and gauges:

Ai = Aai
λa

2
[

λa, λb
]

= 2ifabcλc

tr
(

λaλb
)

= 2δab

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAbµA

c
ν

A0 = 0 =⇒ Ei = ∂0Ai

where Ei are the chromoelectric fields, which are for this gauge, the so-called temporal

gauge1 the conjugate momenta of the Ai. The Hamiltonian is then given by

H =
1

2g2

∫

d3~x
(

E2
i +B2

i

)

The classical vacua have zero field strengths, but the potential A does not need to be

constant for non-Abelian theories. The gauge fields are in this case limited to pure gauge

configurations, which can be enumerated as

Ai = iU (~x) ∂iU (~x)†

where U (~x) can be any possible gauge transformation. It is possible to restrict these to

those satisfying U (~x) = 1 for x→ ∞. These can be classified by the winding number

nw =
1

24π2

∫

d3~xεijktr
((

U †∂iU
) (

U †∂jU
) (

U †∂kU
))

(8.9)

which counts the number of times the group manifold of the gauge transformation is

covered. If (8.9) is expressed in terms of the gauge fields, it is called the Chern-Simmons

characteristic

nCS =
1

16π2

∫

d3~xεijk
(

Aai ∂jA
a
k +

1

3
fabcAaiA

b
jA

c
k

)

. (8.10)

The quantity (8.10) can also be rewritten more generally as

1

64π2

∫

d4xǫµνρσF a
µνFaρσ = − i

512π4

∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)

,

1Note that this gauge breaks Lorentz symmetry and has thus a variety of subtelties. Also, the Gribov-

Singer ambiguity needs to be addressed. However, neither affects the calculations at the level presented,

and thus will be ignored.
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where with ǫµνρσF
ρσ
a /2 = ∗F a

µν again the dual field strength tensor already appears. Evi-

dently, this is a total derivative, and hence can be cast into a surface integral at infinity.

It is therefore independent of the internal structure of the fields in the space-time it is

integrated over, but depends only on the contribution from the boundary. Furthermore,

the expression has the same color structure as the usual Lagrangian, and the Lorentz in-

dices do not play a role in gauge transformations of the field-strength tensor. Hence, this

quantity is gauge-invariant. Thus, it is an observable quantity. It is the so-called topolog-

ical charge, or Chern class, of the gauge field configuration. Furthermore, the quantity is

evidently invariant under any continuous distortions of the gauge fields inside the volume.

It is less obvious that this is true for any continuous deformations of the gauge fields on

the boundary, and that all of these possible deformations fall into distinct classes, the

so-called Chern classes, such that the integral is an integer k, characterizing this class.

This fact is stated here without proof.

Hence nw is an integer, and enumerates an infinite set of classical vacua. Since they

are topological different, there is no path from one vacuum to the other where the energy

remains zero all the way. But tunneling can connect topological different vacuum states.

8.1.2.2 Tunneling

The first question is, are there really any tunneling events? The answer is yes. Again

classical solutions to the euclidean action will provide access. It is convenient to rewrite

the action as

S =
1

4g2

∫

d4xGa
µνG

a
µν

=
1

4g2

∫

d4x

(

±Ga
µνΓ

a
µν +

1

2

(

Ga
µν ∓ Γaµν

)2
)

where Γaµν = 1
2
εµνρσG

a
ρσ is the dual field strength tensor. In this tensor the roles of the

magnetic and electric field are interchanged. The first term is invariant under topological

changes, see below, the second is always positive. If the field is (anti) self-dual, i.e. Ga
µν =

±Γaµν , the action is hence minimal. The first term is the topological charge

Q =
1

32π2

∫

d4xGa
µνΓ

a
µν
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and the invariance can be seen from the equivalence to nCS.

Q =
1

32π2

∫

d4x
1

2
εµνρσ

(

∂νA
a
µ − ∂µA

a
ν − fabcAbµA

c
ν

) (

∂σA
a
ρ − ∂ρA

a
σ − fadeAdρA

e
σ

)

=
1

32π2

∫

d4x
1

2
εµνρσ(∂νA

a
µ∂σA

a
ρ − ∂νA

a
µ∂ρA

a
σ + ∂νA

a
µf

adeAdρA
e
σ − ∂µA

a
ν∂σA

a
ρ

+∂µA
a
ν∂ρA

a
σ + ∂µA

a
νf

adeAdρA
e
σ − fabcAbµA

c
ν∂σA

a
ρ + fabcAbµA

c
ν∂ρA

a
σ

+fabcAbµA
c
νf

adeAdρA
e
σ)

First have a look at the double derivatives

1

2
εµνρσ

(

∂νA
a
µ∂σA

a
ρ − ∂νA

a
µ∂ρA

a
σ − ∂µA

a
ν∂σA

a
ρ + ∂µA

a
ν∂ρA

a
σ

)

By partial integration this results in

1

2
εµνρσ(∂ν

(

Aaµ∂σA
a
ρ

)

−Aaµ∂ν∂σA
a
ρ − ∂ν

(

Aaµ∂ρA
a
σ

)

+ Aaµ∂ν∂ρA
a
σ

−∂µ
(

Aaν∂σA
a
ρ

)

+ Aaν∂µ∂σA
a
ρ + ∂µ (A

a
ν∂ρA

a
σ)− Aaν∂µ∂ρA

a
σ)

The total derivatives can be connected by

ενµσρ∂ν
(

Aaµ∂σA
a
ρ

)

+ενµρσ∂ν
(

Aaµ∂ρA
a
σ

)

+εµνσρ∂µ
(

Aaν∂σA
a
ρ

)

+εµνρσ∂µ (A
a
ν∂ρA

a
σ) = 4εµνρσ∂µ (A

a
ν∂ρA

a
σ)

The other terms result in

4εµνρσA
a
µ∂ν∂ρA

a
σ = 0

since it is symmetric about the inner two indices. For the terms with one power of fabc

the result is

−εµνρσ
(

∂νA
a
µA

b
ρA

c
σ − ∂µA

a
νA

b
ρA

c
σ + AbµA

c
ν∂σA

a
ρ − AbµA

c
ν∂ρA

a
σ

)

= −εµνρσ(∂ν
(

AaµA
b
ρA

c
σ

)

−AaµA
c
σ∂νA

b
ρ − AaµA

b
ρ∂νA

c
σ − ∂µ

(

AaνA
b
ρA

c
σ

)

+ AaνA
b
ρ∂µA

c
σ

+AaνA
c
σ∂µA

b
ρ + ∂σ

(

AaρA
b
µA

c
ν

)

− AaρA
b
µ∂σA

c
ν − AaρA

c
ν∂σA

b
µ − ∂ρ

(

AaσA
b
µA

c
ν

)

+AaσA
b
µ∂ρA

c
ν + AaσA

c
ν∂ρA

c
ν)

The not-total-derivative terms are again symmetric in two indices and hence vanish. The

total derivatives are symmetric about three indices and hence do not vanish in all cases,

but only in two out of three, and hence the result is 4/3. The total result is then

1

16π2

∫

d4x∂µεµνρσ

(

Aaν∂ρA
a
σ +

1

3
fabcAaνA

b
ρA

c
σ

)

The last term vanished, because the square of the potential cannot provide a contribution

over the whole space because otherwise the fields would not vanish. The remaining last
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term is a result of the commutator of the generators and the factors of the generators, the

gauge fields.

Mathematical, since Aµ is a pure gauge, AµAν can be written as U∂µU
†U∂νU

† and this

can be changed by integration by parts to ∂µUU
†∂νUU

†, which is by unitarity 0. The rest

can be combined in a total derivative

Kµ =
1

16π2
εµνρσ

(

Aaν∂ρA
a
σ +

1

3
fabcAaνA

b
ρA

c
σ

)

Q =

∫

d4x∂µKµ =

∫

d3σµKµ

where in the last step the volume integration was replaced by a surface integration and the

Gaussian theorem was used. Since the integration is equivalent to (8.10), the topological

invariance has been shown. With this knowledge, the action can now be calculated for an

arbitrary (anti-)self-dual field as

S =
8π2 |Q|
g2

.

By

Q =

∞
∫

−∞

dt
d

dt

∫

d3~xK0 = nCS (t = ∞)− nCS (t = −∞)

it is visible, that configurations with Q 6= 0 connect different vacua. The simplest non-

trivial solution can be obtained for SU(2) for Q = 1. An appropriate ansatz for U is

U (x) = i
xµ
x
τµ

τµ =

(

~τ

−i

)

τaτb = δab + iεabcτc

This leads to Aaµ by virtue of equation (8.9)

Aai = 2 (λa)−1 iU (~x) ∂iU (~x)†

= 2i (λa)−1 xµ
x
τµτ

†
ν

∂

∂xi

xν
x

= 2i (λa)−1 τµτ
†
ν

(

xxµδνi + xµxνxi
x3

)

For SU(2), this can be simplified to

Aaµ = 2ηaµν
xν
x2

ηaµν =











εaµν for µ, ν = 1, 2, 3

δaµ for ν = 4

−δaν for µ = 4
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where ηaµν is called the t’Hooft symbol. A parametrized solution

Aaµ = ηaµν
xν
x2
f
(

x2
)

(8.11)

can be used to fulfill the self-duality requirement for Q 6= 1. f (x2) is required to be 1 as

x→ ∞ to let the result be a pure gauge. This is no inserted into the self-duality equation,

Ga
µν = Γaµν

The necessary derivatives are

∂µ

(

fxν
x2

)

=
2xνxµ
x2

f ′ +
f

x2
δµν −

2fxµxν
x4

. (8.12)

The appearing contractionss are given by

εµνρσηaρα∂σ
xα
x2
f = ηaνσ∂σ

xµ
x2
f + ηaµν∂σ

xσ
x2
f + ηaσµ∂σ

xν
x2
f

εµνρσηaσα∂ρ
xα
x2
f = −ηaνρ∂ρ

xµ
x2
f − ηaµν∂ρ

xρ
x2
f − ηaρµ∂ρ

xν
x2
f

And the result is then

ηaµα∂ν
xα
x2
f − ηaνα∂µ

xα
x2
f − ηaνσ∂σ

xµ
x2
f − ηaµν∂σ

xσ
x2
f − ηaσµ∂σ

xν
x2
f

= −2fabc
xαxβ
x4

f 2

(

1

2
εµνρσηbραηcσβ − ηbµαηcνβ

)

. (8.13)

All derivatives are symmetric in the indices by virtue of (8.12) and hence they can be

changed to

ηaµα∂ν
xα
x2
f − ηaνα∂µ

xα
x2
f − ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f + ηaµα∂ν

xα
x2
f

= −2f 2xαxβ
x4

fabc
(

1

2
εµνρσηbραηcσβ − ηbµαηcνβ

)

.

The right hand side can be changed using SU(2) fabc to

1

2
εµνρσ (δρσηaαβ − δρβηaασ + δαβηaρσ − δασηaρβ)− δµνηaαβ + δµβηaαν − δαβηaµν + δανηaµβ

=
1

2
(−δαβηaµν + δανηaµβ − δαµηaνβ + δβνηaµα − δβµηaνα)− δµνηaαβ − δµβηaνα − δαβηaµν + δανηaµβ .

Multiplying with xαxβ results in

1

2
(−δαβηaµν + δανηaµβ − δαµηaνβ + δβνηaµα − δβµηaνα)− δµνηaαβ − δµβηaνα − δαβηaµν + δανηaµβ)x

= −3

2
ηaµνx

2 + 2ηaµαxνxα − 2ηaναxµxα.



Chapter 8. Topology 159

Hence the result is now

2ηaµα∂ν
xα
x2
f − 2ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f = −2

f 2

x4

(

−3

2
x2ηaµν + 2ηaµαxνxα − 2ηaναxµxα

)

.

The left hand side can be expanded using (8.12)

2ηaµα∂ν
xα
x2
f − 2ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f

=
4f ′

x2

(

ηaµαxνxα − ηaναxµxα −
1

2
ηaµνx

2

)

− 4f

x4
(ηaµαxνxα − ηaναxµxα) .

Equating both to order 1/x2 yields a condition equation

0 = −2ηaµνf
′ +

1

x2
(

4f ′ηaµαxνxα − 4f ′ηaναxµxα − 3f 2ηaµν
)

+
4f

x4
(ηaναxµxα − ηaµαxνxα + fηaµαxνxα − fηaναxµxα) .

Choosing, e. g., a = 2, ν = 3, µ = 4 this results in

1

x2
(−4f ′x3x2 − 4f ′x1x4) +

4f

x4
(x1x4 + x3x2 − fx3x2 − fx1x4) = 0.

Equating the same factors of x3x2 results in

f (1− f)− x2f ′ = 0.

All other combinations yield the same result.

This ordinary differential equation has the solution

f =
x2

x2 + ρ2
,

with ρ an integration constant. This is in combination with (8.11) is the solution to

the self-duality equation (8.12), yielding finally the one-instanton solution for Yang-Mills

theory

Aaµ = 2ηaµν
xν

(x2 + ρ2)
(8.14)

The field strength tensor can then be calculated as

Ga
µν =

−4ηaµνρ
2

(x2 + ρ2)2

The squared field strength is finally given by

(

Ga
µν

)2
=

192ρ4

(x2 + ρ2)4
.
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Integrating over it shows that the total action is finite.

The resulting instanton solution is well localized, and is characterized by its size. It

is invariant under rotation in space. It can be shown that is not invariant under color

transformations, and its orientation has to be fixed (it can be changed by a global unitary

transformations RbaAaµ). Since the instanton can be placed at any position in space, its

position is also a free parameter. Size, position, and color orientation are together known

as the collective coordinates of the instanton, or moduli. The space of all possible values

of these parameters is known as moduli space.

Direct integration shows that indeed Q = 1,

S =
1

4g2

∫

d4x
(

Ga
µν

)2
=

192ρ4

4g2

∫

dφ

∫

d cos θ

∫

dx

∫

dt
x2

(x2 + t2 + ρ2)4

=
60π2ρ4

g2

∫

dx
x2

(x2 + ρ2)
7
2

=
60π2ρ4

g2
2

15ρ4
=

8π2

g2

Thus, the instanton is the lowest-action configuration with non-trivial topological charge,

and thus the classical vacuum solution.

In normal perturbation theory, the coupling constant is associated with the field and

not the action. By changing A → gA the action (8.11) is made independent of g and the

field strength tensor (8.9) is changed to

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

The solution is then
x2

g (x2 + ρ2)
,

resulting in a change of the fields and the fields strength tensor by 1/g, indicating that

these fields are much stronger than perturbative fields. The instanton, and topological

excitations in general, are genuine non-perturbative contributions.

It is possible to construct an anti-self-dual Q = −1 solution by replacing ηaµν by ηaµν

with

ηaµν =











εaµν for µ, ν = 1, 2, 3

−δaµ for ν = 4

δaν for µ = 4

(8.15)

which is unchanged besides this replacement.

The tunneling amplitude is again proportional to S0, which is for the self-dual solution

for Q = 1

Ptunnel = Ke
− 8π2

g2 τ (8.16)

The coefficient K can be determined analogously to the one loop order calculations in the

quantum mechanical case.
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8.1.2.3 θ vacua

The previous section, showed that there are different vacua, and these vacua can be con-

nected by tunneling events. The true vacuum is hence a superposition of the different

vacuum states. If instanton solutions do not interact with each other, the tunneling am-

plitude to go from vacuum i to vacuum j can be determined as

〈

j|e−Hτ |i
〉

=
∞
∑

N+=0

∞
∑

N−=0

δN+−N−−j+i

N+!N−!

(

Kτe−S0
)N++N−

where N+ is the number of instantons and N− the number of anti-instantons. Using

δab =
1

2π

2π
∫

0

dθeiθ(a−b)

this becomes

〈

j|e−Hτ |i
〉

=
1

2π

2π
∫

0

dθ
∞
∑

N+=0

∞
∑

N−=0

eiθ(N+−N−−j+i)

N+!N−!

(

Kτe−S0
)N++N−

This can be rearranged as

〈

j|e−Hτ |i
〉

=
1

2π

2π
∫

0

dθeiθ(i−j)
∞
∑

N=0

2N cosN θ

N !

(

Kτe−S0
)N

=
1

2π

2π
∫

0

dθeiθ(i−j)e2Kτe
−S0 cos θ

From this can be read of, that the vacuum state wave functions are eiθn |n〉 , and the energy

is E (θ) = −2Ke−S0 cos θ. The full vacuum state, the θ vacuum, is

|θ〉 =
∑

n

eiθn |n〉 (8.17)

The lowest energy is negative, as expected, since tunneling lowers the ground state energy.

There are nevertheless no excitation associated with this energy, since the value of θ is fixed

and cannot be changed. A fixed term could be added to the Lagrangian as an additional

parameter, the so-called topological term

L =
iθ

32π2
Ga
µνΓ

a
µν .

The significance is not completely clear, since the interaction violates CP and T, but it is

a surface term, and may be associated with screening. The value of θ in QCD seems to be

experimentally smaller than 10−10, and the complex is known as the strong CP -problem.

Note that such a term does not affect perturbative calculations, because surface terms do

not alter the perturbative expansion.
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8.1.2.4 Tunneling amplitude

The calculation for the tunneling amplitude is in principle the same as for the quantum-

mechanical problem, but much more tedious. Zero modes also exist, and lead to infrared

divergences additionally to the ultraviolet divergences. Hence only results will be provided

here. There are 4Nc zero modes, one for each polarization. They can be replaced by

integration about collective coordinates, and give a factor
√
S0. Integration over color

orientation yields a factor, but of size and position yields a non-converging integral. Hence

only a differential tunneling amplitude can be determined,

d5nI
dρd4z

∼
(

8π2

g2

)2NC

e
− 8π2

g2
1

ρ5
,

where the exponent of ρ is determined from the dimension. The regularization of this

expression can be done using the so-called Pauli-Villar scheme, which introduces a scale

M by adding fictional particles of large mass and unphysical signs in propagators and

loops. Some more calculations then yields

d5nI
dρd4z

∼ 1

ρ5
exp

(

−8π2

g2
+

11

3
Nc log (Mρ)

)

where the prefactor cancels. The complete result is

dnI
dρd4z

=
0.466e−1.679Nc

(Nc − 1)! (Nc − 2)!

(

8π2

g2

)2Nc 1

ρ5
e
− 8π2

g2
+ 11

3
Nc log(Mρ)

(8.18)

As a consequence, small instantons are strongly suppressed. For large instantons the ap-

proximation breaks down. One problem associated with such a distribution is that even

with less approximations the distribution is not integrable. This implies that there is

nothing what suppresses large instantons, and the result becomes unstable at large dis-

tances. Though results using lattice calculations show this not to happen, the mechanism

is unknown.

8.1.3 Light fermions

The presence of different vacua can be connected to the axial charge, i. e. the charge

associated with axial symmetry, transformation of spinor fields by exp(iαγ5).

In perturbation theory, renormalization is not possible while conserving all charges, if

external charge and axial charge fluxes are involved. The divergence in arbitrary order for

two gauge fields coupling to the flavor singlet axial current is

∂µj
5
µ =

Nf

16π2
Ga
µνΓ

a
µν (8.19)
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where the gauge fields are arbitrary background fields. This is essentially an anomaly,

which will be discussed in more detail in section 9. The surface term on the right hand

side is relevant, since the vacua are not equivalent. The effect is that by instanton events

the axial charge is not conserved and connected to the topological charge Q.

Essential the zero mode moves every state one level up, and hence the chirality in

each state changes. E. g. in QCD the consequence is that the ninth Goldstone boson η′

acquires even in the chiral limit a mass. Another consequence is that in the presence of

light fermions, single instantons cannot exist (although there is some exception possible),

but correlated instantons are necessary, even in the limit of a dilute gas of instantons.

Secondly, fermions can travel from instanton to instanton. They change their chirality

and the same flavor may not travel together.

The fact that the chirality changes at an instanton also implies that in an instanton

background chirality is not conserved. Thus, spontaneous chiral symmetry breaking can

be viewed as a consequence of the presence of instantons.

8.2 Other topological excitations

Instantons are special, because they are the classical minimal energy configuration. How-

ever, this by no means imply that they are the only topological stable solutions. Such

other solutions could, in fact, be even minimizing the quantum action2.

Two particularly relevant such configurations are monopoles and vortices. While in-

stantons are point-like events in space-time, these objects are of higher dimensionality.

A monopole is an object which has a world-line, and therefore forms a one-dimensional

object in space-time. A possible field configuration is, e. g.,

Aaµ = −δ3a 1
g
~eϕ

1 + cos θ

r sin θ
,

which is given in spatial spherical coordinates. It is only static, in contrast to the instanton,

which is an event in space-time. As the field strength diverges along a line, it is also called

a defect.

Vortices are closed two-dimensional surfaces, with a typical field configuration like

Aaη = δ3a
1

g

µ(ρ)

ρ

2Strictly speaking, any topological solution alone can never be relevant, as only infinite-action configu-

rations have a relevant measure in the path integral. However, it is always possible to add quantum noise

to a topological configuration to increase its action to make it relevant.
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in cylindrical coordinates, where the profile function µ varies from zero at ρ = 0, making

the field configuration regular, to an odd integer 2n + 1, where n is the number of flux

quanta in the vortex, at ρ = ∞, but will go again to zero for a zero-flux vortex. The (fuzzy)

surface of the vortex is essentially defined by the maximum of the field configuration in ρ

direction.

There are also other topological field configurations, including volume-like ones, which

will not be detailed further. These field-configurations are not unrelated. E. g. several

investigations, mostly using lattice calculations, find that instantons cluster along the

worldlines of monopoles, which in turn lie on the surfaces of vortices. It is therefore likely

that no single type alone can be identified as the low-energy effective degree of freedom of

gauge theories.

Like in the case of instantons, almost all other topological configurations contribute

in the process of chiral symmetry breaking. In fact, the properties of chiral symmetry

breaking can be rather well reproduced by topological excitations alone. It appears hence

likely that they play the dominant role in terms of effective degrees of freedom in this

process.



Chapter 9

Anomalies

9.1 Introduction

There is one particular important property of the standard model, which is very much

restricting its structure, and which is recurring in extensions of the standard model. That

is the absence of anomalies. An anomaly is that some symmetry, which is present on

the classical level, is not present when considering the quantum theory. The symmetry is

said to be broken by quantum effects. Generically, this occurs if the action of a theory is

invariant under a symmetry, but the measure of the path integral is not. Constructing a

theory which is at the same time anomaly-free and consistent with the standard model is

actually already quite restricting, and therefore anomalies are an important tool to check

the consistency of new proposals for physics beyond the standard model. This will be

therefore discussed here in some detail.

9.2 Global anomalies

Anomalies fall into two classes, global and local anomalies. Global anomalies refer to

the breaking of global symmetries by quantum effects. The most important one of these

global anomalies is the breaking of dilatation symmetry. This symmetry corresponds to

rescaling all dimensionful quantities, e. g., x→ λx. Maxwell theory, massless QED, Yang-

Mills theory, and massless QCD are all invariant under such a rescaling, at the classical

level, though not the Higgs sector of the standard model. This is no longer the case at the

quantum level. By the dimensional transmutation, surfacing in the renormalization process

of section 6.2, an explicit scale is introduced into the theory, and thereby the quantum

theory is no longer scale-invariant. Such global anomalies have very direct consequences.

165
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E. g., this dilatation anomaly leads to the fact that the photon is massless in massless

QED. Of course, it is also massless in massive QED, but there additional explicit breaking

of the dilatation symmetry is added due to the lepton mass.

Another example is the so-called axial, or chiral, anomaly, which occurs due to the

breaking of the global axial symmetry of baryons. A consequence of it is the anomalously

large η’ mass. While the dilatation anomaly is quite obvious, the axial anomaly is much

more subtle, and therefore deserves some more discussion. In addition, it will be very

helpful when generalizing to the local anomalies.

9.2.1 Classical level

To prepare for this, it is worthwhile to consider the situation as it would be without

anomalies, i. e. at the classical level. For this purpose, start with a gauge theory with

fermions ψ being in some representation R of the gauge group G with generators T and

gauge fields in the adjoint representation. The fermionic part of the Lagrangian is then

given by

L = ψ̄(iγµ(∂µ − igT aAaµ)−m)ψ = ψ̄(iγµD
µ −m)ψ

from which the Dirac equation

(iγµD
µ −m)ψ = 0

follows as the equation of motion, and likewise for the anti-fermion.

The current carrying the charge is then

jaµ = ψ̄γµT
aψ.

Due to the axial symmetry, there is also a corresponding axial current

j5aµ = ψ̄γ5γµT
aψ.

In addition, there are also the singlet currents

jµ = ψ̄γµψ

j5µ = ψ̄γ5γµψ,

which corresponds to the fermion current and the axial current.

Naively, the divergences of these equations can be calculated using the Dirac equation.

∂µjaµ = −iψ̄(gτ bγµAµb −m)τaψ − iψ̄τa(−gτ bγµAµb +m)ψ

= igψ̄
[

τa, τ b
]

γµA
µ
bψ = −gfabcAµb ψ̄γµτcψ = −gfabcAµb jcµ.



Chapter 9. Anomalies 167

This implies that the color current is not observed, as long as the current is gauged. For

a non-gauge current, like a flavor current, g vanishes, and the current is conserved.

This is not surprising, as a non-Abelian gauge theory has no gauge-invariant charge.

However, the current is a gauge-vector, and therefore covariantly conserved

Dab
µ j

µ
b = 0. (9.1)

In the same way, it is possible to calculate the situation of the axial color current. Because

of the commutation relation between γ matrices, the result is

Dab
µ j

µ
b = 2imψ̄γ5τ

aψ = 2mipa, (9.2)

Here, p is the pseudo-scalar density, and not a momentum component. Thus, even in a

non-gauge theory this current is only conserved for fermions without a mass term in the

Lagrangian.

The calculations for the singlet current is simpler, and yields

∂µj
µ = 0

∂µj5µ = 2imψ̄γ5ψ = 2imp0.

Hence, the number of fermions is, a expected, a conserved current. The axial current is

only conserved for massless fermions. This is the result that axial, and chiral, symmetry

gets explicitly broken, already classically, by a mass term.

In a theory like the standard model, where parity is broken, left-handed and right-

handed fermions

ψL =
1− γ5

2
ψ

ψR =
1 + γ5

2
ψ

do not couple in the same way to the gauge-fields

L = ψ̄LiγµD
µ
LψL + ψ̄RiγµD

µ
RψR,

with DL 6= DR, and no mass term is permitted due to gauge invariance. Thus, the gauge

currents are recombined into covariantly conserved left-handed and right-handed currents

as

jaLµ =
1

2
(jaµ − j5aµ )

jaRµ =
1

2
(jaµ + j5aµ )

DLj
L
µ = 0

DRj
R
µ = 0,

and a similar recombination for the singlet currents.
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9.2.2 One-loop violation

So far, this was the conservation at the classical level, which already requires the fermions

to be massless. At the quantum level, this result is expressed by the Ward-Takahashi

identities of section 5.4. In particular, take Ward identities for correlation functions of the

form

T ijkµνρ = 〈Tjiµjjνjkρ 〉,

where i, j, and k can take the values V , A, and P , which require to replace the j by ja,

j5a, and pa, respectively, and the Lorentz index is dropped in the last case. Calculating

the corresponding identities for a local1 chiral transformation

ψ′ = eiβ(x)γ5ψ(x)

ψ̄′ = ψ̄eiβ(x)γ5

yields the expressions

∂µxT
V V A
µνρ (x, y, z) = ∂νyT

V V A
µνρ (x, y, z) = 0 (9.3)

∂ρzT
V V A
µνρ (x, y, z) = 2mT V V Pµν (x, y, z), (9.4)

directly implementing the relations (9.1) and (9.2). This is what should happen, if there

would be no anomalies.

To check this, it is possible to calculate the leading-order perturbative correction. Since

only fermion fields appear in the vacuum expectation value, this is a vacuum triangle graph,

and the coupling is to external currents. In fact, it does not matter at this point whether

the external currents are gauged or non-gauged, since to this order this only alters the

presence or absence of group generators at the external vertices. The only relevant part

of the external vertices is their Dirac structure.

Evaluating all the Wick contractions yields two Feynman diagrams, which translate to

T V V Aµνρ (p1, p2, p3 = −p1 − p2) = (9.5)

−i3
∫

d4k

(2π)4

(

trγµ(γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5(γγk

γ + γγp
γ
1 −m)−1

+ trγν(γαk
α −m)−1γµ(γ

βkβ − γβp
β
1 −m)−1γργ5(γγk

γ + γγp
γ
2 −m)−1

)

.

This expression is linearly divergent. One of the most important points in anomalies, and

in quantum field theories in general, is that the result is independent of the regulator

employed. This will be discussed later how to show this.

1This is a technical trick, and in the end β(x) will be taken to be x-independent.
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Here, it permits to use a Pauli-Villar regulator with a massM , which is technically more

simple than other possibilities. A Pauli-Villar regulator is based essentially on subtracting

the same diagram with opposite sign, but all masses replaced by very large masses M ,

which eventually will be send to infinity in the renormalization process. Dimensional

regularization would be more subtle, as it depends on the way the matrix γ5 is analytically

continued. This problem does not appear for Pauli-Villar regularization, as the calculation

remains in four dimensions.

To test the vector Ward identity, the expression can be multiplied with pµ1 . To simplify

the so obtained expression it is useful to employ

γµp
µ
1 = −(γµk

µ − γµp
µ
1 −m) + (γµk

µ −m),

yielding

pµ1T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = (9.6)

−i3
∫

d4k

(2π)4

(

tr− (γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

tr(γγk
γ + γγp

γ
1 −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

+ tr(γγk
γ + γγp

γ
2 −m)−1γν(γαk

α −m)−1γργ5

+ tr− (γγk
γ + γγp

γ
2 −m)−1γν(γ

βkβ − γβp
β
1 −m)−1γργ5 + (m→ M)

)

.

This rather lengthy expression is now a finite integral. It is therefore permissible to reshuffle

the momenta like k → k + p2 in the first term and k → k + p2 − p1 in the second term.

Then, the first and third and second and fourth term cancel each other, and likewise this

happens for the regulator. Thus, the vector Ward identity is fulfilled. The result for the

second identity in (9.3) works in the same way.

The situation changes drastically for the axial Ward identity (9.4). The expression

(9.5) is still divergent, so before doing anything, it will again be regulated using a Pauli-

Villar regulator, to make it well-defined. To evaluate (9.4) requires multiplication with

p3 = −p1 − p2, which can be rewritten as

γµp
µ
3γ5 = (γµk

µ − γµp
µ
2 −m)γ5 + γ5(γµk

µ + γµp
µ
1 −m) + 2mγ5

= (γµk
µ − γµp

µ
1 −m)γ5 + γ5(γµk

µ + γµp
µ
2 −m) + 2mγ5.
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This yields

pρ3T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = 2i

∫

d4k

(2π)4
(

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
2 −m)−1γ5(γγk

γ + pγ1γγ −m)−1
)

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
1 −m)−1γ5(γγk

γ + pγ2γγ −m)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
2 −M)−1γ5(γγk

γ + pγ1γγ −M)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
1 −M)−1γ5(γγk

γ + pγ2γγ −M)−1
))

There are two remarkable facts to be observed. The first is that this expression is finite.

The projection with p3 drops out the divergent terms. This can be seen using the Dirac

matrix identity

trγµγνγργσγ5 = −4iǫµνρσ . (9.7)

Because of the anti-symmetry of the ǫ-symbol, any term containing two or more factors

of k vanishes. Hence, the numerator is reduced by two powers of k, making the integral

finite. This did not work in (9.6) as there one index less was uncontracted. However, the

regulator still had to be present in the first place to make this projection well-defined. The

second is that this expression, except for the regulator, is identical to T V V P up to a factor

of m, which is obtained by replacing γργ5 in (9.5).

The term involving the regulator can then be easily calculated, as when removing the

regulator in the end, the external momenta and masses can always be neglected, and the

integral becomes a simple tadpole integral. The final result is thus

ipρ3T
V V A
µνρ (p1, p2) = 2miT V V Pµν (p1, p2) + lim

M→∞
8iM2ǫµνρσp

1
ρp

2
σ ×

i

16π2

−1

2M2

= 2miT V V Pµν (p1, p2) +
1

2π2
ǫµνρσp1ρp

2
σ (9.8)

Thus, the Ward identity (9.4) is violated. The the value of the anomaly is both finite and

independent of the masses of the involved particles. It is also independent of the structure

of the external interaction, except for its Lorentz structure.

The same holds true for the charged version, and the only thing changing is the ap-

pearance of a prefactor dabc of the coupling matrices T a in charge space, which turn out

to be

dabc =
1

2
tr
({

T a, T b
}

T c
)

, (9.9)

a result which will become significant later. This is not the only anomaly, and a similar

result holds for the case of three axial currents.
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Without proof, it should be noted here that there is still a certain regulator dependency.

It is possible by symmetries to add a finite term of form Cǫµνρσ(p1 − p2)
σ to the counter-

term in (9.6). Though C can be tuned to absorb the anomaly, this term will also contribute

to the vector identities, and induce there an anomaly for C 6= 0. Thus, it is only possible

to shift the anomaly around, without removing it.

The most well-known consequence of this anomaly is the decay of a neutral pion into

two photons. This is precisely of the type investigate here, where the photons play the

role of the vector currents. The axial current is related to the pion field by a QCD relation

∂µjaµ =
fπ√
2
M2

ππ
a, (9.10)

where a is an isospin index, counting the three pions, a = 0,±, where only a = 0 is

relevant because of charge conservation. Since there are no massless hadrons, there can

be no pole in the corresponding amplitude T V V A, and thus the product with pρ has to

vanish. As a consequence, the amplitude T V V P , describing the transition, would vanish

as well, because of the Ward identity, and therefore the pion would usually not decay into

two photons, if at rest. However, due to the anomaly, this is not necessary, as the anomaly

can balance the Ward identity. Hence, the pion at rest can decay into two photons, due

to the anomaly, a process indeed observed in experiment.

9.3 Local anomalies

In contrast to the global anomalies, the local anomalies are a more severe problem. A local

anomaly occurs, when a quantum effect breaks a local gauge symmetry. The consequence

of this would be that observable quantities depend on the gauge, and therefore the theory

makes no sense. Thus, such anomalies may not occur. There are two possibilities how such

anomalies can be avoided. One is that no such anomalies occurs, i. e., the path integral

measure must be invariant under the symmetry. The second is by anomaly cancellation,

i. e., some parts of the measure are not invariant under the symmetry, but the sum of

all such anomalous terms cancel. It is the latter mechanism which makes the standard

model anomaly-free. However, the price to pay for this is that the matter content of the

standard model has to follow certain rules. It is thus rather important to understand how

this comes about. Furthermore, any chiral gauge theory beyond the standard model faces

similar, or even more severe, problems.

Already the classical result (9.2) is indicating that the current is only covariantly

conserved. The latter equation implies that only for massless fermions there will be no

gauge anomaly. However, this is not a problem, as only zero-mass fermions are admitted
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to the standard model anyway, and all apparent fermion masses are generated by the

Brout-Englert-Higgs effect and the strong interactions dynamically. But for the standard

model this is still modified. Due to the parity violation, it is necessary to consider a

current for left-handed and right-handed fermions separately, where the corresponding

left-handed and right-handed covariant derivatives for the left-handed and right-handed

currents appear.

In principle, it is possible to do the same one-loop calculation in a gauge theory, and

the final result is quite similar. However, it may still be questioned whether this is an

artifact of perturbation theory. It is not, and to show this it is useful to derive the local

anomaly for gauge theories using a different approach. In a path integral approach, this

becomes particularly clear, as it can be shown that the anomaly stems from the fact

that the path-integral measure for fermions, DψDψ̄ is not invariant under chiral gauge

transformations, and therefore the anomaly arises. It is, of course, invariant under vectorial

gauge transformations, and thus theories like QCD need not to be considered, as will be

confirmed below. This also shows that the anomaly is a pure quantum phenomenon, as

the measure is part of the quantization process. In this course, it will also be shown that

the global anomaly remains beyond perturbation theory in much the same way, and that

the one-loop result is actually already the full answer.

9.3.1 Anomalies as a quantum effect

To see that this is a relevant effect, it is important to remember how Ward-Takahashi

identities are obtained in general. As discussed in section 5.4, any well-defined symmetry

transformation should leave the partition function unchanged, i. e.

0 = δZ = δ

∫

DφeiS+i
∫

d4xjφ, (9.11)

where φ is for simplicity a non-Grassmann field, which changes under the transformation

as φ → φ + ǫf(φ, x), with f some arbitrary function and ǫ infinitesimal. Performing the

variation yields

0 =

∫

DφeiS+i
∫

d4xjφ

∫

d4x

(

i

(

δS

δφ
+ j

)

f +
δf

δφ

)

, (9.12)

where the first two terms come from the exponent. At the classical level, the source term

vanishes, and the derivative of the action just gives the equations of motion, yielding the

classical Ward-Takahashi identities. The third term is new in a quantum theory, and gives

the contribution of the Jacobian,

det
φ+ ǫf

δφ
= det

(

1 + ǫ
δf

δφ

)

≈ 1 + ǫ
δf

δφ
+O(ǫ2).
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This is a genuine quantum contribution. This was dropped so far, but here it will become

the source of the anomaly. Here it also becomes evident that the term anomaly is actually

a misnomer. There is nothing anomalous about them. They are just a quantum effect.

However, it is still possible that the Jacobian is actually one, and a deviation from one in

the one-loop calculation is just an artifact of perturbation theory.

9.3.2 Full expression for the anomaly

To check this, rotate first to Euclidean time, by replacing t → it and correspondingly

in all covariant quantities the time component by i-times the time component and in all

contravariant quantities the time components by −i-times the time components. The

following uses now many of the methods already encountered in chapter 8.

Start by expanding the fermion fields in orthonormal eigenfunctions ψn of the Dirac

operator,

ψ(x) =
∑

n

anψn(x)

ψ̄(x) =
∑

n

ψ†
n(x)b̄n,

which satisfy

iγµD
µψn = λnψn (9.13)

−iγµDµψ†
n = λnψ

†
n. (9.14)

This permits to rewrite the path integral as an infinite product of integrations over the

coefficients,

DψDψ̄ = Πmdamdb̄m, (9.15)

keeping in mind that these differentials are Grassmannian.

Now, a local chiral transformation β(x)

ψ → eiβ(x)γ5ψ,

then corresponds to a linear transformation of the coefficients

am → Cmnan = a′n,

which yields the Jacobian

Πmda
′
mdb̄

′
m =

1

(detC)2
Πmdamdb̄m,
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or, formally,

Dψ′Dψ̄′ =
1

(detC)2
DψDψ̄.

This determinant can be rewritten as

1

(detC)2
= e−2tr lnC = e−2trδC , (9.16)

where in the last equality it was assumed that β is infinitesimal, and thus C = 1 + δC is

close to one. In this case, δC can be evaluated starting from

a′mψm = (1 + iβγ5)anψn

which can be reduced using the orthonormality of the eigenstates of the Dirac equation to

a′m =

∫

d4xψ†
m(1 + iβγ5)ψnan = (1 + δcmn)an. (9.17)

Inserting this result into (9.16) yields for the Jacobian of the infinitesimal transformation

J = exp

(

−2i

∫

d4xβψ†
mγ5ψm

)

, (9.18)

where the trace has been evaluated.

Unfortunately, the expression, as it stands, is ill-defined. It is necessary to regularize

it. A useful possibility to make the expression well-defined is by replacing the trace over

the eigenstates as

ψ†
mγ5ψm → lim

τ→0
ψ†
mγ5e

−λ2mτψm, (9.19)

where the limit has to be performed at the end of the calculation only. Expanding the

Gaussian and using the relations (9.13-9.14), this expression can be rewritten as

lim
τ→0

ψ†
mγ5e

−λ2mτψm = lim
τ→0

tr
(

γ5e
−τ(γµDµ)†γνDν

)

. (9.20)

The exponential can be rewritten as

(γµD
µ)†γνD

ν = −DµD
µ +

i

4
[γµ, γν ]F a

µντa. (9.21)

The limit is still ill-defined. It is necessary to regularize the expression in a suitable way.

This is achieved by the so-called heat-kernel regularization.

For a differential operator, here given by ∆ = (γµD
µ)†γνD

ν , it is possible to define a

heat kernel as

(∂τ +∆x)G(x, y, τ) = 0 (9.22)

G(x, y, 0) = δ(x− y). (9.23)
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Which is solved by the formal expression

G(x, y, τ) = e−∆xτ =
∑

m

e−τλmψ†
m(y)ψm(x).

This is already the expression (9.20). Without proof, it can now be shown that this heat

kernel can be expanded for small τ as

G(x, y, τ) →τ→0
1

(4πτ)2
exp−

(x−y)2

4τ

∞
∑

j=0

aj(x, y)τ
j.

Inserting this expansion into (9.18) yields

ln J = −2i lim
τ→0

1

(4πτ)2

∫

d4xβ
∑

j

τ jtrγ5aj .

For τ → 0, the first term does not contribute, as a0 has to be equal to one because of

the condition (9.23). Terms with j > 2 will be irrelevant, because of the powers of τ .

This leaves only j = 1 and j = 2. For these terms follows from the requirement that the

expansion satisfies (9.22) a so-called descent equation

−∆aj−1 = jaj .

Since a0 = 1, a1 can be obtained algebraically from (9.21). Since all resulting terms

have at most two γ matrices, the trace will vanish. Similarly, for a2 only those terms

can contribute to the trace where at least four γ matrices appear, which implies only the

term quadratic in Fµν will contribute. Which is precisely what is necessary to cancel the

pre-factor.

Thus, the remainder is the anomaly

J = exp

(

− i

32π2

∫

d4xβǫµνρσF a
µνFaρσ

)

. (9.24)

Hence, the Jacobian is non-trivial, and will contribute in the Ward identities (5.56). How-

ever, this is still a rather complicated expression, which does not yet look like the one-loop

result.

That this coincides with the one-loop anomaly can be obtained by an explicit calcula-

tion. Since this was for the global case, take β to be constant. The integral can then be

rewritten as
∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)

. (9.25)

Since the perturbative case was the Abelian case, the second term can be dropped. The

first term is then for the global case just two external fields, e. g. playing the roles of the
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photon field in the pion decay, and two momenta in Fourier space, which, after relabeling,

yield the desired one-loop expression. Hence, indeed the full anomaly and the one-loop

anomaly coincide. In gauge theories there are also anomalies in box and pentagon graphs

with an odd number of axial insertions, which are again one-loop exact.

To obtain the final result including all color factors requires then just an explicit cal-

culation, inserting the Jacobian (9.24) into the Ward-Takahashi identity (5.56). This will

yield (9.8) with (9.9) inserted.

9.3.3 Anomaly cancellation

For the standard model it is most interesting to consider the case that left-handed and

right-handed fermions are coupled with different gauge fields. Due to the different sign of

γ5 in the corresponding projector, this will reemerge as a different sign of the anomaly,

yielding

kρT V
aV bAc

µνρ (p, q, k) = 2mT V
aV bP c

µν (p, q, k) +
tr
{

τaL, τ
b
L

}

τ cL − tr
{

τaR, τ
b
R

}

τ cR
2

1

3π2
ǫµνρσp

ρqσ,

were L and R indicate the representation of the left-handed and right-handed fermions.

As a consequence, the classical gauge symmetry is broken by the anomaly, and results will

depend on the choice of gauge. This can be directly understood form this expression: the

left-hand side should vanish, if there is no massless pseudo-scalar particle in the theory,

which is true for the standard model. On the right-hand side, the first term will indeed

do so, if the fermion mass is zero. This is already required due to parity violation in the

standard model. But for the second term this is not obvious.

There are now two possibilities how to obtain an anomaly-free theory. Either, the

theory is anomaly-free, if each of the remaining terms is individually zero, or they cancel.

Indeed, the expression tr{τa, τ b}τ c, the so-called symmetric structure constant, is zero for

all (semi-)simple Lie groups, except for SU(N ≥ 3) and U(1). Unfortunately, these are

precisely those appearing in the standard model, except for the SU(2) of weak isospin.

For the group SU(3) of QCD, this is actually not a problem, since QCD is vectorial, and

thus2 τL = τR, and the terms cancel for each flavor individually. Thus remains only the

part induced by the hypercharge.

In this case, each generation represents an identical contribution to the total result, as

the generations are just identical copies concerning the generators. It is thus sufficient to

consider one generation. The right-handed contributions are all singlets under the weak

isospin, and thus they only couple vectorially to electromagnetism, and therefore yield

2Actually, unitarily equivalent is sufficient.
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zero. The contributions from the left-handed doublet contain then the generators of the

weak isospin, τa, and the electric charge Q = τ 3 + 1y/2. The possible combinations

contributing are

trta{τ b, τ c} (9.26)

trQ{τa, τ b} (9.27)

trτaQ2 (9.28)

trQ3. (9.29)

The contribution (9.26) vanishes, as this is a pure SU(2) expression. The term (9.29) is

not making a difference between left and right, and is therefore also vanishing. It turns

out that (9.27) and (9.28) lead to the same result, so it is sufficient to investigate (9.28).

Since the isospin group is SU(2), the anti-commutator of two Pauli matrices just gives a

Kronecker-δ times a constant, yielding in total

trQ{τa, τ b} =
1

2
δab
∑

f

Qf ,

where Qf is the electric charge of the member f of the generation in units of the electric

charge. It has to vanish to prevent any gauge anomaly in the standard model, which is

fulfilled:
∑

f

Qf = (0− 1) +Nc

(

2

3
− 1

3

)

= −1 +
Nc

3
= 0.

Therefore, there is no gauge anomaly in the standard model. However, this is only possible,

because the electric charges have certain ratios, and the number of colors Nc is three. This

implies that the different sectors of the standard model, the weak isospin, the strong

interactions, and electromagnetism, very carefully balance each other, to provide a well-

defined theory. Such a perfect combination is one of the reasons to believe that the

standard model is part of a larger theory, which imposes this structure.

9.4 Relation to topology

There is an interesting twist for the quantity making up the Jacobian

1

64π2

∫

d4xǫµνρσF a
µνFaρσ = − i

512π4

∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)

Evidently, is again the topological charge (8.11) of the gauge field configuration. Since

this quantity was obtained in the context of anomalies from the chiral transformation
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properties of the fermions, it suggest itself that it is connected to properties of the Dirac

operator, and this is indeed the case. The topological charge is equal to the difference of

the number of the left-handed n− and right-handed n+ zero modes of the (necessarily in

the present context massless) Dirac operator Dµ, γµD
µψ = 0, called the index of the Dirac

operator. This is the celebrated Atiyah-Singer index theorem.

To see this, note first that because γ5 anti-commutes with the other γµ it follows that

that for any eigenmode of the Dirac operator ψm to eigenvalue λm that

iγµD
µγ5ψm = −iγ5γµDµψm = −λmγ5ψm.

Hence, every non-zero eigenmode is doubly degenerate, and therefore the index is the same

if all eigenmodes are included.

Start with an expression for this difference,

n+ − n− =

∫

d4x
∑

m,λm=0

ψ†
mγ5ψm.

The inserted γ5 will guarantee the correct counting. It is possible to use a very similar

trick as before when regularizing the sums when doing the path integral calculation in

section 9.3.2. The additional eigenvalues can be added as

∫

d4x
∑

m

ψ†
mγ5ψme

−λ2mτ ,

as the γ5 symmetry ensures that all added terms vanish. But this is precisely expression

(9.19), and thus this will lead to the same result as in section 9.3.2. Thus, the final answer

is

n+ − n− = k =
1

64π2

∫

d4xǫµνρσF a
µνFaρσ

Hence, the anomaly has a certain connection to the topology of the gauge-fields.

This is in as far remarkable as the topology of gauge fields is an intrinsic property

of Yang-Mills theory, and thus existing without any fermions, and hence in anomaly-free

theories. At the same time, anomalies also exist without gauge fields, e. g. in the form of

global anomalies. They are tied to the path-integral measure for chiral fermions. It is the

unique property of the covariant derivative in the form of the Dirac operator for fermions

which ties both effects together in the presented way. Other realizations than minimal

coupling will not have this property, or at least in a different way. This connection is

therefore deeply ingrained in the gauge formulation.
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9.5 Witten anomalies

There is actually a further possible anomaly for fermions, the so-called Witten anomaly,

which is also connected to the parity violation. It is also a gauge anomaly, and has therefore

to be canceled as well. This occurs if the number of Weyl fermion states is even, as is the

case, e. g., in the standard model. This would not be the case, if, e. g., there would be a

single triplet of fermions charged under the weak isospin. In technicolor theories, or other

theories beyond the standard model, this is a constraint, as in such theories multiplets

with an odd number of fermions may appear, e. g. when the chirally coupled fermions

are additionally charged under different gauge groups or representations, leading to an

odd number of fermions. This has then to be canceled by additional fermions. This is

a problem exclusively applying to the Sp(N) gauge groups, and to SU(2) of the weak

interactions because SU(2)≈Sp(1), as well as O(N < 6) groups, except for SO(2).

The reason can be most easily illustrated by considering the path-integral with the

fermions integrated out. For n Weyl fermions, the expression is

Z =

∫

DAµ(det iγµDµ)
n
2 eiS, (9.30)

with S the usual gauge-field action. The problem arises, as it can be proven that for each

gauge-field configuration of a gauge theory with an affected gauge group there exists a

gauge-transformed one such that

(det iγµD
µ)

1
2 = −(det iγµD

µ′)
1
2 ,

where ′ denotes gauge-transformed. The proof is somewhat involved, but essentially boils

down to the fact that the determinant has to be defined in terms of a product of eigenvalues.

For Sp(N) gauge theories as well as the groups O(N < 6) it can then be shown that there

exist gauge-transformations, which are topologically non-trivial, such that one of the non-

zero eigenvalues changes sign. Mathematically, the reason is that the fourth homotopy

group of these groups is non-trivial and actually is Z2 or Z2
2. Hence, the integrand of the

path integral (9.30) exists twice on each gauge orbit, but with opposite signs. Thus, the

partition function vanishes, and all expectation values become ill-defined 0/0 constructs.

Thus, such a theory is ill-defined, as there is no continuous deformation of the gauge group

possible to introduce a suitable definition, similar to L’Hospital’s rule.

In the standard model, the problem does not arise, because the number of Weyl flavors

of the fermions is even since only Dirac fermions appear. One could also hope that, since

the gauge group of the standard model is actually S(U(3)×U(2))≈SU(3)/Z3×SU(2)/Z2×U(1),

this problem would not arise. The reason for this division is that only for this particular
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gauge group the matter field representation becomes single-valued, as is necessary for them

to be meaningful. However, because SU(2)/Z2 ≈SO(3) instead of Sp(2), this does not help,

as the fourth homotopy group of SO(3) is also non-trivial, and the problem persists.

Thus, adding further sectors to the standard model, or embedding it in a grand-unified

theory, must respect this fact, to avoid triggering the Witten anomaly.

9.6 Anomalies in the BRST framework

In the context of the antifield construction of section 5.3, the anoamlies play again a role

as possible obstructions to the existence of a solution W to the quantum master equation

(5.51).

Analyzing the obstructions to the existence of a solution to the quantum master equa-

tion can be done most easily from a direct ~ expansion. To order ~0 the quantum master

equation yields
1

2
(S, S) = 0, (9.31)

which is the classical master equation. This equation is certainly fulfilled, since there is

no obstruction to the existence of S.

To next order ~, the quantum master equation yields

sM1 = (S,M1) = i∆S. (9.32)

Given the ~
0-term S, this equation has a solution for M1 if s∆S = (S,∆S) = 0. This

condition is necessary but in general not sufficient. To prove that the condition (S,∆S) = 0

holds, note that

∆(α, β) = (∆α, β)− (−1)ǫα(α,∆β), (9.33)

which is stated here without proof, but follows immediately from the properties of ∆. This

property uses ∆2 = 0 and the generalized Leibniz rule

∆(αβ) = (∆α)β + (−1)ǫαα∆β + (−1)ǫα(α, β). (9.34)

For α = β = S, the left-hand side of (9.33) vanishes by (S, S) = 0. In view of the gradings

of S, the right-hand side yields 2(∆S, S). Thus, (∆S, S) = 0, that is, ∆S is closed, as

requested.

This does not imply that ∆S is exact, however, unless the cohomological group H1(s)

vanishes at ghost number one, using that ∆S has ghost number one. But (9.32) requires

∆S to be exact. If ∆S is not exact, there is no M1 and therefore, no way to define a

BRST invariant measure such that the quantum averages do not depend on the gauge
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fixing fermion. This presumably signals a serious pathology of the theory. If ∆S is exact,

M1 exists and the problem of existence of the next term M2 can be investigated. It is

straightforward to show that it is again H1(s) that measures the potential obstructions to

the existence of this next term M2, as well as the existence of the subsequent terms M3

etc..

In particular, if it can be shown that H1(s) vanishes, it is guaranteed that a solution

of the quantum master equation exists. If H1(s) 6= 0, further work is required since it is

necessary to check that no obstruction emerges. Note that W should be perturbatively a

local functional (with possibly infinite coupling constants), so that the relevant space in

which to compute the cohomology is that of local functionals. A detailed discussion of

this is, however, beyond the scope of this lecture.
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