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Chapter 1

Introduction

Quantum-field theory is the (extremely successful) combination of quantum physics and

special relativity. As a field theory, it replaces the concept of particles with that of extended

fields, like continuum mechanics replaces point particles with matter density fields. This

turns out to be a necessary step. However, such a step is not (mainly) motivated by

quantum physics, but indeed already by classical electrodynamics.

When considering classical electrodynamics, it becomes apparent that the concept of

(charged) point particles is problematic. The first glimpse of that is already visible when

attempting to calculate the electric energy density of a point particle, which diverges. It

becomes very apparent when attempting to understand the back reaction of the electro-

magnetic field created by an accelerating, massive particle on the particle. While some

effective description have been derived over time, all of them need to deal with complicated

singularities. On the other hand, when considering, e. g., magnetohydrodynamics, which

just has matter fields in terms of fluids, these problems become very much reduced. This

already suggests that a description of matter in terms of fields is likely more appropriate.

As will be seen, the particle concept will then arise again in a similar way as classical

mechanics emerges from quantum mechanics by means of the Ehrenfest relations, by a

suitable averaging. However, it will require first a good understanding of the underlying

theory before it is possible to return to this question.

Thus, the main aim here is to formulate a quantum special relativistic field theory. Ex-

tending this to also include general relativity leads to the, not yet fully obtained, quantum

gravity, which is subject of another lecture. In contrast, the following is, while not yet

mathematical watertight, at least much better under control. For this purposes the path

integral formulation, which will be introduced in chapter 2, is best suited, especially with

hindsight to gauge theories in the lecture “Quantum Field Theory II”. How this relates to

the more familiar operator, or canonical, formalism, will therefore be relegated to chapter

1
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10. The non-relativistic limit, and thus how quantum mechanics emerges from quantum

field theory, will also be there discussed in chapter 10.3.

Just as with quantum mechanics, perturbation theory is both a mainstay of applying

quantum field theory as well as very important to define terminology. It will therefore be

treated twice, once for lowest order calculations in chapter 3 and once for higher orders in

chapter 8. In particular, this will give a first idea of why the usage of field and particle is

often interchangeable, even if not fully accurate.

Interestingly enough, the spin of particles (or, more precisely, fields) plays a much

more important role than in quantum mechanics, and turns out to be intimately tied to

special relativity. For scalar particles this is actually relatively trivial, and can be mostly

ignored. They will therefore serve as the first objects already in chapter 2 and 3. Particles

of different spin will then be introduced in chapter 4.

Finally, there are many interesting subjects, which cannot be treated perturbatively. At

the forefront of them are bound states and quantum phase diagrams. While the methods

necessary to deal with them in any non-trivial way substantial exceeds this lecture, and

are covered in lectures of their own, a first glimpse will be provided in chapter 9.

As with any topic of such relevance there are numerous textbooks and overview articles.

While anyone should make their own choice, the following books were very helpful in the

preparation of this lecture, in order of increasing complexity:

• Peskin & Schröder, “Quantum Field theory” (Cambridge)

• Das, “Lectures on quantum field theory” (World Scientific)

• Dyson, “Advanced quantum physics” (World Scientific)

• Böhm et al. “Gauge theories of the strong and electroweak interaction” (Teubner)

• Weinberg, “Quantum Theory of Fields” (Cambridge)

• DeWitt, “The global approach to quantum field theory” (Oxford)

• Haag, “Local quantum physics” (Springer)

Interested students may find a first access to the philosophical implications of quantum

field theory (and physics in general) in

• Rickles, “The philosophy of physics” (Cambridge)

• Friebe at al., “The philosophy of quantum physics” (Springer)

• Butterfield & Earman (editors), “Philosophy of Physics” (Elsevier)
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• H. Lyre, “Lokale Symmetrien und Wirklichkeit” (in German) (Mentis)

• Berghofer et al., “Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant

Approaches” (Cambridge)

There are, however, very few textbook focused on non-gauge quantum field theories, due

to overwhelming relevance of gauge theories.



Chapter 2

The path integral and scalar particles

2.1 Classical field theories

As has been emphasized in the introduction, already classical physics suggests that fun-

damental physics needs to be done in terms of fields. In principle, already quantum

mechanics is a field theory, as the wave-function itself is already a field. However, position

was different than time, and especially an operator, except when going into a position-

space representation. On the other hand, special relativity (and also general relativity)

strongly suggests to keep space and time on equal footing.

How these two aspects can be unified is actually not unique, even though attempting to

treat time by an operator turns out to be much more involved. Eventually, it is experiment,

which decides, as it will decide how suitable theories look like, and how they are quantized.

In the corresponding theoretical developments, this implies that certain postulates need

to be made. These will be clearly marked in the following. However, while there are

possibilities to motivate them, and eventually derive them from a full quantum gravity

theory of matter, eventually they cannot be reasoned for1.

Here, it is therefore time to start with postulating the classical structure of the field

theories to be discussed, and later quantized. While later on more complicated entities

will arise, at the moment only the simplest case, spinless, uncharged particles, will be

considered. Extending the postulate to cover other cases will happen throughout the

lecture, and especially in section 2.5 and chapter 4, and later in the lecture “Quantum

Field Theory II”.

The basic entity is therefore a real-valued field, φ(x), which is parametrized by a four-

vector x. Thus, the field is a map from a four-vector in a Minkowski space-time to the

1Of course, also in quantum gravity new postulates appear. Whether a postulate-free theory is even

possible is an unresolved question.
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real numbers. At this moment no probability interpretation will be attached to it, and in

fact it is not the same as a wave-function. Furthermore, under a Poincaré transformation

of its argument, the field remains unchanged, i. e.

xµ → x′µ = Λµνx
ν + aµ

φ(x) → φ(Λx+ aµ),

where Λ is a Lorentz transformation and aµ a translation vector. Of course, in a non-

relativistic setting the four vectors would be replaced by time and a three-vector separately,

and Poincaré symmetry by Galileo symmetry. That changes many of the things in the

following only marginally, and can be understood from the non-relativistic limit to be

discussed in section 10.3. Thus, here the relativistic notion will be used. Conversely, some

aspects like spin cannot be explained in a non-relativistic setting, but only postulated.

But they emerge naturally in a relativistic framework.

To describe classically the dynamics of such a field requires either a Hamiltonian or a

Lagrangian density. Since in a path-integral, relativistic treatment the Lagrangian turns

out to be the more useful one, it will be concentrated on for now. The role of the Hamil-

tonian will be discussed again in chapter 10. The classical theory of a free field is then

given by the Lagrangian density

L =
1

2
∂µφ∂

µφ, (2.1)

which describes a freely vibrating relativistic field. These are in turn determined by the

corresponding equations of motions, the Lagrange equations. It should be noted that as

initial conditions it is sufficient to know the field and its derivatives at all points in space

at a fixed time.

The Lagrangian itself is of second order in time and space, and manifestly invariant

under Poincaré symmetry. It is thus different from quantum mechanics, where the time

derivative is only of first order. Again, this is an artifact of the non-relativistic limit, see

section 10.3.

It is natural to ask, whether other derivatives can appear. Less derivatives will lead

to interactions, as described in section 2.2. More derivatives will imply also more time

derivative, if special relativity should be maintained. As a consequence, more initial data

would be needed. Especially, it is possible to have a different evolution of a field and its

derivatives fully fixed at a given time by changing the conditions at some later time. This

appears to be acausal, and is certainly in contradiction to existing experiments. While it

is an interesting question if such theories can be given a meaning at the quantum level,

this question is so open that here only theories up to second order in the derivatives will

be considered.
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2.2 The linear sigma model

While (2.1) is a complete theory, it is only describing a free field, and thus at most plane

waves. To have other phenomena, it requires interactions, either with another field, or

with itself. Relegating additional fields to later, this implies that the interacting field

theory should be given by

L =
1

2
∂µφ∂

µφ− V (φ, ∂µφ),

with the understanding that only up to order two derivatives should be admitted. Ulti-

mately experiment will fix the potential. But some quite general rules have been found

for the potential from the actually observed physics. These are that the potential, also in

more general theories, is a polynomial of the fields up to mass dimension d, where d is the

number of space-time dimension. This requires to define the mass dimension.

In the following, the action

S =

∫
ddxL

will become an important object. The action is in natural units, i. e. kB = ~ = c =

1, which will be used throughout, dimensionless. Because the integration measure has

dimension2 Lengthd =Energy−d, and derivatives have unit Length−1, this implies that the

scalar field has mass dimension Length−
d−2
2 =Energy

d−2
2 . Hence, a polynomial of order n

has mass dimension (n(d− 2))/2, and thus 4 in 4 dimensions, to which this will be mostly

restricted. While both features are an empirical result, they have profound consequences

to be addressed in sections 3.1 and 8.2.

The most general Lagrangian consistent with these rules is thus

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − ζ

6
φ3 − λ

24
φ4, (2.2)

where the numeric prefactors have been chosen for later convenience. This theory is known

as the linear σ-model. Note that while m2 is written like a positive quantity, it will be

allowed to be negative as well. However, because the Lagrangian and the action are real,

all three constants need to be real as well. As will be seen, the quantity m will be connected

to the mass of the particle, while ζ and λ will be related to the interactions. The latter are

therefore called coupling constants. It should be noted that classically λ > 0 is required

for the theory to have a stable least-energy configuration, and thus describing a stable

system. If λ = 0, this requires that m2 ≥ 0 and ζ = 0 to have a stable system.

The linear σ-model is a well-defined theory, but also already classically no longer exactly

solvable. It is, however, the simplest interacting theory, which plays a larger role as a

2The units employed are usually eV and fm, which can be converted using ~c = 197 MeV·fm. But only

one of them is needed in any given expression in the chosen natural units.
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quantum field theory. It will therefore serve for large parts of this lecture as the standard

example, especially in the case that ζ = 0.

2.3 Path integral quantization

In this section, the basic formulation of the path integral will be constructed, together

with the necessary tools to treat real-valued, scalar fields. The application of perturbation

theory and the derivation of Feynman rules will be discussed in chapter 3.

2.3.1 Heuristic introduction

The path integral formulation is as axiomatic as is canonical quantization, it cannot be

derived. However, it is possible to motivate it.

This is done most easily by defining it as a limiting procedure, using a so-called lattice

regularization. As the name implies, it works by replacing space-time with a finite lattice

of discrete points. This technique is useful also for doing calculations in quantum field

theories, and is explored in more detail in a dedicated lecture. For the moment, it is,

however, just a tool to define a limiting process. The approach is therefore quite similar

to what is done by defining the path integral in quantum mechanics by creating it from

a product of propagators. It is actually possible to define, even mathematically rigorous

in the non-interacting case, the path integral directly in the continuum. However, this

requires more general ways of integrating, so-called Ito integration, as quantum fields are

usually non-continuously differentiable functions, which cannot be treated by Riemann

integration.

In fact, it is best to start with the quantum mechanics version, but in a different than

usual way. The heuristic reasoning is then as follows. Take a quantum-mechanical particle

which moves in time T from a point a of origin to a point b of measurement. This is

not yet making any statement about the path the particle followed. In fact, in quantum

mechanics, due to the superposition principle, a-priori no path is preferred. Therefore, the

transition amplitude U for this process must be expressible as

U (a, b, T ) =
∑

All paths

ei·Phase (2.3)

which are weighted by a generic phase associated with the path. Since all paths are equal

from the quantum mechanical point of view, this phase must be real. Thus it remains

only to determine this phase. Based on the correspondence principle, in the classical limit

the classical path must be most important. Thus, to reduce interference effects, the phase
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should be minimal for the classical path. A function which implements this is the classical

action S, determined as

S =

∫
Cba
dtL,

where the integral is over the classical path Cba from a to b. If the classical path is now

replaced with some arbitrary path Cb
a, again connecting the points a and b, the action can

be considered to be a functional of the path Cb
a and the classical Lagrange function L. Of

course, it is always possible to add a constant to the action without altering the result.

Rewriting the sum as a functional integral over all paths, this yields already the definition

of the functional integral

U (a, b, T ) =
∑
Cba

eiS[Cba] ≡
∫
DCb

ae
iS[Cba].

This defines the quantum mechanical path integral in a symbolic way.

It then remains to give this functional integral a mathematically concise meaning, such

that it becomes a mathematical description of how to determine this transition amplitude.

It is here where the lattice comes into play. However, for arbitrary interacting theories,

there are still conceptual and practical problems, so that the following remains often an

unproven procedure.

The starting point was the transition amplitude. In quantum mechanics, this amplitude

is given by

U(a, b, T = tN − t0) =
〈
a, tN

∣∣e−iHT ∣∣ b, t0〉 .
In the next step, insert at intermediate times a sum, or integral in cases of a continuous

spectrum, over all states

U(a, b, T ) =
∑
i

〈
a, tN

∣∣e−iH(tN−t1)
∣∣ i, t1〉 〈i, t1 ∣∣e−iH(t1−t0)

∣∣ b, t0〉 .
By this, the transition amplitude is expressed by a sum over all possible intermediate

states, already quite in the spirit of (2.3). To fully embrace the idea, divide the time

interval into N steps of size ε = T/N , where N is large and will later be send to infinity.

That is actually already a lattice in time. This yields

U(a, b, T ) =
∑
j

∑
ij

〈
a, tN

∣∣e−iHε∣∣ iN−1, tN−1

〉
...
〈
i1, t1

∣∣e−iHε∣∣ b, t0〉
=

∫
Πidqi

〈
qa, tN

∣∣e−iHε∣∣ qN−1, tN−1

〉
...
〈
q1, t1

∣∣e−iHε∣∣ qb, t0〉 , (2.4)

where in the second line the result was rewritten in terms of a set of continuous eigenstates

of the (generalized) position operator Qi. These are therefore N −1 integrals. In this way,
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the time is given a lattice structure. Space is still a continuum, which extends over all

space.

If, as is the case for all systems of interest in the following, the Hamiltonian separates

as

H =
1

2
P 2
i + V (Q),

where the Pi and Qi are the M canonically conjugated momenta, then for ε arbitrarily

small the Baker-Campbell-Hausdorff formula

expF expG = exp

(
F +G+

1

2
[F,G] +

1

12
([[F,G], G] + [F, [F,G]]) + ...

)
.

yields

e−iHε ≈ e−
iε
2
P 2
i e−iεV ,

i. e. for infinitesimally small time steps the exponentials can be separated. Assuming the

states to be eigenstates of the position operator and furthermore inserting a complete set of

(also continuous) momentum eigenstates allows to rewrite the transition matrix elements

as ordinary functions

〈
qi+1, ti+1

∣∣e−iHε∣∣ qi, ti〉 = e−εV (qi)

∫
Πj

dpij
2π

Πke
−iε
(
pi2k
2
−ipk

qi+1
k
−qik
ε

)
, (2.5)

where products run over the number of independent coordinates M . The infinitesimal step

(2.5) is also known as the transfer matrix, which transfers the system from one time to

another. In fact, even if the Hamilton operator is not known, but only the transfer matrix,

it is possible to construct the full transition amplitude, as this only requires to create a

product over all transfer matrices.

Defining

DpDq = ΠN
i ΠM

j

dpijdq
i
j

2π
, (2.6)

and thus in total 2NM integration measures yields the first formulation of the path integral

U(a, b, T ) =

∫
DpDqe−εpk

qi+1
j
−qij
ε e−iεH(pij ,q

j)

Defining
qi+1
j − qij
ε

= dtq
i
j

and performing the Gaussian integrals over the momenta yields

U(a, b, T ) =

∫
Dqei

∑N εL(qij ,dtq
i
j)
N→∞

=

∫
DqeiS

Dq = ΠN
i ΠM

j

dqij√
2πε

,
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where L is the Lagrange function of the system, thus arriving at the original idea (2.3).

Considering the result in detail, it is important to note one important feature. The

definition requires to chose any straight line between every point at every time. Thus, in

general paths will contribute which are not differentiable. This is a very important insight:

Quantum physics differs from classical physics not only by including all possible paths,

but also by including not only differentiable paths. This is in stark contrast to Hamilton’s

principle of classical mechanics.

Passing now to a field theory, the transition is the same as in classical mechanics: The

paths are replaced by the fields, the Lagrange function by the Lagrangian density, and

the action is an integral over space-time. Of particular importance is then the partition

function

Z =

∫
Dφei

∫
ddxL(φ,∂µφ), (2.7)

where the integral is over all possible field configurations, i. e. the set of all possible values

of the fields at every space-time point, including any non-differentiable ones3. Since any

field configuration includes the time-dependence, the path-integral can be considered as an

integral over all possible field configurations, and thus histories of the universe described

by the Lagrangian L, from the infinite past to the infinite future. Thus, the path integral

makes the absence of locality in quantum physics quite manifest. The partition function

(2.7) is essentially the transition function from the vacuum to the vacuum. It is important

to note that in the whole setup the field variables are no longer operators, like in canonical

quantization, but ordinary functions.

It is also important to note that the integration is over all possible field configurations.

Thus, in contrast to the beginning and end of the paths in the quantum-mechanical case,

there are no boundary conditions imposed. Of course, if desired, additional boundary

conditions can be imposed, as can be any kind of underlying space-time manifold. But

for any set of boundary conditions and/or any change of manifold a different theory will

result. Neither of this will be done in this lecture.

While the vacuum-to-vacuum transition amplitude is a very useful quantity, what is

really important are the expectation values of the correlation functions, i. e. expectation

values of products, or other functions, of more than one field. These can be determined

in a very similar way as before to be

〈T (φ(x1)...φ(xn))〉 =

∫
Dφφ(x1)...φ(xn)ei

∫
ddxL(φ,∂µφ). (2.8)

3In fact, it can be shown that those are the dominating one. Making sense out of this expression in

the continuum is highly non-trivial and requires to pass from Riemann integrals to different definitions of

integrals, but this is not the subject of this lecture.
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Here, T means time-ordering, i. e. that the time arguments x0
i are ordered in descendant

order, i. e.

T (φ(t1)φ(t2)) = θ(t1 − t2)φ(t1)φ(t2)± θ(t2 − t1)φ(t2)φ(t1), (2.9)

where the minus sign appears if the φ anticommute. Note that this time-ordering does not

appear inside the path integral, but is created automatically. Inside the path integral, the

ordering is arbitrary. In a path-integral context, this is less important, but will be found

to be relevant during canonical quantization in chapter 10, when the fields are interpreted

as operators, rather than as functions. It also is important if fields anticommute, what

will happen when introducing fermions in chapter 4.

It is here implicitly assumed that Z = 1, i. e. that the measure of the path integral is

normalized such that the expectation value of unity is one, 〈1〉 = 1. Otherwise

〈Tφ(x1)...φ(xn)〉 =

∫
Dφφ(x1)...φ(xn)eiS[φ]∫

DφeiS[φ]
, (2.10)

holds.

There are two important remarks. This can be seen by noting that the fields are

evaluated at fixed times, and therefore evaluate to functions of the positions in their

respective transfer matrix elements (2.5). Thus, any expectation value is a path integral

over the fields as ordinary functions weighted by the phase.

2.3.2 Functional analysis

So far, any explicit calculation with the path integral would require to go back to the

limiting prescription (2.4). This would be quite awkward. Fortunately, this is usually not

necessary, and it is often possible to work with the path integral in much the same way as

with ordinary integrals.

How to do so falls into the mathematical purview of functional analysis and distribution

theory to provide any level of rigor. For most applications in physics, little of this rigor is

necessary. Thus, here results will be collected, which are useful to work in an operational

way with the path integral, but they will not be proven. Rather, the corresponding

mathematical literature and/or lectures can provide this, where desired and necessary.

Nonetheless, it is advised that, with all simplicity the following seems to bring, one should

always be wary that many issues run much deeper.

The starting point before defining functional integration is the definition of a functional

derivative. Essentially, this is an extension of variational calculus in classical mechanics.
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The basic ingredient for a functional derivative δ with respect to a function (field) φ(x)

are the definitions

δ1

δφ(x)
= 0

δφ(y)

δφ(x)
= δ(x− y)

δ

δφ(x)
(α(y)β(z)) =

δα(y)

δφ(x)
β(z) + α(x)

δβ(z)

δφ(x)
,

in analogy to conventional derivatives. The last identity is known as the Leibnitz rule.

Consequently, a power series of a functional is defined as

F [φ] =
∞∑
n=0

∫
dx1...dxn

1

n!
T (x1, ..., xn)φ(x1)...φ(xn),

where the coefficients of an ordinary power series are now replaced by coefficient functions

T . In particular, they can be obtained as

T (x1, ..., xn) =
δn

δφ(x1)...δφ(xn)
F [φ]

∣∣∣∣
φ=0

.

This defines the most important concepts for differentiation. If not stated otherwise, it

will be assumed in the following that any functional can be written as functional Taylor

series. Just as with ordinary functions, this is not guaranteed.

Concerning the functional integrals, they are as usually defined to be the inverse oper-

ation to functional derivatives. Therefore, integration proceeds as usual. In most practical

cases, the relevant functional are either polynomials or can be expanded in a power series,

and then functional integrals are straight-forward generalizations of the usual integrals.

In particular ∫
Dφ = φ(x)∫
Dφφ =

1

2
φ(x)2,

where the first expression implies that δ
∫

equals not to one, but equals a δ-function.

Of particular importance are Gaussian integrals, i. e. the generalization of∫ ∞
−∞

dx√
π
e−ax

2

=
1√
a
. (2.11)

The result can be either obtained from the power series expansion or directly gleaned from

the finite-dimensional generalization of Gaussian integrals, which is given by∫ ∞
−∞

dx1√
π
...

∫ ∞
−∞

dxn√
π
e−x

TAx =
1√

detA
,
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with an arbitrary matrix A, though for a finite result the square-root of its determinant

must be invertible, i. e., no zero eigenvalues may be present.

The functional generalization is then∫
Dφe−

∫
dxdyφ(x)A(x,y)φ(y) =

1√
detA(x, y)

,

where A may now be operator-valued. Especially derivative operators may appear in this

context. The determinant of such an operator can be evaluated by the expression

detA = exp tr ln(A), (2.12)

just like for matrices, which is of great practical relevance. Herein, both the logarithm and

the exponential of an operator are defined by the usual power series of these operations4.

Alternatively, detA can be expressed in terms of the solutions of the eigenvalue equation∫
dyA(x, y)φ(y) = λφ(x),

where the eigenvalues λ can form a (complex) continuum, and finite, or even infinite,

degeneracies are possible. The determinant is then given as the product of all eigenvalues.

An important property is the definition that a functional integral is translationally

invariant. Thus, for an arbitrary functional F and an arbitrary function η and constant α∫
DφF [φ+ αη]

φ→φ−αη
=

∫
DφF [φ] (2.13)

holds by definition.

From these properties follows the validity of the substitution rule as∫
DφF [φ] =

∫
Dψ det

(
δφ

δψ

)
F [φ [ψ]] , (2.14)

where the Jacobi determinant det(δφ/δψ) appears. In case of a linear transformation

φ(x) =

∫
dyη(x, y)ψ(y), (2.15)

the determinant is just det η(x, y) of the infinite-dimensional matrix η(x, y) with the indices

x and y.

4This implies that problems may arise, as this is not always justified. In fact, there exist operators for

which even the trace is not well defined. Even though this rarely plays a role in the following, caution is

in general advised.
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2.3.3 Sources

Combining all of the above allows for a different way of calculating correlations functions

than by direct evaluation of (2.10). For this, introduce5 a so-called (external) source j(x),

and replace

iS[φ]→ iS[φ] +

∫
ddxφ(x)j(x).

Thus, the partition function will become a functional of j(x). Then a more elegant way

to express correlation functions is by

〈Tφ(x1)...φ(xn)〉 =
1

Z [0]

∫
DφeiS[φ]+

∫
ddxφ(x)j(x) φ(x1)...φ(xn)

∣∣∣∣
j=0

=
1

Z [0]

∫
Dφ δn

δj(x1)...δj(xn)
eiS[φ]+

∫
ddxφ(x)j(x)

∣∣∣∣
j=0

=
1

Z [0]

δn

δj(x1)...δj(xn)
Z [j]

∣∣∣∣
j=0

.

Note that it was assumed that functional derivation and integration commute, and that

often the normalization Z[0] = 1 is chosen.

Furthermore, this permits to reconstruct the original path-integral, or generating func-

tional, as

Z[j] =
∞∑
n=0

∫
ddx1...d

dxn〈Tφ(x1)...φ(xn)〉j(x1)...j(xn), (2.16)

which can be proven by comparing both expressions in an expansion term-by-term. This

reconstruction theorem can be readily generalized to theories with more than one field.

2.4 Free particles and generating functionals

As a useful first example, consider the Lagrangian of a free particle,

L =
1

2
φ(−∂2 −m2)φ

for a real, scalar, non-interacting particle. Note that a partial integration has been per-

formed, where the boundary term vanishes. It is here implicitly assumed that the fluctu-

ations at infinity are sufficiently independent to average any boundary term out. If there

is an explicit boundary, or correlations across arbitrary distances should be described,

this assumption may need revisiting. As the action is even in φ, this implies that any

expectation value of an odd-power monomial of the field will vanish.

5There are subtleties involved, if the source breaks any symmetry explicitly. Then the limit of vanishing

source may be different from the situation at zero source. This will not play a role in this lecture, but

does sometimes in applications.
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The two-point correlation function, the so-called propagator, is then the simplest, non-

trivial and non-vanishing correlation function. For the scalar follows

〈φ(z)φ(y)〉 =

∫
Dφφ(z)φ(y)eiS+

∫
ddxjφ

∣∣∣∣
j=0

=
δ2

δj(z)δj(y)

∫
DφeiS+

∫
ddxjφ

∣∣∣∣
j=0

.

This can be either directly integrated, or by completing the square. The propagator is

hence the inverse of the square root of the determinant of the Klein-Gordon operator

∆ = ∂2 +m2. (2.17)

Rather then to directly determine the determinant of this operator, it is better to switch

to momentum space in the action, yielding

S =

∫
ddpφ(p)(p2 −m2)φ(−p).

At first sight, the path integral is then not well defined, due to its highly oscillatory

behavior. Just as with ordinary Fourier integration, this can be remedied by replacing m2

by m2 − iε, and eventually taking ε to zero. Using then (2.12) yields

det(p2 −m2 + iε)−
1
2 e
−i
2

∫
ddpj(p)2(p2−m2+iε) = e−

i
2

∫
ddp ln(

∫
ddpp2−m2+iε)− i

2

∫
ddpj(p)2(p2−m2+iε)

This is used to define the free energy W as

eW [j] = Z[j].

Because of (2.16) this implies that

〈Tφ(q)φ(−q)〉 =
1

Z[0]

δ2Z[j]

δj(q)δj(−q)

∣∣∣∣
j=0

=
eW [j]

eW [0]

δ2W [j]

δj(q)δj(−q)

∣∣∣∣
j=0

=
δ2W [j]

δj(q)δj(−q)

∣∣∣∣
j=0

Hence, the derivatives of the free energy are the correlation functions. In the present case

〈Tφ(q)φ(−q)〉 = −i(q2 −m2 + iε).

As will become apparent later, it is also useful to define the so-called quantum effective

action as the Legendre transformed of the free energy6. To this end, define the conjugate

variable to the sources as the so-called classical field Φ,

Φ =
δW [j]

δj

6That a Legendre transform exists is highly non-trivial. However, it can be shown that it is possible for

any well-defined quantum field theory. From this follows that the free energy and the quantum effective

action are convex functionals of their arguments.
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and then7

Γ[Φ] =

∫
ddpj(p)Φ(p)−W [j(Φ)].

The derivatives of the quantum effective action with respect to the classical fields are

called the vertex functions. Especially, because of the existence of an inverse Legendre

transformation

j =
δΓ(Φ)

δΦ
(2.18)

it follows that

δd(p− q) =
δΦ(p)

δΦ(q)
=

∫
ddk

δΦ(p)

δj(k)

δj(k)

δΦ(q)
=

∫
ddk

δ2W

δj(p)δj(k)

δ2Γ

δΦ(k)δΦ(q)
(2.19)

and therefore necessarily

δ2W

δj(p)δj(k)
δ(p− k) =

(
δ2Γ

δΦ(k)δΦ(q)

)−1

δ(q − k). (2.20)

It hence follows that

δ2Γ

δΦ(−q)δΦ(q)
=

i

q2 −m2 + iε
= D(q) = Γ−1

2 (q)

is the so-called propagator.

These quantities will take on important meanings in the following, starting with chapter

3.

2.5 Internal symmetries and Ward identities

2.5.1 Symmetries

Symmetries play an important role in physics, and thus also in quantum field theory.

A symmetry is defined to be an operation on the variables of the theory such that any

observable quantity remains unchanged. Though their theory is more multilayered then

often perceived.

Symmetries thus act in general as

φ(x) → φ(x′) + δ(x′) (2.21)

x → x′ = x+ ε(x), (2.22)

7As a Legendre transformation, it is necessary that Γ is a convex function of the classical fields.

However, the existence of the Legendre transformation is not obvious, as this requires the free energy to

be also a strictly monotone function of the sources, and thus W [0] to be an absolute minimum. This

follows from the fact that the total derivative of a path integral, and thus also with respect to the sources,

vanishes, and the Hessian is positive.
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in which the (vectors) δ and ε are taken to be infinitesimal. Finite transformations are

build up from infinitesimal transformations8. Symmetries which change the coordinates

are called external symmetries. If ε(x) is linear in x, this will be in this lecture exclusively

Poincaré transformations. Their role will be analyzed in detail in chapter 4, but has

already been briefly used in section 2.1. If ε(x) is non-linear in x, this will generically

become a theory involving general relativity. This subject is addressed in the lecture on

“Advanced General Relativity and Quantum Gravity”.

Symmetries with ε = 0 are called internal symmetries. If δ(x) is only linearly dependent

on the fields, with space-time independent coefficients, it is a so-called global symmetry,

or sometimes also called rigid symmetry. Otherwise it is called a local symmetry or gauge

symmetry. The latter type of symmetries is subject of the lecture “Quantum Field Theory

II”. Symmetries, for which both ε and λ are simultaneously non-zero are supersymmetries,

and are discussed in the lectures on “Beyond the Standard Model physics”.

For a transformations like (2.21-2.22) to be a symmetry it is necessary that it leaves

the generating functional (2.7) invariant. The reason is that the partition function can be

associated with relative differences in free energies (thus the introduction ofW ) or pressure,

and is hence observable. This is different from classical physics, where a symmetry needs

to leave only the action invariant. Very often, the Lagrangian alone is already invariant.

However, not always.

As an example of symmetries, consider again the free scalar field (2.1). However,

duplicate the number of degrees of freedom, by replacing the single field φ by a two-

dimensional vector φi, giving the Lagrangian

L =
1

2
∂µφi∂

µφi.

Acting with a space-time-independent orthogonal matrix O on the two-dimensional, real

vector ~φ, yields

(O~φ) = Oijφj ≈ φi + ωijφj +O(ω2) (2.23)

where the infinitesimal form in the second step makes use of the fact the two-dimensional

orthogonal groups form a Lie group, and thus can be expanded in this way. This will

leave the action invariant, since O is space time-independent, and thus commutes with the

derivatives,
1

2
∂µOijφj∂

µOikφk = (OTO)jk
1

2
∂µφj∂

µφk =
1

2
∂µφi∂

µφi,

and where it was used in the last step that for orthogonal matrices OTO = 1. Hence, the

Lagrangian and the action are invariant.

8There are some subtleties involved, which will not play a role in this lecture. This is taken up again

in the lecture “Quantum Field Theory II”.
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However, for the partition function also the measure Dφi needs to be invariant. Since

(2.23) can be regarded as a variable transformation, this requires that the Jacobi determi-

nant is unity. As the transformation is linear, the multi-component generalization η(x, y)ij

in (2.15) is δ(x−y)O and detO is ±1. Thus, the path integral could change sign. However,

because of the normalization of the path integral by Z[0], this will not change any corre-

lation function, and thus all observables and the generating functional remain unchanged.

If the determinant would have spoiled this, it is called an anomaly, a symmetry broken

by the quantization. This indeed happens, as will be explored in the lecture “Quantum

Field Theory II”, and indeed occurs and has observable consequences, as discussed in the

lecture “The Standard Model”.

A useful consequence is the existence of so-called Ward-Takashi identities, which relate

correlation functions. To understand it, this requires a few more preliminary remarks. If

the transformations (2.21-2.22) form a group, which is almost always the case, the group

is called the symmetry group of the symmetry. Then, the field form an orbit of the group,

and any element of the orbit is physically equivalent. Any element is thus a representative

of the orbit. Since the path integral is defined to integrate over all field configurations, it

necessarily integrates over the orbits as well.

But this implies that for any symmetry group for which the integral over the group

orbit g with representation T (αi)

0 =

∫
dgφg =

∫
ΠidαiT (αi)jkφk (2.24)

holds, where the αi are parameters which allow to access all group elements, can have

only non-vanishing correlation functions if the combination of fields involved do create an

invariant under the symmetry. This applies, e. g., to all Lie groups. Conversely, for

〈Tai1...inφi1(x1)...φin(xn)〉 6= 0 (2.25)

to hold, a must be an invariant tensor. To see this, split the integration over the field into

a representative φR and the integral over the group orbit g. For a non-invariant correlation

function this implies

〈Tφi...〉 =

∫
DφRdgφi...eiS =

∫
DφRΠjdαjT (αj)ikφk...e

iS = 0. (2.26)

Hence, only invariants can be non-zero.

However, when including a source term, the source is external, and thus does not

transform under the symmetry. Therefore, a source term breaks the symmetry necessarily

explicitly. Especially, in presence of a source term even non-invariant correlation functions
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remain non-zero. When taking the limit of the source to zero, they may again vanish or

not. In the latter case the system is non-analytic in the source, a phenomenon know as

spontaneous symmetry breaking. This will play an important role in phenomenology.

However, there is another way to consider the structure. Because an invariant tensor

will not depend on the fields, it appears valid to write

〈Tai1...inφi1(x1)...φin(xn)〉 = ai1...in〈Tφi1(x1)...φin(xn)〉. (2.27)

But, by virtue of (2.26), this seems to contradict (2.25).

What happens can be understood in terms of the Wigner-Eckart theorem. Any tensor

under a given symmetry can be decomposed in a basis of invariant tensors {ba} and scalar

functions sa, and thus necessarily

φi...φn =
∑
a

bai...ns
a(φ2). (2.28)

Multiplying thus with an invariant tensor a, this will project out the corresponding sum

of the sa, based on how a decomposes into the ba. Then, this becomes transparent, as this

separates the φR integration and the α integration in (2.26) as∫
DφRΠjdαjT (αj)ikφk...e

iS =
∑
a

(∫
ΠjdαjT (αj)ikb

a
i...

)(∫
DφRsa((φR)2)eiS

)
Thus, the first factor vanishes, while the second does not. Now it becomes evident, why

(2.27) is actually not valid. While the invariant tensor does not depend on the fields, it

does depend on the parametrization of the orbits and the invariant tensors used to write

down the expressions. By pulling it out, this information is lost, and the result vanishes.

Essentially, what happens is that the orbit integration also includes all possible changes

of basis, and the a would be needed to be changed accordingly. Thus, (2.27) it is not a

valid operation.

Even though therefore only scalar quantities can be non-zero, it is often very convenient

to act as if also correlation functions can be written as (2.28),

Γi1...in(x1, ..., xn) ≡ 〈Tφi1(x1)...φin(xn)〉 =
∑
a

bai1...ins
a(x1, ..., xn). (2.29)

However, this should be regarded as a short-hand notation for

Γi1...in(x1, ..., xn) =
∑
a

bai1...in〈Tb
a
j1...jn

φj1(x1)...φjn(xn)〉.

While so far only scalar particles have been considered, later on this will change. As a

consequence, the fields will also have Lorentz indices, and transform non-trivially under

Lorentz transformations. Then, correlation functions for this external symmetry need to

be treated likewise.
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2.5.2 Ward-Takahashi identities

Not withstanding these subtleties, symmetries can be used to derive powerful relations

between correlation functions. Let a theory be invariant under the change

φ→ φ′ = φ+ δφ = φ+ εf(φ, x), (2.30)

with ε infinitesimal. Then the generating functional Z [j] should not change, i. e., δZ

should be zero. This can be analyzed using the general behavior of a quantity F under

the variation δ,

δF (φ) =
δF

δφ
δφ =

δF

δφ
εf.

In case of Z, it acts on two components in the path integral. One on the action itself,

which yields
1

ε
δ
(
eiS+i

∫
ddxjφ

)
= i

(
δS

δφ
+ j

)
εfeiS+i

∫
ddxjφ,

to first order in ε. The second is the measure. As mentioned before, the shift (2.30)

is a variable transformation, which generates a Jacobian determinant. This Jacobian

determinant can also be expanded in ε, yielding

det
δφ′

δφ
= det

(
1 +

δεf

δφ

)
= 1 + ε

δf

δφ
+O(ε2).

Together, this yields the variation

0 = δZ =

∫
Dφε

(
δf

δφ
+ i

(
δS

δφ
+ j

)
f +O(ε)2

)
eiS+i

∫
ddxjφ. (2.31)

Note that if the term from the Jacobian is non-vanishing as ε→ 0, this yields a so-called

anomaly, and potentially breaks the symmetry. If this is the case, the original assumption

that δZ = 0 is no longer valid, and the following does not work9.

Differentiating this expression once with respect to the source and setting the sources

afterwards to zero yields an expression connecting different correlation functions. E. g.,

performing a single derivative will yield〈
Tφ(y)

δf(φ, x)

δφ(x)

〉
+ i

〈
φ(y)

δS

δφ(x)
f

〉
+ 〈Tf〉 = 0.

In general, there will not only be one field involved, but many fields, numerated by a field

index i. In this case, expression (2.31) takes the form

0 =

∫
Dφi

(
δfk
δφk

+ i

(
δS

δφk
+ jk

)
fk

)
e
iS+i

∫
ddxjkφ

k ,

9In fact, this yields so-called broken or modified Ward-Takahasi identities, which, however, is beyond

the scope of this lecture.
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i. e., it becomes a sum over all fields. Deriving this expression in total n times for any

sequence of field types il yields the set of all Ward-Takahashi identities, sometimes also

called rigid identities given that global symmetries are sometimes called rigid symmetries,〈
TΠn

l=1φil(xl)
δfk

δφk(y)

〉
+ i

〈
TΠn

l=1φil(xl)
δS

δφk(y)
fk

〉
+

n∑
m=1

〈
Πm−1
l=1 φil(xl)fimΠn

r=m+1φir(xr)
〉

= 0. (2.32)

These relate different correlation functions with each other especially also those with a

different number of fields. The Ward-Takashi identities are an expression of the redundancy

introduced by the global symmetry. Similar to the Wigner-Eckart theorem, they allow to

eliminate the redundancy by relating different correlation functions.

To obtain practical cases requires to insert an action with a certain invariance. Take

again as an example the action for the σ-model (or φ4 model) with positive mass squared,

L =
1

2
(∂µφ)†∂µφ+

1

2
m2φ†φ− λ(φ†φ)2.

The transformation function is then fi = ∓iφi, where i = 1 refers to φ and i = 2 refers

to φ†. The derivative of f actually vanishes in this case, since the Jacobian matrix under

a linear shift of the fields is zero, by the definition of translational invariance of the path

integral (2.13).

Furthermore, the action is invariant under the global symmetry transformation. This

implies
∂S[φi + εfi]

∂ε
= 0 =

∫
ddx

δS

δφi

∂(φi + εfi)

∂ε
=

∫
ddx

δS

δφi
fi,

and thus also the second term in (2.31) vanishes. Hence, only the third term remains,

which can be conveniently written as

0 = δ 〈TΠn
l=1φil〉 , (2.33)

which are called Ward identities in this context. E. g., at level n = 2, this identity implies

〈T (δφ(x))φ(y)†〉+ 〈Tφ(x)δφ(y)†〉 = 〈φ(x)φ(y)†〉 − 〈φ(x)φ(y)†〉 = 0,

which seems rather trivial. However, when rewriting the theory in terms of a scalar σ field

and a pseudoscalar χ field, i. e. φ = σ + iχ, this implies

〈Tδσχ〉+ 〈Tσδχ〉 = 〈χχ〉 − 〈σσ〉 = 0,

which implies that the propagators of both fields are identical. At tree-level, this is imme-

diately visible, but gives a constraint for the results beyond tree-level. Of course, this is a

rather simple result, and much more interesting ones are obtained at higher order and/or

for more complicated theories.



Chapter 3

Perturbation theory

To actually determine correlation functions, it appears necessary to evaluate the path

integral. Except for non-interacting theories, a few 2-dimensional field theories, and a

few theories with extremely strong symmetries, this is so far not exactly possible. Thus,

approximation methods are required. As so often, there are a wide range of such methods

available. However, the mainstay, as in quantum mechanics, is very often perturbation

theory. Also, many concepts from perturbation theory are essential to go beyond pertur-

bation theory eventually. Thus, here perturbation theory will be treated first. In chapter

9 approximations transcending the bounds of perturbation theory will be introduced.

3.1 Perturbative expansion and Feynman rules

Correlation functions can be calculated using the path integral as

〈Tφ1...φn〉 =

∫
Dφφ1...φne

iS[φ,J ]∫
DφeiS[φ,J ]

∣∣∣∣
J=0

. (3.1)

However, this is so far only a tautology, as this gives no constructive way of calculating

actually the correlation functions. As in quantum mechanics, in many cases the corre-

lation functions are quantitatively well described by small perturbations from a known,

usually exactly soluble, case. To calculate the differences, perturbation theory is again

useful. However, its formulation is slightly different, due to manifest Lorentz covariance.

Especially, time-independent perturbation theory is usually not useful, as space-time are

linked by Lorentz boosts.

The starting point will be expression (3.1). Perturbation theory will boil down essen-

tially to expanding the exponential in the fields, giving an infinite series of quasi-Gaussian

integrals. The result is that the transition matrix elements are determined by a sum over

22
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correlation functions in a theory with quadratic action. Such an expansion of the field is

most often an expansion around free fields, and thus assumes that the field amplitudes

are small and thus interaction terms small compared to the kinetic terms. It is thus a

saddle-point approximation around the free system, and can thus also be considered as an

expansion in quantum corrections. It will later be seen that this is manifest as it is also a

power series in ~.

To do this, split the Lagrangian into a quadratic part L2 and a remainder part LI ,
which includes all the interactions. This yields for the generating functional

Z [J ] =

∫
Dφei

∫
ddxLIei

∫
ddx(L2+Jφ)

= ei
∫
ddxLI[ δ

iδJ ]
∫
Dφei

∫
ddx(L2+Jφ).

This is a rewriting of the expression1 with the operator-valued exponential defined in terms

of a power series. The argument of LI is just indicating that all appearances of the field

have been replaced by the derivative with respect to the source. To see the equivalence,

take as an example a theory with cubic interaction term

LI =
λ

3!
φ3

and expand the exponential

ei
∫
ddxLI[ δ

iδJ ]
∫
Dφei

∫
ddx(L2+Jφ)

=

∫
Dφ
∑
n

1

n!

(
λ

3!
i

∫
ddy

δ3

iδJ(y)3

)n
ei
∫
ddx(L2+Jφ)

=

∫
Dφ
(

1 + i

∫
ddy

λ

3!

δ2

iδJ(y)2

δi
∫
ddxJφ

iδJ(y)
+ ...

)
ei
∫
ddx(L2+Jφ)

=

∫
Dφ
(

1 + i

∫
ddy

λ

3!

δ2

iδJ(y)2

∫
ddxφδ(x− y) + ...

)
ei
∫
ddx(L2+Jφ)

=

∫
Dφ
(

1 + i

∫
ddy

λ

3!
φ

δ2

iδJ(y)2
+ ...

)
ei
∫
ddx(L2+Jφ)

=

∫
Dφ
(

1 + i

∫
ddy

λ

3!
φ3 + ...

)
ei
∫
ddx(L2+Jφ)

=

∫
Dφ
∑
n

1

n!

(
λ

3!
i

∫
ddyφ3(y)

)n
ei
∫
ddx(L2+Jφ)

=

∫
Dφei

∫
ddxLIei

∫
ddx(L2+Jφ).

1Which is actually only approximately valid, as will be discussed in chapter 9.
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Such manipulations are very helpful in general.

To proceed it is necessary to perform the remaining shifted Gaussian integral. Following

section 2.4, this yields∫
Dφei

∫
ddx(φ(x)(Ω−iε/2)φ(x)+J(x)φ(x)) =

∫
Dφei

∫
ddx(φ(x)Ωφ(x))e−

i
2

∫
ddxddyJ(x)∆(x−y)J(y)

= Z2 [0] e−
i
2

∫
ddxddyJ(x)∆(x−y)J(y). (3.2)

There are a number of points to take into account. Ω is just the quadratic part of the

Lagrangian, e. g., for a free scalar field it is just (−∂2 −M2)/2. The addition of the term

iε is actually needed to make the integral convergent, and has to be carried through all

calculations. Next, the so-called Feynman propagator ∆ is defined such that

(2Ω− iε)∆(x− y) = iδd(x− y),

i. e. it is the Green’s function of differential operator 2Ω. That it depends only on the

difference x − y comes from the assumption of translational invariance, which applies

for unbroken Poincare symmetry. To solve this differential equations requires boundary

conditions. In perturbation theory, it is assumed that the fields fall off sufficiently fast

towards (spatial) infinity. That assumption can be lifted in other methods.

For a scalar particle of mass M and thus Ω = (−∂2 −M2)/2 the Feynman propagator

can be calculated using Fourier transformation,

(−∂2 −M2 + iε)

∫
ddpeip(x−y)∆(p) = i

∫
ddpeip(x−y)∫

ddpeip(x−y)(p2 −M2 + iε)∆(p) = i

∫
ddpeip(x−y)

(3.3)

to yield

∆(p) =
i

p2 −M2 + iε
, (3.4)

which is more useful for a calculation than the rather involved position space expression,

which can be obtained by reverting the Fourier transformation. E. g., in four dimensions

it is given by

∆(x− y) =
δ((x− y)2)

4π
+

i

4π2

m√
2(x− y)2 + iε

K1

(
m
√

2(x− y)2 + iε
)
, (3.5)

where K1 is the modified Bessel function of the first kind. However, there is one interest-

ing information to be gleaned from here. The function decays exponential over space-like
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distances, just as with a quantum-mechanical wave-function in classically forbidden re-

gions. It thus manifests the property that special relativity does not transfer information

at space-like distances: The correlation of fields is quickly diminishing over space-like

distance. On the contrary, for time-like distances it oscillates, and thus allows for inter-

ference of the fields, just like wave functions. Finally, there is a curious divergence for

coinciding space-time points. This will play an essential role for the limitations of a given

quantum-field theory, especially in section 8.2.

Finally, the factor Z2 [0] in front of the integral containing the Feynman propagator

is just the factor 1/a in the conventional integral (2.11), conveniently rewritten as an

exponential. This factor will cancel partly the denominator in (3.1) when taking the limit

J → 0 at the end of the calculation.

This is then sufficient to write down a perturbative expression for an arbitrary corre-

lation function. Take, for example, the linear-σ model of section 2.2 with

LI = − λ
4!
φ4.

The perturbative expression up to linear order in λ/4! for a process involving two particles

in the initial and final state, which will be needed for ((in)elastic) scattering later is then

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉

=

∫
Dφφ(x1)φ(x2)φ(x3)φ(x4)eiS[φ,J ]∫

DφeiS[φ,J ]

∣∣∣∣
J=0

=
1

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫
DφeiS[φ,J ]

∣∣∣∣
J=0

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
ei
∫
ddxLI[ δ

iδJ ]e−
i
2

∫
ddxddyJ(x)∆(x−y)J(y)

∣∣∣∣
J=0

.

The next step is to expand both exponentials, the first in a formal power series in LI , and

the second one in the conventional exponential series,

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(∑
n

1

n!

(
λ

4!
i

∫
ddy

δ4

iδJ(y)4

)n)
×

×

(∑
m

1

m!

(
− i

2

∫
ddxddyJ(x)∆(x− y)J(y)

))∣∣∣∣∣
J=0

.

Both are polynomial in the sources. The expansion of the exponential of the interaction

Lagrangian yields terms with zero, four, eight,... derivatives with respect to the sources.

The second term produces terms with zero, two, four,... powers of the sources. Since the

sources are set to zero at the end, only terms without sources will remain. Reinstantiating
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factors of ~, it is immediately visible that every power of λ comes with a power of ~.

This justifies the interpretation that it is also simultaneously an expansion in quantum

fluctuations.

Thus, to order zero in the interaction Lagrangian only the term with four sources will

survive the external derivative. To first order in the interaction Lagrangian only the term

with eight powers of the sources will survive. To this order in the expansion, the expression

takes therefore the form

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(
1

2!

(
− i

2

∫
ddxddyJ(x)∆(x− y)J(y)

)2

−iλ
4!

∫
ddz

1

4!

δ4

δJ(z)4

(
− i

2

∫
ddxddyJ(z)∆(x− y)J(y)

)4

+O(λ2)

)
.

In principle, taking the derivatives is straight-forward. However, e. g., the first term is

given by the expression

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫
ddy1d

dy2d
dy3d

dy4J(y1)∆(y1− y2)J(y2)J(y3)∆(y3− y4)J(y4).

The first derivative, with respect to J(x4) could act equally well on all four sources under

the integral. It will therefore provide four terms. Correspondingly, the second derivative

can act on three different terms, making this 12 terms, and so on, giving in total 24 terms,

with all possible combinations, or partitions, of the four arguments.

To illustrate the process, two steps for a particular combination will be investigated.

The first derivative acts as

δ

δJ(x4)

∫
ddxddyJ(x)∆(x− y)J(y)

=

∫
ddxddyδd(x− x4)∆(x− y)J(y) + ... =

∫
dy∆(x4 − y)J(y) + ..., (3.6)

where the points indicate further contributions. For the action of the next derivative, there

are two possibilities. Either it acts on the same factor of the product of the integrals, or

on a different one. Take first the possibility of the same factor. If it is a distinct factor,

this just provides the same action. If it is the same factor, this immediately yields

δ

δJ(x3)

∫
ddy∆(x4 − y)J(y) =

∫
ddy∆(x4 − y)δd(y − x3) = ∆(x4 − x3)

In total, this yields for the term proportional to λ0 = 1

A = −
∑
Pijkl

∆(xi − xj)∆(xl − xk), (3.7)



Chapter 3. Perturbation theory 27

where Pijkl indicates that the sum is over all 4! possible permutations of the index set

{ijkl}.
The situation becomes somewhat more complicated for the terms proportional to λ,

since now multiple derivatives with respect to the same source J(x) appears. Again, a

single such derivative acts like (3.6). A difference occurs when the second derivative occurs.

This can either act again on another factor, but it could also act on the same factor. The

first case just produces another factor of type (3.6). The second situation is different, and

yields
δ

δJ(z)

∫
ddy∆(z − y)J(y) =

∫
ddy∆(z − y)δd(y − z) = ∆(z − z) (3.8)

which appears to look like ∆(0). However, this not quite the case, as will be visible later. In

particular, the expression ∆(0) cannot be easily interpreted, as (3.5) shows. Furthermore,

an integral over z still appears. It is therefore useful to keep explicitly terms of ∆(z − z)

in the following for now.

After a slight change in notation, there will then be 8! possibilities for the order λ

contribution. However, many of them turn out to be identical, yielding in total three

further contributions

λB = −iλ
∫
ddx∆(x− x1)∆(x− x2)∆(x− x3)∆(x− x4) (3.9)

λC = −iλ
2

∑
Pijkl

∆(xi − xj)
∫
ddx∆(x− x)∆(x− xk)∆(x− xl) (3.10)

λAD = −iλ
8

∫
ddx∆(x− x)∆(x− x)

∑
Pijkl

∆(xi − xj)∆(xk − xl). (3.11)

These four terms have simple interpretations, if each factor of ∆ is considered to be

a particle2 propagating along the connecting line of x − y. Then, the first term (3.7)

corresponds to the interference pattern of identical particles when they are observed at

two different initial and final positions: Since the particles are identical, any combination

is possible, including that one particle vanishes and the other one appears. This can be

visualized by using a line to symbolize a factor of ∆, and draw all possible combinations

between the four points.

Similar interpretations hold for the three remaining terms (3.9-3.11). The expression

(3.9) contains for each factor of ∆ a common point. This can be taken to be just a meeting

of all four particles at a common vertex point x. Since there appears a pre-factor of λ, it

2It is formally the correlation of a free field with itself over the distance (x− y)2. This can, however,

be interpreted as a particle, as will be seen in section 8.5. Therefore, this standard jargon will be kept in

the following.



28 3.1. Perturbative expansion and Feynman rules

can be said that the four particles couple with a strength λ, thus also the name coupling

constant for λ. Such an interaction vertex could be denoted by a dot.

The third term (3.10) can be seen as one particle just propagating, while the second

particle has an interesting behavior: It emits at an intermediate point a particle, and

reabsorbs it then. Such a emitted and reabsorbed particle is called a virtual particle and

contributes to a cloud of virtual emission and absorption processes, which becomes more

common and more relevant at higher orders. Pictorially, this corresponds to a loop in the

propagation, which again harbors an interaction vertex.

The last contribution is different, as when drawing lines there appears an additional

graph, which is disconnected from the initial and final positions, and has the form of the

number eight. Such a disconnected diagram is also called a disconnected contribution or a

vacuum contribution, as it is not connected to any external input, and is thus a property

of the vacuum alone.

In general, the expression (3.7-3.11) are very cumbersome to deal with in position

space. It is therefore more useful to perform a Fourier transformation, and perform the

calculations in momentum space. In particular, this removes many of the cumbersome

sums over partitions. How to switch to momentum space will be discussed in more detail

after taking care of the remaining factor Z2 [0] /Z [0].

Since the current calculation is a perturbative calculation, it is adequate to also expand

Z2 [0] /Z [0] in λ. This can be most directly done again using the formula (3.2). Thus, the

factor Z2 cancels immediately, and the remaining expansion terms are, up to combinatorial

factors, very similar as before. Its inverse is thus given, to order λ, by

Z [0]

Z2 [0]
= 1 +

iλ

23

∫
ddx∆(x− x)∆(x− x) +O(λ2) = 1 + λD.

This term is easily identified as the prefactor appearing in (3.11). To order λ, this yields

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉 =
A+ λ(B + C + AD)

1 + λD
+O(λ2)

= (A+ λ(B + C + AD))(1− λD) +O(λ2) = A+ λ(B + C + AD)− λAD +O(λ2)

= A+ λ(B + C) +O(λ2). (3.12)

Thus, to order λ, the term with a disconnected contribution is canceled. It turns out

that this is a generic result, and that all diagrams with disconnected contribution in a

perturbative expansion always cancel, and a general proof can be constructed in a very

similar way to this evaluation in φ4 theory up to leading order, essentially as an inductive

proof. However, this is beyond the scope of this lecture.

As stated, the explicit expression in position space turns out to be very awkward to

use in actual calculations, and their evaluation in momentum space is preferable. This
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can be done using the expression for the Feynman propagator in momentum space, (3.4).

The total sum then becomes

(2π)d
∫

ddp1

(2π)
d
2

ddp2

(2π)
d
2

ddp3

(2π)
d
2

ddp4

(2π)
d
2

e−i(p1x1+p2x2+p3x3+p4x4) ×

×

∑
Pijkl

(2π)dδd(pk + pl)δ
d(pi + pj)

i

p2
i −m2

i

p2
k −m2

−iλδd(p1 + p2 + p3 + p4)
i

p2
1 −m2

i

p2
2 −m2

i

p2
3 −m2

i

p2 −m2

−(2π)dλ

2

∑
PIjkl

δd(pi + pj)δ
d(pk + pl)

i

p2
i −m2

i

p2
k −m2

i

p2
l −m2

∫
ddq

(2π)
d
2

i

q2 −m2

 .

Note that the iε contributions have not been written explicitly in the propagators, but

left implicit. This is the standard conventions for such a representation of a perturbative

expression. Of course, if the result is desired in momentum space rather than position

space, which is normally the case, the Fourier transformation can be dropped.

The result already shows a number of regularities, which can be generalized to the so-

called Feynman rules, which permit to directly translate from a graphical representation to

the mathematical expression in perturbation theory. These can be derived rather generally,

though this becomes rather cumbersome. Here, these will be stated simply without proof:

• Select the type and number of all external lines

• Determine the order (in all coupling constants, i. e., in all vertices) to which the

process should be evaluated

• Draw all possible diagrams connecting in all possible ways the external lines with up

to order vertices, and add them

• For each line, write a propagator of this particle type

• For each vertex, write the interaction vertex, i. e. essentially δnLI/δφn, for each

• Impose the conservation of all quantities, including momentum, conserved by a giving

vertex at each vertex. This can be most directly done by following each input

conserved quantity through the whole diagram until its final result

• Integrate over all undetermined momenta, i. e., each momentum running through a

loop
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• Lines, which are attached to the outside of a diagram, receive a further propagator

of the corresponding type

Two things can further facilitate the result. On the one hand, any diagram will be zero, if

any conservation law is not respected by the transition from initial to final state. However,

in such cases also the perturbative vertices vanish identically. Secondly, there are many

diagrams, which are identical up to reordering, as in the previous example. They can

be collected, and yield as pre-factors so-called symmetry factors, which are essentially

combinatorial factors. They can be obtained by counting all possible ways of how a

diagram can be drawn by connecting the external lines.

It can be immediately shown that the previous results can be obtained from these

rules, as an explicit example of the more general Feynman rules. In general, the necessary

propagators and vertices can be derived from the classical action as

iΓφ
a1
1 ...φann (x1, ..., xn) =

iδnS

δφa11 (x1)...δφann

∣∣∣∣
φi=0

, (3.13)

which afterwards can be transformed to momentum space by a Fourier transformation.

The conservation of momenta and other quantum numbers will then appear as suitable

δ-functions, which are usually factored out and manually imposed afterwards. For the

propagators, it is still necessary to invert the results, see section 2.4.

Perturbative calculations can be further simplified by passing to connected, amputated

diagrams.

The so-called connected diagrams are diagrams in which all lines are connected with

each other. In the previous case, the result can be symbolically written as

∆∆ + ∆∆′ + Π, (3.14)

where ∆ is a propagator, ∆′ is a propagator with a loop attached, and Π is the graph

where all four lines are connected. This is called the full correlation function. Of course,

∆ and ∆′ can also be determined from the two-point function 〈Tφφ〉, to the same order,

and therefore contain no new information. The only new contribution for the four-point

function at this order of perturbation theory is Π. It would therefore be useful, if it is

possible to only calculate this contribution, instead of the whole one. Indeed, it can be

shown that for a correlation function with n external legs

G(x1, ..., xn) = Gc(x1, ..., xn) +
∑

Gc(xi, ..., xj)Gc(xj, ..., xk)

+
∑

Gc(xi, ..., xj)Gc(xk, ..., xl)Gc(xm, ..., xn) + ... (3.15)

where the sums are over all possible ways to split the index set {xi} in two, three,...

subsets. Furthermore, every connected correlation function Gc, i. e. anyone which cannot
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be written as a product of two or more other connected correlation functions, is a series

in the coupling constant. Thus, in the present case,

G(x1, x2, x3, x4) = Gc(x1, x2, x3, x4) +
∑
Pijkl

Gc(xi, xj)Gc(xk, xl)

Gc(x, y) = ∆(x− y) + ∆′(x− y),

where again the ∆ is the propagator, and ∆′ is the propagator to order λ, which includes

the attached loop, and Gc is the only diagram with all points connected. Contributions

proportional to ∆
′2 have to be dropped, as they are of higher order in the perturbative

expansion. This relation can be inverted to obtain the connected correlation functions from

the other, but it is more interesting to calculate just the connected, and then calculate the

complete one by the formula (3.15).

Finally, all external lines have the propagators attached to them, they are called non-

amputated. Removing this yields the amputated correlation functions Γ, which can imme-

diately yield again the non-amputated one. Thus, it is sufficient to calculate the amputated

ones. In the same way, explicit momentum conserving factors can always be reinstantiated.

Thus, the calculation of the four-point function boils finally down to the calculation of

the amputated, connected two-point function to order λ, and the amputated, connected

four-point function of order λ. These are just given by

Γc(p, q) = −iλ
∫

ddr

(2π)4

i

r2 −m2

Γc(p, q, k, l) = −iλ, (3.16)

rather simple expressions indeed. Only missing is the explicit form of the contribution

from ∆′, i. e. Γc. However, it requires renormalization, and will be discussed in section

8.2. These are also called proper or vertex correlation functions. In fact, for the four-point

vertex function to leading order in λ, the entire result is given by (3.16).

There is a further possibility to reduce the effort of perturbative calculations, though

these do not reduce it further for the present example. It is rather simple to imagine situ-

ations, were it is possible to cut a single internal line to obtain two separate graphs. Such

graphs are called one-particle reducible. It can be shown that it is sufficient two know all

graphs, which cannot be separated in such a way, so-called one-particle irreducible graphs

(1PI), to obtain all relevant results, and to reconstruct also the one-particle reducible

ones. The generic connection can again be illustrated. Take two graphs which are 1PI,

say graphs A(p, q) and B(k, l). They can be joined to a one-particle reducible graph by

A(p, q)∆(q)B(q, l),
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i. e., by the insertion of a propagator. This can be repeated as necessary.

Thus, the final addition to the Feynman rules is

• Identify in all the diagrams the connected, amputated 1PI graphs. Calculate these,

and the result can be obtained by just multiplying and adding the results together

such as to obtain the original graphs

Note that the construction can be extended further, to so-called nPI graphs. However,

their recombination is in general no longer possible by multiplications, but usually involves

integration over intermediate momenta. This is beyond the scope of this lecture.

From this construction it follows that there are two distinct classes of perturbative

calculations. One is the class of so-called tree-level calculations, in which no loops appear.

Since graphs without loops are always one-particle reducible, they can always be cut so

long as only to consist out of vertex and propagator expressions. On the other hand,

this implies that a tree-level calculation can always be written as just a multiplication

of propagators and vertices, without any integration. These contributions turn out to be

furthermore the classical contribution, i. e., whatever remains when taking the limit of

~→ 0. Nonetheless, even tree-level calculations, in particular for many external particles,

can become very cumbersome, and both a technical as well as a logistical problem.

The second type of diagrams are all graphs with loops. Since they vanish in the classical

limit, this implies that these are the quantum, or also radiative, corrections to a process.

The integrals make an evaluation much more complicated. Furthermore, the integrals are

usually not finite, leading to the necessity of the renormalization process to be discussed

in section 8.2.

3.2 Cross sections and the LSZ construction

Matrix elements are not yet observables. Just like in quantum mechanics it is necessary

to compute, e. g. transition rates or spatial probability distributions, so it is necessary

to pass to observables in quantum field theory. And just as in quantum mechanics many

possible observables can be constructed. However, the most common case is that n > 0,

usually n = 1 or n = 2, particles are considered, which start at a space-like distance, and

the question is posed, what the probability is that they react and form m > 0 particles,

which are observed again at space-like separations. The usage of space-like separations is

here necessary, because otherwise the particles would still interfere with each other.

This can be formally stated as cluster decomposition. The question is, whether

〈O(x)O(y)〉 = 〈O(x)〉〈O(y)〉 (3.17)
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if |(x − y)2| → ∞ and space-like. It is in general very complicated to proof cluster de-

composition for any given (interacting) theory. In almost all cases additional assumptions

are required. In the following, it will simply assumed to hold. This is fairly well estab-

lished, at least by circumstantial evidence, for all conventional quantum field theories3. It

is certainly what is observed in experiments4.

The initial particles are called in states and the outgoing particles out states. The

probability to observe this is then given by the Born rule,

Pi→o = |〈P1(x1)...Pn(xn)|Q1(y1)...Qm(ym)〉|2.

In general, this is a usual matrix element squared, which could be calculated using, e.

g., perturbation theory. There is, however, an issue with the objects Pi and Qj. As was

visible, the objects in quantum field theories are fields. And while the first idea is to

just use the elementary fields for those, it is still quantum mechanics. And thus every

combination of fields with the same quantum numbers mix. The correct mixture would

thus appear to be necessary to be determined from the details of the initial state and

the final state, e. g. as coherent states. This appears to make the calculations extremely

dependent on the experiment. The decisive insight is that the xi and the yi are separately

pairwise (formally) infinitely space-like, even though the xi and yi are time-like. Using

this information, the Lehmann-Symanzik-Zimmermann (LSZ) construction yields that it

actually does not matter.

This works as follows. Start with an initial state created by operators Qi on a common

space-like hypersurface. This state is then propagated by a time-development operator

S, called the S-matrix. Finally, the Born rule is applied for the probability to measure a

final state created by a set of operators Pi, which are again located on common space-like

hypersurface. The time-like distance, i. e. the eigenzeit between space-like hypersurfaces,

between the initial state and final state is taken to become infinite. Thus, the desired

probability is

Pi→f = |〈i|S|f〉|2 (3.18)

|i〉 = P1...Pn|0〉
|f〉 = Q1...Qm|0〉.

This requires two more statements. The first is the ordering of the operators. Because of

cluster decomposition (3.17) and that all operators act at space-like distances, the ordering

3There are subtleties for gauge theory to be addressed in the quantum field theory II lecture.
4Note that in the case of entanglement in non-relativistic quantum mechanics it appears different.

However, e. g. in the Bell equation, the particles originate from a common source, to which both are

time-like, and thus causally connected.
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will not matter, if the operators commute at space-like distances. When moving to the

path-integral evaluation of the desired matrix elements, this will not matter. But it will

matter when performing canonical quantization in chapter 10. The other is the vacuum

state |0〉. It will be assumed to be unique. In the presence of symmetries, this is no longer

true. After all, it would be possible to construct states, which are invariant. And what

ensures that such states are not the one’s of lowest energy, and thus should be considered

the vacuum. This is highly non-trivial, and to some extent on the theory. This will

therefore be glimpsed over here, and be taken up again in the quantum field theory II as

well as phenomenological lectures.

It is useful to split go to momentum space, and split off the possibility that nothing

happens explicitly as

〈i|S|f〉 = δif + i(2π)4δ(Pi −Qf )Mi→f = δif + i(2π)4δ(Pi −Qf )〈f |T |i〉,
Pi =

∑
pi

Qf =
∑

qi

where it was assumed that 〈i|f〉 is normalized to unity. The quantityM〉→{ is called often

the matrix element, though it is so exactly only if the initial state and final state differ.

Overall momentum conservation is explicitly taken care of also by pulling out a δ function

from the matrix element. In turns, this gives an implicit definition of the T -matrix. If

n = 1 and m > 1, this is called a decay. If n ≥ 2, this is called scattering, except when

m = 1, when it is called fusion. If 〈i|f〉 6= 0, this is called elastic scattering, otherwise it

is called inelastic scattering.

Especially, this allows to determine inelastic scattering cross sections and decay widths.

In four dimensions, for a 1→ m particle decay, this yields the differential decay width as

dΓ =
(2π)4

2E
|Mi→f (p, {qi})|2δ

(
p−

∑
i

qi

)
Πi

dd−1qi
(2π)3Ei

,

i. e. the number of particles emitted with a specified momentum and direction. The partial

decay width is then obtained by integrating over the possible phase space, and the total

width by summing all partial decay widths. Likewise, the most common case of 2 → m

scattering, given some influx of particles, yields the differential cross section width in four

dimensions as

dσ =
(2π)3

4
√

(p1p2)2 −m2
1m

2
2

|Mi→f (p1, p2, {qi})|2δ

(
p1 + p2 −

∑
i

qi

)
Pii

dd−1qi
(2π)3Ei

.

Integrating over the final-state momenta, the so-called phase space, yields the inclusive

cross-sections. Summing afterwards over all possible final states the total cross section or

exclusive cross section. Any partial summation is called a partially inclusive cross section.
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Particularly useful special cases are the center-of-mass expressions for a two-particle

final state, i. e. m = 2, which implies ~q1 = −~q2 = ~q and thus integration about one solid

angle can be performed,

dΓ

dΩ
=

1

32π2m

|~q|
m
|Mi→f (p, q)|2θ(m−m1 −m2) (3.19)

dσ

dΩ
=

1

64π2s

|~q|
|~p|
|Mi→f (p1, p2, q)|2, (3.20)

where s = E2 is the center-of-mass energy. Note that only the integrated decay width and

cross section are frame-independent.

The aim is thus to calculate T . While the previous procedure of section 3.1 allows

to perform the calculation for a fixed set of operators Pi and Qi, as noticed, this can be

simplified. For this, it is first to understand more general propagators.

A propagator is determined by the proper two-point function, created from two fields

and fixed quantum numbers,

〈O1(p)O2(−p)〉 = R(p2) (3.21)

where the structure of the result comes from Poincaré symmetry alone. Furthermore, for

any kind of particle interpretation, m2 = p2 determines the satisfaction of the on-shell

condition, i. e. that the four-momentum is indeed associated with the mass. Otherwise,

the relativistic energy-momentum relation is violated. This off-shell behavior can occur in

quantum physics in intermediate steps, but not for an physical particle. While in general

the propagator can be an arbitrary complicated function of p2, this cannot be the case if

the object described is space-like infinitely separated from every other particle. Then, due

to (3.17), there can be no interactions, and the described particle is free. Thus, in such

an asymptotic case5

R(p2)|p2=m2 =
1

p2 −m2
(3.22)

needs to hold. Strictly speaking, these equalities only hold for p2 = m2, in which case this

quantity diverges. This is true for any operators with appropriate quantum numbers in

(3.21), and thus the choice of operators does not matter. This property is automatically

fulfilled by the perturbative propagator, which therefore describes also such an asymp-

totic state. Hence, within the scope of perturbation theory, elementary fields automatic

correspond to a particle concept, a feature known as particle-field duality.

5If there exists multiple stable particles with the same conserved quantum numbers, this needs to be

replaced with a sum over all these states.
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Now

δnZ[j]

Z[0]δj1...δjn

∣∣∣∣
ji=0

=
δnW [j]

δj1...δjn

∣∣∣∣
ji=0

=
Φ1

δj1

...
δΦn

δjn

δnW

δΦ1...δΦn

∣∣∣∣
ji=0

(3.23)

= D1...Dn

δn
(∫

ddxΦ(x)j(x)− Γ
)

δΦ1...δΦn

∣∣∣∣∣
ji=0

= −D1...Dn
δnΓ

δΦ1...δΦn

∣∣∣∣
Φi=0

, (3.24)

where the indices also denote the arguments of the propagators. Thus, any correlation

function can be written in terms of a vertex function and a product of propagators. This

implies that every correlation function has singularities if the particles corresponding to

the external fields are on-shell. These are removed when moving to the vertex function,

which are thus the truncated ones. It should also be noted that perturbatively, because

of (3.12), these are, in fact, the connected diagrams. Note that these operators do not

impose any condition on the space-time positions of the fields, and especially, this results

does not make use of the asymptotics.

Now, finally, an interaction can be given in terms of a conditional probability. Start

with an initial state, which has space-like separated particles. They propagate to some

points in causal contact, interact, and then need to propagate to the final states. The

probability factors are given by the asymptotic propagators, the correlation function given

the interaction, and then propagation to the asymptotics. In all cases, this requires the

connected correlation function, due to the choice of normalization. This yields

〈i|S|f〉 = (Ri
1...R

i
n)−

1
2 〈P1...PnQ1...Qm〉(Rf

1 ...R
f
n)−

1
2

= −(−i)n+m(Zi
1...Z

i
nZ

f
1Z

f
m)−

1
2

δnΓ

δΦ1...δΦn

∣∣∣∣
Φi=0

(3.25)

where

i
√
Z = R−1D

∣∣
p2=m2 (3.26)

is the difference on the pole between the interacting propagator and the asymptotic, non-

interacting propagator. Thus, it is the change of normalization due to the interaction of

the fields.

This implies that it is sufficient to calculate the vertex function to determine general

cross sections. Especially, in perturbation theory, these are by constructions just the

connected, amputated vertex functions. In perturbation theory this can furthermore be

reduced to the case of 1PI functions.
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3.3 Sample tree-level calculation

With the tools at hand, the next step is to perform a few examples. These will all be

tree-level calculations for the moment. There is one issue to clarify before starting, and

that has to do with the expansion parameter. As noted, the expansion is formally in the

interaction term. However, in the example cases so far, this was also an expansion in the

coupling, and ~, and the number of loops. Now, the fixed association of ~ and loops will

remain. However, as soon as a theory has more than one coupling, the situation becomes

involved.

Strictly speaking, and expansion is determining a (functional) Taylor series in the

coupling constant. Just like with an ordinary Taylor series, when there are two variables,

there will appear mixed terms. Statements about convergence and analyticity properties

will require to take into account all of these mixed terms, and obtain all terms up to order

n, where n can be obtained by any combination of the orders of the couplings.

However, in many practical applications, the order does not reflect the quantitatively

relevant terms. It is thus often more useful to select those contribution, for which the

total power gn1
1 ...gn2

m of the involved couplings are bigger than a fixed value. As increasing

the order will reduce this factor, in as far as a Taylor series is justified at all, this gives a

good first estimate. However, the actual terms multiplied by the prefactor can themselves

can upset this ordering, even if the series would be ultimately convergent. Thus, selecting

a particular order is a-priori a good first step. But it by no means guarantees to get a

meaningful, quantitatively relevant result in the end. Only be improving the calculations

to higher orders and/or compare to experiment or other methods, the quality of the

perturbative result can be ascertained.

3.3.1 Tree-level decay

The first example will be the decay of a particle in four dimensions. To this end, of course,

there needs to be a kinematically allowed decay channel. To this end, a modification of

the O(2) linear σ-model appears useful, in which there is a three-point interaction between

two particles, each having a different mass,

L =
∑
i

(
1

2
∂µφi∂

µφi −
m2
i

2
φ2 − λi

24
φ4
i

)
+
ζ

2
φ1φ1φ2

Thus, the two particles have different masses, and the last term allows a transition from

particle 2 to particle 1, if m2 ≥ 2m1.

At tree-level, the only relevant contribution is the three-point vertex. It’s Feynman
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rule is given, by virtue of (3.13), as

Γφ
2
1φ2

δ3S

δφ1δφ2δφ1

∣∣∣∣
φ1=φ2=0

= ζ.

Since there are no internal lines, this already gives the 1PI matrix element necessary for

the decay width formula (3.19),

dΓφ2→φ1φ1
dΩ

=
1

32π2m

|~q|
m
|Mφ2→φ1φ1|2θ(m−m1 −m2)

=
1

32π2m2

√
m2

2

4
−m2

1

m2

|ζ|2θ(m2 − 2m1)

=
1

32π2m2

√
1

4
− m2

1

m2
2

|ζ|2θ(m2 − 2m1)

In the second step, the rest frame of the decaying particle was chosen, to reexpress the

three-momenta of the decay products in terms of the masses. This can be obtained as in

classical special relativity from four-momentum conservation,

p = q1 + q2

and thus

m2
2 = p2 = (q2

1 + q2
2)2 = q2

1 + q2
2 + 2q1q2 = 2m2

1 + 2(E1E2 − ~q1~q2).

Using that in the rest frame of the decaying particle ~q1 = −~q2, and thus E1 = E2 and the

relation

m2 = E2 − ~q2

yields finally

m2
2 = 2m2

1 + 2(E2 + ~q2) = 4m2
1 + 4~q2,

which can then be solved for ~q2.

As the result does not depend on the direction, it is straightforward to integrate it to

get the partial decay width,

Γφ2→φ1φ1 =
1

8πm2

√
1

4
− m2

1

m2
2

|ζ|2θ(m2 − 2m1).

As it should, it has units of energy, given that ζ has units of energy. A few general remarks

are in order. The first is that the θ-function, which implements four-momentum conserva-

tion, also ensures that the result is real. Moreover, the decay will increase quadratically
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with the coupling strength, rather than linear as may have been thought because of its

linear appearance in the Lagrangian. This is a general feature. Also, the sign of ζ does

not matter. That is, however, an artifact of using the lowest order in perturbation theory.

The decay width also depends on the kinematics. It increases the lighter the final state

particles are, i. e., there is a so-called phase space effect. However, it does not do so

arbitrarily, and there is an upper limit. This is also expected. The maximum of a decay

is, if the particle decays immediately. But as a quantum effect, even that will not always

happen, and thus the life-time, defined as the inverse of the decay width, remains always

finite. In fact, the decays will follow an exponential decay law, exp(−Γt). Thus, there is a

maximum rate with which the initial amount of particles can be depleted in a quantum-

mechanical system like this. Finally, the decay width drops at fixed decay products when

increasing the mass of the initial particle. Thus, heavier particles decay quicker.

These features are relatively characteristic for decays. However, higher orders and

special theories can deviate substantially from these general rules. But there are still good

qualitative first estimates, if nothing else is known yet.

3.3.2 Tree-level scattering

For an example of scattering in four dimensions, the one-particle linear σ model, (2.2),

will be used. To avoid the problems appearing with loops for now, this will be done

to order (ζ2, λ1), which could be expected to be a suitable approximation if ζ/m � λ,

where m is needed to create a dimensionless quantity. The simplest process would be a

2→ 2 scattering. However, here enters already a quantum-mechanical problem: The two

particles are the same, and thus indistinguishable. This will be needed to be taken into

account.

The two relevant Feynman rules are the propagator and the the three-point vertex,

which is again just ζ, and the four-point vertex, λ. At this order, there are four distinct

diagrams. The initial four-momenta will be labeled p1 and p2, and the final four-momenta

q1 and q2, and

p1 + p2 = q1 + q2

due to four-momentum conservation. It is convenient to choose the center-of-mass frame

in the following, implying

~p1 + ~p2 = ~q1 + ~q2 = ~0,

which will be used in the following.

The simplest diagram is the one including the four-point vertex, as this already ap-
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peared in section 3.1. Here, the 1PI matrix element is just given by

Mλ
φφ→φφ = λ. (3.27)

In the other cases always an internal propagator appears. However, there will be no loops

attached to it, as the propagator always emerges from a three-point vertex. Such diagrams

are hence of order ζ2λ, and thus do not contribute at this order. It remains a tree-level

process.

The first diagram is obtained from the two initial particles annihilating each other

into a single particle, which then propagates, and finally decays into the two final state

particles. There is only one way to draw this diagram. Its matrix element is

Ms
φφ→φφ =

iζ2

k2 −m2
(3.28)

with the internal four-momentum k being

k = −p1 − p2 = −q1 − q2

due to 4-momentum conservation, and the convention to have all momenta going into the

vertex, and thus k + p1 + p2 = k + q1 + q2 = 0.

In this situation, it is useful to introduce the so-called Mandelstam variables, which

are relativistic invariants,

s = (p1 + p2)2 = (q1 + q2)2 = 2m2
i + 2~p1~p2 = 2m2

f + 2~q1~q2 = 4E2

t = (p1 − q1)2 = (p2 − q2)2 = m2
i +m2

f − 2E2 + 2|~p1||~q1| cos θ

= m2
i +m2

f − 2E2 + 2|~p2||~q2| cos θ

u = (p1 − q2)2 = (p2 − q1)2 = m2
i +m2

f − 2E2 − 2|~p1||~q2| cos θ

= m2
i +m2

f − 2E2 − 2|~p2||~q1| cos θ

s+ t+ u = 2m2
i + 2m2

f

where the masses of initial state particles and final state particles are separated as mi and

mf for later use, but here mi = mf = m. The angle θ is the scattering angle between

the incoming momenta and outgoing momenta. While their definitions appears relatively

special, it turns out that these combinations appear very often in practical calculations.

Especially, since (3.28) can be written as

Ms
φφ→φφ =

iζ2

s−m2

it has become practice to call quantities after their dependency on Mandelstam variables.

Thus, this matrix element is called an s-channel process, as at tree-level the process only
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depends on s. It describes a process, were the particles are annihilated into a single one,

and then split again into two. This already implies that this matrix element only depends

on the center-of-mass energy, but not on the scattering angle. Moreover, (3.27) does not

even depend on any Mandelstam variables, and thus neither on the energy of the process

nor on the scattering angle. It remains to determine any possible symmetry factors. None

appear in the s-channel, as there is only one way of drawing the diagram.

The remaining diagram corresponds to an exchange of the particle. At first it ap-

pears as if there would be also a symmetry factor. But here the different connections

create a situation with exchanged external momenta. This is not the same diagram,. but

rather a so-called exchange diagram, originating from the fact that particles cannot be

distinguished. Its matrix element is

Ms
φφ→φφ =

iζ2

t−m2
+

iζ2

u−m2
,

and is thus called t-channel, and the last term stems from the exchange diagram.

The total expression for the matrix element is thus

Mφφ→φφλ+ iζ2

(
1

t−m2
+

1

u−m2
+

1

s−m2

)
.

This yields the differential cross section in the center-of-mass frame

dσ

dΩ
=

1

64π2s

(
λ2 + ζ2 (5m4 + (s+ t)2 − st− 4m2(s+ t))2

(m2 − s)2(m2 − t)2(s+ t− 3m2)

)
=

1

64π2s

(
λ2 + ζ4 (24m2(m2 − s) + 7s2 + (s− 4m2)2 cos(2θ))

2

(m2 − s)2(8m4 − s2 + 2(s2 − 4m2)2 cos(2θ))2

)
m→0
=

1

64π2s

(
λ2 + ζ4 (7 + cos(2θ))2

4s2 sin4(θ)

)
.

There are a few general remarks in order. First, if ζ = 0, the result does not depends

on the scattering angle, but is isotropic. This is changed by the ζ-dependent part, which

shows a characteristic 2θ-dependence. Such a dependence can be used to characterize the

particles involved in the scattering. Second, the interference term between the genuine

three-particle interaction and the exchange and annihilation diagram. That is an artifact

of the three-level situation, and the relative factor of i between both diagrams due to the

appearing propagators. This would change beyond tree-level. Third, in the limit of m→ 0,

or equivalently s→∞, there appears the typical Rutherford singularity of sin−4 θ, which

is, however, tamed when there is a finite mass. Fourth, there is a singularity at s = m2,

due to the exchanged particle. This is a very typical situation, and one of the possibilities

to look for, then different, particles in the collision of particles. If the particle would be
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unstable, this singularity becomes tamed by the width. Fifth, the total cross section is

diverging for m → 0. Just like in the Rutherford case, this is because a genuine bare

point-particle is assumed. Effects at NLO and/or any internal structure of the involved

particles will tame this singularity. Especially, if the particles are massive, the total cross

section becomes

σ =
1

64πs

(
λ+

2ζ4

m2(3m2 − s)
√

(s− 3m2)(ms− 2m3)
×

×
(

16m8 − 28m6s+ s4 −m2s
(

6s2 +m
√

(s− 3m2)(s− 2m2)2

+m4
(

17s2 + 3m
√

(s− 3m2)(s− 2m2)
)))

.

Sixth, and finally, both the total cross section and the partial cross section decay like 1/s.

Thus, the probability for elastic scattering decreases with increasing momenta. This is

actually generic, as will be discussed in section 8.5,

To obtain an inelastic process, it would be necessary to have either more particles in

the final state or to introduce the possibility to produce different particles in the final state.

In such cases, it may happen that an inelastic scattering process can only take place if

the initial state particles have enough energy. This is a threshold, and will be explored in

more detail in section 9.4.
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Particles and the Poincare group

So far, only scalar particles have been considered. However, already in non-relativistic

quantum physics other kinds of particles have been encountered, most notably electrons.

They have an additional feature, called spin, which, by-and-large, works similarly as an

angular momentum, and thus rotation symmetry. The concept of rotation symmetry is

here, of course, replaced by Lorentz transformations. It will be seen that this has further

consequences.

4.1 Representations of the Poincare group and spin

Since Poincare symmetry, consisting out of translation symmetry and Lorentz symmetry,

is a symmetry, it implies that fields can carry representations of the symmetry. This is

very alike the case of internal symmetries in section 2.5. So far, the scalar field had been

in the trivial representation. Thus, the natural question is, whether there are fields ψ,

which transform non-trivially under the Poincare group, i. e.

ψ′ = Λijψj (4.1)

where Λ is a linear operator implementing a Lorentz transformation.

The Poincare group is a semi-direct product of the Abelian non-compact translation

group with generators Pµ, and the pseudogroup SO(1,3). There are also time reversal and

parity, which yield then O(1,3). These will be addressed in section 6 It is convenient to

decompose in the following the generators of spatial rotations J and boosts K as

A =
1

2
(J + iK)

B =
1

2
(J − iK).

43
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The Lorentz algebra becomes then a semi-direct product of two SU(2) algebras

[Ai, Aj] = εijkAk

[Bi, Bj] = εijkBk

[Ai, Bj] = 0. (4.2)

In dimensions different from four, the situation changes. Especially, the group SO(1,N)

decomposes into theN -dimensional rotation group SO(N), but the decomposition in SU(2)

groups is in general not possible. Especially, in 1+1 dimensions SO(1,1)∼U(1) becomes

Abelian1. However, the group SO(1,N)/SO(N) will always create a semi-direct product of

the SO(N). Especially, in three dimensions, SO(1,2) is itself only an SU(1,1) group, with

one rotations and two boosts. In dimensions larger than four there are more independent

rotations than boosts.

To characterize a representation requires as usual invariant Casimirs. For the involved

group, there is one Casimir each.

For the Abelian translation group, this Casimir is obtained as

m2 = PµP
µ,

which is invariant under the Lorentz group. Suggestively, it is already called m, as it will

be later on be used to identify the mass. Note, however, that m can have either sign or

be zero. It is purely empirical, which of those Casimirs are encountered in nature, and

it turns out to be only objects having m ≥ 0. They will be therefore concentrated on

in the following. As an Abelian group, all irreducible representation are one-dimensional.

The parameter m classifies thus the little group of the orbits, where m > 0, m = 0, and

m < 0 are the strata for the little groups SO(3), SO(2), and SO(1,2). The second already

indicates that particles with m = 0 cannot have a rest frame.

Both SU(2) groups can be characterized by an independent half-integer or integer

quantum number j. Since the group is non-Abelian, its representations are not necessarily

one-dimensional, but rather 2j + 1 dimensional. In fact, this is the spin of the particle.

However, in quantum mechanics spin behaved like an angular momentum. But angular

momentum is no longer well-defined in a relativistic setting, as it can be changed by a

boost, due to the semi-direct nature. Thus, a generalization is necessary.

Thus, a Poincare-invariant operator is needed to represent spin. It is obtained using

the Pauli-Lubanski vector

Wµ =
1

2
εµνρσP

νMρσ. (4.3)

1Note that this implies that the Casimir will be continous. Given the following, this implies that spin

in 1+1 dimensions is not quantized, but continous. To distinguish such particles, they are called anyons.
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The antisymmetric operator M is defined as

M0i = −M i0 = Ki

M ij = εijkJk,

and is therefore the generator of a Lorentz transformation with anti-symmetric parameter

matrix ω, as ωαβM
αβ.

The Pauli-Lubanski vector is, due to the Levi-Civita tensor, orthogonal to the mo-

mentum vector, and thus linearly independent. To show that its square W 2 is actually a

Casimir operator requires to show that it commutes with both the momentum operator

and the generator of rotation. Since

[Pλ,Wµ] =
1

2
εµνρσPν [Pλ,M

ρσ] =
i

2
εµνρσPν(δ

λ
ρP

σ − δσλP ρ) = 0,

already the momentum operator and the Pauli-Lubanski vector commute, so does the

square of any of the two vectors with the other vector. Since W 2 is a scalar, it also

commutes with the generator of rotations, which can be shown explicitly in the same

way. Together with the linear independence, this is sufficient that W 2 is an independent

Casimir.

To show that this vector is indeed associated with the usual spin consider its commu-

tator

[Wµ,Wν ] = iεµνρσP
ρW σ,

which can again be obtained by direct evaluation. In the rest frame only those commuta-

tors remain with µ 6= 0 and ν 6= 0, yielding

[Wi,Wj] = imεijkWk (4.4)

which is, up to a normalization, just the spin algebra. This especially implies that its

eigenvalues behave, up to a factor of m, like the ones of a spin, and indeed the eigenvalues

of W 2 are thus spin eigenvalues. A more explicit proof can be obtained by using the

explicit form of the Pauli-Lubanski vector (4.3), if desired. This immediately raises the

question of what happens for m = 0. However, in this case, no rest frame exists, and

thus the full expression is necessary. This will be treated in more detail later. Note that

(orbital) angular momentum is defined, like in quantum mechanics, based on the relative

momenta and positions, but transforms like an integer representation.

Thus, any field can be represented by a triple of quantum numbers (m2, j1, j2), and

will form a 2(j1 + j2) + 2-dimensional multiplet. But because the group is non-compact,

finite-dimensional representations will not be unitary, and thus need to be functions. This
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is realized by choosing the objects to be fields, functions of space-time. Hence, a field

is full characterized as2 ψj1j2m
2

m1m2
. The scalar field considered so far had representation

(m2 > 0, 0, 0).

Thus, a Lorentz transformation Λ will act on a field ψj1j2m
2

m1m2
as

Λψj1j2m
2

m1m2
= λn1

m1
λn2
m2
ψj1j2m

2

n1n2
(λp), (4.5)

where the λ are the corresponding non-unitary representations, and the action on the mo-

mentum p is the conventional one of special relativity. The transformation in momentum

space operates likewise. In this case, Λ† = Λ−1. Correspondingly, m is the eigenvalue of

the (lowest-order) Casimir of this representation with respect to the orbits, while the spin

is the Casimir for the non-unitary finite-dimensional representations.

It is now required to say a few words about the m = 0 case for any ji 6= 0. While

for m > 0 the fields can be considered in a rest frame, and thus by virtue of (4.4) can

be associated with a rest frame, this is no longer possible for the massless case. Thus, in

the massive case the momentum vector becomes p = (m,~0), and thus the little group is

SO(3), as noted above. hence, they carry a representation of the little group, and thus of

SO(3). If m = 0, there is no rest frame, and thus at most the momentum vector can be

p = (p, 0, 0, p), which has little group SO(2)∼U(1). The projection of the Pauli-Lubanski

vector on the momentum vanishes

PµW
µ =

1

2
P µP νεµνρσM

ρσ = 0,

and hence Wµ can only be light-like parallel or anti-parallel to the momentum vector, as

W0 = P3ε30jkM
jk 6= 0 and Wi = 0 for i = 1 or i = 2. Thus, for a zero-mass particle

with non-zero spin, the Pauli-Lubanski vector can only be projected in either direction.

Normalize to the momentum, it can thus have only W0 = ±c, rather than the full range of

mi values. This value is called the helicity, and takes the role of spin for massless particles.

It thus remains to understand the features of the representation. Here, the cases with

either ji = 1/2 will be considered. Cases with higher spins will follow in sections 7.1 and

7.7.

2Sometimes, the two SU(2) groups are distinguished by giving one of them an overdot. This notation of

dotted and undotted indices will not be used here, as will be for the most of this lecture not be important

to distinguish both.
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4.2 Weyl spinors

In the following, the case of four dimensions will be considered only. However, different

dimensionalities can be constructed analogously3. Consider the case with either ji = 1/2

and the other zero. In that case, the representation in the rest frame needs to be a spinor

representation with mi = ±1/2. It should be noted that these representations are complex,

and thus the fields are necessarily complex. Thus, the field needs to transform in such

a spinor representation, and a consequently called (Weyl) spinors. It is worthwhile to

construct their transformation properties explicitly.

An infinitesimal Lorentz transformation acts like

p0 = E → E ′ = E − ηipi
~p→ ~p′ = ~p− ~ε× ~p− ~ηE,

with parameter vectors η for boosts and ε for rotations. For the two-dimensional spinor

representation spinors(=vectors in the representation space) ψ and χ with j1 = 1/2 or

j2 = 1/2, respectively, this implies

ψ → ψ′ = ψ + (iεiσi/2− ηiσi/2)ψ

χ→ χ′ = χ+ (iεiσi/2 + ηiσi/2)χ

where the σi are the Pauli matrices. They differ only by their reaction to boosts, but are

affected by rotation in the same way. It is also visible that only for |~ε| = 4π at ~η = ~0.

Hence, only under spatial rotations by 4π spinors are transformed back, while vectors

do so after 2π. While this seems counter-intuitive at first, it should be remember that

the intuition comes from our everyday experience being completely determined by objects

with integer spin in an (essential) Galilean way. Minkowski space-time is very different,

as rotations also change time, and thus ’longer’ rotation is needed to be back for spinors.

Defining the non-unitary matrix

V = 1 + iεiσi/2− ηiσi/2

the transformation rules simplify to

ψ′ = V ψ

χ′ = V −1†χ = (1 + iεiσi/2− ηiσi/2)−1†χ

= (1− iεiσi/2 + ηiσi/2)†χ = (1 + iεiσi/2 + ηiσi/2)χ.

3It should be noted that four dimensions are special, and their are a few more possibilities in other di-

mensions, triggered by the non-equivalent spinor representation of even-dimensional and odd-dimensional

SO(N) groups. This will not be needed here, but can play a role in theories with extended space-time

structure.
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Furthermore, because

(E − σipi)ψ = σµpµψ ∼ χ (4.6)

(E + σipi)χ = σ̄µpµχ ∼ ψ, (4.7)

where σ̄Tµ = (1, ~σ), and

V σµpµ = σ̄µpµV
−1†

by explicit calculation, it follows that a multiplication with σµpµ exchanges a ψ-type-

spinor and a χ-type-spinor, and thus changes the respective transformation properties

under Lorentz transformations. The non-unitary operator σµp
µ thus maps between the

two SU(2) subgroups of SO(1,3).

To determine the constant of proportionality, note that p2 can be rewritten as

p2δkl = pµg
µνδklpν = pµσ

µ
kiσ̄

ν
ilpν = (σµpµσ̄

νpµ)kl .

Since on-shell p2 = m2 also holds, this implies

m2ψk = p2δklψl = (σµpµσ̄
νpµ)kl ψl,

and likewise for χ. This implies that every component of ψ and χ fulfill the Klein-Gordan

equation using the Klein-Gordan operator (2.17),

∆ψi = (∂2
µ −m2)ψi = 0.

This fixes the constant of proportionality in (4.6-4.7) to be m, up to a sign. Especially,

for massless fermions, the right-hand side of (4.6-4.7) is zero. This can be recast into

the statement that both states are eigenstates of a helicity operator σi~pi/
√
~pi~pi, but with

opposite values. Thus, such a Weyl fermion has definite helicity of ±1, and therefore in

the massless case the spin has a fixed projection onto the momentum. Because of this,

the Weyl fermions are called chiral or handed, and the two representations (1/2, 0) and

(0, 1/2) are called right-handed and left-handed. No matter the mass, the two components

of the Weyl spinors always correspond to the two magnetic quantum numbers m = ±1/2.

To obtain a theory of Weyl fermions will require to build scalars from them. For that

note

σ2ψ
∗′ = σ2V

∗ψ∗ = σ2(1− iεiσi∗/2− ηiσi∗/2)ψ∗ = (1 + iεiσ
i/2 + ηiσ

i/2)σ2χ = V −1†σ2ψ
∗,

(4.8)
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where in the last step it was used that σ2 anti-commutes with the real σ1 and σ3 matrices,

but commutes with itself and is itself purely imaginary. Hence multiplying the complex-

conjugate by σ2, also maps between the representations, but this time without involving

the momentum like in (4.6-4.7). Hence, e. g., the quantity

(−iσ2ψ
∗)†ψ = (−iσ2ψ)Tψ = ψT (iσ2)ψ

is a scalar, and likewise for the other handedness.

4.3 Dirac spinors

While theories of single Weyl fermions are possible, and indeed appear in nature in the

weak interactions, it is also very common that a theory contains equal numbers of left-

handed Weyl spinor and right-handed Weyl spinors with equal masses. The electromag-

netic interaction and the strong interaction are of this type. In such a situation it becomes

convenient to assemble a new object, a so-called Dirac spinor.

By and large, a Dirac spinor is a four-dimensional reducible representation of both

Weyl representations. This can be made explicit by assembling a four-dimensional spinor

Ψ =

(
ψ

χ

)
. (4.9)

If the masses of both Weyl spinors is the same, (4.6-4.7), together with the Klein-Gordan

equation, imply that this Dirac spinor fulfills the Dirac equation

(iγµ∂µ +m) Ψ = 0. (4.10)

The four γµ matrices are given by

γµ =

(
0 σ̄µ

σµ 0

)
.

They fulfill the Clifford algebra

{γµ, γν} = 2gµν . (4.11)

Note that this is not a Lie algebra. Still, from this algebra many technically useful relations

for expressions of γ matrices can be derived, which will be done on a case-by-case basis.

As the (4.10) is invariant under unitary transformation, any similarity transformation of

the γµ works equally well.
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To obtain the Weyl spinors again from the Dirac spinor, it is convenient to define the

matrix

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
(4.12)

This matrix can be used to project out the Weyl spinors as

1

2
(1 + γ5)Ψ =

(
ψ

0

)
= ΨR (4.13)

1

2
(1− γ5)Ψ =

(
0

χ

)
= ΨL. (4.14)

It should be noted that this implies that Ψ is an eigenstate of γ5 with eigenvalue 1.

The Dirac spinor inherits its transformation properties under Lorentz transformations

from the Weyl spinors as

Ψ′ = Ψ +
i

2

(
εiσi − ηiσi 0

0 εiσi + ηiσi

)
Ψ.

Because of that a scalar can be constructed more straightforwardly from a Dirac spinor as

Ψ†γ0Ψ =
(
ψ† χ†

)(0 1

1 0

)(
ψ

χ

)
= ψ†χ+ χ†ψ.

Because this makes the combination Ψ†γ0, and frequent, the definition

Ψ = Ψ†γ0

is convenient.
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Fermions and the path integral

With the spinor fields available, it seems to be straightforward to construct to a theory

from them. However, one more feature is needed. As of so far, an expression like ψ(x)Tψ(x)

may not be Lorentz invariant, but it can be well non-zero. However, fermions are expected

to fulfill the Pauli principle, and thus such an expression should vanish. Indeed, as will be

seen in section 6.3, this will even be necessary. But so far, there is no possibility to realize

this in the context of the classical fields in the path integral formalism. To do so requires

to extend the concepts of fields beyond complex numbers.

5.1 Grassmann mathematics

The tool to do so is Grassmann mathematics, which allows for anti-commuting structures,

a necessity to realize the Pauli principle.

5.1.1 Grassmann variables

The starting point is to define anti-commuting numbers, αa, by the property

{αa, αb} = 0 (5.1)

where the indices a and b serve to distinguish the numbers. In particular, all these number

are nilpotent,

(αa)2 = 0.

Hence, the set S of independent, so-called, Grassmann numbers with a = 1, ..., N base

numbers are

S = {1, αa, αa1αa2 , ..., αa1 × ...× αaN},

51
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where all αi are different. This set contains therefore only 2N elements. Of course, each

element of S can be multiplied by ordinary complex numbers c, and can be added. This

is very much like the case of ordinary complex numbers or matrices. Such combinations z

take the general form

z = c0 + caα
a +

1

2!
cabα

aαb + ...+
1

N !
ca1...aNα

a1 × ...× αaN . (5.2)

Here, the factorials have been included for later simplicity, and the coefficient matrices

can be taken to be antisymmetric in all indices, as the product of αas are antisymmetric.

For N = 2 the most general Grassmann number is therefore

z = c0 + c1α
1 + c2α

2 + c12α
1α2,

where the antisymmetry has already been used. It is also common to split such numbers

in their (Grassmann-)odd and (Grassmann-)even part. Since any product of an even

number of Grassmann numbers commutes with other Grassmann numbers, this association

is adequate. Note that there is no possibility to invert a Grassmann number, but products

of an even number of Grassmann numbers are ordinary numbers and can therefore be

inverted.

The conjugate of a product of complex Grassmann-numbers, with independent real

and imaginary part, is defined as

(αa...αb)∗ = (αb)∗...(αa)∗ (5.3)

Note that the Grassmann algebra (5.1) is different from the Clifford algebra (4.11). They

connect to two different aspects.

5.1.2 Grassman analysis

To do analysis, it is necessary to define functions of Grassmann numbers. First, start

with holomorphic functions. This is rather simple, due to the nilpotency of Grassmann

numbers. Hence, for a function of one Grassmann variable

z = b+ f

only, with b even and f odd, the most general function is

F (z) = F (b) +
dF (b)

db
f.
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Any higher term in the Taylor series will vanish, since f 2 = 0. Since Grassmann numbers

have no inverse, all Laurent series in f are equivalent to a Taylor series. For a function of

two variables, it is

F (z1, z2) = f(b1, b2) +
∂F (b1, b2)

∂b1

f1 +
∂F (b1, b2)

∂b2

f2 +
1

2

∂2F (b1, b2)

∂b1∂b2

f1f2.

There are no other terms, as any other term would have at least a square of the Grassmann

variables, which therefore vanishes. Note that the last term is not zero because F (b1, b2) 6=
F (b2, b1) in general, but even if this is the case, it is not a summation.

This can be extended to more general functions, which are no longer analytical in their

arguments,

F (b, f) = F0(b) + F1(b)f (5.4)

and correspondingly of more variables

F (b1, b2, f1, f2) = F0(b1, b2) + Fi(b1, b2)fi + F12(b1, b2)f1f2.

The next step is to differentiate such functions. Note that the function F12 has no definite

symmetry under the exchange of the indices, though by using an antisymmetric general-

ization this term can be again written as Fijfifj if Fij is anti-symmetric.

Differentiating with respect to the ordinary variables occurs as with ordinary functions.

For the differentiation with respect to Grassmann numbers, it is necessary to define a new

differential operator by its action on Grassmann variables. As these can appear at most

linear, it is sufficient to define

∂

∂fi
1 = 0

∂

∂fi
fj = δij (5.5)

Since the result should be the same when f1f2 is differentiated with respect to f1 irrespec-

tive of whether f1 and f2 are exchanged before derivation or not, it is necessary to declare

that the derivative anticommutes with Grassmann numbers:

∂

∂f1

f2f1 = −f2
∂

∂f1

f1 = −f2 =
∂

∂f1

(−f1f2) =
∂

∂f1

f2f1.

Alternatively, it is possible to introduce left and right derivatives. This will not be done

here. As a consequence, the generalized product (or Leibnitz) rule reads

∂

∂fi
(fjfk) =

(
∂

∂fi
fj

)
fk − fj

∂

∂fi
fk.
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In this context, it is useful to define the Grassmann parity π of a quantity to be zero if

the number is Grassmann-even and one if it is Grassmann-odd. Then the Leibnitz rule

can be written as

∂x(ab) = (∂xa)b+ (−1)π(a)π(∂x)a∂xb (5.6)

as this will always generate the correct relative sign.

Likewise, the integration needs to be constructed differently. In fact, it is not possible

to define integration (and also differentiation) as a limiting process, since it is not possible

to divide by infinitesimal Grassmann numbers. Hence it is necessary to define integration.

As a motivation for how to define integration the requirement of translational invariance

is often used. This requires ∫
df = 0∫
dff = 1 (5.7)

Translational invariance follows then immediately as∫
df1F (b, f1 + f2) =

∫
df1(h(b) + g(b)(f1 + f2)) =

∫
df1(h(b) + g(b)f1) =

∫
df1F (b, f1)

where the second definition of (5.7) has been used. Note that also the differential anti-

commutes with Grassmann numbers. Hence, this integration definition applies for dff . If

there is another reordering of Grassmann variables, it has to be brought into this order.

In fact, performing the remainder of the integral using (5.7) yields g(b). It is an inter-

esting consequence that integration and differentiation thus are the same operations for

Grassmann variables, as can be seen from the comparison of (5.5) and (5.7).

To describe fermionic matter requires then to replace all fields describing fermions

by fields of Grassmann variables. I. e., a Dirac fermion field is described by a spinor

ψ(x) with components ψa(x) being Grassmann-odd functions of x. This implies that

ψa(x)ψa(x) = 0 (where summation may or may not be implied), as such functions at

the same space-time points are nilpotent. This implements the Pauli principle, as thus

every time two Grassmann quantities coincide at the same space-time point the result

automatically vanishes.

If in this way in the Lagrangians the fermion fields are replaced by Grassmann-odd

functions, the use of the rules for integration and differentiation can be extended in a

straightforward way to the path integral. Especially, the most important relation necessary

later on is again the Gaussian integral over Grassmann fields. To illustrate the use of

Grassmann functions, this will be calculated in detail. The starting point is the integral∫
dα∗dα exp(α∗Aα),
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with some ordinary number A. The Taylor expansion of this expression is∫
dα∗dα exp(α∗Aα) =

∫
dα∗dαα∗Aα,

and any terms linear or constant in the Grassmann variables will vanish during the in-

tegration, and likewise all higher-order terms will be zero, since α2 = α∗2 = 0. In the

next step, it is necessary to be very careful in the ordering of the integrals, as also the

differentials anti-commute with the variables. To act with dα on the variable α requires

to anti-commute it with α∗ and dα∗ first, giving a factor of (−1)2,∫
dαdα∗α∗Aα = −

∫
dα∗dαα∗Aα =

∫
dα∗α∗Adαα =

∫
dα∗α∗A = A (5.8)

which is remarkably different from the normal Gaussian integral (2.11), as it returns A

instead of A−1/2.

It can be likewise shown, that the generalization to many variables yields detA instead

of (detA)−1/2. Similarly, it can be shown that for the substitution rule the inverse Jacobian

appears, instead of the usual Jacobian.

5.2 The free fermion

With the technology at hand, it is now possible to introduce the first theory with fermions.

This will be, of course, a free theory. As a free theory, it requires that it is at most quadratic

in the fields. It needs also to be a Poincaré-invariant theory. Based on the experience with

scalars, it is to be expected that a term without derivative will act like a mass term. Thus,

it remains to be seen what can be done in terms of a derivative term.

The first attempt would be to include a ∂2 term, as with the scalars. However, because

the action of a Lorentz transformation on a spinor is not given by a unitary transformation,

but by a non-unitary one (4.6). However, the operators σµp
µ, σ̄µp

µ have been found to map

between the two SU(2), and also σ2ψ
∗ belong to the other SU(2) group. Thus, possible

free Lagrangians for the Weyl spinors are

Lψ = ψ†iσµ∂µψ −
1

2
mψT (−iσ2)ψ

Lχ = χ†iσ̄µ∂µχ−
1

2
mχT (−iσ2)χ.

Using (4.9) yields then immediately the Lagrangian for a Dirac fermion,

LΨ = Ψ(iγµ∂µ −m)Ψ.
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From this follows that the Dirac equation (4.10) is the Euler-Lagrange equation of Lψ.

There is an interesting corollary from that. The Dirac equation, or the Klein-Gordon

equation, yield four real conditions for the Dirac spinor. These conditions merely ensure

the energy-momentum relation, and thus that the described particle ultimately respect

special relativity. Thus, out of the eight real degrees of freedom for a Dirac spinor, only

four are free if the Dirac equation holds. However, this is only required for an asymptotic

state, and thus on-shell. Off-shell, the energy-momentum relation does not need to hold,

and thus the degrees of freedom doubles. That is very different from the scalar case, where

also the Klein-Gordon equation applies. But here no additional degrees of freedom become

available off-shell.

It seems a bit odd at first that the derivative is only acting on one of the fields. However,

due to the possibility to perform partial integrations, the derivative could be swapped or

separated into two parts, acting on each field equally. It is, however, more convenient in

practice to use this, slightly asymmetric, notation. Another interesting feature is that,

because there is only one derivative, the mass-dimension of the fermion field needs to be

(d − 1)/2, and thus different from the scalar field. This also suggests that the constant

term will have the mass, rather than the mass-squared, as constant of proportionality.

Finally, to quantize the theory, the path integral needs to be formulated. Just as with

the multi-component scalar field in section 2.5.1, it is in principle possible to integrate

separately over all real and imaginary components individually. However, in view of (5.8),

it appears to be more suitable to perform a variable shift such that the independent

variables are the field and the complex conjugate one. In fact, for the Dirac fermion it is

even more convenient to integrate over Ψ. Thus, the quantized free fermion is obtained

from the path integral

ZF =

∫
DωDωei

∫
ddxLω+i

∫
ddx(jωω+ωjω)

where ω can now be any of the different types of fermions, and ω the corresponding complex

conjugated one. Because ω and ω are treated as independent variables, each with half the

number of degrees of freedom then the original field, they require each an individual source.

Furthermore, because the action needs to be an ordinary, scalar number, both sources need

to be Grassmann-valued spinors themselves. Because of the general Leibnitz rule 5.6, this

implies that derivatives with respect to jω and jω do not commute with each other, and

also not with themselves. Hence, the order of derivation for matrix elements becomes

important. Likewise, the time-ordering prescription (2.9) needs to respect the Grassmann

nature now,

T (α(t1)β(t2)) = θ(t1 − t2)α(t1)β(t2)± (−1)π(α)π(β)θ(t2 − t1)β(t2)α(t1).
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This makes it more important to track orderings of expressions, as otherwise minus signs

may get lost, which especially for relative minus signs can have serious consequences.

Using (3.13), it is straightforward to obtain the propagators in momentum space1,

Dω
ij(p) =

i(Ωµ
ijpµ +m× 1ij)

p2 −m2 + iε
= (i(Ωµ

ijpµ +m× 1ij))
−1, (5.9)

where Ω = σ, σ̄, and γ for ω = ψ, χ, and Ψ, respectively. It is important to note that

the propagator is matrix-valued, being a matrix in the representation space of the spinors.

Especially, (5.9) is indeed the matrix-valued inverse of (Ωµ +m), as an explicit calculation

shows. This is also the reason for the often used short-hand notation displayed as the last

equality in (5.9). Notwithstanding, the pole of the propagator is found again at m, in

accordance with the fact that every fermion spinor component satisfies the Klein-Gordon

equation, and thus the relativistic energy-momentum relation on-shell.

5.3 Yukawa theory

The next step is to include interactions. So far, the existence of non-trivial representations

of the Poincare group made the fermion action unique. However, already when deciding

which types of fermions and how many of them should be included, empirical input is

needed. There is a further issue.

There is a further issue. According to the rules set out in section 2.2, there can be

no self-interactions of fermions, due to the dimensionality of the fermion fields, at least in

four dimensions. While there exist theories, which ignore this and construct interacting

theories made entirely from fermions, they have usually a very limited focus. They will

not be considered here.

Rather, combining both the scalar field and the fermion field creates an interesting

interacting theory, Yukawa theory, with Lagrangian

L =
1

2
Ψ̄(iγµ∂µ −mΨ)Ψ +

1

2
∂µφ∂µφ−

1

2
mφφ

2 (5.10)

− ξ
3!
φ3 − λ

4!
− gφΨiΓijΨj. (5.11)

The first line (5.10) contains the free, or sometimes also called kinetic, terms. They

describe a fermion Ψ with mass mΨ and a scalar with mass mφ. The second line (5.11)

contains the interactions. Besides the usual self-interaction of the scalar field, a new

interaction between the fermion and the scalar appears, with a new independent coupling

1To interpret this beyond perturbation theory as the full two-point matrix element, note the discussion

in section 2.5, especially in the sense of being a shorthand notation in the spirit of (2.29).



58 5.4. Perturbation theory beyond scalars

strength g. Such an interaction is called a Yukawa coupling. It contains a matrix Γ, which

acts in the spinor representation space, and which is needed to be such that the Lagrangian

remains Lorentz symmetry invariant.

In case of Γ = 1, the Yukawa term looks like a mass term, but with the mass replace

by the expression gφ. It thus has the character of a scalar interaction. An alternative is

Γ = iγ5. The corresponding Feynman rule is

ΓΨΨφ = igΓ = −ΓΨΨφ

where now the ordering of the fermion fields, and the corresponding derivatives is impor-

tant, due to the anti-commutativity of the fermion fields.

Yukawa-type theories have been used quite successfully used to describe nuclear inter-

actions by meson exchange, where two Ψ fields, introducing a SU(2) symmetry in analogy

to the SO(2) symmetry of scalars in section 2.5.1, correspond to the nucleons. Likewise,

Yukawa interactions play a central role for the mass generation for the fermions in the stan-

dard model by the Brout-Englert-Higgs effects, and many scenarios beyond the standard

model. These applications will be investigated in detail in the corresponding lectures.

5.4 Perturbation theory beyond scalars

While most of the rules of perturbation theory do not change by the introduction of

fermions, or other particles with spin larger than zero, there are two exceptions. These

require additional rules.

The first originates with the Grassmann nature of fermion fields, and consequently

of the derivatives. It affects loops of fermions. For this note that the interaction La-

grangian necessarily always contains an even number of Grassmann fields, as does the free

Lagrangian. A loop emerges whenever a propagator, or chain of propagators, closes in on

itself. This will only happen, if the derivatives acting are not from the external sources.

Thus, it only affects expressions like∫
ddz1...zn

δn(
δKδK

)m
...

Πm
i

(∫
ddyiK∆K

)
... (5.12)

where the spinor indices and arguments are suppressed, and the ordering of the sources

follows from the ordering in the Lagrangian to obtain a Lorentz scalar.

Start with the case m = 1. Then it is necessary to exchange one derivative with respect

to K with K, giving a minus sign. The second derivative works without a minus sign.

In this way, for a single closed loop of fermions an overall minus sign appears. For the
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m = 2 case, there are two options. Either, the derivatives (1122), counting the position

arguments, act in the order (2211) or (1122). These creates two loops with one propagator

each, having each one closed fermion loop, and thus an overall factor of (−1)2. Or, they

act as (1221), or any even permutations thereof. Then, they create a single loop with two

fermion propagators. But now one three exchanges of derivatives are necessary. Thus, the

loop with two propagators gets an overall minus sign. By induction, it can then be shown

thus that any closed fermion loops gets an overall minus sign. In case of nested loops, all

possible closed loops have their own minus sign.

The other changes actually only affects the LSZ rule, so it is not part of the fermion

rules proper for matrix elements. The LSZ rule requires to amputate the matrix elements.

So far, these had been scalars, and thus this was a quite straightforward product, as

the propagators were scalars. In fact, amputation originated in general from (3.23-3.24).

However, there was an implicit step made when moving from (3.23) to (3.24): That the

indices on the derivatives are just counting the fields. That is certainly true for scalars.

But if the fields carry a representation, Lorentz or internal, and thus indices a..., the

meaning of
δΦa...

i

δja...i

δW

δΦa...
i

is different, as the summation is also over representation indices2. Thus, in the amputa-

tion process the propagators and the amputated vertex function are contracted over the

symmetry indices in (3.24).

This requires then to understand (3.25-3.26). The propagators are matrix valued in

the representation indices. However, the amputated vertex function are vector-valued. It

is thus necessary to contract it with a vector in the representation indices to obtain a

scalar S-matrix element, needed for a cross section.

It is again group theory, which yields the answer. A matrix-(or higher tensor-)valued

representation can be build by a tensor product from vector representations. Thus, a free

propagator can be written as

Dab(p) = Z
ua(p)u

†
b(−p)γ0

p2 −m2 + iε

where u are the Bethe-Salpeter amplitudes3 or, if the particle is elementary, the wave

function. In case of a real, elementary scalar, these wave functions are 1. In other cases

of elementary particles, they could be reverse engineered from the propagator. For bound

states, it is more complicated, and this will be addressed in section 9.2. However, it is

worthwhile to also pursue a different approach, which will be useful in chapter 10.

2Implicitly, this even hides more, the summation over invariant tensors of section 2.5.1.
3In case of higher tensors Faddeev amplitudes.
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Because the propagator is the Green’s function of the kinetic operator

∆abDbc = δ(x− y)δac

it follows that the wave functions need to fulfill correspondingly this equation. In case

of fermions, this requires them to fulfill the Weyl equation or Dirac equation. Since the

results for the Weyl equations can be read off from (4.13-4.14), it is sufficient to solve the

Dirac equation

(pµγ
µ −m) v = 0,

where for convenience this was already changed to momentum space using place waves, as

are fit for the free, elementary particle. Solving this algebraic equations yields

u =

(√
pµσµξ√
pµσ

µξ

)
,

where ξ is an arbitrary two-dimensional unit vector. Because of the connection to the

propagator, it immediately follows that

uu†γ0 = pµγ
µ +m.

Likewise, the charge-conjugated wave function v is

v =

( √
pµσµη

−
√
pµσ

µη

)
,

with an independent two-dimensional, normalized vector η.

Thus, ultimately, the Feynman rules have to be extended by demanding that external

lines of the amputated matrix elements of the S matrix need to be contracted with wave

functions. In this way, all Lorentz indices are contracted, creating a Poincaré-invariant

matrix element.



Chapter 6

Discrete symmetries

There is an interesting detail in Yukawa theory. What is the difference between the choice

Γ = 1 and Γ = iγ5 in (5.11)? It turns out that this question leads t one of the most central

theorems of quantum field theory.

6.1 Discrete symmetries

So far, both internal symmetries and external symmetries have been continous. But al-

ready the linear-σ model (2.2) allows at ξ = 0 a discrete symmetry by φ → −φ. This is

a Z2 symmetry. While much of what has been said for internal symmetries in section 2.5

applies to discrete symmetries equally, there are two important differences. One is that

constructing the equivalence to (2.29) can be a bit more involved. The other is that there

are far-reaching consequences for space-time symmetries.

So far, only the SO(1,3) proper Lorentz group has been considered in section 4.1. But

there are two more discrete symmetries1, parity and time-reversal, both already known

from quantum mechanics.

6.1.1 Parity

Parity is the more straight-forward one to understand. The parity operation P replaces

~x→ ~x and ~p→ −~p, but ~l → ~l, if ~l is the angular momentum. It does not affect the time

component, and thus acts only as P = diag(1,−1,−1,−1) in spatial subspace. Because

P 2 = 1, it is a Z2 symmetry, ZP2 .

1Note that one decisive differences between the Euclidean case SO(4) and the Lorentz case SO(1,3) is

that in the former case there is only one such discrete symmetry.
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This leads to an important question: Who does this affect the fields? And does the

classical action and/or the partition sum needs to be invariant under it, such that the field

transformation properties can be inferred from it?

The answer to the second question is already provided by experiment: No. The weak

interactions violate parity. Thus, it is not necessary, and should not be necessary for

quantum field theory, to respect parity. This is as well, as parity is not an inherent part

of Poincaré symmetry, but an optional tensorized subgroup.

This leaves to deal with the fields. As for any other symmetry, this poses the question,

in which representation a field ϕ should transform under ZP2 ? This question can even be

posed if parity is not a manifest symmetry of the theory. Since all possible irreducible

representations of ZP2 are either the trivial one or isomorphic to ±1, there are only two

possibilities to choose from,

Pϕ = ϕ

Pϕ = −ϕ

up to a redefinition of the eigenvalue −1. Of course, a third possibility is that there is

no defined behavior of a field at all. It turns out that this case has not been realized in

nature,at least not for elementary fields, so it will be ignored for now.

Consider first scalar particle φ. It could indeed be in the trivial representation. Or

it could change to −φ. In the latter case it is called a pseudoscalar field. For a scalar

field, the linear-σ model (2.2) is parity-invariant for all values of the coupling. In case of

a pseudoscalar field, this is only true if ξ = 0 Otherwise, parity is explicitly broken. The

assignment of the parity representation to the scalar field is part of the definition of the

model, and can thus not be derived.

For fermions, the situation is a bit more involved. Because the matrix P in its spinor

representations does not commute with the γµ matrices, this yields

PΨ = ηγ0Ψ

where η is an arbitrary phase, which is the same for all spinors. It stems from the fact

that Ψ is complex-valued, and thus an additional phase is possible. It can be chosen

by convention, and is usually done to eventually have that the parity eigenvalue of the

electron is +1. This is different to the case of the scalars, where no such choice exists, and

stems from the properties of the spinor representation. This implies that parity exchanges

necessarily left-handed and right-handed objects. This is not surprising. Spin is, after all,

a kind of angular momentum. Thus, the projection of spin on the momentum changes,

and hence the handedness. Therefore, a theory which contains Weyl fermions of one

handedness only will not support parity.
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For Dirac spinors, P 2Ψ = −η2Ψ, since Pγ0 = −γ0P . The conventional choice is η = 1.

Note that because the spinors are Grassman-valued, the parity of products of such spinors

need to be taken into account.

It should be noted that under parity γ5 is odd, i. e. Pγ5 = −γ5. This follows as γµ

acts like a vector under parity, and thus the definition (4.12) yields a factor (−1)3 = −1

explicitly. Thus, an expression like Ψγ5Ψ, like appearing in (5.11) for Γ = iγ5, is odd

under parity, in contrast to Γ = 1, which is even. Thus, if the scalar in (5.11) is even

under parity, such a pseudoscalar coupling explicitly breaks parity. Alternatively, if setting

ξ = 0 and Γ = iγ5 in (5.11) and choosing φ to be a pseudoscalar field, will create again

a parity-invariant theory. What is the correct choice is an input to theory building, and

thus driven by experiment.

6.1.2 Time reversal

Time reversal appears at first to be just be the analogue of parity, just with a differ-

ent matrix. However, it turns out to be more subtle than that, as was already the case

in quantum mechanics. Of course, time appears to be no longer a special case, as spa-

tial coordinates are now also just numbers, rather than operators. But the existence of

cluster decomposition (3.17) and that correlation across time-like distance do not decay

exponential, but over space-like distance does, (3.5), highlights already two differences.

In fact, more important is that in probabilities like (3.18) still matrix elements like

〈i|f〉 enter. But time reversal should replace initial states and final states. At the same

time, if the theory is invariant under time reversal, which is not necessary, this requires

that

〈i|f〉 = 〈PQ〉 = 〈T−1QPT 〉 = 〈T−1QTT−1PT 〉 !
= 〈QP 〉 = 〈f |i〉 = 〈i|f〉∗.

This will work, if

〈T−1QTT−1PT 〉 = 〈Q∗P ∗〉 = 〈(PQ)∗〉 = 〈PQ〉∗.

Thus, as in quantum mechanics, time-reversal needs to be anti-unitary, and thus involve

complex conjugation C. Hence, in general C = CΛC with ΛC = diag(−1, 0, 0, 0). On

coordinates, momentum, and angular momentum this has therefore the ordinary effect, as

they are real.

However, this has a different effect on fields. Only for a real scalar field nothing

changes, which includes the case with an SO(N) symmetry in section 2.5.1. Since still

T 2 = 1 applies, the field φ could be assigned a definite time parity, in analogy to parity.

For reasons to become clear in section 6.3, this is usually not detailed.
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If, however, the field is complex, it follows

Tφ(x) = φ∗(x). (6.1)

The field is thus not an eigenstate of T , and is neither even or odd. The situation is more

involved when considering fermion fields. Time reversal will send ~p → −~p, but spatial

rotations are not affected, and also ~x → ~x. Thus, the Pauli-Lubanski vector and thus

spin flip as well. This leaves the helicity intact. Thus left-handed Weyl spinors need to be

turned into left-handed complex conjugated Weyl spinors, and likewise for right-handed

Weyl spinors. But it does not leave the spin component intact. If time is reversed, the

spin components need to be reversed, which corresponds to flipping the components of the

Weyl spinors, and likewise exchange the eigenvalue of the third component of the spin.

Noting that σµσ2 = −σ2σ
∗
µ, and thus for any arbitrary projection of σµ, it follows that

Tψ = −iσ2ψ
∗

Tχ = −iσ2χ
∗,

and thus for a Dirac spinor

TΨ = iγ5Ψ∗ = −γ1γ3Ψ∗

where the rewriting in terms of γ1 and γ3 is useful for the generalization to different

dimensionalities.

Explicit calculation shows that the kinetic term in (5.10) is invariant under T . For the

interactions in (5.11) the case Γ = 1 is likewise. However, for Γ = iγ5, the term is odd.

Thus, the term can only be T and P invariant if φ is a T -odd pseudoscalar.

6.2 Anti-particles and Majorana spinors

An interesting twist appears in the case of introducing a complex scalar (6.1). Consider

the linear-σ model for ξ = 0, and take the interaction to be (φ†φ)2. The theory is then

invariant under the symmetry

φ→ eiαφ ≈ (1 + iα1)φ+O(α2) = φ+ iαδφ+O(α2),

and thus a U(1) phase symmetry. As in quantum mechanics, a Hermitiean operator, here

1, is thus associated with the symmetry. In the more general case of SO(N) symmetry in

section 2.5.1, these were the generators of the so(N) algebra, creating a different value for

δφ.
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Assuming that it is a classical symmetry, and thus the Lagrangian itself is invariant,

it follows that the variation of the Lagrangian under this change obeys2

0 = δL =
∂L
∂φ

δφ+
∂L
∂∂µφ

∂µ(δφ)

The equation of motion for φ
∂L
∂φ

= ∂µ

(
∂L
∂∂µφ

)
(6.2)

holds classically. At the quantum level, the same result follows for arbitrary expectation

values, and thus on the field level. This can be seen as follows. The path integral is by

definition translational-invariant. Thus

0 =

∫
Dφ δ

iδφ
eiS+i

∫
ddxjφ =

∫
Dφ
(
δS

δφ
+ j

)
eiS+i

∫
ddxJφ =

〈
T

(
δS

δφ(x)
+ j(x)

)〉
.

At vanishing source j(x) = 0, this implies that the expectation value of the action is

extremal, thus yielding the quantum version of the equation of motion. It should, however,

not been considered to be correct on the field-level or at finite source.

Having this at hand, yields

0 =

(
∂µ

(
∂L
∂∂µφ

))
δφ+

∂L
∂∂µφ

∂µ(δφ) = ∂µ

(
∂L
∂∂µφ

δφ

)
= ∂µJ

µ, (6.3)

and thus the current J is conserved, at the very least on the level of expectation values.

This consequence, the existence of a conserved current for any continuous symmetry, is

known as Noether’s theorem. Note that a discrete symmetry does not allow for a derivative

in (6.2), and thus no such statement can be made.

It should be noted that this does not change, if a total derivative ∂µK
µ is added to

the Lagrangian, and thus a boundary term to the action. However, this will lead to a

replacement of the Noether current,

Jµ → Jµ +Kµ = J̃µ.

as the total conserved current.

Given a conserved current, a total conserved charge can be defined as

Q(t) =

∫
dd−1xJ0(x),

which is temporally conserved

∂0Q =

∫
dd−1x∂0J0 = −

∫
dd−1x∂iJi = 0.

2Assuming that the Lagrangian is at most quadratic in derivatives.
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The last equality follows either by requiring to have a vanishing charge density at infinity,

or, using cluster decomposition (3.17), that fluctuations at infinite space-like distances

need to be uncorrelated, and thus average out. A similar calculation will thus show that

in the SO(N) there is a conserved charge Qa for every dimension of the representation

space of the field.

It also follows that in the present case

J0 = −φ†1

where a partial integration has been performed. Thus the negative of the complex-

conjugated field yields the charge density, and likewise for the field φ. Thus, φ and φ†

carry the opposite charge, but are otherwise degenerate. Because of this, φ† is said to be

the anti-particle of φ. As will be seen in section 6.3, the existence of a charge will imply

the necessity that for every charged particle an anti-particle with the same mass as JP

needs to exist.

Remarkably, the existence of a particle and anti-particle gives rise to another sym-

metry, charge conjugation symmetry C. Defining in the present case that C is complex

conjugation leads to

Cφ = φ†,

under which indeed the complex linear-σ model is invariant. Again, a phase can be intro-

duced, which is here set to 1. As P and T , it also applies that C2 = 1. Note furthermore

that if φ would be real, the action of complex conjugation is none. But it is still possible

to define in that case that

Cφ = ±φ.

The field φ is then said to be even or odd under charge parity, and this quantum number is

added to JP as JPC . The linear-σ model is then again invariant under this transformation

for ξ = 0. But its breaking at ξ 6= 0 indicates that this symmetry does not need to be

respected, again very much as T and P . It should be noted that the C-symmetry could

also be interpreted as a discrete Z2 symmetry of the theory, as such a symmetry has the

same effect. This issue will be taken up again in section 6.3.

In the SO(N) case, where there is also a conserved charge but the fields are real, the

question arises how to interpret C there. As U(1) is an Abelian symmetry, the solution lies

again in group theory. For any non-Abelian Lie group, there exists a complex conjugate

representation. Given the original representation of the generators T a, it is obtained in

the same representation space from −T ∗a . Charge conjugation can now be taken as the

transformation, which maps states between the representation and its complex-conjugate

representation. If the representation is real or pseudoreal, this will, up to a similarity
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transformation, not change the fields. Then, a definite C quantum number can be assigned

to the fields. Otherwise, both representations are distinct, and the concept of a particle

and an anti-particle arises. Of course, when assigning the charge parity +1, this implies

that particle and anti-particles can be also thought of as being identical. This is indeed

what happens for the SO(N) model.

For fermions, the situation is again more subtle. Start with Dirac fermions. They are

inherently complex, and to have a bosonic Lagrangian thus requires that both Ψ and Ψ

are always appears in pair. Thus, there exists necessarily a global continous symmetry of

type

Ψ→ eiαΨ,

with a corresponding conserved charge. This charge is called fermion number, and thus

implies that every Dirac fermion has an anti-particle3, and that they can only be created

in pairs of fermions and antifermions.

However, there is now the twist that fermions are also spinor representations of SO(1,3).

Thus, this needs to be taken into account when defining C for Dirac fermions. The spinor

representation is pseudo-real. There is thus the possibility to define a phase, and moreover

the question, if spin-orientation should be altered by C. The standard definition is

CΨ = −iγ2Ψ∗,

which implies that Ψ = (CΨ)Tγ0, thus maintaining the spin orientation, and thereby

making ΨΨ invariant under C by construction. Therefore, the free Dirac fermion action

is also C-invariant.

This implies for Weyl fermions

Cψ = −iσ2χ
∗

Cχ = −iσ2ψ
∗,

thus C changes the chirality of Weyl fermions, and they are thus not invariant under C.

Especially, only a theory which contains both left-handed Weyl fermions and right-handed

complex-conjugated Weyl fermions can be C invariant, if the transformation is defined in

this way. However, there is alternative option.

Define a Dirac spinor by

Ψ =

(
ψ

−iσ2ψ
∗

)
,

3Note this entirely avoids the discussion of the outdated concepts of Dirac sea or negative energy

modes, which therefore will not be touched upon here.
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and likewise for the other handedness. Due to (4.8), this will transform as a Dirac spinor,

but satisfies by construction CΨ = Ψ. Such a spinor is called a Majorana spinor4, and is

hence its own anti-particle. Note that such a particle cannot carry a charge, as, e. g., a

phase rotation would act differently on the different components, and it would thus not

be possible to build an invariant theory. This includes fermion number, as a particle can

be turned into an anti-particle in this theory. Still, Lorentz symmetry forbids to have an

odd number of fermionic fields in interaction vertices in the Lagrangian.

Since Majorana spinors transform otherwise like Dirac spinors, it is possible to build a

theory in terms of them. However, there is a drastic difference. The number of degrees of

freedom is halved with respect to a genuine Dirac spinor. Note that by construction both

handedness are now included, and all terms constructed in this way are by construction C-

invariant. Thus, insisting on Majorana fermions limits the number of possible expression

in the Lagrangian. Phrased otherwise, there are terms, constructed from Weyl fermions,

possible, which manifestly break C parity.

6.3 The CPT theorem and the spin-statistics connec-

tion

It is now an amazing consequence that the Poincaré group implies the Pauli principle only

for half-integer spin particles. Before moving there, it is useful to first proof a related

theorem, the CPT -theorem. It states that while each of the C, P , and T symmetry may

be broken, as well as any of the combinations CP , CT , and TP , any quantum field theory

needs to be invariant under the combined application of CPT . Because C is included,

this implies that in the presence of charged particles also always their anti-particles need

to be part of the theory.

The proof is relatively straightforward. Up to pre-factors, the combined application of

the 8commuting) operators C, P , and T is, up to a pre-factor, essentially that all vectors

change sign, and fermion pick up signs and factors of i. In addition, right-handed spinors

pick up one more sign than left-handed ones. Thus, scalar spinor bilinears always lead

to expressions like −i · i = 1. Due to Lorentz covariance, both the classical action and

the quantum effective action are scalars. Thus, all signs from scalar products of vectors

also cancel, as do any factors from non-trivial representations of P and C. Thus, the only

remaining part is that the arguments of the fields change from x to −x. But as the action is

a space-time independent integral over all space, this will not have any consequence. Thus,

4Note that this construction, and thus equivalence of Weyl spinors and Majorana spinors, does not

work in all dimensionalities. In some cases, both are distinct concepts.
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any quantum field theory, for which a quantum effective action exists, will be invariant

under CPT , if it is invariant under Poincaré symmetry, and vice versa.

To see the connection between spin and statistics, consider an arbitrary matrix element,

w(x1, ..., xn) = 〈φ1
i1

(x1)...φnin(xn)〉 (6.4)

which can be considered to be a function w of the space-time coordinates only, if the

multi-indices ij are suitable summed over. Complexify the arguments, xi → zi. The so

defined functions of n complex variables are called Wightman functions. This allows to

group the complex space-time variables also in terms of the two SU(2) groups as a Dirac

spinor.

It is worthwhile to note that the existence of the path integral would imply certain

analyticity properties of the Wightman functions on certain patches of their arguments.

While these will not be detailed here, the probably most important one is a reconstruction

theorem, which implies that any Wightman function of real arguments xi can be expressed

in terms of algebraic combinations of Wightman function at analytically continued argu-

ments xi → ix̃i. As these would be the Wightman functions of an Euclidean space-time,

this implies that it is, in principle, possible to do calculations of any desired correlation

function in an Euclidean space-time, and then continue the result back to Minkowski

space-time. In practice, the required algebraic combination is not always easily accessi-

ble, but that issue is often compensated by the fact that Euclidean space-time is often

technically much more favorable than Minkowski space-time. This is physically remark-

able, as the causal space-time structure of Minkowski space-time and Euclidean space-time

are drastically different. Where in practice this is useful depends on the theory and the

problem at hand. But especially for numerical evaluation, this reconstruction theorem is

indispensable.

Perform now a full rotation in either of the two SU(2) subgroups of the Lorentz group.

Spinors of this representation will then necessarily pick up a minus sign for each fundamen-

tal representation in a given tensor product, see section 4.2. All other fields will remain

invariant, but this will also change the z. If the SU(2) is chosen for which z → −z, and

there are m fields in this SU(2), it follows that

w(z1, ..., zn) = (−1)mw(−z1, ...,−zn) = (−1)m(−1)pw(−zn, ...,−z1),

where p is the number of anticommuting fields. Now, set all imaginary parts to zero5 and

5Herein it is assumed that the Wightman function are, at least in some domain, without cuts and

sufficiently smooth to allow for that kind of arguments. This can actually be asked as part of the axioms,

but will also follow automatically if the path integral would be well defined.
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select the case of a correlation function of two fields as

(−1)m(−1)pw(−x2,−x1) = w(x1, x2) = 〈φ1(x1)φ2(x2)〉 = w(|x1 − x2|) = w(−x2,−x1).

where translational invariance has been used. This implies that m+ p must be even, and

thus spinors need to anticommute. As spinors steam from half-integer spins, this implies

that half-integer spins are Grassman-valued, thus obey the Pauli principle, and hence are

fermions, while integer spin particles need to be bosons and do not obey the Pauli principle.

It is thus once more the space-time structure which imposes physical properties on

particles, especially tying their statistical nature to their space-time representation prop-

erties6. Since the space-time structure also provides causality with the light-cone struc-

ture and the existence of world-lines, the existence of causality, anti-particle and the

spin-statistics relation are tightly intertwined. But this also implies that in a different

space-time structure, e. g. 4-dimensional Euclidean space, things could be very different.

6Note again that 1+1 dimensions work differently, due to the Abelian nature of space-time.
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A first look at QED

So far, the particles had been restricted to ones with a spin of 1/2 or less. Going beyond

that introduces the fact that particles with spin of one or larger necessarily introduce gauge

freedom. Conceptually, this is similar, but usually technically more involved, to classical

electrodynamics. Quantum gauge theories offer a whole new range of both interesting

phenomena and technical complications. Thus, here, only the simplest possible case of

a spin one particle will be introduced. Fortunately, this already yields a highly relevant

theory, quantum electrodynamics.

7.1 Formulation and Maxwell theory

There are two possibilities to extend the representations of the Poincaré group beyond

1/2. One is to consider representations of the type (1, 0) or (0, 1). However, these do not

offer anything new, as they turn out to be tensor products of the twice the corresponding

fundamental representation. Physically, they can be interpreted as particles build from

two Weyl fermions.

The more interesting option is the first case of a non-trivial representation for both

SU(2) algebras, (1/2, 1/2). Incidentally, this is the same representations the momentum

is in, and is thus called a vector representation. Depending on whether they a parity-even

or odd, they are called vectors and axialvectors1.

Thus, this is a tensor product of the two fundamental representations, and thus would,

at first glance, yield four degrees of freedom, and at minimum a real-valued vector field

Aµ. However, a Clebsh-Gordan construction shows that only three of the four degrees of

freedom form a vector, m = −1, 0,+1. The other forms a scalar. This implies that a four

1It can be confusing that the additional ’axial’ (and not pseudo) here signifies positive parity, while

for scalars the additional ’pseudo’ signifies negative parity. That is an historical oddity once more.
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vector has a redundancy. That is already known from the momentum, as p2 = m2 fixed

one of the components in terms of the others.

The same is now true here. Lorentz invariance fixes one of the components, such that

AµA
µ is a Lorentz-invariant quantity. However, this entails that it is possible to perform

transformations of the four components, which only need to ensure this condition. In

addition, if the field is massless, then the number of degrees of freedom needs to be

reduced further, as instead of spin it now only carries helicity, see section 4.1. This implies

that the vector Aµ is further restricted. In momentum space, Aµ(p), there is besides

AµA
µ only one other possible invariant, which can be build, pµA

µ, which therefore needs

to be fixed as a second condition. Physically, the first condition is only a normalization

of the field, which can be set arbitrary, and thus doe snot distinguish theories. Likewise,

choosing pµA
µ = 0 is a unique choice, given that no other quantity exists except for m = 0,

which can characterize the field as a representation. Thus, they different right-hand sides

cannot describe different theories. The latter is especially visible when going beyond four

dimensions. There, the number of vector components change. In fact, a more accurate

description is to describe vector fields as anti-symmetric three-dimensional tensors, which

make the number of degrees of freedom manifest, and where the SU(2) transformations act

as left-multiplications and right-multiplications in the adjoint representation, respectively.

Or as an SU(2)/Z2 matrix, then independent under corresponding fundamental action.

However, this has not been the option of choice, mainly again for historical reasons, the

interplay with space-time coordinates, and the generalization to other dimensionalities.

That therefore a(n axial) vector field can only represent two degrees off freedom is

encouraging. After all, this is exactly the number of degrees of freedom of a classical

electromagnetic field. However, this is not manifest at first sight. Consider classical

Maxwell theory. It is formulated in terms of the vector potential Aµ. However, rather

than to implement the constraints directly, the theory is formulated in terms of the full

vector field Aµ, which will become the photon field later, with its four component. This

remaining freedom manifest by allowing for gauge transformations, as

Aµ → Agµ = Aµ + ∂µω, (7.1)

where ω is an arbitrary function. A defining property of such gauge transformations is the

fact that they do not alter any measurable quantities. This is, as it needs to be, as they

only encode information on the choice of representation, but no dynamical information

In particular, the electric and magnetic fields ~E and ~B, which are obtained from the
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gauge potential by

~Ei = − ∂

∂t
Ai − ∂iA0 (7.2)

~Bi = (~∇× ~A)i, (7.3)

are invariant under such transformations. From the vector potential, it is possible to form

the field strength tensor

Fµν = ∂µAν − ∂νAµ,

which is also invariant under gauge transformations. The Maxwell equations can then be

written in the compact form

∂µF
µν = Jν

∂µF νρ + ∂νF ρµ + ∂ρF µν = 0,

where Jµ is the electric current. These are the equations of motions of the classical

Lagrangian

L = −1

4
FµνF

µν − JµAµ. (7.4)

Setting the classical current Jµ to zero, this is known as Maxwell theory. This theory is

non-interacting, as it is at most quadratic in the fields.

In the context of group theory, (7.1) can be considered to be in the adjoint represen-

tation of the U(1) algebra, with its only generator, unity. The gauge fields form therefore

orbits under the gauge transformation (7.1). Different gauge orbits correspond therefore to

distinct values of the electric field and magnetic field, and thus different physical situations.

At Jµ = 0 the classical equations of motion for this theory are the vacuum Maxwell

equations

∂µFµν = 0

1

2
εµνρσ∂νFρσ =

1

2
∗ Fµν = 0,

where the latter identity is sometimes also called (a) Jacobi identity. The quantity ∗Fµν =

εµνρσFρσ is called also the Hodge dual or the dual field strength tensor. Both equations

follow immediately from the antisymmetry of the field strength tensor. The only classical

solutions of this theory is the vacuum as well as free electromagnetic waves, up to boundary

conditions.

The gauge freedom (7.1) can be used to implement conditions, so-called gauge condi-

tions, on the field. E. g., the Landau (or sometimes radiation gauge or in the classical case

also Lorentz gauge) gauge is defined as

∂µA
µ = 0. (7.5)
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I. e. the gauge freedom (7.1) is used to transform any given gauge field such that the

condition (7.5) applies.

A gauge condition can always be written as a functional C[Aµ, xµ] such that C[Aµ, xµ] =

0. It is not possible to demand any condition C. It is only possible, if for any arbitrary

field configuration Aµ a function g(x) exists such that C[Agµ, xµ] = 0 can be satisfied. De-

pending on the form of C[Aµ, xµ] guaranteeing this can be an exercise in algebra, (partial)

differential equations, or worse.

To see that the Landau gauge condition is well defined, consider

0 = ∂µAgµ = ∂µA
µ + ∂2g.

This is a wave equation for g with an inhomogeneity. Since the theory of partial differential

equations implies that there exists a solution for any inhomogeneity, this implies that the

Landau gauge is well defined.

Note, however, that it may happen that a gauge condition does not fully fixes the gauge

freedom. E. g., the Landau gauge condition does not do so, as any gauge transformation

satisfying a free-wave equation ∂2g = 0, a so-called harmonic gauge transformation, does

not change it. Imposing as boundary conditions that the (gauge) fields vanishes at (spatial)

infinity removes also this ambiguity, and fixes the gauge completely.

In fact, it can be useful to leave a certain degree of gauge freedom. E. g., the Coulomb

gauge condition ∂iAi = 0 is only defined up to purely time-dependent gauge transforma-

tions. There is thus a whole class of functions satisfying the Coulomb gauge condition.

Another examples are axial gauges with some fixed vector nµ such that nµA
µ = 0. Such

gauges can already simplify calculations considerably in certain cases.

It should be noted that a mass for the gauge bosons, e. g. mAµA
µ, cannot be added to

the Lagrangian, as it will immediately break gauge invariance, as can be seen immediately

by calculation. In fact, (7.4) is the unique gauge-invariant Lagrangian with terms up to

power four in the fields in four dimensions. Thus, any additional interactions compatible

with gauge invariance would lead to a much more involved theory. Thus, Maxwell theory

is non-interacting and exactly massless without matter. It turns out that it is not possible

to have a massive spin one particle as an elementary degree of freedom without involving

either higher-order polynomials in the fields or introducing further fields.

7.2 Quantization

The gauge freedom creates a genuinely new challenge when quantizing Maxwell theory.

The naive approach would be to quantize Maxwell theory by writing down the path integral
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(2.7) and use (2.10) to calculate correlation functions. That’s it. Unfortunately, there is

a twist to this for gauge theories.

Start with the naive quantization of the free Maxwell theory with the classical La-

grangian (7.4) at jµ = 0 by writing down the generating functional

Z[jµ] =

∫
DAµ exp

(
iS[Aµ] + i

∫
ddxjµA

µ

)
(7.6)

S[Aµ] =

∫
ddxL,

where the normalization has been absorbed into the measure for convenience. It is impor-

tant to note that, despite the similarity, jµ is now not the physical electrical current, but

rather an auxiliary field introduced to more easily compute correlation functions.

The integral (7.6) is a Gaussian one. Hence, it should be possible to integrate it.

Explicitly, it takes the form

Z[jµ] =

∫
DAµ exp

(
i

∫
ddx

(
1

2
Aµ(gµν∂

2 − ∂µ∂ν)Aν + jµAµ

))
. (7.7)

However, it is not possible to perform this integral, since this would require the matrix

gµν∂
2 − ∂µ∂ν (7.8)

to be invertible, which is not the case. This can be seen directly by the fact that its

momentum-space version gµνk
2 − kµkν is a projection operator which vanishes when con-

tracted with kµ.

An alternative way to understand the problem is to note that any gauge transformation

(7.1) leaves S invariant, and, as a shift, also does not influence the measure. Thus, there

are flat directions of the integral, and thus the integral diverges when integrating along

this direction. Thus, at first sight, it seems to be impossible to find a well-defined path

integral for Maxwell theory.

There are only few possibilities to escape. One is to perform the quantization on a

discrete space-time grid in a finite volume, determine only gauge-invariant observables and

only after this take the continuum and infinite-volume limit. This is in most cases only

feasible numerically, but then a rather successful approach, so called Lattice Monte Carlo

simulations of lattice gauge theory. This approach is a subject of a separate lecture.

Another one is to determine only quantities which are invariant under gauge trans-

formations. Classically, this is perfectly feasible, as an explicit formulation only in terms

of electric and magnetic fields, both manifestly gauge-invariant, shows. At the quantum

level, however, this is not so easy. After all, this amounts to replacing the vector potential
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by the electromagnetic fields. The Jacobian then involves solving the partial differential

equations (7.2-7.3), yielding non-trivial space-time integrals, and ultimately leading to a

non-local action. Still, this is possible, though very, very painful. It is, however, far too

painful for the kind of generalization of gauge theories needed in particle physics, and even

for QED in practical problems far too complicated. Thus, while reassuring that it would

be conceptually possible, is not a practical solution.

In this context one may wonder why not directly integrating over the electromagnetic

fields in the path integral (7.7) instead of the gauge fields. This is an inequivalent path

integral to the one obtained by solving (7.2-7.3) as a variable transformation in (7.7).

Interestingly, while mathematically perfectly feasible and doable, this does not yield a

quantum theory compatible with experiments. Why this is so is a very good, and unsolved,

question. It is a purely empirical outcome. This is even more surprising as the gauge-fields

are classically an irrelevant technical tool, and actually introduce redundancies. They are

thus quite the opposite to what is usually done in classical mechanics, the reduction to

generalized coordinates. Still, if one wants to base the construction of the theory on

experiment, one is therefore stuck with (7.7).

There is a third option, and the one to be used in this lecture. As the possibility to

introduce gauge conditions such as (7.5) shows, the additional degrees of freedom over

which are integrated do not carry physical information2. The aim is therefore to separate

off this unphysical degrees of freedom in a way which allows to remove it. In the end, this

will lead to a(n infinite) prefactor of the path integral, which drops out when normalizing

the partition function at zero source to unity. Even though unphysical information is

removed, this is not equivalent to introduce a gauge-invariant formulation. Any gauge

condition will define one distinct way of removing the superfluous degrees of freedom, but

eventually one still works with the gauge fields Aµ. But this field will differ for every gauge

condition, and therefore depends on the gauge condition. But this difference depends only

on the gauge condition, and will therefore drop out in gauge-invariant quantities, making

them physical.

After these initial remarks, it is now time to actually perform this gauge-fixing, and

quantize Maxwell theory. To this end select, as in classical electrodynamics, a gauge

condition C[Aµ, x] = 0 which selects uniquely the gauge field. I. e., for a set of gauge-fields

related by gauge transformations (7.1) there is one and only one, but also at least one,

which satisfies the condition C when going through all possible gs. This is actually not a

necessary condition to make progress, and it will be relaxed later on. But for the moment,

2While this is obvious at the classical level, this remains true at the quantum level because of the

demand that also at the quantum level physics is independent of the observer’s choice of gauge.
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it makes the calculation simplest.

An example of such a condition is, e. g., the Landau gauge (7.5), which in this language

takes the form, suppressing from now on possible explicit dependencies on xµ,

0 = C[Aµ] = ∂µAµ. (7.9)

To make the path integral well-defined, it is then necessary to get rid of all the gauge

transformed fields which do not satisfy this condition. Then just one representative for

each physically inequivalent field configuration is left3.

The question is now how to enforce this in practice. To do this consider the functional

generalization of the Dirac-δ function. The expression

∆[Aµ]−1 =

∫
Dgδ(C[Agµ])

contains an integration over all gauge-transformations g for a fixed physical field configura-

tion Aµ, but by the δ-function only the weight of the one configuration satisfying the gauge

condition is selected. Hence, when performing the change of variables g → g + g′ with

some gauge transformation g′ it remains unchanged by definition: The functional integral

is translationally invariant. As a consequence, ∆ is actually gauge-invariant. Evaluating

it at the gauge-transformed configuration Ag
′
µ yields

∆[Ag
′

µ ]−1 =

∫
Dgδ(C[Ag+g

′

µ ]) =

∫
D(g − g′)δ(C[Agµ])

=

∫
Dgδ(C[Agµ]) = ∆[Aµ]−1.

Inverting ∆, the relation

1 = ∆[Aµ]

∫
Dgδ(C[Agµ]) (7.10)

is found.

Inserting this into the functional integral yields

Z =

∫
DAµ∆[Aµ]

∫
Dgδ(C[Agµ]) exp(iS[Aµ])

=

∫
Dg
∫
DAg′µ ∆[Ag

′

µ ]δ(C[Ag+g
′

µ ]) exp(iS[Ag
′

µ ])

=

∫
Dg
∫
DAµ∆[Aµ]δ(C[Aµ]) exp(iS[Aµ]) (7.11)

3Note that this does not fix the harmonic part of the gauge transformations. However, they form a

measure zero part of the whole set of gauge transformations, and therefore do not matter. Also, in any

perturbative calculation the fields drop to zero at infinity, and thus in this case by definition they are

excluded.
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In the second line, a gauge transformation of the integration variable Aµ is performed. In

the last line the inner variables of integration have been changed from Ag
′
µ to A−g−g

′
µ and it

has been used that all expressions, except the δ-function, are invariant. Hence, the integral

over g is not influencing anymore the remaining integral, and contributes only a factor,

which can be removed by appropriate normalization of the functional integral. In addition,

it would have been possible to also replace the action by any gauge-invariant functional, in

particular expressions involving some observable f in the form f [Aµ] exp(iS[Aµ]). Thus,

gauge-fixing is not affecting the value of gauge-invariant observables. Due to the δ-function,

on the other hand, now only gauge-inequivalent field configurations contribute, making the

functional integral well-defined.

It remains to clarify the role of the functional ∆. It was demanded that it is always

possible to resolve the condition C[Agµ] = 0 to obtain g as a function of C. Then, by

exchanging C and g as variables of integration, it is found that

∆[Aµ]−1 =

∫
DC

(
det

δC

δg

)−1

δ(C) =

(
det

δC[Aµ, x]

δg

)−1

C=0

,

The appearing determinant is just the corresponding Jacobian. Thus, the function ∆ is

given by

∆[Aµ] =

(
det

δC[Aµ, x]

δg(y)

)
C=0

= detM(x, y). (7.12)

The Jacobian has the name Faddeev-Popov operator, abbreviated by M , and the deter-

minant goes by the name of Faddeev-Popov determinant.

A more explicit expression is obtained by using the chain rule

M(x, y) =
δC[Aµ, x]

δg(y)
=

∫
ddz

δC[Aµ, x]

δAµ(z)

δAµ(z)

δg(y)

=

∫
ddz

δC[Aµ, x]

δAµ(z)
∂yµδ(y − z) = −∂yµ

δC[Aµ, x]

δAµ(y)
. (7.13)

To proceed further, a choice of C is necessary. If C is a local gauge condition, i. e. only

involving the fields and their derivatives, the Faddeev-Popov operator will be local, i. e.

M ∼ δ(x− y).

If this is not the case, the resulting theory will be inherently non-local. Such a local choice

is always possible in perturbation theory. Choosing, e. g., the Landau gauge C = ∂µAµ = 0

yields

M(x, y) = −∂2δ(x− y). (7.14)

Due to the presence of the δ-function the functional det ∆ can then be replaced by detM

in the path integral. Note that the result (7.14) is independent of the field variables. Thus,
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this factor can be absorbed in the normalization constant. But then the original problem is

solved and everything is complete. However, the resulting integral has always the implicit

Landau gauge condition to be taken into account. Especially, this implies that the gauge

field is always transverse.

This is implicit, and thus somewhat cumbersome. It can be made more explicit by

taking a detour. To do so select as gauge condition

C = D[Aµ, x] + Λ(x) (7.15)

for some arbitrary function Λ. In general, this will make Lorentz symmetry not manifest.

This can be recovered by integrating the path integral over all possible values of Λ with

some arbitrary integrable weight function. Since the path integral will not depend on Λ, as

this is a gauge choice, the integration is only an arbitrary normalization. Using a Gaussian

weight, the path integral then takes the form

Z =

∫
DΛDAµ exp

(
− i

2ξ

∫
ddxΛ2

)
detMδ(C) exp(iS)

=

∫
DAµ detM exp

(
iS − i

2ξ

∫
ddxD2

)
,

where the δ-function has been used in the second step. For the most common choice

D = ∂µA
µ, the so-called covariant gauges or Rξ gauges, this yields the final expression

Z =

∫
DAµ exp

(
iS − i

2ξ

∫
ddx(∂µA

µ)2

)
. (7.16)

This additional term has the consequence that the Gaussian integral is now well-defined,

since the appearing matrix is changed to

gµν∂
2 − ∂µ∂ν → gµν∂

2 −
(

1− 1

ξ

)
∂µ∂ν , (7.17)

which can be inverted. The appearing parameter ξ, the so-called gauge parameter, is

arbitrary, and can be chosen at will, defining the gauge. Furthermore, the ever-so popular

Landau gauge corresponds to the limit ξ → 0, as this is corresponding to the case where

all of the weight of the weight-function is concentrated only on the gauge copy satisfying

∂µAµ = 0. However, in principle this limit may only be taken at the end of the calculation,

as it appears to recover the non-invertible original operator (7.8) in Maxwell theory. The

choice ξ = 1 is known as Feynman gauge.

There is now one subtlety. What is the propagator of the photon, the answer to the

question that started all of this? Because the matrix (7.17) is now invertible, this seems

to be obvious. But it is not.
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To understand what is happening, it is best to go back to the beginning. The photon

propagator is the expectation value

〈Aµ(x)Aν(y)〉 =

∫
DAρAµAνeiS.

Irrespective of the issues with gauge symmetry, this expression will yield zero. The reason

is, as noted before, that because space-time is isotropic, there is no preferred direction.

Thus, a tensor cannot be non-zero. To avoid this problem, it is necessary to contract AµAν

with an invariant tensor of the Lorentz group. There are two symmetric rank two tensors

suitable for the task, gµν and pµpν .

Denoting either of them as Pµν , the actual object to calculate is

〈P µνAµ(x)Aν(y)〉 =

∫
DAρP µνAµAνe

iS, (7.18)

twice, once for each possible choice of Pµν . This object is well-defined from the space-time

perspective, but not from the gauge symmetry perspective.

But before gauge-fixing, it is an interesting question to ask what happens if one tries to

calculate the expression (7.18) by brute force. This can be done, and the result is actually

∼ δ(x−y). The reason is that for any gauge field configuration with some value Aµ(x0) at

the fixed position x0, there exists a gauge transformation, which is only non-vanishing at

x0, such that the value of the gauge transformed gauge field is −Aµ(x0). In this way, any

integration over the full gauge group yields zero. The only exception can happen if x = y,

because then this is essentially the square of the gauge field, and thus positive. Hence,

the propagator is only non-vanishing at coinciding space-time points. This argument can

be extended to any gauge-dependent correlation function. Thus, without gauge-fixing

all gauge-dependent quantities vanish up to expressions proportional to δ(xi − xj) for its

arguments.

But this should be remedied by gauge-fixing. But it is not as simple. The decisive

step is the expression (7.11). Here, the integral
∫
Dg was absorbed in the normalization,

because none of the remaining expressions depended on them, because all were gauge-

invariant. This is no longer true, if the integral is taken over gauge-dependent quantities,

like the photon propagator. Thus, the gauge transformation integral can then no longer be

separated as a factor, and be removed. Thus, the whole procedure of gauge-fixing seems

to break down for gauge-dependent quantities.

There if fortunately a solution to this. The expression (7.11) can also be interpreted

differently for any gauge-invariant observable f(Aµ). Denoting the set of all gauge field

configurations, including all gauge-transformed field configurations, as Ω, the following
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expressions are identical

1

N

∫
Ω

DAµf(Aµ) exp(iS[Aµ]) (7.19)

=
1

N

∫
Ω/Ωc

Dg
∫

Ωc

DAµ∆[Aµ]δ(C[Aµ])f(Aµ) exp(iS[Aµ])

=
1

N ′

∫
Ω

DAµ∆[Aµ]δ(C[Aµ])f(Aµ) exp(iS[Aµ])

=
1

N ′′
∫

Ωc

DAµ∆[Aµ]f(Aµ) exp(iS[Aµ]),

where Ωc is the set of all gauge field configurations satisfying the gauge condition C.

Thus, gauge-invariant expectation values are the same, whether they are calculated over

the whole gauge field configuration space or whether over a restricted gauge-field configu-

ration space, provided the Faddeev-Popov determinant is included to compensate for the

geometric structure of the restricted space. Thus, on the level of gauge-invariant quanti-

ties, all expressions describe the same theory. The normalization constants differ, but can

always chosen such that 〈1〉 = 1.

However, for gauge-dependent observables the expressions are not equivalent, for the

arguments given above. In the first two lines, they vanish, but not in the third and fourth

lines. Thus, from a purely mathematical point of view, these theories are distinct. From

the point of physics, there is just an infinite number of equivalent quantum theories, the

one without gauge fixing and the infinitely many choices of Ωc, which all give the same

observables.

Alternatively, this can also be taken to imply that any choice of theory with the action

S ′ = S − i ln ∆c gives the same observable quantities, provided they are integrated over

the corresponding configuration set Ωc, either directly implemented as integration range

or by a δ-function. In either way, this leads ultimately to the expression (7.16). Note that

gauges like the linear-covariant gauges then can be considered to be averages over theories

with different Ωc.

This infinite degeneracy of quantum theories is a consequence of working with redun-

dant variables. If it would be technically possible to go to generalized variables, just one

theory would remain. Hence, the degeneracy should rather be considered to be a choice

of suitable variables for technical purposes than any physical meaning. At any rate, for

the purpose of this lecture, expressions like (7.16) will be used as the definition of the

quantum theory, while, e. g., lattice calculations rather start at (7.19). But, as was just

shown, both yield eventually the same results for observables.
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7.3 Implications of gauge freedom

Are now the photons physical, or what is their status? The answer is, once more, subtle.

Choose, e. g., Feynman gauge, i. e. ξ = 1. The corresponding propagator is then given by

Gaussian integration as

〈A†µ(x)Aν(y)〉 = gµν

∫
d4p

(2π)4

eip(x−y)

p2 + iε
= −gµν

∫
d3p

2(2π)3|~p|
e−ipi(x−y)i .

The norm of a state

Ψ(x) =

∫
d4xf(x)A0(x) |0〉 =

∫
d4xd4p

(2π)4
eip0x0−pixif(p)A0(x) |0〉 ,

with f(x) an arbitrary weight function, created from the vacuum by the operator Aµ then

reads

|Ψ|2 =

∫
d4x

∫
d4y〈A†0(x)A0(y)〉f †(x)f(x) = −

∫
d3p

2|~p|
f †(p)f(p) < 0.

Hence, there are negative (and zero) norm states present in the state space. Especially, the

photon field has negative norms, and the corresponding space cannot be a Hilbert space.

The reason for this, is, of course, that A0 itself is not gauge-invariant, and thus does

not need to obey the usual properties expected for a physical observable. But it is possible

to remedy the situation. As noted, the physical degrees of freedom can only be two, which

can be chosen to be the transverse polarized ones. Consider therefore to contract the

gauge field with a transverse projector. This this yields for the gauge-transformed field in

momentum space(
gµν −

pµpν
p2

)
Aµ
′
=

(
gµν −

pµpν
p2

)
(Aµ + pµg(p)) =

(
gµν −

pµpν
p2

)
Aµ.

Thus, the transverse projected gauge-field is invariant under a gauge transformation. The

longitudinal part behaves like

pµpν
p2

Aµ
′
=
pµpν
p2

Aµ +
pν
p2
g(p)

and thus carries all the changes, but does also include (longitudinal) information from the

gauge field.

To get rid of this part, define a physical photon field APµ as

APµ =

(
gµν −

pµpν
p2

)
Aν ,

which is manifestly transverse, and thus has only two degrees of freedom, and is invariant

under gauge transformations. Seems to be pretty simple, but there is a catch.
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This catch appears when trying to invert the Fourier transform, and return to position

space. This yields ∫
d4pAPµ (p)eipx =

∫
d4p

(
gµν −

pµpν
p2

)
Aν(p)eipx.

Now, this is no longer a simple expression, because of the factor 1/p2. Rather, what is

needed is a an integral over all of space of Aµ(x),

APµ (x) = gµν

∫
d4yδ(x− y)Aν(y)− 1

4π

∫
d4y

∂µ∂ν
|x− y|

Aν(y) (7.20)

= gµνA
ν(x)− 1

4π

∫
d4y

∂µ∂ν
|x− y|

Aν(y).

Because (
gµν

∫
d4yδ(x− y)− 1

4π

∫
d4y

∂µ∂ν
|x− y|

)
∂νg(y)

= ∂µg(x)− 1

4π

∫
d4y

∂2∂µg(y)

|x− y|
= ∂µg − ∂µg = 0, (7.21)

the so defined field is indeed gauge-invariant. However, it is not a local object anymore,

as the second integral is not reduced. Thus passing to a physical vector field implies even

in QED giving up locality. Note that the physical field is entirely transverse, as any other

contraction of it vanishes by construction. Thus, it carries only two degrees of freedom

(in four dimensions). In fact, as the non-local term is essentially a solution to the partial

differential equations determining the vector potential at fixed electric and magnetic field,

it is possible to regain an expression in terms of these fields.

If, as in perturbation theory as a small-field expansion it is required, the integrated

amplitude is small, the field is well localized and has also locally a small amplitude. Then

the gauge field can be approximated by a δ-function, for which the integral can be solved,

yielding just the local field. Hence, the physical field becomes the unphysical field in the

small amplitude limit. Thus, it is possible to still use the gauge field to denote external

states in perturbation theory.

The projection to physical states by a suitable operator is known as the Gupta-Bleuler

condition in canonical quantization. Matter and the electric charge need to be constructed

similarly, after adding it in the next section. This will not be detailed here.

7.4 Adding matter

To add matter, it remains to construct the electric current. As the current carries a

conserved charge, this implies the existence of a continous symmetry by Noether’s theorem.
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Based on (7.1), this can be identified to be a U(1) symmetry, as the generator is the unit

operator. However, it is a local symmetry, in contrast to the global symmetries encountered

so far, as its parameters are functions of space-time. This has many further far-reaching

consequences, which are the subject of quantum field theory II, and will be largely, and

tacitly, ignored here. Due to the Abelian nature of U(1), QED is called an Abelian gauge

theory.

As a U(1) symmetry, this implies the existence of a (local) transformation of a charged

field φ

φ→ φg = eiωφ (7.22)

and thus consequently the existence of an anti-particle. The conserved current can then

be constructed from (6.3).

Consider an electron represented by a Dirac spinor Ψ. Under a gauge transformation

(7.22) the spinors change as

Ψ→ exp(−ieω)Ψ,

where the same function ω appears as for the vector potential in (7.1). For latter conve-

nience, a constant e has been factored out, which will turn out to be the electric charge.

Since ω is a function, the kinetic term for an electron is no longer invariant under a gauge

transformation, and has to be replaced by

iΨ̄(γµ(∂µ + ieAµ))Ψ.

This replacement

∂µ → ∂µ + ieAµ = Dµ

is called minimal coupling4, and Dµ the covariant derivative. This is gauge invariant, as

an explicit calculation shows,

iΨ̄′(γµ(∂µ + ieA′µ))Ψ′ = iΨ̄ exp(ieω)γµ(∂µ(exp(−ieω)Ψ) + exp(−ieω)(ieAµΨ + ie∂µωΨ))

= iΨ̄ exp(ieω)γµ(exp(−ieω)(∂µΨ− ie∂µωΨ)

+ exp(−ieω)(ieAµΨ + ie∂µωΨ))

= iΨ̄(γµ(∂µ + ieAµ))Ψ.

Thus, the (gauge-invariant) Lagrangian of QED is given by

L = −1

4
FµνF

µν + Ψ̄(iγµDµ −m)Ψ,

4It is possible to also formulate consistent theories with non-minimal coupling. However, none of these

have so far been compatible with experiment, and they will therefore be ignored here.
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where a mass term has been added, which is trivially gauge-invariant. By comparison,

the term −eΨγµΨ is thus the electric current Jµ in (7.4). This incidentally shows that

ΨγµΨ transforms as a vector under Lorentz transformations. It is visible that −e can

then be interpreted as the charge carried by the field Ψ. By convention, for electrons e is

taken to be positive, and thus the current is negative. Note that the electric current is by

construction gauge-invariant, and thus observable. But it is also not a single field , but a

composite expression made from two fermion fields.

When adding further fields, e. g. a proton field to be able to describe a hydrogen atom,

the Lagrangian becomes

L = −1

4
FµνF

µν +
∑
f

Ψ̄(iγµ(∂µ + iefAµ)−mf )Ψ, (7.23)

where the ef can be arbitrary for each fermion species, as long as the same ef appears for

them in the covariant derivative and the gauge transformation (7.22). It is noteworthy

that QED therefore does not imply that, e. g., a hydrogen atom is electrically neutral.

7.5 Feynman rules

They Feynman rules for QED have the conventional fermion (or other matter) propagator.

The propagator for the photon field is given by (7.17). The fermion-matter vertex is

obtained in the usual way, and given by

ΓAΨΨ
µ = −iefγµ. (7.24)

No further additions are necessary.

The vertex, as the fermion propagator, does not depend on the gauge parameter ξ,

in contrast to photon propagator. This implies that somehow the dependence on ξ needs

eventually to drop out in observables. How this happens will be shown in an explicit

calculation in the section 7.6.1.

In addition, as in case of the Yuakaw theory in section 5.4, the LSZ construction requires

to introduce wave-functions for external photon lines. These are also called polarization

vectors εµ, given their connection to the polarization of electromagnetic fields. Since these

are solutions to the corresponding equations of motion, the Maxwell equations, there

are two solutions ε±µ , corresponding to the two polarization directions. Furthermore, as

they represent on-shell particles, the wave-functions need to respect for massless photon

pµε±µ = 0. If they are to be transverse, they can then be written as

ε±µ =

(
0

~ε±

)
,
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where ~ε± is a normalized unit vector satisfying ~p~ε± = 0. E. g., for a momentum in the z

direction a suitable choice is

ε±µ =
1√
2


0

1

±i
0

 (7.25)

which correspond to right-handed and left-handed circular polarization, respectively, due

to their phase shifts. Having ±1 instead of ±i gives transverse polarization. Which of

both is the correct choice depends on the experimental setup.

In general, if the initial state polarization is not determined, it is necessary to average

over all possibilities. Likewise, if the final polarization is not measured, it is necessary to

sum over all possible polarizations of the final state, by the rules of quantum mechanics.

7.6 QED processes

7.6.1 The electric charge

Considering a theory as well known classically as QED, the immediate question arises, how

the concepts emerge from the full treatment. One of the obvious concepts is the electric

charge. In section 7.4 the coupling constant e was introduced, and called already electric

charge. It remains to be shown, what justifies such a statement.

For this, it is necessary to ask how the electric charge is actually classically defined.

That is usually done in terms of the Coulomb force, i. e. the force which a particle expe-

riences when acted upon by an electromagnetic field. Since the electromagnetic field in

QED is described by the photon field Aµ, this translates to the question how a particle

interacts with the photon field. A possible way is to discuss the absorption of a photon,

i. e. the process ΨA → Ψ, in which kinetic energy will be transferred. This respects all

conservation laws, and is thus a valid process.

As QED is time-reversal invariant, this can also be considered as the reverse process,

in which the electron emits a photon. This can then be treated using the procedures for

a decay of section 3.2,

dΓΨ→ΨA

dΩ
=

1

32π2m

|~q|
m
|MΨ→ΨA(p, q)|2θ(m−m1 −m2).

This requires to determine the matrix element. At tree-level the amputated matrix element

is just the electron-photon vertex (7.24). However, in contrast to the case in section 3.3.1,

the external wave-functions are not trivial. Thus, the total matrix element is, when not



Chapter 7. A first look at QED 87

measuring spin

MΨ→ΨA = −iee
2

∑
±

εiµ(q)ū(p)γµu(k) = −iee
2

∑
s=±

εsµ(q)ūi(p)

(
δij
kµ + pµ

2me

+
iΓµνij qν

2me

)
uj(k)

Γµν =
i

2
[γµ, γν ] ,

where use was made of features of the spinors and Dirac equation, as well as of the Dirac

matrices. Note that the spinors are orthonormalized.

While this case can now be treated in full generality, a very interesting limit is that

of vanishing photon momentum q → 0, with the photon being on-shell q2 = 0. In that

case the expression eū(p)γµu(p) appears, which can be recognized as to be the electric

current coupling to Aµ in the QED Lagrangian (7.23). Thus, this vertex really is the

manifestation of describing the classical interaction of the electromagnetic current with

the electromagnetic field. This expression will only vanish if the electron’s momentum has

a component along the direction of the electromagnetic field, e. g. p = (E, p1, 0, 0). The

Dirac equation then yields

MΨ→ΨA = −ie
∑
s=±

εsµ(q)pµ = −
√

32e
p1

√
m2 + p2

1

m2

which finally yields, after squaring,

dΓΨ→ΨA

dΩ
=
e2

π2

p3
1(m2 + p2

1)

m4
= 4πα

p3
1(m2 + p2

1)

m4

in which the fine structure constant α = e2/(4π) was defined, which is a characteristic

combination appearing throughout. This is the Thomson-limit, and it most closely realizes

a classical limit.

It is also interesting to consider the case, that the relevant momenta are all large

enough to neglect the electron mass, and have equal sized components, and thus the same

four-momentum squared. The problem then has only a single scale, given by the absolute-

valued squared of this component Q2. The momentum then satisfy q + p + k = 0 and

p2 = q2 = k2, the so-called symmetric point. The matrix element is then a function of this

single quantity, but it is possible to factor out the value of e still,

MΨ→ΨA = −ief(Q2).

As the limit of the zero energy photon had been used to define the electric charge, the

quantity ef(Q2) can be considered to be the electric charged when probed at the energy

scale given by Q2. If f(Q2) is non-constant, this implies that the effective electric charge
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changes with energy, it is said to be a running coupling. This is then a characteristic

feature of the theory. Especially, the quantity α(Q2) = (ef(Q))2/(4π) reappears usually in

many places, and thus many quantities can be expressed in terms of the running coupling.

measuring cross sections allow then to infer the behavior of the running coupling.

However, there was nothing special about choosing this quantity to define the quantum

field theory version of the charge, nor of the running one. The only motivation was to

have an experiment with a classical counterpart. Thus, while the running charge can be

define din this way, it does not need to be. This issue will be taken up again in section

8.3.

7.6.2 Compton scattering

Another process, which is familiar from classical physics, is the scattering of two different

charged particles of each other. This is, e. g., Compton scattering of an electron off a

proton.

Because both particles are distinct, there is only a single diagram, the exchange of a

photon in the t-channel,

Mep→ep =
e2

4

∑
spins

ūe(p1)γµue(q1)Dµν(k)ūp(p2)γνup(q2)

By comparison, this show that the process can be interpreted as two electric current of

opposite charges interacting by a photon exchange. While the calculation is simplified by

using Feynman gauge, it is instructive to work in an arbitrary covariant gauge, and thus

using the propagator (7.17)

Dµν(k) =

(
gµν −

(
1− 1

ξ

)
kµkν

)
1

k2

to see how the ξ-dependence is removed in the measurable final cross section. Since the

process is t-channel, this yields

Mep→ep =
e2

4t

∑
spins

(
ūe(p1)γµue(q1)ūp(p2)γµu

p(q2)

−
(

1− 1

ξ

)
ūe(p1)kµγ

µue(q1)ūp(p2)kνγ
νup(q2)

)
.

Now it is true that

k = p1 − q1 = p2 − q2.
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Thus, each of the generate four terms contains a contribution pµγ
µu(p), or the correspond-

ing conjugated. Since the spinors fulfill the corresponding Dirac equation, it follows that

pµγ
µu(p) = mp.

ūe(p1)kµγ
µue(q1) = mūe(p1)ue(q1)−mūe(p1)ue(q1) = 0,

and likewise for the proton current. Thus, the term containing the ξ-dependence vanishes

exactly on the level of the matrix element, yielding a gauge-parameter-independent5 result,

and thus is physical.

It remains to calculate the first term. Switching to the center-of-mass frame (3.20)

with scattering angle θ and 3-momentum size p, the momentum transfer is

t = (0, 0, p cos θ, p(1− sin θ))2 = −2p2(sin θ − 1) = Q2. (7.26)

and thus space-like. The latter is typical for such exchanges, and the label Q2 is often

used as well. This yields ultimately

dσ

dθ
= 8π2α2

(
(2m2

e + q2)(2m2
p + q2)− 2q2EeEp − q4(q2 cos θ + (m2

e +m2
p + (Ee − Ep)2 sin θ

)4

m2
em

2
p(Ee + Ep)2

(
m2
e +m2

p − 2EeEp + 2q2 sin θ
)2

Ee =
√
m2
e + q2

Ep =
√
m2
p + q2 (7.27)

which is a highly in transparent result. The reason is the complicated phase-space structure

with the two different masses.

It thus becomes more transparent in various limits. The first is the very low-energy one,

in which the particles are taken to be effectively infinitely heavy, and thus both electron

and proton essentially static. This yields

dσ

dθ
=

8π2α2memp

q4(sin θ − 1)2
. (7.28)

which has the typical divergence for forward scattering, which stems from a neglect of the

extension of the projectiles. It also shows a typical decay with 1/q4, or actually 1/t2. It

thus behaves like just the photon propagator. Physically, this makes a lot of sense, as the

only kinematics in this case comes from the photon, which is basically exchange between

unmovable, static sources.

5It can be shown that the result is even gauge-independent.
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Likewise, the ultrarelativistic limit is happening when both masses can be neglected,

yielding

dσ

dθ
=

4π2α2q2 cos4 θ

2m2
em

2
p(sin θ − 1)2

σ =
12π3q2α2

4m2
em

2
p

.

In that case, there is no forward singularity, and the cross section increase with exchange

energy. That there is no forward divergency is because massless particles cannot be local-

ized. That the cross section increases is partly due to the nature of QED, as discussed in

quantum field theory II, but will also addressed again in section 8.5.

Finally, there is interesting intermediate range, where the fact that the electron is much

lighter than the proton allows to neglect the electron mass, and send the proton mass to

infinity. This yields

dσ

dω
=

16π2α2q4(3− cos(2θ) + 4 sin θ)

m4
pm

2
e

σ =
48π3α2q4

m4
pm

2
e

.

In this case, there is a strong asymmetry in the scattering angle, typical for vector inter-

actions between particles with spin.

7.6.3 The potential

There is, however, a way how to make expression (7.28) even more useful. Noting that

(7.28) scales with the momentum transfer (7.26) like 1/Q4, or (1/Q2)2 leads to a remarkable

insight. (1/Q2) is the Fourier-transform of 1/r. Thus, the cross section scales like (α/r)2,

and the matrix element behaves like α/r. Since the matrix element has been seen to be

the coupling of two electromagnetic currents by gµνα/Q
2 this shows that at tree-level the

interactions between charges in QED is indeed the classical electromagnetic interactions

of particles. These are considered as test masses, i. e. not interacting on the field, as in

the classical case of calculating the Coulomb force. Only if the masses, and thus phase

space, is explicitly taken into account in the full expression (7.27), this becomes obscured.

Likewise, if one would do a similar analysis in the case of Yuakaw theory of section 5.3,

the corresponding potential would be found to be

g2e−mφr/r (7.29)
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for the exchange of the scalar particles between fermionic currents. Only between scalar

currents, the appearance of further terms like the genuine four-point interaction, spoils

this classical analogue, as does the exchange graphs.

This already shows that the interpretation in terms of a potential does not hold for

all theories. In fact, it works only for those theories, where currents can interact by a

single-particle exchange within a single channel. However, classical electrodynamics, as

well as the leading part of nuclear interactions, belong to this class. Other theories, e. g.

as noted the linear σ-model, do not provide such a simple interpretation.

Finally, as will be seen in section 8.6, higher-order corrections, and thus quantum

effects, will spoil the analogy. Moreover, even the interpretation as a potential becomes

untenable as soon as inelastic processes become possible. This will again be taken up in

section 10.3.

7.7 Beyond vectors

It appears now straightforward to extend the concept further to ever higher-spin elemen-

tary particles. Of course, the same issues as with vectors will arise with higher spin.

Especially, any representations in terms of 4-tensors will suffer from the same problem,

and necessitate the introduction of gauge fields.

Consider the next case of spin 3/2. It turns out that this is easiest achieved by consider-

ing a direct sum (1, 1/2)⊕ (1/2, 1) representation, which thus contains both a left-handed

part and a right-handed part. This is mainly due to the CPT theorem, and the fact

how left-handed and right-handed map into each other. The so obtained field is call ed

a Rarita-Schwinger field Ψi
µ, which is a vector with vector components µ being (Dirac-

)spinor-valued fields with spinor components i.

In this way, the Rarita-Schwinger field is behaving similarly as the gauge field of QED,

and transforms under a local (Abelian) gauge transformation as

Ψi
µ → Ψi

µ + ∂µε
i

where ε is, however, now a spinor-valued function. This structure was to be expected, as

this couples effectively a spin 1 and a spin 1/2 object to create spin 3/2.

Since the transformation is linear, it is an Abelian gauge theory, and the corresponding

field strength tensor

Ωi
µν = ∂µΨi

ν − ∂νΨi
µ

is therefore gauge invariant, but carries also a spinor index i.
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It is still necessary to postulate a Lagrangian for the theory, which is gauge-invariant.

Introducing Ψ̄ = Ψ†γ0, a possibility is

L = −Ψ̄µγ
µνρ∂νΨρ.

γµνρ =
1

2i
{γµ,Γρσ}

As for the Maxwell case, there are no gauge-invariant, perturbatively renormalizable

further interaction terms possible. Without interactions, only non-interacting Rarita-

Schwinger fields are possible. The equation of motion is, similar to the Dirac equation,

γµνρ∂νΨρ = 0.

It follows that the Rarita-Schwinger field can have (classically) physical modes only for

d > 3, similar like the vector potential only for d > 2. This equation of motion also implies

γµΨµν = 0,

which is Rarita-Schwinger form of the homogeneous Maxwell equations. The equations of

motions can be solved in a similar way as the free Dirac equation, and creates the free-field

solutions. It is possible to add a mass term, yielding

L = −Ψ̄µ(γµνρ∂ν −mγµρ)Ψρ,

in contrast to the vector gauge fields.

The primary problem is that, in contrast to the Maxwell case, no interaction terms can

be found, which are at most power four. Hence, implementing this restriction, there is no

interacting theory with Rarita-Schwinger field available. However, effective theories, e. g.

of hyperfine-interactions in atoms or of nuclei, do exist, but they cannot be fundamental.

The situation persist to higher spins. At spin 2, there are two choices, symmetric tensor

fields or anti-symmetric tensor fields, both of which need to be gauge fields. But here also

the nature of the gauge symmetry changes. In the Maxwell case, the coupling was to a

vector current. This was sufficient to find a Poincaré-invariant interaction term, (7.4).

A similar construction for a tensor field requires a tensor current. However, by Schur’s

lemma, there is only one Abelian tensor current, the energy-momentum current. But

this implies that a tensor field will automatically gauge energy-momentum. This is then

necessarily a (quantum) gravity theory, like general relativity. Thus, flat-space quantum

field theory seems to be only possible with elementary particles up to spin 3/2, if any

meaningful theory, even a free one, should exist. Of course, composite particles of higher

spin are possible, as will be discussed in section (9.2). But for elementary particles, any

further steps will be relegated to the lecture on advanced general relativity and quantum

gravity.
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Beyond tree-level perturbation

theory

Tree-level perturbation theory is often giving already the right idea. But as a first-order in

quantum effects, it cannot bee expected to yield the full result. E. g., as has been seen in

section 7.6.2, tree-level generates for QED only the Coulomb potential. Thus, deviations

like the observed Lamb-shift could not be explained at tree-level. It is hence necessary to

go beyond tree-level.

8.1 The scalar propagator at one-loop and regular-

ization

However, beyond tree-level, many new issues arise, mostly connected to the appearance of

loops. A full treatment will only be possible in the lecture quantum field theory II lecture,

but already now it is possible to give the basic ideas. In fact, they can be illuminated with

one of the most simple theories and quantities already, the propagator of the scalar in the

Yukawa model at order λ.

To this process only a single diagram contributes to the 1PI matrix element the self-

energy Πφφ
λ . This diagram is a loop attached at the propagator, a so-called tadpole dia-

gram. Its value is, up to O(λ2),

Πφφ
λ = −λ

2

∫
d4p

(2π)4

1

p2 −M2 + iε
, (8.1)

where the factor 1/2 is a symmetry factor. The integration over p0 can be performed first
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by contour-integration and using the Cauchy theorem, since

Πφφ
λ = −λ

2

∫
d3~p

(2π)4

∫
dp0

1

p2
0 − ~p2 −M2 + iε

= −λ
2

∫
d3p

(2π)4

∫ ∞
−∞

dp0
1

(p0 +
√
~p2 +M2)(p0 −

√
~p2 +M2) + iε

This has a pole in the upper half-plane, and vanishes sufficiently fast on a half-circle

at infinity. The residue at the simple poles p0 = ±
√
~p2 +M2 is 1/(p0 ∓

√
~p2 +M2),

dropping the small contribution of iε, which only served to not have the pole on the axis.

The Cauchy theorem then yields, using polar coordinates in the final expression,

Πφφ
λ =

iλ

4π2

∫ ∞
0

~p2d|~p| 1√
~p2 +M2

.

This expression shows the generic problem: It is infinite, when integrated, with the infinity

originating from the upper limit of the integral, as so-called ultraviolet divergency1. This

is an issue, which arises for many, though not all, loop integrals.

At first sight, this result may seem to be a catastrophe, and to invalidate the the-

ory. However, it turns out that it is possible to make the integrals convergent without

introducing additional parameters into the theory, albeit at the price that the theory still

looses its validity at some high energy scale. Since this scale can be pushed to practically

very high energies, this is of little practical importance, as it can anyway not be assumed

that conventional quantum field theories could be theories of everything, since they do not

include gravity. And, as discussed in section 7.7, this anyhow entails to leave the arena

of flat-space quantum field theory. Therefore, theories with such a feature are considered

today to be ’low-energy’ effective theories. It is generally assumed that a hierarchy of such

effective theories will continuously approach the point where quantum gravity takes over.

Still, even if this is correct, it is required to make sense out of such a theory. This

implies to deal with the appearing divergency. This requires two basic steps. One is

a prescription how to regularize integrals, i. e., how to map their divergent value to a

finite value. For this purpose of regularization the integrals are made convergent by the

introduction of some parameter, and the original divergence is recovered when sending

this parameter to a particular limit. As a result, all quantities calculated will depend on

this parameter.

The second step, the so-called renormalization, gives a prescription how to redefine the

theory such as to loose the dependence on this extra parameter, the so-called renormaliza-

1There can also be infrared divergencies, but they are mostly due to massless particles. They are

therefore due to a completely different origin. They can be systematically treated. As they mainly, but

not exclusively, appear in gauge theories, this issue is relegated to quantum field theory II.
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tion scheme, without recovering the original divergence. The consequence of this program,

and the particular renormalization scheme used, is that quantities like masses or coupling

constants can no longer be interpreted as static quantities, but will depend on the scale

at which they are measured. It is said that they become running. However, measurable

quantities, like a cross-section, turn out not to depend on the measurement scale, at least

for an exact calculation. Unfortunately, most calculations are not exact in general, and in

particular for the standard model. As a consequence, a dependence on the scale may be

left.

These steps will now be implemented in turn in this and the following section. The

first step is regularization. The technically simplest, but by no means only, possibility in

the present context is the cutoff regularization. It works by replacing the upper integral

limit ∞ by a large, but finite number Λ, the so-called cutoff.

The integral can then be calculated explicitly to yield

Πφφ
λ =

iλ

4π2

Λ2

√
1 +

M2

Λ2
−M2 ln

Λ + Λ
√

1 + M2

Λ2

M

 . (8.2)

As can be seen, the integral diverges with the cutoff Λ quadratically, and has in addition

a sub-leading divergence logarithmically in Λ. Still, as long as the limit is not performed,

the result is finite, independent of the momentum, but explicitly dependent on Λ. The

maximum power of Λ appearing is called the degree of divergency of the diagram, in thus

case quadratically divergent. An upper limit of the divergency, the so-called superficial

degree of divergency, can be obtained by the formula

d+

(
n
d− 2

2
− d
)
v − d− 2

2
n,

where d is the space-time dimension, n is the highest power of fields appearing in the

Lagrangian, v is the number of vertices in the diagram, and n is the number of external

lines. E. g., here this yields 4 + (4− 4)1− 2 = 2, as required. This formula can be derived

by just counting powers of momenta in the diagrams, which will not be done here. Note

that the actual divergence, e. g. due to cancellations, can be lower.

It is valid to ask, whether this could not have been done already for the four-dimensional

integral (8.1). The answer is both yes and no. The expression (8.1) is still in Minkowski

space-time. Thus, the concept of a large energy scale is much harder to define, because even

for every component of a four-momentum large, the four-momentum square can be zero.

To still work with the explicit four-dimensional quantity would thus require an alternative

approach, to make sense of what a high-energy cutoff means. The most straightforward

one would be to analytically continue p0 → ip0 (and also all other momenta), and thus
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effectively from Minkowski space-time to Euclidean space-time. Since all possible pertur-

bative integrals are indeed analytic functions in the decisive quarter-plane, this would be

possible. Then, an Euclidean cutoff could be introduced. In the present case, there is no

external momentum, but if there was, this would be needed to be followed by an analytic

continuation back into Minkowski space-time.

Both approaches are valid regularization procedures. However, at the level of expres-

sions like (8.2), they yield different results. It is the task of renormalization to ensure that

both yield the same measurable consequences. If this is possible, the theory is said to

be renormalizable. If not, the theory is called non-renormalizable. In the latter case, the

choice of regularization scheme influences the outcome. Usually, the effects will be sup-

pressed like energy scale/Λ, but that can still be relevant. Such theories are then genuine

low-energy effective theories.

Within the context of perturbation theory, it can be shown that any theory, which has

positive-energy or dimensionless coupling constants only is renormalizable. This is the

origin of the condition to have only such coupling constants in theories, as was introduced

in section 2.2. Beyond perturbation theory, anything may be possible.

It should be noted that theories exists, in which either divergencies cancel always

between diagrams order-by-order, or all diagrams are non-divergent. Such theories are

called super-renormalizable and finite, respectively. They become more common the lower

the dimensionality, but are in four dimensions the very rare exception.

8.2 Renormalization and counter terms

To remove the dependence of the regularization, it is worthwhile to investigate the total

structure of the two-point function Γφφ, which is given to this order by,

Γφφλ = p2 −M2 + Πφφ
λ +O(λ2, y) (8.3)

As is seen from the result (8.2), the contribution Πφφ is momentum-independent and

dependent on the cutoff Λ. If it would be finite, it could be interpreted as a change of the

mass M , since then the expression would have the form

p2 −M2 − δM2 → p2 −M2
R

with the so defined renormalized mass

MR =
√
M2 + δM2.

The actual mass of a φ particle, which would be measured in an experiment, would then

be MR, instead of the so-called bare mass M . In fact, since the experimental measurement
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is the only knowledge available on the theory, it is mandatory that the bare parameters of

the theory, like the bare mass M , are adjusted such that the resulting renormalized mass

MR agrees with experiment2.

Now, since the actual bare parameters cannot be measured, there is nothing which

prevents us to set it to

M2 = M2
R − δM2,

with the experimental input MR. This automatically fulfills the requirement to reproduce

the experiment. In particular, since M is not an observable quantity, there is no reason

for it to be finite, and independent of the cutoff Λ. Thus, it is possible to absorb the

infinity of the divergent integral in unobservable bare parameters of the theory. This is the

renormalization process: The absorption of the divergencies into unobservable quantities

in the definition of the theory. In a way, M could be interpreted as the mass at the cutoff

scale Λ, which is infinite. The actual mass measured at low energies, and thus in the sense

of a low-energy effective theory, is the renormalized mass MR.

This can be arranged already at the level of the Lagrangian by replacing

M

2

2

φ2 → MR

2

2

φ2 − δM2

2
φ2.

The second term is a so-called counter-term, and it depends on the actual order of the cal-

culation. E. g., at tree-level, it would be zero. In this way, when performing a calculation,

the results are already finite, and in agreement with the observed mass.

It is actually not the the only contribution which appears. If the calculation is extended

to also include corrections up to O(λ, y2), there is a second diagram contributing to the

self-energy, which is due to a loop of the fermions. The expression then takes the form

Πφφ
λ,y2 = Πφφ

λ + Πφφ
y2 ,

with the fermionic contribution given by

Πφφ
y2 = −y

2

2

∫
d4p

(2π)4

tr((γµp
µ +M)(γν(p

ν − qν) +M))

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

Using the trace identities tr1 = 4, trγµ=0, and trγµγν = 4gµν this simplifies to

−y
2

2

∫
d4p

(2π)4

p(p− q) +M2

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

2This implies that the bare parameters have to be adapted at each order of perturbation theory

calculated.
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Since the numerator scales with p2, the integral is quadratically divergent. Suppressing the

iε, the expression can be rewritten by introducing a zero and then shifting the integration

argument, as

−y
2

2

∫
d4p

(2π)4

(p2 −m2) + ((p− q)2)−m2)− q2 + 4m2

(p2 −m2)((p− q)2 −m2)

= −y
2

2

∫
d4p

(2π)4

(
1

(p− q)2 −m2
+

1

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)
= −y

2

2

∫
d4p

(2π)4

(
2

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)
,

Such integrals can be performed using a number of analytical tricks. However, for the

present purpose this will not be necessary. It is sufficient to observe that the result, just

by counting powers of integration momenta, will have the form

Πφφ
y2 = c1Λ2 + (c2m

2 + c3q
2) ln

Λ

m
+ f(m2, q2),

where f is some finite function when Λ is send to infinity, and depends on the momentum

q and the coupling constant y, as do the constants ci.

The first two terms have again the same structure as the tadpole contribution (8.1).

However, the third term is different, as it does depend explicitly on the momentum. There-

fore, it cannot be absorbed into a mass renormalization. However, it can be absorbed in

a renormalization of the kinetic term. If in the Lagrangian the modification

∂µφ∂
µφ→ ∂µφ∂

µφ+ δZφ∂µφ∂
µφ = Zφ∂µφ∂

µφ,

is performed, the kinetic term of the field φ has been renormalized by a the wave-function

renormalization
√
Zφ. Choosing

δZφ = −c3 ln
Λ

m
,

this will remove the divergence. By this the field amplitude is modified to yield the correct

special relativistic dispersion relation. Note that quantity also appears asymptotically, and

thus is the relevant quantity in the context of the LSZ formalism in (3.25-3.26).

Performing further calculations, it turns out that similar changes have to be performed

for the remaining bare parameters m, λ, and y, yielding a renormalized fermion mass mR,

and renormalized couplings λR and yR. Thus, including these counter-terms yields the

renormalized Lagrangian

LR =
1

2
∂µφ∂

µφ+ χ̄i(γµ∂µ −mR)χ− MR

2

2

φ2 − λR
4!
φ4 − yRφχ̄χ

+
δZφ

2
∂µφ∂

µφ+ χ̄i(δZχγ
µ∂µ − δm)χ− δM

2

2

φ2 − δλ

4!
φ4 − δyφχ̄χ.
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It should be noted that always certain products of fields appear together with a parameter

of the theory. Thus, often explicit factors of various Zs are introduced such that not

kinetic terms are renormalized, but rather the field itself, in the sense of an amplitude

renormalization. In this case, explicit factors of Z
1/2
i are multiplied for each field in the

counter-term Lagrangian, and the counter-terms δM , δm, δλ, and δy are redefined by

appropriate factors of Z
−1/2
i . This is, however, conventional, but the more common case.

Also, it is usual that δx is rather defined as

δx = Zxx = (1 + δZx)x,

i. e. as a multiplicative factor to the original quantity. However, Zx may then depend

again on x, even in the form of 1/x.

In case of QED, the same is also necessary, and leads to the renormalized Lagrangian

LQED = −1

4
FµνF

µν − 1

2ξ
(∂µAµ)2 + ψ̄(iγµ +m)ψ + eAµψ̄γ

µψ

−δZA
4
FµνF

µν −
ZA
Zξ
− 1

2ξ
(∂µA

µ)2 + δZψψ̄iγ
µ∂µψ − (ZψZm − 1)mψ̄ψ

+(ZeZ
− 1

2
A Zψ − 1)eAµψ̄γ

µψ.

In this case all parameters, m, e, and ξ, as well as Aµ and ψ have been multiplicatively

renormalized.

The remaining question is then whether this is sufficient, or whether further terms,

e. g. a sixth power of the fields, would be necessary, or whether non-multiplicative terms

would appear, beyond the additive mass shift renormalization for the scalar in Yukawa

theory. The answer depends on the theory. However, as long as only a finite number of

independent counter terms are needed3, the theory is renormalizable. Because then with

a finite number of experimental inputs in form of numbers, all divergencies are absorbed,

and all parameters fixed. Everything else then becomes a genuine prediction of the theory.

Whether this number is smaller, the same, or larger than the number of parameters and

fields at tree-level depends on the theory. It also depends on the dimensions of space-

time, and theories, which are not renormalizable in higher dimensions may be so in lower

dimensions.

If not, the theory is not renormalizable. However, in perturbation theory, the number

of counter-terms may still be finite at any given order in perturbation theory, but may grow

indefinitely with the order. In that case, some predictions are still possible, if uncertainties

on the order of the higher-order corrections are acceptable, and the theory becomes an

3An infinite number of dependent counter terms is allowed, without altering the statement.
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effective theory. In perturbation theory also all renormalization is found to be either

additive or multiplicative.

Beyond perturbation theory, all of these statements can change in any direction qual-

itatively. However, in many, if not most, cases the perturbative result statements about

renormalizability carry over to the full theory. There is one special case, which needs to

be mentioned. There are some theories, which can be fully renormalized, but only if all

renormalized couplings are set to zero, i. e., the renormalized theory is free. Such theories

are called trivial. However, this also implies that when keeping the cutoff, they may still

be interacting, and serve as effective theory. To all intent in purposes, the linear-σ model

in four dimensions, but not in lower dimensions, seems to be of the class.

8.3 Renormalization schemes

So far, the counter terms have been identified by direct comparison. However, assume

that the propagator has finally the form

D =
c2 − d2 + 2p2

p4 + (d2 − c2)p2 − c2d2
.

Such a propagator has no longer the form of a conventional free particle. It is thus not

clear how to determine, e. g., δm, such that it represents the mass of a particle. Thus, it

is necessary to give a more precise definition of what physical mass means. Since such a

mass would be expected as a pole, one possibility would be to choose it as the smallest

momentum at which the propagator has a simple pole. In this case, this would imply

mR = d,

and thus the counter-terms can be arranged such that this equality holds. This is called

a pole scheme.

It becomes much more ambiguous for the coupling constants, as they are not associated

with some pole. For the electromagnetic charge, it still seems reasonable to choose its

macroscopic value determined in the Thomson limit in section 7.6.1. Another possibility

is, e. g., to choose4

ΓAψ̄ψ(p, q, p+ q)
!

= e,

for two arbitrarily chosen momenta. This already shows that a certain ambiguity is in-

troduced, because a scale µ is introduced, which is proportional to p2, at a fixed ratio

of p and q. This scale is called a renormalization scale. An often found choice is the

4The Thomson limit is this expression at p = q = 0.
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symmetric point, at which all involved momenta have size µ = p2. This generalizes the

ideas from section 7.6.1, and especially connects the idea of a running coupling with the

renormalization process. It is even more ambiguous when it comes to identify conditions

for the wave-function renormalization.

Of course, these choices are made by humans, and hence physics should not depend on

it5. Therefore, any set of choices, which is sufficient to fix all independent counter terms,

sets up a fixed scheme, a so-called renormalization scheme. Similar to a choice of gauge or

a coordinate system, but for entirely different reasons, it defines a technical frame in which

to work. And just as for coordinate systems, renormalization scheme transformation could

be made to change between them, though they are technically more involved.

Thus, any choice will do. For QED, e. g., a popular scheme is(
p2gµν − pµpν

)
p2=µ2

Dµν
AA(µ2) = i (8.4)

µ2gµνD
µν
AA(µ2) = iξ (8.5)

trDψψ(µ2) = im(µ2) (8.6)

(trγµp
µDψψ)(µ2) = i16µ2 (8.7)

ΓAψ̄ψ(µ2, µ2, µ2) = ie(µ2) (8.8)

Note that there is no condition that involves a mass of the photon. The corresponding

counter-term would violate gauge-invariance, as a term ∼ A2
µ is not gauge-invariant.

The appearing renormalization scale µ is arbitrary, but it cannot be removed. Of

course, it would be possible to choose for each of the five conditions (8.4-8.8) a differ-

ent scale, but these would then differ only by constant prefactors multiplying the single

scale. Since this scale is arbitrary, nothing which is observable can depend on it. This

observation is the basis for the so-called renormalization-group approach, which uses this

knowledge and by forming derivatives on renormalization-scale-invariant quantities deter-

mines (functional) differential equations, which are useful for determining properties of

correlation functions. This will be taken up in the lecture quantum field theory II.

There is a further consequence of this scale. If a theory like massless QED is taken, there

appears no dimensionful parameter at the classical level, and the theory is classically scale-

invariant. However, when the renormalization conditions are imposed, this is no longer

the case, since they involve this scale. Since this scale is a manifestation of the ultraviolet

divergences, and thus incompleteness of the theory, it is thus created in the quantization

5Actually, any quantity which depends on the renormalization scheme, and thus also the renormaliza-

tion scale, can hence not be measured directly. The only direct measurements possible are in fact either

cross sections, masses, or decay rates in one form or the other, which are all independent of the scheme

in an exact calculation.
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process. It is thus said that the classical scale invariance is broken by quantum effects, a

process also referred to as dimensional transmutation. In a sense the quantization process

itself is breaking the classical scale symmetry6, a so-called anomaly. This perspective will

be further in the lecture quantum field theory II.

A second feature is that the mass of the electron and the electric charge now depend

on the renormalization, and thus energy scale, by virtue of the renormalization conditions

(8.6) and (8.8), they are running as noted for the charge before in section 7.6.1. Thus, the

parameters of the theory become energy-dependent, and out of a set of theories with fixed

parameters e and m a single theory with energy-dependent parameters emerges.

Note that, as discussed already in section 3.2, masses manifest themselves as poles

in propagators, and only in the pole scheme this explicitly enters, while (8.6) is actually

only indirectly related to this pole. In the end, everything which depends on the choice

of scheme and scale are not physical. However, measurements can nonetheless be used

to determine them within a fixed scheme as a function of the scale, using a prescription

like (8.4-8.8). And thus one can, e. g., plot the energy-dependence of such a quantity.

However, the plot is only meaningful after fixing the renormalization scheme.

As a consequence, standardized renormalization schemes have been developed, which

are commonly used, and are therefore usually not made explicit. These schemes have

been tailored for particular purposes, and must be looked up, if a calculation is to be

compared to preexisting results. Some of those require other regularization techniques

and renormalization schemes then those presented here. They will be introduced in the

lecture quantum field theory II.

8.4 Dyson-Schwinger equations and resummation

There is now a discrepancy about dealing with masses. On the one hand, in section 3.2,

the mass of a particle was associated with a pole in the propagator. On the other hand,

the mass was here discussed by the relation (8.3).

There is, of course, the relation (2.20), which implies that the 2-point function (8.3) is

the inverse of the propagator. Thus, for the propagator necessarily

D =
1

p2 −m2 + iε+ Π2

(8.9)

where Π2 is the perturbative expression for the 2-point function. That resolves the dis-

crepancy. It is, however, useful to put this into a larger perspective. This will lead to the

6As a side remark, it should be noted that the exact masslessness of the photon can be shown to be a

consequence of this broken scale symmetry in massless QED.
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context of resummation.

To this end, the quantum equivalent to the equation of motions are helpful, the so-

called Dyson-Schwinger equations. They follow from the fact that the path integral is

translationally invariant. Hence, the path integral of any total derivative vanishes. Take

for simplicity a theory with fields A, which are characterized by (multi-)indices a,

0 =

∫
DAa δ

δAa(y)
eiS+i

∫
ddxAa(x)ja(x)

S =

∫
ddxL.

Here, S is the usual action, ja is the source of Aa. Performing the derivative and pulling

the resultant factor out of the integral by replacing Aa with δ/δja, the equation(
δS

δAa(x)

∣∣∣∣
Aa(x)= δ

δja(x)

+ ja(x)

)
Z[ja]

∣∣∣∣∣
ja=0

= 0 (8.10)

is obtained. Performing further derivatives will create a sequence of equations.

To establish the meaning of (8.10), it is necessary to recast it further. Reexpressing it

in terms of the free energy W changes (8.10) to

δS

δAa

[
δW

δj
+

δ

δj

]
+ ja = 0.

Switching by a Legendre transformation to the quantum effective action Γ yields

δΓ

δAa
+

δS

δAa

[
Aa +

δ2W

δjaδjb

δ

δjb

]
= 0.

This is the master equation to determine the Dyson-Schwinger equation of vertex functions.

To see how this works, consider the case of the Yukawa theory, and determine the

Dyson-Schwinger equation for the fermion vertex functions. This requires to introduce

anti-commuting sources for the fermion. This modifies the above to

Z =

∫
DΨΨφeiS+

∫
ddx(η̄(x)Ψ+Ψη(x)+jφ).

The general procedure to obtain the corresponding Dyson-Schwinger equations is to start

from (8.10) and then derive once more with respect to the field or with respect to the

anti-field in case of anti-commuting fields for a two-point vertex, and correspondingly

more often for an n-point function. The additional source term then yields the propagator

while the right-hand-side of the equations are found by the derivative of the action.
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Since in the course of the derivation, the source in equation (8.10) becomes the inverse

full propagator, it makes sense to already rewrite (8.10) as7

ja(x)Z =
δS

δφa(x)

∣∣∣
φa(x)= δ

δAa(x)

Z (8.11)

at the sources set equal to 0.

Using the action (5.10-5.11) with a single flavor and the scalar case, and differentiating

with respect to η̄(x) yields(
(iγµ∂xµ −mΨ)Ψ(x)− gφ(x)Ψ(x) +

δΓ

δΨ(x)

)
eW = 0 (8.12)

where the x-index on a ∂ indicates the variable with respect to which to derive. This inter-

mediate step shows why the Dyson-Schwinger equations are called the quantum equation

of motion. Replacing everything with their classical counter-part at this stage, this is just

the Lagrange equation of motion for the field Ψ. As W and the quantum effective action

are both of order ~, they introduce the quantum information into these classical equation.

Replacing the fields in (8.12) by their respective derivatives and divide, after performing

the derivation, by exp(W ) yields

(iγµ∂xµ −mΨ)Ψ(x)− g
(
δW

δj(x)

δW

δη̄(x)
+

δ2W

δj(x)δη̄(x)

)
+

δΓ

δΨ(x)
= 0

As a general feature of such derivations, terms containing products of only single deriva-

tives of W appear at this stage. Here, the aim is only an equation for the propagator.

Hence, when deriving such terms again with respect to the fields, always at least one single

derivative remains, which can be replaced by a classical field. When setting the classical

sources to zero at the end, also the classical fields are set to 0 and therefore these terms

always vanish. Hence they can be neglected already at this stage of the calculation, and

will not appear furthermore. This is not true when deriving equations for higher n-point

functions. E. g., when determining the equation for a four-point function, each single

derivative may be acted upon, yielding a non-vanishing term.

So the remaining expression is

(iγµ∂xµ −mΨ)Ψ(x)− g δ2W

δj(x)δη̄(x)
+

δΓ

δΨ(x)
= 0

To obtain the equation for the fermion propagator, this equation is derived once more with

respect to Ψ(y) which leads to

(iγµ∂xµ −mΨ)δ(x− y)− g δ3W

δΨ(y)δj(x)δη̄(x)
+

δ2Γ

δΨ(y)δΨ(x)
= 0

7It should be noted that the equations may differ in form depending on the order of derivatives, though

of course this only corresponds to rearrangements due to identities relating different vertex functions.
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The last term is already the inverse propagator. The second term yields the interaction

part. Using the inverse chain rule yields

δ2W

δj(x)δη̄(x)
= −

∫
ddzddw

δ2W

δj(z)δj(x)

δ2Γ

δΨ(w)δφ(z)

δ2W

δη(w)δη̄(x)

where the minus arises due to the anti-commuting derivatives. Using further the fact, that

δ2Γ

δΨ(w)δj(z)
|j=η=η̄=0 = 0,

which generalizes to all mixed two-point functions, it is possible to write down the result

in position space

D−1

ΨΨ
(x− y) = iγµ∂xµ −mΨ + g

∫
ddzddwDφφ(x− z)DΨΨ(x− w)ΓΨΨφ(y, w, z).

where inverse 2-point functions have been replaced by propagators, and 3-point functions

by the vertex.

Replacing all expressions with their Fourier-transformed8 and afterwards dropping∫
ddp/(2π)d exp(−ip(x− y)), produces the result in momentum space as

D−1

ΨΨ
(p) = iγµpµ +mΨ +

∫
ddq

(2π)d
(g)Dφφ(p− q)DΨΨ(q)ΓΨΨφ(−p, q, p− q), (8.13)

where momentum conservation at the vertex has been used. The expression (g) (with

suppressed unit matrix in Dirac space) can be identified to be the tree-level vertex. Using

this, allows to rewrite (8.13) as

D−1

ΨΨ
(p) = iγµpµ+mΨ +

∫
ddq

(2π)d
ΓΨΨφ

tree-level(−q, p, q−p)Dφφ(p−q)DΨΨ(q)ΓΨΨφ(−p, q, p−q),

which is the final form.

In a similar way, all Dyson-Schwinger equations can be derived. As is visible, this is

algorithmic, and can therefore be automatized. Note that the equations couple different

correlation functions of different order. In the present case, the equation for the fermion

propagator is coupled to the scalar propagator and the scalar-fermion vertex, and thus an

n-point vertex of higher order. Generically for a theory which has at most quartic terms

in the Lagrangian the equations for an n-point function involves the n+ 1 and n+ 2 point

functions. Furthermore, in general in such theories also expressions with two integrals in

8All momenta are always defined incoming and momentum conservation at the vertices is taken into

account. Hence in principle one of the arguments of the vertices could be dropped, but since this depends

on conventions, all are kept.



106 8.4. Dyson-Schwinger equations and resummation

momentum space appear. The Dyson-Schwinger equations therefore are a coupled system

of non-linear integral equations, whose exact solutions would yield the exact result for all

correlation functions.

More importantly, the structure shows that if all correlation functions would be ex-

panded in Taylor series in the coupling this is another way to generate perturbation theory.

Thus, this reproduces the relation (8.9). However, this also shows now how the concept

can be generalized beyond propagators.

A general Dyson-Schwinger equation will have the form

Γfull = Γtree-level + Π

where the inversion only happens for the propagator. Π is some involved self-energy. Thus,

this shows how perturbative contributions build up, order by order, contributions to the

exact Π.

It is now an interesting possibility to partially resum the perturbative series. Generi-

cally, due to the 1PI nature, perturbation theory will have th structure

Π = gπ1
1PI + (gπ1

1PI)
2 + g2π2

1PI + (gπ1
1PI)

3 + g3
∑

permutations

π1
1PIπ

2
1PI + g3π3

1PI +O(g4)

where the upper index of the π implies the number of vertices. Thus, there are new

contributions at every order, but also contributions, which are just products of lower-

order contributions. It is thus possible to reorder the perturbative series, assuming it is

convergent, as

Π =
∞∑
i=0

(g1
1PI)

i +O(πn>1)

which is called a resummation of a certain subclass of diagrams with one vertex, which

often can be done analytically. Of course, it is not guaranteed that this improves the

result, as it mixes order in the original Taylor series.

E. g., in case of the scalar propagator in section 8.1, this would be a summation of the

tadpole diagrams. Since they are constant, this would just absorb all of them in the mass

renormalization, and would certainly not alter the situation. However, for the fermion

propagator in section 8.2, where the lowest order is already momentum-dependent, this

is not a-priori clear. Often, in turns out that the result improves in certain momentum

regimes, but does degrade in others.

The Dyson-Schwinger equations can improve the situation, if self-consistency is re-

quired to a given order in the coupling, as their non-linearity makes this a non-trivial

constraint. However, this is beyond the scope of this lecture.
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8.5 What is a particle?

As has been seen, the analytic structure and the asymptotic features of correlation func-

tions start to become more and more important. It is therefore worthwhile to formalize

these questions to some extent. For this, it is useful to first introduce the concept of a

spectral density, and the Källen-Lehmann representation.

The propagator plays a central role in the description of physics, as the LSZ-formalism

of section 3.2 has shown. Consider for simplicity a scalar particle. Start by rewriting its

propagator as

D(p) = i

∫ ∞
0

dM2 ρ(M2)

p2 −M2 + iε
, (8.14)

which defines the spectral density ρ. This is known as the Källen-Lehmann representation.

For a free particle of mass m,

ρ(M2) = δ(M2 −m2) (8.15)

this will reproduce the free propagator. Thus, the spectral density describes the deviation

of the propagator from the free one. Because of9

0 < i〈φ†(0)φ(0)〉 = iD(0) =

∫ ∞
0

dM2 ρ(M2)

M2 + iε
, (8.16)

it follows that the spectral density needs to be positive. This implies that

∂nD(−p2)

∂(p2)n
= (−1)ni

∫ ∞
0

dM2 ρ(M2)

(p2 +M2)n
(8.17)

and thus that the propagator and its derivatives are monotone functions of space-like

momenta.

If the propagator contains information about an asymptotic state10 in the sense of

section 3.2, this part can be explicitly extracted

D(p) =
iZ

p2 −m2 + iε
+ i

∫ ∞
m2
t

dM2 σ(M2)

p2 −M2 + iε
,

with

ρ(M2) = Zδ(M2 −m2) + σ(M2), (8.18)

and thus σ is also positive. The quantity mt is the smallest value for which σ needs to be

non-vanishing such that (8.14) still holds. It is called the threshold mass, and will be seen

9This follows also from cluster decomposition.
10Multiple asymptotic states with the same quantum numbers would provide a sum over free-particle

propagators.
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in the following to encode the energy to obtain the simplest multiparticle state with the

same quantum numbers as the single-particle state.

Combining (8.17) and (8.18) yields

1 = Z +

∫ ∞
m2
t

dM2σ(M2)

implying the Oehme-Zimmermann superconvergence relation

0 ≤ Z < 1. (8.19)

Thus, the asymptotic residuum is bounded from above by the free-particle residuum.

To continue, it is useful to relate these statements to further properties of a quantum

field theory. Any matrix element can be considered to be an S-matrix element, if the

arguments are not taken to be asymptotic. Furtheremore, as the S matrix is considered

to encode time evolution, it is necessarily a unitary operator. It thus follows that

S†S = 1 = 1 + i(T − T †) + TT †.

The T -matrix is related to the matrix element. Thus, this provides the following implica-

tion for any matrix element with differing initial state and final state

Mf→i −M∗
i→f = i

∑
n

(2π)4δ4(Qn − Pi)M∗
n→fMn→i (8.20)

where Qn and Pi are the total momenta in the states n and i. This implies a relation

between any given process and all possible processes, which satisfy the conservation laws.

Of course, any such state n will necessarily also appear as an intermediate state in the

full process i → f . This suggest already that there is a possibility to cut diagrams in

half in a certain sense, and relate them. Especially, in a diagrammatic expansion, like

perturbation theory, the decomposition into amplitudes Mn→i/f indeed is equivalent to

cutting a diagram in two. As the left-hand side will be related to cross sections for certain

processes below, this often implies that diagrams can be calculated in perturbation theory

by decomposing them. This is especially useful if this approach cuts a loop, and thus

makes an integration unnecessary. The formalization of this is known as Cutosky rules.

To give an example, the optical theorem, consider the elastic case of i = f , but having

no identical fields in the initial (or final) state. That can be relaxed, but requires some

more work. In that case

=Mi→i =
i

2

∑
n

(2π)4δ4(Qn − Pi) |Mn→i|2 . (8.21)
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However, the right-hand side is nothing but the total cross section, i. e. the possibility

that the initial state goes to anything. Taking the kinematics from (3.20), this yields

σtotal =
1

2
√
s2 +m4

i1 +m4
i2 − 2(sm2

1i + sm2
2i +m2

1im
2
2i

∑
n

(2π)4δ4(Qn − Pi) |Mn→i|2 .

(8.22)

Herein, the very useful relation∫
d3~p1d

3~p2

4(2π)2E1E2

δ(p1 + p2 −Q) =

√
s2 +m4

1 +m4
2 − 2(sm2

1 + sm2
2 +m2

1m
2
2

8sπ2
dΩ

=

√
λ(s,m1,m2)

8sπ2
dΩ

has been used. Combining (8.21) and (8.22) yields the optical theorem,

=Mi→i =
√
s2 +m4

i1 +m4
i2 − 2(sm2

1i + sm2
2i +m2

1im
2
2iσtotal

which thus relates the imaginary part of the elastic matrix with the total cross section,

the latter including all inelastic options.

Conversely, this implies a bound on the total cross section in the forward direction,

dσelastic

dt

∣∣∣∣
t=0

=
1

16π

(
(<Mi→i)

2

s2 +m4
i1 +m4

i2 − 2(sm2
1i + sm2

2i +m2
1im

2
2i

+ σ2
total

)
≥ σ2

total

16π
.

and thus σtotal is bound from above by an elastic process.

There is a further useful possibility to obtained from (8.20). If the energy is small

enough to be below the inelastic threshold, in the sum in (8.20) only the initial state

contributes, as the matrix elements connect on-shell amplitudes. If the initial state has

total angular momentum j, the corresponding case can be made inclusive, and the equation

then becomes

2i=Mj
i→f = 2i

√
λ(s,m1,m2)

s

∣∣=Mj
i→f
∣∣2

where the left-hand side was simplified from (8.20) by assuming T -invariance.

In general, there is a very useful insight for an arbitrary 2→ 2 cross section to be gained

from this. Because the only dependence is on the scalar s and the scattering angle, it is

possible to expand the cross section in Legendre polynomials Pl, leading to the following

list of equalities

dσ

dΩ
=

1

64πs~p2
|M2→2′|2

M2→2′ = 16π
∑
l≥0

(2l + 1)Fl(s)Pl(cos θ)

Fl(s) =

√
s

2|~p|
eiδl sin δl (8.23)
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where Fl are the so-called partial waves, and δl is the phase shift. The whole expression is

called a partial wave decomposition. Especially, each partial wave includes the case that

an s-channel exchange of an intermediate particle of spin l happens. Of course, as soon

as in the inelastic case final states with more than two particles become available, no such

expansion is anymore possible. But generalizations using other base systems with more

angles, e. g. hyperspherical coordinates are still available, especially in cases where the

final state masses can be neglected.

Using the previous statements also yields

σtotal =
8π√
s|~q|

∑
l≥0

(2l + 1)Fl(s)

|Fl|2 ≤
√
s

2|~q|
=Fl

where in the second line equality holds in the elastic case. Conversely, this implies the

phase shift becomes complex above the inelastic threshold. As it is a phase, this implies

that there is a unit circle, the Argand circle, on which the phase shift moves in the elastic

case, and can move inside above the inelastic threshold. As angular dependence can be

measure, this provides a valuable approach to understand experiments.

It has now been visible that a particle-like object is obtained by a pole in the (asymp-

totic) spectral density, and allows for the appearance of a resonance in a partial wave

of its angular momentum. Thus, quantum field theory exhibits as asymptotic states ob-

jects which are localized in position space, and have definite spin. In particular, cluster

decomposition (3.17) implies that there asymptotic states are localized.

It is possible to proceed with further characterization. The first is that it has been

implicitly assumed that matrix elements are tempered, i. . polynomial bounded in mo-

mentum space up to measure-zero singularities like Dirac functions. Otherwise, Fourier

transformation would not be possible. Indeed, before taking the limit the path integral

construction ensures this feature.

Consider now again a 2→ 2 process for two real, distinct scalars A and B. They can

then be combined into a single complex field, e. g. φ = A + iB. Non-zero spin will only

add logistics, but no physics. Factoring off the momentum conserving δ-function, and

introduce the change of momenta

q =
1

2
(p1 + q1)

p =
1

2
(p2 + q2).

These two quantities are already more than enough to fully characterize the process, due

to Lorentz invariance. In fact, the dependence of p an be entirely dropped, as only two
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masses, the center of mass energy, and the scattering angle are ultimately enough to

characterize the process. It is then possible to consider the matrix element as an enlarged

object by allowing q and p to be complex. Consider now the explicit form

MAB→AB(q) = i

∫
d4zeiqzMAB→AB(z).

Because the matrix are tempered, this implies thatM is an analytic function if (=q)2 > 0

and =q0 > 0 , i. e. the vector =q is forward time-like. This is the so-called forward tube,

essentially the future light cone defined by =q.
From this follows, stated without proof, the crossing symmetry. Replacing particle A

by its anti-particle A, the difference for flipping the momentum is given by

MAB→AB(q)−MAB→AB(−q) = iC(q),

where C(q) is some function. The statement of the crossing symmetry is that C(q) vanishes

outside the regions given by the physical mass-shells p2 = ±m2, but coincide on the real

boundaries of these regions. In analogy to analytical continuation in a single complex

variable the so-called edge-of-the-wedge theorem then implies that both amplitudes are

then analytically continuation of each other, at least in the absence of massless particles.

These features allow to conclude that the amplitude is an analytic function, and can

be written either as

MAB→AB(q) = − 1

2π

∫
dµ2

∫
Ω

d4kdµ2 ρ(k, µ2)

(q − k)2 − µ2
(8.24)

or as

MAB→AB(q) = − 1

2π

∫
dµ2

∫
Ω

d4kdµ2 ρ(k, µ2)

(q − k)2 − µ2

(
(q − k)2 + µ2

0

µ2 + µ2
0

)n
+ P (q). (8.25)

These are the so-called Jost-Lehmann-Dyson representation, reminiscent and generalizing

the Källen-Lehmann representation for the propagator (8.14). The version (8.25) needs to

be used, if the integral in (8.24) is not converging. In that case n is a suitable parameter

and P (q) a suitable polynomial. The region of integration Ω for the four-momentum k is

given by hyperboloid, which is define in terms of the external momentum p as well as µ,

and is defined implicitly. This will not detailed here. However, this concludes that also

the amplitude MAB→AB is an analytic function in the physical region. This can now be

sued to determine the actual analytic structure.

In fact, it will be seen that MAB→AB is analytic up to isolated poles of order one and

a cut. These features can then be interpreted in terms of the physics, and especially the
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appearance of intermediate state particles. For this it is useful to define the incoming

energy as

ν =
qp

mB

=
s−m2

A −m2
B

2mB

where the normalization is chosen for convenience, to obtain a dimensionless quantity.

However, the same statements can be cast also in terms of the center-of-mass energy s of

t, which are then also taken to be complexified. It is furthermore useful to illustrate the

situation with the case of a single exchange diagram.

In fact, the analyticity properties imply

MAB→AB(ν) = Q+
1

π

∫ ∞
(mA+mB)2

=MAB→AB(ν ′)

(
1

ν ′ − ν
+

1

ν ′ + ν

)
.

Thus, the amplitude has cuts in both directions. Also, it is implied that the amplitude

cannot grow faster than a power in ν (or s). In fact, this yields, together with the optical

theorem, the so-called Froissart bound∣∣MAB→AB∣∣ ≤ const× s ln2(s)

σtotal ≤
1

q2
ln2(s).

Thus, interactions can grow with s, but not arbitrarily so.

Reformulating the same analyticity in terms of s yields the cuts start at the elastic

threshold (mA + mB)2 in the real s plane. In terms of diagrams, this corresponds to the

case that an intermediate state particle can split into both particles on-shell. Thus, a cut

signals the appearance of decay thresholds.

The term Q contains isolated poles. There are three different cases. One is that

there is a pole between zero and the cut on the real axis. Diagrammatically, this appears

when there is a single line, and thus a propagator. The pole is then at the mass of the

particle. Hence, real poles can be interpreted as the appearance of a single particle in the

intermediate state. Note that these are the same masses as appear in asymptotic states.

It should be noted that this pole appears at positive energy.

Another pole appears on the second Riemann sheet in the complex plane, i. e. at a

complex value of the center-of-mass energy, but with positive energy. This is a structure,

which does not naturally arise at tree-level. However, if the propagator would take the

form

D(p) =
i

p2 −m2 + imΓ
, (8.26)

which has a pole at p2 = m2− imΓ, in which Γ is the width. A resummed propagator with
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a total width determined by (3.19) would show such a structure11. Thus such a structure

can be interpreted as the presence of a resonance.

Finally, there can be poles on the unphysical, i. e. negative energy, Riemann sheet, on

the real axis below threshold. Such states are so called virtual resonances. Such virtual

resonances can become real resonances if the parameters of the theories change. They can

thus be interpreted as the potential of a theory to sustain bound states and resonances in

general, but not at the given parameter values in actuality.

This concludes the list of possible structure in the amplitude. Going beyond 2 → 2

processes, similar considerations apply, but the number of Riemann sheets increases, and

the logistics do so as well.

There is one more issue to make the statement of particle more precise, and these are

super selection sectors. It has been seen in section 6.2 that particles carrying a conserved

quantum number can be distinguished. Furthermore, Noether’s theorem showed that

there is a conserved charge associated with symmetries. Because of the conservation,

time-evolution cannot change the charge of a system. Thus, any transition amplitude

Mi→f will neither. Hence, any physical process will not change the total charge in a

system, and there is no unitary evolution operator which connects sectors of different

charge. Therefore, any underlying space decomposes into separate, non-communicating

subspaces of asymptotic states. This is not in a one-to-one relation to particles, though, as

only the total charge is conserved. Thus, an asymptotic state with a single unit of charge

connects to any state where there is one more particle than anti-particle. These isolated

subspaces are thus super-selection sectors. This also applies, e. g. to tonal four momenta,

as well as generalized symmetries, e. g. those based on non-Abelian Lie groups.

In the context of the path integral, this is an interesting situation. Charge is obtained

from integrals over field configurations. Thus, the set of all field configurations decompose

into distinct holonomy classes corresponding to the superselection sectors, but the path

integral itself is a sum over all possible superselection sectors.

Together with cluster decomposition, this implies that an isolated particle is a field

configuration, which belongs to a superselection sector which allows for one unit of charge,

and in which there is an appreciable field amplitude which contains an integrated amount

of one unit of charge, in a region of space-time, which is disconnected in all space-like

directions from any other field configurations, which thereby need to have zero charge. It

does not need to be time-like isolated, though. This is the closest concept for a single-

particle field configuration possible. If along a time-like interval the situation remains,

11Perturbation theory is here hitting its limits. After all, all elementary particles should appear as

asymptotic states, but also can decay. A full resolution needs to go beyond perturbation theory.
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the propagator evaluated on this sub space-time volume will be just the asymptotic free

particle propagator.

Of course, field configurations with such a configuration are rare compared to all possi-

ble field configurations in the path integral. The fact that these are still typical situations

on long distance scales implies that they have correspondingly a large weight. Intuitively,

the reason can probably be best understood by the fact that either interactions are screened

in the sense of a Yukawa potential (7.29) or that different charges attract each other in the

Coulomb potential, and thus tend to screen charges to zero. But this is not necessary, as

other theories, especially the non-Abelian gauge theories to be encountered in the lecture

quantum field theory II, will demonstrate.

8.6 Vertex corrections

Having the developments now pushed to this point, it is useful to investigate another

process to illustrate the concepts further. That will be done with considering the one-loop

correction to a vertex. Given its importance for the definition of the electric charge and

the concept of running, a suitable objct to investigate is the photon-electron (or any other

charged fermion) vertex.

At the 1PI level, there is only a single diagram contributing, the one in which a photon

is exchanged between the electron and the positron leg. Choosing as kinematics the

incoming and outgoing electron momentum to be p and p′, and the photon momentum to

be q = −p′ − p. Since gauge-invariance would turn out to be maintained in the same way

as in section 7.6.2 in the following already Feynman gauge will be chosen. The resulting

one-loop expression then becomes

Mγe+e−

µ = (−ieγµ) +

∫
d4k

(2π)4

−igνρ
(k − p)2 + iε

(−ieγν)i(γα(−k − q)α +me

(k + q)2 −m2
e + iε

×

×(−ieγµ)
ikβγ

β +me

k2 −m2
e + iε

(−ieγρ).

It is visible, how a dependence only on the Lorentz index µ arises, and how this reproduces

the general e2-type correction.

Performing all possible contraction yields

Mγe+e−

µ = (−ie)
(
γµ + 2ie2

∫
d4k

(2π)4

−kα(k + q)βγ
αγµγ

β +m2
eγµ + 2meqµ

((k − p)2 + iε)((k + q)2 −m2
e + iε)(k2 −m2

e + iε)

)
where it has been used that

γαγµγα = −2γµ
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as a consequence of the Clifford algebra.

There are now two elements, which need to be taken care of. One is that there is still

a non-trivial tensor structure in the nominator. The other is that the integral is relatively

involved.

Start with the latter. The central problem is the highly non-trivial angular dependence.

To get rid of it, so-called Feynman parameter can be used. In their simplest form, they

are introduced using the identities

1

AB
=

∫ 1

0

dx

(xA+ (1− x)B)2
=

∫ 1

0

dxdy
δ(x+ y − 1)

(xA+ yB)2

where x and y are the Feynman parameters. This generalizes to n Feynman parameters

xi by
1

Am1
1 ...Amnn

=

∫ 1

0

δ
(∑

xi − 1
) Γ (

∑
mk)

(
∑
xjAj)

∑
ml

Πr
xmr−1
r dxr
Γ(mr)

.

That this is indeed a useful approach cannot be guessed, but can be seen in the following,

when contrasted to not using Feynman parameters.

In the present case, there will be three Feynman parameters necessary. Considering

only the denominator yields

1

((k − p)2 + iε)((k + q)2 −m2
e + iε)(k2 −m2

e + iε)
=

∫ 1

0

dx1dx2dx3δ
(∑

xi − 1
) 2

D3

D = x1(k2 −m2
e) + x2((k + q)2 −m2

e) + x3((k − p)2) + iε
(∑

xi

)
(8.27)

The whole expression is still to be integrated over k. This allows to perform a linear

variable transformation12 for k

k = l − x2q + x3p

which allows, using that the xi sum to 1 due to the δ-function, to simplify D to

D = l2 −∆ + iε

∆ = −x1x2qr + (1− x3)2m2
e > 0

where the inequality holds because of the kinematic situation that the external particles

are all on-shell. By this manipulation, the denominator no longer depends on any angle,

but only on the absolute momentum squared. The numerator, is, of course, also affected

by the necessary shift in the momentum. Tedious algebra yields the numerator to be

γµ

(
(1− x1)(1− x2)q2 + (1− 4x3 + x2

3)m2
e −

l2

2

)
+
iΓµνq

ν

2me

(2m2
ex3(1− x3)),

12If the integral is divergent, it is not obvious that this is allowed. In the present case, it turns out to

be correct. A more general investigation will be provided in quantum field theory II, but fortunately in

most cases it is correct.
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and thus the numerator contains either terms independent of l2 or linearly dependent on

l2. This allows for a substantial simplification.

Going back to the full integral, note that Lorentz invariance implies a decomposition

in invariant tensors, and thus∫
d4l

(2π)4
lµf(l2) = 0 (8.28)∫

d4l

(2π)4
lµlνg(q2) =

gµν
4

∫
d4l

(2π)4
l2g(q2). (8.29)

The original problem can be decomposed entirely into prefactors time these integrals.

Thus, it is sufficient to solve such, very general, integrals to solve the original problem.

Therefore, such expressions are also called master integrals, and it is a standard strategy

to decompose complex expressions into known master integrals.

Of course, this implies to solve such integrals. To do so, in this case performing a

wick rotation, i. e., performing the variable transformation l0 → il0 is useful, as this turns

the integral into four-dimensional Euclidean ones. As a consequence, the integral can be

solved in four-dimensional hyperspherical coordinates.

Consider first (8.28) with the corresponding choice of f , but slightly generalized

i

(−1)m(2π)4

∫
dΩ4d|l|

|l|3

(|l|2 + ∆)m
=
i(−1)m

(4π)2

1

(m− 1)(m− 2)∆m−2
.

Likewise (8.29) yields

i

(−1)m−1(2π)4

∫
dΩ4d|l|

|l|5

(|l|2 + ∆)m
=
i(−1)m−1

(4π)2

1

(m− 1)(m− 2)(m− 3)∆m−3
.

Note that the results are, however, only valid if m is sufficiently large, larger than 2 in the

first case and larger than 3 in the second case. Considering (8.27), the latter is however

not the case. Thus, there is again an ultraviolet divergency.

While this could be regularized as in section 8.2, it is useful to introduce a different

approach here, which allows also to demonstrate another important concept, decoupling.

This concept rests on the Appelquist-Carrazone theorem, which states that in perturbation

theory in a perturbatively renormalizable theory the effects of a heavy particle of mass

M in a process with maximum energy scale E, e. g. the center-of-mass energy in an s-

channel process, is suppressed as a power of E/M , and thus becomes irrelevant at energies

E �M . The proof follows essentially by expanding the general structure of perturbative

matrix elements in this quantity. Thus, heavy degrees of freedom decouple from the low-

energy dynamics. While a proof beyond perturbation theory is in general not possible,

it remains at least a very good qualitative description for the theories relevant in nature.
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Otherwise, a so-called ultraviolet-infrared mixing would make processes measured at low

energy stronger than power-suppressed dependent on the properties of particles which are

much heavier than the relevant energy scales. Conversely, this implies that heavy degrees of

freedom can be detected if measurements are sensitive enough to detect power-suppressed

contribution, a fact utilized successfully many times.

This idea underlies now the Pauli-Villar regularization. It introduces a heavy particle,

or multiple heavy particles, artificially into the theory. Besides giving them a very large

Λ, they are also equipped with an opposite sign kinetic term, and thus propagator. Thus,

they are not physical. However, in the end, the limit Λ → ∞ will be taken in the

renormalization process, and thus this does not matter.

In principle, it can be necessary to introduce multiple of such particles. In the present

case, it is sufficient to do so for the photon. Thus, any diagram including a photon is

doubled, by replacing
gµν

q2 + iε
→ gµν

q2 + iε
− gµν
q2 − Λ2 + iε

.

For (8.29), this yields for the currently relevant case of m = 3

d4l

(2π)4

(
1

(l2 −∆2)3
− 1

(l2 −∆2
Λ)3

)
=

1

(4π)2
ln

∆Λ

∆

∆Λ = ∆ + z3Λ2.

The expression is only regularized, as it still diverges logarithmically for Λ→∞.

Putting everything together yields an expression of the form

Mγe+e−

µ = (−ie)
(
γµF1(q2) +

Γµνq
ν

2me

F2(q2)

)
The quantities F1 and F2 are called form factors, as they describe the deviation of the

vertex from the tree-level one, which is F1 = 1 and F2 = 0.

To renormalize it, it is necessary to introduce a counter-term. Given how the electric

charge has been defined in the Thomson limit, it is reasonable to require F1(0) = 1. This

is also consistent, as F2 does not contain the divergent term. There is, however, another

issue arising in F1 only, as the remaining integral in x3 is not convergent. Tracing back

the origin of the problem, this comes from the fact that the photon propagator has an

infrared singularity. It can be traced back to the fact that the photon is massless. This

issue can be regularized by introducing a small photon mass µ, which requires to replace

∆→ ∆ + x3µ
2.

The origin of this problem is somewhat subtle. A hand-waving argument is that the asymp-

totic states need to be wave-packets. But for a wave-packet the energy is not well-defined.
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Because of that, it is not possible to distinguish the situation of a single electron and a

single electron plus any number of very low-energy photons. This issue can be resolved

by either defining suitable asymptotic states or by taking corresponding cancellations on

the external lines explicitly into account by resumming subsets of diagrams. This leads to

far astray for the current purpose. As an operative definition, µ can be taken as a cutoff

which models the energy resolution of a detector for the asymptotic particles. A more

refined discussion will be given in quantum field theory II.

This yields

F1(q2) = 1 +
α

2π

∫ 1

0

(Πdxi) δ
(∑

xi − 1
)(

ln
m2
e(1− x3)2

m2
e(1− x3)2 − q2x1x2

+
m2
e(1− 4x3 + x2

3) + q2(1− x1)(1− x2)

m2
e(1− z3)2 − q2x1x2 + µ2x3

− m2
e(1− 4x3 + x2

3)

m2
e(1− x3)2 + µ2x3

)
F2(q2) =

α

(2π)

∫ 1

0

(Πdxi) δ
(∑

xi − 1
) 2m2

ex3(1− x3)

m2
e(1− z3)2 − q2x1x2

,

admittedly not especially transparent results. Note that the fact that they do seem to obey

the Appelquist-Carrazone theorem is because the external momentum of the electrons is

always of the same size as the electron mass, because the electron is not purely internal.

Since by renormalization the electric charge is defined at zero momentum transfer, the

quantity eF1(q2) can be considered to be the momentum-dependence of the electric charge,

and thus its running.

It is worthwhile to note that this also modifies the Coulomb potential. While in the

static case ~p ≈ ~p′ ≈ 0 this makes itself felt by a change in the electric charge, the situation

is also interesting when considering a moving electron. In this case, also a Lorentz force

appears. Taking again the classical limit of q → 0, the interaction strength is governed by

a magnetic moment in the direction of the electron spin. The magnetic moment is given

by
e

2me

(2 (F1(0) + F2(0))) .

There are no two facts. One is the tree-level effect that there is a factor 2 inside the

outer parantheses. This doubles the magnetic moment compared to the one expected

for a classical particle of charge e and mass me. It stems entirely from the spin of the

electron. Moreover, in the present case, it is modified by the contribution in the inner

parantheses. Since F1(0) = 1 due to renormalization, only F2(0) can change the result.

Since the integral is finite, it can be evaluated, and indeed in this limit analytically, to

yield F2(0) = α/(2π). Thus, the quantum effects at NLO yield that the magnetic moment

of the electron changes, though admittedly by only about 0.1%. However, this effect was

measured.



Chapter 9

Beyond perturbation theory

So far, most of the actual calculations centered around perturbation theory. And while

perturbation theory is and remains one of the most vital tools in quantum field theory, it

is not capable to describe all of its phenomena. But, as in quantum mechanics, once the

systematic idea of physics being expressible in terms of analytic functions is left, or needs

to be left, much less becomes accessible in simple calculations. Thus, most of treating

quantum field theory must be postponed to various other lectures. Here, however, a few

general remarks will be made.

9.1 Subtleties and Haag’s theorem

The first point will be to understand why quantum field theory cannot be the final answer.

This can be illustrated by example of an ordinary integral, which has, however, the same

structure as the perturbation theory and the path integral developed previously.

Consider a pseudo action

S = −x2 + λx4.

In this case, the first, quadratic term, corresponds to the kinetic term. Here, an Euclidean

situation has been chosen for ease of reference. The quartic term then represents self-

interactions, with a coupling constant λ.

The corresponding pseudo-path integral can, in fact, be evaluated explicitly. This

yields ∫
dxe−x

2−λx4 =
e

1
λ

2
√
λ
K 1

4

(
1

8λ

)
, (9.1)

where Kn is the modified Bessel function of the second kind. This expression is finite for

any value of λ > 0.

119



120 9.1. Subtleties and Haag’s theorem

If the same logic is applied to this expression as when deriving perturbation theory in

chapter 3, this yields∫
dxe−x

2−λx4 =

∫
dx
∑
i

(−1)iλix4i

i!
e−x

2 6=
∑
i

(−1)iλi

i!

∫
dxx4ie−x

2

=
∑
i

(−1)iλi (1 + (−1)4i)

i!2
Γ

(
2i+

1

2

)
=
∑
i

√
π(−1)iλi(4i− 1)!!

i!2
2i+1
2

=
√
π

(
1− 3λ

2
√

2
+

105λ2

8
√

2
− 3465λ3

16
√

2
+

675675λ4

128
√

2
+ ...+O

(
(λi)i√
i

))
=∞.

Thus, the result differs from the exact result (9.1), and is not even well defined. The reason

can be seen from two different perspectives. On the one hand, the exact result (9.1) has an

essential singularity for λ = 0. Thus, an expansion in λ around λ = 0, as is performed in

perturbation theory, cannot work. The other perspective is given where the unequal sign

appears. Because the series is not absolutely convergent, exchange the summation and the

integration, as is vital for the perturbative calculation, is actually not correct. It is also

visible that the pre factor increases factorial with the order. This is actually something

which also can happen in quantum field theory, as graph-theoretical consideration show

that the number of Feynman diagrams increase factorial with the order. However, this

does not preclude the possibility of cancellations.

Of course, in a genuine path integral neither an exact solution nor an explicit check of

absolute convergence is usually possible. However, the issue can be recast into a different

statement, known as Haag’s theorem. The perturbative expansion is around the free the-

ory. Especially, it requires a smooth limit to the free theory, when the coupling is switched

off. But if this would be the case, there should exists a smooth, unitary field transforma-

tion, which is parametrized by the coupling, by which the theory can be transformed into

a free theory of new fields. This is exactly what is forbidden by Haag’s theorem: The free

theory and the interacting theory are not unitarily equivalent.

To get an intuitive, hand-waving picture. Consider a scattering of two non-identical,

real fields. In a free theory

〈φ(x)ψ(y)φ(z)ψ(s)〉 = 〈φ(x)φ(z)〉〈ψ(y)ψ(s)〉 = Dφ(x− z)Dψ(z − s).

The expression is independent of the distance x− z, and thus a constant as a function of

it. If the correlation function should be an analytical function, in which it make sense to

take the distance smoothly to any distance |x − z|, analyticity implies that the function

is necessarily identical to the constant function in |x− z|, even if |x− z| is timelike.

In the interaction theory, however,

〈φ(x)ψ(y)φ(z)ψ(s)〉 = 〈φ(x)φ(z)〉〈ψ(y)ψ(s)〉 = Dφ(x−z)Dψ(z−s)+Γφφψψ(x−y, x−z, y−s)
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If Γ should be non-trivial, it cannot be a constant in |x − z|, and much less so, if the

distance is time-like. Especially, if the theory could be expanded in g, then there would

always be combinations gn|x − z|m appear in any such expansion. But then the radius

of convergence could always be made arbitrarily small by varying the distance such as to

offset any change in g. Hence, the radius of convergence can always be made arbitrarily

small, and thus, for any infinitesimal g, there is always interaction remaining, and the

theory is thus in the limit of g → 0 always interacting. In contrast, at g = 0, it is non-

interacting. All of this can be framed mathematically more precise, but this is beyond the

scope of this lecture.

9.2 Bound states

However, Haag’s theorem yields interesting question when it comes to asymptotic states.

After all, they had been defined as non-interacting states, which emerge as the result

of time-evolution. But since time-evolution is unitary, this cannot be exactly true. As

a consequence, cluster decomposition (3.17) cannot be literally correct in an interacting

theory.

Of course, this does not imply that this is a quantitative relevant issue. Indeed, theories

are known for which this is both quantitatively relevant and irrelevant. After all, even

exponentially suppressed interactions are sufficient to satisfy Haag’s theorem, as long as

they are not zero. Then, neglecting them can likely be a negligible effect for all but exact

calculations.

An alternative to such a way out is that the asymptotic states are not, in fact, the

elementary states of the Lagrangian, but rather composite states, made from more then

one elementary particles. The simplest such case is actually QED with electrons and

protons. The hydrogen atom is itself a stable bound state, and thus can appear as an

asymptotic state. Insisting only on free states as asymptotic states would miss it, and

thus grossly misrepresent the physics of all of QED, which includes chemistry. However,

this also implies that perturbation theory, as developed in chapter 3, is necessarily unable

to describe a stable hydrogen atom.

Thus, it is necessary to describe such bound states. At the same time, it appears than

reasonable to allow that for bound states cluster decomposition can be applied, as the

bound state’s constituents still interact. Thus, using bound states, and only bound states,

as asymptotic states satisfies Haag’s theorem.

But to formulate cluster decomposition requires that the bound state itself can be

represented by an object depending only on the position of the bound state. This is
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achieved by employing composite operators. E. g., for the hydrogen atom, this composite

operator would be given by

H(x) = Ψp(x)Ψe(x)

where the resulting operator is a scalar. Thus, the composite operator consists of two (or

more) operators evaluated at the same space-time point1.

In momentum space, this yields

H(p) =

∫
ddq

(2π)4
Ψp(p− q)Ψe(q).

Thus, while the bound state depends on a single momentum only, allowing it to fulfill its

only energy-mass relation p2 = m2
H , the actual structure corresponds to the constituents

having all possible relative momenta, over which they are averaged. Especially, the con-

stituents are not necessarily on-shell, and therefore in general the mass of the bound state

is different from the sum of masses of the elementary state, a phenomena known as mass

defect.

Calculating the properties of the bound states, like its mass, is in most theories a very

hard problem, which requires non-perturbative methods to solve. However, eventually

they will show up in correlation functions of the corresponding quantum numbers in the

same way as elementary particles, i. e. as poles or as scattering states as cuts.

9.3 Scattering of bound states

The idea of bound states as more appropriate asymptotic states in many cases than ele-

mentary states leads ultimately to the concept of superselection sectors. A superselection

sector is characterized by the set of all conserved quantum numbers, including e. g. spin

and fermion number.

The statement is now that any physical process can only happen within a fixed superse-

lection sector. That is, time evolution cannot change the superselection sector. Especially,

this implies that for a scattering process that the initial quantum numbers and final quan-

tum numbers coincide. However, as noted, this has nothing to do with particles, as this

is really the integrals over all conserved currents in terms of the underlying fields on a

spatial hypersurface. Thus, an initial state of a single fermion as asymptotic state is still

1This can be extended to multiple operators. It is also possible to build bound state operators without

both fields at the same point, as long as any spatial variation is averaged in such a way as the final

operator is only depending on a single space-time point. Furthermore, such coinciding operators provide

new challenges for renormalization. All of these issues are beyond the scope of this lecture.
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connected to a scattering state of any number of fermions and antifermions, as long as

there is always one more fermion than anti-fermion.

This also allows the formation or break-up of bound states in a similar manner. Thus,

as with elementary states, it is possible to prepare the initial state and final state in

terms of bound states. Almost the complete LSZ formalism of section 3.2 will go through

unchanged. The differences is mainly that the composite operator, rather than the ele-

mentary operator, will appear in the matrix element. This has also consequences for the

external wave-function amplitude, which needs now to be replaced by a composite am-

plitude, called Bethe-Salpeter amplitude (or, for fermionic composite particles, Faddeev

amplitude).

While conceptual straightforward extensions, this involves substantially more compli-

cations at the technical level. This is therefore beyond the scope of this lecture.

9.4 Universal threshold expansion

There are many ways in which bound states differ from point particles. Most pronounced

is the existence of an extension. However, this cannot be interpreted as a radius. As noted,

particles, and thus also bound states, need really to be though of as localized excitations

of the field, or fields. Thus, it is better to think of the term as an effective range or size

parameter, which determines roughly the effective domain of influence. However, this size

depends on the interaction.

Thus, determining such a domain of influence is best seen as probing a particle with

some force (carrier), not unlike the situation with electric charge in section 7.6.1 and 8.6.

Therefore, three-point functions can be used for this purpose.

There are two possibilities to do so. One is probing. In that case, to probe the size

of a particle φ under interaction mediated by a particle ψ, the 1-PI three-point function

〈φψφ is used. In quantum mechanics or classical physics, this corresponds to a probe

particle current of phi, which interacts with a potential due to ψ. In analogy to the

Fourier transform of a potential due to some spherical symmetric body, a size parameter

is defined as

〈r2〉 = −6
∂Mφψφ(0, q, 0

∂q2

∣∣∣∣
q2→0+

(9.2)

and thus corresponds quantum mechanically to the expectation value of the average size

squared.

Likewise, if a stable particle can be formed in an intermediate stage when two (identi-
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cal2) particles collide elastically, there exists a so-called universal threshold expansion of

the scattering phase δl from (8.23) as

|~p| cot δl =
1

a0

+
∑

a2i−1
i |~p|2i (9.3)

where |~p| is the three momentum of the interacting particles, and the radius of convergence

is usually smaller than the distance to the inelastic threshold or the next resonance.

The quantity a0 is the scattering length. It is negative if there exists a bound state

below the elastic threshold, and positive if there is none or only point-like particles. For

the same interaction, its square is usually of the same size as 〈r2〉. Its definition stems

from the fact that for a classical particle, the hard-sphere cross-section of the bound state

would be πa2
0.

Such calculations and measurements) allow to identify bound states, and separate them

from point-like particles.

2There are also more complicated formulas for the case of more involved initial states.



Chapter 10

Canonical quantization

The discussion so far has concentrated on a path-integral formulation, giving its predom-

inance in modern relativistic quantum field theory. While also non-relativistic quantum

field theory can be formulated in terms of a path integral, this is still less familiar, as it does

not lend itself as easy as the operator formalism to non-relativistic calculations. However,

non-relativistically, both are equivalent. It thus stands to reason that also relativistically

such a treatment should be possible. And indeed, this is possible, and historically this was

the first version of relativistic quantum field theory.

In fact, many problems can be equally well be dealt with in an operator formalism.

Especially, it will be seen that the perturbation theory using Feynman rules emerges in

an identical form. Hence, once these have been derived, it becomes essentially indistin-

guishable in perturbation theory which underlying formalism is used. That is, of course,

different beyond perturbation theory.

Where using operators becomes difficult is when dealing with gauge theories. As has

been seen in chapter 7, even the simplest gauge theory involves massless, and thus ultra-

relativistic, particles. The formulation of operators uses a generalization of time evolution,

and thus a Hamilton operator. The latter is, however, not relativistically invariant. The

combination of massless particles without rest mass and a dynamical, frame-dependent

principle does not work well together.

The path integral formulation, due to its Poincaré-invariant nature, lends itself more

easily, and thus became more important. However, in the non-relativistic limit, there again

exists a preferred frame, and thus the operator formalism remains very important in that

case.
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10.1 Canonical quantization

One issue, which needs to be taken into account in a relativistic treatment is that the

Poincaré group necessarily treats space and time on the same footing. Thus, the distinct

treatment of quantum mechanics, one as parameter the other as operator, is fundamen-

tally impossible in a relativistic quantum theory. Moreover, the energy-mass relation

necessarily implies that a particle concept cannot be suitable, as do classical mechanics

and electrodynamics strongly suggest to pass to a field formulation.

All of that together leads to postulates1, which eventually turn out to be adequate.

The starting point is to degrade space again to a parameter. Thus, any quantity is

parametrized by a (four-)vector in Minkowski space-time, or, more accurately, is a map

starting in Minkowski space-time. Furthermore, they map into linear operators acting in

a Hilbert space (or vector space in general), x → Φ(x), where the operators can carry in

addition a representation of the Poincaré symmetry, just like the fields in the path integral

formalism in chapter 4.

In addition, it is required that the operators fulfill canonical equal-time (anti-)commutation

relations,

[Π(t, ~x),Φ(t, ~y)]± = iδ3(~x− ~y)

and the (anti-)commutator of Π and Φ vanish at the same time. The operator Π is the

canonical conjugate momentum to Φ. It is at this level postulated to exist. Later, it can

be determined in the same way as in classical mechanics, by postulating a Hamiltonian

operator. Given a Lagrangian formalism, this Hamiltonian operator can be obtained from

the Lagrangian in the usual way, keeping the commutation relations in mind. Thus, the

existence of a suitable Hamiltonian H is assumed in the following.

This result immediately shows that the whole formalism is not explicit frame-invariant.

However, it also shows that it very much embeds the fact that space-like distances and

time-like distances are different.

It should be noted that, in contrast to quantum mechanics, these operators are not

associated to measurements, nor are they analogous to wave-functions. Even though they

are often Hermitiean. A measurement in a quantum-field theory will rather produce a

classical field φ(x) and canonically conjugated momentum field π(x), from which the value

1Sometimes, this is called second quantization. This has been a historical name, which based on the idea

that in quantum-field theory operators become quantized, and thus is a second level of the quantization

process. As will be seen, this stems from the fact that operators can be expanded in other operators.

However, as this is also possible in quantum mechanics, and indeed quantum mechanics is unnecessary to

formulate an operator-based version of quantum field theory, this name becomes less and less used, as it

is really a misnomer.
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of actual observables can then be determined. But there is no analogue to the Born rule,

because the fields are extended over all space and time, and thus lack an outside. Indeed,

it is only possible to construct operators in terms of the fields and the symmetries of which

they carry representations. There are no other operators. Rather, the probability to find

a given field configuration requires to determine the correlation functions of all possible

number of combination of fields, which absolute squares then give the probability to find

a certain field carrying such correlations.

Similarly to quantum mechanics, these postulates only provide the kinematics. There

is still a dynamical principle missing. This comes in terms of the Hamiltonian, which

describes the (infinitesimal) evolution of the operators in terms of the Heisenberg equation

∂tO(t, ~x) = − [H,O(t, ~x)] ,

which describes the change when moving from an initial spatial hypersurface. Like in

quantum mechanics, a time evolution operator can be build from the Hamiltonian, with

the usual complications if the Hamiltonian, which is necessarily given in terms of the fields,

does not commute with itself at different time,s if it is time-dependent.

Since the Hamiltonian is Hermitiean, the states in the underlying Hilbert space can

be given in a basis of the eigenstates of the Hamiltonian. As usual, it relates to the four-

momentum operator P0 = H by virtue of being, by the Heisenberg equation, the generator

of time translation. However, P 0 is the total four-momentum operator, and thus does not

need to describe a fixed particle content.

As usual, by a Legendre transformation a Lagrangian can be constructed, which is then

necessarily the same as the one appearing in the path integral formulation. Just that, like

in quantum mechanics, operators need to be replaced by functions. The equivalence of this

formulation to the path integral can be proven in essentially the same way as in quantum

mechanics, except for the subtleties to be described in section 10.2. It will therefore not

be detailed here.

To have a stable system, the spectrum of the Hamiltonian needs to be bounded from

below. The state of lowest energy is the vacuum. Note that the vacuum is not particle

free. After all, there is also no particle concepts, just the field operators. The idea of

particles need to be reconstructed in the same way as in the path-integral representation

by localized field excitation. Also, the vacuum is a state, and there is no vacuum situation

for the fields, just for their expectation value. After all, the fields are operator-valued.

Finally, expectation values can be constructed as in quantum mechanics, by performing

generalized vector-matrix-vector products. But there are some subtleties.
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10.2 Normal ordering, time ordering, and Wick con-

tractions

.

It is instructive to see how perturbation theory works. For this consider first again the

situation of a single, free, scalar field. Since the theory is non-interacting, the state space

will be made up of states, which can be interpreted as n-particle states with three-momenta

~pi, which fulfill the energy-momentum relation p2
0 − ~p2 = m2, and are thus necessarily all

on-shell.

Define now operators2 a~p and a†~p, which add one quantum of three momentum ~p to

any given state, with the lowest-energy state, the vacuum (which, as usual, is not the zero

vector), having no such quanta. The total energy is given by the corresponding relativistic

dispersion relation. Therefore, such states could be interpreted as single-particle states.

However, this is only possible because the theory is free. Otherwise, the dispersion relation

changes because of the interaction energy, and furthermore off-shell particle allow for

violation. Thus, its is convenient to think of particles as quanta of excitations, but it is

only tenable in the free case. If there would be multiple particles or multi-component

fields, each would require its own set of such operators.

These creation and annihilation operator therefore allow to change every state into

every other state, and therefore can be used to describe every operator, and its action,

in the Hilbert space. To have this action, they need to fulfill the canonical commutation

relation [
a~p, a

†
~q

]
= (2π)3δ(~p− ~q). (10.1)

This allows to reexpress the field operators as

φ =

∫
d4p

(2π)4
(2π δ(p2 −m2)

∣∣
p0>0

(ap + a†−p)e
ipx =

∫
d3~p

(2π)3
√

2E~p

(
a~p + a†−~p

)
eipx(10.2)

π =

∫
d4p

(2π)4
i(2π δ(p2 −m2)

∣∣
p0>0

(ap − a†−p)eipx =

∫
d3~p

i(2π)3
√

2E~p

(
a~p + a†−~p

)
eipx.(10.3)

where it needs to be noted that the field operators therefore create simultaneously field

with opposite momenta of all values, weighted by the place-wave and the energy. This can

2It should be noted that in early developments one of these operators was interpreted as to create

a particle with negative energy, necessitating the introduction of (Dirac) sea of particles, over which

excitation happen. While this picture is still useful in the context of solid state physics to understand

particle-hole dynamics, in relativistic field theories that state can actually be identified as an anti-particle,

making the whole construction superfluous. It will thus not be detailed here.
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be interpreted by noticing

〈0|φ|~p〉 = ei~x~p.

Thus the field operator project out a place wave from a state with fixed three-momentum.

More directly, the vacuum expectation value of the two-particle operator remains the

propagator, which necessarily has the same form as in section 2.4. But the commutator

allows to notice

〈0 |[φ(x), φ(y)]| 0〉 = D(x− y)−D(y − x).

This appears to be zero at first. However, as the propagators are really defined as limits,

which depend on the causal structure of space-time, this needs to be carefully checked.

It is actually found that this is zero only for space-like separation, while an oscillatory

contribution, with the mass given the oscillation frequency, remains at time-like separation.

In this way, the operator formalism implements the causal structure of Minkowski space-

time.

This leads to the concept of the time-order propagator from section 2.4. For this, the

advanced and retarded propagators are defined to be

DR(x− y) = θ(x0 − y0)〈0 |[φ(x), φ(y)]| 0〉
DA(x− y) = θ(y0 − x0)〈0 |[φ(x), φ(y)]| 0〉,

respectively, and the Feynman propagator

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x) = 〈0 |Tφ(x)φ(y)| 0〉. (10.4)

These are useful abbreviations in the following.

One of the dramatic differences between the canonical quantization and the path-

integral quantization is the commutativity of fields. Since in canonical quantization they

are non-commuting operators, their order matters. Especially, given their expansion in

terms of oscillator-like operators (10.1) this immediately yields problems as in infinite

chains of harmonic oscillators in quantum mechanics. To deal with this, the concept of

normal-ordering is introduced.

A normal-ordered product requires all annihilation-type operators are placed to the

right, and are thus applied first, and all creation operators last. Thus, a normal-ordered

structure will only survive if there are at least sufficient quanta in it to still yield non-zero.

Of course, operators at different times commute. Working out the algebra, this leads to

Wick’s theorem,

T (φ1(x1)...φn(xn)) = N (φ1(x1)...φn(xn) + contractions) (10.5)
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where a contraction is defined by a recursive (Wick) contraction operator

Cm(φ1(x1), ..., φm(xm)) =
m−2∑
i=1

Cm−1−i(φ1(x1), ..., φi−1(xi−1))φi(xi)Ci(φi+1(xi+1), ...φm(xm))

C2(φ1(x1), φ2(x2)) = D12
F (x1 − x2)

C1 = C0 = 0.

This propagator arises from the fact that any commutation induces a C-number with

two operators less, until only two operators are left. But this is then a propagator. The

usefulness arises from

〈0|Tφ1(x1)...φn(xn))|0〉 =
∑

permutations

DF (xi1 − xi2)...DF (xim−1 − xim).

Thus, all vacuum expectation values of time-ordered field operators are equivalent to

products of propagators, as the normal-ordered operators will vanish.

This formulation comes in its own in perturbation theory. In that case, the interac-

tion picture of quantum mechanics is particularly useful. Taking the free theory with its

known free particles as the unperturbed Hamiltonian, the interaction potential and the

time evolution operator in this picture can be determined as usual. Especially, the time

evolution operator is now given in terms of the Dyson series

UI = 1 +
∞∑
n=1

(−i)n
∫
d4z1

∫
d4z2...

∫
d4znVI(z1)...VI(zn). (10.6)

But from this, perturbation theory from Feynman rules emerge almost as in section 3.1.

Consider

〈x|y〉 = 〈α|φ(x)φ(y)|α〉 = 〈0|U(∞, x0)φ(x)U(x0, y0)φ(y)U(y0,−∞)|0〉.

This is the transition amplitude from a particle located at y to x, which is created by the

operators φ. More complicated states can be created from sums and products. The state

α is the interacting vacuum, which is assumed in perturbation theory to be described by

the non-interacting vacuum at infinite times in past and future. This is like the asymptotic

non-interacting states in section 3.2. A suitable normalization is assumed here, just as in

section 3.1. However, this normalization will turn out to work exactly in the same way, so

it will not be considered explicitly.

This statement is true for arbitrary time-orderings. However, the actual answer can be

reconstructed from the time-ordered ones in the same way as in (10.4). Also, the full time
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evolution operators appear, not the interaction ones. Rewriting tediously everything, the

only necessary ingredient will be to determine

〈α|Tφ(x)φ(y)|α〉 = 〈0|T (φ(x)φ(y)UI)|0〉.

But then the combination of Wick’s theorem (10.5) and the expansion of(10.6) automat-

ically recreates the same expression in terms of integrals and propagators as in the path

integral formalism, starting with (3.7). The rest follows analogously, and thus the same

set of Feynman rules arises, leading to the same perturbation theory.

10.3 Non-relativistic limit and quantum mechanics

How non-relativistic quantum mechanics arises from the quantum field theory has two

components. One is the, fairly straightforward, kinematic aspect. Just like in mechanics,

momenta, energy, Lorentz transformations etc. will become their non-relativistic counter-

part at kinetic energies small compared to the rest mass.

The second aspect is more involved. Quantum mechanics is a theory of point par-

ticles, and position operators and momentum operators take over the role of fields. To

understand, how this emerges, switch over first to the operator-time-independent picture.

Then consider first the basis of creation operator and annihilation operators, as this is a

universal basis independent of the underlying theory.

Given (10.1) consider its Fourier transformation,∫
d3~p

(2π)3
e−i~x(~p−~q)

[
a~p, a

†
~q

]
= 1

Average in addition Gaussian in momentum space with a suitable width and a linear shift∫
d3~pd3~q√
π3(2π)3

e−i~x(~p−~q)−(~p−~q)2
[
a~p, a

†
~q

]
= 1.

If the a and a† would be independent of the momentum, the left-hand-side would result in

Gaussian in ~x, centered at zero. Thus, such a smearing of the operators can be interpreted

as that if the fields are smeared in position space in a Gaussian way, they regain their non-

relativistic commutation relations. The same is, of course, true for the field operators, as

(10.2-10.3) are invertible.

This implies that a correlation function like 〈0|φ(x)φ(y)|0〉 will give a result, which

is (time-independent) and, for free particles, Gaussian in |~x − ~y|2. But this this is the

shape for the probability density of a wave-packet positioned at this position. Thus, the

interpretation in terms of wave-packets arises again in such an approximation.
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Hence, point-particle wave-function emerges at the level of expectation values quite

directly, if the fields are smeared with a Gaussian weight. As was noted in section 8.5,

this is anyhow the way in which particle-like excitations need to be viewed in quantum-

field theory. Since this is done with time-independent operators spatially, this is also

preserve the causal structure, if the smearing is located at sufficiently small distances.

The time-dependence is then correctly given, once the time-evolution operator is also

Gaussian-smeared.

Since the operators a and a† form a full basis, so do their Gaussian smeared ones.

Thus, as for the harmonic oscillator or the Schwinger representation of angular momentum,

they can be used to reconstruct operators like the momentum operator and the position

operator, as well as their commutation relations. In this way, the basic postulates of

quantum mechanics would best be reformulate in terms of this basis.

The one thing, which doe snot necessarily arises directly in this context are again

measurements and the Born rule. As noted in section 10.1, this can be reconstructed from

the measurement of field operators. However, this lacks the importance of overlaps and

the definition of observables in terms of Hermitiean operators. It is not entirely clear how

this can arise in a straightforward way. Otherwise, the measurement postulate could be

derived from quantum field theory. But it can be heuristically guessed in the following

way.

The Gaussian smearing necessarily a sub-region of space-time. In the normal setup of

an experiment, this smearing will create an outside in which all operators are exponential

suppressed. This patch can be taken to be well approximated by non-relativistic physics, by

assumption. All measurement machines reside actually outside of this space-time patch.

Thus, their interference with the system can be taken to be instantaneous, but build

from operators, which do not belong to the same subspace, giving the appearance of

additional operators characterizing the measurement process. Due to their very small

temporal overlap, they will instantaneously affect the system by moving around the quanta

of the states, which do have overlap, and yielding in this way Born’s rule. How exactly

this works remains unresolved at the moment, but appears to involve also the fact that

this is in reality always an interaction, which still involves many particles, and thus many

interactions.

10.4 Axiomatic field theory

After all of these arguments, the question arises, to which extent this could be put also as a

foundation, rather than consequence. This is the aim of axiomatic (quantum) field theory,
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with the aim to start with a minimal set f postulates, and then derive the remainder. In

the same vein, there is also often the attempt to leave a Lagrangian formalism, in favor of

starting from the matrix elements, thus to access more general field theories.

The result of these attempts is axiomatic field theory. It starts from the following

postulates, the so-called Wightman axioms:

• Like in quantum mechanics, the state space is a Hilbert space, which carries a uni-

tary representation of the Poincaré algebra, and in which the spectrum of the four-

momentum operator is time-like with positive energy.

• Fields are maps from Minkowski space-time to a distribution-valued operators in the

Hilbert space, and for any such field also its Hermitiean conjugate exists, and they

transform as representations of the Poincaré group. Any operator on the Hilbert

space can be written in terms of the fields.

• The fields fulfill canonical (anti-)commutator relations at space-like distances.

• A dynamical principle (time evolution operator or transfer matrix) allows to de-

termine fields at infinitesimal time-like distances from fields on a reference spatial

hypersurface.

These requires some comments.

In principle, this program formulates more precisely the canonical quantization of sec-

tion 10.1, by sharpening the concepts of field operators. However, the requirement of

a Hilbert space is already for QED problematic, due to consequences of gauge freedom

discussed in section 7.3. The next, probably a bit more problematic, statement is that

Poincaré-type causality is essentially required as an axiom. Again, this runs afoul with

gauge symmetries, and requires a very careful elimination of the latter. In general, also

the dynamical principle, to some extent, will run into problems when it comes to questions

of space-like correlations.

These questions have only been partially overcome, even in QED. But especially giving

up a Hilbert space for the fields to act in turns out to be very complicated without

compromising the required locality. It is at the moment not clear, whether giving up some

of the axioms or technical issues let the program essentially grind to a halt. And, of course,

it not clear a-priori whether such an axiomatic approach can be consistent with nature,

even though it had been very successful in non-relativistic physics. Thus, the more ad-hoc

approach of the path integral has become the mainstay of relativistic quantum field theory

today, and to an appreciable extent also in non-relativistic case.


