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Chapter 1

Introduction

The strong nuclear force is of central importance both in our understanding of nature as

well as in the understanding of field theory.

Its basic phenomenological importance is gained from the fact that nuclei are an impor-

tant and indispensable part of our world. Understanding them is therefore of paramount

relevance. Studying nuclei showed that they are bound states of the more elementary

nucleons, the common name of protons and neutrons. The binding force is of considerable

complexity, even if only viewed as the interaction creating these bound states. However, it

was experimentally observed that there are many other particles, which interact through

the same force. In a similar effort as with the periodic table of elements, it was understood

that all of these particles, and several hundreds are known today, have an underlying struc-

ture. This underlying structure involves the quarks, which are bound together by gluons

to form all particles interacting by this strong nuclear force: The hadrons.

This theory is called, for reasons to become clear later, quantumchromodynamics,

or QCD, for short. While the theory can be formulated in the language of a quantum

field theory, performing calculations are by far not trivial. The main reason is that,

except at high energies, QCD is not accessible to perturbative methods, but requires a

full non-perturbative treatment. Even with decades of development, this turned out to

be a formidable task, still not solved. Hence, though some quantities can be calculated

with reasonable accuracy, even the calculation of the average of proton and neutron mass

required almost 40 years.

This already underlines at the second important property of QCD. So far, it is the

only accessible theory of this type. Given the problems encountered with it, it is clear

that similar problems will emerge with any kind of (gauge) theories which require a non-

perturbative treatment. It is therefore the test case to develop methods, as only here

sufficient experimental results are available to provide reliable checks of the calculations.

1



2

Given the vastness of complications in QCD, it is not surprising that the literature is

similarly vast. Thus, there is no unique choice of textbook. For the sake of completeness,

the following books have been used in the preparation of this lecture:

� Böhm et al., Gauge theories

� Cheng & Li, Gauge theory of elementary particle interactions

� Dissertori et al., QCD

� Peskin & Schröder, Quantum field theory

� Weinberg, Quantum field theory I and II

� Yndurian, The theory of quark and gluon interactions

Besides these, a number of various recent review articles, available from the arxiv, arxiv.org,

are available, in particular 1404.3723. It is also recommendable to have a look at the most

recent reviews in the Physics Reports journal on the topic. Also, as always, the PDG at

pdg.lanl.gov is an essential repository.



Chapter 2

Basic phenomenology

As a first step, in the following the phenomenology of the strong interactions will be

collected, establishing a repository of names and concepts. In the remainder of the lecture

the underlying field theory will be developed, along with suitable techniques to deal with

it. Ultimately, it will be sketched how the presented phenomenology emerges from the the

theory.

2.1 Nuclear physics

As noted, all atomic nuclei consists out of differing numbers of protons and neutrons, the

former having a positive electric charge of the same size as the electron and the latter

no electric charge at all. The simplest atomic nucleus is a single proton. However, single

neutrons are not stable, but decay in a few minutes, and are therefore only appearing

bound in nuclei.

Experimentally, this has been found by scattering experiments. When scattering with

an electromagnetic probe, e. g. an electron, the characteristic quantity is the total mo-

mentum transfer −q2 = Q2 between the electron and the nuclei, usually transmitted by a

photon. This defines furthermore the fraction of momentum

x =
Q2

2pq
,

where p is the momentum of the target. In the rest frame of the target the denominator

becomes Mq0, where the transferred energy q0 is also often called the energy transfer ν.

The variable x is called the Bjorken variable, or Bjorken-x, for short. These variables will

also play an important role later when discussing hadronic collisions. Since in a two-body

collision at fixed energy Q2 is entirely characterized by a scattering angle, a description in

terms of x is equally well suited.

3



4 2.1. Nuclear physics

In the case of elastic scattering, x becomes one. Hence, the crosssection, or as a function

of x will be just a single peak at 1. Increasing the energy transfer into the inelastic regime,

x becomes smaller than one. Then, additional peaks will appear, which correspond to

excited states of the nuclei. Such excited states already show the presence of an internal

structure, together with the finite extension of the nuclei. In addition, around x ≈ 1/A,

with A the number of nucleons in the nuclei, there is a broad peak. This broad peak is

due to the elastic scattering with the nucleons in the nuclei. The broadness comes from

the Fermi motion, i. e. from the fact that a nucleon confined to a nuclei has, due to the

uncertainty relation, at least a momentum of roughly 1/R, where R is the nuclei radius.

With R− 1− 10 fm, these are energies of order 100 MeV, and therefore not negligible on

nuclear energy scales.

Because of electromagnetic repulsion it became quickly clear that the nuclear force

must be very much stronger than QED to create quite compact nuclei, not much larger

than the protons and neutrons, with more than one proton. It must also act on different

charges, as the neutron is electrically neutral. One additional observation was made, when

investigating nuclei and the nuclear force. It was not only because of its strength very

different from QED and gravity, but it was also not of a finite range. Though being much

stronger than electrodynamics, it dropped almost to zero within a very short range of a

few Fermi.

How can such a short-range force emerge? One suggestion comes from the relativistic

description of bosons. Take the Klein-Gordon equation for a scalar boson of mass m,

(∂2 +m2)ψ = 0, (2.1)

with the wave-function ψ as the solution. Investigating a static situation yields

ψ(~r) =
g

4π|~r|e
−m|~r|, (2.2)

where g is an integration constant. Thus, the wave-function decays exponential towards

large distances, where the characteristic distance of propagation is given by the inverse

mass of the particle. Hence, a short-range interaction can arise if the exchange particles

are massive. This lead to the prediction of an exchange boson for the nuclear force with a

mass of the order of roughly hundred MeV, given the range of the nuclear force of about

a few fm. Such a potential is called a Yukawa potential.

The interpretation of the integration constant g becomes clear when the zero-mass limit

is considered. In this case the wave-function becomes Coulomb-like, with g corresponding

to the fine-structure constant. Thus, also in the massive case g can be interpreted as a

coupling constant, which characterizes the strength of the strong nuclear force. It turns
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out that characteristic values for it are about two orders of magnitude larger than for the

electromagnetic force.

The Yukawa potential yields the right idea. Instead of having massless photons as

force particles, massive particles must mediate the strong nuclear force. They were indeed

found in the form of the mesons.

2.2 Mesons

While the protons and neutrons are fermions with spin 1/2, the force carrier of the nuclear

force were identified to be actually bosons. Bosonic particles, which are affected by the

strong nuclear force, are collectively called mesons, while such fermions are called baryons.

Together, they are denoted as hadrons. Therefore, protons and neutrons as baryons.

The lightest of the mesons are the pions with quantum numbers JP = 0−, i. e. they are

pseudoscalars. They come as a neutral one, π0, and two oppositely charged ones, π±. The

range of the nuclear force is about 1 fm, which indicates that the force carrier, according

to the Yukawa potential (2.2), should have a mass around 100-200 MeV. Indeed, the pions

are found to have masses of 135.0 and 139.6 MeV for the uncharged and charged ones,

respectively, and are thus much lighter than either protons or neutrons. These pions are

not stable, but decay either dominantly electromagnetically into photons for the neutral

one or like the neutron for the charged ones. Their life-time is of the order of 10−8 seconds

and 10−17 seconds for the charged and uncharged ones, respectively. Therefore the charged

ones live long enough to be directly detectable in experiment.

One of the surprises is that the neutral one decays into two photons, as usually pho-

tons are expected to couple only to electromagnetically charged objects. While this can

be thought of as a neutral pion virtually splitting into two charged pions, and then anni-

hilation under emission of photons, this is somewhat awkward. A more elegant resolution

of this will be given in the quark model below in section 2.4.

With these pions it was possible to describe the overall properties of nucleons, especially

long-range properties. At shorter range and for finer details it turned out that a description

only with pions as force carriers was impossible. This was resolved by the introduction,

and also observation, of further mesons. Especially the vector1 meson ρ with a mass of 770

MeV, spin one, and a very short life-time of roughly 10−24 seconds and the vector meson

ω with a mass of about 780 MeV, but with a 20 times longer life-time than the ρ, play an

important role. This larger number of mesons is also at the core of apparent three-body

forces observed in nuclear interactions, which are, e. g., necessary to describe deuterium

1Vector mesons are mesons with spin 1.
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adequately. In fact, many more mesons have been discovered, and some more will appear

later.

Describing how these various mesons create the strong nuclear force is in detail very

complicated, but it in principle can be systematically performed, e. g. in the form of the

so-called chiral perturbation theory. This will be detailed more in section 5.2.4. What

is remarkable is that out of nowhere appeared several different mesons, all contributing

to the nuclear force, and actually all of them also affected by the nuclear force. Such a

diversity of force carriers is distinctively different from the case of QED, where only the

photon appears.

2.3 Isospin and baryons

In the endeavor to find the carriers of the nuclear force, several other observations have

been made. The first is that most nuclear reactions show an additional approximate

symmetry, the isospin symmetry. This symmetry is manifest in the almost degenerate

masses of the proton and the neutron. Both particles can therefore be considered to be a

doublet of this new symmetry. It is furthermore found that also the three pions fit into this

scheme. This new symmetry is called isospin symmetry, and the nucleon form a doublet,

while the pions a triplet. Similar, also the ρ and the ω can be fitted into this scheme. An

interesting observation is that the value of the isospin is related to the electric charge as

Q = I3 +
B

2
(2.3)

if a new quantity, called baryon number, is introduced. It is one for the baryons and zero

for all mesons. This is so far a phenomenological identification, but will become quite

relevant in section 2.4. Of course, the anti-particle of the nucleons, the antiproton and

antineutron, carry negative baryon number.

According to this rule, it is possible to attempt to construct a quadruplet, having

four states with I3 = −3/2,−1/2, 1/2, 3/2. To get integer charges, it must then have a

baryon number, like the nucleons. These particles should therefore have electric charge

−1, 0, +1, and +2, and corresponding anti-particles. These particles have been observed

experimentally, and again the different states have almost the same mass. They are called

∆, have masses of about 1232 MeV, and are fermions, as are the nucleons. However, their

spin is 3/2. In fact, they are not the only further baryons, and many more have been

found experimentally.
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2.4 The quark model

The number of baryons and mesons found by now numbers several hundreds. Already

decades ago, when only a few dozens were known, it appeared unlikely that all of them

should be elementary. This was very quickly confirmed by experimental results which

showed that the proton had a finite size of about 1 fm, and Rutherford-like experiments

found that there are scattering centers inside the proton, which appeared point-like. In

fact, similar to the case of the nuclei, the experiments showed, to leading order, that the

number of constituents in baryons is three, and in mesons it is two. However, beyond

leading order, things were quite different. In the case of nuclei, as long as the energy

transfer Q2 is not large enough to disintegrate the nuclei, the number of constituents

is essentially constant, and the elastic peak of the sub-structure scattering is essentially

always at 1/A, independent of Q2. This turned out not to be the case for the nucleons.

Depending on Q2, the peak started to shift, and an increase is found towards small x,

even though some peak structure remains at a third and a half, for baryons and mesons,

respectively. This would indicate the presence of many more constituents, called partons,

if the nucleon is probed at large energies. This kind of so-called scaling violation cannot

be obtained from an interaction like (2.2), but requires something new.

In addition, in contrast to the nuclei these constituents were not almost isolated in es-

sentially free space, but very tightly packed. Furthermore, while the neutron is electrically

neutral, it was found to have a magnetic dipole moment, a feature beforehand believed to

be only existing if there is an electrically charged substructure present.

This evidence together suggested that the elementary particle zoo could possibly be

obtained from simpler constituents and put into a scheme like the periodic table of chemical

elements, which originates from a few different particles.

Playing around with quantum numbers showed a number of regular features of the

hadrons. This gave rise to the quark model. This model introduces as the particles

making up hadrons the so-called quarks. In the beginning two quarks were needed to

explain the regularities observed, the up quark and down quark, abbreviated by u and

d, as well as their anti-particles. Since both the bosonic mesons and fermionic hadrons

must be constructed from them, it requires them to be fermions themselves. Since all of

the hadrons have an extension, none of them can be identified with a single quark, just

like the periodic table does not contain a single proton, neutron or electron. However, in

contrast to the latter no free quarks are observed in nature, a phenomenon to be discussed

below in section 5.5.

The simplest possibility to construct then a hadron would be from two quarks. This

must be a boson, as two times a half-integer spin can only be coupled to an integer spin, and
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therefore a meson. Since no free quarks are seen, the nucleons must contain at least three

quarks to get a half-integer spin. These considerations turn out to be correct. However,

they lead to the conclusion that quarks cannot have integer electric charges. This is most

easily seen by looking at the nucleons.

Furthermore, scattering experiments yielded that the nucleons have no uniform sub-

structure, but have a two-one structure, that is two quarks of one type and one quark of

the other type. Since it is found that the down quark is heavier than the up quark, the

heavier one, i. e. the neutron, should have two down quarks. This yields a composition of

uud for the proton and udd for the neutron. The only solution for the observed electric

charges of the proton and the neutron are then an assignment of 2/3 of the (absolute value

of the) electron charge for the up quark, and −1/3 of the (absolute value of the) electron

charge for the down quark. This consistently yields the required positive and zero proton

and neutron electric charges, respectively. This also explains the magnetic dipole moment

of the neutron. At the same time, the baryon number of quarks must be 1/3 for up quark

and down quark. This implies also that the isospin of the up quark is +1/2 and that of

the down quark is −1/2.

The pions are then constructed as a combination of a quark and an anti-quark, ud̄ for

the π+, ūd for the π−, and a mixture of ūu and d̄d for the π0, i. e. the state of the π0 is

∣

∣π0
〉

= cosα |ūu〉+ sinα
∣

∣d̄d
〉

,

where α is a mixing angle. This mixing angle can be experimentally or theoretically

determined. Experimentally, this is possible by using the different decay patterns for

different mixing angles. E. g., because of the different electric charges of up and down,

the electromagnetic decays of the π0 should depend on the mixing angle. Theoretically,

by calculating the left-hand side and the right-hand side in different bases. However, in

practice both possibilities are highly challenging. An assignment of two quarks instead of

a quark and anti-quark is not possible, as this cannot give the required baryon number of

zero.

Finally, to obtain reasonable agreement with experiment require a quite different ef-

fective interaction of two quarks, a potential of the type, the so-called Cornell potential

V (r) =
a

r
+ br, (2.4)

i. e. in addition to the Coulomb term 1/r an additional term, which rises linearly in

distance, something unseen before QCD. Its origin not fully resolved, though the potential

itself is well established. This will be discussed at length in section 5.5.

Particles like the ρ meson are then also combinations of a quark and anti-quark, but
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where the quarks have relative orbital angular momentum, creating their total spin of one.

The ∆, however, turns out to pose a serious challenge.

2.5 Color and gluons

At first glance, the ∆ appears simple enough. The double-positive state ∆++ is just three

up quarks, and with decreasing charge always one up quark is replaced by one down quark,

until reaching the ∆− with three down quarks. To obtain the observed 3/2 spin requires

to align the spin of all three quarks. Of course, it could be possible that there would

be a relative orbital angular momentum, but experimentally this is not found. In fact,

there exists an excited version of the ∆ with such an orbital angular momentum and total

angular momentum of 5/2, which is also experimentally confirmed.

And this is, where the problem enters. Since the ∆ is a fermion, its wave-function must

be totally antisymmetric. Since the spins are aligned and all three quarks are of the same

type in the ground-states of ∆++ and ∆−, no wave-function can be constructed which

is anti-symmetric. Thus the existence of the ∆ appears to violate the Pauli principle at

first sight. But this is not so. Originally introduced to resolve that problem, and later

experimentally verified, another conserved quantum number is attached to quarks: Color.

The wave-function can then be anti-symmetric in this new quantum number, saving the

Pauli principle and the quark model at the same time.

Since this new quantum number of the quarks is not observed for the ∆, or any other

hadron, the hadrons must all be neutral with respect to this new quantum number. For

the mesons, consisting of a particle and an anti-particle, this is simple enough, as just both

have to have the same charge. This is not the case for baryons. Assigning just positive

or negative charges, like the electrical charge, it is not possible to construct neutral states

out of three particles. Attempts to do so with fractional charges also do not succeed in

the attempt to make the proton and neutron color-neutral simultaneously. It is therefore

necessary to depart from the simple structure of the electromagnetic charge.

As a consequence, it is assumed that there are three different charges, suggestively

called red, green (or sometimes, especially in older literature, yellow), and blue. It is

furthermore assumed that not only a color and the corresponding anti-color is neutral,

but also a set of each of the colors is neutral. Then there are three quarks for each flavor:

red, green, and blue up quarks, and red, green, and blue down quarks, totaling six quarks.

A color-neutral baryon is containing a quark of each color, e. g. a proton contains a red

and a blue up quark, and a green down quark. In fact, since the total charge of a proton is

zero, it is a mixture of any possible combination of color assignments to each three quarks,
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which are consistent with neutrality and the Pauli principle. Similar, the ∆++ consists of

a red up quark, a green up quark, and a blue up quark.

One other important ingredient, now that there is a new charge, is what mediates the

force between the charges. In electromagnetism it was the massless photon. It is therefore

reasonable to assume that there is also a mediator of the force between color charges.

These were indeed found, and named gluons. As the photon these are massless2 bosons

with spin one. However, they differ from photons in a very important property. While

photons are only mediating the electromagnetic force, they are not themselves affected by

it, since they carry no electric charge. But gluons carry color charge. In fact there are 8

different charges carried by gluons, and none of these eight are either the quark charges,

nor is there any simple relation to the quark charges. Especially, it is impossible to add a

single quark charge with any combination of the gluon charges to obtain a neutral object.

To achieve this, at least two quarks have to be added to one or more gluons.

Nonetheless, the idea of gluons has been experimentally verified, and they have been

identified as the carrier of the strong interaction, binding quarks into color-neutral hadrons.

The exchange of mesons to bind nucleons into nuclei can be viewed as a higher-order effect

of the gluon interaction. This is similar to a Van-der-Waals force, though the details are

very different, as here not a color dipole moment enters, and the details are not yet fully

resolved. Still, the interaction of nucleons in a nuclei can be traced back to the gluons.

Hence, the combination of quarks, gluons, and colors can explain the structure of all

known hadrons, similar to the periodic table. Unfortunately, the strong force binding

quarks by gluon exchange is not accessible using perturbation theory, at least when it

comes to describing hadrons. Its treatment is therefore highly non-trivial. Because of the

color, this underlying theory of hadrons is called chromodynamics, its quantum version

quantum chromodynamics, or QCD in brief.

2.6 Strangeness

So far two quark flavors, up and down, have been introduced. This implies the presence

of an approximate SU(2) flavor symmetry, since the masses of both quarks are similar. It

was possible to describe all hadrons introduced so far using just these two quarks with the

quark model.

However, already before QCD was formulated, hadrons were observed, which do not

fit into this picture. The most well-known of them are the kaons K±, K0, and K̄0,

four mesonic hadrons of masses 494 MeV for the charged ones and 498 MeV for the two

2The notion of massless is murky here, an will be returned to later.
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uncharged ones. Most remarkably, these new mesons were more stable than those of similar

masses made from the two quarks inside the quark model.

The reason is that there are more than the two quark flavors necessary to construct

the proton and neutron. These additional quark flavors do not occur in naturally observed

atomic nuclei3 but can be produced in natural or artificial collisions, so-called hypernuclei.

The quark to obtain the kaons in the quark model has been called the strange quark s.

The s quark has an electric charge of −1/3, just like the d quark. The charged kaons are

therefore the combinations us̄, ūs, and the neutral ones ds̄ and s̄d, explaining their small

mass difference, and their multiplicity. Two more such mesons are the η and η′ mesons,

which are made from s̄s combinations, and some admixtures from neutral combinations

of u and d quarks. They are therefore even heavier, the η having a mass of 550 MeV.

Somewhat peculiar, the mass of the η′ is much higher, about 960 MeV. The reason is that

the η′ also receives mass from another source, the so-called axial anomaly. The latter will

be discussed below in section 5.6.

This enlarges the isospin symmetry to the so-called flavor symmetry. Since it involves

up, down, and strange quarks, it is an SU(3) group. Since the quarks have different masses,

the group is not unbroken, but reduced to three counting symmetries, i. e. U(1)3. Hence,

the individual quark flavors are conserved, but bound states with differing quark content

have differing masses. The isospin group is the almost unbroken SU(2) subgroup of this

SU(3) flavor group.

This conservation of quark flavor by the strong interaction is also at the origin of

the name strangeness. When the kaons were discovered, the quark model was yet to be

established. The kaons, and also strange baryons, called hyperons, with a single or more

strange quarks included, showed a different decay patterns than ordinary hadrons, due to

the conservation of strangeness. Thus, they did not fit into the scheme, and were therefore

considered strange.

The presence of the strange quark adds many more possible combinations to the quark

model, which all have very similar masses. Thus, there is a very large number of hadrons

with masses between 500 MeV, and roughly 3000 MeV, where the states become too

unstable to be still considered as real particles. In fact, the number of states N turns out

to rise exponentially with mass, N ∼ exp(M/TH). This is a so-called Hagedorn spectrum,

where TH is called the Hagedorn temperature. The reason for the name is that naively a

system with such a spectrum has the property that at a finite temperature, the Hagedorn

temperature TH , an infinite number of particles is created, and thus the system cannot be

heated beyond this point. For the strong interactions, the Hagedorn temperature is about

3With the possible exception of the inner core of neutron stars, though this is not yet settled.
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160 MeV. Of course, it is in practice possible to go beyond this temperature. What happens

is that at this point the quark substructure can no longer be ignored, and this effect limits

the number of states growth. This has originally lead to the idea that at this temperature

a phase transition has to occur, which signals the change from a hadronic system to one

were the quark substructure becomes more important. However, the most reliable results

to date rather indicate that it is a crossover. This transition plays nonetheless a role in

the development of the early universe, though a rather small one. This will be discussed

in detail in chapter 7.

2.7 Hybrids, glueballs, and other exotics

When studying the quark model and the possible color charges, it becomes quickly clear

that three quarks or one quark and one anti-quark are not the only possibilities how to

create color-neutral objects. Tetraquarks, made from two quarks and two anti-quarks, as

well as pentaquarks, made from four quarks and one anti-quark, are equally possible. There

is indeed no a-priori reason why such bound states should not exist. However, the are not

yet any unequivocally observed tetraquarks or pentaquarks, though at least for tetraquarks

there are by now substantial circumstantial evidence available. That an experimental

observation is so complicated can be motivated theoretically by two arguments.

The first effect is mixing. E. g. for a tetraquark, it is almost always possible to construct

a meson with the same quantum numbers, i. e. the same spin, parity, charge-parity and

electric charge. There is also the possibility to construct equally well a dimeson molecule.

One of the most infamous examples is the σ meson4. It is a light neutral meson, with

quantum numbers compatible, e. g., with the states ūu, d̄d, ūud̄d, ūuūu, d̄dd̄d, π+π−, and

π0π0. Since it is a quantum state, it follows the quantum rules, which in particular imply

that all states with the same quantum numbers mix. It is therefore a superposition of

all such states. The question which of these states contribute most is highly non-trivial.

It can, in principle, be experimentally measured or theoretically calculated. There is no

really reliable way of estimating it. The results found so far indicate that the combination

of two pions is most dominant, it is therefore likely a molecule. For most other states the

two-quark components appears to be the dominant one. Similarly, almost all baryons turn

out to be completely dominated by the three-quark state. There are only few cases, where

this may not be the case.

The second possibility is to investigate one of those possibilities where the quantum

numbers of the tetraquarks cannot be created using a two-quark system. Such cases are

4The official name is f0(500), though the historical name of σ meson is still commonly used.
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rare, but they exist. In principle, it would therefore be sufficient to just observe such a

state. Unfortunately, almost all of these states are highly unstable. They are therefore

experimentally hard to observe, and it is thus challenging to establish their properties

beyond doubt. Only very few candidates have been found so far, but some of them, to be

discussed later in section 2.8, appear very promising.

This problem becomes more complicated due to the gluons. Though it is not possible

to create a color-neutral state from a quark and a gluon, it is possible to combine a quark,

an anti-quark and one or more gluons to obtain a colorless state. It is similarly possible to

combine three quarks and a number of gluons to obtain a colorless state. Such states are

called hybrids. However, the gluons can at most add angular momentum, but no other

charges to the state. Therefore, there is always a state with the same quantum numbers,

but just made from quarks. Since adding a particle or orbital angular momentum to a

state usually increases its mass, these states are unstable against the decay to a state

with just the minimum number of quarks. Though these hybrids are therefore formally

admixtures to any state, it is essentially always a small one, and therefore hybrids are very

hard to identify both experimentally and theoretically.

The last class of states which can come into the mix are bosonic glueballs, which

combine only gluons to a colorless objects. The usual counting rules of the quark model

do not apply to them, but as a rough estimate even the simplest state is made out of four

gluons. Such states carry no electric charge, and most of them have the same JPC quantum

numbers as mesons, and therefore mix. However, there are some candidates, particularly

the so-called f(x) mesons, with x around 1500 MeV, which appear to have a large admixture

from glueballs. This is experimentally identified by the possible decays. Since gluons are,

in contrast to quarks, electrically neutral, decays into electrically neutral decay products,

except for photons, should be favored if there is a large glueball contribution in the state.

This has been observed, especially when comparing the partial decay widths of decays to

uncharged particles to the one to photons. However, even at best these states are only

partially glueballs.

There are some glueball states which have quantum numbers which cannot be formed

by only quarks, at least not in the simple quark model. Unfortunately, all theoretical

estimates place theses states at masses of 2.5-3 GeV, and therefore far above any hadronic

decay threshold. They are therefore highly unstable, and decay quickly. Hence, there is

not yet any experimental evidence for them, though new dedicated searches are ongoing

or are prepared.

In the search for the above listed so-called exotic states strange quarks play an impor-

tant role in the quest for tetraquarks and pentaquarks. Since strangeness is a conserved
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quantum number of the electromagnetic and strong interaction, it is possible to construct

states which do not have the quantum numbers of an ordinary state, e. g. a meson with

total strangeness of 2, which therefore must contain two strange quarks, and cannot be a

simple quark-anti-quark state, or a baryon with strangeness -1, due to a single anti-strange

quark, which therefore must be a pentaquark. Searches for such signatures are intensively

pursued. Note that, e. g., tetraquarks could also consist out of two strange and two an-

tistrange quarks. In this case, the excess strangeness is only visible in the decays. Such

states are therefore called cryptoexotic.

2.8 Charm, bottom, and top

It appears at first rather surprising that there should be just one other quark, which has

the same electric charge as the down quark. This appears unbalanced, and another quark

with the electric charge of the up quark appears to be necessary. Indeed, this is correct,

and there is also a heavier copy of the up quark, which is called charm5 quark c . However,

while the strange quark has a rather similar mass, despite its larger current mass, as the

light quarks, the charm quark has not. Hadrons involving a charm quark are much heavier

than hadrons containing only the lighter quarks. Charm is again a conserved quantum

number in both the electromagnetic and strong interaction.

This conservation of charm has very interesting consequences. Of course there are

hadrons were only one of the quarks is a charm quark, which are called open charm

hadrons. The best known ones are the D mesons, with masses of about 1870 MeV mass

and having the structure of a single charm quark and either an up or down quark. These

are the lightest particles with a charm quark.

But there are also particles, especially mesons, which consists only of charm quarks. In

the meson case, where the total charm is zero if they consist out of a charm and an anti-

charm quark, these are called hidden charm. The latter states are particularly interesting,

because they show a very interesting mass spectrum. In fact, the lightest c̄c states have

a mass which is quit a bit below threshold for the decay into two hadrons with a charm

quark and an anti-charm quark each, the D̄D threshold. They can therefore not decay

directly. Of course, the charm and anti-charm quarks can annihilate. But because of how

quark and gluon color charges are arranged, such a process is substantial suppressed in

QCD compared to the decay with a production of an additional quark-anti-quark pair:

Because a gluon carries color, an annihilation in one gluon is impossible. In two gluons it is

5The name originates from the fact that it solves several experimental mysteries observed in the weak

interactions, and because at that time it appeared to complete the quark picture.
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not possible because of spin-parity conservation, and into three gluons is already strongly

suppressed. This is the so-called Okubo-Zweig-Iizuka (OZI) suppression, or sometimes

just Zweig rule.

Hence, decays occur very slowly. Therefore, these hadrons are extremely stable com-

pared to hadrons made from lighter hadrons, where the pions offer a simpler decay channel.

Thus, these meta-stable state carry the name of charmonia, which have masses of about

3 GeV, but decay widths of around a few 100 keV.

Because of this fact, the charmonia states turn out to present a very good realization of

the possible states permitted by the potential (2.4). Similarly to the hydrogen atom, this

potential creates states distinguished by a main quantum number and orbital quantum

numbers. The most well-known state is the J/Ψ, at about 3097 MeV with a decay width

of 93 keV, which is a state with one unit of angular momentum. However, the ground

state of the system is the ηc, with a mass of 2984 MeV and a decay width of 320 keV.

That the ground state decays quicker is mainly due to kinematic effects from the angular

momentum. Simply put, the ground state is in an s-wave, and thus the wave-functions of

the two charm quarks have a large overlap. Thus an annihilation into photons is much

more likely than in the case with angular momentum, where the overlap of the wave

functions is much smaller. Right now about 8 states are known, which are below the D̄D

threshold, the heaviest the so-called ψ(2S), with a mass of 3690 MeV and a decay width

of 303 keV.

These charmonia have been very instrumental in understanding the potential (2.4),

and thus the strong interactions. The very well-defined spectrum, which provides the

opportunity of a true spectroscopy, including many angular momentum states6, permits

a much cleaner study than in case of the light hadrons, where the ubiquitous decays into

pseudo-Goldstone bosons make resonances decay very quickly.

However, not all of the states in this spectrum are easily explained within the framework

of the quark model and the potential (2.4). These are the so-called X, Y, and Z mesons,

with masses above the D̄D threshold, and some also with open charm. These states do

not fit into the quark model spectroscopic scheme, and especially some may have quantum

numbers, which are not in agreement with a simple quark-anti-quark system. This is

still under experimental and theoretical investigation. At the same time, several states

expected from the quark model are either missing, or substantially shifted compared to

the quark model predictions. These absent or shifted states cannot explain the X , Y , and

Z mesons, as they are all predicted to be very broad, while the latter are very narrow, of

6Angular momentum is, strictly speaking, not well-defined in a Lorentz-invariant manner. What is

meant here is the angular momentum in the quark model in the rest frame of the particle.
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order a few MeV, while the others are expected at tens of MeV. This already shows that

the simple quark model is not also able to explain all hadrons.

With the charm quark, it may appear that everything is complete and symmetric.

However, nature did not decide to stop at the charm quark, but added another quark:

The bottom (or in older text beauty) quark. It is a heavier copy of the down quark, and

has therefore an electric charge of -1/3. Its mass is about three times that of the charm

quark, with a current mass of 4.2 GeV. It therefore introduces another quark flavor, but like

for the charm quark, this does not play any role for dynamical chiral symmetric breaking,

as the explicit breaking is far too large.

Other than the mass and the electric charge, the bottom quark behaves essentially as

the charm quark. Especially, there is a rich spectroscopy with open and hidden beauty7,

the latter also called bottonium in analogy to charmonium. Similar to the case for the

charm quark, the lightest meson with open beauty is rather heavy, B± and B0 being at

5.3 GeV. As a consequence, the bottonium spectrum has a large number of quasi-stable

states, the lightest being the ηb with a mass of 9.4 GeV and a decay width of roughly 10

MeV, the Υ playing the role of the J/ψ with a mass of 9.5 GeV and a width of 54 keV,

and then even 15 states to the heaviest χb(3P ) with 10.5 GeV observed so far. There

are also heavier states, including bottom versions of the X, Y, and Z mesons, which do

not fit easily into a simple quark model explanation. Thus, an even richer spectroscopy is

possible, though the production of these bottonia in so-called beauty farms, requires more

resources than for the charmonia.

Of course, for both bottom quarks and charm quarks there exist also baryons, with

one or more of these quarks, also with both charm and bottom quarks. These are rather

complicated to produce, but have been observed, though baryons with multiple charm or

bottom quarks only very recently. These baryons are not as stable as the mesons, but are

still sufficiently stable that their production and decay take place so far apart from each

other, a few µm, that both processes can be experimentally resolved. They play therefore

an important role to identify the production of charm and especially bottom quarks in

high-energy collisions (so called c- and b-tagging).

Together, charmonia and bottonia are usually referred to as quarkonia. Studying theses

states are also interesting for other reasons than to understand QCD. Because the J/ψ

and Υ are very long-lived, they are very well suited for precision measurements.

With the introduction of the bottom quark the situation appears again as unbalanced

as with the introduction of the strange quark. This is indeed true, and the picture extended

by the top (or in old texts truth) quark t. This is the last quark, which so far has been

7For the flavor quantum number the term beauty still survives.
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found, though there is no a-priori reason to expect that there may not be further quarks,

and searching for them is a very active field in experimental physics.

The top quark is a heavy version of the up quark, and thus has an electric charge of

2/3. The fact which is really uprising about it, is its mass of 173 GeV. It is therefore much

heavier than any other quark or hadron. It is an interesting side remark, and a triumph

of theory, that this mass has been established within 10 GeV before the direct observation

of the top quark, by measuring other processes sensitive to the top quark very precisely,

and then using theory to make a prediction.

The enormous mass of the top quark makes it the heaviest particle detected so far.

Due to its large mass, it decays much quicker than the lighter quarks, with a decay width

of 2 GeV, by weak effects. Hence, the formation even of short-lived hadrons with a top

quark is almost impossible, and no hadron with a top quark has so far been directly

observed. Whether a quasi-stable toponium is possible is not clear, but so far there is no

experimental evidence for it. But, due to the mass, it is also not trivial to produce large

numbers of top quarks, and thus the study of top quarks is rather complicated. Hence,

the top quark is so far more of interest for its own properties, particularly its mass, rather

than for its relation to QCD.



Chapter 3

Field theory

After having now the basic phenomenology for QCD available, it is now the point to

formulate it as a quantum field theory, i. e. a fully quantized theory. As it turns out,

QCD has a number of particular features, and it is therefore not advisable to directly set

out with a field-theoretical formulation of QCD. Rather, it is better to first gather the

necessary ingredients.

3.1 Path integral

Though it is possible to perform canonical quantization for QCD, this is a rather cumber-

some approach. A more elegant option is the path integral formalism, which is equivalent,

at least at the theoretical physics level of rigor. Especially for gauge theories, which will

turn out to be the relevant type of theories for QCD, it is the most convenient way of

quantization.

3.1.1 Heuristic introduction

Since the path integral formulation is as axiomatic as is canonical quantization, it cannot

be deduced. However, it is possible to motivate it.

A heuristic reasoning is the following. Take a quantum mechanical particle which moves

in time T from a point a of origin to a point b of measurement. This is not yet making any

statement about the path the particle followed. In fact, in quantum mechanics, due to the

superposition principle, a-priori no path is preferred. Therefore, the transition amplitude

U for this process must be expressible as

U (a, b, T ) =
∑

All paths

ei·Phase

18
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which are weighted by a generic phase associated with the path. Since all paths are equal

from the quantum mechanical point of view, this phase must be real. Thus it remains

only to determine this phase. Based on the correspondence principle, in the classical

limit the classical path must be most important. Thus, to reduce interference effect, the

phase should be minimal for the classical path. A functional which implements this is the

classical action S, determined as

S [C] =

∫

C

dtL,

where the integral is over the given path C from a to b, and the action is therefore a

functional of the path S and the classical Lagrange function L. Of course, it is always

possible to add a constant to the action without altering the result. Rewriting the sum

as a functional integral over all paths, this yields already the definition of the functional

integral

U (a, b, T ) =
∑

C

eiS[C] ≡
∫

DCeiS[C].

This defines the quantum mechanical path integral.

It then remains to give this functional integral a more constructive meaning, such that

it becomes a mathematical description of how to determine this transition amplitude. The

most useful approach so far for non-trivial interacting theories is the intermediate use of

a lattice, i. e., a discretized space-time with a finite volume. However, even in this case

there are still conceptual and practical problems, so that the following remains often an

unproven procedure.

To do this, discretize the time interval T into N steps of size ε. Since any kind of

path is permitted, it requires that all possible intermediate steps are admitted, even if

the resulting path is non-differentiable or non-causal. In fact, it can be shown that the

non-differentiable paths are the most important ones for a quantum theory. The reason

for this is that there are many more non-differentiable paths than differentiable ones, and

thus the differentiable ones are just an irrelevant subset. They are of measure zero.

Thus, at each time step, it is necessary to admit all positions in space. This yields

∫

DC =

∫

D [~r (t)] =

∫

d3~r1
M (ε)

...

∫

d3~rN
M (ε)

,

as a discretization of the path integral, with some yet-to-be-determined integral measure

M(ε). It is furthermore assumed that particles move freely from time step n to n +

1. To obtain the final expression, the limit N → ∞ must be taken, implying that the

path integral is an infinite number of ordinary integrals. Since the action is determined
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classically, the phase can then be split into the phases for the individual time slices, and

expanded to lowest order in ε. This gives a calculational prescription for the path integral.

Of course, when changing from a point-particle theory to a theory of a field φ, the

corresponding action has to be used, which implies the replacement

∫

dtL(x, t) →
∫

ddxL(φ(x, t)),

with the Lagrangian density L. In this case, it is also no longer the paths of the particles

over which it is integrated, but now it is necessary to integrate over all possible field

configurations

A more detailed description of how to calculate this functional integral in quantum

mechanics can be found elsewhere. Here, the main aim is the field theoretical case, in

which the path integral reads

Z =

∫

Dφ exp
(

i

∫

ddL(φ)
)

, (3.1)

where Z is called the partition function. This is an integral over functions. Of course, in

the same way it is possible to make a discretization for the field-theoretical case as for the

quantum mechanical case, and this yields an operative definition of the path integral. To

deal with it more elegantly requires some functional analysis, which will be discussed now

in more detail.

3.1.2 Functional analysis

The following can be made mathematical more rigorous using the theory of distributions,

in which functionals are defined by conventional integrals over appropriate test functions.

However, this level of mathematical rigor is not necessary, and thus the following will

be made as definitions. In general, under most circumstances in particle physics, this

is sufficient. However, situations may arise, where it is necessary to go back to a more

mathematical formulation.

The starting point before defining functional integration is the definition of a functional

derivative. The basic ingredient for a functional derivative δ are the definitions

δ1

δφ(x)
= 0

δφ(y)

δφ(x)
= δ(x− y)

δ

δφ(x)
(α(y)β(z)) =

δα(y)

δφ(x)
β(z) + α(x)

δβ(z)

δφ(x)
,
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in analogy to conventional derivatives.

Consequently, a power series of a functional is defined as

F [φ] =
∞
∑

n=0

∫

dx1...dxn
1

n!
T (x1, ..., xn)φ(x1)...φ(xn),

where the coefficients of an ordinary power series are now replaced by coefficient functions

T . In particular, they can be obtained as

T (x1, ..., xn) =
δn

δφ(x1)...δφ(xn)
F [φ]

∣

∣

∣

∣

φ=0

.

This defines the most important concepts for differentiation.

Concerning the functional integrals, they are as usually defined to be the inverse oper-

ation to functional derivatives. Therefore, integration proceeds as usual. In most practical

cases, the relevant functional are either polynomials or can be expanded in a power series,

and then functional integrals are straight-forward generalization of the usual integrals. In

particular

∫

Dφ = φ(x)
∫

Dφφ =
1

2
φ(x)2,

where the first expression implies that δ
∫

equals not to zero, but equals a δ-function.

Of particular importance are Gaussian integrals, i. e. the generalization of

∞
∫

−∞

dx√
π
e−ax

2

=
1√
a
. (3.2)

The result can be either obtained from the power series expansion or directly gleaned from

the finite-dimensional generalization of Gaussian integrals, which is given by

∞
∫

−∞

dx1√
π
...

∞
∫

−∞

dxn√
π
e−x

TAx =
1√
detA

,

with an arbitrary matrix A, though for a finite result its square-root must be invertible, i.

e., no zero eigenvalues may be present.

The functional generalization is then

∫

Dφe−
∫

dxdyφ(x)A(x,y)φ(y) =
1

√

detA(x, y)
,
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where A may now be operator-valued. Especially derivative operators will appear in this

context later. The determinant of such an operator is given by the infinite product of its

eigenvalues, and can alternatively be evaluated by the expression

detA = exp tr log(A),

just like for matrices, which is of great practical relevance. Alternatively, detA can be

expressed in terms of the solutions of the eigenvalue equations

∫

dyA(x, y)φ(y) = λφ(x),

where the eigenvalues λ form a continuous manifold. The determinant is then given as the

product of all eigenvalues.

An important property is the definition that a functional integral is translationally

invariant. Thus, for an arbitrary functional F and an arbitrary function η and constant α

∫

DφF [φ+ αη]
φ→φ−αη

=

∫

DφF [φ] (3.3)

holds by definition.

From these properties follows the validity of the substitution rule as

∫

DφF [φ] =

∫

Dψ det
δφ

δψ
F [φ [ψ]] ,

where the Jacobi determinant det(δφ/δη) appears. In case of a linear transformation

φ(x) =

∫

dyη(x, y)ψ(y),

the determinant is just det η(x, y) of the infinite-dimensional matrix η(x, y) with the indices

x and y.

With these definitions it is then possible to write down a closed expression for the

connected correlation functions 〈φ(x1)...φ(xn)〉, which contain all knowledge on any given

theory, for a theory with a single field φ with action S. They are given by

〈Tφ(x1)...φ(xn)〉 =
∫

Dφφ(x1)...φ(xn)eiS[φ]
∫

DφeiS[φ] . (3.4)

This is essentially the basic axiom of the path-integral formulation of a quantum field

theory.
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Such a writing permits also a more elegant way to express the correlation functions

by1

〈Tφ(x1)...φ(xn)〉 =
1

Z [0]

∫

DφeiS[φ]+
∫

ddxφ(x)j(x) φ(x1)...φ(xn)

∣

∣

∣

∣

j=0

=
1

Z [0]

∫

Dφ δn

δj(x1)...δj(xn)
eiS[φ]+

∫

ddxφ(x)j(x)

∣

∣

∣

∣

j=0

=
1

Z [0]

δn

δj(x1)...δj(xn)
Z [j]

∣

∣

∣

∣

j=0

,

where the quantities j are denoted as sources. From this generating functional Z [j] it

is possible to determine also generating functionals for connected and amputated vertex

functions. Furthermore, this permits to reconstruct the original path-integral as

Z[j] =
∞
∑

n=0

∫

ddx1...d
dxn〈Tφ(x1)...φ(xn)〉j(x1)...j(xn),

which can be proven by comparing both expressions in an expansion term-by-term. This

construction can be readily generalized to theories with more than one field.

3.2 Matter fields

The previous treatment permits the description of both scalar fields and gauge fields.

However, it is insufficient when treating fermionic fields. The reason is that the classical

action appears, which in its current form cannot take into account the Pauli principle, and

thus that fermions have to anticommute. In the canonical quantization procedure, this

is imposed by the canonical anti-commutation relation. In the path integral formulation,

this achieved by replacing the classical fermionic fields with classical anti-commuting fields.

This is achieved by replacing ordinary numbers with Grassmann numbers.

3.2.1 Grassmann variables

The starting point is to define anti-commuting numbers, αa, by the property

{αa, αb} = 0

where the indices a and b serve to distinguish the numbers. In particular, all these number

are nilpotent,

(αa)2 = 0.

1There are subtleties involved, if the source breaks any symmetry explicitly. Then the limit of vanishing

source may be different from the situation at zero source. This will not play a role in this lecture, but

does sometimes in QCD.
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Hence, the set S of independent, so-called, Grassmann numbers with a = 1, ..., N base

numbers are

S = {1, αa, αa1αa2 , ..., αa1 × ...× αaN},
where all αi are different. This set contains therefore only 2N elements. Of course, each

element of S can be multiplied by ordinary complex numbers c, and can be added. This

is very much like the case of ordinary complex numbers. Such combinations z take the

general form

z = c0 + caα
a +

1

2!
cabα

aαb + ...+
1

N !
ca1...aNα

a1 × ...× αaN . (3.5)

Here, the factorials have been included for later simplicity, and the coefficient matrices

can be taken to be antisymmetric in all indices, as the product of αas are antisymmetric.

For N = 2 the most general Grassmann number is therefore

z = c0 + c1α
1 + c2α

2 + c12α
1α2,

where the antisymmetry has already been used. It is also common to split such numbers

in their (Grassmann-)odd and (Grassmann-)even part. Since any product of an even

number of Grassmann numbers commutes with other Grassmann numbers, this association

is adequate. Note that there is no possibility to invert a Grassmann number, but products

of an even number of Grassmann numbers are ordinary numbers and can therefore be

inverted.

The conjugate of a product of complex Grassmann-numbers, with independent real

and imaginary part, is defined as

(αa...αb)∗ = (αb)∗...(αa)∗ (3.6)

Note that the Grassmann algebra is different from the so-called Clifford algebra

{βa, βb} = 2ηab

which is obeyed, e. g., by the γ-matrices appearing in the Dirac-equation, and therefore

also in the context of the description of fermionic fields.

To do analysis, it is necessary to define functions on Grassmann numbers. First,

start with analytic functions. This is rather simple, due to the nilpotency of Grassmann

numbers. Hence, for a function of one Grassmann variable

z = b+ f

only, with b even and f odd, the most general function is

F (z) = F (b) +
dF (b)

db
f.
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Any higher term in the Taylor series will vanish, since f 2 = 0. Since Grassmann numbers

have no inverse, all Laurent series in f are equivalent to a Taylor series. For a function of

two variables, it is

F (z1, z2) = f(b1, b2) +
∂F (b1, b2)

∂b1
f1 +

∂F (b1, b2)

∂b2
f2 +

1

2

∂2F (b1, b2)

∂b1∂b2
f1f2.

There are no other terms, as any other term would have at least a square of the Grassmann

variables, which therefore vanishes. Note that the last term is not zero because F (b1, b2) 6=
F (b2, b1) in general, but even if this is the case, it is not a summation.

This can be extended to more general functions, which are no longer analytical in their

arguments,

F (b, f) = F0(b) + F1(b)f (3.7)

and correspondingly of more variables

F (b1, b2, f1, f2) = F0(b1, b2) + Fi(b1, b2)fi + F12(b1, b2)f1f2.

The next step is to differentiate such functions. Note that the function F12 has no definite

symmetry under the exchange of the indices, though by using an antisymmetric general-

ization this term can be again written as Fijfifj if Fij is anti-symmetric.

Differentiating with respect to the ordinary variables occurs as with ordinary functions.

For the differentiation with respect to Grassmann numbers, it is necessary to define a new

differential operator by its action on Grassmann variables. As these can appear at most

linear, it is sufficient to define

∂

∂fi
1 = 0

∂

∂fi
fj = δij (3.8)

Since the result should be the same when f1f2 is differentiated with respect to f1 irrespec-

tive of whether f1 and f2 are exchanged before derivation or not, it is necessary to declare

that the derivative anticommutes with Grassmann numbers:

∂

∂f1
f2f1 = −f2

∂

∂f1
f1 = −f2 =

∂

∂f1
(−f1f2) =

∂

∂f1
f2f1.

Alternatively, it is possible to introduce left and right derivatives. This will not be done

here. As a consequence, the product (or Leibnitz) rule reads

∂

∂fi
(fjfk) =

(

∂

∂fi
fj

)

fk − fj
∂

∂fi
fk.
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Likewise, the integration needs to be constructed differently.

In fact, it is not possible to define integration (and also differentiation) as a limiting

process, since it is not possible to divide by infinitesimal Grassmann numbers. Hence

it is necessary to define integration. As a motivation for how to define integration the

requirement of translational invariance is often used. This requires then
∫

df = 0
∫

dff = 1 (3.9)

Translational invariance follows then immediately as
∫

df1F (b, f1 + f2) =

∫

df1(h(b) + g(b)(f1 + f2)) =

∫

df1(h(b) + g(b)f1) =

∫

df1F (b, f1)

where the second definition of (3.9) has been used. Note that also the differential anti-

commutes with Grassmann numbers. Hence, this integration definition applies for fdf . If

there is another reordering of Grassmann variables, it has to be brought into this order.

In fact, performing the remainder of the integral using (3.9) yields g(b). It is an inter-

esting consequence that integration and differentiation thus are the same operations for

Grassmann variables, as can be seen from the comparison of (3.8) and (3.9).

3.2.2 Fermionic matter

To describe fermionic matter requires then to replace all fields describing fermions, e. g. the

electron fields ψ in the QED Lagrangian (3.15) below, by fields of Grassmann variables. I.

e., a fermion field associates each space-time point with a spinor of Grassmann variables.

The most important relation necessary later on is again the Gaussian integral over

Grassmann fields. To illustrate the use of Grassmann functions, this will be calculated in

detail. The starting point is the integral
∫

dα∗dα exp(α∗Aα),

with some ordinary number A. The Taylor expansion of this expression is
∫

dα∗dα exp(α∗Aα) =

∫

dα∗dαα∗Aα,

and any terms linear or constant in the Grassmann variables will vanish during the in-

tegration, and likewise, all higher-order terms will be zero, since α2 = α∗2 = 0. In the

next step, it is necessary to be very careful in the ordering of the integrals, as also the
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differentials anti-commute with the variables. To act with dα on the variable α requires

to anti-commute it with α∗ and dα∗ first, giving a factor of (−1)2,
∫

dαdα∗α∗Aα = −
∫

dα∗dαα∗Aα =

∫

dα∗α∗Adαα =

∫

dα∗α∗A = A (3.10)

which is remarkably different from the normal Gaussian integral (3.2), as it returns A

instead of A−1/2. It can be likewise shown, that the generalization to many variables

yields detA instead of (detA)−1/2. Similarly, it can be shown that for the substitution

rule the inverse Jacobian appears. All these results will be useful now when quantizing

QED.

3.3 Quantization of QED

In principle, quantizing a theory is now performed by writing down the path integral (3.1)

and use (3.4) to calculate the correlation function. That’s it. Unfortunately, there is a

twist to this for gauge theories, which comes in two levels of escalation.

Start with the naive quantization of the free Maxwell theory with the classical La-

grangian

L = −1

4
FµνF

µν

Fµν = ∂µAν − ∂νAµ

by writing down the generating functional

Z[jµ] =

∫

DAµ exp
(

iS[Aµ] + i

∫

ddxjµA
µ

)

S[Aµ] =

∫

ddxL,

where the normalization has been absorbed into the measure for convenience. This integral

is just a Gaussian one. Hence, it should be possible to integrate it. It takes the form

Z[jµ] =

∫

DAµ exp
(

i

∫

ddx

(

1

2
Aµ(gµν∂

2 − ∂µ∂ν)A
ν + jµAµ

))

.

However, it is not possible to perform this integral, since this would require the matrix

gµν∂
2 − ∂µ∂ν (3.11)

to be invertible, which is not the case. This can be seen directly by the fact that its

momentum-space version gµνk
2 − kµkν is a projection operator which vanishes when con-

tracted with kµ.
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An alternative way to see this is to note that any gauge transformation

Aµ → Agµ = Aµ + ∂µg(x) (3.12)

with g arbitrary leaves S invariant, and, as a shift, also does not influence the measure.

Thus, there are flat directions of the integral, namely along such a gauge orbit, and thus

the integral diverges. There are only few possibilities to escape. One is to perform the

quantization on a discrete space-time grid in a finite volume, determine observables and

only after this take the continuum and infinite-volume limit. This is in most cases only

feasible numerically, but then a rather successful approach, and will be detailed below

in section 5.1.4. Another one is to determine only quantities which are invariant under

gauge transformations. However, it turns out that these are always including non-local

expressions beyond perturbation theory, making them very hard to handle in practical

calculations. The most convenient choice is very often performing gauge-fixing, i. e.,

cutting off the flat directions of the integral. This latter possibility will be used here, as

it is very illustrative.

Select, as in classical electrodynamics, thus a gauge condition C[Aµ, x] = 0 which

selects uniquely exactly one gauge copy. I. e., for a set of gauge-fields related by gauge

transformations (3.12) there is one and only one, but also at least one, which satisfies the

condition C. An example of such a condition is, e. g., the Landau gauge

C = ∂µAµ, (3.13)

at least as long as all field amplitudes are small. This is not true in general, and will be

taken up in section 5.5.5.2. For the moment, this is sufficient, but will limit the following

to be strictly valid only either in perturbation theory or in QED, but not in QCD.

To make the path integral well-defined, it is necessary to factor off the irrelevant number

of field configurations equivalent under the gauge transformation (3.12), and just remain

with one representative for each physically inequivalent field configuration. An alternative,

given below by covariant gauges, is to average over all copies with a uniquely defined and

integrable weight for each gauge copy.

To do this consider the functional generalization of the Dirac-δ function. The expression

∆−1[Aµ] =

∫

Dgδ(C[Agµ])

contains an integration over all gauge-transformations g for a fixed physical field configu-

ration Aµ, but by the δ-function only the weight of the one configurations satisfying the

gauge condition is selected. Hence, when performing the change of variables g → g+g′ with

some gauge transformation g′ it remains unchanged by definition: The functional integral
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is translationally invariant. As a consequence, ∆ is actually gauge-invariant. Evaluating

it at the gauge-transformed configuration Ag
′

µ yields

∆[Ag
′

µ ]
−1 =

∫

Dgδ(C[Ag+g′µ ]) =

∫

D(g − g′)δ(C[Agµ])

=

∫

Dgδ(C[Agµ]) = ∆[Aµ]
−1.

Inverting ∆, the relation

1 = ∆[Aµ]

∫

Dgδ(C[Agµ]) (3.14)

is found.

Inserting this into the functional integral yields

Z =

∫

DAµ∆[Aµ]

∫

Dgδ(C[Agµ]) exp(iS[Aµ])

=

∫

Dg
∫

DAg′µ∆[Ag
′

µ ]δ(C[A
g+g′

µ ]) exp(iS[Ag
′

µ ])

=

∫

Dg
∫

DAµ∆[Aµ]δ(C[Aµ]) exp(iS[Aµ])

In the second line, a gauge transformation of the integration variable Aµ is performed. In

the last line the inner variables of integration have been changed from Ag
′

µ to A−g−g′

µ and it

has been used that all expressions, except the δ-function, are invariant. Hence, the integral

is not influencing anymore the remaining integral, and contributes only a factor, which

can be removed by appropriate normalization of the functional integral. In addition, it

would have been possible to also replace the action by any gauge-invariant functional, in

particular expressions involving some observable f in the form f [Aµ] exp(iS[Aµ]). Thus,

gauge-fixing is not affecting the value of gauge-invariant observables. Due to the δ-function,

on the other hand, now only gauge-inequivalent field configurations contribute, making the

functional integral well-defined.

It remains to clarify the role of the functional ∆. It is always possible to resolve the

condition C[Agµ] = 0 to obtain g as a function of C. Hence, by exchanging C and g as

variables of integration yields

∆[Aµ]
−1 =

∫

DC
(

det
δC

δg

)−1

δ(C) =

(

det
δC[Aµ, x]

δg

)−1

C=0

,

where it has been used that for satisfying C there is one and only one g for any gauge

orbit. The appearing determinant is just the corresponding Jacobian. Thus, the function

∆ is given by

∆[Aµ] =

(

det
δC[Aµ, x]

δg(y)

)

C=0

= detM(x, y).
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The Jacobian has the name Faddeev-Popov operator, abbreviated by M , and the deter-

minant goes by the name of Faddeev-Popov determinant.

A more explicit expression is obtained by using the chain rule

M(x, y) =
δC[Aµ, x]

δg(y)
=

∫

ddz
δC[Aµ, x]

δAµ(z)

δAµ(z)

δg(y)

=

∫

ddz
δC[Aµ, x]

δAµ(z)
∂yµδ(y − z) = −∂yµ

δC[Aµ, x]

δAµ(y)
.

To proceed further, a choice of C is necessary. Choosing, e. g., the Landau gauge C =

∂µAµ = 0 yields

M(x, y) = −∂2δ(x− y).

Due to the presence of the δ-function the functional det∆ can then be replaced by detM

in the path integral. Note that this result is independent of the field variables, and thus

can also be absorbed in the normalization constant. Thus, at this point everything is

complete. However, the resulting integral has always the implicit Landau gauge condition

to be taken into account. To have rather an explicit condition, general covariant gauges

are more useful.

These are obtained by selecting the condition C = D[Aµ, x] + Λ(x) for some arbitrary

function Λ. In general, this will make Lorentz symmetry not manifest. This can be

recovered by integrating the path integral over all possible values of Λ with some arbitrary

integrable weight function. Since the path integral will not depend on Λ, as this is a gauge

choice, the integration is only an arbitrary normalization. Using a Gaussian weight, the

path integral then takes the form

Z =

∫

DΛDAµ exp
(

− i

2ξ

∫

ddxΛ2

)

detMδ(C) exp(iS)

=

∫

DAµ detM exp

(

iS − i

2ξ

∫

ddxD2

)

,

where the δ-function has been used in the second step. For the most common choice

D = ∂µA
µ, the so-called covariant gauges, this yields the final expression

Z =

∫

DAµ exp
(

iS − i

2ξ

∫

ddx(∂µA
µ)2
)

.

This additional term has the consequence that the Gaussian integral is now well-defined,

since the appearing matrix is changed to

gµν∂
2 − ∂µ∂ν → gµν∂

2 −
(

1− 1

ξ

)

∂µ∂ν ,
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which can be inverted. The appearing parameter ξ, the so-called gauge parameter, is

arbitrary, and can be chosen at will, defining the gauge. Furthermore, the ever-so popular

Landau gauge corresponds to the limit ξ → 0, as this is corresponding to the case where

all of the weight of the weight-function is concentrated only on the gauge copy satisfying

∂µAµ = 0. However, in principle this limit may only be taken at the end of the calculation,

as it appears to recover the non-invertible original operator (3.11) in Maxwell theory. The

choice ξ = 1 is known as Feynman gauge.

This process has at no place involved explicitly any matter fields. It therefore can be

performed in the same way in the presence of matter fields. Since the local gauge freedom

has been taken care of already, no further problems arise, and to quantize QED, it is

only necessary to replace the action by the one of QED, and to also integrate about the

(Grassmann-valued) fermion fields, yielding

Z =

∫

DAµDψDψ̄ exp

(

−i
∫

ddx

(

1

4
FµνF

µν − ψ̄(iγµDµ −m)ψ +
1

2ξ
(∂µA

µ)2
))

,(3.15)

from which now calculations can be performed. How this can be done in practice will be

discussed after extending the quantization process to QCD.

Of course, this is only the result for a particular class of gauges, and many others exist.

In particular, it is possible to chose conditions C which include also the matter fields

explicitly or which are not even Lorentz invariant, like the Coulomb gauge
∑3

i=1 ∂iAi = 0.

3.4 Group theory

To treat QCD requires some group theory as group-theoretical structures will be required.

These will be collected here before formulating QCD itself.

The basic element will be to represent the operators associated with color charge by

generators of an algebra, as so-called Lie algebra G, which form the base vectors of a vector

space. Hence, if there should be N independent charges, there must be N independent

base vectors τa with a = 1...N and N = dimG, and the Lie algebra must therefore be

N -dimensional. The defining property of such an algebra are the commutation relations
[

τa, τ b
]

= ifabcτ
c.

with the anti-symmetric structure constants fabc, which fulfill the Jacobi identity

fabef cde + facef dbe + fadef bce = 0.

These base vectors can be chosen hermitian, i. e., τa = τ †a . Note that the position at top or

bottom (covariant and contravariant) of the indices is of no relevance for the Lie algebras

encountered in the standard model, but can become important in more general settings.
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Such a Lie algebra can be represented, e. g., by a set of finite-dimensional matrices.

An example is the su(2) algebra with its three generators, which can be chosen to be the

Pauli matrices,

τ 1 =

(

0 1

1 0

)

τ 2 =

(

0 −i
i 0

)

τ 3 =

(

1 0

0 −1

)

.

Furthermore, to each algebra one or more groups can be associated by exponentiation, i.

e.,

λa = eiτ
a

, (3.16)

provides group elements for the associated group, which are by definition unitary and thus

λ−1
a = λ†a. For su(2), these are again the Pauli matrices, generating the group SU(2).

However, the relation (3.16) is not necessarily a unique relation, and there can be more

than one group representation. E. g., for su(2) there are two possible groups related

to the algebra by the relation (3.16), the group SU(2) and the group SU(2)/Z2, which

is isomorphic to SO(3), where matrices which differ only be a negative unit matrix are

identified with each other.

Because of the exponential relation, a generic group element exp(iαaτ
a) with real

numbers αa can be expanded for infinitesimal αa as 1 + iαaτ
a. Thus the algebra de-

scribes infinitesimal transformations in the group. This will play an important role when

introducing gauge transformations for non-Abelian gauge theories.

There is only a denumerable infinite number of groups which an be constructed in

this way. One are the N -dimensional special unitary groups with algebra su(N), and

the simplest group representation SU(N) of unitary, unimodular matrices. The second

set are the symplectic algebras sp(2N) which are transformations leaving a metric of

alternating signature invariant, and thus are even-dimensional. Finally, there are the

special orthogonal algebras so(N), known from conventional rotations. Besides these,

there are five exceptional algebras g2, f4, and e6, e7, and e8. The u(1) algebra of Maxwell

theory fits also into this scheme, the u(1) group is the special case of all fabc being zero,

and the algebra being one-dimensional. This is equivalent to so(2).

The most relevant algebras for QCD are su(2) and su(3). The su(2) algebra has the

total-antisymmetric Levi-Civita tensor as structure constant, fabc = ǫabc with ǫabc = 1.
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The algebra su(3) has as non-vanishing structure constants

f 123 = 1

f 458 = f 678 =

√
3

2

f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 =
1

2
,

and the corresponding ones with permuted indices. There is some arbitrary normalization

possible, and the values here are therefore conventional.

From these, also the generators for the eight-dimensional algebra su(3) can be con-

structed, the so-called Gell-Mann matrices,

τ 1 =







0 1 0

1 0 0

0 0 0






τ 2 =







0 −i 0

i 0 0

0 0 0






τ 3 =







1 0 0

0 −1 0

0 0 0







τ 4 =







0 0 1

0 0 0

1 0 0






τ 5 =







0 0 −i
0 0 0

i 0 0






τ 6 =







0 0 0

0 0 1

0 1 0







τ 7 =







0 0 0

0 0 −i
0 i 0






τ 8 =

1√
3







1 0 0

0 1 0

0 0 −2






. (3.17)

In general, there are N2 − 1 base vectors for su(N), but the dependency for the other

algebras is different. For the sake of simplicity, in the following only the expressions for

su(N) will be given.

Generators, which are diagonal as matrices, and therefore commute with each other,

are said to be in the Cartan subalgebra or subgroup of the algebra or group, respectively.

For su(2), this is only one generator, for su(3) there are two.

These lowest-dimensional realization of the commutation relations is called the fun-

damental representations of the algebra or group. Since the commutation relations are

invariant under unitary transformations, it is possible to select a particular convenient

realization. Note, however, that there may be more than one unitarily inequivalent funda-

mental representations. For su(2), there is only one. For su(3), they are two, the second

one created by using the −λa∗ matrices.

It also possible to give representations of the algebras with higher-dimensional matrices.

The next simple one is the so-called adjoint representations with the matrices

(Aa)ij = −ifaij ,



34 3.4. Group theory

which are three-dimensional for su(2) and eight-dimensional for su(3). There are also cases

in which the fundamental and the adjoint representation coincide. This can be continued

to an infinite number of further representations, which will not be needed here.

Further useful quantities are given by the Dynkin index TR for an arbitrary represen-

tation R (R being e. g. τ or A)

trRaRb = δabTR,

and the Casimirs CR

Ra
ijR

a
jk = δikCR,

being for su(N) (N2 − 1)/(2N) for the fundamental representation and N for the adjoint

representation.

To perform a path-integral quantization of a theory involving Lie algebras, it will be

necessary to integrate over a group. This can be done using the Haar measure, defined for

group elements g = exp(θaτa) as

dg = I(θ)ΠN
a=1dθ

a,

where I is the integral measure. The Haar measure is invariant under a variable transfor-

mation using a different group-element, i. e., for g → gg′ with an arbitrary different, but

fixed, group element g′ no Jacobian appears. This replaces the translational invariance of

the measure of ordinary integrals. Furthermore, the Haar measure is defined such that

∫

G

dg = 1,

i. e., an integral over the complete group yields unity. The measure I can be shown to be

I(θ) =
1

VG
detM

g−1 ∂g

∂θa
= iτ bM ba (3.18)

VG =

∫

G

detMΠN
a=1dθ

a

where the second line is an implicit definition, and VG is the appropriate normalization

function.

As an example, group elements of SU(2) can be written as

g = ei
θaτa

2 =

(

cos η1
2
+ i sin η1

2
cos η2 ie−iη3 sin η1

2
sin η2

ieiη3 sin η1
2
sin η2 cos η1

2
− i sin η1

2
cos η2

)

, (3.19)
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where the three-dimensional vector θa with maximum length of 2π due to the periodicity of

the exponential has been decomposed into polar coordinates with η1 and η3 ranging from

0 to 2π and η2 to π. Using the implicit definition (3.18), this yields the Haar measure for

SU(2)

dg =
4

VG
sin2 η1

2
dη1 sin η2dη2dη3,

and the group volume VG has a value of 16π2.

This completes the required group theory necessary to describe QCD.

3.5 Yang-Mills theory

This will permit to formulate QCD in the next chapter. In a first step, this will require the

introduction of a gauge theory being a tensor product of a vector field times a Lie algebra,

a so-called Yang-Mills theory. This will be done here for arbitrary gauge groups, though

the dimension of the algebra will be referred to as colors. After that, the algebra will be

specialized to the ones needed in QCD, su(3), with the group representation SU(3)/Z3.

However, the division by Z3 will not be relevant in perturbation theory.

The replacement is rather direct. In Maxwell theory, the gauge fields were a product

of the (trivial) generator of u(1), being 1, and the gauge field Aµ. Thus, for a theory

including a Lie algebra, a so-called Yang-Mills theory, just the generator will be replaced

by the generators of the group, i. e., the gauge fields will be given as

Aµ = Aaµτa

with the generators τa being in some representation of the gauge algebra. Hence, there

are dimG gauge fields in a Yang-Mills theory, which are essentially algebra-valued. In the

case of the standard model, the representation is the fundamental one, though most of the

following is general.

It then remains to construct a gauge-invariant action for Yang-Mills theory. This is

again an axiomatic process, which can be motivated by various geometric arguments, but

in the end remains a postulate.

Since the gauge field is now Lie-algebra-valued, so will be any gauge transforma-

tion function, τaωa(x), from which the group-valued unitary gauge transformation G =

exp igτaωa is obtained. The gauge transformation acts now on the gauge fields as

Aµ → GAµG
−1 +G∂µG

−1, (3.20)
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which in infinitesimal form reads for the gauge fields Aaµ

Aaµ → Aaµ +Dab
µ ωb

Dab
µ = δab∂µ − gfabcA

c
µ,

where Dab
µ is the covariant derivative in the adjoint representation of the gauge group.

There are two remarkable facts about this. One the one hand, there appears an arbitrary

constant g in this relation. This constant will later turn out to take the place of the

conventional electric charge as the coupling constant of Yang-Mills theory. The second

is that the transformation is no longer linear, but there appears a product, even in the

infinitesimal case, of the gauge field and the gauge transformation function ωa. This

non-linearity gives rise to all kind of technical complications.

This more lengthy expression requires also a change of the field-strength tensor, to

obtain a gauge-invariant theory in the end. The field strength tensor of Yang-Mills theory

is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] = F a
µντa = (∂µA

a
ν − ∂νA

a
µ + gfabcAbµAcν)τa.

There are two more remarkable facts about this field strength tensor. One is that it is no

longer linear in the gauge fields, but that there appears an interaction term: Gauge fields

in a Yang-Mills theory interact with each other, and the theory is even without matter

non-trivial. Furthermore, the appearance of g confirms its interpretation as a coupling

constant. The second is that a quick calculation shows that this expression is not gauge-

invariant, in contrast to Maxwell theory. The reason is the non-commutativity of the

algebra-valued gauge fields.

However, the combination

tr(FµνF
µν) = F a

µνF
µν
a

is. Thus, in analogy to Maxwell theory, the Lagrangian

L = −1

4
tr(FµνF

µν) = −1

4
F a
µνF

µν
a ,

defines a suitable gauge-invariant object, which defines Yang-Mills theory. Though it looks

simple at first, it is a highly non-trivial theory, as it includes the interaction of three and

four gauge bosons.

Another consequence of the gauge-variance of the field strength tensor is that color-

electric and color-magnetic fields are gauge-variant as well, and they can thus not be

measured: Yang-Mills theories do not manifest themselves as observable fields nor as

observable color waves. From this follows also that color charge is gauge-variant and thus
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not observable, in contrast to electric charge. The only type of gauge-invariant observables

in Yang-Mills theory are bound-states, the aforementioned glueballs, and the interactions

and behaviors of these glueballs. However, after fixing a gauge, it is of course possible to

make statements also about the gauge bosons, and even use experiments to indirectly say

something about the properties of gauge bosons in a particular gauge.



Chapter 4

Perturbative QCD

This now provides the basis to finally formulate QCD as a field theory.

4.1 QCD as a field theory

Based on section 3.5, it is straightforward to include also fermions (or scalars) in a Yang-

Mills theory. To do this, it is necessary to select a representation for the matter field ψ.

They then receive an additional index i, which counts the dimensionality of representation

of the gauge group: this enumerates the color. The matter fields, in contrast to the gauge

fields, are elements of the group, and not of the algebra. In particular, fundamental matter

fields are not invariant under center transformations, and thus explicitly break the group

down to its centerless subgroup, if it has non-trivial center.

In analogy to QED they then transform under gauge transformations as

ψi → (Gψ)i = Gijψj = exp (−igτaωa)ij ψj,

which is therefore a group transformation. The generator τa is now in the chosen repre-

sentation of the matter-fields.

To construct a gauge-invariant action, the covariant derivative for minimal coupling

has to include this as well, and it reads now

(Dµ)ij = δij∂µ + igAaµ(τa)ij.

with again the generators τa in the representation of the matter fields.

QCD contains the six quark flavors, counted by a further index f of quarks, which are

all in the fundamental representation of the gauge group, which turns out to be SU(3)/Z3

by comparison to experiment. Since the center is absent, it is not broken by the matter

38
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fields. This also explains the difference of gluon and quark colors: The respective indices

belong to different representations of the gauge group.

Thus, the Lagrangian of QCD finally reads

LQCD = −1

4
F a
µνF

a
µν +

∑

f

ψ̄fi (iγ
µDij

µ −mf)ψ
f
j , (4.1)

where the generators τa appearing in the covariant derivative are the Gell-Mann matrices

(3.17). Here the tree-level mass of the quarks mf has been included explicitly, as the

Brout-Englert-Higgs effect in calculations concentrating on QCD phenomena is usually

approximated by such tree-level masses.

It should be noted that the coupling appearing in the covariant derivatives is the same

for all flavors. The difference in color comes only from the different group indices, e. g.,

index i = 1 is red, and so on. This is in contradistinction to QED, where the different

flavors (may) have a different charge. The reason for this is the non-linearity of the gauge

transformation of the gauge field (3.20). For the non-linear part to cancel in the covariant

derivative of the matter fields, the value of the gauge coupling g for the gauge fields and all

matter fields has to be the same, a fact which is known as coupling universality. Otherwise,

the theory would not be gauge-invariant. This is not the case for QED, since there is no

non-linear part of the gauge field gauge transformation in QED.

4.2 Quantization of Yang-Mills theories

The quantization of QCD is essentially performed by quantizing Yang-Mills theory. This

follows essentially the same steps as for QED. However, the non-linearity will introduce

further complications, and will necessitate the introduction of further auxiliary fields, the

so-called ghost fields, to obtain a description in terms of a local quantum field theory, at

least in perturbation theory. For QCD, it is as convenient as for QED to not include the

matter fields in the gauge condition, and only this class will be considered. Furthermore,

only the class of covariant gauges will be discussed in detail, though other (non-covariant)

gauges have also been studied intensively in the literature, e. g. Coulomb or axial gauges.

This is beyond the scope of this lecture.

First of all, since the gauge transformations (3.20) leave the action invariant, there

are again flat directions similar to QED, thus giving the same reason to implement a

gauge-fixing procedure. However, in the following only the procedure for the perturbative

case will be discussed. The extension to the non-perturbative case is far from obvious for

non-Abelian gauge theories, due to the presence of the so-called Gribov-Singer ambiguity,

and will be discussed later in section 5.5.5.2.



40 4.2. Quantization of Yang-Mills theories

The first step is again to select a gauge condition, but this time one for every gauge

field, Ca[Aaµ, x] = 0, e. g. again the the Landau gauge1 Ca = ∂µAaµ. The next steps are then

the same as for QED, only keeping in mind to drag the additional indices alongside, and

that the integration over gauge transformations is now performed using the Haar measure.

This continues until reaching the expression

Z =

∫

DG
∫

DAaµ∆[Aaµ]δ(C
a[Aaµ]) exp(iS[A

a
µ])

in which for QED ∆ could essentially be absorbed in the measure. For non-Abelian gauge

theories, this is not possible. For a non-Abelian gauge field, the function ∆ is given by2

∆[Aaµ] =

(

det
δCa[Aµ, x])

δθb(y)

)

Ca=0

= detMab(x, y). (4.2)

with the non-Abelian Faddeev-Popov operator Mab.

A more explicit expression is again obtained using the chain rule

Mab(x, y) =
δCa(x)

δθb(y)
=

∫

d4z
δCa(x)

δAcµ(z)

δAcµ(z)

δθb(y)

=

∫

d4z
δCa(x)

δAcµ(z)
Dcb
µ δ(y − z) =

δCa(x)

δAcµ(y)
Dcb
µ (y). (4.3)

To proceed further, a choice of Ca is necessary, which will again be covariant gauges,

selected by the condition Ca = Da + Λa(= ∂µA
a
µ + Λa) for some arbitrary functions Λa.

The path integral then takes the form

Z =

∫

DΛaDAaµ exp
(

− i

2ξ

∫

d4xΛaΛa

)

detMδ(C) exp(iS)

=

∫

DAaµ detM exp

(

iS − i

2ξ

∫

d4xDaDa

)

, (4.4)

for a Gaussian weight, and the δ-function has been used in the second step. The arbitrary

parameter ξ is called the gauge parameter. As the determinant of an operator is a highly

non-local object, the current expression is unsuited for most calculations.

This non-locality can be recast, using auxiliary fields, as an exponential. Using the

rules of Grassmann numbers it follows immediately that

detM ∼
∫

DcaDc̄a exp
(

−i
∫

d4xd4yc̄a(x)M
ab(x, y)cb(y)

)

, (4.5)

1For simplicity, here only gauge conditions linear in the group indices are used. Of course, in general

gauge conditions can also depend on gluon fields with a different index than their own.
2This determinant can be zero outside perturbation theory, see again section 5.5.5.2.
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where the auxiliary Faddeev-Popov ghost and antighost fields c and c̄ are Grassmann-

valued scalar fields. Since these are just auxiliary fields, this is not at odds with the

spin-statistics theorem. The fields are in general gauges not related, but may be so in

particular gauges. This is, e. g., the case in Landau gauge where there exists an associated

symmetry. If the condition Da is local in the fields, the Faddeev-Popov operator will be

proportional to δ(x− y), and this ghost term will become local.

It is furthermore often useful to introduce an additional auxiliary field, the Nakanishi-

Lautrup field ba. This is obtained by rewriting

exp

(

− i

2ξ

∫

d4xDaDa

)

∼
∫

Dba exp
(

i

∫

d4x

(

ξ

2
baba + baD

a

))

.

Upon using the equation of motion for the b field, the original version is recovered.

The final expression then reads

Z =

∫

DAaµDbaDcaDc̄a exp
(

iS +

∫

d4x

(

ξ

2
baba + baD

a

)

−
∫

d4xd4yc̄a(x)Mab(x, y)cb(y)

)

.

(4.6)

Choosing the gauge Da = ∂µAaµ = 0, this takes the form

Z =

∫

DAaµDbaDcaDc̄a exp
(

iS + i

∫

d4x

(

ξ

2
baba + ba∂µA

µ
a

)

− i

∫

d4xc̄a∂µDab
µ c

b

)

.

Furthermore, the ever-so popular Landau gauge corresponds to the limit ξ → 0, as this is

corresponding to the case where all of the weight of the weight-function is concentrated

only on the gauge copy satisfying ∂µAaµ = 0. However, in principle this limit may only be

taken at the end of the calculation.

To return to QED, it is sufficient to notice that in this case

Dab
µ φ

b → ∂µφ,

and thus the ghost term takes the form

−i
∫

d4xc̄a∂2ca.

Hence, the ghosts decouple, and will not take part in any dynamical calculations. However,

their contribution can still be important, e. g., in thermodynamics. The decoupling of the

ghosts is not a universal statement. Choosing a condition which is not linear in the gauge

fields will also in an Abelian theory introduce interactions. Furthermore, from the sign of

this term it is also visible that the kinetic term of the ghosts has the wrong sign compared

to ordinary scalars, a sign of their unphysical spin-statistic relation.
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This program can be performed in a much more formal and general way, the so-called

anti-field method, and also using canonical quantization. Both are beyond the scope of

this lecture.

To include fermions requires just to add their contribution to the Lagrangian, and to

integrate over them, as they have not been involved in the gauge-fixing procedure.

4.3 BRST and asymptotic states

As stated, the chromoelectric and chromomagnetic fields themselves are no longer physical

in a Yang-Mills theory. It thus requires some other method to identify physical degrees of

freedom, and a more general construction of the physical state space is required.

A possibility to establish the physical state space is by use of the BRST (Becchi-Rouet-

Stora-Tyutin) symmetry, which is a residual symmetry after gauge-fixing. Perturbatively,

it permits to separate physical from unphysical fields. In the so-called Kugo-Ojima con-

struction it is attempted to extend this construction beyond perturbation theory, though

whether this is possible has not yet been settled. This will be briefly discussed in section

5.5.5.

4.3.1 BRST symmetry

The starting point for the discussion is the gauge-fixed Lagrangian with Nakanishi-Lautrup

fields included

L = −1

4
F a
µνF

µν
a +

ξ

2
baba + baDa −

∫

d4zūa(x)
δDa

δAcν
Dcb
ν ub(z).

Herein the gauge condition is encoded in the condition Ca = 0. Furthermore, matter fields

are ignored, as they will not alter the discussion qualitatively. These contributions will be

reinstantiated later.

This Lagrangian furnishes actually a global symmetry, as it is invariant under the

transformation δB defined as

δBA
a
µ = λDab

µ ub = λsAaµ (4.7)

δBu
a = −λ g

2
fabcubuc = λsua (4.8)

δBū
a = λba = λsūa (4.9)

δBb
a = 0 = λsba. (4.10)

Herein, λ is an infinitesimal Grassmann number, i. e., it anticommutes with the ghost

fields.
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As a consequence, this so-called BRST transformation s has to obey the generalized

Leibnitz rule

s(FG) = (sF )G+ (−1)Grassmann parity of FFsG.

The Grassmann parity of an object is 1 if it is Grassmann odd, i. e. contains an odd

number of Grassmann numbers, and 0 otherwise.

Showing the invariance is simple for the classical Lagrangian, as the transformation

for the gauge boson is just an ordinary gauge transformation with gauge parameter λua,

which is an ordinary real function.

That the remaining gauge-fixing part of the Lagrangian is invariant under a BRST

transformation can be seen as follows. The quadratic term in ba is trivially invariant. The

second term from the gauge-fixing part transforms for a linear gauge condition Da as

s(baDa) = ba
∫

d4y
δDa

δAbµ
sAbµ = ba

∫

d4y
δDa

δAbµ
Dbc
µ uc.

To determine the transformation of the ghost-part, there are four components on which

the transformation acts. The first is when s acts on the anti-ghost. This yields

−s(ūa(x))
∫

d4z
δDa

δAbν
Dbc
ν uc(z) = −ba

∫

d4z
δDa

δAbν
Dbc
ν uc(z).

It therefore precisely cancels the contribution from the second part of the gauge-fixing

term.

The next is the action on the gauge-fixing condition,

∫

d4ys

(

δDa

δAbν(y)

)

Dbc
ν uc =

∫

d4yd4z
δDa

δAbν(y)δA
d
ρ(z)

(sAdρ(z))D
bc
ν uc(y)

=

∫

d4yd4z
δDa

δAbν(y)δA
d
ρ(z)

Dde
ρ ue(z)D

bc
ν uc(y) = 0.

In linear gauges, like the covariant gauges, it immediately vanishes since the second deriva-

tive of the gauge condition is zero. In non-linear gauges, this becomes more complicated,

and in general requires the exploitation of various symmetry properties, depending on the

actual gauge condition.

The two remaining terms can be treated together as

s(Dab
µ ub) = ∂µsu

a − gfabc ((sA
c
µ)ub + Acµsub)

= −g
2
∂µ(f

abcubuc)− gfabcD
cd
µ udub − gfabcfbdeA

c
µu

due

=
g

2
fabc (∂µ(ubu

c)− 2ub∂µuc − 2g(f cdeA
e
µudub + gf de

b Acµudue)).
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The first two terms cancel each other, after adequate relabeling of indices. The last two

terms can be rearranged by index permutation such that the Jacobi identity can be used

so that they vanish as well,

=
g

2
fabc(ub∂

µuc + (∂µub)uc − 2ub∂
µuc)

+g(fabcf decA
µ
eudub + fabcf decA

µ
eudub + fabcf decA

µ
b udue)

= g(fabcf decAµeudub + fadcf ebcAµeudub + faecf dbcAµeudub)

= g(fabef cde + facef dbe + fadef bce)A
µ
cudub = 0,

for which a number of index rearrangements and relabellings are necessary, taking always

the Grassmannian nature of the ghosts duly into account. Hence, indeed the gauge-fixed

Lagrangian is BRST-invariant.

An amazing property of the BRST symmetry is that it is nil-potent, i. e., s2 = 0. This

follows immediately from a direct application. The previous calculation already showed

that

0 = s(Dab
µ u

b) = s2Aaµ.

It is trivial for the anti-ghost and the auxiliary ba field by construction. For the ghost it

immediately follows by

s2ua ∼ s(fabcubuc) ∼ fabcf de
b udueuc − fabcf de

c ubudue = fabcf de
b (udueuc + ucudue) = 0.

The last step is not trivial, but follows from the fact that the ghost product is Grassman-

nian in nature, and only non-zero if all three indices are different, and thus behaves as an

anti-symmetric tensor ǫcde.

There is even more possible. It holds that the gauge-fixing part of the Lagrangian can

be written as

Lf = s

(

ūa
(

ξ

2
ba +Da

))

=
ξ

2
baba + baDa + ūa

∫

d4y
δDa

δAbµ(y)
Dbc
µ ub(y).

Hence, the gauge-fixing part of the Lagrangian is BRST-invariant, since s2 = 0. This can

be generalized to other gauge conditions by adding arbitrary so-called BRST-exact terms

s(ūaFa) with F
a arbitrary to the Lagrangian. The factor of ū is necessary to compensate

the ghost of the BRST transformation, since any term in the Lagrangian must have a

net number of zero ghosts. This extension leads to the so-called anti-field formalism for

gauge-fixing. This will not be pursued further here.
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The BRST transformation for matter fields also take the form of a gauge transformation

with the parameter λua. Therefore, all matter Lagrangian contributions automatically

satisfy invariance under a BRST transformation. For a fermionic or bosonic matter field

φ in representation τa it takes the form

δBφ
i = λiguaτ ija φj

s2φi = igτ ija s(u
aφj) = igτ ija

(g

2
fabcubucφj + iguaubτ

b
jkφ

k
)

∼ g2
{

τa, τ b
}ij

uaubφj = 0,

where in the second-to-last step the relation between structure constants and generators

has been used backwards, permitting to combine both terms into the symmetric anti-

commutator. The combination with the anti-symmetric ghost product yields then zero.

4.3.2 Constructing the physical state space

The following discussion shows how to explicitly construct the state space using BRST

symmetry. It extends thereby the Gupta-Bleuler construction of QED, and it can be

directly extended to include also matter fields.

The first concept in constructing the physical state space is the presence of states which

do not have a positive norm. The simplest example is already given in Maxwell theory.

Choose, e. g., Feynman gauge, i. e. ξ = 1. The corresponding propagator is then given by

Gaussian integration as

〈A†
µ(x)Aν(y)〉 = δabgµν

∫

d4p

(2π)4
eip(x−y)

p2 + iǫ
= −δabgµν

∫

d3p

2(2π)3|~p|e
−ipi(x−y)i .

The norm of a state

Ψ(x) =

∫

d4xf(x)A0(x) |0〉 =
∫

d4xd4p

(2π)4
eip0x0−pixif(p)A0(x) |0〉 ,

with f(x) an arbitrary weight function, created from the vacuum by the operator Aµ then

reads

|Ψ|2 =
∫

d4x

∫

d4y〈A†
0(x)A0(y)〉f †(x)f(x) = −

∫

d3p

2|~p|f
†(p)f(p) < 0.

Hence, there are negative (and zero) norm states present in the state space. These cannot

contribute to the physical state space, or otherwise the probability interpretation of the

theory will be lost. Or at least, it must be shown that the time evolution is only connecting

physical, i. e. with positive definite norm, initial states to physical final states.3

3The precise characterization of what is a final state beyond perturbation theory is open. One pos-

sibility, discussed before, is a non-perturbative extension of the construction to follow. Another one
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That they indeed do not contribute can be shown using the BRST symmetry. In fact,

it will be shown that

QB |ψ〉phys = 0, (4.11)

[QB, ψ]± = sψ.

will be sufficient to define the physical state space, where the second line defines the BRST

charge QB. The ± indicate commutator or anticommutator, depending on whether ψ is

bosonic (commutator) or fermionic (anticommutator). The BRST charge QB can also be

defined from the Noether current. It is given by

QB =

∫

d3x

(

baD
ab
0 ub − ua∂0b

a +
1

2
gfabcubuc∂0ūa

)

.

It is fermionic. Since s2 = 0 it directly follows that Q2
B = 0 as well.

The BRST charge has evidently a ghost number of 1, i. e., the total number of ghost

fields minus the one of anti-ghosts is 1. This ghost number, similarly to fermion number,

is actually a conserved quantum number of the theory. It is due to the invariance of the

Lagrangian under the scale transformation

ua → eαua

ūa → e−αūa,

with real parameter α. Note that such a scale transformation is possible since ua and ūa

are independent fields. Furthermore for a hermitian Lagrangian the relations

u† = u

ū† = −ū

hold. As a consequence, also the BRST transformation and charge have ghost number 1

and are Hermitian. Together, they form the BRST algebra

{QBRST, QBRST} = 0 (4.12)

[iQG, QBRST] = QBRST (4.13)

[iQG, iQG] = 0 (4.14)

as can be seen from an explicit calculation.

characterizes all physical states by the necessary condition to be invariant under renormalization - after

all, physics should be independent of the scale at which it is measured. However, whether this condition

is sufficient, in particular beyond perturbation theory, is also not clear. Bound states with non-zero ghost

number, e. g., may also possess this property, though may not be a viable physical state.
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Since the Lagrangian is invariant under BRST transformation, so is the Hamiltonian,

and therefore also the time evolution and thus the S-matrix,

[QB, H ] = 0

[QB, S] = 0.

Hence, if in fact the BRST symmetry is manifest4, and the condition (4.11) defines the

physical subspace that is already sufficient to show that physical states will only evolve

into physical states. It remains to see what kind of states satisfy (4.11).

Because the BRST charge is nilpotent the state space can be separated in three sub-

spaces:

� States which are not annihilated by QB, V2 = {|ψ〉 |QB |ψ〉 6= 0}.

� States which are obtained by QB from V2, V0 = {|φ〉 | |φ〉 = QB |ψ〉 , |ψ〉 ǫV2}. As a

consequence QBV0 = 0.

� States which are annihilated by QB but do not belong to V0, V1 = {|χ〉 |QB |χ〉 =

0, |χ〉 6= QB |ψ〉 , ∀ |ψ〉 ǫV2}.

The states in V2 do not satisfy (4.11), and therefore would not be physical. The union of

the two other states form the physical subspace.

Vp = V0 ∪ V1.

It is this subspace which is invariant under time evolution. It is not trivial to show that

all states in this space have positive semi-definite norm, but this is possible. This will be

used here without proof. However, all states in V0 have zero norm, and have no overlap

with the states in V1,

〈φ|φ〉 = 〈φ|QB|ψ〉 = 0

〈φ|χ〉 = 〈ψ|QB|χ〉 = 0.

Since matrix elements are formed in this way the states in V0 do not contribute, and every

state in Vp is thus represented by an equivalence class of states characterized by a distinct

state from V1 to which an arbitrary state from V0 can be added, and thus a ray of states.

Therefore, the physical Hilbert space Hp can be defined as the quotient space

Hp = Vp/V0 =
KerQB

ImQB

,

4The consequences of a not manifest BRST are far from trivial, and the non-perturbative status of

BRST symmetry is still under discussion, though there is quite some evidence that if it can be defined it

is well defined. But how to define it is not finally settled.
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the so-called cohomology of the operator QB. Therefore, all states in Hp have positive

norm, provided that the states in V1 have.

To define the theory in the vacuum, use can be made of asymptotic states, in pertur-

bation theory usually known as in and out states. A corresponding physical asymptotic

states ψap must therefore obey

sψap = 0.

In the following, the classification of the fields will be done in this form for perturbation

theory. In this case, this will finally amount to discarding essentially all composite fields.

Beyond perturbation theory, this is no longer possible, as cluster decomposition in general

no longer holds in gauge theories. How to proceed beyond perturbation theory is therefore

not completely understood.

To obtain the asymptotic fields, start with the BRST variation of a given Green’s

functions. Asymptotic states are defined to be the pole-part of the asymptotic field. To

obtain these, start with the formula

〈T (sψi)ψi1 ...ψin〉 = 〈T (sψi)ψk〉 〈Tψkψi1 ...ψin〉 .

In this case, the indices i sum all space-time and internal indices and T is the time-ordering.

Essentially, a one has been introduced. Since in perturbation theory all interactions are

assumed to cease for asymptotic states, the BRST transformation become linear in the

fields

sψi → sψai = Cikψ
a
k .

Furthermore, by comparison with the previous calculation, the coefficients can be defined

as

Cik = 〈T (sψi)ψk〉 =
1

Z[0]

iδ2

δJsψi
δJψk

Z[J ]

at least asymptotically. Note that the source coupled to sψi is necessarily the one for a

composite operator. Since in this case the Green’s functions will be dominated by the

on-shell (pole) part, only those coefficients will be relevant where sψi and ψk have the

same mass.

As a consequence, this condition reads

Jpi sψ
ap
i = Jpi

1

Z[0]

iδ2Z[J ]

δJsψi
δJψk

ψak = 0,

since the BRST-variation of physical fields vanish.

The interesting question is then the form of these asymptotic propagators appearing.

In case of the gauge field

sAlaµ (x) =

∫

d4yRlm
µ (x, y)uma(y), (4.15)
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where the index a stands for asymptotic. That only u appears is due to the fact that the

ghost is the parameter of the BRST transformation. The propagator then has the form

Rab
µ =

〈

T (sAaaµ )ūb
〉

= −
〈

TAaaµ sū
b
〉

.

The later identity is correct, since

s(AB) = (sA)B + (−1)gBAsB (4.16)

and the fact that a physical vacuum expectation value for any pure BRST variation, s(AB)

vanishes, 〈s(AB)〉 = 0. It then follows further

−
〈

TAaµb
b
〉

= −1

ξ

〈

TAaµC
b
〉

=
1

ξ

〈

TAaµA
c
ν

〉

φνbc =
1

ξ
Dac
µνφ

ν
bc (4.17)

where it was assumed in the second-to-last step that the gauge-fixing condition Ca is linear

in the field, Ca = φbcν A
ν , and the appearance of partial derivatives has been compensated

for by a change of sign. This is therefore a statement for all contributions not-orthogonal

to φbcν .

Now, because of Lorentz and (global) gauge invariance, it must be possible to rewrite

Rab
µ = δab∂µR.

Therefore, asymptotically

δab∂µR =
1

ξ
Dac
µνφ

ν
cb = −〈TAaµbb〉 (4.18)

must hold. The gluon propagator is asymptotically the free one. The right-hand side

equals precisely the mixed propagator of the free Aµ and ba field. This one is given by

δab∂µδ(x − y), as can be read off directly from the Lagrangian. Therefore, R = δ(x − y)

to obtain equality. Reinserting this into (4.15) yields

sAaaµ = ∂µu
a.

For the ghost the asymptotic BRST transformation vanishes, since its BRST transform is

of ghost number 2. There is no single particle state with such a ghost number. The BRST

transformed of the anti-ghost field is already linear, yielding

sAaaµ = ∂µu
a

suaa = 0

sūaa = baa

sbaa = 0,
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for the full list of asymptotic BRST transformed fields. Unsurprisingly, these are exactly

the BRST transformations of the free fields.

From this follows that the longitudinal component of Aµ, since ∂µ gives a direction

parallel to the momentum, is not annihilated by s, nor is the anti-ghost annihilated by

the BRST transformation. They belong therefore to V2. The ghost and the Nakanishi-

Lautrup field are both generated as the results from BRST transformations, and therefore

belong to V0. Since they are generated from states in V2 it is said they form a quartet with

parent states being the longitudinal gluon and the anti-ghost and the daughter states being

the ghost and the Nakanishi-Lautrup field. Therefore, these fields not belonging to the

physical spectrum, are said to be removed from the spectrum by the quartet mechanism.

Note that the equation of motion for the field ba makes it equivalent to the divergence of

the gluon field, which can be taken to be a constraint for the time-like gluon. Therefore,

the absence of the Nakanishi-Lautrup field from the physical spectrum implies the absence

of the time-like gluon. Finally, the transverse gluon fields are annihilated by the BRST

transformation but do not appear as daughter states, they are therefore physical. In

general gauges, the second unphysical degree of freedom will be the one constrained by the

gauge-fixing condition to which ba is tied, while the two remaining polarization directions,

whichever they are, will belong to V1.

Of course, the gauge bosons can not be physical, since they are not gauge-invariant.

Therefore, their removal from the spectrum must proceed by another mechanism, which

is therefore necessarily beyond perturbation theory. A proposal for a similar construction

also applying to the gauge bosons has been given by Kugo and Ojima, though its validity

has not yet satisfactorily been established.

The introduction of quarks (or other matter) fields ψ follows along the same lines. It

turns out that all of the components belong to V1, i. e., sψ = 0, without ψ appearing on

any right-hand side, and therefore all fermionic degrees of freedom are perturbatively phys-

ically. This can be directly seen as their gauge, and consequently BRST, transformation

is

δψa = iguaτaijψj ,

and hence its free-field (g = 0) result is sψai = 0. This is expected, since no asymptotic

physical bound-state with ghost and fermion number one exists.

Similar as for the gauge boson, this cannot be completely correct, and has to change

non-perturbatively.
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4.4 Ward-Takahashi and Slavnov-Taylor identities

If a theory has a symmetry, irrespective whether it is global or local and whether it is

explicit or hidden, this symmetry implies that certain changes can be made to the fields

with well-defined consequences. From this results similar well-defined consequences for the

correlation functions. In particular, this implies certain relations between combinations of

correlation functions, so-called Ward-Takahashi or rigid identities for global symmetries,

and Slavnov-Taylor identities for local symmetries.

These identities have two particular useful purposes. One is that it is possible from

the knowledge of some correlation functions to infer knowledge about other correlation

functions. The second use is that by checking the identities after a calculation, it is

possible to determine whether errors occurred, being them either of numerical origin,

by some glitch in the calculation, or by the approximations made. Unfortunately the

fulfillment of the identities is only a necessary condition for the absence of errors, not a

sufficient one. It is always possible that some errors cancel each other in the identities, so

care has to be taken when interpreting a check using such identities.

4.4.1 Ward-Takahashi identities

Take a theory with only bosonic fields for simplicity, otherwise additional factors of minus

one will appear due to the Grassmann nature of fermionic fields. Let the theory be

symmetric under the infinitesimal change

φ → φ′ = φ+ δφ = φ+ ǫf(φ, x), (4.19)

with ǫ infinitesimal. Then the generating functional Z [J ] should not change, i. e., δZ

should be zero. This variation

δF (φ) =
δF

δφ
δφ =

δF

δφ
ǫf

acts on two components in the path integral. One is the action on the action itself, which

yields
1

ǫ
δ
(

eiS+i
∫

ddxJφ
)

= i

(

δS

δφ
+ J

)

ǫfeiS+i
∫

ddxJφ,

to first order in ǫ. The second is the measure. The shift (4.19) is a variable transformation,

which generates a Jacobian determinant. This Jacobian determinant can also be expanded

in ǫ, yielding

det
δφ′

δφ
= det

(

1 +
δǫf

δφ

)

= 1 + ǫ
δf

δφ
+O(ǫ2).
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Together, this yields the variation

0 =
1

ǫ
δZ =

∫

Dφ
(

δf

δφ
+ i

(

δS

δφ
+ J

)

f

)

eiS+i
∫

ddxJφ. (4.20)

Differentiating this expression once with respect to the source and setting the sources

afterwards to zero yields an expression connecting different correlation functions. E. g.,

performing a single derivative will yield
〈

Tφ(y)
δf(φ, x)

δφ(x)

〉

+ i

〈

φ(y)
δS

δφ(x)
f

〉

+ 〈Tf〉 = 0.

In general, there will not only be one field involved, but many fields, numerated by a field

index i. In this case, expression (4.20) takes the form

0 =

∫

Dφi
(

δfk
δφk

+ i

(

δS

δφk
+ Jk

)

fk

)

eiS+i
∫

ddxJφ,

i. e., it becomes a sum over all fields. Deriving this expression in total n times for any

sequence of field types il yields the set of all Ward-Takahashi identities
〈

TΠn
l=1φil(xl)

δfk
δφk(y)

〉

+ i

〈

TΠn
l=1φil(xl)

δS

δφk(y)
fk

〉

+

n
∑

m=1

〈

Πm−1
l=1 φil(xl)fimΠ

n
r=m+1φir(xr)

〉

= 0. (4.21)

To obtain practical cases requires to insert an action with a certain invariance.

Take as an example the action for so-called linear σ-model (or φ4 model) with positive

mass squared,

L =
1

2
(∂µφ)

†∂µφ+
1

2
m2φ†φ− λ(φ†φ)2.

The transformation function is then fi = ∓iφi, where i = 1 refers to φ and i = 2 refers

to φ†. The derivative of f actually vanishes in this case, since the Jacobian matrix under

a linear shift of the fields is zero, by the definition of translational invariance of the path

integral (3.3). This is not necessarily the case, and when treating anomalies a case will be

encountered where the Jacobian is non-vanishing.

Furthermore, the action is invariant under the global symmetry transformation. This

implies
∂S[φi + ǫfi]

∂ǫ
= 0 =

∫

ddx
δS

δφi

∂(φi + ǫfi)

∂ǫ
=

∫

ddx
δS

δφi
fi,

and thus also the second term in (4.20) vanishes. Hence, only the third term remains,

which can be conveniently written as

0 = δ 〈TΠn
l=1φil〉 , (4.22)
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which are called Ward identities in this context. E. g., at level n = 2, this identity implies

〈T (δφ(x))φ(y)†〉+ 〈Tφ(x)δφ(y)†〉 = 〈φ(x)φ(y)†〉 − 〈φ(x)φ(y)†〉 = 0,

which seems rather trivial. However, when rewriting the theory in terms of σ and χ fields,

i. e. φ = σ + iχ, this implies

〈Tδσχ〉+ 〈Tσδχ〉 = 〈χχ〉 − 〈σσ〉 = 0,

which implies that the propagators of both fields are identical, when, as here, no global

symmetry breaking is included. At tree-level, this is immediately visible, but gives a

constraint for the results beyond tree-level.

Of course, this is a rather simple result, and much more interesting ones are obtained

at higher order and/or for more complicated theories. E. g., when the transformation is

taken to be field-independent, but local, the quantum version of the equations of motion,

the Dyson-Schwinger equations, are obtained, as will be exploited below.

4.4.2 Slavnov-Taylor identities

Of course, it is possible to perform the same for a local symmetry, a gauge symmetry. This

yields the so-called Slavnov-Taylor identities (STIs). However, it is rather useful to take a

different route to obtain them. In particular, the BRST symmetry will be very useful to

obtain them much more directly than before.

Take a gauge-fixed theory, in which a BRST symmetry is well-defined and local, i.

e., with a gauge-fixing condition at most linear in the fields. Since the vacuum state is

physical and thus BRST-invariant, s|0〉 = 0, it follows immediately that

0 = 〈s(TΠlφl)〉 =
∑

k

σk〈T ((Πl<kφl)(sφk)(Πm>kφm))〉

where φl stands for any of the fields in the theory, σk is +1 if the expression Πl<kφl is

Grassmann-even, and −1 if it is Grassmann-odd.

A non-trivial example for the usefulness of such an identity is given when regarding

the BRST transformation of the two-point correlator 〈T ūa(x)Db
[

Aaµ, y
]

〉, where Db is the

gauge-fixing condition. This yields

0 = s〈T ūa(x)Db
[

Aaµ, y
]

〉 = 〈T (sūa(x))Db
[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉
= 〈Tba(x)Db

[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉

= −1

ξ
〈TDa

[

Aaµ, x
]

Db
[

Aaµ, y
]

〉 − 〈T ūa(x)(sDb
[

Aaµ, y
]

)〉
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where in the last line the equation of motion for the Nakanishi-Lautrup field has been used.

The next step is to identify the action of the BRST transformation on the gauge-fixing

condition. The BRST transformation annihilates any pure functions not depending on the

fields by definition. Thus, it requires only to specify the action on the gauge condition Da.

The result depends on the choice of this condition, and here one will be chosen which

is linear in the gauge fields, Da = fabµ A
µ
b , though f may contain derivatives, though it will

not contain integrals in the following. This yields

0 = −1

ξ
fµacf

ν
bd〈TAcµAdν〉 − 〈T ūa(x)(sf bcµ Aµc )〉

= −1

ξ
fµacf

ν
bdD

cd
µν − 〈T ūa(x)f bcµ Dµ

cdu
d〉 = −1

ξ
fµacf

ν
bdD

cd
µν −

〈

T ūa(x)
δS

δūc

〉

, (4.23)

where Dcd
µν is the gauge boson’s propagator.

To determine the second expression, the quantum equations of motion, the so-called

Dyson-Schwinger equations, can be used. Since the path integral is by definition translational-

invariant, it follows that

0 =

∫

Dφ δ

iδφ
eiS+i

∫

ddxJφ =

∫

Dφ
(

δS

δφ
+ J

)

eiS+i
∫

ddxJφ =

〈

T

(

δS

δφ(x)
+ J(x)

)〉

.

Differentiating this expression with respect to J(y) yields

0 =

〈

T

(

iφ(y)
δS

δφ(x)
+ iJ(x)φ(y) +

δJ(x)

δJ(y)

)〉

J=0
= i

〈

Tφ
δS

δφ

〉

+ δ(x− y), (4.24)

where the limit of J → 0 has been taken in the last step.

Thus, an expression like the second term in (4.23) is just a δ function. In the present

case, taking the color indices and the Grassmannian nature of the ghost into account, this

finally yields

fµacf
ν
bdD

cd
µν = iξδabδ(x− y),

or for the linear covariant gauges fabµ = δab∂µ in momentum space

pµpνDab
µν(p) = −iξδab. (4.25)

Thus, the gauge boson propagator’s longitudinal part has only a trivial momentum-

dependence. This result could also be derived using functional derivatives or directly

from the gauge condition, and therefore holds irrespective of the calculational scheme,

and in particular beyond perturbation theory.

In the same manner more complicated STIs can be derived. In general, they connect

n-point, n + 1-point, and n + 2-point correlation functions. They are very useful in per-

turbation theory, as the n + 2-point contributions turn out to be always of higher order

in the coupling constant than the order at which a perturbative calculation is performed.

Beyond perturbation theory, however, their usefulness diminishes quickly.
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4.5 Perturbation theory

The most basic method to calculate physical quantities is perturbation theory. The prime

example are cross-sections. However, as will become clear when deriving their perturbative

evaluation, there are many problems which cannot be addressed using this method.

4.5.1 Cross-sections and decays

The primary quantities of interest at experiments are cross-sections and decay processes.

The basic starting point is the quantum mechanical formula for the partial differential

cross section dσ, which has for two incoming particles of mass Mi and momenta pi and n

outgoing particles of momenta qi the form

dσ =
1

4
√

(p1p2)2 −M1M2

(2π)4δ

(

p1 + p2 −
∑

i

qi

)

d3~q1
(2π)3Eq1

× ...× d3~qn
(2π)3Eqn

|Mfi|2,

where M is the transition matrix element between the incoming state i and the outgo-

ing state f . This formula can be generalized to also more than two incoming particles.

However, in practice it is very hard in experiments to get any appreciably amount of

three-particle collisions, so this plays little role in experimental physics. It is of much

more importance in other environments, like the interior of a sun, where the enormous

particle fluxes can compensate for the difficulties of colliding three or more particles. How-

ever, even in these cases four and more particle collisions are unlikely.

More interesting is the situation with a single particle in the initial state, which decays

into an n-particle final state. The corresponding cross section is then called dΓ, and given

by

dΓ =
1

2Ep
(2π)4δ

(

p−
∑

i

qi

)

d3~q1
(2π)3Eq1

× ...× d3~qn
(2π)3Eqn

|Mfi|2.

To get the total values for dσ and dΓ, they have to be integrated over the final momenta

qi for a particular channel, i. e., a particular final state. If identical particles occur, their

interchange has to be taken into account, which adds a factor 1/m! where m is the number

of such identical particles. These give the cross-section for a particular channel, i. e., set of

particles in the final state. The final results are obtained after summing over all possible

channels.

The central question of quantum field theory is therefore reduced to the calculation of

the transition matrix elements M. These are defined as

〈f |S|i〉 = 〈f |i〉+ i(2π)4δ(pi − pf)Mfi, (4.26)
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where pf and pi are the total initial and final state momenta, and S is the S-matrix, which

is defined as the time-ordered product of the interaction Lagrangian as

S = Tei
∫

ddxLI

where LI contains only the parts of the Lagrangian which are more than quadratic in the

fields, and the time-ordering operator T is defined as

T (ψ(x)ψ(y)) = θ(x0 − y0)ψ(x)ψ(y)± θ(y0 − x0)ψ(y)ψ(x),

where the minus sign applies if both fields are fermionic. The generalization to an arbitrary

number of fields leads then to Wick’s theorem.

Since the S-matrix is nothing more than just the time evolution operator, this expres-

sion is just given by correlation functions of the operators creating and annihilating the

initial and final state, respectively. E. g., for a two muon to two electron process, the

expression is the correlation function

〈µµ|S|ee〉 = ReRµ〈T (µµe†e†)〉,

where the Ri are field normalization factors to be discussed latter. The resulting expression

is a vacuum-to-vacuum transition amplitude, a so-called correlation function or Green’s

function. Calculation of these functions is therefore everything necessary to calculate the

transition matrix element. This will now be done in perturbation theory using the path

integral formalism.

4.5.2 General construction

Already by construction, time-ordered correlation functions can be calculated using the

path integral as

< Tφ1...φn >=

∫

Dφφ1...φne
iS[φ,J ]

∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

. (4.27)

However, this is so far only a tautology, as this gives no constructive way of calculating

actually the correlation functions. The method of choice used here will be perturbation

theory. This essentially boils down to expanding the exponential in the fields, giving essen-

tially an infinite series of quasi-Gaussian integrals. The result is that the transition matrix

elements are determined by a sum over correlation functions in a theory with quadratic

action. Such an expansion of the field is essentially an expansion around zero field val-

ues, and thus assumes that the field amplitudes are small. Hence, this is a perturbative

approach.
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To do this, split the Lagrangian into a quadratic part L2 and a remainder part LI ,
which includes all the interactions. This yields for the generating functional

Z [J ] =

∫

Dφei
∫

ddxLIei
∫

ddx(L2+Jφ)

= ei
∫

ddxLI[ δ
iδJ ]
∫

Dφei
∫

ddx(L2+Jφ).

This is only a rewriting of the expression, and is still exact. The argument of LI is just

indicating that all appearances of the field have been replaced by the derivative with

respect to the source. To see the equivalence, take as an example a theory with cubic

interaction term

LI =
λ

3!
φ3

and expand the exponential

ei
∫

ddxLI[ δ
iδJ ]
∫

Dφei
∫

ddx(L2+Jφ)

=

∫

Dφ
∑

n

1

n!

(

λ

3!
i

∫

ddy
δ3

iδJ(y)3

)n

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!

δ2

iδJ(y)2
δi
∫

ddxJφ

iδJ(y)
+ ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!

δ2

iδJ(y)2

∫

ddxφδ(x− y) + ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!
φ

δ2

iδJ(y)2
+ ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
(

1 + i

∫

ddy
λ

3!
φ3 + ...

)

ei
∫

ddx(L2+Jφ)

=

∫

Dφ
∑

n

1

n!

(

λ

3!
i

∫

ddyφ3(y)

)n

ei
∫

ddx(L2+Jφ)

=

∫

Dφei
∫

ddxLIei
∫

ddx(L2+Jφ).

Such manipulations are very helpful in general.

To proceed it is necessary to perform the remaining shifted Gaussian integral. This

can be readily generalized from the formula for ordinary numbers,
∫

dxe−
1
4
xax+bx = 2

√

π

a
e

b2

a .

This yields
∫

Dφei
∫

ddx(φ(x)(Ω−iǫ/2)φ(x)+J(x)φ(x)) =

∫

Dφei
∫

ddx(φ(x)Ωφ(x))e−
i
2

∫

ddxddyJ(x)∆(x−y)J(y)

= Z2 [0] e
− i

2

∫

ddxddyJ(x)∆(x−y)J(y). (4.28)
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There are a number of points to take into account. Ω is just the quadratic part of the

Lagrangian, e. g., for a free scalar field it is just (−∂2 − m2)/2. The addition of the

term iǫ is actually needed to make the integral convergent, and has to be carried through

all calculations. This can also be formally justified when using canonical quantization.

Secondly, the so-called Feynman propagator ∆ is defined such that

(2Ω− iǫ)∆(x− y) = iδd(x− y).

That it depends only on the difference x− y comes from the assumption of translational

invariance, which applies to the standard model. For a scalar particle of mass M and thus

Ω = (−∂2 −M2)/2, this Feynman propagator takes, after Fourier transformation,

(−∂2 −M2 + iǫ)

∫

ddpeip(x−y)∆(p) = i

∫

ddpeip(x−y)

∫

ddpeip(x−y)(p2 −M2 + iǫ)∆(p) = i

∫

ddpeip(x−y)

(4.29)

the form

∆(p) =
i

p2 −M2 + iǫ
, (4.30)

which is more useful for a calculation than the rather involved position space expression,

which can actually only be described in form of a tempered distribution. Thirdly, the

factor Z2 [0] in front of the integral containing the Feynman propagator is just the factor

1/a in the conventional integral, conveniently rewritten as an exponential. This factor will

cancel partly the denominator in (4.27) when taking the limit J → 0 at the end of the

calculation.

This is then sufficient to write down a perturbative calculation of an arbitrary corre-

lation function. Take, for example, a model of a single scalar particle with interaction

LI = − λ

4!
φ4.

The perturbative expression up to linear order in λ/4! for a process involving two particles

in the initial and final state, essentially elastic scattering, is then

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉

=

∫

Dφφ(x1)φ(x2)φ(x3)φ(x4)eiS[φ,J ]
∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

=
1

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫

DφeiS[φ,J ]
∣

∣

∣

∣

J=0

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
ei

∫

ddxLI[ δ
iδJ ]e−

i
2

∫

ddxddyJ(x)∆(x−y)J(y)

∣

∣

∣

∣

J=0

.
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The next step is to expand both exponentials, the first in a formal power series in LI , and
the second one in the conventional exponential series,

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(

∑

n

1

n!

(

λ

4!
i

∫

ddy
δ4

iδJ(y)4

)n
)

×

×
(

∑

m

1

m!

(

− i

2

∫

ddxddyJ(x)∆(x− y)J(y)

)

)∣

∣

∣

∣

∣

J=0

.

Both are polynomial in the sources. The expansion of the exponential of the interaction

Lagrangian yields terms with zero, four, eight,... derivatives with respect to the sources.

The second term produces terms with zero, two, four,... powers of the sources. Since the

sources are set to zero at the end, only terms without sources will remain. Thus, to order

zero in the interaction Lagrangian only the term with four sources will survive the external

derivative. To first order in the interaction Lagrangian only the term with eight powers

of the sources will survive.

To this order in the expansion, the expression takes therefore the form

=
Z2 [0]

Z [0]

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

(

1

2!

(

− i

2

∫

ddxddyJ(x)∆(x− y)J(y)

)2

−iλ
4!

∫

ddz
1

4!

δ4

δJ(z)4

(

− i

2

∫

ddxddyJ(z)∆(x− y)J(y)

)4

+O(λ2)

)

.

In principle, taking the derivatives is straight-forward. However, e. g., the first term is

given by the expression

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∫

ddy1d
dy2d

dy3d
dy4J(y1)∆(y1− y2)J(y2)J(y3)∆(y3− y4)J(y4).

The first derivative, with respect to J(x4) could act equally well on all four sources under

the integral. It will therefore provide four terms. Correspondingly, the second derivative

can act on three different terms, making this 12 terms, and so on, giving in total 24 terms,

with all possible combinations, or partitions, of the four arguments.

To illustrate the process, two steps for a particular combination will be investigated.

The first derivative acts as

δ

δJ(x4)

∫

ddxddyJ(x)∆(x− y)J(y)

=

∫

ddxddyδd(x− x4)∆(x− y)J(y) + ... =

∫

dy∆(x4 − y)J(y) + ..., (4.31)

where the points indicate further contributions. For the action of the next derivative, there

are two possibilities. Either it acts on the same factor of the product of the integrals, or
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on a different one. Take first the possibility of the same factor. If it is a distinct factor,

this just provides the same action. If it is the same factor, this immediately yields

δ

δJ(x3)

∫

ddy∆(x4 − y)J(y) =

∫

ddy∆(x4 − y)δd(y − x3) = ∆(x4 − x3)

In total, this yields for the term proportional to λ0 = 1

A = −
∑

Pijkl

∆(xi − xj)∆(xl − xk), (4.32)

where Pijkl indicates that the sum is over all 4! possible permutations of the index set

{ijkl}.
The situation becomes somewhat more complicated for the terms proportional to λ,

since now multiple derivatives with respect to the same source J(x) appears. Again, a

single such derivative acts like (4.31). A difference occurs when the second derivative

occurs. This can either act again on another factor, but it could also act on the same

factor. The first case just produces another factor of type (4.31). The second situation is

different, and yields

δ

δJ(z)

∫

ddy∆(z − y)J(y) =

∫

ddy∆(z − y)δd(y − z) = ∆(z − z) (4.33)

which appears to look like ∆(0). However, this not quite the case, as will be visible later.

In particular, the expression ∆(0) cannot be easily interpreted. Furthermore, an integral

over z still appears. It is therefore useful to keep first explicit terms of ∆(z − z) in the

following.

After a slight change in notation, there will then be 8! possibilities for the order λ

contribution. However, many of them turn out to be identical, yielding in total three

further contributions

λB = −iλ
∫

ddx∆(x− x1)∆(x− x2)∆(x− x3)∆(x− x4) (4.34)

λC = −iλ
2

∑

Pijkl

∆(xi − xj)

∫

ddx∆(x− x)∆(x− xk)∆(x− xl) (4.35)

λAD = −iλ
8

∫

ddx∆(x− x)∆(x− x)
∑

Pijkl

∆(xi − xj)∆(xk − xl). (4.36)

These four terms have simple interpretations, if each factor of ∆ is considered to be

a particle propagation along the connecting line of x − y. Then, the first term (4.32)

corresponds to the interference pattern of identical particles when they are observed at

two different initial and final positions: Since the particles are identical, any combination
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is possible, including that one particle vanishes and the other one appears. This can be

visualized by using a line to symbolize a factor of ∆, and draw all possible combinations

between the four points.

Similar interpretations hold for the three remaining terms (4.34-4.36). The expression

(4.34) contains for each factor of ∆ a common point. This can be taken to be just a

meeting of all four particles at a common vertex point x. Since there appears a pre-factor

of λ, it can be said that the four particles couple with a strength λ, thus also the name

coupling constant for λ. Such an interaction vertex could be denoted by a dot.

The third term (4.35) can be seen as one particle just propagating, while the second

particle has an interesting behavior: It emits at an intermediate point a particle, an

reabsorbs it then. Such a virtual particle contributes to a cloud of virtual emission and

absorption processes, which becomes more common at higher orders. Pictorially, this

corresponds to a loop in the propagation, which again harbors an interaction vertex.

The last contribution is different, as when drawing lines there appears an additional

graph, which is disconnected from the initial and final positions, and has the form of the

number eight. Such a disconnected diagram is also called vacuum contribution, as it is

not connected to any external input, and is thus a property of the vacuum alone.

In general, the expression (4.32-4.36) are very cumbersome to deal with in position

space. It is therefore more useful to perform a Fourier transformation, and perform the

calculations in momentum space. In particular, this removes many of the cumbersome

sums over partitions. How to switch to momentum space will be discussed in more detail

after taking care of the remaining factor Z2 [0] /Z [0].

Since the current calculation is a perturbative calculation, it is adequate to also expand

Z2 [0] /Z [0] in λ. This can be most directly done again using the formula (4.28). Thus, the

factor Z2 cancels immediately, and the remaining expansion terms are, up to combinatorial

factors, very similar as before. Its inverse is thus given, to order λ, by

Z [0]

Z2 [0]
= 1 +

iλ

23

∫

ddx∆(x− x)∆(x− x) +O(λ2) = 1 + λD.

This term is easily identified as the prefactor appearing in (4.36). To order λ, this yields

〈Tφ(x1)φ(x2)φ(x3)φ(x4)〉 =
A+ λ(B + C + AD)

1 + λD
+O(λ2)

= (A+ λ(B + C + AD))(1− λD) +O(λ2) = A+ λ(B + C + AD)− λAD +O(λ2)

= A+ λ(B + C) +O(λ2).

Thus, to order λ, the term with a disconnected contribution is canceled. It turns out

that this is a generic result, and that all diagrams with disconnected contribution in a
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perturbative expansion always cancel, and a general proof can be constructed in a very

similar way to this evaluation in φ4 theory up to leading order. However, this is beyond

the scope of this lecture.

As stated, the explicit expression in position space turns out to be very awkward to use

in actual calculation, and their evaluation in momentum space is preferable. This can be

done using the expression for the Feynman propagator in momentum space, (4.30). The

total sum then becomes

(2π)d
∫

ddp1

(2π)
d
2

ddp2

(2π)
d
2

ddp3

(2π)
d
2

ddp4

(2π)
d
2

e−i(p1x1+p2x2+p3x3+p4x4) ×

×





∑

Pijkl

(2π)dδd(pk + pl)δ
d(pi + pj)

i

p2i −m2

i

p2k −m2

−iλδd(p1 + p2 + p3 + p4)
i

p21 −m2

i

p22 −m2

i

p23 −m2

i

p2 −m2

−(2π)dλ

2

∑

PIjkl

δd(pi + pj)δ
d(pk + pl)

i

p2i −m2

i

p2k −m2

i

p2l −m2

∫

ddq

(2π)
d
2

i

q2 −m2



 .

Note that the iǫ contributions have not been written explicitly in the propagators, but

left implicit. This is the standard conventions for such a representation of a perturbative

expression. Of course, if the result is desired in momentum space rather than position

space, which is normally the case, the Fourier transformation can be dropped.

The result already shows a number of regularities, which can be generalized to the so-

called Feynman rules, which permit to directly translate from a graphical representation to

the mathematical expression in perturbation theory. These can be derived rather generally,

though this becomes rather cumbersome. Here, these will be stated simply without proof:

� Select the type and number of all external lines

� Determine the order (in all coupling constants, i. e., in all vertices) to which the

process should be evaluated

� Draw all possible diagrams connecting in all possible ways the external lines with up

to order vertices, and add them

� For each line, write a propagator of this particle type

� For each vertex, write the interaction vertex, i. e. essentially δnLI/δφn, for each

� Impose the conservation of all quantities, including momentum, conserved by a giving

vertex at each vertex. This can be most directly done by following each input

conserved quantity through the whole diagram until its final result
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� Integrate over all undetermined momenta, i. e., each momentum running through a

loop

� For each closed fermion loop, multiply the term by minus one, because of the Grass-

mann nature

� Lines, which are attached to the outside of a diagram, receive a further propagator

of the corresponding type

Two things can further facilitate the result. On the one hand, any diagram will be zero, if

any conservation law is not respected by the transition from initial to final state. However,

in such cases also the perturbative vertices vanish identically. Secondly, there are many

diagrams, which are identical up to reordering, as in the previous example. They can be

collected, and normalized using so-called symmetry factors.

It can be immediately shown that the previous results can be obtained from these rules,

as an explicit example of the more general Feynman rules.

Perturbative calculations in QCD with the Lagrangian (4.1) can be performed in essen-

tially the same way. It is just necessary to replace it with the corresponding propagators

and vertices derived in the same way from the Lagrangian. These are the propagators for

the gluons, ghosts, and quarks

Dab
µν =

−iδab
k2 + iǫ

(

gµν − (1− ξ)
kµkν
k2

)

Dij = δij
i(pµγ

µ +m)

p2 −m2 + iǫ
=

iδab

pµγµ −m+ iǫ

Dab =
iδab

p2 + iǫ
,

respectively. There are in addition 3-point vertices of quarks and gluons, three gluons,

and ghost and gluons

Γgqq̄(p, q, k)aijµ = igγµtaij

Γggg(p, q, k)abcµνρ = gfabc(gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν)

Γūgu(p, q, k)abcµ = gfabcpµ,

respectively, and the four-gluon vertex

Γgggg(p, q, k, l)abcdµνρσ = −ig2(fabef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ) + fadef bce(gµνgρσ − gµρgνσ)),
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and all momenta defined incoming. Note that because ghosts obey Fermi statistics closed

ghost loops also receive a minus sign.

Returning to the scalar theory, perturbative calculations can be further simplified by

passing to connected, amputated diagrams.

The so-called connected diagrams are diagrams in which all lines are connected with

each other. In the previous case, the result can be symbolically written as

∆∆+∆∆′ +Π,

where ∆ is a propagator, ∆′ is a propagator with a loop attached, and Π is the graph

where all four lines are connected. This is called the full correlation function. Of course,

∆ and ∆′ can also be determined from the two-point function 〈Tφφ〉, to the same order,

and therefore contain no new information. The only new contribution for the four-point

function at this order of perturbation theory is Π. It would therefore be useful, if it is

possible to only calculate this contribution, instead of the whole one. Indeed, it can be

shown that for a correlation function with n external legs

G(x1, ..., xn) = Gc(x1, ..., xn) +
∑

Gc(xi, ..., xj)Gc(xj , ..., xk)

+
∑

Gc(xi, ..., xj)Gc(xk, ..., xl)Gc(xm, ..., xn) + ... (4.37)

where the sums are over all possible ways to split the index set {xi} in two, three,...

subsets. Furthermore, every connected correlation functions is a series in the coupling

constant. Thus, in the present case,

G(x1, x2, x3, x4) = Gc(x1, x2, x3, x4) +
∑

Pijkl

Gc(xi, xj)Gc(xk, xl)

Gc(x, y) = ∆(x− y) + ∆′(x− y),

where again the δ is the propagator, and ∆′ is the propagator to order λ, which includes

the attached loop, and Gc is the only diagram with all points connected. Contributions

proportional to ∆
′2 have to be dropped, as they are of higher order in the perturbative

expansion. This relation can be inverted to obtain the connected functions from the other,

but it is more interesting to calculate just the connected, and then calculate the complete

one by the formula (4.37).

Finally, all external lines have the propagators attached to them, they are called non-

amputated. Removing this yields the amputated correlation functions Γ, which can imme-

diately yield again the non-amputated one. Thus, it is sufficient to calculate the amputated

ones. In the same way, explicit momentum conserving factors can always be reinstantiated.
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Thus, the calculation of the four-point function boils finally down to the calculation of

the amputated, connected two-point function to order λ, and the amputated, connected

four-point function. These are just given by

Γc(p, q) = −iλ
∫

ddr

(2π)4
i

r2 −m2

Γc(p, q, k, l) = −iλ,

rather simple expressions indeed. These are also called proper or vertex correlation func-

tion.

There is a further possibility to reduce the effort of perturbative calculations, though

these do not reduce it further for the present example. It is rather simple to imagine situ-

ations, were it is possible to cut a single internal line to obtain two separate graphs. Such

graphs are called one-particle reducible. It can be shown that it is sufficient two know all

graphs, which cannot be separated in such a way, so-called one-particle irreducible graphs

(1PI), to obtain all relevant results, and to reconstruct also the one-particle reducible

ones. The generic connection can again be illustrated. Take two graphs which are 1PI,

say graphs A(p, q) and B(k, l). They can be joined to a one-particle reducible graph by

A(p, q)∆(q)B(q, l),

i. e., by the insertion of a propagator. This can be repeated as necessary.

Thus, the final addition to the Feynman rules is

� Identify in all the diagrams the connected, amputated 1PI graphs. Calculate these,

and the result can be obtained by just multiplying and adding the results together

such as to obtain the original graphs

Note that the construction can be extended further, to so-called nPI graphs. However,

their recombination is in general no longer possible by multiplications, but usually involves

integration over intermediate momenta. This is beyond the scope of this lecture.

From this construction it follows that there are two distinct classes of perturbative

calculations. One is the class of so-called tree-level calculations, in which no loops appear.

Since graphs without loops are always one-particle reducible, they can always be cut so

long as only to consist out of vertex and propagator expressions. On the other hand,

this implies that a tree-level calculation can always be written as just a multiplication

of propagators and vertices, without any integration. These contributions turn out to be

furthermore the classical contribution, i. e., whatever remains when taking the limit of

~ → 0. Nonetheless, even tree-level calculations, in particular for many external particles,

can become very cumbersome, and both a technical as well as a logistical problem.
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The second type of diagrams are all graphs with loops. Since they vanish in the classical

limit, this implies that these are the quantum, or also radiative, corrections to a process.

The integrals make an evaluation much more complicated. Furthermore, the integrals are

usually not finite, leading to the necessity of the renormalization process.

4.6 Renormalization

So far, all calculations have been at tree-level, i. e., no integrations have been necessary,

as are required by the Feynman rules if loops appear. Such loop expressions are always of

higher order in the coupling constants than the corresponding tree-level diagrams. How-

ever, experimental precision is sufficiently high to be sensitive to loop contributions, so-

called radiative corrections. In fact, for QCD next-to-next-to-next-to-leading order (N3LO)

precision is already required, and for some quantities even N4LO results are available5.

One of the generic problems of such loop corrections is that the corresponding integrals

are usually divergent. At first sight, this might seem to invalidate the theory. However, it

turns out that it is possible to make the integrals convergent without introducing additional

parameters into the theory, albeit at the price that the theory still looses its validity at

some high cutoff-scale. Since this scale can be pushed to very high energies, this is of

little practical importance, as it can anyway not be assumed that the standard model is a

theory of everything, since it does not include gravity.

To make sense out of such a theory requires then two basic steps. One is a prescription

how to regularize integrals, i. e., how to map their divergent value to a finite value. For

this purpose of regularization the integrals are made convergent by the introduction of

some parameter, and the original divergence is recovered when sending this parameter to

a particular limit. As a result, all quantities calculated will depend on this parameter.

The second step, the so-called renormalization program, gives a prescription how to

redefine the theory such as to loose the dependence on this extra parameter, the so-called

renormalization scheme, without recovering the original divergence. The consequence of

this program, and the particular renormalization scheme used, is that quantities like masses

or coupling constants can no longer be interpreted as static quantities, but will depend

on the scale at which they are measured. It is said that they become running. However,

measurable quantities, like a cross-section, turn out not to depend on the measurement

5Note that in the standard model context calculations may be at different order in the various appearing

couplings, as the quantitative contributions, due to the differing sizes of the relevant couplings, are vastly

different. Thus, often calculations are done to the orders such that the quantitative contributions of all

involved interactions are of roughly the same size, rather than of the same order.
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scale, at least for an exact calculation. Unfortunately, most calculations are not exact in

general, and in particular for the standard model. As a consequence, a dependence on the

scale may be left.

4.6.1 Cutoff regularization

To illustrate the concept of regularization, it is useful to go to a simple model, the Yukawa

model of a scalar φ and a fermion χ. This model appears throughout strong interaction

physics, where the fermions are often interpreted as either quarks or nucleons, and the

bosons as mesons. The simplest case with just one flavor each has a Lagrangian given by

L =
1

2
∂µφ∂

µφ+ χ̄i(γµ∂µ −m)χ− M

2

2

φ2 − λ

4!
φ4 − yφχ̄χ.

Hence there are two masses, m and M , and two coupling constants y and λ. With two

flavors of fermions, representing the nucleons, and three flavors of mesons, representing

the pions, this model gives already a first reasonable approximation of nuclear physics.

Start with the self-energy of the scalar particle to order O(λ1, y0). In this case, there

is only one diagram contributing, a so-called tadpole diagram. Its value is

Πλ
φ = −λ

2

∫

d4p

(2π)4
1

p2 −M2 + iǫ
, (4.38)

where the factor 1/2 is a symmetry factors. The integration over p0 can be performed first

by contour-integration and using the Cauchy theorem, since

Πλ
φ = −λ

2

∫

d3~p

(2π)4

∫

dp0
1

p20 − ~p2 −M2 + iǫ

= −λ
2

∫

d3p

(2π)4

∞
∫

−∞

dp0
1

(p0 +
√

~p2 +M2)(p0 −
√

~p2 +M2) + iǫ

This has a pole in the upper half-plane, and vanishes sufficiently fast on a half-circle

at infinity. The residue at the simple poles p0 = ±
√

~p2 +M2 is 1/(p0 ∓
√

~p2 +M2),

dropping the small contribution of iǫ, which only served to not have the pole on the axis.

The Cauchy theorem then yields, using polar coordinates in the final expression,

Πλ
φ =

iλ

4π2

∞
∫

0

~p2d|~p| 1
√

~p2 +M2
.

This integral is divergent, as announced. It is also the only contribution at this order of

perturbation theory, so there is no cancellation possible to remove this divergence. To
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make sense of it, it is necessary to regularize it. The most straight-forward possibility is

to replace the upper integral limit ∞ by a large, but finite number Λ, the so-called cutoff

regularization.

The integral can then be calculated explicitly to yield

Πλ
φ =

iλ

4π2



Λ2

√

1 +
M2

Λ2
−M2 ln





Λ + Λ
√

1 + M2

Λ2

M







 . (4.39)

As can be seen, the integral diverges with the cutoff Λ quadratically, and has in addition

a sub-leading divergence logarithmically in Λ. Still, as long as the limit is not performed,

the result is finite, independent of the momentum, but explicitly dependent on Λ.

4.6.2 Renormalization prescription

To remove this dependence, it is worthwhile to investigate the total structure of the two-

point function Γφφ, which is just the propagator Dφφ. Amputation of the unamputated

equation

Γφφ = Dφφ(p
2 −M2 +Πφ)Dφφ

yields the expression for the amputated and connected two-point function by division,

giving
1

Dφφ
= p2 −M2 +Πφ.

However, in a perturbative setting the self-energy is assumed to be small. Thus, it is

possible to expand the self-energy, and replace it as

1

Dφφ

= p2 −M2 +Πλ
φ. (4.40)

To leading order the propagator is then given by

Dφφ =
p2 −M2 +Πλ

φ

(p2 −M2 + iǫ)2
.

Instead of using this approximate expression it is possible to use the inversion of the expres-

sion (4.40). This results in the so-called resummed propagator, as it contains contributions

which are of higher-order in the coupling constant.

Diagrammatically, it corresponds to an infinite series of diagrams with an ever-increasing

number of tadpole attachments. This already illustrates that this is only a partial resum-

mation of the perturbative series, since at order λ2 there are also other types of diagrams
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contributing. Thus, this looses some of the systematics of the perturbative expression,

and it is necessary to be wary with it.

Nonetheless, for the current purpose, it is more transparent to work with the expression

(4.40). As is seen from the result (4.39), the contribution Πλ
φ is momentum-independent

and dependent on the cutoff Λ. If it would be finite, it could be interpreted as a change

of the mass M , since then the expression would have the form

p2 −M2 − δM2 → p2 −M2
R

with the renormalized mass

MR =
√
M2 + δM2.

The actual mass of a φ particle, which would be measured in an experiment, would then

be MR, instead of the bare mass M . In fact, since the experimental measurement is the

only knowledge available on the theory, it is mandatory that the bare parameters of the

theory, like the bare mass M , are adjusted such that the resulting renormalized mass MR

agrees with experiment6.

Now, since the actual bare parameters cannot be measured, there is nothing which

prevents us to set it to

M2 =M2
R − δM2,

with the experimental input MR. This automatically fulfills the requirement to reproduce

the experiment. In particular, since M is not an observable quantity, there is no reason

for it to be finite, and independent of the cutoff Λ. Thus, it is possible to absorb the

infinity of the divergent integral in unobservable bare parameters of the theory. This can

be arranged already at the level of the Lagrangian by replacing

M

2

2

φ2 → MR

2

2

φ2 − δM2

2
φ2.

The second term is a so-called counter-term, and it depends on the actual order of the cal-

culation. E. g., at tree-level, it would be zero. This replacement is called a renormalization

scheme.

4.6.3 Counter-term structure

It is actually not the the only contribution which appears. If the calculation is extended

to also include corrections up to O(λ, y2), there is a second diagram contributing to the

6This implies that the bare parameters have to be adapted at each order of perturbation theory

calculated.
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self-energy, which is due to a loop of the fermions. The expression then takes the form

Πλ,y2

φ = Πλ
φ +Πy2

φ ,

with the fermionic contribution given by

Πy2

φ = −y
2

2

∫

d4p

(2π)4
tr((γµp

µ +M)(γν(p
ν − qν) +M))

(p2 −M2 + iǫ)((p− q)2 −M2 + iǫ)
.

Using the trace identities tr1 = 4, trγµ=0, and trγµγν = 4gµν this simplifies to

−y
2

2

∫

d4p

(2π)4
p(p− q) +M2

(p2 −M2 + iǫ)((p− q)2 −M2 + iǫ)
.

Since the numerator scales with p2, the integral is quadratically divergent. Suppressing the

iǫ, the expression can be rewritten by introducing a zero and then shifting the integration

argument, as

−y
2

2

∫

d4p

(2π)4
(p2 −m2) + ((p− q)2)−m2)− q2 + 4m2

(p2 −m2)((p− q)2 −m2)

= −y
2

2

∫

d4p

(2π)4

(

1

(p− q)2 −m2
+

1

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)

= −y
2

2

∫

d4p

(2π)4

(

2

p2 −m2
+

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)

,

Such integrals can be performed using a number of analytical tricks. However, for the

present purpose this will not be necessary. It is sufficient to observe that the resulting

integral, just by counting powers of integration momenta, will have the form

Πy2

φ = c1Λ
2 + (c2m

2 + c3q
2) ln

Λ

m
+ f(m2, q2),

where f is some finite function when Λ is send to infinity, and depends on both λ and y,

as do the constants ci.

The first two terms have again the same structure as the tadpole contribution (4.38).

However, the third term is different, as it does depend explicitly on the momentum. There-

fore, it cannot be absorbed into a mass renormalization. However, it can be absorbed in

a renormalization of the kinetic term. If in the Lagrangian the modification

∂µφ∂
µφ → ∂µφ∂

µφ+ δZφ∂µφ∂
µφ = Zφ∂µφ∂

µφ,

is performed, the kinetic term of the field φ has been renormalized by a factor Zφ. Choosing

δZφ = −c3 ln
Λ

m
,
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this will remove the divergence. By this the field amplitude is arranged to agree with the

experimental one by the introduction of the wave-function renormalization Z
1
2
φ .

Performing further calculations, it turns out that similar changes have to be performed

for the remaining bare parameters m, λ, and y, yielding a renormalized fermion mass mR,

and renormalized couplings λR and yR. Thus, including these counter-terms yields the

renormalized Lagrangian

LR =
1

2
∂µφ∂

µφ+ χ+i(γµ∂µ −mR)χ− MR

2

2

φ2 − λR
4!
φ4 − yRφχ̄χ

+
δZφ
2
∂µφ∂

µφ+ χ+i(δZχγ
µ∂µ − δm)χ− δM

2

2

φ2 − δλ

4!
φ4 − δyφχ̄χ.

It should be noted that always certain products of fields appear together with a parameter

of the theory. Thus, often explicit factors of various Zs are introduced such that not

kinetic terms are renormalized, but rather the field itself, in the sense of an amplitude

renormalization. In this case, explicit factors of Z
1/2
i are multiplied for each field in the

counter-term Lagrangian, and the counter-terms δM , δm, δλ, and δy are redefined by

appropriate factors of Z
−1/2
i . This is, however, conventional, but the more common case

for QCD.

Also, it is usual that δx is rather defined as

δx = Zxx = (1 + δZx)x,

i. e. as a multiplicative factor to the original quantity. However, Zx may then depend

again on x, even in the form of 1/x. E. g., renormalized QED reads then

LQED = −1

4
FµνF

µν − 1

2ξ
(∂µAµ)

2 + ψ̄(iγµ +m)ψ + eAµψ̄γ
µψ

−δZA
4
FµνF

µν −
ZA

Zξ
− 1

2ξ
(∂µA

µ)2 + δZψψ̄iγ
µ∂µψ − (ZψZm − 1)mψ̄ψ

+(ZeZ
− 1

2
A Zψ − 1)eAµψ̄γ

µψ.

In this case all parameters, m, e, and ξ, as well as Aµ and ψ have been multiplicatively

renormalized. It should be noted that also the ghost fields would have to be renormalized, if

they would not decouple in QED. The extension of this to QCD is hence a straightforward

generalization.

The remaining question is then whether this is sufficient, or whether further terms,

e. g. a sixth power of the fields, would be necessary, or whether non-multiplicative terms

would appear. It can be shown that in perturbation theory in four dimensions for any

gauge theory of the type of QCD with parameters with at least zero energy dimension, i. e.
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dimensionless couplings, masses, or couplings with dimensions of energy to some positive

power, it is always possible to perform the renormalization with a finite number of terms.

Thus, the process is finite, and for QED actually complete at this stage. However, this

is only proven in perturbation theory, and though it is commonly assumed to hold also

beyond perturbation theory, a proof is lacking.

The general proof, also for dimensions different than four, and more complex theories

is possible, but beyond the current scope. However, for all known quantum gauge theories

in four dimensions with non-trivial dynamics and observable bound states renormalization

is necessary.

4.6.4 Renormalization schemes and dimensional transmutation

So far, the counter terms have been identified by direct comparison. However, assume

that the propagator has finally the form

D =
c2 − d2 + 2p2

p4 + (d2 − c2)p2 − c2d2
.

Such a propagator has no longer the form of a conventional free particle. It is thus not

clear how to determine, e. g., δm, such that it represents the mass of a particle. Thus, it

is necessary to give a more precise definition of what physical mass means. Since such a

mass would be expected as a pole, one possibility would be to choose it as the smallest

momentum at which the propagator has a simple pole. In this case, this would imply

mR = d,

and thus the counter-terms can be arranged such that this equality holds. This is called

a pole scheme.

It becomes much more ambiguous for the coupling constants, as they are not associ-

ated with some pole. For the electromagnetic charge, it still seems reasonable to choose its

macroscopic value, i. e., the one known from classical physics, which is the so-called Thom-

son limit. A similar definition cannot be made for, e. g. the strong coupling. Another

possibility is therefore, e. g., to choose

ΓAψ̄ψ(p, q, p+ q)
!
= e,

for two arbitrarily chosen momenta. This already shows that a certain ambiguity is intro-

duced, because a scale µ is introduced, which is proportional to p, at a fixed ratio of p and

q. It is even more ambiguous when it comes to identify conditions for the wave-function

renormalization.
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In fact, it turns out that the conditions chosen are arbitrary, i. e., any genuinely

measurable quantity is not depending on this choice7. Thus, any choice will do. Any such

set of choices is called a renormalization scheme, and it is possible to express quantities

using one renormalization scheme by results in a different renormalization scheme. For

QED, e. g., it is possible to define the following set of renormalization conditions
(

p2gµν − pµpν
)

p2=µ2
Dµν
AA(µ

2) = i (4.41)

µ2gµνD
µν
AA(µ

2) = iξ (4.42)

trDψψ(µ
2) = im(µ2) (4.43)

(trγµp
µDψψ)(µ

2) = i16µ2 (4.44)

ΓAψ̄ψ(µ2, µ2, µ2) = ie(µ2) (4.45)

Note that there is no condition that involves a mass of the photon. It can be shown that

such a mass would violate gauge invariance. The condition (4.42) follows actually directly

from the QED version of the STI (4.25). There are two remarkable, and generic, features

in this description.

One is that in the definition of the renormalization constants appears a scale µ, the so-

called renormalization scale. Its value is arbitrary, but it cannot be removed. Of course, it

would be possible to choose for each of the five conditions (4.41-4.45) a different scale, but

these would then differ only by constant prefactors multiplying the single scale. Since this

scale is arbitrary, nothing which is observable can depend on it. This observation is the

basis for the so-called renormalization-group approach, which uses this knowledge and by

forming derivatives on renormalization-scale-invariant quantities determines (functional)

differential equations, which are useful for determining properties of correlation functions.

This will be exploited later in section 5.1.6.

There is a further consequence of this scale. If a theory like Yang-Mills theory is

taken, there appears no dimensionful parameter at the classical level, and the theory is

classically scale-invariant. However, when the renormalization conditions are imposed,

this is no longer the case, since they involve this scale. Since this scale is a manifestation

of the ultraviolet divergences, and thus incompleteness of the theory, it is thus created in

the quantization process. It is thus said that the classical scale invariance is broken by

quantum effects, a process also referred to as dimensional transmutation. In a sense, it is a

global anomaly, as the quantization process itself is breaking the classical scale symmetry8.

This perspective will be further discussed in section 5.6.

7Actually, any quantity which is renormalized cannot be measured directly. The only direct measure-

ments possible measure either cross sections, masses, or decay rates in one form or the other, and permit

then an indirect determinations of the parameters.
8As a side remark, it should be noted that the exact masslessness of the photon can be shown to
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The second feature is that the mass of the electron and the electric charge now depend

on the renormalization, and thus energy scale, by virtue of the renormalization condi-

tions (4.43) and (4.45). Thus, the parameters of the theory become energy-dependent,

and out of a set of theories with fixed parameters e and m a single theory with energy-

dependent parameters emerges. These energy-dependent quantities are therefore called

running. Some more properties of this feature will be discussed in section 4.7. Since, as

stated, quantities depending on the renormalization scale are no longer observable, nei-

ther the masses nor the charges of the elementary particles are, in fact, observable. They

are only given implicitly in a fixed renormalization scheme via renormalization conditions

such as (4.41-4.45). Of course, this still permits to plot the energy-dependence of such a

quantity. However, the plot is only meaningful after fixing the renormalization scheme.

When changing to QCD, there are more renormalization conditions, due to the different

flavors and the ghosts. As a consequence, standardized renormalization schemes have been

developed, which are commonly used, and are therefore usually not made explicit. These

schemes have been tailored for particular purposes, and must be looked up, if a calculation

is to be compared to preexisting results. However, to compare to the commonly used

schemes, it is necessary to introduce the concept of dimensional regularization.

4.6.5 Dimensional regularization

The cut-off regularization discussed in section 4.6.1 is by no means the only possibility.

There exist quite a plethora of different regularization schemes, which are all consistent.

However, almost all of these prescriptions hide symmetries, in particular gauge symme-

tries. This modifies the STIs and introduces additional counter-terms, making them rather

cumbersome in many practical applications. The cut-off regularization is one example of

such a regularization prescription which hides gauge symmetry.

However, for the case of perturbation theory, it is possible to find a regularization

prescription, which leaves gauge symmetry explicit. This simplifies many calculations

tremendously. The price to be paid is that the analytic structure of the appearing correla-

tion functions has to be known, and that the presence of anomalies and chiral symmetries

requires very special attention. The prior of these two requirements makes this prescription

almost useless beyond perturbation theory. Nonetheless, in the perturbative treatment of

QCD, it is almost always employed. Especially the standard renormalization schemes

usually explicitly reference it.

The name of this prescription is dimensional regularization. Its name stems from the

be a consequence of this broken scale symmetry in massless QED. In this case the photon becomes the

Goldstone boson of the breaking of the global scale symmetry.
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fact that an integral is analytically continued away from the number of dimensions in

which it should be evaluated to a dimensionality in which it is finite, then evaluated, and

finally the result is analytically continued back to the original number of dimensions. In

this process, the change of dimensions is entirely formal, and therefore not restricted to an

integer number of dimensions. The original divergences then appear as poles of the type

1/δ with δ being the distance to the desired dimensionality. These poles correspond to the

explicit appearances of the cutoffs, e. g. in equation (4.38), when a cutoff regularization is

performed.

The rules for dimensional regularization can be given mathematically quite precisely.

The first part of the prescription is to set any integral to zero, which does not depend

explicitly on a scale,
∫

ddk(k2)α = 0.

For integrals involving a scale, take the following example, which is continued to D being

different from the target number of dimensions d

A =
1

iπ2

∫

ddk
1

(k2 −m2 + iǫ)r
→ Ar =

Md−D

iπ2

∫

dDk

(2π)D−d

1

(k2 −m2 + iǫ)r
.

The original, unregularized integral is obtained in the limit D → d. Since this is only a

regularization, the total value of Ar should not change its energy dimensions, and therefore

a dimensional regularization scaleM is introduced. This integral is convergent for D < 2r.

Performing a Wick rotation, i. e., replacing formally k0 → ik0, yields

Ar =
(2πM)d−D

π2

∫

dDk
(−1)r

(k2 +m2 − iǫ)r
=

(2πM)d−D

π2

∫

kD−1d|k|dΩD
(−1)r

(k2 +m2)r
,

which is for a finite integral always permitted. Using the rotational invariance, the angular

integral can be performed yielding the volume of a D-dimensional unit-sphere,
∫

dΩD =
2π

D
2

Γ
(

D
2

) (4.46)

Γ(z) =

∞
∫

0

tz−1e−tdt.

Of course, a sphere is only a geometric object in the conventional sense for D being integer.

The expression (4.46) is therefore taken to define the volume of a sphere in non-integer

dimensions.

The remaining integral is then elementary, and can be solved using Cauchy’s theorem,

to yield

Ar = (4πM2)
d−D

2
Γ
(

r − D
2

)

Γ(r)
(−1)r(m2)

D
2
−r.
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So far, this result is valid in D < 2r dimensions. To obtain the originally desired dimen-

sionality, replace D = d− 2δ,

Ar = (4πM2)δ
Γ
(

r − d
2
+ δ
)

Γ(r)
(−1)r(m2)

d
2
−r−δ.

Ar is now expanded for small δ, as the desired limit is δ → 0. For the case of r = 1, i. e.,

for a massive tadpole like (4.38), the expansion in δ yields

Ar = m2

(

1

δ
− γ + ln 4π − ln

m2

M2
+ 1

)

+O(δ),

where γ is the Euler constant ≈ 0.577. This expression has a simple pole in δ, replacing

the divergence of the explicit cut-off.

From now on, the procedure is essentially identically to the cut-off regularization: The

divergent terms are absorbed in counter-terms, and then renormalization is performed. If

just the term 1/δ is absorbed the corresponding renormalization scheme is called minimal

subtraction (MS), but more commonly the (almost always appearing) combination

1

δ
− γ + ln 4π

is absorbed by the counter-terms. This is the so-called modified minimal subtraction

scheme, denoted by MS, the standard scheme of most perturbative calculations.

Similarly, it is possible to calculate any kind of other diagram. For example, a massless

loop integral in the MS-scheme takes the form

∫

ddq

(2π)d
q2α(q − p)2β =

1

(4π)
d
2

Γ(−α− β − d
2
)Γ(d

2
+ α)Γ(d

2
+ β)

Γ(d+ α + β)Γ(−α)Γ(−β) (p2)2(
d
2
+α+β),

and so on. It is usually possible to reduce given loop integrals by appropriate transforma-

tions into one of several master integrals, for which the dimensional regularization results

are known, and can be found either in books or some tables in review articles.

4.6.6 Composite operators

When dealing with QCD, one is often interested in observable quantities, and especially in

hadrons. However, hadrons are bound states, and thus composite objects. They are hence

described by composite operators, which are usually evaluated at the same space(-time)

point. E. g. the simplest operator to describe a scalar meson is ψ̄(x)ψ(x). However, such

a product is usually ill-defined at the quantum level. As a consequence, such operators
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are usually not renormalized just by renormalizing the field operators individually, but

require further (multiplicative) renormalization, i. e.

(ψ̄(x)ψ(x))R = ZψZcψ̄(x)ψ(x),

where Zψ are the wave-function renormalizations of the (anti-)quark field ψ, and Zc is the

additionally required renormalization constant.

But since in a renormalizable theory only a finite number of counter-terms are required,

this divergence cannot be an independent one in QCD. It must thus be expressible in

terms of the other renormalization constants. In fact, in the present case it turns out to

be just given by the inverse of the quark mass renormalization, and hence mψ̄(x)ψ(x) is

actually finite and renormalization-group and renormalization-scheme invariant, and thus

observable.

This still leaves the question of how to calculate Zc. Of course, one possibility, often

the simplest one, is to not search explicitly for the relation to the other renormaliza-

tion constants. Instead, the composite operator is directly calculated and renormalized

independently. Since the divergence structure is unique, this will introduce at most an

ambiguity in the prefactor, which can be fixed by comparison to an observable quan-

tity. Actually, this may even be the quickest path to determine the relation to the other

renormalization constants by reverse engineering the functional dependency on the other

renormalization constants based on the divergence structure.

It is, of course, also possible to systematically derive the relations. The starting point

is to add a source term for the composite operator to the action, e. g.

Ls =
∫

d4xχ(x)ψ̄(x)ψ(x).

Correlation functions of the composite operator are then obtained by derivatives with

respect to the new source χ(x). In this case, the term has the same structure as a mass-

term with x-dependent mass χ(x). Thus, this term contributes to the mass of the quarks,

and thus its renormalization is fixed together with the mass renormalization of the quarks.

This is how the relation to the mass-renormalization of the quarks comes about. In case of

composite operators with more than two fields, however, the situation quickly deteriorates.

Since formally the term is non-renormalizable, at least for quarks, this implies that formally

all possible counter-terms with the appropriate mass-dimension have to be included. These

are the fixed in the same way as in any non-renormalizable theory. The only exception is as

the sources of the composite operators are send to zero at the end of the calculations, these

counter-terms are actually not free, but fixed by the remainder. Nonetheless, calculating

them is as complicated as in any non-renormalizable theory, and therefore in practice
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this way is rarely done. Especially, since there is no general construction principle for

interesting theories which avoids these troubles.

4.7 Running couplings, Landau poles, and asymp-

totic freedom

An equation like (4.45) defines an energy dependence of the coupling constants, so-called

running coupling constants. Generically, resummed perturbation theory to second order

yields an expression like

α(q2) =
g(q2)2

4π
=

α(µ2)

1 + α(µ2)
4π

β0 ln
q2

µ2

≡ 4π

β0 ln
q2

Λ2

(4.47)

for the gauge coupling g.

The equation (4.47) implies that once the coupling is fixed to experiment at µ, and an

expression like (4.45) is evaluated at a different momentum q, the right-hand-side is given

in terms of α(µ2) by this expression (4.47). Besides the explicit value of the renormalization

scale and the experimental input at this scale there appears a pure number β0. This is

the so-called first coefficient of the β-function, which is defined by the ordinary differential

equation fulfilled by g as

dg

d lnµ
= β(g) = −β0

g3

16π2
+O(g5),

and it can be determined, e. g., by evaluating perturbatively to this order the right-hand-

side of (4.45). The values of β0 depends on the gauge group, as well as the type and

representation of the matter fields which couple to the interaction in question. Actually,

β0 could in principle depend on the renormalization scheme, but does not do so in QCD.

This actually also applies to the next expansion coefficient of the β function, β1, but is no

longer true for higher orders. It is also only true ins schemes which are mass-independent,

i. e. where all renormalization conditions do not involve explicitly any mass.

Before evaluating β0, the right-hand-side of (4.47) should be noted. There, the various

constants have been combined into a single scale Λ, making the dependency of the theory

on a single input parameter manifest. This is the so-called scale of the theory, which

also sets a typical scale for processes in the theory. E. g., it is about a 50 MeV-1 GeV for

QCD, though its precise value depends on the renormalization scheme and the order of the

perturbative calculation, and then called ΛQCD. It also makes manifest the dimensional

transmutation, as it makes explicit that a dimensionless constant, the gauge coupling, is

actually given in terms of a dimensionful quantity, Λ.
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Returning to β0, it can be evaluated to yield in general

β0 =
11

3
CA − 2

3
Nf (4.48)

where CA is the adjoint Casimir of the gauge group, and Nf counts the number of quark

flavors. Plugging this in for the QCD yields 7, if all masses are neglected, i. e., at very

high energies.

First of all, since these constants are non-vanishing, the running couplings have di-

vergences at momenta q2 = Λ2. These are artifacts of perturbation theory, and called

Landau poles. They indicate that at the latest at momenta q2 ≈ Λ2 perturbation theory

will fail. Beyond perturbation theory these Landau poles vanish for all theories which

can be defined reasonably beyond perturbation theory. For QCD, the effects of this pole

become relevant at approximately the scale of hadronic physics, about 1-2 GeV.

Of course, the perturbative expansion makes only sense in the energy domain in which

the coupling is small and positive. This provides another surprise. This is the domain

above Λ. Hence, the theory becomes weaker interacting at large energies, until the interac-

tions cease altogether at infinite energy. Such a behavior is known as asymptotic freedom,

since the theory is non-interacting for asymptotically large energies.

Similar equations like (4.48) actually hold also for all other renormalization-dependent

parameters. E. g., the masses of the particles all decrease with the measured momenta.

Thus, the masses of particles become less and less relevant the higher the energy.
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QCD beyond perturbation theory

So far, the treatment of QCD was purely perturbative. As noted, this treatment breaks

down once the relevant energies become of the order of 1 GeV or less. Also, perturbation

theory expands around non-interacting quarks and gluons. Especially, all asymptotic

states are only collections of quarks and gluons, and therefore perturbation theory has

no stable bound states, though theses exist definitely in nature. Hence, non-perturbative

methods are ultimately necessary. However, non-perturbative physics is, though much

richer, also much more complicated, especially on a technical level. As a consequence,

it is often necessary to make rather strong assumptions, and hence systematic errors

are usually at best lower limits to the actual errors. In fact, the term systematic error is

rather the statement that some analytically not controllable error exists, which can only be

heuristically estimated, based on some general principle. Analytic control over systematic

errors would require in almost all cases an analytical understanding of the theory, which is

unattainable without an exact solution of the theory, which in turn would obliberate the

requirement to assess systematic errors. Hence, systematic errors remain lower limits to

errors due to our (lack of) analytic control over a theory. Most often this problem turns

up in the form that a functional dependency on some error parameter is known, but the

prefactor can only be estimated.

5.1 Methods

There are a multitude of different methods, each with individual strengths and weaknesses,

to address QCD beyond perturbation theory. Some of the more popular ones will now be

discussed in turn.

80
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5.1.1 Operator-product expansion

The operator-product expansion (OPE) is not really a full non-perturbative method, it is

rather perturbation theory augmented with non-perturbative information, which is deter-

mined from other methods or experiments.

The basic idea of the OPE is rather straight-forward. Take an expectation value

〈O1(x)O2(0)〉,

with two operators O1 and O2. Perturbatively, it is a reasonable assumption that the most

dominant part to this expression comes from the contribution x ≈ 0. Furthermore, the

composite operator O1O2(0) has certain quantum numbers, and can therefore be rewrit-

ten in a suitable basis with the same quantum numbers. Combining this implies the

replacement

O1(x)O2(0) →
∑

n

Cn
12(x)On(0), (5.1)

where the On are now a suitable basis of operators with the same quantum numbers, and

all dependence on x is in the coefficient functions C. These can be Fourier-transformed,

to provide functions of the momentum q. These can be calculated in perturbation theory.

To leading order they will be determined by balancing the mass dimensions on both side.

Assume for example that the combination O1O2 is gauge-invariant, scalar, and has

dimension 6. This dimension would be present, e. g., if both O1 and O2 would be meson

currents. Then, the leading contributions are1

c1(q)× 1 +
c2(q)

(q2)2
mf q̄fqf +

c3(q)

(q2)2
F a
µνF

µν
a +O

(

1

(q2)3

)

.

The higher orders have increasingly larger powers of 1/q2, and therefore become less and

less relevant at high energies, where the OPE works best. In principle, it is possible that

quantum effects increase the degree of divergences. In theories, such as QCD, which are

asymptotically free, these corrections are at most logarithmic, and therefore do not change

the counting of divergences for divergent contributions. Of course, in cases with a finite

leading term, this can have substantial importance.

Another thing to worry about is that the momentum q in Minkowski space-time are

not necessarily large, if their components are. E. g., they could be on the light-cone. Thus,

the argumentation is most relevant for space-like momenta. In position-space, this is more

evident. Large momenta correspond to small distances x2. However, x2 can also become

small for light-like separation. Then, this expansion is rather a light-cone expansion.

1The explicit appearance of the quark mass is necessary to obtain the correct renormalization proper-

ties.
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The coefficient functions ci, known as Wilson coefficients, are all finite, to leading-order,

at large q2. They can be calculated in perturbation theory, by evaluating the expansion

(5.1). These coefficient functions are not universal, as they depend on the operators

in questions. The non-perturbative improvement now appears when taking expectation

values of (5.1):

〈O1(x)O2(0)〉 →
∑

n

Cn
12(x)〈On(0)〉. (5.2)

The expectation values 〈On(0)〉 are now universal, the same for all pairs of operators on

the left-hand side. In the previous examples, they would be 1, the so-called chiral or quark

condensate 〈q̄q〉, and the gluon condensate 〈F a
µνF

µν
a 〉. However, these quantities are zero

to all order in perturbation theory, at least for vanishing quark masses. Thus, they have

to be obtained either by non-perturbative methods, or from experiment. Fitting these

with, e. g., experimental data or obtaining them from one of the other methods below

hence provides an improvement over the purely perturbative result. Since their values are

universal, this will improve, at least for large momenta, the results in many calculations

simultaneously. This incidentally also shows that the non-perturbative contributions are

suppressed by powers in q2 at high energies, a consequence of asymptotic freedom. This

justifies again the use of perturbation theory at sufficiently large energies, especially as

the perturbative corrections in the functions ci turn out to be at most logarithmic in q.

As an example, the calculation of the Wilson coefficient to leading order yields for the

quark propagator the additional contribution

Sij ≈ −(2π)d
δij〈q̄q〉
4Nc

(

1− m

d
γµ∂µ

)

δ(p),

and thus a correction to the quark propagator at zero momentum. Though this will

be substantially modified with non-perturbative methods in 5.2, this already shows an

important qualitative feature: The quark condensate modifies the quark propagator at

zero momentum, and thus contributes to an effective mass of the quarks. Going to higher

order yields

Sij = −iδij
g2CF 〈q̄q〉

12p4

(

d− ξ − 2(d− 2)

d
(1− ξ)

mqγµp
µ

p2

)

.

Though this order explicitly depends on the gauge by the appearance of the gauge parame-

ter ξ, this now shows a (gauge-dependent) effective mass for the quarks over all momenta,

proportional to the value 〈q̄q〉. Since this quantity can only be non-zero if chiral sym-

metry is spontaneously broken, this implies that breaking spontaneously chiral symmetry

will influence the quark mass. Whether it is broken, however, is left to non-perturbative

methods and, of course, experiment.
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In some cases, it is also possible to invert the argumentation. If there is a particle with

a large (tree-level) mass, its momentum-space propagator at tree-level can be expanded as

〈φ†φ〉 = 1

p2 −m2 + iǫ
≈ 1

m2

(

1 +
p2

m2
+O

(

p4

m4

))

.

Hence, to leading order any process in which the particle appears will be suppressed by

powers of it mass. Generically, if the process has again a characteristic energy scale Q2,

the effect will be of order Q2/m2, which is small if Q2 ≪ m2. This condition is, e. g.,

very well fulfilled in QCD for the top quark at typical hadronic energies. Hence, the top

quark can almost throughout QCD be neglected with an error of order 1/1752, tiny in

comparison to other error sources.

This more heuristic argument can be formalized, and is known as the Appelquist-

Carrazone theorem. It is at the heart of heavy-quark effective theory (HQET). This is

an approximation where heavy quarks, e. g. the bottom and even the charm quark, are

treated as so heavy that they can essentially be treated like non-relativistic particles, or

even inert particles. This makes especially bound states of two heavy quarks accessible to

an approximation with quantum mechanics, where the gluon interactions between quasi-

static quarks is essentially given by the pure Yang-Mills interaction. Even in cases of

heavy-light systems such an approximation is often rather good.

There are various ways for deriving heavy-quark effective theory. One possibility is to

integrate out the heavy quark fields, like in lattice calculations to be discussed in section

5.1.4. Expanding afterwards the determinant of the Dirac operator in 1/m yields then

an operator which can be reintegrated using new effective fields. In general, the typical

structure of the effective theory is of type

L = h̄

(

iD0 +
1

2M
(γiDi)

2 + i
1

4M2
O(γiDiγjDjD0)

)

h

where h is the heavy quark field, the summation is over the spatial part, and the precise

form of the higher order operator O depends on the type of expansion, like in speed, mass

or others, performed, while the first part is almost universal. The second part is also always

vanishing on-shell, and therefore describes different consequences of quantum corrections

in the different expansion schemes at finite orders. It is evident then that the expansion

becomes non-relativistic, as now the time-derivative remains first order, while the spatial

derivatives become second order. Of course, this theory is non-renormalizable, and as

such will require an increasing amount of experimental input in each order of perturbation

theory.

It should be noted that there are two limitations to the Appelquist-Carrazone theorem.

One is that certain assumption on long-range effects are made, which strictly speaking are
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not fulfilled by QCD. They have to do with topological aspects to be introduced later ins

section 5.4. Still, though this is formally a problem, in practical applications the induced

error is irrelevant.

A more severe practical problem appears when it comes to renormalization. A mass-

independent renormalization scheme, e. g. MS, is defined in a way which includes auto-

matically all particles in a theory, no matter the mass. Thus, renormalizing a theory in

such a mass-independent scheme and then performing a heavy-mass expansion, or just

neglecting heavy particles, necessarily fails. The most often implemented solution is to

perform the heavy-mass approximation before renormalization. This, however, limits the

energy range for which a calculation is possible, and will lead to non-analyticities at the

thresholds of the heavy particles. The alternative is to use an explicitly mass-dependent

renormalization scheme, where then a consistent approximation can be done. Though this

is conceptually the cleanest approach, it is technically substantially more involved, and

therefore often disfavored.

5.1.2 Sum rules

Sum rules are, in principle, rather simple statements, which are nonetheless exactly true,

and they derive usually from rather simple statements. A simple example of a sum rule

is, e. g.,
∫

d4x

(

2

3
2up(x)−

1

3
dp(x)

)

= 1,

where up and dp are the density of up quarks and down quarks inside a proton, and the

factor 2 takes into account that there are twice as many up quarks than down quarks.

Hence, this sum rule is just the statement that the total charge of the proton, in units of

the electron charge, is 1.

The real usefulness of such statements comes into play by combining several of them.

E. g., another sum rule is

∫

d4x

(

2

3
un(x)−

1

3
2dn(x)

)

= 0, ,

stating that the neutron is electrically neutral. Subtracting both yields

∫

d4x

(

2

3
(2up − un)−

1

3
(dp − 2dn)

)

= 1, .

This is a non-trivial statement about the difference of the quark distributions inside the

proton and neutron. Assuming that the difference, only due to isospin-breaking effects, is
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small, and hence the distribution in proton and neutron are similar yields

∫

d4x (2u+ d) = 3.

This shows that there are three quarks inside the nucleon, or that the baryon number of

quarks is 1/3. Neglecting the small difference between up and down quarks finally yields

∫

d4xu = 1,

which is nothing but the statement that the distribution is normalized.

Though this example was quite simple, it generalizes to more complicated statements.

This is particular true if, e. g. by electromagnetic measurements, the distributions are

measured and then the results are used in different sum rules. A famous example is the

following. Assume that u and d are known. Then, if the naive quark picture would be

correct, it follows that

∫

dp0

∫

d4xeip0t(2u(x) + d(x)) = E

should give the total energy of a nucleon. However, it was found that the sum-rule was

violated by more than 50%, which is direct evidence that the gluons and sea quarks carry

a substantial amount of the total energy of the nucleon. Similar results have also been

found, e. g., for the nucleon spin, the so-called spin crises. Though, of course, it is not a

real crises. There is no a-priori reason why the gluons and sea quarks should not carry

a substantial amount of the spin. However, it was yet not possible to resolve how much

they actually carry, both experimentally and theoretically.

5.1.3 Dispersion relations

Dispersion relations are relations which are established on basis of the analyticity of two-

point functions, i. e. functions which depend only on a single external momentum variable,

or two space-time positions, e. g. 〈O1(x)O2(y)〉 = Π(q). The operators Oi can be com-

posite, but the important restriction is that they are physical, especially gauge-invariant.

An example could be two hadron currents, and then this would be the interaction of two

hadrons with an exchange of a momentum q.

For such gauge-invariant operators it can be shown that the only possible analytic

structure is that they have one or more poles at some q2 ≥ 0 on the real axis, and a

branch cut on the real axis starting at some q2 ≥ 0 which corresponds to the lightest
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two-particle state in the same channel. There may also be possibly more poles on further

Riemann sheets which do not play a role in the following. Consider then the integral

In = −4πα

∫

dq2

2πi

1

(q2 +Q2
0)
n+1

Π(q2) (5.3)

where Q2
0 < 0 and the integration paths encircles this pole. The theorem on residues then

yields

In =
1

n!

dn

d(q2)n
Π(q2)

∣

∣

q2=−Q2
0
.

Now expand in (5.3) Π using the OPE at Q2
0, requiring q

2
0 to be sufficiently large. Then

none of the terms in the expansion can grow faster than logarithmically. Hence, it is

permissible to push the integration contour to infinity, except where the branch point is.

A further theorem of complex analysis then ensures that the integral is entirely determined

by the discontinuity across the cut. This yields

In = −4πα

∫

dq2

2πi

1

(q2 +Q2
0)
n
discontinuity(Π(q2)

= −8πα

∫

dq2

2π

1

(q2 +Q2
0)
n+1

ℑΠ(q2).

By virtue of the optical theorem, however, this is just an integral over the corresponding

interaction cross-section σ

In =
1

π

∞
∫

0

ds
s

(s+Q2
0)
n+1

σ(s).

Hence, this relates the coefficient of the OPE, non-perturbative information, directly to

cross-sections, making them directly accessible for other purposes. Such a relation is

called a dispersion relation. One of the arguably most famous ones is obtained from the

cross-section of e+e− →hadrons, which to leading order yields

∞
∫

0

ds
s

(s+Q2
0)
n+1

σe+e−→hadrons(s) =
4πα2

n(Q2
0)
n

∑

f

(

Q2
f +O(α3, αs, (Q

2
0)

−2)
)

(5.4)

which counts the active quark species. Hence dispersion relations are valuable tools to

obtain non-perturbative information from cross-sections.

5.1.4 Lattice

So far, the methods employed were, in a sense, at least semi-perturbative or rather indirect.

Of much more interest are methods which permit to directly compute, at least in principle,
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in an exact way arbitrary n-point functions. Several such methods exist, and some will be

discussed in the following. All of them provide a means to obtain an exact result.

However, in practice, for any reasonably interesting theories, all of these methods

face practical limitations, which take various forms. This requires in all cases to make

approximations which induce systematic errors. It is in the nature of these errors that

they cannot be determined accurately, as this would require to have a solution to the theory

in question. However, all methods provide possibilities to give lower bounds on these errors

in a systematic fashion, which, in principle but not in practice, can be arbitrarily refined,

but will remain lower bounds.

One further noteworthy point is that though all of these methods can be formulated

exactly in Minkowski space-time, it is in most practical applications, just as in perturbation

theory, useful to go to Euclidean space-time in intermediate steps, or even obtain the final

result in Euclidean space-time. Though this may seem to be a strong limitation, it is not.

It can be shown that all knowledge about a quantum field theory like QCD in Minkowski

space-time, can be obtained from the same theory in Euclidean space-time, by means

of so-called reconstruction theorems. Though an exact reconstruction requires complete

knowledge of the theory, it is still possible to obtain some subsets of results, e. g. the

masses of particles, even under approximations, exactly, and the other one to an extent

anyhow limited by the applied approximations. Hence, this is in many, but not in all cases,

not a too strong limitation.

The first of these methods is the so-called lattice approach. As it will become apparent,

all of these methods will require to violate in one way or the other one or more symme-

tries of the theory forcible due to the introduced approximations. For the lattice, this is

rotational and translation symmetries.

The idea behind lattice gauge theory is to replace continuous space-time by a grid of

points, usually a hypercubic2 grid of points x. This reduces rotation symmetry from the

Lorentz group to the hypercubic group, and the translation symmetry to the subgroup

of lattice translations. In practical calculations, which are mostly done numerically, also

the size of the lattice is made finite. This requires boundary conditions, which in the

infinite-volume limit are, of course, irrelevant. They are hence chosen usually periodic or

anti-periodic, for simplicity.

The points are then connected by directed vectors in µ direction between two lattice

points, and which has length a, the lattice constant. The original continuum theory should

be recovered in the limit a→ 0, which is a non-trivial problem.

2There have also been attempts using different geometries, or even random locations, but none of

theses turned out to be superior to the simplest case of hypercubic lattices.
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5.1.4.1 Yang-Mills theory

To implement gauge fields logically on the lattice, the naive idea would be to just discretize

the gluon field Aµ = gτaAaµ. However, this turns out to be an impractical choice in

calculations. Rather, so-called links are used,

Uµ(x) = eiaAµ(x) ≈ 1 + iaAµ(x) (5.5)

which therefore permit to recover the original gauge field in the continuum limit. The

name stems from the fact that the links have a direction, and therefore link the points x

and x + aeµ, where eµ is the unit vector in direction µ. Geometrically, it can be shown

that this is just the parallel transport which is required to construct a covariant transport

over a finite distance, in this case a. In the infinitesimal limit this parallel transport is

given by the covariant derivative, which replaces the ordinary derivative giving the parallel

transport without local gauge invariance.

Exponentiating the algebra element Aµ yields a group element, and hence U−1 = U †.

This implies that the now also group-valued gauge transformations g = exp(iω) take the

form

Uµ(x) → g(x)U(x)µg
†(x),

which can be shown by using the expansion (5.5), and noting that (Aµ(x)−Aµ(x+aeµ))/a
is just the discrete derivative.

Since for the su(3) algebra there are two possible groups, there is a choice involved. In

QCD, this choice is arbitrary, but in the standard model the choice is unique by the re-

quirement that all fermion fields must have single-valued wave-functions, and is SU(3)/Z3.

However, absence of the global factor Z3 = {1, e 2πi
3 , e

4πi
3 } makes the theory very hard to

treat numerically. Since the theory recovered in the continuum limit is again the algebra

theory, however, it should not matter which group is used. Therefore, in practice rather

the group SU(3) is used.

The action is constructed using the so-called plaquette

Uµν(x) = Uµ(x)Uν(x+ aeµ)U
†
µ(x+ aeν)U

†
ν(x)

yielding

S = −a4β
∑

x

∑

ν<µ

(

1− 1

3
ℜtrUµν(x)

)

(5.6)

with β = 2Nc/g
2 = 6/g2 related to the coupling constant. This lattice action is called

the Wilson action. That (5.6) yields indeed the continuum action in the limit a → 0 can

be shown by using the expansion (5.5), and noting that the corrections to it are of order

O(a2), and therefore irrelevant in the continuum limit.
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Taking the continuum limit also implies that any additions to the action (5.6), which

vanish in this limit a → 0 can be freely included in the action. This freedom has been

widely used to design so-called improved actions, which have various desired properties, e.

g. reducing the dependence on the lattice spacing. However, in general adding some terms

to the lattice action will not always act in the same way for all observables, and hence an

improvement in one quantity can very well be a degradation for another one, and hence

this requires careful checks.

One of the particular advantages of this reformulation is that the group elements, in

contrast to the algebra elements, are bounded, in the sense that trUµ is finite for all group

elements. This implies that the lattice path integral

Z =

∫

DU(x)eS

is actually finite, even when integrating over the whole group. Hence, gauge-fixing is not

necessary to obtain finite results, as long as the regulator a is not removed. Furthermore,

since a finite a also implies that there is a maximum momentum on the lattice of order 1/a

there is also an intrinsic momentum cutoff, and hence the theory is (gauge-invariantly)

regulated. Thus, the theory is completely finite. This makes the lattice formulation par-

ticularly accessible to numerical calculations, which has been widely exploited. Especially,

any observable

〈O〉 = Z =

∫

DU(x)Oe−S

can now be calculated by brute force numerically, by just explicitly evaluating the finite

number of integrals explicitly3.

This is particular useful to obtain masses. Since in a finite volume all energy levels are

discrete, it is always possible to expand in energy eigenstates4,

〈O(t)O(0)〉 =
∑

ane
−Ent,

where the reality of the exponents is due to the Euclidean space-time. Hence, just by

waiting long enough, only the ground-state will contribute appreciably, and can thus be

read-off. Determining the higher contributions is possible, though even with exact results

no more energy levels can be determined than a quarter of the points in time direction.

Also here, several sophisticated methods beyond the scope of this lecture are available to

extract more information.

3In practice, the integral is still high-dimensional, at least V ×d×(N2

c
−1), and sophisticated numerical

algorithms are required.
4For periodic boundary conditions in a finite volume the exponentials have to be replaced by cosh

functions.
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5.1.4.2 Quarks

The formulation of fermions, and thus especially quarks, on the lattice is at the same time

straightforward and cumbersome. Cumbersome it is because most applications of lattice

calculations aim at a numerical evaluation. However, there is no numerical algorithm

for Grassmann numbers. Hence, it is necessary to somehow get rid of them. The basic

stratagem to do so can already be applied in the continuum theory. Since the fermions

only appear as a bilinear in QCD, it is just a Gaussian integral, and hence the integral

can be performed using (3.10). Then, only the determinant of the Dirac operator Dµγµ

appears
∫

DAψ̄ψe−SYM−
∫

ψ̄Dµγµψ =

∫

DAe−SYM det(Dµγµ). (5.7)

On a finite lattice also the eigenspectrum of the Dirac operator is discrete, and can be

calculated using suitable numerical techniques.

However, there is a serious problem encountered when adding fermions. In the free

case, the simplest discretization of the Dirac operator in Fourier space is

Dµγµ = i
∑

µ

γµ sin(pµa) +m. (5.8)

This can be treated exactly, and this yields the exact fermion propagator

Dψ̄ψ(p) =
am− i

∑

µ γµ sin pµa

a2m2 +
∑

µ sin
2 pµa

.

This propagator has the problem that not only for pµa ≈ 0 the sin can be approximated

by pµa, but also for the largest momenta on the lattice, pµa ≈ π. Hence, there are indeed

16 rather than one pole of this propagator, and hence there are far too many degrees of

freedom in this naive discretization. This is the so-called fermion doubling problem.

It would at first sight appear possible that this is just due to a too simplistic discretiza-

tion (5.8) of the Dirac operator. Unfortunately, this is not the case. The reason is the

breaking of the rotation group by the lattice. Fermions do have an additional symmetry

related to space-time symmetry, chiral symmetry. This symmetry is necessarily broken

by the lattice in any naive discretization. As a consequence, it can be shown, this is the

so-called Nielsen-Niomiya theorem, that it is not possible to evade the doubling problem

without destroying chiral symmetry.

Of course, in the continuum limit chiral symmetry is restored. Hence, the solution

to this problem is to give up a Dirac operator with explicit chiral symmetry at finite

lattice spacing. This so-called Ginsparg-Wilson construction leads to a Dirac operator
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without doubling, but also without chiral symmetry. However, it furnishes a replacement

symmetry, which rather than fulfilling the ordinary chiral algebra

{γ5, D} = 0

instead fulfills

{γ5, D} = aDγ5D, (5.9)

where the transition to the continuum symmetry is made explicit by the appearance of

the lattice spacing a, and D is the Dirac operator. Explicit solutions to (5.9) have been

constructed. The only drawback remaining is then that this introduces additional dis-

cretization errors, as the chiral symmetry is distorted at finite a, and all Dirac operators

constructed in this was turn out to be numerically more expensive than the naive version

by one to two orders of magnitude. As a consequence, several intermediate solutions have

been constructed, which have less conceptual problems, are cheaper, but have larger lattice

artifacts.

An interesting result obtained from such calculations is that ignoring the dynamics of

fermions completely, i. e. setting the determinant of the Dirac operator to one in (5.7),

the so-called quenched approximation, is a rather good approximation: Many results agree

with the ones from full QCD at the few-percent level. This implies that QCD is essentially

dominated by the gluon dynamics. Of course, this cannot be true in general. The leading

order of the β function (4.48) changes qualitatively above a certain number of flavors,

roughly 16, and asymptotic freedom is lost. In this case, also the quenched approximation

can no longer be expected to give good results. In fact, it is expected that already much

earlier, at about 10-12 flavors, qualitative changes set in, which invalidate the quenched

approximation. However, given that only six quark flavors are known so far, this is not a

real practical limitation. Also, since the quarks are massive, and especially for larger gen-

erations very massive, this implies that only the few lightest quarks will play an important

role for most of hadronic physics.

5.1.5 Dyson-Schwinger equations

The Dyson-Schwinger equations (DSEs) are essentially the quantum version of the equa-

tions of motion. As such, they are a coupled set of equations for all the correlation functions

of a given theory. Their solution therefore determines a theory completely5. Though it is

5In fact, the DSEs may have multiple solutions, as well as the FRGs to be introduced in the next

section. Similar to ordinary differential equations boundary conditions may then be necessary to identify

the appropriate solution. These may be either physical ones, e. g. at first order phase transition where

two phases coexist, or unphysical ones, e. g. due to gauge conditions.
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possible to formulate DSEs also using a lattice regularization, the focus will here be on

the continuum version. As a consequence, DSEs face the same problem concerning gauge

symmetry as does perturbation theory, in fact even more so as will be discussed later in

section 5.5.5.2. Hence, it is necessary to fix a gauge. For technical convenience, in the

following the Landau gauge will be chosen.

The most straightforward way to derive the DSEs for a generic field φa is by using the

fact that the integral of a total derivative vanishes

0 =

∫

DAa δ

δAa(y)
e−S+

∫

ddxAa(x)ja(x)

S =

∫

ddxL.

Here, S is the action, ja is the source6 of Aa and the integral is over full field space.

Performing the derivative and pulling the resultant factor out of the integral by replacing

Aa with δ/δja, the equation
(

− δS

δAa(x)

∣

∣

∣

∣

Aa(x)= δ
δja(x)

+ ja(x)

)

Z[ja]

∣

∣

∣

∣

∣

ja=0

= 0 (5.10)

is obtained. Performing further derivatives will create a sequence of equations.

To establish the meaning of (5.10), it is necessary to recast it further. The first step is

to introduce the free energy W

W = lnZ,

which changes (5.10) to

− δS

δAa

[

δW

δj
+

δ

δj

]

+ ja = 0.

Performing a Legendre transformation to obtain the effective action Γ

Γ[A] = −W +

∫

ddx
δW

δja
ja

W [ja] = −Γ[φa] +

∫

ddxja(x)Aa(x)

implies

Aa =
δW

δja

ja =
δΓ

δAa
.

6There are some subtleties when it comes to gauge-dependent sources. They will not play a role here,

but one should be very careful in employing them in general, especially beyond perturbation theory.
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Hence, the sources and the fields are related dependent and independent variables. Thus,

the Legendre transform Γ ofW is the generating functional of vertex functions. Especially,

since the derivative of the effective action is just the connected and amputated one-point

function, this shows explicitly that (5.10) is an equation for the one-point function. It

also shows that further derivatives will yield equations for higher n-point functions. In

particular

ΓAa1 ...Aan(x1, ..., xn) =
δnΓ

δAa1(x1)...δAan(xn)
(5.11)

ΓAaAb(x, y) = DAaAb−1(x− y) =
δ2Γ

δAa(x)δAb(y)
=

(

δ2W

δja(x)δjb(y)

)−1

.

The order of the field indices Ai is relevant not only because of assignment of the arguments,

but also if anti-commuting fields appear.

This yields finally

δΓ

δAa
− δS

δAa

[

Aa +
δ2W

δjaδjb

δ

δjb

]

= 0

as an equation to determine the DSEs for the vertex functions.

In the case of Grassmann fields u like ghosts and fermions, two independent sources

are necessary. This modifies the above to

Z =

∫

Duaūae−S[ua,ūa]+
∫

ddx(η̄a(x)ua(x)+ūa(x)ηa(x)) (5.12)

ua(x) =
δW

δη̄a(x)
ūa(x) = − δW

δηa(x)
(5.13)

W (ηa, η̄a) = −Γ(ua, ūa) +

∫

ddx(η̄a(x)ua(x) + ūa(x)ηa(x)) (5.14)

ηa(x) =
δΓ

δūa(x)
η̄a(x) = − δΓ

δua(x)
(5.15)

where all derivatives with respect to Grassmann variables act in the direction of ordinary

derivatives.

It is worthwhile to derive an explicit example, which will be the DSE for the ghost in

Landau gauge. It is one of the simplest equations, but shows already all relevant mecha-

nisms. The general procedure to obtain the corresponding Dyson-Schwinger equations is

to calculate equation (5.10) and then derive once more with respect to the field or with

respect to the anti-field in case of anti-commuting fields. The additional source term then

yields the propagator while the right-hand-side of the equations are found by the derivative

of the action.
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Since in the course of the derivation, the source in equation (5.10) becomes the inverse

full propagator, it makes sense to already rewrite (5.10) as7

ja(x)Z =
δS

δφa(x)

∣

∣

∣

φa(x)= δ
δja(x)

Z (5.16)

at the sources set equal to 0. The ghost sector of Yang-Mills theory is given by

Sgh =

∫

ddzc̄c(z)∂ρ(δ
cd∂µ + gf cdeAeρ(z))c

d(z) (5.17)

Entering this into (5.10) and differentiating with respect to c̄a(x) yields

(

−∂2xca(x)− gfade∂xµA
e
µ(x)c

d(x) +
δΓ

δc̄a(x)

)

eW = 0

where the x-index on a ∂ indicates the variable with respect to which to derive. Replacing

the fields by their respective derivatives and divide, after performing the derivation, by

exp(W ) yields

−∂2xca(x)− gfade∂xµ

(

δW

δjeµ(x)

δW

δη̄d(x)
+

δ2W

δjeµ(x)δη̄
d(x)

)

+
δΓ

δc̄a(x)
= 0

As a general feature of such derivations, terms containing products of only single deriva-

tives of W appear at this stage. Here, the aim is only an equation for the propagator.

Hence, when deriving such terms again with respect to the fields, always at least one single

derivative remains, which can be replaced by a classical field. When setting the classical

sources to zero at the end, also the classical fields are set to 0 and therefore these terms

always vanish. Hence they can be neglected already at this stage of the calculation, and

will not appear furthermore. This is not true when deriving equations for higher n-point

functions. E. g., when determining the equation for a four-point function, each single

derivative may be acted upon, yielding a non-vanishing term.

So the remaining expression is

−∂2xca(x)− gfade∂xµ
δ2W

δjeµ(x)δη̄
d(x)

+
δΓ

δc̄a(x)
= 0

To obtain the equation for the ghost propagator, this equation is derived once more with

respect to cb(y) which leads to

−∂2xδabδ(x− y)− gfade∂xµ
δ3W

δcb(y)δjeµ(x)δη̄
d(x)

+
δ2Γ

δcb(y)δc̄a(x)
= 0

7It should be noted that the equations may differ in form depending on the order of derivatives, though

of course this only corresponds to rearrangements due to identities relating different vertex functions.



Chapter 5. QCD beyond perturbation theory 95

The last term defines the inverse ghost propagator as

δ2Γ

δcb(y)δc̄a(x)
= Dab−1

G (x− y)

The propagator is then given by

δ2W

δηb(y)δη̄a(x)
= Dab

G (x− y),

which can be proven as
∫

ddz
δ2W

δηc(z)δη̄a(x)

δ2Γ

δcb(y)δc̄c(z)
=

∫

ddz
δca(x)

δηc(z)

δηc(z)

δcb(y)
=
δca(x)

δcb(y)
= δabδ(x− y).

The third term yields the interaction part. Using

δ2W

δjeµ(x)δη̄
d(x)

= −
∫

ddzddw
δ2W

δjfν (z)δjeµ(x)

δ2Γ

δc̄g(w)δAfν(z)

δ2W

δηg(w)δη̄d(x)

where the minus arises due to the anti-commuting derivatives. Using further the fact, that

δ2Γ

δc̄g(w)δAfν(z)
|j=η=η̄=0 = 0,

which generalizes to all mixed two-point functions, it is possible to write down the result

in position space

Dab−1
G (x− y) = ∂2xδ(x− y)

+gfade∂xµ
∫

ddzddwDef
µν(x− z)Ddg

G (x− w)Γcc̄A;bgfν (y, w, z).

Herein the gluon propagator Dµν is defined as

Dab
µν(x− y)−1 =

δ2Γ

δAbν(y)δA
a
µ(y)

Dab
µν(x− y) =

δ2W

δjbν(y)j
a
µ(x)

. (5.18)

and the full ghost-gluon vertex

δ3Γ

δca(x)δc̄b(y)δAcµ(z)
= Γcc̄A;abcµ (x, y, z).

Replacing all expressions with their Fourier-transformed8 and afterwards dropping
∫

ddp/(2π)d exp(−ip(x−
y)), produces the result in momentum space as

Dab−1
G (p) = −δabp2 − igfade

∫

ddq

(2π)d
pµD

ef
µν(p− q)Ddg

G (q)Γcc̄A;bgfν (−p, q, p− q), (5.19)

8All momenta are always defined incoming and momentum conservation at the vertices is taken into

account. Hence in principle one of the arguments of the vertices could be dropped, but since this depends

on conventions, all are kept.
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where momentum conservation at the vertex has been used.

From (5.19) it is also possible to directly read of the tree-level vertex

Γtl;cc̄A;abcµ (p, q, k) = igfabcqµδ(p+ q + k) (5.20)

Rewriting (5.19) using (5.20) gives

Dab−1
G (p) = −δabp2

+
∫

ddq
(2π)d

Γtl;cc̄A;daeµ (−q, p, q − p)Def
µν(p− q)Ddg

G (q)Γcc̄A;bgfν (−p, q, p− q). (5.21)

which is the final form.

In a similar way, all DSEs can be derived. As is visible, this is algorithmic, and can

therefore be automatized. Three important statements have to be made.

The first is that the equations couple different correlation functions. In the present

case, the equation for the ghost propagator is coupled to the gluon propagator and the

ghost-gluon vertex, and thus an n-point vertex of higher order. Generically for a theory

which in four dimensions is renormalizable by superficial power-counting the equations for

an n-point function involves the n+ 1 and n+ 2 point functions. Furthermore, in general

in such theories also expressions with two integrals in momentum space appear.

The DSEs therefore are a coupled system of non-linear integral equations. Solving them

exactly is therefore in all but the most trivial cases impossible. Expanding all correlation

functions in the coupling is another way to generate ordinary perturbation theory, but will

thus not provide any further insights. An alternative is to approximate the higher n-point

functions in such a way that a finite number of unknowns and a finite number of equations

remain, which is called a truncation. Such a system can then be solved using appropriate

techniques, though this is still in general by no means trivial. Furthermore, it is not

guaranteed that a given such truncation will produce equations which have a solution at

all, or it can have multiple solutions of which some or all can be spurious solutions which

disappear outside the truncation. Therefore careful checks, most desirably by comparison

to experiments, should be made.

Second, the DSEs involve all information, in contrast to the STIs. Thus, an exact

solution of the DSEs will automatically also satisfy all STIs9. This is, of course, not true

for some truncation, including the perturbative expansion. They will in some way violate

the STIs. In perturbation theory, this happens at the next order of the coupling constant,

and is therefore self-consistent. This is in general not true for any other truncation. The

9Though in general there are quantities only appearing in the STIs, but not the DSEs, which are

then pure gauge artifacts. They are determined uniquely by the solutions of the DSEs, though actually

calculating them may still be technically non-trivial.



Chapter 5. QCD beyond perturbation theory 97

converse is actually not true: The STIs only make a statement about relations due to

the symmetries of the theory, and therefore only encode redundant information. Thus,

knowledge of the solutions of the STIs is not sufficient to solve the DSEs.

Third, though the equation derived is for a gauge-dependent quantity, equations can

also be derived for gauge-invariant quantities. Equations describing mesons and baryons

are special kinds of the DSEs, and are known as Bethe-Salpeter (BSEs) and Faddeev

equations, respectively.

5.1.6 Renormalization group equations

As discussed in section 4.6, in the renormalization process a scale µ is introduced. However,

the choice of this scale was arbitrary, at least as long as µ > 0. As a consequence, any

physical observables should not depend on this scale. Especially, it must be permissible to

shift this scale µ → µ + δµ without affecting observables. Of course, since this scale was

used to define the renormalized parameters, this will induce a shift in all the parameters

p of the theory p → p + δp, in QCD the gauge coupling g and the masses of the quarks

m. This will also induce a shift in the field amplitudes δZ, as these are also renormalized.

Consider a single field. The latter implies that a connected correlation function

Γn = 〈φ1...φn〉

will be shifted under an infinitesimal transformation in µ to first order as

Γn → (1 + nδZ)Γn (5.22)

A dependence on different fields will just induce a sum of the different shifts. However,

simultaneously, the correlation function is a function of the parameters of the theory,

and of the renormalization scale. E. g., the renormalized propagators depend only on

the renormalized parameters g and m, and the renormalization scale µ. Also any wave-

function renormalization is entirely given in terms of these quantities. Thus, (5.22) must

also be given by

dΓn = nδZΓn =
∂Γn

∂µ
δµ+

∂Γn

∂g
δg +

∂Γn

∂m
δm.

To remove the explicit dependence on δµ, usually the redefinitions

β = µ
δg

δµ
(5.23)

βm =
µ

m

δm

δµ

γ = µ
δZ

δµ
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are performed. Since the particular correlation function no longer appears, these are

universal functions of the coupling constant, masses, and the renormalization scale only.

However, they are not unique. Since the dependence on the renormalization scale implies

that they depend on the way how it is fixed, and therefore on the renormalization scheme.

This form is known as the/a Callan-Symanzik equation

(

µ
∂

∂µ
+ β

∂

∂g
+ βmm

∂

∂m
− nγ

)

Γn = 0, (5.24)

which is an exact equation the correlation function has to fulfill. Especially, if the functions

β, βm, and γ would be known, then it would be possible to determine its running with

the renormalization scale µ. Setting e. g. all momenta equal to µ, like it is done in certain

renormalization schemes, this would provide limited knowledge on the full momentum

dependence of Γn.

These equations can alternatively be derived in an integrated form. Since for any

multiplicatively renormalized vertex function10

Γ0 = ΠiZ
ni

i Γ,

where i enumerates the fields, and the ni counts the times a field appears in the related

expectation value. The vertex function Γ0 only depends on the unrenormalized quantities,

while Γ is the renormalized one. Since the left-hand side does not depend on µ, neither

does the right-hand side. Taking a total derivative on the right hand side with respect to

µ also yields (5.24).

The situation becomes particularly simple in a mass-independent scheme, i. e. where all

renormalization conditions do not involve any mass explicitly, like the MS scheme11. Then

in the equation (5.24) the functions do not depend on any ratios µ/m, and the equation

can be integrated using the method of characteristics, yielding

Γ(µ, α,m,Q) = exp



−
∑

i

ni

ᾱ
∫

α

dx
γi(x)

β(x)



Γ(µ̄, ᾱ, m̄, Q),

where the barred quantities are the initial conditions. The most important point is that

the dependence on Q is not involved. The importance of this becomes even more evident

10Note that under certain conditions there may be mixing between various vertex functions under

renormalization. Then this is a matrix equation. This complication will not be considered here. Also a

dependence on the gauge-parameter is skipped over here, but can be considered if necessary.
11Such schemes have their own problems due to threshold effects, but this of no importance for the

present case.
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when rescaling all dimensionful quantities by a common factor, especially by µ̄ such that

the initial condition becomes µ̄ independent. This yields

Γ(µ, α,m,Q) = µ̄dΓ exp



−
∑

i

ni

ᾱ
∫

α

dx
γi(x)

β(x)



Γ

(

1, ᾱ,
m̄

µ̄
,
Q

µ̄

)

= exp





ᾱ
∫

α

dx

(

dΓ
β(x)

−
∑

i

ni
γi(x)

β(x)

)



Γ

(

1, ᾱ,
m̄

µ̄
,
Q

µ̄

)

where dΓ is the naive/canonical/engineering dimension of Γ, i. e. the one obtained by just

counting the dimensions of the fields in the expectation value. In the second line, the

relation (5.23) has been used to include the canonical dimension into the exponent. Since

without renormalization all γi vanish, they modify the canonical dimension. Thus, this

combination is also called anomalous dimension.

A very interesting case arises if the function either has only one momentum scale Q

or all momenta are equal, i. e. the so-called symmetric configuration. Then by setting

µ̄ = Q, the equation describes the dependency on Q alone. Since due to the γi, this is not

a scaling just with QdΓ , since the limits of the integral now implicitly depend on Q, this

shows how the classical scaling at m = 0 is broken due to quantum corrections.

Of course, the dependence of the relevant functions can, e. g., be obtained first in fixed-

order perturbation theory, and then be used to integrate the equation. This yields so-called

renormalization-group improved results, where the name ’group’ is here of historical origin

only. Still, the whole process can be remapped to a half-group.

E. g. for QCD it follows to NLO

Q2 dα

dQ2
= β(α(Q2)) ≈ −α2

∑

i

βiα
i

β0 =
33− 2nf

12π

β1 =
153− 19nf

24π2

Q2

m̄(Q2)

dm̄(Q2)

dQ2
= γm(α(Q

2)) ≈ −α
∑

i

γiα
i (5.25)

γ0 =
1

π

γ1 =
303− 10nf

72π2

where β0, β1, and γ0 are the same in all mass-independent renormalization schemes, while

the value of γ1 is already specific to MS. The approximation indicates that this will not
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capture any non-perturbative contributions. As noted before in section 4.7, this yields the

running of the coupling.

So far, this provides no way to determine the relevant functions, except other means.

Non-perturbatively, these can be determined using lattice methods, or DSEs. However, the

idea behind this approach can be extended to yield the so-called functional renormalization

group (FRG), which will yield a hierarchy of equations similar to the DSEs. In fact, they

are related by functional integration.

The idea is the following. Instead of performing regularization at the level of the corre-

lation functions, e. g. by putting cutoffs somewhere, already the theory itself is regulated.

This is performed by replacing the partition function

Z =

∫

DφeiS → Zk =

∫

DφiS+i∆Sk (5.26)

where ∆Sk will regulate the action, a so-called regulator. For this purpose, a regulator scale

k is introduced to control the regularization. Especially, it will be necessary that in the

limit k → 0 the regulator term vanishes, and the original action is recovered. Performing

such a replacement can be done in several ways, and here only the most commonly used

one will be discussed.

It makes use of the fact that all loops include propagators, and thus it suffices to modify

the propagators to achieve its purpose. As an added possibility, it will be used not only

to regulate the ultraviolet part of the theory, but also the infrared part, such as to avoid

any infrared singularities introduce by tampering with the ultraviolet degrees of freedom.

A suitable choice, already in Fourier space for simplicity, is then

∆Sk =

∫

d4p

(2π)4
φ(p)†Rk(p)φ(p),

with suitable extensions for gauge fields or fermions in terms of tensor structures in color,

flavor, and Lorentz space, usually the one of the ordinary action. Note that gauge theories

play here a complicated role, and it is best to introduce this regularization after gauge-

fixing, when the gluon propagator is well-defined.

The regulator Rk(p) has to fulfill certain conditions to play its role,

lim
k2

p2
→0

Rk(p) = 0 (5.27)

lim
p2

k2
→0

Rk(p) > 0 (5.28)

lim
p2→∞

Rk(p) → ∞ (5.29)

This conditions hold true in Euclidean space-time. Formulating them in Minkowski space-

time is complicated, and an implicit Wick rotation is made in the following wherever
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necessary to give expressions a well-defined meaning. The first condition ensures that

in the limit k → 0 the original theory is recovered. The second condition provides an

effective and finite mass-term, regulating the infrared. The last condition requires this

mass to become infinitely large at large momenta, damping out the fields.

It is now possible to introduce again the free energy and the quantum effective action in

much the same way as before, but all of them will depend on this regulator, and especially

the regulator scale k. Especially the quantum effective action Γk can now be used to derive

an explicit set of equations. Deriving it with respect to t = ln k yields

∂tΓk = −∂tWk = −∂t lnZk = − 1

Z
∂tZk = − 1

Zk

∫

Dφ∂teiS+i∆Sk

= − 1

Zk

∫

d4p

(2π)4
∂tRk(p)

∫

Dφφ†(p)Rk(p)φ(p)e
iS+i∆Sk

= −1

2

∫

d4p

(2π)4
D2
k(p)∂tRk(p) =

1

2

∫

d4p

(2π)4
1

Γ2
k(p) +Rk(p)

∂tRk(p) (5.30)

where in the last line (5.11) has been used, and the fact that the appearance of the

regulator will induce a shift in the Legendre transformation by the regulator, as in this

case the functional dependency is fixed, and therefore this part of the propagator is known

exactly. The generalization to more particles is almost trivial. Since all fields have to

be regulated, (5.26) just receives a term for each field, and hence (5.30) is then a sum of

terms.

The expression (5.30) is an equation for the quantum effective action as a function of

the full 2-point function, and thus a coupled system. To solve it, it is possible to proceed

as in the DSE case. By performing functional derivatives of (5.30), a tower of equations

for the n-point functions is created, which in the present case are then integro-differential

equations, for all the n-point functions. These equations are structurally different from

the DSEs, as e. g. only one momentum integration appears, and there is always an explicit

regulator. The latter is, on a technical level, quite convenient, as it renders all integrals

automatically finite, and the equations are hence already the one for the renormalized

quantities. Like in the DSE case, a full solution to these equations provides all information

on a theory. Hence, the solutions at k = 0 will then automatically also solve the DSEs,

and vice-versa.

However, as in the DSE case, these equations can still not be solved exactly. Further-

more, all n-point functions depend on an additional parameter, k. Hence, it is in general

not possible to solve these equations exactly, and approximations, again called truncations

are required. These can be done, e. g. in the same way as in the case of DSEs, i. e. by

neglecting or making assumptions on the behavior of certain n-point functions, until a
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solvable system is obtained. In addition, the additional dependence on k permits a further

type of approximation. In this case, the n-point functions are only regarded as functions

of k, and the equations (5.30) then become ordinary partial differential equations in k,

which are more accessible to solutions. Still, in general no solution of the whole system is

possible.

In such an approximation, the n-point functions in the limit k → 0 will be just con-

stants. This seems to be a drastic ansatz, but here a link to the idea behind the Callan-

Symanzik equation (5.24) shows that much more information is in included. The scale

k acts like the renormalization scale. Thus, the development of n-point functions with k

can be regarded as the development with the renormalization scale, and hence provides

limited information on the n-point functions as well.

It should be noted that in the limit k → 0 the original theory is recovered, no matter

which regulator is chosen, provided it fulfills the conditions (5.27-5.29). But this is only

true without approximations. Approximations will in generally hamper this. Moreover,

when approximations are performed, the results will in general depend on the regulator.

This is an additional type of systematic error compared to DSEs. Though several ap-

proaches have been developed over time to minimize this effect, as a systematic error this

is in principle an uncontrollable one, just like all approximations in a non-perturbative

setting. Hence, special care has to be exercised when choosing the regulator, especially

when it is unavoidable that it breaks one or more symmetries of a theory.

Still, this requires to provide a starting condition for the differential equations. In

an asymptotically free theory, like QCD, this is rather simple, since by choosing k large

enough, these will be just the perturbative (tree-level) action. Things are more involved

in other theories, and some of the biggest successes of the FRG approach arose there.

However, this is beyond the scope of this lecture.

5.1.7 Low-energy effective theories

The non-perturbative methods introduced so far were all quite powerful in that they all

provide an exact solution. However, they are all limited by the ability to perform the

corresponding calculations exactly, which at the current time is impossible for QCD.

An alternative approach are effective theories. In this approach, it is not attempted to

solve the full theory. Rather, a simpler theory is designed, which should describe certain

phenomena of the original theory in a certain energy regime, but should be treatable

using simpler methods, e. g. perturbation theory. In QCD, due to asymptotic freedom,

such theories aim primarily low energies ones.

Since such theories should be limited to a very small energy range, and usually only
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to a few orders in perturbation theory, requirements like renormalizability are of less

importance. Hence, in each order of perturbation theory additional counter-terms will

appear. These must be fixed, e. g., by experimental input. However, then all calculations

in such an effective theory are uniquely determined.

Such effective theories can be systematically developed by including all operators in

the (quantum effective) action compatible with the global symmetries of an original the-

ory. Hence, this low-energy theory is usually not a gauge theory. Further reduction can

be achieved, but at the cost of no longer being a systematic expansion. Examples are the

Nambu-Jona-Lasinio model to be used in the next section, the linear σ-model used pre-

viously, or the quark-meson model. A full systematic theory is chiral perturbation theory

introduced in the next section.

The reason for postponing the explicit construction of such models now is that they

are mostly motivated by chiral symmetry to be discussed next.

5.2 Chiral symmetry breaking

One of the most important features of QCD is the presence, or rather the absence of a

symmetry: Chiral symmetry. The QCD Lagrangian (4.1) exhibits one interesting addi-

tional symmetry if the masses of all the fermions are set to zero, besides the then manifest

flavor symmetry. This additional symmetry emerges by the combination of a flavor or

fermion number transformation and an axial transformation. Axial transformations are a

special property of fermions, and there is no analogue for bosons of arbitrary spin. It is

mediated by multiplying every fermion field by the matrix exp(iαγ5), where α is a real

parameter, and γ5 = −iγ0γ1γ2γ3 is a combination of the γ-matrices. This can be shown

using the fact that γ5 anti-commutes with all γµ. The anti-fermion field is transformed by

the corresponding hermitian conjugated phase factor.

This phase symmetry adds an additional U(1) symmetry to the theory, which is called

the axial symmetry UA(1). In addition, like the generalization of the fermion number

symmetry U(1) to the flavor symmetry SU(Nf )×U(1)=U(Nf) for Nf flavors, it is possible

to enlarge the axial symmetry to an axial flavor symmetry, called chiral symmetry. This

name stems from the fact that it turns out that it connects fermions with spin projec-

tions along and opposite to their momentum direction, i. e. of different helicities. Since

these projections yield classically a left-handed and right-handed screw12, the name chi-

12Note that the question of what is left-handed or right-handed depends upon whether you look at a

screw from the top or the bottom. Since different conventions on how to look at a screw are in use, care

should be taken.
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ral, Greek for handedness, is assigned. The total symmetry of the theory is therefore

SU(Nf )×SUA(Nf )×U(1)×UA(1) for Nf flavors of quarks.

Of these symmetries, the axial symmetry is actually broken by an anomaly during

quantization. This will be discussed in detail in section 5.6. Non-zero quarks masses break

the chiral symmetry explicitly to a diagonal subgroup of the full symmetry group, and the

non-degenerate quark masses then finally break the flavor symmetry just to a diagonal

flavor number symmetry, U(1)Nf . Hence, little is left from the classical symmetries of

massless QCD. But because the masses of the up and down quarks are small it turns out

that the consequences of the explicit breaking are such that the symmetry is still a good

guide-line. In fact, on top of the explicit breaking the symmetry receives contributions

from a spontaneous breakdown, and this fact actually shapes the low-energy dynamics of

QCD.

One of the major consequences is the relation of the masses of the hadrons to the

masses of the quarks. The mass of the proton is known very precisely to be 938.3 MeV,

and the neutron to be 939.6 MeV. This implies that the mass difference between up and

down quarks must be tiny. The ∆ is somewhat heavier, about 1230 MeV. This can be

understood as an excited state, and it is therefore heavier. Most ground state mesons

have a mass of about 600 MeV or more. All this suggest a mass of about 300 MeV for the

up quark and down quark, with very little difference13. But two mysteries appear. One

is that the pions are very light, just about 140 MeV. The second is that any attempt to

directly measure the quark masses yield consistently a mass of about 2.3(7) MeV for the

up quark, and 4.8(5) MeV for the down quark. Though the difference is consistent, the

absolute values are much smaller than the suggested 300 MeV from the nucleon properties.

The resolution of this puzzle is found in the spontaneous breaking of chiral symmetry.

To understand it, it is convenient to neglect the small masses of the up and down quarks,

and also all heavy flavors. Then, chiral symmetry is exact on the level of the Lagrangian.

However, it has to be broken in nature, as many indirect evidence shows. E. g. chiral

symmetry implies that bound states of opposite parity, but otherwise identical content,

should have the same mass. But the mass splitting between such bound states for hadrons

is large. E. g., the parity partner of the nucleon is called the N(1535) and has, as its name

suggests a mass of 1535 MeV, about 50% heavier than the nucleons. This is much larger

than expected due to the explicit breaking of the chiral symmetry because of the small

current quark masses. Thus, chiral symmetry must be much stronger broken than just

from the current quark masses. The strong interactions must spontaneously break it. The

13Though this difference is crucial for making the proton lighter and thus (more) stable (than the

neutron), and therefore chemistry possible.
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details of this breaking are governed by Goldstone’s theorem.

5.2.1 The Goldstone theorem

5.2.1.1 At tree-level

To lay out the Goldstone theorem, it is helpful to investigate a very simplified model,

before returning to QCD: Once again, the linear-σ model. In this course, it will also

become clear why the linear-σ model is such a good low-energy approximation to QCD,

and it will justify why it will later be used as a starting point to develop chiral perturbation

theory as a more comprehensive description of low-energy QCD in section 5.2.4.

Take four scalar particles, which can interact with themselves. Such particles can be

described by four real scalar fields φi, arranged in a four-dimensional vector in an internal

space. The linear σ-model then has a classical Lagrangian of

L = ∂µφ
†∂µφ− U(φ†φ), (5.31)

where U describes the potential for the field, which can only come from interactions

between the two fields, and † is here just taking the transpose. This theory has an O(4)

symmetry, as rotations of the four real components do not affect the scalar products. The

simplest possibility to obtain a symmetry for this theory is that the potential depends

only on the product φ†φ.

To obtain the simplest example for a symmetry, take the potential

U(φ†φ) =
µ2v2

4
− µ2

2
φ+φ+

µ2

4v2
(φ†φ)2. (5.32)

The pre-factors, i. e. coupling constants, as well as the irrelevant constant term have been

chosen judiciously such that the result will be looking simple. This potential, as well as

the kinetic term, is invariant under the O(4) rotation φ → exp(iαaτa)φ, where τa are

the generators of the O(4) group. It is a bit odd theory, as the quadratic term, usually

associated with a mass, is negative, and thus the mass is purely imaginary. This would be

called a tachyon. This is, however, not a problem. The sign of the quartic term is positive.

Therefore, the energy is bounded from below classically, and the theory remains stable. It

is therefore just an odd term in the potential energy.

To proceed, an interesting question is what the classical lowest energy state is. Since the

kinetic term is positive, any spatial or temporal variation would increase the total energy.

Hence, the state of lowest energy is necessarily a field φ0 constant throughout space and

time, which minimizes the potential (5.32). This constant is found to be φ0 = vn, where n

is an arbitrary unit vector in the four-dimensional internal space, i. e. for all directions of n
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it is a minimum. Thus, the solution manifold is highly degenerate. This is a consequence

of the symmetry: Any change in n can be offset by a symmetry transformation, without

changing the physics.

One can proceed by specifying n further. However, any choice is physically indistinct,

and therefore arbitrary. But for further calculations keeping n manifest is awkward, and

therefore in the following the explicit choice n = (0, 0, 0, 1) = e1 is made. Since the choice

is arbitrary, the symmetry is not violated. However, the symmetry is no longer manifest

either. One therefore speaks of hiding the symmetry, or a hidden symmetry. However, in

an abuse of language, though a common one, this is called a broken symmetry.

To make the situation more transparent, the next step is to shift the field φ by its

value at the minimum, which in the quantum theory is 〈φ〉 = ve1 and thus its vacuum

expectation value (vev), i. e. replace

φ(x) → ve1 + η(x)e1 + ξi(x)ei, (5.33)

with i = 2...4, and the ei being unit vectors. In this way, fluctuations η and ξ of the fields

around the classical vacuum v can be studied. Inserting this into the Lagrangian (5.31)

yields

L = ∂µη∂
µη + ∂µξi∂

µξi − µ2η2 +
µ2

v
η3 +

µ2

v
ηξiξ+

µ2

4v2
η4 +

µ2

4v2
(ξiξi)

2. (5.34)

This Lagrangian shows now a number of very interesting features, which are very generic.

The first is that the two fields η and ξ behave differently. While there is a mass

term, now with the correct sign, for η, giving it a mass of
√
2µ, there is no mass for the

ξ. Pictorially, one can think of η as excitations which describe fluctuations out of the

minimum, while the ξ, which are orthogonal to the direction of the chosen vacuum, move

between the different minima of the potential. Since the vacua all have the same energy,

this does not cost any energy, and therefore these modes are massless. This is a generic

feature of such situations, and is known as Goldstone’s theorem. The massless modes

are therefore called Goldstone bosons. In a nutshell, it is the statement that there are as

many massless particles as there are directions in which the minima are equivalent. The

precise formulation is that there are as many massless particles as there are generators of

the symmetry group minus the number of generators of symmetry transformations after

all possible remaining choices have been made. Here, this is a breaking from O(4) to O(3),

the remaining invariance group. These are 4(4− 1)/2− 3(3− 1)/2 = 6− 3 = 3, and thus

there are 3 massless modes. This will be proven for the quantum theory below.

The second is that there are now many different interactions between the fields η

and ξ. However their couplings, i. e. their pre-factors, are not all different, but completely
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determined by the original parameters. The reason is that the symmetry is just hidden. To

ensure that any symmetry transformation is still valid requires that the various interactions

cannot have arbitrary pre-factors, because otherwise it would no longer be invariant under

the symmetry transformation

(v + η(x))e1 + ξi(x)ei → eiα
aτa((v + η(x))e1 + ξi(x)ei), (5.35)

where it should be noted that the vacuum solution v is also transformed accordingly. For

that to work out, it is necessary to keep track when changing from (5.31) to (5.34), which

occurrence of v stem from the original coupling constants in (5.31), and which from the

shift (5.33), since only the latter are affected.

If at any point a term is added to the Lagrangian, which violates the symmetry, the

symmetry becomes explicitly broken. The most obvious way is to add a mass term for the

ξ field to the Lagrangian (5.34). Then, the Lagrangian is no longer invariant under the

symmetry transformation (5.35). Of course, this can be translated back into the original

Lagrangian (5.31), where it takes the form of an additional quadratic term in the potential

of type −(rφ)2, where r is an arbitrary vector in the internal space. The effect is essentially

that the potential is tilted, and the vacuum state has now a unique solution vr, which has

no longer an invariance. This gives also a physical explanation for the mass: Since there

are no degenerate vacuum solutions anymore, any movement increases the energy.

This illustrates how pions gain their small mass. The breaking of chiral symmetry

would lead to a number of Goldstone bosons. In case of two quark flavors14, there will

be three Goldstone bosons, which are the three pions. These would be massless, if the

quarks would be massless. However, because of the small current mass of the quarks, the

symmetry is not exact, but rather explicitly broken. This gives the mass to the pions.

That the masses of the pions are still large compared to current masses of the quarks is a

dynamical effect. Approximately, the pion masses scale linearly with the current masses

of the quarks, the so-called Gell-Mann-Oaks-Renner (GMO) relation

m2
π =

mq 〈q̄q〉
f 2
π

, (5.36)

where 〈q̄q〉 is the quark condensate and fπ is the so-called pion decay constant, and has

in these conventions the value of roughly 92 MeV. Note that this pre-factor is large.

Before continuing on, a few words about subtleties and semantics must be said. When

going to the quantum theory, quantum effects do what they always do, and they will mix

all the degenerate vacuum states, and no vacuum will be preferred. Therefore, the vacuum

14It can be shown that the number of colors does not matter.
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state will exhibit a perfect symmetry, in contrast to the classical case. But the quantum

system also carries the seed of the classical physics within, as it is metastable. If any

arbitrarily small external perturbation, e. g. an infinitesimal mass for the ξi from some

other physics process, arises, it will immediately have a unique vacuum state, in which

the symmetry is no longer realized. Hence, though strictly speaking the system without

external influence is perfectly symmetric, the presence of this metastability has lead to the

expression that the symmetry is nonetheless spontaneously broken.

In fact, even though the symmetry is exact, a full non-perturbative calculation shows

that the system has both an ordinary massive and a massless excitation, and hence the

most pertinent feature of the Goldstone theorem are realized even with the symmetry

present. Of course, in a perturbative calculation this will not show. Since perturbation

theory only permits very small deviations from the vacuum state, the particles will still

appear to be tachyons, as the relevant Lagrangian is (5.31). To cure this problem, one

can introduce a weak external perturbation to the theory, which prefers a single vacuum,

perform perturbation theory around this vacuum, i. e. using the Lagrangian (5.34) instead,

and remove the external perturbation at the end15. Then, also in perturbation theory

the system exhibits a massive and a massless particle. Especially because of this trick,

which is extremely useful in the standard model, the more appropriate notion of hidden

symmetry is nowadays very rarely used, and almost always the situation will be denoted

by spontaneous symmetry breaking.

A more formal statement can be obtained as follows. Take as the symmetry group a

semi-simple Lie-group G. Then the symmetry transformation of the associated real fields

transforming under a real representation of the symmetry group are given by

δφi = iT ija φjθ
a (5.37)

with arbitrary infinitesimal parameters θa counting from 1 to dimG. The Lagrangian

L =
1

2
∂µφi∂

µφi − V (φ)

must be invariant under a group transformation. Since the kinetic term is trivially so, this

implies for the potential

0 = δV =
∂V

∂φi
δφi = i

∂V

∂φi
T aijφ

jθa.

Since the parameters are arbitrary, this can only be satisfied if

∂V

∂φi
T aijφ

j = 0

15There are some subtleties associated with non-analyticities in this case, but they are irrelevant in

perturbation theory.
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holds. Differentiating this equation with respect to φk yields

∂2V

∂φk∂φi
T aijφ

j +
∂V

∂φi
T aik = 0.

The symmetry is hidden by expanding around the minimum of the potential, and therefore

the first derivatives have all to vanish. The symmetric matrix of second derivatives is

positive at a minimum, i. e., has only positive or zero eigenvalues

∂2V

∂φk∂φi
= (M2)ki.

Expanding now, as before, the field around the classical minimum at ψi = φi − fi, the

quadratic order of the Lagrangian reads

L =
1

2
∂µψi∂

µψi − 1

2
(M2)kiψkψi + ....

Since the matrix M , the mass matrix, is semi-definite positive, all particles have at tree-

level only positive or zero mass.

The conditional equation for a classical minimum reads

(M2)kiT aijf
j = 0.

If the classical minimum is invariant under a subgroup H of G, this subgroup is called the

stability group of G. As a consequence for generators ta out of H

taijf
j = 0

holds. Therefore, the value of the mass matrix is irrelevant for these directions, and there

can be dimH massive modes. However, for the coset space G/H with generators τa, the

corresponding equations

τaijf
j 6= 0.

are not fulfilled, and therefore the corresponding entries of the mass-matrix have to vanish.

Since these represent dim(G/H) equations, there must be dim(G/H) massless modes, the

Goldstone modes.

5.2.1.2 Quantized Goldstone theorem

To determine the consequence of hiding symmetry at the quantum level, it is useful to

investigate the normalized partition function

T [Ji] =
Z[Ji]

Z[0]
=

1

Z[0]

∫

Dφi exp
(

i

∫

d4x(L+ Jiφi)

)

,
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with the same Lagrangian as before. Since the Lagrangian and the measure are invariant

under a symmetry transformation16, the variation of the partition function must vanish

0 = δZ[Ji] =

∫

DφieiS+i
∫

d4xJiφi

∫

d4x

(

∂δφi
∂φj

+ δ

(

iS + i

∫

d4xJiφi

))

.

The first term is the deviation of the Jacobian from unity. As the measure is invariant, it

vanishes. The second is the variation of the action, which also vanishes. Only the third

term can contribute. Since all variations are arbitrary, it thus follows

∫

d4xJiT
a
ik

δT [Ji]

iδJk
= 0,

where it has been used that Z[0] is a constant, and the order of functional and ordinary

integration has been exchanged, and

δT [Ji]

iδJi
=

1

Z[0]

∫

Dφiφi exp
(

i

∫

d4x(L+ Jiφi)

)

.

Furthermore, it has been used that all variations are independent, thus delivering dimG

independent equations.

Since

δT ≡ δ
(

eTc
)

= eTcδTc,

and the factor exp(Tc) is not depending on x, since it is a functional, this can be rewritten

in terms of the generating functional Tc for connected Green’s functions as

∫

d4xJiT
a
ik

δTc[Ji]

iδJk
= 0.

This can furthermore transformed into an equation for the vertex (i. e., connected and

amputated Green’s functions) generating functional Γ, which is related to the connected

one by a Legendre transformation17

iΓ[φ] = −i
∫

d4xJiφi + Tc[J ]

〈φi〉 =
δTc[J ]

iδJi
= 〈0|φi|0〉[Ji]

Ji = −δΓ[φ]
iδφi

, (5.38)

16If the measure would not be invariant, this would lead to an anomaly. This happens, e. g., in the case

of the axial symmetry.
17Using the same notation for the field and its one-point Green’s function.
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by exchanging the derivative and the source. This yields finally

∫

d4x
δΓ

δφi
T aik〈φk〉 = 0. (5.39)

For the fields developing a vacuum-expectation it then holds

fi = 〈0|φi|0〉 =
δTc
iδJi

[0]

0 = Ji = − δΓ

iδφi
[fi]. (5.40)

The inverse propagator of the fields φi is given by

iδ2Γ

δφi(x)δφj(y)
[fi] = −(D−1)ik(x− y). (5.41)

An expression for this object can be obtained by differentiating (5.39) with respect to the

field once more yielding

∫

d4x

(

δ2Γ

δφi(x)δφj(y)
T aik〈φk〉+

δΓ

δφi
T aiiδ(x− y)

)

.

The last term vanishes since the generators are Hermitian and traceless and, even if not,

because δΓ/δφi = 0, while the first one is just the Fourier-transform of the inverse propa-

gator at zero momentum, yielding

(G−1)ij(p = 0)T aikfk = 0.

Thus, there must vanish as many inverse propagators as there are non-zero fi. At tree-level

the inverse propagator is given by

(G−1)ij = δij(p
2 +m2),

and thus this implies that the pole mass must vanish, the propagator becomes that of

a massless particle, just as classically. However, in the full quantum theory, the mass

becomes momentum-dependent, and the full propagator takes the form

G−1
ij = Zij(p

2)(p2 +Mij(p
2)).

Thus, only the combination Z(0)/M(0) must vanish. The propagator still has a pole at

this point. However, there can also be further poles at non-zero momentum. Therefore, in

a Goldstone channel can be also additional particles, which can even be stable. In the case

of QCD, where chiral symmetry dictates that the channel has to have quantum numbers
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0−, a pseudoscalar, there are no additional stable states, but several unstable ones, the

excited pions.

It should be noted here that this derivation only applies to a global symmetry. When

the symmetry becomes local, the Jacobian determinant cannot be ignored anymore, and

modifications will be necessary. From an axiomatic point of view, the reason for failure is

that implicitly a positive definite Hilbert space has been assumed, which is not the case

for a gauge theory.

5.2.2 The NJL model version

While the linear-σ model is an example of how the Goldstone theorem works, it does not

provide any insight into chiral symmetry breaking; fermions are required. It is, however,

not necessary to use full QCD to understand the underlying mechanism of chiral symmetry

breaking. A simpler example of the concept is given by the so-called Nambu-Jona-Lasinio

(NJL) model. Its Lagrangian for Nf flavors of quarks is given by

L =
∑

f

ψ̄f (iγ
µ∂µ −mf )ψf +G

(

(ψ̄fψf )
2 − (ψ̄iγ5ψ)

2 − (ψ̄τ ifψ)
2 + (ψ̄iγ5τ

i
fψ)

2
)

.

Every quark field ψf has also Nc = 3 components, and hence the theory has a SU(Nc)

global color symmetry, rather than the gauge symmetry of QCD. The first two terms are

iso(flavor)scalar interactions, while the last terms are iso-vector interactions. Since the

theory involves a coupling constant of energy dimension two, it is perturbatively (and

likely also non-perturbatively) not renormalizable in four dimensions. However, since it

should only serve as a low-energy effective theory, there is no problem in including an

explicit regularization description into the theory, e. g. an explicit cutoff Λ.

The full quark propagator

S(p) = Zf(p)(γ
µ∂µ −Mf (p) + iǫ)−1

has two tensor structures, described by a wave-function renormalization Z(p) and a mass

function M(p). At tree-level, Z = 1 and Mf = mf . The DSE for the quark propagator

can be derived in the same way as for QCD. In the simplest approximation, all terms

but the tadpole are neglected, and the self-interaction are taken at tree-level. The quark

propagator in this Hartree approximation has then still two tensor structures, but only

the scalar part is modified while Z remains 1. After taking a trace in Dirac, color, and

flavor space this yields the Hartree approximation after Wick rotation

Mf = mf + 8NfNcG

Λ
∫

0

dp

(2π)4
Mf

p2 +M2
f

. (5.42)
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Thus, in this approximation the mass is at most shifted by a constant, but remains

momentum-independent. This integral equation cannot be solved analytically, but is ac-

cessible to numerical methods.

The results are rather interesting. Settingmf = 0 is the so-called chiral limit of massless

quarks. In this case, the equation has the trivial solution Mf = 0. However, it turns out

that if G rises above a certain critical limit, or alternatively the product NcNf does, a

second solution appears, with Mf > 0. Hence, a sufficiently strong interaction yields a

non-vanishing effective mass for the quarks. Assuming now that the four-quark interaction

is an effective description of the gluon interaction between quarks at low energies, this

implies that a sufficiently strong gluon interaction will create an effective mass for the

quarks, giving them their constituent mass. If the quarks have a finite current mass mf ,

there is only a solution with non-vanishing mass-shift, increasing the constituent quark

mass above the current quark mass.

That this indeed breaks chiral symmetry can be seen by two arguments. First, a

non-vanishing effective mass is already indicative of the loss of chiral symmetry - massive

particles are no longer helicity, and thus chirality, eigenstates. The second is the explicit

calculation of the quark, or chiral, condensate 〈ψ̄(0)ψ(0)〉. If chiral symmetry is intact,

this quantity is zero. However, the operator content shows that this is the integrated quark

propagator

〈ψ̄f (0)ψf(0)〉 = −i
Λ
∫

0

d4p

(2π)4
trSf (p) = −Mf −mf

G
, (5.43)

where the second equality stems from resolving the DSE for the quark propagator in the

Hartree approximation for the also appearing trace. Hence, in this approximation there

is a chiral condensate if and only if Mf 6= mf , and thus this is sufficient for a breaking of

chiral symmetry. This also implies that any non-zero current mass explicitly breaks chiral

symmetry, in agreement with the explicit investigation at the Lagrangian level.

Of course, at least in the chiral limit this leaves open the question whether the chirally

broken solution is indeed the realized one. To decide this, it is, like for the Goldstone

theorem, necessary to investigate what is the solution with the lowest potential energy.

To do, the simplest approximation is the so-called mean-field approximation. For this, in

the potential

V = −G
(

(ψ̄ψ)2 − (ψ̄iγ5ψ)
2 − (ψ̄τ ifψ)

2 + (ψ̄iγ5τ
i
fψ)

2
)

all non-linear terms are replaced like

(ψ̄fψf )
2 → 〈ψ̄fψf 〉2,
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as with the vacuum expectation value at the classical level of the Goldstone theorem.

Since only the first term acquires a non-vanishing vacuum expectation value, this is the

only relevant one. Since it has a negative sign, the solution is more preferred where chiral

symmetry is broken.

As a side-remark, the NJL model was inspired by the BCS theory of superconductors.

Since in superconductors the chiral condensate becomes the meaning of the gap between

two bands, the corresponding equation is called gap equation, and likewise is (5.42) called

gap equation, as are the more complicated ones in other theories.

5.2.3 Full QCD

Of course, this is a rather crude approximation, even of the very simplified NJL model.

However, these results hold in the NJL model even in much more sophisticated trunca-

tions, without changing the qualitative picture. A similar calculation in QCD with a fully

resolved gluon interaction is currently at the forefront of research18. In QCD, it is found

that the results follow a similar pattern as in the NJL model, though here it appears that

many subtle and balancing effects in the various tensor structures of propagators and ver-

tices play a role. In a more direct way, these quantities can also be evaluated using lattice

gauge theory, and show the same results. Here, however, the differences to the NJL model

are completely obscured.

The most interesting result is, however, the modification to the running mass. The

perturbative result (5.25) yields

m̄(Q2) = m̄0α(Q
2)

γ0
β0

(

1 +
β1
β0
α(Q2)

)

β0γ1−β1γ0
β0β1

.

Hence, if the mass is zero at tree-level m̄0 = 0, i. e. in the chiral limit, it will remain so,

in contradistinction to the non-perturbative result. At the same time, outside the chiral

limit, it will diminish logarithmically in the ultraviolet, but will have a Landau pole at

a finite value. The non-perturbative result, however, generically, and rather independent

of truncation, cures this Landau pole, and leads to an infrared finite value of m̄(0) = M ,

which plays roughly the same role as the mass obtained previously in the NJL model. Due

to asymptotic freedom, the behavior at large Q2 will still be the same as in perturbation

18There are several earlier calculations with effective gluon interactions, i. e. some kind of modeled

momentum-dependent interaction between the quarks, which all show a qualitatively similar picture to

the NJL case. Such calculations are often dubbed rainbow truncation, as the missing back-reaction of

the quarks to the gluons yields that the quark DSE can be represented as a full line of all possible gluon

exchanges over the quark line.
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theory, and especially the pre-factor is the one of the current mass, not of the constituent

mass M .

Note that neither perturbatively nor non-perturbatively m̄ is a well-behaved mass for

the quark, and neither is M . These quantities depend on the renormalization scheme, and

are therefore not physical. If a pole mass for the quark exists, a problem to be addressed

in section 5.5.4, it will be scheme-independent, and solely defined by the poles of the quark

propagator. This does not happen even in perturbation theory.

Considerably different from the NJL model, however, is the dependence on Nf . In-

creasing Nf in full QCD actually weakens, and at some point removes, chiral symmetry

breaking, while it strengthens it in the NJL model. The reason is a back-coupling of an

increase of the quarks flavors to the strength of the gluon-quark interaction, which in this

form is not captured by the NJL model. This directly shows also one of the many limi-

tations of the NJL model, despite its many phenomenological successes. Still, it gives at

low Nf a reasonable qualitative picture of chiral symmetry breaking.

However, in full QCD additional complications arise. One is that the chiral condensate

(5.43) is no longer a good observable. Since QCD is renormalizable, this quantity is, as

noted in section 4.6.6, not renormalization-group independent. Hence, this condensate can-

not be observed, and its value is meaningless. However, the combination mf〈ψ̄f (0)ψf(0)〉
is renormalization-group invariant, and is physical meaningful. This quantity is, in fact,

as good an indicator for chiral symmetry breaking, e. g. in the context of the Gell-Mann-

Oakes-Renner relation (5.36).

As the pion is the Goldstone boson, its properties are determined directly by the

breaking of chiral symmetry. Especially, in the chiral limit it becomes massless. Since

there are no other massless particles in QCD in which it could decay, and for the charged

ones even not in the standard model, it becomes also stable. Thus, effects mediated by the

pions will become effectively long-range, and the low-energy behavior of QCD will become

quite different. As long as the chiral symmetry is explicitly broken, however, the pion is

massive, and pion exchange in QCD remains short-ranged.

5.2.4 Chiral perturbation theory

Noticing that QCD has a mass gap due to the pion mass, it appears reasonable to use

the Appelquist-Carrazone theorem to construct an effective low-energy theory of hadronic

interaction, and thus possibly even nuclear interaction. The simplest example of this is

the (non-)linear σ-model. However, this theory cannot cover the whole complexity of

QCD. Thus, it needs to be expanded. Especially, as a low-energy effective theory, it is

no longer required to be renormalizable. In principle, it is possible to thus write down an
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effective theory of the pions which include all, i. e. infinitely many, terms in the Lagrangian,

which conserve the symmetries of QCD. These would be the approximate flavor and chiral

symmetry, the former broken explicitly by the difference of up and down masses and

electric charges, the latter by the dynamical breaking of chiral symmetry.

With an infinite number of terms, this would be not useful. However, the Appelquist-

Carrazone theorem then gives an ordering principle. The expansion should be in powers

of Q2/m2, where Q is the energy scale, and m is the pion mass. At the Lagrangian level,

this would be an ordering in momentum space. In addition, there can be interactions of

any order without momenta. These are in this naive counting always suppressed by some

effective coupling constant of ratios of the pion mass to some larger mass scale. If these

effective coupling constants are assumed to be of typical hadronic size, i. e., some tens of

MeV, then they are of roughly the same importance as the derivative terms of the same

canonical dimensions. Hence, the expansion is in the canonical dimension.

Of course, as soon as the canonical dimension exceeds four, i. e. anything beyond the

σ-model, this theory is no longer (perturbatively) renormalizable. Hence, the definition

requires the inclusion of new counter-terms at every order, with independent pre-factors to

be determined by comparison to experiment. However, after this finite number of inputs,

the theory becomes predictive to the accuracy of the order of the expansion.

The resulting effective theory is known as chiral perturbation theory. It has been

successfully exploited to determine various interactions between hadrons at low energies.

One particular triumph is that it permits to calculate the interaction between nucleons,

and thus provide input to nuclear physics from a level close to full QCD. There exist

extensions which also include strange particles as well as baryons. However, the larger the

energy scale, the worse the approximations become.

In fact, it is not entirely clear to which extent chiral perturbation theory can be con-

sidered to be a really good approximation to QCD. Formally, it is clear that the expansion

cannot be correct from the outset, as any perturbative expansion. However, this qualita-

tive statement does not imply that it is quantitatively bad. One of the unique predictions

which confirms whether chiral perturbation theory actually works is that there are loga-

rithms in the pion mass. These control the approach to the chiral limit, and the logarithms

then yield the long-range behavior for a vanishing pion mass. These so-called chiral logs are

a unique feature of the chiral dynamics underlying chiral perturbation theory. Therefore,

one test of chiral perturbation theory is to perform calculations in full QCD for different

pion masses, e. g. using lattice calculations, and then identify these chiral logs. If this be-

havior is not observed, chiral perturbation theory would not be a good approximation. At

the current time, it appears that for the physical pion mass the situation is at the border
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line of the reliability of chiral perturbation theory, but this is not yet finally settled.

This question seems to be not so terribly important, as experiment can always decide

the reliability of an approximation. But chiral perturbation theory as the unique features

that it can analytically access any regime in its range of applicability. This is, e. g.,

important when going to nuclear astrophysics, where there are many processes which are

decisive for the stars, but are experimentally for all practical purposes impossible to realize,

e. g. cross-sections with three or four particles in the initial state. Such quantities can so

far also not be calculated using lattice calculations or functional methods. Hence, if chiral

perturbation is sufficiently reliable, it is the method of choice for these problems. So far,

derived observations indicate that it works out, but then these are so emergent results

influenced by many factors that an independent confirmation would be invaluable.

5.3 Hadrons as field-theoretical bound states

5.3.1 Generalities

One of the most remarkable observations in QCD is that only bound states of quarks and

gluons appear, for a reason called confinement to be discussed in more detail in section 5.5.

The consequence is that only bound states are observable, and therefore hadron physics

has to describe such bound states. Bound states are thus necessarily composite operators.

The simplest such operator would be q̄q, describing a scalar particle, the so-called σ or

κ(600) meson. However, it is not as simple.

One of the problems immediately arising is that in a quantum mechanical system

mixing is possible. Thus, once a quantum number channel is specified by all conserved

quantum numbers, any state |n〉 is in general represented by an operator On consisting of

an infinite series

On =
∑

cinO
i
n. (5.44)

n is here the collection of quantum numbers uniquely specifying the states. In QCD,

leaving aside the rest of the standard model, these are at most JPC , flavor, total momentum

and possible relative momenta between gauge-invariant constituents and relative spins as

far as they can be measured. Including the remainder of the standard model, e. g. to

model weak decays, modifies this list. However, irrespective what the list is, it specifies

uniquely the channel. The sum then contains all operator Oi
n compatible with this list.

This is an infinite number, and especially can contain operators made up of an infinite

number of gluon, quark, and, possibly, ghost fields, as long as the total operator is gauge

invariant. The coefficient cin are in fact functions of, e. g., momenta.
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Of course, since any set of operators forms a basis, it possible to rewrite the series.

The question is only, in which way it should be rewritten. An especially useful way is to

rewrite it in such a way as that operators of fixed quantum numbers and fixed energies are

obtained, essentially obtaining for the infinite set of levels an infinite number of operators,

On(E) =
∑

cinO
i
n(E).

On the right-hand side two general types of operators will contribute. Some are genuine

bound-state operators, i. e. operators which cannot be split into more gauge-invariant

operators. An example is the aforementioned σ-operator. The other operators are states,

for which this is possible. In case of the σ-meson, this would be, e. g., the two-pion

operator (q̄γ5q)(p)(q̄γ5q)(k), where the relative momenta p and k yield the total momentum

p + k = P , such that P0 = E, but are otherwise arbitrary. Therefore, in general the

relative momenta should be integrated over. Note that a bound-state operator needs not

be an operator with the minimum number of fields possible to create a set of quantum

numbers. E. g. tetraquark operators for the σ-channel can have the form q̄λaqq̄λaq, and

are such cases. Operators which can be split into a number of gauge-invariant operators

can be classified into two categories. One are scattering states. These are states where the

total energy is larger than the sum of the masses of the two individual operators in their

respective quantum number channels. These are unbound objects. The other are so-called

hadronic molecules, i. e. a self-bound system of two hadrons, similar to a conventional

atom, where the binding yields a mass defect.

The energy levels appearing can be sorted into several possibilities. Every channel has

a ground state, i. e. one lowest energy level E. This state can have zero energy, and may be

degenerate. In QCD, such a state only exists in the chiral limit, where the pions becomes

massless. Otherwise, all states are massive, and there is thus a mass gap in the spectrum.

The lowest energy can be a stable state, as is the case for pions, but need not be, as is

the case in the σ-channel, where in QCD it turns out that two pions are the lightest state,

and which are unbound. In general, this is a dynamical question, and the energy levels

have to be calculated.

There are then an infinite number of further energy levels. There may be additional

discrete levels, below the first scattering state in the given channel, the so-called elastic

threshold. These are states which are stable, excited states. Above the elastic threshold,

there is a continuum of states. These consists of all possible relative momenta of the

particles in the scattering states. In addition, there may be further surplus states which

are resonances, i. e. states which have a finite life-time before decaying. Their distinction

from scattering states is subtle, and will be discussed further below. If the energy is high
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enough such that there more than one possible scattering state in the channel, the inelastic

threshold is reached, and the number of possible states then quickly proliferates.

5.3.2 Analytical structure

No matter whether a particle is elementary or composite, as long as it is an observable

particle, it is describe by a correlation function, which is a function of a single four-

momentum. Hence, an elementary particle q is described by the (1PI) correlation function

D(p) = 〈q†(−p)q(p)〉

while a composite particle q†q is described by

D(p) = 〈(qq†)(−p)(q†q)(p)〉.

In any case, the correlation function D has a special analytical structure. If the correlation

function is obtained from an operator set which includes all information, then D can have

the following analytical structures

� There can be zero or more poles on the real axis at −p2 = m2. These signal stable

particle excitations

� There can be zero or more poles on the second, but not first, Riemann sheet at

−p2 = (M + iΓ)2, describing unstable resonances of mass M and decay width Γ

� There is a cut starting at −p2 = (M ′ +M ′′ + ...)2, where the M ′... are the mass of

the particles into which a decay at the elastic threshold is possible

E. g., for the proton there is a real pole at m = 938 MeV, a first resonance at M = 1440

MeV with Γ ≈ 300 MeV and the elastic threshold for purely hadronic decays is at 1080

MeV for a decay in a p wave into a proton and a pion.

Besides the pole, however, the structure of the correlation function is rather compli-

cated. If the width satisfies Γ ≪ M , then the propagator is well approximated by a

Breit-Wigner shape

D(p) ≈ 1

p2 −m2 + i
√

p2Γ
, (5.45)

similar to the situation in quantum-mechanical scattering. Note, however, that the width

is not really a constant, but in general a function of p2. Widths quoted are usually the

value of this function at the resonances position, which in this case is well approximated

by Γ(M2).
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In cases of rather narrow resonances, most of the difference is due to phase space, and

it is better to trade the width for the coupling of a particle to its decay channel by

Γ(p2) =
g2

6π

√

p2

In general, however, it is better to express the width by the phase shift δ as

Γ(p2) =
m2 − p2

√

p2 cot δ(p2)

The phase shift passes through π/2 at the resonance position.

However, these approximations are in general true only for narrow resonances. If the

width Γ(m2) becomes large, the phase shift no longer necessarily passes through π/2, and

the propagator, though still having a pole, may be very different from (5.45), including

strong asymmetries. In a strongly interacting field theory like QCD, this is easily possible.

E. g. for the σ-meson, to the best of our knowledge, the phase shift |δ| never exceeds π/3,
and is actually negative. Such broad resonances require therefore substantial care. In

fact, it is more a philosophical question whether such states should still be regarded as

particles.

In any perturbative calculation, like in chiral perturbation theory, such an analytical

structure can be immediately identified. Beyond analytical methods, this becomes more

challenging.

The situation is more subtle for gauge-dependent degrees of freedom, like quarks and

gluons, and this will be therefore reiterated in section 5.5.4

5.3.3 Bound states on the lattice

Lattice calculations lend themselves rather straightforwardly to the calculation of bound

states, as operators can be directly evaluated. However, in any practical calculation only

a finite number of operators can be selected, and therefore it can never be guaranteed that

the overlaps cin in (5.44) with the desired state is sufficiently large, or existent at all, to

detect its contribution in a numerical simulation. Though several sophisticated methods

exist to isolate levels, this remains a challenging task with substantial systematic errors.

Furthermore, multi-particle states, e. g. nuclei with many quarks, are very expensive, as the

number of operators required for a full gauge-invariant expression for a state of fermions

increases factorial with the number of quark fields, and the statistical noise increases

exponentially with the mass of a state compared to the lightest state.

However, especially ground-states, once a suitable operator basis is found are rela-

tively straightforward to extract. Since a lattice has a finite volume, the energy levels
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are no longer a continuum, but are discrete. Furthermore, scattering states with non-zero

momentum have a kinetic energy of at least the inverse lattice spacing, making them es-

pecially on small lattices heavy. At the same time, it can be shown that stables states

with non-zero mass suffer at most exponentially suppressed volume-corrections.

Finally, because lattice calculations are performed in Euclidean space-time, the follow-

ing holds true. For any operator O in the Heisenberg picture

C(t) = 〈O†(t)O(0)〉 =
∑

n

〈O(t)|n〉〈n|O〉 =
∑

n

〈eHtO(0)e−Ht|n〉〈n|O〉 =
∑

n

|〈0|O(0)|n〉|2 e−Et

where n is a complete set of energy eigenstates. Thus, at sufficiently long times only the

state of lowest energy represented by the operator survives. Of course, on a finite and

periodic lattice there is no infinite time, and this changes the result to

C(t) = 〈O†(t)O(0)〉 =
∑

n

|〈0|O(0)|n〉|2 cosh(Et)

but on sufficiently large lattices, this can still be fit reasonably well. Very useful are the

effective masses

m(t) = − ln
C(t)

C(t+ a)
,

which will become almost constant if only a single state dominates. However, in actual

numerical calculations also subleading levels can often be fitted. These results did not

make any statement about the three-momentum of the state. Usually, this is done at

zero momentum. If not, then the energy is increased by the kinetic energy. The result

also shows that the signal dies off exponentially with time, indicating serious statistical

challenges if the mass is large in units of the lattice spacing, as the situation deteriorates

exponentially. Vice versa, it may happen that the lowest level is superimposed by some

other level, which decays also very slowly. It can then happen that the lowest mass cannot

be isolated for a finite lattice, or it may even be that the presence of a further state cannot

be detected at all. This is another systematic error, which is especially hard to detect if

no experimental input for a given quantum-number level are available, and thus a true

prediction is attempted.

Though this result is obtained in Euclidean space-time, it can be shown that for any

gauge-invariant correlation function the so-obtained energy is indeed the total energy in

Minkowski space-time, and especially at zero kinetic energy its mass.

The situation is somewhat more challenging for massless particles, as e. g. for the pions

in the chiral limit. The finite volume introduces a mass even for such particles. The reason

is that only a constant mode on a periodic lattice will have zero energy, and the discreteness

of the spectrum then forces any other state to a non-zero value. Since a pseudoscalar zero
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mode is forbidden, the vacuum is scalar, the pion is always massive in a finite volume. Its

masslessness in the chiral limit is then only recovered in the infinite-volume limit. It can

be shown that the effective mass of a massless particle is polynomial dependent on the

volume. Hence, to identify a massless particle would require to identify, and reliably fit,

the polynomial dependence of the mass.

The situation becomes more complex beyond stable states. First of all, as for massless

states, finite-volume corrections to masses of excited states can be shown to only decay

polynomially with the volume, and are therefore harder to control. The second is that

they will mix with scattering states. In principle, the latter problem is straight-forward.

Since the scattering states are just a combinatorial effect, it suffices to remove all known

scattering states, and the remainder are then the resonances and excited states. In practice,

it is often difficult to identify all levels for statistical reasons, and often overlap problems

in the operator basis make states practically invisible in a calculation.

An alternative for states below the inelastic threshold is the explicit calculation of the

phase shifts, which can be obtained by the so-called Lüscher method from the volume-

dependence of the energy levels between the elastic and the inelastic thresholds. This

procedure will not be detailed here, but is rather robust. It essentially uses the fact that

the energy levels in a finite volume, ignoring discretization artifacts, can be related not

only to single particle states, but also to multi-particle states with the same quantum

numbers. In a finite volume, these multi-particle states are never really isolated, and

therefore the energy levels are modified by the interaction energies. Thus, the energy

levels are a statement about hadronic interactions. Since the size of the volume is then a

statement about the maximum distance of the two particles, this is all what is needed to

obtain the phase shift in the infinite volume. In fact, this method works best on rather

small volumes, where the energy levels can be clearly distinguished.

Since the phase shift also provides the information on the decay-width, the whole

analytical structure can be obtained in theses cases, though of course with a finite number

of points available from any numerical lattice calculations strictly speaking there is no

mathematical guarantee to be not missing something. In cases like the σ-meson even

this can still provide conceptual problems. The extension of the Lüscher method beyond

the inelastic threshold is expensive, and for multiparticle channels still a topic of current

research.

5.3.4 Bound states in functional methods

Bound states in functional calculations are entirely different than in lattice calculations. In

principle, their treatment appears at first straight-forward. Since the operators describing
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bound states are just correlation functions, it appears sufficient to solve the correspond-

ing equation in a given truncation, and the analytical structure will yield the states in

this channel. Though this is correct in principle, and has been done is some rare model

theories, it is usually not possible in a theory as complex as QCD. One of the problems

is the requirement to solve the theory in the whole complex plane, which is rather chal-

lenging. Another is that mesonic bound states are already four-point functions, baryons

six-point functions, and glueballs eight-point functions. Thus, the complexity even in

simple truncations is enormous.

A trick to make this problem more tractable is to evaluate the equations on-shell, and

only keep those terms becoming singular. This the so-called Bethe-Salpeter equation (or

Faddeev equation for baryons). It takes the form

Γαβ(p, P ) =

∫

dqKαγδβ(p, q, P ) (S(q + σP )Γ(q, P )S(q + (1− σ)P )γδ .

The equation is again a self-consistency equation for the Bethe-Salpeter amplitude Γ,

which depends on the total momentum p with P 2 = −M2 and M the mass of the meson,

and the relative momenta of the quarks p. The quark propagator S must be supplied from

elsewhere, e. g. its own DSE or from an ansatz. The kernel K depends on the quantum

numbers in question, and involves all the quark-gluon interaction vertices, as well as gluon

propagators. Again, all of them must be provided from their respective DSEs or from

ansätze. The momentum partition parameter σ distributes the relative momenta between

the quarks. Since the quarks themselves are not independent degrees of freedom, the

correct solution will be independent of σ.

The simplest ansatz is the so-called rainbow-ladder ansatz, where

K ∼ α(k2)ΓtlΓtl,

where α is, despite its name, an effective interaction strength, and Γtl are the tree-level

quark-gluon vertices. Selecting then, e. g., Γ = iγ5 yields the equation for a pion, which

in this approximation indeed becomes massless in the chiral limit. Solving this integral

equation is still a numerically non-trivial task. The values M for which the equation has

a solution indicates the hierarchy of states in the channel.

The general problem is that any approximation can produce spurious solutions. Fur-

thermore, these results do not provide insights into these stability of states. These are

questions of current research.
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5.4 Topological excitations

While quarks, gluons and hadrons are states which consists out of a few valence particles,

i. e. particles which define their quantum numbers, QCD can also support other states.

Especially, it can support states which are genuine collective excitations of gluons, which

can no longer be identified individually. Such states are usually highly unstable. How-

ever, some such excitations are stabilized by geometric effects, and then called topological

excitations, for reasons to be explored in the following.

The most prominent of these excitations are so-called instantons. Though it was not

possible to directly observed instantons, their effects can be identified, e. g., in lattice

calculations through various techniques. To understand them, it is best to first investigate

similar excitations in quantum mechanics.

5.4.1 Instantons in quantum mechanics

5.4.1.1 Leading order

The starting point is a one-dimensional double-well potential

V (x) = λ
(

x2 − η2
)2

Classically, This potential has two degenerate ground states with energy ±η. These are

two classically separated vacua for particles with kinetic energies less than λη4. The

quantization can be done using the WKB approximation. Then the wave function is

assumed as

ψ (x) = eiΦ(x)

where

Φ (x) = ±
x
∫

dx′p (x′) +O (~) (5.46)

p (x) =
√
2m
√

E − V (x)

where m is the mass of the particle and E is its energy. The WKB approximation re-

sults from an expansion in ~, here only taken to lowest order. If quantization is done

around both minima, two degenerate solutions are found. However, this is not quantum

mechanically true, and tunneling will mix both states. The new ground state will be the

symmetric combination of both single states, and the first excited state will be the anti-

symmetric combination. During tunneling, the WKB solutions do not oscillate, but decay

exponentially.
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An analogous an expansion of the quantum-mechanical path integral around the clas-

sical path can be done. The imaginary values of p of the WKB approximation can equiv-

alently be replaced by imaginary time, a so-called Wick rotation. The Greens-function

describing the tunneling is then given by

〈

−η|e−iHt|η
〉

=

∫

D [r] e−S,

where r is the path and S the action. The path associated with the solution of the classical

equations of motion in imaginary time gives then the maximum contribution to the path

integral.

The path integral can be expanded around this path as a correction factor. After the

Wick rotation is performed, the classical equation of motion for the tunneling path is given

by

m
d2x

dτ 2
=
dV

dx

or equivalently by the conservation of energy for the lowest classical energy state, where

E = 0,
m

2

(

dx

dτ

)2

− V (x) = 0

yielding after separation of variables

dτ =
1

√

2λ
m
(x2 − η2)2

dx =
1

η2
√

2λ
m

1

1− x2

η2

dx =
1

η
√

2λ
m

1

1− u2
du.

This can be integrated and yields

τ − τ0 =
1

η
√

2λ
m

tanh−1 x

η

where both integration constants have been absorbed in τ0. This yields for the classical

path

xcl (τ) = η tanh
(ω

2
(τ − τ0)

)

(5.47)

ω2 =
8η2λ

m
(5.48)

The solution goes from xcl (−∞) = −η to xcl (∞) = η, and hence describes the tunneling

of the lowest classical energy state from one classical allowed position to the other. τ0 is

a free parameter and describes the localization of the tunneling in imaginary time. The

solution is well localized in time. The path (5.47) is referred to as an instanton. Its reverse

−xcl (τ) is referred to as an anti-instanton.
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The action of this path is

S0 =

∞
∫

−∞

dτ

(

m

2

(

dx

dτ

)2

+ V (x)

)

Rescaling ω
2
(τ − τ0) → τ this yields

S0 =

∞
∫

−∞

dτ

(

mη2ω

4

1

cosh4 τ
+

2λη4

ω

(

tanh2 τ − 1
)2
)

=
mη2ω

3
+

8λη4

3ω
=
mη2ω

3
+
mωη2

3
=

2mωη2

3

=
2mω

3

mω2

8λ
=
m2ω3

12λ

It is convenient to scale such, that m = ω = 1 and to change the potential to V (x) =

λx2 (x+ 2η)2. The action is then 1
12λ

and the condition λ≪ 1 controls the validity of the

semi-classical expansion.

To calculate the tunneling amplitude, the exponent of the path integral is expanded

around the classical path

〈

0|e−Hτ |2η
〉

= e−S0

∫

D [δr] e
− 1

2
δx δ2S

δx2

∣

∣

∣

xcl

δx+O(δx3)
(5.49)

Note that the linear term vanishes, since the classical path already minimizes the action.

It is implicitly assumed, that τ is smaller than the typical lifetime of an instanton, oth-

erwise modes with more than one instanton would have to be taken into account. It is

also assumed that τ is nevertheless large enough to allow the semi-classical WKB approx-

imation. The tunneling is hence proportional to exp (−S0). The proportionality constant

requires the calculation of higher orders.

5.4.1.2 Higher-order corrections

To take fluctuations into account, it is necessary to calculate the second factor up to order

O (δx2) in (5.49). The functional derivative of the action gives the operator

O = − d2

dτ 2
+
d2V

dx2

∣

∣

∣

∣

x=xcl

The path integral is Gaussian in δx. Expanding the path integral in an integral about a

base s with s→ ∞, and the operator O in an arbitrary basis, the prefactor f for exp (−S0),

using a functional integration theorem for small fluctuations, becomes

∏

s

(
∫

dxs

)

e
− 1

2

∑

i,j

xiOijxj
= (2π)

n
2

1√
detO
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The determinant can be calculated by finding the eigenvalues of O. This task is rather

typical for calculations involving topological excitations, and warrants therefore a rather

detailed investigation.

Since determinants are products of eigenvalues, this amounts to solving the eigenvalue

equation

Oxn (τ) = εnxn (τ)
(

− d2

dτ 2
+ λ

d

dx

(

4x
(

x2 − η2
))

∣

∣

∣

∣

x=xcl

)

xn (τ) = εnxn (τ)

(

− d2

dτ 2
+ λ

(

12x2 − 4η2
)∣

∣

x=xcl

)

xn (τ) = εnxn (τ)

(

− d2

dτ 2
+ 12λη2 tanh2

(ω

2
(τ − τ0)

)

− 4λη2
)

xn (τ) = εnxn (τ)

(

− d2

dτ 2
+

3

2
ω2 tanh2

(ω

2
(τ − τ0)

)

− 1

2
ω2

)

xn (τ) = εnxn (τ) .

Using 1− 1
cosh2 x

= tanh2 x and resetting τ − τ0 → τ and xn (τ + τ0) → xn (τ) yields

(

− d2

dτ 2
+ ω2 − 3ω2

2 cosh2
(

ωτ
2

)

)

xn (τ) = εnxn (τ)

(

− d2

dτ 2
+ ω2

(

1− 3

2 cosh2
(

ωτ
2

)

))

xn (τ) = εnxn (τ)

The solutions to this Schrödinger-type equation are known. They can be found by the

following procedure

0 =

(

− d2

dτ 2
− 2

3ω2

4

cosh2
(

ωτ
2

) − 2
1

2

(

εn − ω2
)

)

xn

=

(

d2

dτ 2
+

3ω2

2 cosh2
(

ωτ
2

) + En

)

xn

=
d

dy

(

(

1− y2
) dxn
dy

)

+

(

s (s+ 1)− En
1− y2

)

y

where en = 1
2
(εn − ω2), En = 2

ω

√−2en, and y = tanhωτ/2. Making then the ansatz

xn =
(

1− y2
)

En
2 w (y)

yields

0 = u (1− u)
d2w

dy2
+ (En + 1) (1− 2u)

dw

dy
− (En − s) (En + s+ 1)
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with u = (1− y) /2.

This is the differential equation for a hypergeometric function and the solutions are

xn = (1− y)
En
2 F

(

En − s, En + s+ 1, En + 1,
1− y

2

)

For a finite wave function it is required that s = En + n with n < 2.

Hence only two bound states arise, 0 and 1. The original energy is then

εn = ω2

(

−1

4
(s− n)2 + 1

)

ε0 = 0

ε1 =
3

4
ω2

There is in addition a scattering continuum. The normalized eigenfunction for ε0 is

x0 (τ) =

√

3ω

8

1

cosh2 ωτ
2

which can be verified by insertion.

The presence of a zero-mode, i. e. ε0 = 0, results in a vanishing determinant and hence

in an infinite tunneling amplitude. This can only be interpreted in such a way that the

fluctuations in direction of the zero mode are not small, and the expansion in terms of a

Gaussian is invalid. The integration in the direction of the zero mode path must hence be

done exactly. To do this, the paths are parametrized by

x (τ) =
∑

n

cnxn (τ)

Noting further that

d

dτ0
xcl (τ − τ0) = −ωη

2

1

cosh2
(

ω
2
(τ − τ0)

) = −ωη
2

√

8ω

3
x0 (τ)

= −
√

8ω3η2

12
x0 (τ) = −ω

√

ω3

12λ
x0 (τ) = −ω

√

S0x0 (τ)

where again τ − τ0 was taken into τ . By replacing the integration over the expansion part

of c0 by

dx =
dx

dτ0
dτ0

and using that the expansion takes only into account fluctuations around the classical path

dx =
dx

dτ0
dτ0 ≈

dxcl
dτ0

dτ0 = −ω
√

S0x0 (τ) dτ0

dx

x0
= −ω

√

S0dτ0
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simplifies the problem further. Finally, using

dx = x0dc0 =⇒ dc0 = −ω
√

S0dτ0

the functional integral can now be rewritten from integrals about different space points to

an integral over all possible combinations of ci and hence

∏

s

∫

dxs =
∏

n

∫

dcn

each coefficient contributes its eigenvalue to the operator. This method where the contin-

uous variable is replaced by a product over eigenfunction expansion coefficient will also be

a recurring procedure later on.

Hence the result for the propagator to this order is

−
(

∏

n>0

2π

εn

)
1
2

ω

√

S0

2π

∫

dτ0

The first factor is the determinant with the zero mode excluded. The minus sign is of no

importance, since the tunneling probability is given by the square of the amplitude. The

result increases linearly with time, the size of the instanton, leading to a finite transition

probability per unit time.

To calculate the remaining determinant, it is convenient to restrict the calculation to

a finite time interval [−τm/2, τm/2] and impose boundary conditions at the edge of the

interval as xn (±τm/2) = 0. Since there is a continuum of eigenvalues, the product diverges

to 0. This divergence is controlled by the largest eigenvalues, which are independent of the

specific shape of the potential and do not correspond to tunneling events. To factor these

continuum states independent of the potential out, the determinant can be normalized by

the harmonic oscillator, which exhibits the same shape at large eigenvalues. This is again

a routine manipulation often used, and yields





det
(

− d2

dτ2
+ V ′′ (xcl)

)

det
(

− d2

dτ2
+ ω2

)





− 1
2

= −ω
√

S0

2π

(
∫

dτ0

)





det′
(

− d2

dτ2
+ V ′′ (xcl)

)

1
ω2 det

′
(

− d2

dτ2
+ ω2

)





− 1
2

where det′ denotes the determinant without the lowest mode. The lowest eigenvalue of the

harmonic oscillator equation is given simply by 1/ω2. The next eigenvalue of the upper

determinant is 3ω2/4. For the harmonic oscillator the next value is ω2 up to corrections of

order 1/τm, which are not important for the limit of τm → ∞. For these eigenvalues of the

oscillator the boundary conditions are important. Both exhibit furthermore a continuous
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spectrum. The solutions to the V ′′ (xcl) potential are known. The potential itself is

localized, so the solutions are plane waves for τ → ±∞. One solution is hence xp (τ) ∼
exp (ipτ) for the limit of τ → ∞. For τ → −∞ the wave becomes

xp (τ) ∼ eipτ+iδp

eiδp =
1 + i p

ω

1− i p
ω

1 + 2i p
ω

1− 2i p
ω

(5.50)

where the phase shift is provided by the potential. The phase shift is known from scattering

theory. There is no reflection for the plane wave. The second independent solution is

obtained when reversing τ → −τ . The spectrum of eigenfunctions is then obtained by

imposing the boundary conditions

pnτm − δpn = πn

The solutions of this equation will be denoted by p′. In case of the harmonic oscillator

there is no phase shift, since the second derivative is constant and the boundary conditions

impose

pnτm = πn (5.51)

The ratio of the determinants is then given by

∏

n>1

ω2 + p′2n
ω2 + p2n

= e

∑

n
ln

ω2+p′2n
ω2+p2n

Changing from summation over n to integration over p, which delivers by (5.51) a factor

τm/π, and setting δp/τm = p′n − pn, which is small, it is possible to obtain by expanding

e
τm
π

∫∞
0 dp ln

ω2+p2+2p
δp
τm

ω2+p2 = e
τm
π

∫∞
0 dp

2pδp

τm(ω2+p2)

δp depends also on p. Integrating by parts delivers

∞
∫

0

dp
2pδp

(ω2 + p2)
= δp ln

(

ω2 + p2
)∣

∣

∞

0
−

∞
∫

0

dp ln
(

ω2 + p2
) dδp
dp

= δp ln
(

ω2 + p2
)∣

∣

∞

0
−

∞
∫

0

dp ln
(

ω2 + p2
) 6ω3 + 12ωp2

ω4 + 5ω2p2 + 4p4

This leads to

1

π

∞
∫

0

dp
2pδp

τm (ω2 + p2)
= −1

6

(

27 tanh−1 1

2
− 6 + 22F1

(

1

2
, 2,

5

2
,
1

4

)

+ 6 ln 3 + 24 lnω

)

= C (ω)
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Where 2F1 is again a hypergeometric function. Additionally the first term vanishes by

virtue of (5.50). This value will be refereed to as C (ω) . The value of exp (C (ω)) is for

ω = 1 just 1/9. The final tunneling amplitude is then

〈

−η|e−Hτm |+ η
〉

= O

〈

−η|e−HOτm |η
〉

O

(
√

S0

2π

√

4

3

√

1

eC(ω)

)

e−S0 (ωτm)

=
(

〈0,−η|x〉 〈x|0, η〉 e−ωτm
2

)

(
√

S0

2π

√

4

3

√

1

eC(ω)

)

e−S0 (ωτm)

=
(

φ−η (−η)φη (η) e−
ωτm
2

)

(
√

S0

2π

√

4

3

√

1

eC(ω)

)

e−S0 (ωτm)

= −
(
√

ω

π
e−

ωτm
2

)

(
√

2S0

3π

√

1

eC(ω)

)

e−S0 (ωτm) (5.52)

where φa is the ground state wave function localized at a. The last factor comes from

the zero mode integration, the factor in front of it from the instanton solution. The first

factor comes from the lowest state harmonic oscillator and the second is the ratio of the

two determinants. The result is proportional to the time interval τm and hence there is

a finite tunneling probability per unit time. The harmonic oscillator part comes from the

normalization.

From (5.52) the ground state splitting ∆E can be read off, by using the following

expansion. The two ground states can be approximated by ψ0 = (φ−η (x) + φη (x)) /
√
2

and ψ1 = (φ−η (x)− φη (x)) /
√
2. Then the tunneling amplitude is approximately

〈

−η|e−Hτm |η
〉

≈ ψ∗
0 (−η)ψ0 (η) e

−E0τm + ψ∗
1 (−η)ψ1 (η) e

−(E0+∆E)τ

=
1

2
(φ∗

−η (−η)φ−η (η) + φ∗
−η (−η)φη (η) + φ∗

η (−η)φ−η (η) + φ∗
η (−η)φη (η))

+
1

2
(φ∗

−η (−η)φ−η (η)− φ∗
−η (−η)φη (η)− φ∗

η (−η)φ−η (η) + φ∗
η (−η)φη (η))e−∆Eτm .

If ∆Eτm is small, the result is then

〈

−η|e−Hτm |η
〉

≈ 1

2
φ∗
−η (−η)φη (η) (∆Eτm) (5.53)

here uneven terms in η and −η in argument and index can be neglected, since they are

small compared to the even terms. The first part is the harmonic oscillator overlap, and

the level splitting is hence approximately

∆E ≈ ω

(
√

2S0

3π

√

1

eC(ω)

)

e−S0 .

If the assumptions break down, multiple instantons and their interactions become impor-

tant.



132 5.4. Topological excitations

5.4.1.3 Corrections at two loop order

The procedure described can be continued to higher orders. The mathematics involved

get then more and more tedious, so only some remarkable results from two loop order will

be cited here. The loop correction is essentially achieved by calculating the correlation

function in presence of one instanton. The modifications lead to

exp (−S0) → exp

(

−S0 −
71

72

1

S0

)

Since the correction is negative and of order one implies, that for S0 ≈ 1, the one loop

approximation breaks down. Since S0 ∼ ω3

λ
, this is already the case for moderately high

barriers. The minus sign implies that the one loop order overestimates the tunneling

probability.

5.4.1.4 Instanton-Anti-Instanton interactions

As already mentioned, anti-instantons are instanton paths traversed in reversed time di-

rection. A pair of instanton and anti-instanton relates over a topological trivial path (the

same path traversed once in each direction), the same vacua. This interaction leads to the

tunneling amplitude
〈

η|e−Hτm |η
〉

=
τm
2πλ

∫

dτeSIA(τ)

The prefactor comes from the instanton density (there must be two in the time interval

τm). The instanton-anti-instanton action SIA can be calculated from a path as

SIA =
1

2λ

(

1

3
− 2e|τI−τA| +O

(

e2|τI−τA|
)

)

following the classical tunneling path in both directions. The parameter τ0 may be different

for instanton τI and anti-instanton τA. If τI − τA ≫ 1, SIA tends to 2S0 while for τI −
τA ≈ 0 it tends to 0. In the latter case however the instanton solution is not a good

approximation, since the relevant time scales do not allow anymore a classical treatment.

There are methods using steepest ascent to solve this problem numerical. By analytical

continuation in the coupling constant
√
2λ ,and after redefining the perturbative expansion,

an analytical calculation is possible for (E0 + E1) /2. This can be compared to the single

instanton solution above, where ∆E can be calculated.

5.4.1.5 Fermions

If light fermions are introduced and coupled by V ′′ to the potential, there are two in-

teresting effects visible: First, tunneling is only possible, if the fermion number changes



Chapter 5. QCD beyond perturbation theory 133

during the tunneling. Second, the fermions introduce long range attractive forces between

instantons and anti-instantons leading to formation of instanton-anti-instanton states.

5.4.2 Yang-Mills theory

5.4.2.1 Topology

It is convenient for the treatment of Yang-Mills theories to use the following definitions,

normalizations and gauges:

Ai = Aai
λa

2
[

λa, λb
]

= 2ifabcλc

tr
(

λaλb
)

= 2δab

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAbµA

c
ν

A0 = 0 =⇒ Ei = ∂0Ai

where Ei are the chromoelectric fields, which are for this gauge the conjugate momenta of

the Ai. The Hamiltonian is then given by

H =
1

2g2

∫

d3~x
(

E2
i +B2

i

)

The classical vacua have zero field strengths, but the potential A does not need to be

constant for non-Abelian theories. The gauge fields are in this case limited to pure gauge

configurations, which can be enumerated as

Ai = iU (~x) ∂iU (~x)†

where U (~x) can be any possible gauge transformation. It is possible to restrict these to

those satisfying U (~x) = 1 for x→ ∞. These can be classified by the winding number

nw =
1

24π2

∫

d3~xεijktr
((

U †∂iU
) (

U †∂jU
) (

U †∂kU
))

(5.54)

which counts the number of times the group manifold of the gauge transformation is

covered. If (5.54) is expressed in terms of the gauge fields, it is called the Chern-Simmons

characteristic

nCS =
1

16π2

∫

d3~xεijk
(

Aai ∂jA
a
k +

1

3
fabcAaiA

b
jA

c
k

)

(5.55)

The quantity (5.55) can also be rewritten more generally as

1

64π2

∫

d4xǫµνρσF a
µνFaρσ = − i

512π4

∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)



134 5.4. Topological excitations

Evidently, this is a total derivative, and hence can be cast into a surface integral at infinity.

It is therefore independent of the internal structure of the space-time it is integrated over,

but depends only on the contribution from the boundary. Furthermore, the expression

has the same color structure as the usual Lagrangian, and the Lorentz indices do not

play a role in gauge transformations of the field-strength tensor. Hence, this quantity is

gauge-invariant. Thus, it is an observable quantity. It is the so-called topological charge,

or Chern class, of the gauge field configuration. Furthermore, the quantity is evidently

invariant under any continuous distortions of the gauge fields inside the volume. It is

less obvious that this is true for any continuous deformations of the gauge fields on the

boundary, and that all of these possible deformations fall into distinct classes, the so-called

Chern classes, such that the integral is an integer k, characterizing this class. This fact is

stated here without proof.

Hence nw is an integer, and enumerates an infinite set of classical vacua. Since they

are topological different, there is no path from one vacuum to the other where the energy

remains zero all the way. But tunneling can connect topological different vacuum states.

5.4.2.2 Tunneling

The first question is, are there really any tunneling events? The answer is yes. Again

classical solutions to the euclidean action will provide access. It is convenient to rewrite

the action as

S =
1

4g2

∫

d4xGa
µνG

a
µν

=
1

4g2

∫

d4x

(

±Ga
µνΓ

a
µν +

1

2

(

Ga
µν ∓ Γaµν

)2
)

where Γaµν = 1
2
εµνρσG

a
ρσ is the dual field strength tensor. In this tensor the roles of the

magnetic and electric field are interchanged. The first term is invariant under topological

changes, see below, the second is always positive. If the field is (anti) self-dual, i.e. Ga
µν =

±Γaµν , the action is hence minimal. The first term is the topological charge

Q =
1

32π2

∫

d4xGa
µνΓ

a
µν

and the invariance can be seen from the equivalence to nCS.

Q =
1

32π2

∫

d4x
1

2
εµνρσ

(

∂νA
a
µ − ∂µA

a
ν − fabcAbµA

c
ν

) (

∂σA
a
ρ − ∂ρA

a
σ − fadeAdρA

e
σ

)

=
1

32π2

∫

d4x
1

2
εµνρσ(∂νA

a
µ∂σA

a
ρ − ∂νA

a
µ∂ρA

a
σ + ∂νA

a
µf

adeAdρA
e
σ − ∂µA

a
ν∂σA

a
ρ

+∂µA
a
ν∂ρA

a
σ + ∂µA

a
νf

adeAdρA
e
σ − fabcAbµA

c
ν∂σA

a
ρ + fabcAbµA

c
ν∂ρA

a
σ

+fabcAbµA
c
νf

adeAdρA
e
σ)
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First have a look at the double derivatives

1

2
εµνρσ

(

∂νA
a
µ∂σA

a
ρ − ∂νA

a
µ∂ρA

a
σ − ∂µA

a
ν∂σA

a
ρ + ∂µA

a
ν∂ρA

a
σ

)

By partial integration this results in

1

2
εµνρσ(∂ν

(

Aaµ∂σA
a
ρ

)

− Aaµ∂ν∂σA
a
ρ − ∂ν

(

Aaµ∂ρA
a
σ

)

+ Aaµ∂ν∂ρA
a
σ

−∂µ
(

Aaν∂σA
a
ρ

)

+ Aaν∂µ∂σA
a
ρ + ∂µ (A

a
ν∂ρA

a
σ)− Aaν∂µ∂ρA

a
σ)

The total derivatives can be connected by

ενµσρ∂ν
(

Aaµ∂σA
a
ρ

)

+ενµρσ∂ν
(

Aaµ∂ρA
a
σ

)

+εµνσρ∂µ
(

Aaν∂σA
a
ρ

)

+εµνρσ∂µ (A
a
ν∂ρA

a
σ) = 4εµνρσ∂µ (A

a
ν∂ρA

a
σ)

The other terms result in

4εµνρσA
a
µ∂ν∂ρA

a
σ = 0

since it is symmetric about the inner two indices. For the terms with one power of fabc

the result is

−εµνρσ
(

∂νA
a
µA

b
ρA

c
σ − ∂µA

a
νA

b
ρA

c
σ + AbµA

c
ν∂σA

a
ρ − AbµA

c
ν∂ρA

a
σ

)

= −εµνρσ(∂ν
(

AaµA
b
ρA

c
σ

)

−AaµA
c
σ∂νA

b
ρ − AaµA

b
ρ∂νA

c
σ − ∂µ

(

AaνA
b
ρA

c
σ

)

+ AaνA
b
ρ∂µA

c
σ

+AaνA
c
σ∂µA

b
ρ + ∂σ

(

AaρA
b
µA

c
ν

)

− AaρA
b
µ∂σA

c
ν − AaρA

c
ν∂σA

b
µ − ∂ρ

(

AaσA
b
µA

c
ν

)

+AaσA
b
µ∂ρA

c
ν + AaσA

c
ν∂ρA

c
ν)

The not-total-derivative terms are again symmetric in two indices and hence vanish. The

total derivatives are symmetric about three indices and hence do not vanish in all cases,

but only in two out of three, and hence the result is 4/3. The total result is then

1

16π2

∫

d4x∂µεµνρσ

(

Aaν∂ρA
a
σ +

1

3
fabcAaνA

b
ρA

c
σ

)

The last term vanished, because the square of the potential can not provide a contribution

over the whole space because otherwise the fields would not vanish. The remaining last

term is a result of the commutator of the generators and the factors of the generators, the

gauge fields.

Mathematical, since Aµ is a pure gauge, AµAν can be written as U∂µU
†U∂νU

† and this

can be changed by integration by parts to ∂µUU
†∂νUU

†, which is by unitarity 0. The rest

can be combined in a total derivative

Kµ =
1

16π2
εµνρσ

(

Aaν∂ρA
a
σ +

1

3
fabcAaνA

b
ρA

c
σ

)

Q =

∫

d4x∂µKµ =

∫

d3σµKµ
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where in the last step the volume integration was replaced by a surface integration and the

Gaussian theorem was used. Since the integration is equivalent to (5.55), the topological

invariance has been shown. With this knowledge, the action can now be calculated for an

arbitrary (anti-)self-dual field as

S =
8π2 |Q|
g2

By

Q =

∞
∫

−∞

dt
d

dt

∫

d3~xK0 = nCS (t = ∞)− nCS (t = −∞)

it is visible, that configurations with Q 6= 0 connect different vacua. The simplest non-

trivial solution can be obtained for SU(2) for Q = 1. An appropriate ansatz for U is

U (x) = i
xµ
x
τµ

τµ =

(

~τ

−i

)

τaτb = δab + iεabcτc

This leads to Aaµ by virtue of equation (5.54)

Aai = 2 (λa)−1 iU (~x) ∂iU (~x)†

= −iii2 (λa)−1 xµ
x
τµτ

†
ν

∂

∂xi

xν
x

= 2i (λa)−1 τµτ
†
ν

(

xxµδνi + xµxνxi
x3

)

For SU(2), this can be simplified to

Aaµ = 2ηaµν
xν
x2

ηaµν =











εaµν for µ, ν = 1, 2, 3

δaµ for ν = 4

−δaν for µ = 4

where ηaµν is called the t’Hooft symbol. A parametrized solution

Aaµ = ηaµν
xν
x2
f
(

x2
)

can be used to fulfill the self-duality requirement for Q 6= 1. f (x2) is required to be 1 as

x→ ∞ to let the result be a pure gauge. Inserting this leads to

Ga
µν = Γaµν

∂νA
a
µ − ∂µA

a
ν − fabcAbµA

c
ν =

1

2
εµνρσ

(

∂σA
a
ρ − ∂ρA

a
σ − fabcAbρA

c
σ

)
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The derivatives can be calculated as

∂µ

(

fxν
x2

)

=
2xνxµ
x2

f ′ +
f

x2
δµν −

2fxµxν
x4

(5.56)

The first two terms on the right hand side can be changed as

εµνρσηaρα∂σ
xα
x2
f = εµνσρηaαρ∂σ

xα
x2
f

= (δαµηaνσ + δασηaµν + δανηaσµ) ∂σ
xα
x2
f

= ηaνσ∂σ
xµ
x2
f + ηaµν∂σ

xσ
x2
f + ηaσµ∂σ

xν
x2
f

εµνρσηaσα∂ρ
xα
x2
f = −εµνρσηaασ∂ρ

xα
x2
f

= − (δαµηaνρ + δαρηaµν + δανηaρµ) ∂ρ
xα
x2
f

= −ηaνρ∂ρ
xµ
x2
f − ηaµν∂ρ

xρ
x2
f − ηaρµ∂ρ

xν
x2
f

εµνρσηaρα∂σ
xα
x2
f − εµνρσηaσα∂ρ

xα
x2
f = 2ηaνσ∂σ

xµ
x2
f + 2ηaµν∂σ

xσ
x2
f + 2ηaσµ∂σ

xν
x2
f

And the result is then

ηaµα∂ν
xα
x2
f − ηaνα∂µ

xα
x2
f − ηaνσ∂σ

xµ
x2
f − ηaµν∂σ

xσ
x2
f − ηaσµ∂σ

xν
x2
f

= −2

(

1

2
εµνρσf

abcηbραηcσβ
xαxβ
x4

f 2 − fabcηbµαηcνβ
xαxβ
x4

f 2

)

ηaµα∂ν
xα
x2
f − ηaνα∂µ

xα
x2
f − ηaνσ∂σ

xµ
x2
f − ηaµν∂σ

xσ
x2
f − ηaσµ∂σ

xν
x2
f

= −2fabc
xαxβ
x4

f 2

(

1

2
εµνρσηbραηcσβ − ηbµαηcνβ

)

(5.57)

All derivatives are symmetric in the indices by virtue of (5.56) and hence they can be

changed to

ηaµα∂ν
xα
x2
f − ηaνα∂µ

xα
x2
f − ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f + ηaµα∂ν

xα
x2
f

= −2f 2xαxβ
x4

fabc
(

1

2
εµνρσηbραηcσβ − ηbµαηcνβ

)

The right hand side can be changed using SU(2) fabc to

1

2
εµνρσ (δρσηaαβ − δρβηaασ + δαβηaρσ − δασηaρβ)− δµνηaαβ + δµβηaαν − δαβηaµν + δανηaµβ

=
1

2
(−δαβηaµν + δανηaµβ − δαµηaνβ + δβνηaµα − δβµηaνα)− δµνηaαβ − δµβηaνα − δαβηaµν + δανηaµβ

Multiplying with xαxβ results in

1

2
(−δαβηaµν + δανηaµβ − δαµηaνβ + δβνηaµα − δβµηaνα)− δµνηaαβ − δµβηaνα − δαβηaµν + δανηaµβ)xαxβ

= −3

2
ηaµνx

2 + 2ηaµαxνxα − 2ηaναxµxα
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Hence the result is now

2ηaµα∂ν
xα
x2
f − 2ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f = −2

f 2

x4

(

−3

2
x2ηaµν + 2ηaµαxνxα − 2ηaναxµxα

)

The left hand side can be expanded using (5.56)

2ηaµα∂ν
xα
x2
f − 2ηaνα∂µ

xα
x2
f − ηaµν∂σ

xσ
x2
f

=
4f ′

x2

(

ηaµαxνxα − ηaναxµxα −
1

2
ηaµνx

2

)

− 4f

x4
(ηaµαxνxα − ηaναxµxα)

Equating both to order 1/x2 yields a condition equation

0 = −2ηaµνf
′ +

1

x2
(

4f ′ηaµαxνxα − 4f ′ηaναxµxα − 3f 2ηaµν
)

+
4f

x4
(ηaναxµxα − ηaµαxνxα + fηaµαxνxα − fηaναxµxα)

Choosing, e. g., a = 2, ν = 3, µ = 4 this results in

1

x2
(−4f ′x3x2 − 4f ′x1x4) +

4f

x4
(x1x4 + x3x2 − fx3x2 − fx1x4) = 0

Equating the same factors of x3x2 results in

f (1− f)− x2f ′ = 0

A solution is provided by the ansatz f = x2/ (x2 + ρ2),

x2

x2 + ρ2
ρ2

x2 + ρ2
− x2

(

1

x2 + ρ2
− x2

(x2 + ρ2)2

)

=
x2ρ2

(x2 + ρ2)2
− x2

(x2 + ρ2)
− x4

(x2 + ρ2)2
= 00

The field strength is then

Aaµ = 2ηaµν
xν

(x2 + ρ2)
(5.58)

The field strength tensor can then be calculated as

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAbµA

c
ν

= 2ηaνα∂µ
xα

(x2 + ρ2)
− 2ηαµα∂ν

xα
(x2 + ρ2)

+ 4fabcηbµαηcνβ
xαxβ

(x2 + ρ2)2

=
−4ηaµνρ

2

(x2 + ρ2)2
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The squared field strength is finally given by

(

Ga
µν

)2
=

192ρ4

(x2 + ρ2)4
.

Integrating over it shows that the total action is finite.

The resulting instanton solution is well localized, and is characterized by its size. It

is invariant under rotation in space. It can be shown that is not invariant under color

transformations, and its orientation has to be fixed (it can be changed by unitary trans-

formations of RbaAaµ). Since the instanton can be placed at any position in space, its

position is also a free parameter. Size, position, and color orientation are together known

as the collective coordinates of the instanton, or moduli. The space of all possible values

of these parameters is known as moduli space.

Direct integration shows that indeed Q = 1,

S =
1

4g2

∫

d4x
(

Ga
µν

)2
=

192ρ4

4g2

∫

dφ

∫

d cos θ

∫

dx

∫

dt
x2

(x2 + t2 + ρ2)4

=
60π2ρ4

g2

∫

dx
x2

(x2 + ρ2)
7
2

=
60π2ρ4

g2
2

15ρ4
=

8π2

g2

Thus, the instanton is the lowest-action configuration with non-trivial topological charge,

and thus the classical vacuum solution.

In normal perturbation theory, the coupling constant is associated with the field and

not the action. By changing A → gA the action (5.56) is made independent of g and the

field strength tensor (5.54) is changed to

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

A new solution is then
x2

g (x2 + ρ2)

resulting in a change of the fields and the fields strength tensor by 1/g, indicating that

these fields are much stronger than perturbative fields. The instanton, and topological

excitations in general, are genuine non-perturbative contributions.

It is possible to construct an anti-self-dual Q = −1 solution by replacing ηaµν by ηaµν

with

ηaµν =











εaµν for µ, ν = 1, 2, 3

−δaµ for ν = 4

δaν for µ = 4

(5.59)

which is unchanged besides this replacement.



140 5.4. Topological excitations

The tunneling amplitude is again proportional to S0, which is for the self-dual solution

for Q = 1

Ptunnel = Ke
− 8π2

g2 τ (5.60)

The coefficient K can be determined analog to the one loop order calculations in the

quantum mechanical case.

5.4.2.3 θ vacua

The previous section, showed that there are different vacua, and these vacua can be con-

nected by tunneling events. The true vacuum is hence a superposition of the different

vacuum states. If instanton solutions do not interact with each other, the tunneling am-

plitude to go from vacuum i to vacuum j can be determined as

〈

j|e−Hτ |i
〉

=

∞
∑

N+=0

∞
∑

N−=0

δN+−N−−j+i

N+!N−!

(

Kτe−S0
)N++N−

where N+ is the number of instantons and N− the number of anti-instantons. Using

δab =
1

2π

2π
∫

0

dθeiθ(a−b)

this becomes

〈

j|e−Hτ |i
〉

=
1

2π

2π
∫

0

dθ

∞
∑

N+=0

∞
∑

N−=0

eiθ(N+−N−−j+i)

N+!N−!

(

Kτe−S0
)N++N−

This can be rearranged as

〈

j|e−Hτ |i
〉

=
1

2π

2π
∫

0

dθeiθ(i−j)
∞
∑

N=0

2N cosN θ

N !

(

Kτe−S0
)N

=
1

2π

2π
∫

0

dθeiθ(i−j)e2Kτe
−S0 cos θ

From this can be read of, that the vacuum state wave functions are eiθn |n〉 , and the energy

is E (θ) = −2Ke−S0 cos θ. The full vacuum state, the θ vacuum, is

|θ〉 =
∑

n

eiθn |n〉 (5.61)
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The lowest energy is negative, as expected, since tunneling lowers the ground state energy.

There are nevertheless no excitation associated with this energy, since the value of θ is fixed

and cannot be changed. A fixed term could be added to the Lagrangian as an additional

parameter, the so-called topological term

L =
iθ

32π2
Ga
µνΓ

a
µν .

The significance is not completely clear, since the interaction violates CP and T, but it is

a surface term, and may be associated with screening. The value of θ in QCD seems to be

experimentally smaller than 10−10, and the complex is known as the strong CP -problem.

Note that such a term does not affect perturbative calculations, because surface terms do

not alter the perturbative expansion.

5.4.2.4 Tunneling amplitude

The calculation for the tunneling amplitude is in principle the same as for the quantum-

mechanical problem, but much more tedious. Zero modes also exist, and lead to infrared

divergences additionally to the ultraviolet divergences. Hence only results will be provided

here. There are 4Nc zero modes, one for each polarization. They can be replaced by

integration about collective coordinates, and give a factor
√
S0. Integration over color

orientation yields a factor, but of size and position yields a non-converging integral. Hence

only a differential tunneling amplitude can be determined,

d5nI
dρd4z

∼
(

8π2

g2

)2NC

e
− 8π2

g2
1

ρ5
,

where the exponent of ρ is determined from the dimension. The regularization of this

expression can be done using the Pauli-Villar scheme. Some more calculations yield

d5nI
dρd4z

∼ 1

ρ5
exp

(

−8π2

g2
+

11

3
Nc log (Mρ)

)

where M is the regulator mass and the prefactor cancels. The complete result is

dnI
dρd4z

=
0.466e−1.679Nc

(Nc − 1)! (Nc − 2)!

(

8π2

g2

)2Nc 1

ρ5
e
− 8π2

g2
+ 11

3
Nc log(Mρ)

(5.62)

As a consequence, small instantons are strongly suppressed. For large instantons the ap-

proximation breaks down. One problem associated with such a distribution is that even

with less approximations the distribution is not integrable. This implies that there is

nothing what suppresses large instantons, and the result becomes unstable at large dis-

tances. Though results using lattice calculations show this not to happen, the mechanism

is unknown.
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5.4.3 Light quarks

The presence of different vacua can be connected to the axial charge.

In perturbation theory, renormalization is not possible while conserving all charges, if

external charge and axial charge fluxes are involved. The divergence in arbitrary order for

two gauge fields coupling to the flavor singlet axial current is

∂µj
5
µ =

Nf

16π2
Ga
µνΓ

a
µν (5.63)

where the gauge fields are arbitrary background fields. This is essentially an anomaly,

which will be discussed in more detail in section 5.6. The surface term on the right hand

side is relevant, since the vacua of QCD are not equivalent. The effect is, that by instanton

events the axial charge is not conserved and connected to the topological charge Q.

Essential the zero mode moves every state one level up, and hence the chirality in each

state changes. The consequence is, that the ninth Goldstone boson η′ in QCD acquires

even in the chiral limit a mass. Another consequence is that in the presence of light quarks,

single instantons cannot exist (although there is some exception possible), but correlated

instantons are necessary, even in the limit of a dilute gas. Secondly, quarks can travel from

instanton to instanton. They change their chirality and the same flavor may not travel

together.

The fact that the chirality changes at an instanton also implies that in an instanton

background chirality is not conserved. Thus, chiral symmetry breaking can be viewed as

a consequence of the presence of instantons.

5.4.4 Other topological excitations

Instantons are special, because they are the classical minimal energy configuration. How-

ever, this by no means imply that they are the only topological stable solutions. Such

other solutions could, in fact, be even minimizing the quantum action19.

Two particularly relevant such configurations are monopoles and vortices. While in-

stantons are point-like events in space-time, these objects are of higher dimensionality.

A (chromo)monopole is an object which has a world-line, and therefore forms a one-

dimensional object in space-time. A possible field configuration is, e. g.,

Aaµ = −δ3a 1
g
~eϕ

1 + cos θ

r sin θ
,

19Strictly speaking, any topological solution alone can never be relevant, as only infinite-action configu-

rations have a relevant measure in the path integral. However, it is always possible to add quantum noise

to a topological configuration to increase its action to make it relevant.
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which is given in spatial spherical coordinates. It is static, in contrast to the instanton,

which is located in space-time. As the field strength diverges along a line, it is also called

a defect.

Vortices are closed two-dimensional surfaces, with a typical field configuration like

Aaη = δ3a
1

g

µ(ρ)

ρ

in cylindrical coordinates, where the profile function µ varies from zero at ρ = 0, making

the field configuration regular, to an odd integer 2n + 1, where n is the number of flux

quanta in the vortex, at ρ = ∞, but will go again to zero for a zero-flux vortex. The (fuzzy)

surface of the vortex is essentially defined by the maximum of the field configuration in ρ

direction.

There are also other topological field configurations, including volume-like ones, which

will not be detailed further. These field-configurations are not unrelated. E. g. several

investigations, mostly using lattice calculations, find that instantons cluster along the

worldlines of monopoles, which in turn lie on the surfaces of vortices. It is therefore likely

that no single type alone can be identified as the low-energy effective degree of freedom of

QCD.

Like in the case of instantons, almost all other topological configurations contribute

in the process of chiral symmetry breaking. In fact, the properties of chiral symmetry

breaking can be rather well reproduced by topological excitations alone. It appears hence

likely that they play the dominant role in terms of effective degrees of freedom in this

process.

5.5 Confinement

One of the most remarkable features of QCD is probably the non-observation of free

quarks and gluons. This phenomenon is called confinement. However, shaping a precise

meaning of what confinement is in a theoretical language is a highly non-trivial question.

Hence, probably simpler is first an experimental statement: Confinement is the fact that

no massless, strongly interacting vector particles and no fermions with fractional electric

charges with hadronic masses have been observed. These statements include two important

requirements. One is that such particles should be strongly interacting. Otherwise, e. g.

the photon would be a candidate. They secondly require the masses to be of hadronic

size. Since a multitude of beyond-the-standard-model scenarios have also fractionally

electrically charged particles, this distinction is necessary.
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There are two problems with these statements. One is that they obviously do not refer

in any way to color. The reason is that experimentally there is no color, as there is no

detector for it. In fact, there is no experimental concept of color. This is theoretically

obvious: Color is a gauge degree off freedom. There is a theorem, Elitzur’s theorem,

which states that essentially all quantities not-invariant under local gauge transformations

necessarily vanish without gauge-fixing. Since gauge-fixing is a coordinate choice, this

implies that any observable quantity must be gauge-invariant. Thus, color cannot be used

in an experimental context.

The second is, that this condition can not be maintained for all siblings of QCD, so-

called QCD-like theories. Here, a sibling are theories with the same structure as QCD,

but different gauge group, different number of fermions, or different representations for

the fermions. E. g., in theories with gauge group G2 or with fermions in the adjoint

representation, there are hybrids, i. e. hadrons which consist out of a finite number of

gluons and a single quark, which are gauge-invariant. Such particles would carry fractional

electrical charge. On the other hand, QCD with about 13-15 flavors of massless quarks

would likely have a light, if not even massless, ρ meson. These examples show how hard

it is to give even experimentally a well-defined meaning to the word confinement.

The situation in theory is both more simple and more complex.

Simple as the requirement of gauge-invariance seems to imply that gluons and quarks

cannot be observed, period. However, it is by far non-trivial to show this to be correct

in a more rigorous sense. In fact, for an Abelian gauge theory it is possible to construct

the equivalent of a free quark by a dressing of a gauge-dependent source with an infinite

number of photons, though with still a finite total energy. Axiomatic field theory seems

to indicate that this, called bleaching, is impossible for non-Abelian gauge theories (there

is no almost local colorless state with otherwise quark quantum numbers), but a proof is

lacking20.

Complex, as, except for just calculations using lattice, we have only a vague idea of

how this effect works out dynamically, i. e. how it manifests in correlation functions.

In the following, more will be said about the theoretical perspective. These remarks

should however make one aware that it is always necessary to first find a common definition

of the word ’confinement’ ere one discusses it with somebody else.

20The situation at finite temperature is worse, and thus it is unclear whether deconfinement, to be

discussed in chapter 7, could actually occur.
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5.5.1 Wilson criterion and the strong-coupling expansion

One of the most naive ways in which to investigate confinement is to investigate the

following situation, motivated by the idea of test charges in classical electrodynamics.

Reduce first the problem to the quenched case, i. e. Yang-Mills theory. Place then two

test-charges into the system, one with fundamental and one with anti-fundamental charge.

Since test-charges can be taken to be static, this situation is completely characterized

by the spatial distance between the two test charges. Connect these with a gauge field

such that the total setup is gauge-invariant. Finally, measure the total energy of this

arrangement as a function of the distance of the test charges.

The interesting result is that this energy has the following form,

V (r) = σr + c+ d
α

r
+O(α2), (5.64)

where c and d are some constants, α is the strong coupling constant, and σ is called

the string tension for reasons to become clear soon. The Coulomb-like term as well as

most of the higher order corrections are what is expected in perturbation theory. In

fact, since in perturbation theory the asymptotic, non-interacting states are quarks and

gluons, perturbation theory knows nothing of confinement. It is a purely non-perturbative

phenomena.

The other two terms are significant. They imply that the energy is linearly rising with

distance. In fact, σ ∼ (400 MeV)2 is so large that moving the two charges even the size of

a proton away from each other is already very expensive, and any macroscopical scale is

absurdly so. There is a restraining force associated with such a potential, which attempts

to keep the charges together. This is not a necessary consequence of the requirement of

gauge invariance, but a genuine feature of Yang-Mills theory. The requirement of gauge

invariance also occurs in theories where this behavior is not observed. It is thus a genuine

phenomena of the current theory.

This behavior is actually the one expected if a (relativistic) string of tension σ would

be put between the charges, and then elongated. In fact, even the sub-leading constant

term c turns out to be in quite good agreement with such a result. This is the reason to

call this the string tension21.

That Yang-Mills theory can create such a behavior can be shown in the strong-coupling

limit α → ∞, using a lattice-regularized version of Yang-Mills theory. To do so, it first

requires to be a bit more explicit about the corresponding operator. It is given by the

21In fact, before the inception of QCD, this lead to the birth of string theory as a theory of hadronic

interactions. String theory was then abolished due to conceptual problems and a wrong high-energy

behavior, only to be reborn as a possibility for quantum gravity almost two decades later.
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so-called Wilson line,

U(C) = P exp



ig

∫

C

dsµAaµ
λa

2



 , (5.65)

where C is a path, which starts at the first charge, moves to the second over the distance

R, follows this charge for some time T , then returns to the first charge, and final closes on

itself by going back in time. It is therefore a rectangle of size RT . That the path-ordered

exponential (5.65) is actual the correct expression can be seen by exponentiating the

covariant derivative, which connects two fundamental quark sources over an infinitesimal

distance to give a gauge-invariant expression. However, it should be noted that nowhere

enters anymore that the quarks sources are fermions, and the same expression is obtained

for scalars or other objects. The reason is simply that for static test charges the Lorentz

structure does not matter. Its (Euclidean) expectation value

W = 〈U〉 = 1

Z

∫

DAµtrUe−S

is gauge-invariant, as by expansion it can be shown that U transforms under a gauge-

transformation g as gUg−1. On the lattice, if taking a rectangle of size the lattice spacing,

it coincides with the plaquette.

From this the Wilson potential is defined as

V (R) = − lim
T∞

1

T
logW.

It coincides with the potential (5.64). Hence, the Wilson line must behave asymptotically

as exp−RTσ. Thus, an asymptotic non-vanishing string tension σ implies that the ex-

ponent behaves like the area enclosed by the curve C. This is called the area law, and

taking a non-vanishing σ to be equivalent to confinement, this area law is a criterion, the

so-called Wilson criterion, for confinement. In contrast, if the exponent only scales with

the length of the curve C, a so-called perimeter law, the string tension is zero, and the

potential (5.64) is qualitatively the same as the one of QED, and therefore there is no

confinement according to the Wilson criterion.

Before showing the former, it is best to first convince oneself of the latter, i. e. that

in QED this produces the familiar 1/r potential. Quenched QED is just Maxwell theory,

and hence there are no interactions. Of course, it is necessary to gauge-fix, which can be

most conveniently done in a covariant gauge, in the following the Feynman gauge. The
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gauge-fixed Lagrangian together with the Wilson line becomes

W =
1

Z

∫

D exp



ie

∫

C

dsµAµ −
∫

d4x

(

FµνFµν +
1

2
(∂µAµ)

2

)





=
1

Z

∫

D exp



ie

∫

C

dsµAµ −
1

2
d4x

(

∂µAν)
2
)



 .

This integral, after shifting the gauge-field, is a standard Gaussian one, and can therefore

be directly evaluated. This yields

W = exp



−e
2

2

∫

C

dsµ

∫

dtνSµν(s− t)





Sµν = − 1

4π

δµν
x2

=
δµν
(2π)4

∫

d4p
eipx

p2

where S is also known as the Schwinger function, and nothing but the propagator in

space-time rather than in momentum space.

Evaluating the line-integral along a rectangle is not entirely straightforward. The inte-

grand has singularities at coinciding points of the paths. They stem from the singularities

of the propagator, and have to be regularized. The simplest resolution is to deform the

integration contours by some ǫ such that this does not occur. Then all the integrals are

elementary and the Wilson line becomes

W = exp

(

e2

2π2

(

T

R
tan−1 T

R
+
R

T
tan−1 R

T
− 1

2
ln

((

1 +
T 2

R2

)(

1 +
R2

T 2

))

− 1

ǫ
(T +R) + 2− ln

ǫ2

RT

))

which leads to the potential

V (R) = − e2

4πR
+

e2

2π2ǫ
.

The first part is the familiar electromagnetic potential, justifying the identification as the

potential. The second, constant, term depends on the regularization, and is essentially

just a constant shift of the potential. After renormalization, this shift can be set to zero,

which is then indeed the classical expression.

Such a calculation is spoiled for Yang-Mills theory by the self-interactions of the gluons.

To make still progress, it is possible to perform a strong-coupling expansion, i. e. consider

the case of g → ∞. The strong-coupling expansion is essentially an expansion in suitable

graphs. Start with the Wilson plaquette action (5.6). The strong-coupling expansion is

equivalent to β → 0. Hence, it is a series expansion of the Boltzman weight,

e−βS =
∑ 1

n!
(βS)n =

∑

k

χk
∫

D(U)e−βSχk∗
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where the characters χ are given by trDk where D is a representation of dimensionality

k of the gauge group. Especially, the χ are numbers. Calculating them is an exercise in

group theory.

Performing this calculation for the case of the Wilson loop leads to the results that

essentially a covering of the area enclosed by C by plaquettes is the dominant contribution.

The contribution is then proportional to the number of plaquettes, and thus to the area.

The pre-factor can then be calculated by calculating the corresponding characters. This

yields at leading order

W = exp

(

ln 1
3g2

a2
RT

)

where a is the lattice spacing, and therefore a string tension of 1/a2 × ln 3g2, where the

lattice spacing just sets the dimensionality. Hence, the string tension is essentially given

by the (large) coupling, as was to be expected given that no other parameter exist in the

theory.

The drawback of this argumentation is that the strong-coupling expansion is possibly

not connected analytically to the continuum limit of g → 0. Hence, the proof of having an

area-law in the strong-coupling limit has not necessarily any implications for the continuum

theory, as reassuring as the result itself is.

Performing numerical calculations using lattice gauge theory did, however, show that

for all practical purposes the string tension survives, provided there is no further non-

analyticity involved in taking the continuum or infinite-volume limit.

It should be noted that a string also forms in baryons. The form was long a debate,

but finally the results strongly favor a three-edged star, rather than a triangle or more

complicated shapes. Thus, there is a common center (at least for three quarks of the same

mass), from which strings to the three quarks emerge symmetrically.

5.5.2 Regge trajectories and quarkonia spectra

Though quarks are not infinitely heavy, the potential (5.64) is not without merit, as it has

a number of implications observable even with the finite quark masses.

One of the results can already be inferred from a classical calculation. A meson can in

its simplest form be viewed as a rigid string of tension σ with the quark and anti-quark at

the opposite ends of the string. The classical rotation energy of this assembly is given by

E =
1

2
Iω2.

where I is the moment of inertia, given by ml2/12, where m is the mass of the assembly,

and l the length. The angular velocity is given by ~ωml2 = ~L, where ~L is the angular
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momentum. This yields for the total energy

E =
1

24

1

ml2
L2.

Doing a semi-classical quantization gives L2 = L(L + 1) with L now the angular mo-

mentum quantum number. Identifying then ml2 with 1/
√
σ and E with the rest mass

of the particles, this implies that the mass of a meson is roughly proportional to its an-

gular momentum, and thus total spin, squared, with the string tension as a constant of

proportionality. Indeed, such a behavior is observed for the mesons, at least for angular

excitations, and this behavior is called a Regge trajectory. In fact, also baryons follow

this pattern. Even the constant of proportionality has a value of about 650 MeV, which is

not to far off from the string tension proper. This is a great success to the string-picture

of the Wilson potential.

Another spectacular success of the string picture are quarkonia, and to some extent

also other mesons. Assuming just the simple potential (5.64) and treating the heavy

quarks in quarkonia non-relativistic leads to a Schrödinger-type wave equation. More

refined versions of this are obtained from heavy-quark effective theory, as described in

section 5.1.1. Solving this Schrödinger equation, essentially with the same methods as

in quantum mechanics, yields energy levels as well as spin assignments close to the true

spectra. The agreement can be further improved by including additional phenomenological

contributions in the potential, e. g. spin-orbit forces or flavor-dependent correction terms

as well as relativistic corrections. It is also possible to extend this approach to baryons,

in the form of a quantum-mechanical three-body problem. However, states like the X , Y ,

Z mesons are not captured.

Both results, together also with the unexpected success of quenched lattice calculations,

show that the main contribution of the quark interactions is essentially a gluon-induced

effective potential of the type (5.64). Of course, this is not all. E. g., quantitative precision,

especially for excited states, requires a full treatment. Also, some states are known which

do not fit into the quantum number classification according to this quantum-mechanical

picture, and others are missing. But overall the agreement is good.

This can be understood when recalling the consequences of chiral symmetry breaking

in section 5.2: The quarks receive an additional contribution to their mass of order several

hundred MeV. As the relevant binding energies/mass defects, i. e. the difference between

these effective masses of the constituents and the bound states masses, are usually (much)

smaller than these effective quark masses, the quarks are usually almost inert at the

relevant distance scales. Only the long-range gluons then play a role.
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5.5.3 The problem with dynamical particles

The main reason for the string picture is two-fold. One is that the gluon exchange creates

such a string. This is a dynamical result, and can only be obtained by calculation. The

other is a group-theoretical effect, and thus can be read off from the Lagrangian: It is

not possible to dress a fundamental charge with gluons, because there is no singlet in

the combination of any number of gluons and a single quark (or anti-quark). Both are

thus necessary conditions for the string picture, and only both together are a sufficient

condition. The latter is by no means trivial. For other gauge groups (e. g. G2) or other

representations of the quarks (e. g. adjoint) it is possible to dress a quark with a finite

number of gluons (3 in case of G2 and 1 in case of adjoint quarks). Hence, in QCD a

gauge-invariant dressing requires other (anti-)quarks. This is energetically impossible if

the quarks are infinitely heavy.

An interesting effect happens when dressing becomes energetically possible, i. e. in

case of QCD when there are dynamical quarks. Then, at some distance, enough energy is

deposited in the string that it is possible to form out of the original meson two mesons by

converting this energy into particles. Thus, a highly radially excited meson will decay into

two mesons, rather than into two quarks. This is very different from the QED case, where

ionization is possible when investing enough energy. That this effect is 100% effective can

be taken as another definition of confinement in full QCD. The process of the decay of

the string is also known as string breaking, and has been numerically confirmed by lattice

calculations.

However, the appearance of string-breaking makes the Wilson condition for confine-

ment void. QCD with dynamical quarks, as well as some other theories without dynamical

quarks, are not confining. This is at odds with the definition of confinement according to

the observation of quark-like and gluon-like particles as discussed at the beginning of this

section. The Wilson criterion is therefore often considered to be a theoretical construct,

especially as it makes only a statement about particles which are not part of the theories

(there are no quarks in Yang-Mills theory proper). Even if abandoning the Wilson crite-

rion as a statement about confinement, the question of the appearance of a string tension

is highly non-trivial, and not entirely solved so far.

But the string is not entirely gone: For a substantial distance, about ten Fermi, there

is still a linear rising pseudo-potential between dynamical quarks. Pseudo-potential, as

in a theory with particle creation and annihilation there is no well-defined concept of a

potential anymore, and the name is just kept from the static case. This is sometimes called

an intermediate string tension, and its presence explains once more why the quenched

description is so suitable for hadronic properties, as well as the success of Regge theory
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for full QCD.

5.5.4 Positivity violation

Even if one is willing to accept that QCD is not confining according to the Wilson criterion,

one other problem is not addressed by it: The confinement of gluons. Since gluons can

screen a gluon, any attempt to move the gluons inside a glueball22 far away from each

other will just create more glueballs, since gluons can screen each other. String breaking

always occurs for gluons. Nonetheless, also in case of gluons there is an intermediate string

tension, though it requires adjoint charges rather than fundamental ones to calculate it.

Therefore, a useful condition for gluon confinement is so far not available.

However, a necessary criterion for gluons to be confined is that there are at least no

colored gluonic states in the asymptotic spectrum. That this is not sufficient is immediately

clear, as no unstable particle will appear in the asymptotic spectrum either, even if it is

as physical as, e. g., the ρ meson.

To understand this more closely requires an elaboration of the discussion in section

5.3.2. There, the analytic structure in momentum space was discussed. But a more direct

access, as is also exploited in the lattice approach in section 5.3.3, is in terms of the

position space. This is granted by the Schwinger function. This function is essentially the

propagator in position space at zero three-momentum,

∆(t) =
1

π

∞
∫

0

dp0 cos(tp0)D(p20) (5.66)

where D(p2) is the propagator.

In case of a stable particle with a simple pole massM , having an Euclidean propagator

D(p) =
1

p2 +m2
, (5.67)

and thus a pole at p = ±im, the Schwinger function is given by

∆(t) =
1

2m
e−mt.

This recovers the lattice result from section 5.3.3. Therefore, a simple exponential decay

is expected in Euclidean time for a massive, stable particle.

22Which involves at least four gluons, as the four gluons fields inside the field-strength tensor squared

is the minimum number of gluon fields to construct a gauge-invariant operator.
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Beyond tree-level, the propagator (5.67) is modified by the appearance of a cut, starting

at23 p = ±2im. At lowest order in perturbation theory, a possible analytic form for such

a propagator in four dimensions is given by

D(p) =
1

p2 +m2 +Π(p2, m2)
(5.68)

Π(p2, m2) = −g2
(

π

2
√
3
+

√

1 +
4m2

p2
atanh

(
√

p2

4m2 + p2

))

,

where g has dimension of mass. This form is motivated by leading-order perturbation

theory, and occurs, e. g., for a scalar theory with a three-point coupling.

If the particle is not stable, the poles are moved off the first Riemann sheet onto the

second Riemann sheet at m+ iΓ/2. The cut then starts at ±2iM , where M is the mass of

the particles in which the original particle can decay, assuming for the moment only this

two particles in the theory. In this case, the propagator (5.68) is modified to

D(p)−1 = p2 +

(

m+ i
Γ

2

)2

− g2

(

Π
(

p2, m2,Λ2
)

−Π

(

(

m+ i
Γ

2

)2

, m2,Λ2

))

−h2
(

Π
(

p2,M2,Λ2
)

− Π

(

(

m+ i
Γ

2

)2

,M2,Λ2

))

(5.69)

Π(p2, m2,Λ2) = −
√

1 +
4m2

p2
atanh

√

p2

4m2 + p2
+

(2Λ2 + 4m2 + p2) atanh
√

p2

4Λ2+4m2+p2
√

p2
√

4 (Λ2 +m2) + p2

+
1

2
ln

(

1 +
Λ2

m2

)

,

where there are now two couplings of dimension mass, g and h, describing24 a self-

interaction g and a decay channel with strength h, and Λ is the cutoff, of which this

renormalized propagator is independent. This is a more explicit example of the generic

Breit-Wigner propagator (5.45).

However, since neither the gluon (nor the ghost or the quark) behaves necessarily like

a physical particle, after all it is not gauge-invariant and thus not physical, its propagator

may not be of either form (5.68) or (5.69). There have been various proposals, which

form it may have instead. One, the so-called Gribov-Stingl type, has complex poles on

the first Riemann sheet, but may have vanishing residues at the poles. This behavior can

23Or any other decay channel of the particle, which is below this one.
24Note that not all parameters are independent. The reality of the Euclidean propagator fixes one of

the parameters m, Γ, M , g, and h as a function of the others, since the decay width is not an independent

quantity.
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be described by a meromorphic function

D(p) =
e2 + fp2

p4 + 2m2 cos (2φ) p2 +m4
. (5.70)

Its Schwinger function is given by

∆(t) =
e2

2m3 sin (2φ)
e−tm cos(φ)

(

sin (φ+ tm sin (φ)) +
fm2

e2
sin (φ− tm sin (φ))

)

. (5.71)

The Schwinger function therefore exhibits oscillation with a period determined by the

angle φ and the mass parameter m. Its positivity violations are signaling therefore the

instability of the particle. The propagator (5.70) illustrates at the same time the difference

between the concept of screening mass and pole mass. The screening mass is defined as

the inverse square-root of the propagator at zero momentum, and given by

D(0)−
1
2 =

m2

e
.

Since e depends on the wave-function renormalization, this immediately shows that a

screening mass is never renormalization-group-invariant, and can therefore not be a phys-

ical observable quantity. The pole mass, i. e., the location of the poles of (5.70) is given

by

ime±iφ,

and is thus a set of complex conjugate poles, but in general with non-zero residuum. This

mass is renormalization-group invariant, if there is no additive mass-shift to m, and can

thus be, at least in principle, a physical mass, though in the present case it may be gauge-

dependent. Note that in the limit of real masses, e has to go to m and f to one, or

otherwise a double-pole would emerge. However, such complex-conjugated poles do not

fulfill the analyticity properties of physical particles, as discussed before, even if the mass

makes sense.

There is another concept which appears when using the Euclidean correlation function.

Assume that the propagator can be more generally written as

D(p) =
Z

p2 +M(p2)2
, (5.72)

with some wave-function renormalization constant Z. At first sight, the condition p2 =

−M(p2)2 could look like an indicator for the pole mass of the particle described by the

propagator. However, this is only possible if the function M(p2) only depends on the

real part of p2. This is certainly the case for (5.67), but is not necessarily the case for

(5.72). Thus, the point −M(p2)2 only gives a would-be pole mass, and the correct pole



154 5.5. Confinement

mass is only obtained when taking into account the full dependence of M(p2) on complex

momenta.

However, all of these concepts still have functions which do not offer a cut structure.

Though the final behavior of the gluon propagator has not been settled, it appears possible

that such a possibility should be kept. The results available from functional studies suggest

a form which has a cut on the imaginary momentum axis starting at zero momentum. It

is also a possibility that the gluon propagator vanishes at zero for some gauges. In this

case, functional forms which provide such a structure are given by25

Z1(p) =
Azp

2κAA

1 + f + Azp2κAA
fUV(p

2)

Z2(p) =
Azp

2κAA

(1 + f + Azp)2κAA
fUV(p

2), (5.73)

where fUV encodes the perturbative tail. Both have no simple complex or real poles on

the first Riemann sheet, but have additional poles on further Riemann sheets. If the gluon

propagator is finite at zero momentum a form like

Z3(p) =
p2(m2 + p2)κAA

σ(1 + fp2 + gp2+2κAA
fUV(p

2), (5.74)

is suggested. This form behaves as (5.73) in an intermediate range, depending on the

parameters. It has also the same analytic structure as (5.73). I. e., the only singularities

in the complex plane is a cut along the real axis. In fact, the best established results for

the gluon propagator in Landau gauge26 are best described by (5.74).

Most importantly, all of the forms permit Wick rotation, essential to transfer the results

back to Minkowski space. Despite the quite different forms, the propagators in momentum

space are in all cases quite similar, which is one of the reasons why a final decision on

the correct form is still out. The position-space form is quite different, but the differences

only manifest at long times and thus give an exponentially suppressed signal, making it

also complicated to decide. At short times, all agree, since this region is dominated by

asymptotic freedom, and thus the behavior must be like in perturbation theory, i. e. a

logarithmic decay in momentum space.

In any case, all propagators (5.70), (5.73), and (5.74), imply that positivity is manifestly

violated for the gluon27. This implies the absence of the gluon from the asymptotically

physical Hilbert space. But as noted, positivity violation is not equivalent to confinement.

25Note that similar functional forms are already encountered in QED
26Note that the definition of Landau gauge needs to be refined, see section 5.5.5.2.
27Note that a gluon propagator which vanishes at zero momentum is implying (maximal) positivity

violation.
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Whether confinement is implying positivity violation is not known. However, a confined

particle is necessarily absent from the asymptotic physical Hilbert space. Thus, the pos-

itivity violation implies already this necessary condition, though this necessary condition

may also be realized in other ways yet unknown.

Note that this does not prevent the existence of a stable asymptotic gluon state in the

unphysical part of the Hilbert space of the theory; it is just excluded from the physical

part of the Hilbert space28. Furthermore, the screening mass for an infrared non-vanishing

gluon propagator is not necessarily implying the existence of a pole mass of the gluon29, as

illustrated by the form (5.74). The only implication of the positivity violation is thus just

that the gluon will not appear as an asymptotic state in the physical part of the Hilbert

space.

It should be noted that positivity violations of the Schwinger functions is necessarily

implying positivity violations of the spectral function ρ, defined implicitly by

D(p) =

∞
∫

0

dM2 ρ(M2)

p2 +M2
, (5.75)

where any possible one-particle pole is included in the spectral function. The implication

is obtained by inserting into (5.66) the representation (5.75)

∆(t) =
1

π

∞
∫

0

dp0 cos(tp0)

∞
∫

0

dM2 ρ(M2)

p20 +M2
= 2

∫

dMe−Mtρ(M2),

where it is assumed that both integrations can be exchanged.

Any positivity violations of the spectral function implies the absence of a Källen

Lehmann representation. The spectral function of a unstable but otherwise physical par-

ticle, like described by (5.69), remains positive. Thus, so must be its Schwinger function.

This is not necessarily the case for unphysical particles. This illustrates how sensitive the

Schwinger function is to details of the propagator structure.

From a practical point of view, the Schwinger function yields a more direct access to

the analytic properties than the spectral function. Also, the reconstruction of the spectral

function is non-trivial, and in case of the propagator being only available on a finite number

of (lattice) momenta necessarily not unique, leading to significant systematic uncertainties.

28This observation can already be indirectly inferred from the violation of the Oehme-Zimmermann

superconvergence relation in perturbation theory.
29If one exists, it would be be gauge-parameter-independent, as described by the Nielsen identities,

though in general not gauge-independent.
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A positivity violation of the spectral function immediately marks a state as unphys-

ical. Such a violation follows also immediately if the propagator either vanishes at zero

momentum or its derivatives w. r. t. p2 are not of constant sign, since (5.75) implies

∂nD(p)

∂(p2)n
= (−1)n

∞
∫

0

dM2 ρ(M2)

(p2 +M2)n
(5.76)

This provides a sufficient, but not necessary, condition to identify a particle as unphysical.

The positivity violation in the Schwinger function removes a particle immediately from

the physical asymptotic state space, which is a weaker statement.

This exhausts most of the possibilities for the gluon propagator. There is one remark-

able additional option. I. e. a gluon proapgator which behaves as

D(p) =
Z

p4
,

i. e. is a massless double-pole. Such a gluon propagator would immediately yield an

interaction potential, which is linearly rising. However, since the exchanged particle is

gauge-dependent, this is not the Wilson string tension, but a different form. Such a

behavior is also known as infrared slavery. There are some gauges, most prominently the

non-covariant Coulomb gauge30 ~∇ ~Aa = 0, in which such a behavior is observed. At least

in Coulomb gauge it can be proven that the so obtained (Coulomb-)string tension is an

upper limit to the Wilson string tension, i. e. only a non-vanishing Coulomb string tension

permits the Wilson confinement criterion. It is not an equivalence, and the Coulomb string

tension appears to be also non-zero if the Wilson string tension is.

It was long assumed that the gluon propagator is in any gauge of this form. However,

this is certainly not the case, and e. g. Landau gauge is a counter-example. In Landau

gauge, it appears to be infrared finite, and thus of any of the above mentioned form. The

situation for the quark is more subtle, and it is not yet even in a single gauge unambiguously

established whether it has a simple pole, multiple poles, or a cut-structure. However, it

appears that this decision has little impact on observable quantities.

5.5.5 Kugo-Ojima and non-perturbative BRST

There are a number of more formal attempts to solve the confinement problem. One such

attempt is the Kugo-Ojima construction. As was discussed in section 4.3, in perturbation

30Since the gauge condition is not Lorentz-invariant, there are frames in Minkowski space-time where

the gauge condition is meaningless. Thus, Coulomb gauge alone is not well-defined, and will therefore not

pursued here further. There is an extensive literature discussing these problems.
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theory it is possible to classify states as being physical or unphysical by the BRST symme-

try. The Kugo-Ojima construction is an attempt to extend this construction to all colored

states, i. e. to show that being colored implies the absence from the physical Hilbert space.

5.5.5.1 The construction

This construction is rather extensive, and therefore only some of its salient features will

be presented here. The total construction is essentially following those in section 4.3.2,

just that it is not necessary to take the limit of g → 0 to obtain the asymptotic states.

This requires a number of preconditions to be fulfilled.

One is that there is no massless observable state. This may seem obvious, as no hadron

is massless, but this is a rather non-trivial requirement: In the chiral limit the pions become

massless. It is not clear what is the fate of the Kugo-Ojima construction then is, but if

it works for a finite pion mass, there should be an extension to include the chiral limit as

well. Note that photons are not relevant, as they do not couple (directly) to the strong

interaction, and can therefore be factored out.

The second is that the construction has only be done in covariant gauges. Though this

is a restriction, it would nonetheless be a big leap forward to have an explicit construction

at least in one gauge. If a gauge is fixed, the color charge becomes a well-defined quantity,

and global color symmetry is a valid concept. The second construction then translates into

the requirement of an unbroken global color symmetry. This can be shown to be equivalent

to a ghost propagator, which is always present in covariant gauges, which diverges stronger

than a massless particle pole at zero momentum, i. e. 1/p2α with α > 1. That is a

straightforward criterion to check. This has been done in non-perturbative calculations.

As it stands, this seems not to be the case, as a direct evaluation of the ghost, at least in

Landau gauge, exhibits only a pole structure of a massless particle.

That this is not surprising can be seen from the last ingredient, the requirement of an

unbroken BRST symmetry. It is a vital ingredient in the construction that the BRST sym-

metry is unbroken and has the same algebra as in the perturbative case, (4.12-4.14). This

requires of course a further quartet to copy the BRST mechanism verbatim also for trans-

verse gluons and quarks. Such states are not available as elementary states. Especially,

the elementary states with the required non-vanishing ghost number have been all used

up for the perturbative sector. Thus, the only possibility are composite states, involving

ghosts, i. e. ghost-gluon or ghost-quark bound-states. That for the realization/breaking

of a symmetry composite states are necessary is not a problem, as the case of the pion for

chiral symmetry demonstrates.

But this elegant construction has a serious problem, which is caused by the Gribov-
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Singer ambiguity.

5.5.5.2 The Gribov problem

The Gribov problem is genuine non-perturbative, and starts already with the quantization

procedure. The reason is that some of the conditions in section 4.2 turn out to be incorrect.

The main problem starts with the realization that local conditions, like the covariant

gauges, do not have unique solutions anymore. This can be most easily seen in gauges

where perturbatively there is one and only solution, like in the Landau gauge. Thus, the

statement of the existence of Gribov copies takes there the form that the gauge condition

∂µA
µ
a = 0 has more than one solution beyond perturbation theory.

An example is given by the instanton field configuration (5.58). It satisfies the Landau

gauge condition, just because it is essentially a four-dimensional rotation. Acting with the

gauge transformation

G(x) =
τµrµ
r
, (5.77)

on it transforms it into

Aµ =
2λ2

r2(r2 + λ2)
τ̄µνrν

τ̄µν =
1

4i
(τ̄µτν − τ̄ντµ).

Though this field configuration has a different radial behavior, it remains essentially a

rotation, and therefore also satisfies the Landau gauge condition. Since in the conventions

used the field configuration does not depend on the gauge coupling, this is genuinely a

non-perturbative effect. This can also be seen from the fact that the gauge transformation

(5.77) is not continuously deformable to a unit matrix. It is hence not obtainable from a

series of infinitesimal gauge transformation, it is a so-called large gauge transformation.

This is actually necessary. Since the perturbative construction proves that there is

no infinitesimally adjacent gauge transformation to the Landau gauge, and it is therefore

unique, any additional gauge copies have to be separated by a large gauge transformation.

There are many more explicit examples known in the literature.

The origin of the problem is that a non-Abelian gauge group has a non-trivial structure.

Especially, in a generic non-Abelian group it is impossible to cover the whole group with a

single coordinate system31. The simplest example is the gauge group SU(2). It is equivalent

to the surface of a 3-sphere. Such a surface cannot be described with a single coordinate

system, as it would be ill-defined at least at one pole, and at least two coordinate systems

31This is also the reason why an Abelian gauge theory is not affected. U(1) is isomorphic to a circle,

which can be covered by a single coordinate system.
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are necessary. A unique gauge condition would require to identify at each point in space-

time a single point on this sphere, to identify a unique representative of the gauge orbit.

Perturbatively, this is no problem, as the assumption of a small coupling translates into

the requirement of a small field amplitude, and therefore at all points in space and time

the field values are close to the same point on the sphere. Non-perturbatively, large field

amplitudes are possible, and therefore the field can be anywhere on the sphere. Thus,

different coordinate systems are required for different points in space and time. This is in

principle possible, but such a global information cannot be provided using a local gauge

condition, i. e. a gauge condition which involves only the fields and derivatives, but requires

global input, like integrals over the field. After all, the coordinate systems at different,

possibly far, separated points in space and time are required. A formal proof of this for

the class of covariant gauges has been established by Singer, but the argument already

shows that the problem will surface for any local gauge condition.

Though this seems to be a formidable problem, it is rather a practical than a conceptual

problem. Using gauge conditions which involve integrals over the gauge fields, it is always

possible to construct gauge conditions, which are not ambiguous. It is straightforward

to implement such gauge conditions in lattice calculations. However, they become very

quickly very expensive in terms of computing time, it may even be exponentially expensive,

when the volume is increased. The reason is that using an integrated gauge condition

implies that an integral equation has to be satisfied, which becomes numerically more

expensive the more lattice points there are.

The situation in the continuum is even worse, and little is known about practical solu-

tions to the problem. To understand it better, it is best to concentrate on the best-studied

case, the Landau gauge. To remedy the problem, further (non-local) constraints are re-

quired. To implement the constraints, a sequence of further conditions can be applied.

In all cases, the first step taken is always to reduce the perturbative gauge freedom by

implementing a local gauge condition, here the Landau gauge (3.13). This reduces the

space of all gauge orbits to a hypersurface.

The remaining set of Gribov copies will be called the residual gauge orbit. Since the

condition is perturbatively unique, only finite gauge transformations connect two different

elements of the residual gauge orbit. This is trivially so, since any infinitesimal gauge

transformation will move along the gauge orbit automatically out of the gauge-fixing hy-

persurface implemented by the perturbative gauge-fixing by construction. It thus remains

to understand the structure of this hypersurface.

A possible first restriction of the residual gauge orbit is to constrain it to the so-

called first Gribov region. This first Gribov region is defined by the requirement that the
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Faddeev-Popov operator (4.3) is strictly positive semi-definite, i. e., all of its eigenvalues are

zero or positive. This region can be shown to be bounded and convex, and the Faddeev-

Popov operator has zero eigenvalues only on the boundary of this region, the so-called

Gribov horizon. It can be shown that all gauge orbits pass at least once through the first

Gribov region. That is very important, and must be fulfilled by any gauge condition,

since otherwise physical information is lost by implementing it32. The boundedness is a

remarkable fact, as it implies that when calculating physical observables no arbitrarily

large field fluctuations have to be taken into account. It contains the origin of field-space,

and thus perturbation theory, as well. This follows from the fact that in the vacuum

case (4.3) reduces to the positive semi-definite Laplacian. Thus by restricting to the first

Gribov region, ordinary perturbation theory is always included.

Besides this first Gribov region, the remainder of the residual gauge orbit is a set of

further Gribov regions. These are separated by further concentric Gribov horizons, each

having more and more negative eigenvalues. The number of negative eigenvalues increases

by one by passing the boundaries of these regions, but stays constant inside. It is expected

that every residual gauge orbit passes through every Gribov region, though there is not

yet an explicit proof of this.

This restriction can be implemented using a θ-function in the perturbative gauge-fixed

path integral (4.6)

〈Q〉 = lim
ξ→0

∫

DAµDcDc̄Qθ
(

−∂µDab
µ

)

(Aµ, c, c̄)e
−

∫

d4xLg (5.78)

θ
(

−∂µDab
µ

)

= Π
i
θ(λi),

where λi is the ith eigenvalue of the Faddeev-Popov operator (4.3). Thus, only if all

eigenvalues are positive or zero the θ-function contributes, requiring that the definition

θ(0) = 1 has to be made for the step function. Note that the restriction is actually neces-

sary, as otherwise the formal inversion of the Faddeev-Popov operator in (3.14) becomes

problematic. The horizon also needs special care during the inversion. It is essentially

a zero-over-zero problem, needing a well-define regularization, something which is also

not yet fully formally under control. Finally, note that outside the first Gribov region the

Faddeev-Popov determinant gets a sign, depending on the number of negative eigenvalues.

Unfortunately, a unique, method-independent prescription how to effectively imple-

ment this restriction to the first Gribov region explicitly has not yet been constructed.

There are, however, a number of possibilities, which have been explored.

E. g. one proposal for how to implement this restriction using additional ghost fields,

and thus in a similar way as in perturbation theory, has been made by approximating

32It may be possible to loose a measure zero of gauge orbits. This is not studied in any depth so far.



Chapter 5. QCD beyond perturbation theory 161

the θ-function by a δ-function with the argument that in a high-dimensional space only

the boundary contains an appreciable part of the volume. This generates the so-called

Zwanziger Lagrangian. However, due to subtleties related to the definition of the step-

function it is not yet proven that this is a valid procedure, though it has many interest-

ing properties. Furthermore, no Gribov copy, or any gauge copy in general, is preferred

compared to another. It would thus be completely legitimate to always chose the inner-

most Gribov copy for each gauge orbit. If (almost) all gauge orbits have a representative

away from the Gribov horizon, this would yield distinctively different results for gauge-

dependent quantities, e. g. the expectation value of the lowest Faddeev-Popov eigenvalue.

Thus, such a replacement is already implementing a certain selection of Gribov copies,

and thus corresponds to an extended gauge-fixing procedure. This is completely correct,

provided (almost) all gauge orbits have Gribov copies off the Gribov horizon. Though not

proven, this appears very likely.

After restricting to the first Gribov region, the remainders of the residual gauge orbits

still possess a large number of Gribov copies. This set will also be denoted as the residual

gauge orbit in the following, to avoid the term residual of the residual gauge orbit. In fact,

in an infinite volume this number is likely infinite, and in a finite volume V it appears

to be a rapidly rising function of V . Actually, counting Gribov copies is in practice a

non-trivial problem, since two Gribov copies are different if and only if they differ at least

at one space-time point after factorizing all possible global gauge transformations and all

space-time transformations. This implies that for the decision whether two representatives

of a gauge orbit are identical or Gribov copies, it is required to compare their field values

at every space-time point33. It is also in general non-trivial how to find all Gribov copies,

so that they can be counted34.

Once more, it should be noted that one Gribov copy has no intrinsic difference com-

pared to another Gribov copy, since they are physically equivalent. Thus any choice of

a Gribov copy to represent the residual gauge orbit is equally acceptable. This is nicely

illustrated by using stochastic quantization. Stochastic quantization is an alternative,

but equivalent, formulation, of the path integral as a stochastic process, where additional

dynamics occur in an additional, fictitious time. The equilibrated results for correlation

functions are then the ordinary correlation functions. In this approach it is found that

33It appears that Gribov copies differ from each other over some large domain, so in practice already

a coarse search can yield that two candidates are different. However, to ensure that they are the same

requires a check of the whole space-time point by point.
34It should be noted that, though two dimensions has trivial dynamics, gauge fixing has the same

subtleties as in higher dimensions. Two-dimensional Yang-Mills theory is therefore an ideal laboratory to

study these issues without the obscuring dynamics.
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there is no stochastic force acting along a gauge orbit, and thus in the stochastic equili-

bration process no point on a gauge orbit is preferred. This, of course, is just in disguise

the problems encountered when defining the path integral, which require to introduce a

gauge condition in the first place.

As stated, the residual gauge orbits inside the first Gribov horizon possess further

Gribov copies. It is therefore necessary to specify a gauge further. There are two strategies

mainly in use currently for that purpose. The first method is essentially a stochastic

approach. In this case, instead of specifying conditions for selecting a Gribov copy, a

random Gribov copy is chosen for each residual gauge orbit. This prescription, termed the

minimal Landau gauge, therefore averages over Gribov-copy-dependent properties when

calculating correlation functions. Assuming the choice to be ergodic, unbiased, and well-

behaved, this implies that this prescription is equivalent to averaging over the residual

gauge orbit. However, a constructive prescription how to make this choice in a path integral

formulation is only developing. Precise definitions of this gauge therefore exist only as

operational definitions in terms of algorithms in lattice gauge theory. The second approach

attempts to characterize Gribov copies and make a choice based on these characteristics.

One possibility will be discussed as an example.

The central element of all operational definitions of the Landau gauge is the fact that

any Gribov copy in the first Gribov region maximizes the functional

F [A] = 1− 1

V

∫

ddxAaµA
a
µ (5.79)

〈F [A]〉 = 1− Ng

2dπd/2Γ
(

1 + d
2

)

V

∫

dppd−1Daa
µµ(p)

Dab
µν = 〈AaµAbν〉,

on each configuration, where Dab
µν is again the gluon propagator. This implies that this

gauge minimizes the integrated weight of the gluon propagator. That this is indeed satis-

fying the Landau gauge conditions follows from the fact that the first derivative of (5.79)

is the Landau gauge condition, and the Hessian is the Faddeev-Popov operator. If any

given algorithm finds one of all the maxima with equal probability, it would be a faithful

representation of the distribution along the residual gauge orbit, and also be ergodic. The

fact that there are multiple Gribov copies inside the first Gribov region translates into the

statement that the functional (5.79) has multiple maxima.

An alternative way to choose a representative on the residual gauge orbit is the absolute

Landau gauge, which makes a very definite choice rather than a random choice. This

gauge choice is derived from the following observation. The functional (5.79) has, up

to topological identifications, a unique absolute maximum. The resulting set of absolute
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maxima, called the fundamental modular domain or region is by definition embedded in

the first Gribov region, and includes the origin. It is less trivial to show that it is also

convex and bounded, and thus connected. It can furthermore be shown that part of

the boundary of the fundamental modular domain coincides with the Gribov horizon in

the thermodynamic limit only. All possibly remaining degenerate absolute minima are

on the boundary. This boundary has actually a quite rough structure, including wedge

singularities, and topological configurations, like e. g. instantons, are located there. By

construction, in this region the gluon propagator has its least integrated weight.

Based on this observation, the absolute Landau gauge is defined as selecting the Gribov

copy which belongs to the fundamental modular domain. This condition can be realized

by either checking the absolute minimization of (5.79) explicitly or by the introduction of a

suitable weight factor in the path integral. In case the residual gauge orbit has more than

one Gribov copy on the boundary of the fundamental modular domain, again a random

choice is made. It should be noted that if the thermodynamic arguments made before

were correct, the absolute Landau gauge and the minimal Landau gauge will coincide in

the thermodynamic limit.

Both these descriptions belong to a larger class of descriptions. It is obtained by

rewriting the path integral in the expression (5.78) as

< O >= lim
ξ→0

∫

DAµDcDc̄O(Aµ, c, c̄)Θ(−∂µDab
µ )e−

∫

d4xLgw(Aµ, c, c̄),

where w is an appropriately chosen weight functions, which includes a normalization such

that any observable remains unchanged. The minimal Landau gauge corresponds to the

choice is w = 1, i. e. averaging over the first Gribov region with a flat weight. The absolute

Landau gauge takes the form

w2 = exp

(

N2 −
λ2
V

∫

ddxAaµA
a
µ

)

. (5.80)

where the Ni are appropriately chosen normalizations and the limit of λ2 → ∞ has to be

taken. The opposite limit λ2 → 0 recovers the minimal Landau gauge. These weights can

also depend on other fields. Another possibility discussed in the literature is

w1 = exp

(

N1 +
λ1
V

∫

ddxddy∂xµ c̄
a(x)∂yµc

a(y)

)

(5.81)

involving the ghost fields. It is important to note that all these gauges include non-local

information, both from the Θ function, as well as from the integrals. In a sense, minimal

Landau gauge is special, as there all non-localities stem from the Θ function alone, another

justification of its name.
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In principle, it would be possible to average, in a well-defined way, over the Gribov

regions to obtain also non-perturbatively a well-defined gauge, similar to, e. g., covariant

gauges in perturbation theory. However, such Hirschfeld gauges induce significant cancel-

lations. The reason is that the determinant of the Faddeev-Popov operator can now have

either signs and is part of the weight factor when the ghosts are integrated out. It therefore

poses a sign problem. Hence, no practical implementation has been constructed so far, but

only conceptually developed. Thus, the alternative to select by some prescription a single

representative or a smaller subset for each gauge orbit, which therefore satisfies further

constraints as described above is more popular. This gauge has, however, a conceptually

importance to be discussed next.

5.5.5.3 Non-perturbative BRST symmetry

To understand this importance, it is necessary to interject a few more words on the concept

of broken symmetries.

A symmetry of a classical system, i. e. of the Lagrangian, which remains unbroken in

the quantization process can still be broken dynamically, i. e. spontaneously. To describe

this, in the following the language of correlation functions will again be used. In terms of

correlation functions, a symmetry is unbroken, if under a symmetry transformation of the

Lagrangian for fields φi

φi → φi + δφi (5.82)

all correlation functions remain invariant as well. This implies that the correlation func-

tions of operators not invariant under (5.82), e. g. 〈φi〉, have to vanish identical. If these

conditions are not fulfilled, the symmetry is broken.

In case of a gauge theory, it is necessary to differentiate between gauge-invariant and

non-gauge-invariant correlation functions. If only gauge-dependent correlation functions

show a behavior indicating the breakdown of a symmetry, this cannot have any measurable

consequences. If the affected symmetry is a global part of the gauge symmetry35, it can be

argued that this is a mere artifact of the description, and the symmetry is, in fact, intact.

This is the combination of observations which will be used here.

Before continuing, it is worthwhile to discuss the question of observing a broken symme-

try. Naively, when just performing the path integral, all correlation functions non-invariant

under some global symmetry will always vanish36. The trivial reason is just that no direc-

35Any local part cannot be broken anyhow. This can be proven exactly, and is known as Elitzur’s

theorem. In fact, explicit breaking would yield a gauge anomaly, and thus observable quantities would

depend on the gauge, which is not desirable for a theory describing physics.
36The fact that that does not seem to be the case in numerical lattice simulations is just an artifact of
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tion of the global symmetry is preferred without an explicit breaking. This can only be

remedied by introducing an explicit breaking when determining the correlation functions,

and performing the limit of zero explicit breaking afterwards. This is done, e. g., by the

introduction of an external field.

Put it otherwise, spontaneous breaking is observed by preventing the system to reach

all possible targets of a symmetry transformations by an external field. As a consequence,

the correlation functions are no longer averages over all field configurations linked by a

symmetry transformation, and therefore no longer invariant under such transformations.

In fact, in an experimental observation an absolute direction is never observed. E.

g., take a magnet’s magnetization. The orientation is measured relative to a reference

orientation, e. g., compared to a different magnet. This reference orientation plays the role

of the explicit breaking. Thus, an equivalent way of observing the breaking of a symmetry

is to use operators invariant under a global symmetry transformation, but measuring the

relative orientation of two operators not being separately invariant. One such operator for

a magnet would be the averaged magnetization correlator,

CMM = 〈MM〉 (5.83)

M =
∑

i

si

where the si are the local spins, and thus M is the configuration-wise polarization. Since

the latter is only non-zero in the broken phase, the correlator can only then be non-zero.

The same concept together with the Hirschfeld gauge can be used to recover37 a well-

defined non-perturbative BRST symmetry, obeying the same algebra (4.12-4.14) as the

perturbative version. The BRST transformations (4.7-4.10) are, in fact, just an ordinary

gauge transformation for the gluon fields. This becomes evident when the ghost fields

are integrated out. Leaving quarks aside, the integrand of the path integral only involves

the gluon fields. The BRST symmetry is not changing physical observables. Thus, the

only non-trivial action can be a gauge transformation. The explicit form after integrating

out the ghosts is, even perturbatively, very complicated, and non-local. What happens is

essentially just a gauge transformation between the different gauge copies satisfying the

covariant gauge condition. This implies that the Gaussian weight function will also change

such as to alter the weight of the gauge copy appropriately. Furthermore, in the Landau

the employed local algorithms, which fail to perform the full average over field configuration space in this

case. The problem is that when starting in a certain sector of the theory, the update cycles often stay

within this starting sector.
37The following is not mathematical rigorous, but there are possibilities, using lattice gauge theory, to

make it much more so.
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gauge case the perturbative BRST transformation can only be the identity transformation,

as there is one and only one configuration perturbatively which satisfies the Landau gauge

condition. This is especially so, as the BRST transformation does not change the gauge

parameter.

Beyond perturbation theory, the situation changes by the appearance of Gribov copies.

Especially, since there is now more than one gauge copy satisfying the Landau gauge

condition, the BRST transformation is no longer an identity transformation in Landau

gauge.

Now, concentrate again on Landau gauge. By construction, any BRST transformation

will not change the Landau gauge condition, because of the anti-ghost equation of motion.

This implies that BRST transformations mediate between different Landau-gauge Gribov

copies. If an extended gauge condition, like minimal Landau gauge, selects only a subset

of Gribov copies, it is possible that a BRST transformation leads out of this set, and thus

BRST symmetry appears broken: The correlation functions are no longer invariant. How-

ever, this breaking is again introduced by an additional gauge condition, which specializes

the Landau gauge further to the minimal Landau gauge.

To restore invariance, it is necessary to choose a gauge which is respecting BRST. This

requires to include all38 possible targets of a BRST transformation, i. e. all Gribov copies.

But this is just a Hirschfeld-Landau type gauge. By averaging over all Gribov copies,

the correlation functions are also averages over all possible BRST-transformed versions of

them. Thus, they will be invariant under BRST transformations. Thus BRST symmetry

can be regained just as any other global (gauge) symmetry. Whether there exist relative

alignment operators and what their interpretation would be is an interesting question, in

particular whether they show the existence of broken and unbroken phases, and if yes,

under which circumstances. This is not yet known.

The bottom line of the previous discussion is that the realization of the Kugo-Ojima

construction may be tied to the choice of a particular type of Landau gauge beyond per-

turbation theory. In this gauge, the Hirschfeld(-Landau) gauge, a non-perturbative BRST

symmetry might be present which has the same algebra as the perturbative one. Thus,

the Kugo-Ojima construction, essentially algebraic in nature, can go through unaltered.

The original Kugo-Ojima construction was formulated also for arbitrary covariant gauges.

However, similar insights as presented here for Landau gauge are not available yet for co-

variant gauges. It is thus unclear, whether this construction holds beyond Landau gauge,

though there is no hint that this should not be the case.

38It would of course be interesting to know if there exist any subsets of Gribov copies such that BRST

would remain intact within these subsets. But this is unknown.
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This leaves the question what occurs in the other non-perturbative completions of the

Landau gauge. That is not yet well understood. However, the following argument may

give a guide-line. If the condition restricts to a set of Gribov copies, like the minimal

Landau gauge, there is still a residual gauge symmetry which links this set. To the best

of our current knowledge, this symmetry will likely not be a local transformation, i. e.

its transformation rules will involve integrals. This makes any construction similar to the

Kugo-Ojima one at least complicated, though likely not impossible. The only exception

may be those cases where really a single gauge copy is identified, like in the case of the

fundamental modular region. How to proceed in this case is yet unclear.

5.5.6 Confinement and topology

The Kugo-Ojima construction focuses on the state space. Even if it can be proven to be

correct, it will not explain the string tension of Yang-Mills theory nor the intermediate

distance string tension of QCD.

The opposite extreme is a perspective based on the topological excitations. They make

no statement about the state space, and especially not about gluons. However, they can

make a statement about the Wilson criterion.

The simplest example of how topological excitations can explain the origin of a string

tension are vortices. There is unfortunately no simple method to show the following, and

rather the insight is gained by either lattice simulations, or the numerical simulations of

effective models, i. e. models only containing center vortices. The upshot is that as long

as the number of vortices piercing the area enclosed by a Wilson line is proportional to

the area, the free energy, and thus the Wilson potential, shows an area law. This will

happen, if the vortices percolate in space-time, which has been observed in both kinds of

numerical simulations. Conversely, if the vortices are prevented from a percolation, the

string tension vanishes.

Similar results can be obtained with the world-lines of monopoles. If sufficiently many

world-lines cross the area enclosed by a Wilson line a string tension arises. Instantons

are somewhat different. If enough instanton events occur on the sheet spanned by the

Wilson line then also a string tension would arise. However, in contrast to vortices and

monopoles, the occurrence rate of instantons in full Yang-Mills theory, or QCD, is far too

small to achieve this effect.

It should be kept in mind that all of these topological configurations are interrelated,

and there is interaction between them. Furthermore, since the extraction of these entities

from the full theory is not without ambiguities, and largely gauge-dependent, all of these

results are more of an approximate nature yet.
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5.6 Anomalies

Anomalies are quite interesting features of quantum theory, and play an important role in

the low-energy physics of QCD, though the name itself is somewhat of a misnomer.

An anomaly is that some symmetry, which is present on the classical level, is not

present when considering the quantum theory. The symmetry is said to be broken by

quantum effects. Generically, this occurs if the action of a theory is invariant under a

symmetry, but the measure of the path integral is not. While the breaking of a global

symmetry by an anomaly is no conceptual problem, the breaking of a gauge symmetry

would make a theory ill-defined, and must therefore be avoided. It is therefore necessary

to show that QCD does not develop an anomaly of the latter type if it already develops

one of the former.

5.6.1 Global anomalies

The most important global anomaly is the breaking of dilatation symmetry. This sym-

metry corresponds to rescaling all dimensionful quantities, e. g. x→ λx. Maxwell theory,

massless QED, Yang-Mills theory, and massless QCD are all invariant under such a rescal-

ing at the classical level. This is no longer the case at the quantum level. By dimensional

transmutation, surfacing in the renormalization process, an explicit scale is introduced

into the theory, and thereby the quantum theory is no longer scale-invariant. Such global

anomalies have very direct consequences. E. g., this dilatation anomaly leads to the fact

that the gluon remains massless, at the perturbative level.

5.6.2 Axial anomaly

Another example is the so-called axial anomaly, which occurs due to the breaking of the

global axial symmetry of fermions. A consequence of it is the anomalously large η’ mass.

While the dilatation anomaly is quite obvious, the chiral anomaly is much more subtle,

and therefore deserves some more discussion.

5.6.2.1 Classical level

To prepare for this, it is worthwhile to consider the situation as it would be without

anomalies, i. e. at the classical level. For this purpose, start with a gauge theory with

fermions ψ being in some representation R of the gauge Lie group G with generators T

and gauge fields in the adjoint representation. The fermionic part of the Lagrangian is
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then given by

L = ψ̄(iγµ(∂µ − igT aAaµ)−m)ψ = ψ̄(iγµD
µ −m)ψ

from which the Dirac equation

(iγµD
µ −m)ψ = 0

follows as the equation of motion, and likewise for the anti-fermion.

The current carrying the charge is then

jaµ = ψ̄γµT
aψ.

Due to the chiral symmetry, there is also a corresponding axial current

j5aµ = ψ̄γ5γµT
aψ.

In addition, there are also the singlet currents

jµ = ψ̄γµψ

j5µ = ψ̄γ5γµψ,

which corresponds to the fermion current and the axial current.

Naively, the divergences of these equations can be calculated using the Dirac equation.

∂µjaµ = −iψ̄(gτ bγµAµb −m)τaψ − iψ̄τa(−gτ bγµAµb +m)ψ

= igψ̄
[

τa, τ b
]

γµA
µ
bψ = −gfabcAµb ψ̄γµτcψ = −gfabcAµb jcµ.

This implies that the color current is not observed, as long as the current is gauged. For

a non-gauge current, like a flavor current, g vanishes, and the current is conserved.

This is not surprising, as a non-Abelian gauge theory has no gauge-invariant charge.

However, the current is a gauge-vector, and therefore covariantly conserved

Dab
µ j

µ
b = 0. (5.84)

In the same way, it is possible to calculate the situation of the axial color current. Because

of the commutation relation between γ matrices, the result is

Dab
µ j

µ
b = 2imψ̄γ5τ

aψ = 2mipa, (5.85)

Here, p is the pseudo-scalar density, and not a momentum component. Thus, even in a

non-gauge theory this current is only conserved for fermions without a mass term in the

Lagrangian.
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The calculations for the singlet current is simpler, and yields

∂µj
µ = 0

∂µj5µ = 2imψ̄γ5ψ = 2imp0.

Hence, the number of fermion is, a expected, a conserved current. The axial current is only

conserved for massless fermions. This is the result that chiral symmetry gets explicitly

broken, already classically, by a mass-term.

5.6.2.2 One-loop violation

So far, this was the conservation at the classical level, which already requires the fermions

to be massless. At the quantum level, this result is expressed by Ward-identities. In

particular, take Ward identities for correlation functions of the form

T ijkµνρ = 〈Tjiµjjνjkρ 〉,
where i, j, and k can take the values V , A, and P , which require to replace the j by ja,

j5a, and pa, respectively, and the Lorenz index is dropped in the last case. Calculating the

corresponding Ward identities for a local chiral transformation

ψ′ = eiβ(x)γ5ψ(x)

ψ̄′ = ψ̄eiβ(x)γ5

yields the expressions

∂µxT
V V A
µνρ (x, y, z) = ∂νyT

V V A
µνρ (x, y, z) = 0 (5.86)

∂ρzT
V V A
µνρ (x, y, z) = 2mT V V Pµν (x, y, z), (5.87)

directly implementing the relations (5.84) and (5.85). This is what should happen, if there

would be no anomalies.

To check this, it is possible to calculate the leading-order perturbative correction. Since

only fermion fields appear in the vacuum expectation value, this is a vacuum triangle graph,

and the coupling is to external currents. In fact, it does not matter at this point whether

the external currents are gauged or non-gauged, since to this order this only alters the

presence or absence of color matrices at the external vertices. The only relevant part of

the external vertices is their Dirac structure.

Evaluating all the Wick contractions yields two Feynman diagrams, which translate to

T V V Aµνρ (p1, p2, p3 = −p1 − p2) = (5.88)

−i3
∫

d4k

(2π)4

(

trγµ(γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5(γγk

γ + γγp
γ
1 −m)−1

+ trγν(γαk
α −m)−1γµ(γ

βkβ − γβp
β
1 −m)−1γργ5(γγk

γ + γγp
γ
2 −m)−1

)

.
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This expression is linearly divergent. One of the most important points in anomalies, and

in quantum field theories in general, is that the result is independent of the regulator

employed. This will be discussed later how to show this. Here, it permits to use a Pauli-

Villar regulator with a mass M , which is technically more simple than other possibilities.

Using dimensional regularization makes the result subtle, as it depends on the way the

matrix γ5 is analytically continued. This problem will therefore be avoided here.

To test the vector Ward identity, the expression can be multiplied with pµ1 . To simplify

the so obtained expression it is useful to employ

γµp
µ
1 = −(γµk

µ − γµp
µ
1 −m) + (γµk

µ −m),

yielding

pµ1T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = (5.89)

−i3
∫

d4k

(2π)4

(

tr− (γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

tr(γγk
γ + γγp

γ
1 −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

+ tr(γγk
γ + γγp

γ
2 −m)−1γν(γαk

α −m)−1γργ5

+ tr− (γγk
γ + γγp

γ
2 −m)−1γν(γ

βkβ − γβp
β
1 −m)−1γργ5 + (m→ M)

)

.

This rather length expression is now a finite integral. It is therefore permissible to reshuffle

the momenta like k → k + p2 in the first term and k → k + p2 − p1 in the second term.

Then, the first and third and second and fourth term cancel each other, and likewise this

happens for the regulator. Thus, the vector Ward identity is fulfilled. The result for the

second identity in (5.86) works in the same way.

The situation changes drastically for the axial Ward identity (5.87). The expression

(5.88) is still divergent, so before doing anything, it will again be regulated using a Pauli-

Villar regulator, to make it well-defined. To evaluate (5.87) requires multiplication with

p3 = −p1 − p2, which can rewritten as

γµp
µ
3γ5 = (γµk

µ − γµp
µ
2 −m)γ5 + γ5(γµk

µ + γµp
µ
1 −m) + 2mγ5

= (γµk
µ − γµp

µ
1 −m)γ5 + γ5(γµk

µ + γµp
µ
2 −m) + 2mγ5.
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This yields

pρ3T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = 2i

∫

d4k

(2π)4
(

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
2 −m)−1γ5(γγk

γ + pγ1γγ −m)−1
)

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
1 −m)−1γ5(γγk

γ + pγ2γγ −m)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
2 −M)−1γ5(γγk

γ + pγ1γγ −M)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
1 −M)−1γ5(γγk

γ + pγ2γγ −M)−1
))

There are two remarkable facts to be observed. The first is that this expression is finite.

The projection with p3 drops out the divergent terms. This can be seen using the Dirac

matrix identity

trγµγνγργσγ5 = −4iǫµνρσ . (5.90)

Because of the anti-symmetry of the ǫ-symbol, any term containing two or more factors

of k vanishes. Hence, the numerator is reduced by two powers of k, making the integral

finite. This did not work in (5.89) as there one index less was uncontracted. However,

the regulator still had to be present in the first place to make this projection well-defined.

The second is that this expression, except for the regulator, is identical to T V V P up to a

factor of m, which is obtained by replacing γργ5 in (5.88).

The term involving the regulator can then be calculated, as when removing the regula-

tor in the end, the external momenta and masses can always be neglected, and the integral

becomes a simple tadpole integral. The final result is thus

ipρ3T
V V A
µνρ (p1, p2) = 2miT V V Pµν (p1, p2) + lim

M→∞
8iM2ǫµνρσp

1
ρp

2
σ ×

i

16π2

−1

2M2

= 2miT V V Pµν (p1, p2) +
1

2π2
ǫµνρσp1ρp

2
σ (5.91)

Thus, the Ward identity (5.87) is violated. The anomaly is both finite and independent of

the masses of the involved particles. It is also independent of the structure of the external

interaction, except for its Lorentz structure. The only thing changes is the appearance of

corresponding pre-factor aabc of the coupling matrices T a in charge space, which turn out

to be

aabc =
1

2
tr
({

T a, T b
}

T c
)

, (5.92)

a result which will become significant later. This is not the only anomaly, and a similar

result holds for the case of three axial currents.

Without proof, it should be noted here that there is still a certain regulator dependency.

It is possible by symmetries to add a finite term of form Cǫµνρσ(p1−p2)σ to the counter-term
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in (5.89). Though C can be tuned to absorb the anomaly, this term will also contribute

to the vector identities, and induce there an anomaly for C 6= 0. Thus, it is only possible

to shift the anomaly around, without removing it.

The most well-known consequence of this anomaly is the decay of a neutral pion into

two photons. This is precisely of the type investigate here, where the photons play the

role of the vector currents. The axial current is related to the pion field by a QCD relation

∂µjaµ =
fπ√
2
M2

ππ
a, (5.93)

where a is an isospin index, counting the three pions, a = 0,±, where only a = 0 is

relevant because of charge conservation. Since there are no massless hadrons, there can

be no pole in the corresponding amplitude T V V A, and thus the product with pρ has to

vanish. As a consequence, the amplitude T V V P , describing the transition, would vanish

as well, because of the Ward identity, and therefore the pion would usually not decay into

two photons, if at rest. However, due to the anomaly, this is not necessary, as the anomaly

can balance the Ward identity. Hence, the pion at rest can decay into two photons, due

to the anomaly, a process indeed observed in experiment.

It should be noted that (5.93) is actually not the original expression of the anomaly

(5.91), as this is a statement involving expectation values. Its formulation using fields

is known as the hypothesis of partially conserved axial current (PCAC), as it does not

immediately follow. However, it is found to hold acceptably. This is highly non-trivial.

After all, the left-hand side is from the electroweak interactions, while the right-hand side

is a strong-interaction object.

By taking expectation values in different states of (5.93), it is possible to establish

various conjectures for low-energy physics. E. g. taking it between a proton and a neu-

tron state, the left-hand-side mediates essentially a β-decay. The right-handed-side then

corresponds to the transformation of a neutron to a proton under pion exchange. Assum-

ing that the latter is dominated by the tree-level process, and decomposing everything in

suitable Lorentz tensors and form factors, yields the Goldberger-Treiman relation

fπgπNN = mNgA(0),

where gπNN is the coupling constant between nucleons and the pion, mN is the (averaged)

nucleon mass, and gA(0) is the axial form-factor of the nucleon at zero momentum transfer.

This relation is experimentally found to hold at the 10% level, a typical value for such

derivations.



174 5.6. Anomalies

5.6.3 Anomalies and WTIs

To understand the origin of the anomalies, it is important to remember howWard identities

are obtained in general, repeating some aspects of section 4.4. Any well-defined symmetry

transformation should leave the partition function unchanged, i. e.

0 = δZ = δ

∫

DφeiS+i
∫

d4xjφ, (5.94)

where φ is for simplicity a non-Grassmann field, which changes under the transformation

as φ → φ + ǫf(φ, x), with f some arbitrary function and ǫ infinitesimal. Performing the

variation yields

0 =

∫

DφeiS+i
∫

d4xjφ

∫

d4x

(

i

(

δS

δφ
+ j

)

f +
δf

δφ

)

, (5.95)

where the first two terms come from the exponent. At the classical level, the source term

vanishes, and the derivative of the action just gives the equations of motion, yielding the

classical Ward identities. The third term is new in the quantum theory, and gives the

contribution of the Jacobian,

det
φ+ ǫf

δφ
= det

(

1 + ǫ
δf

δφ

)

≈ 1 + ǫ
δf

δφ
+O(ǫ2).

This is a genuine quantum contribution. It will be the source of the anomaly. Here it

also becomes evident that the term anomaly is actually a misnomer. There is nothing

anomalous about them. They are just a quantum effect.

To obtain Ward identities from (5.95), it is sufficient to derive with respect to the

source some number of times, and then set the sources to zero at the end, yielding

0 =

〈

TΠlφl
δf

δφ

〉

+ i

〈

TΠlφl
δS

δφ
f

〉

+
∑

k

〈TΠl<kφlfΠm>kφm〉 . (5.96)

In this way an anomaly surfaces in Ward identities in the full quantum theory. This also

shows that an anomaly is not a perturbative effect, since this is an exact result. However, it

is still possible that the Jacobian is actually one, and a deviation from one in the one-loop

calculation is just an artifact of perturbation theory.

5.6.4 Full expression for the anomaly

To check this, rotate first to Euclidean time, by replacing t → it and correspondingly

in all covariant quantities the time component by i-times the time component and in all
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contravariant quantities the time components by −i-times the time components. Then

expand the fermion fields in orthonormal eigenfunctions ψn of the Dirac operator,39

ψ(x) =
∑

n

anψn(x)

ψ̄(x) =
∑

n

ψ†
n(x)b̄n,

which satisfy

iγµD
µψn = λnψn (5.97)

−iγµDµψ†
n = λnψ

†
n. (5.98)

This permits to rewrite the path integral as an infinite product of integrations over the

coefficients,

DψDψ̄ = Πmdamdb̄m, (5.99)

keeping in mind that these differentials are Grassmannian.

Now, a (formally) local chiral transformation β(x)

ψ → eiβ(x)γ5ψ,

then corresponds to a linear transformation of the coefficients

am → Cmnan = a′n,

which yields the Jacobian

Πmda
′
mdb̄

′
m =

1

(detC)2
Πmdamdb̄m,

or, formally,

Dψ′Dψ̄′ =
1

(detC)2
DψDψ̄.

This determinant can be rewritten as

1

(detC)2
= e−2tr lnC = e−2trδC , (5.100)

39Note that in general ψ and ψ† are independent variables in Euclidean space-time, and not related by

† as in Minkowski space-time, as the degrees of freedom are differently distributed. This is the reason

for different coefficients an and bn rather than a relation by †. The † on ψ should therefore be regarded

rather as an index than an operation, as is common in the literature, to have expressions which formally

look the same in both Euclidean and Minkowski space-time.
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where in the last equality it was assumed that β is infinitesimal, and thus C = 1 + δC is

close to one. In this case, δC can be evaluated starting from

a′mψm = (1 + iβγ5)anψn

which can be reduced using the orthonormality of the eigenstates of the Dirac equation to

a′m =

∫

d4xψ†
m(1 + iβγ5)ψnan = (1 + δcmn)an. (5.101)

Inserting this result into (5.100) yields for the Jacobian of the infinitesimal transformation

J = exp

(

−2i

∫

d4xβψ†
mγ5ψm

)

, (5.102)

where the trace has been evaluated.

Unfortunately, the expression, as it stands, is ill-defined. It is necessary to regularize

it. A useful possibility to make the expression well-defined is by replacing the trace over

the eigenstates as

ψ†
mγ5ψm → lim

τ→0
ψ†
mγ5e

−λ2mτψm, (5.103)

where the limit has to be performed at the end of the calculation only. Expanding the

Gaussian and using the relations (5.97-5.98), this expression can be rewritten as

lim
τ→0

ψ†
mγ5e

−λ2mτψm = lim
τ→0

tr
(

γ5e
−τ(γµDµ)†γνDν

)

. (5.104)

The exponential can be rewritten as

(γµD
µ)+γνD

ν = −DµD
µ +

i

4
[γµ, γν ]F a

µντa. (5.105)

The limit is still ill-defined. It is necessary to regularize the expression in a suitable way.

This is achieved by the heat-kernel regularization.

For a differential operator, here given by ∆ = (γµD
µ)†γνD

ν , it is possible to define a

heat-kernel as

(∂τ +∆x)G(x, y, τ) = 0 (5.106)

G(x, y, 0) = δ(x− y). (5.107)

Which is solved by the formal expression

G(x, y, τ) = e−∆xτ =
∑

m

e−τλmψ†
m(y)ψm(x).



Chapter 5. QCD beyond perturbation theory 177

This is already the expression (5.104). Without proof, it can now be shown that this heat

kernel can be expanded for small τ as

G(x, y, τ) →τ→0
1

(4πτ)2
exp− (x−y)2

4τ

∞
∑

j=0

aj(x, y)τ
j.

Inserting this expansion into (5.102) yields

ln J = −2i lim
τ→0

1

(4πτ)2

∫

d4xβ
∑

j

τ jtrγ5aj .

For τ → 0, the first term does not contribute, as a0 has to be equal to one because of

the condition (5.107). Terms with j > 2 will be irrelevant, because of the powers of τ .

This leaves only j = 1 and j = 2. For these terms follows from the requirement that the

expansion (5.106) satisfies a descent equation

−∆aj−1 = jaj .

Since a0 = 1, a1 can be obtained algebraically from (5.105). Since all resulting terms

have at most two γ matrices, the trace will vanish. Similarly, for a2 only those terms

can contribute to the trace where at least four γ matrices appear, which implies only the

term quadratic in Fµν will contribute. Which is precisely what is necessary to cancel the

pre-factor.

Thus, the remainder is just

J = exp

(

− i

32π2

∫

d4xβǫµνρσF a
µνFaρσ

)

. (5.108)

Hence, the Jacobian is non-trivial, and will contribute in the Ward identities (5.96). How-

ever, this is still a rather complicated expression, which does not yet look like the one-loop

result.

That this coincides with the one-loop anomaly can be obtained by an explicit calcula-

tion. Since this was for the global case, take β to be constant. The integral can then be

rewritten as
∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)

. (5.109)

Since the perturbative case was the Abelian case, the second term can be dropped. The

first term is then for the global case just two external fields, e. g. playing the roles of the

photon field in the pion decay, and two momenta in Fourier space, which, after relabeling,

yield the desired one-loop expression. Hence, indeed the full and the one-loop anomaly

coincide. In gauge theories there are also anomalies in box and pentagon graphs with an

odd number of axial insertions, which are again one-loop exact.
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To obtain the final result including all color factors requires an explicit calculation,

inserting the Jacobian (5.108) into the Ward identity (5.96). This will yield (5.91) with

(5.92) inserted

To see how this can lead to a problem, consider for a moment the case that left-handed

and right-handed fermions are coupled differently. Due to the different sign of γ5 in the

corresponding projector, this will reemerge as a different sign of the anomaly, yielding

kρT V
aV bAc

µνρ (p, q, k) = 2mT V
aV bP c

µν (p, q, k) +
tr
{

τaL, τ
b
L

}

τ cL − tr
{

τaR, τ
b
R

}

τ cR
2

1

3π2
ǫµνρσp

ρqσ,

were L and R indicate the representation of the left-handed and right-handed fermions.

As a consequence, the classical gauge symmetry is broken by the anomaly, and results will

depend on the choice of gauge. This can be directly understood form this expression. The

tensors carry color. Thus they will vanish, if there is no vector-vector-axial/pseudo-scalar

coupling in QCD. This is the case, as all couplings are vector-vector-vector and vector-

fermion-fermion. It is not possible to construct others from the elementary vertices. The

last term vanishes, because in QCD left-handed and right-handed particles couple in the

same way, though this is not true for the full standard model.

There is an interesting twist for the quantity making up the Jacobian

1

64π2

∫

d4xǫµνρσF a
µνFaρσ = − i

512π4

∫

d4xtrǫµνρσ∂µ

(

iAaν∂ρA
a
σ +

2

3
fabcAaνA

b
ρA

c
σ

)

Evidently, this is again the topological charge (5.56)

Since this quantity was obtained from the chiral transformation properties of the

fermions, it suggest itself that it is connected to properties of the Dirac operator, and

this is indeed the case. This topological charge is equal to the difference of the number

of the left-handed n− and right-handed n+ zero modes of the (necessarily in the present

context massless) Dirac operator Dµ, γµD
µψ = 0, called the index of the Dirac operator.

This is the celebrated (Atiyah-Singer) index theorem.

To see this, note first that because γ5 anti-commutes with the other γµ it follows that

that for any eigenmode of the Dirac operator ψm to eigenvalue λm that

iγµD
µγ5ψm = −iγ5γµDµψm = −λmγ5ψm.

Hence, every non-zero eigenmode is doubly degenerate, and therefore the index is the same

if all eigenmodes are included.

Start with an expression for this difference,

n+ − n− =

∫

d4x
∑

m,λm=0

ψ†
mγ5ψm.
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The inserted γ5 will guarantee the correct counting. It is possible to use a very similar

trick as before when regularizing the sums when doing the path integral calculation in

section 5.6.4. The additional eigenvalues can be added as

∫

d4x
∑

m

ψ†
mγ5ψme

−λ2mτ ,

as the γ5 symmetry ensures that all added terms vanish. But this is precisely expression

(5.103), and thus this will lead to the same result as in section 5.6.4. Thus, the final

answer is

n+ − n− = k =
1

64π2

∫

d4xǫµνρσF a
µνFaρσ

Hence, the anomaly has a certain connection to the topology of the gauge-fields.

This is in as far remarkable as the topology of gauge fields is an intrinsic property

of Yang-Mills theory, and thus existing without any fermions, and hence in anomaly-free

theories. At the same time, anomalies also exist without gauge fields, e. g. in the form of

global anomalies. They are tied to the path-integral measure for theories with fermions.

It is the unique property of the covariant derivative in the form of the Dirac operator for

fermions which ties both effects together in the presented way. Other realizations than

minimal coupling will not have this property, or at least in a different way. This connection

is therefore deeply ingrained in the Dirac operator of gauge theories.

The two presented form of anomalies are not the only ones. However, these are the

only ones relevant to QCD.

5.7 Large-Nc

While strictly speaking not QCD, there is a certain class of deformations of QCD, which

showed to be very useful. These are theories in which Nc or Nc and Nf are send to

a very large number, in the extreme case infinity, while at the same time maintaining

asymptotic freedom, the so-called large-Nc limit40. One important convention is that the

large values of Nc are odd. This ensures that baryons, which are made up of Nc quarks,

remain fermions.

In perturbation theory, this leads to drastic simplifications. Because the contractions

of structure constants, generators, and performing of traces gives every diagram a partic-

ular prefactor of power of Nc (and Nf), it is possible to order diagrams accordingly. At

sufficiently large Nc, just those with the highest power in Nc will contribute, the others

40There are several possibilities, some also playing with representation aspects. The different versions

highlight different properties, but the basic philosophy remains the same.
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being sub-leading corrections. The surviving diagrams have two special features. One is

that they are planar, i. e. their Feynman diagrams can be painted without crossing propa-

gator lines. More importantly, in most versions of the large-Nc limit, diagrams containing

quark loops become suppressed, just because there are only Nc quarks, while there are

N2
c − 1 ≈ N2

c gluons. Thus, the large-Nc limit becomes quenched. However, at the same

time the coupling diminishes, since the β-function depends also on Nc. Hence, naively

the theory would become non-interacting. To avoid this, the coupling is increased, in the

simplest form such that λ = g2Nc, the so-called ’t Hooft coupling, stays constant. The

perturbative expansion then becomes an expansion in λ.

Of course, perturbation theory is not everything, and non-perturbative contributions

remain even in this limit41. They are also necessary, such that mesons and baryons remain

bound. But the baryons will consist out of a very large number of quarks, and thus will be

essentially infinitely heavy, and therefore static. The mesons, which are still made from a

quark and an anti-quark, remain light.

Using the methods described in the next chapter 6 it can be shown that hadronic

interactions become also suppressed in the large-Nc limit. As a consequence, the hadrons

become stable, and scattering processes trivial.

Though all of this sounds very different from QCD, several statements can be obtained,

provided that Nc = 3 is not that different from the large-Nc limit. Many lattice simulations

have shown that this statement is surprisingly good, and thus the large-Nc limit gives

another view on why the quenched approximation is as good as it is. Hence, it is possible

to calculate many quantities in an 1/Nc expansion, and the results are indeed often, though

not always, in surprisingly good agreement with the full result.

41Actually, it can be shown that a free theory and an interacting theory can never be unitarily equivalent,

and therefore the limit of the coupling constant to zero cannot be analytic, like it is assumed in perturbation

theory. This is known as Haag’s theorem. But one should keep in mind that this does not imply that

non-perturbative contributions must be qualitatively relevant, nor quantitative important.
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Hadronic interactions

The discussion so far centered on static properties of QCD, e. g. the bound state spectrum.

Though these are already substantially important, it is the dynamics of reactions involving

hadrons which put our understanding of the theory to the test. This is even more impor-

tant, as that hadrons play a twofold important role in modern day experiments. On the

one hand, hadrons, especially protons, are used as projectiles in scattering experiments,

like the LHC. On the other hand, since quarks are confined, hadrons signal the presence

of quarks and gluons in final states. A dynamical first-principle calculation of hadronic

interactions in a practical manner is something which so far exceeds our possibilities. It is

only now that we start to understand how to deal with low-energy scattering of hadrons

and their decays. Full control over a high-energy collision of hadrons with multiple hadrons

in the final state is yet far beyond a (quasi-)exact treatment, being it either with lattice,

functional, or similar methods. The currently most useful, and most successful, approach,

is to treat the interactions of hadrons phenomenologically while the interaction of quarks

and gluons at sufficiently high energy is treated perturbatively.

As in many cases in the following scattering processes are described, it will often

be useful to use instead of the individual particle momenta the so-called Mandelstam

variables. These are defined for the process ab→ cd as

s = (pa + pb)
2 = (pc + pd)

2

t = (pa − pc)
2 = (pb − pd)

2

u = (pa − pd)
2 = (pb − pc)

2

(6.1)

Herein s is the center of mass energy. At Born-level, the variables t and u correspond to the

momentum transferred by a single exchange particle and final-state-exchange reactions,
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respectively. The corresponding processes are therefore refereed to as t-channel and u-

channel, respectively. A process in the s-channel corresponds to a full annihilation of the

initial state into a particle, which then subsequently turns into the final state.

6.1 A sample process: e+e− →hadrons

To start of, consider the annihilation of an e+e− pair, neglecting their masses, into hadrons.

For a center-of-mass energy s the total cross-section is

σ(s) =
1

s
f
(mi

s

)

,

with mi the masses of the produced hadrons. At sufficiently large energies, this will be

dominated by a single photon exchange, and therefore the cross-section will behave as 1/s,

the propagator of an effectively massless exchange particle. This is also called an inclusive

cross-section, as it integrates over all final states.

A less inclusive cross-section will be the process e+e− → hX , with h some specific

hadron with momentum p. Such a reaction can be viewed as roughly a two step process,

it factorizes. First, in a hard, i. e. perturbative, interaction a parton a, quark or gluon, is

formed. In a second step, due to confinement, this parton turns into hadrons. Under this

assumption, the corresponding partial cross-section would be given by a convolution

dσe
+e−→hX(p, s) =

∑

a

1
∫

0

dz

z
dσe

+e−→aX
(p

z
, s
)

Dh
a(z). (6.2)

Since it is not possible to identify the original parton, the sum has to be over all partons.

The cross-section dσe
+e−→aX is the hard cross section, to be calculated perturbatively, to

obtain a parton a with momentum p/z.

This hard process can be calculated straightforwardly at Born level using standard

perturbation theory. It is a pure s-channel process. If the energy is small enough that

contributions from the weak interaction do not play a role, the differential cross-section is

dσ

dt
=
α2e2qπNc

s

t2 + u2 −m2
q(2s−m2

q)

s2

and the total cross-section is

σ =
2πα2

s
e2qNc

(

1− β2
q

3

)

βq

which has to be summed over the different quark species q, if the flavor is not detected,

and βq is the speed of the quark. There are a few remarks. One is that gluons do not
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contribute at this order, as they do not carry electric (or weak) charges. The second is

that the only difference to the same process with leptons in the final state is just the

factor Nc. Thus, this partonic cross-section is enhanced compared to the purely QED

one. This can be used, by taking a ratio of the cross-sections of both processes, the so

called R ratio, to determine experimentally the number of colors. However, one thing

neglected here is that also any other particle having the same quantum number as the

photon could be exchanged, provided s is large enough, and would require to exchange s

in the denominator by ((
√
s−m)2+ Γ2

4
)2, thus leading to a resonance structure. There are

multiple electrically and flavor neutral hadrons having the required 1− quantum numbers,

the vector quarkonia. Examples are the ρ, the φ and the J/ψ. In the vicinity of their

masses, the simple approximation breaks down.

The second term in (6.2), the fragmentation functions, is non-perturbative in nature

and describes how likely it is that a parton with fraction z of the hadron momentum p

hadronizes in said hadron h.

There are number of remarks to be made.

First, it is assumed that both subprocesses take part so far separated that they do

not influence each other, hence the term factorization. Thus, the fragmentation function

D becomes universal, and is process-independent. This idealization works in surprisingly

many circumstances. It becomes invalidated, if there occurs strong interactions between

final state particles, i. e. X and h, or final and initial state, which is due to the weakness

of QED for this process not a problem, but may become one if the initial state is hadronic.

Still, though such factorization violations have been observed experimentally, they are

in many cases irrelevant, most notably if most of the integral weight is close to z ≈ 1,

and thus the parton is very hard. Such factorization violations will therefore be mostly

neglected throughout.

The second is that the process is still specific for the final state X . In many cases,

this remainder is, or cannot, be observed, and then also summation over X has to be

performed. This is then called semi-inclusive. If, in the other extreme, all other particles

are also measured, it is called an exclusive cross-section.

This leaves open how to determine D. As noted, it cannot yet be calculated with

nowadays technology. Thus, it is usually obtained as a fit to experimental data and/or

from a simplified model of QCD, fitted to experimental data. But since it is assumed to

be processes-independent, this can be done in one experiment, and then be used to make

predictions for all other experiments.

As it stands, (6.2) is correct at tree-level. Radiative corrections lead to two modifica-

tions. One is that renormalization is necessary. In principle, cross-sections as observables
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are renormalization-group invariant, and especially do not depend on the renormaliza-

tion scale µR. However, perturbative calculations do not preserve this property beyond

one-loop order, and thus introduce an artificial dependence on µR. Of course, since the

cross-section now depends on this scale, so does the fragmentation function, as it can only

be determined taking this dependency into account. Second, it is not possible to account

for arbitrary virtualities of the intermediate particle, since the fragmentation function is

not known. Thus, this virtuality has to be cut off at some scale µF , the factorization scale,

introducing a second scale. Hence, the full version of expression (6.2) reads

dσe
+e−→hX(p, s) =

∑

a

1
∫

0

dz

z
dσe

+e−→aX
(p

z
, s, µR, µF

)

Dh
a(z, µR, µF ). (6.3)

In practical calculations, this leaves to chose µR and µF . A common choice is to select

a value where the dependence on the choice becomes minimal, which in most cases is

µR = µF =
√
s. The residual dependence of the cross-section on variations, usually within

a factor 2-3, of both scales is often quoted as a systematic error of the calculation.

Finally, the assumption that the initial particles have a sharp energy is often not

warranted, as they can emit photons, which cannot be identified reliably. This is so-called

initial-state radiation, ISR. This can be accounted for by averaging over all possible initial

states

dσe
+e−→hX
ISR (p, s) =

1
∫

0

dx1

1
∫

0

dx2fe/e(x1, s)fe/e(x2, s)dσ
e+e−→hX(p, x1x2s),

where the electron masses are neglected. The functions fe/e(x, µ
2) describe the probability

to find inside the virtual clouds of particles of an electron an electron with a fraction x

of the total energy when it is probed at an energy µ2, which is here the center-of-mass

energy. This electron distribution function can be calculated, to good approximation, in

perturbative QED, in a way which will be explained later. It becomes

fe/e(x, µ
2) = β(µ2)(1− x)β(µ

2)−1

β(µ2) =
2α

π

(

ln
µ2

m2
e

− 1

)

,

where me is the electron mass and α the fine-structure constant.

This complication is just the tip of the literal iceberg, especially when s lies close

to, and especially just above, a resonance. Since the main emphasis here is on hadron-

hadron reactions, this will not be further elaborated, but would reemerge when considering

charged hadron collisions, like pp collisions.
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6.2 Lepton-hadron scattering and DIS

To understand the structure of a hadron, leptonic probes are especially useful, as they

interact weakly with the partons. Thus, to leading order there will be interactions with at

most one parton by exchange of either a virtual photon or weak gauge boson. Hence, this

probes the properties of the parton inside the hadron, a process known as deep-inelastic

scattering (DIS). The information gained will play an important role when it comes to

hadron-hadron interactions, since in this case partons from both hadrons interact, and

their properties are modified by the enclosing hadron. The consequences of this can be

inferred from lepton-hadron interactions.

The kinematics of this process are most conveniently described by the following set of

variables. The center of mass energy s is determined as s = (l + p)2 from the incoming

electron and hadron 4-momenta l and p, respectively. In the collision process, the exchange

particle carries the (space-like) momentum transfer q = l − p with Q2 = −q2 > 0. Since

the wave-length is given by 1/Q, this characterizes the structure size which can be resolved

by the probe.

Usually, the final lepton momenta l′ can be measured. Neglecting the lepton’s mass,

this yields

Q2 = −(l − l′)2 = 4ElEl′ sin
2 θ

2
,

where θ is the scattering angle. As will be seen, very useful is also the quantity ν =

(l − l′)p/Mh. If the final state can be, at least summarizley, measured, more information

are available. Especially helpful is the invariant mass of the hadronic system

W = (p+ q)2 =M2
h + 2Mhν −Q2.

Note that for elastic scattering W 2 =M2
h . Further useful quantities are

x =
Q2

2Mhν

y =
q · p
l · p

η = ln cot θ

where especially x plays an important role later on, not unlike the case of x in the previous

section. The pseudo-rapidity η is derived from the rapidity

1

2
ln
E + pz
E − pz

in the limit of vanishing mass of the particle in question, and describes the relative angle

to the collision axis, i. e. of the projectile-target axis assuming a head-on collision.
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Under the assumption that the complete interaction can be described as just an ex-

change of a single particle, the matrix element can be written as

M = 〈l′|Jµ|l〉glV
−ηµν

q2 −M2
V

ghV 〈X|Jν |h〉,

where J is a current operator like ēγµe for an electron current, V characterizes the ex-

changed particle, and g the couplings to this particle, and X is the hadronic final state.

If several particles could be exchanged, e. g. photon and Z boson, the matrix elements

must be averaged. This is a straight-forward extension, which will be neglected here, and

spin-orientation etc. will be implicitly averaged or summed.

This structure suggests to write the cross section as

dσ =
4π

4l · p
(glV ghV )

2

(Q2 +M2
V )

2
LµνH

µν d3~l′

2El′(2π)3

Lµν =
1

2
〈l|J†

µ|l′〉〈l′|Jν|l〉 (6.4)

Hµν =
1

8π

∑

h

〈X|J†
µ|X〉〈X|Jν|h〉(2π)4δ(pX − k − p),

where k is the remainder momentum.

Assuming that this is the only interaction of the lepton makes the evaluation of the

leptonic matrix element straight-forward,

Lµν = 2

(

lµl
′
ν + l′µlν −

Q2

2
ηµν + iClV ǫ

ρσ
µν lσl

′
τ

)

+ 2DlVm
2
l ηµν ,

where the last two terms arise due to the parity-violation of the weak interaction, if the

exchanged particle is either a W or a Z. Due to the complicated internal structure of the

hadron, its tensor cannot be calculated as simply. However, its tensor structure is up to

dimensionless, real coefficient functions, so-called structure functions, uniquely determined

by Lorentz symmetry. It can thus be decomposed as

Hµν = −F 1ηµν +
1

p · q
(

F2p
µpν + iF3ǫ

µν
ρτ p

ρqτ + (F4 + iF5)p
µqν + (F4 − iF5)q

µpν + F6q
µqν
)

Note that there are also other definitions of the structure functions in existence, and in

case of polarized particles or additional measured momenta additional structure functions

appear.

This expression can be further simplified. If weak interaction effects on the internal

structure of the hadron are neglected, F5 = 0. Also, electromagnetic current conservation
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demands Hµν to be transverse with respect to q, up to corrections of order (mlmq/Q
2)2,

which are tiny. This yields

d2σ

dxdQ2
=

4π

x

αlV αhV
(Q2 +M2

V )
2

(

xy2F1 +

(

1− y − (xyMh)
2

Q2

)

F2 − ClV x

(

y − y2

2

)

F3

)

with the coupling constants α defined as α = g2/(4π). The structure functions then

depend only on Q2 and x as kinematical variables, as well as ΛQCD and the quark masses.

At very low energies, the lepton probes the hadron as a whole, and is thus primarily

sensitive to the charge density. It is found that the charge density is essentially exponen-

tially decaying at long distances, and thus, up to kinematical factors, F1 and F2 have a

dipole structure, while F3 vanishes, as parity violation does not play a role. At energy

scales sufficiently large to excite hadrons as a whole, resonance structures appear in the

Fi reflecting this.

At very large Q2, the behavior changes, as the internal structure is probed. Especially,

the structure functions do not vanish at large Q2, but rather tend in leading order to a

function depending only on x, the so-called Bjorken scaling. This is the behavior expected

for point-like, massless scattering centers. Since this independence implies Q2 − 2Mhν =

2xp·q, this looks like the probe would be elastically scattered at the scattering center, which

therefore has no internal excitations and appears unbound, a true elementary particle.

These results are only approximately true, and this behavior is slightly violated, so-called

scaling violations. This will be ignored for the moment.

A dependence only on x and point-like, essentially free scattering centers is just what

the parton model is. Thus, the scattering is described by parton density functions (PDF)

f(x) where f can be either q, q̄, with q any quark flavor, or g for the gluons. Then f(x)dx

can be interpreted as the probability to find a parton of type q with momentum fraction

x inside the hadron. This probability will be dependent on the hadron under scrutiny,

especially for the different flavors.

A leading-order perturbative calculation this immediately yields the Callan-Gross re-

lation, 2xF1 = F2, one of the historically first indications for the point-like structure of

the partons. The remainder structure functions then depend on the charges involved. For

a photonic probe, e. g.

F2 = x
∑

D,U

(

1

9
(D + D̄) +

4

9
(U + Ū)

)

, (6.5)

where D collects the down-type quarks d, s, and b, while U collects the up-type quarks

u, c, and t. In this case F3 = 0. Note that due to the Appelquist-Carrazone theorem,

the PDFs are suppressed like Q2/M2
q with the quark masses, and therefore heavy quarks
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rarely play a role, though some experimental results even exist for the charm content of

the nucleon.

Similarly, this leads back to the sum-rules of section 5.1.2. For the proton e. g.

∫

dx(u(x)− ū(x)) = 2
∫

dx(d(x)− d̄(x)) = 1
∫

dx(s(x)− s̄(x)) = 0.

and many others. It is often helpful to define formally valence quarks and sea quarks,

qs(x) = q(x) − qs(x) and q̄(x) = ūs(x) to remove the trivial contribution of conserved

quantum numbers from the quantum contributions. E. g. for the proton

∫

dxuv(x) = 2
∫

dxus(x) = 0
∫

dx(us(x)− ūs(x)) = 0.

However, relations like the last have to be taken with care. They are true for the C-

invariant and flavor-conserving strong interactions, but are violated by the weak interac-

tions and the CKMmatrix. Though small, these effects have been experimentally detected.

E. g.
∫

dx(s(x)− s̄(x)),

is not zero for the proton, despite appearance.

Of course, the total structure functions will have to be again summed over all possible

partons with all possible momentum fractions,

F V h
i (x,Q2) =

∑

f

1
∫

0

dz

z
fh

(x

z
, µF , µR

)

F V f
i (Q2, z, µF , µR),

where F V f is the structure constant for hitting the parton itself with the probe V . This

treats the parton essentially as free, and only keeps the radiative corrections to the inter-

action with V . It is not sensitive to the environment, and therefore independent of the

hadron h. The PDFs fh encode all the information on the relation of the parton to the

hadron, but are not specific to the reaction between the probe and the parton. Again,

this factorization holds only under specific assumptions, though these are quite often ful-

filled. An often convenient choice for the scales is Q2 = µ2
R = µ2

F , which e. g. yields

F V f
i (Q2, z, Q2, Q2) ∼ δ(1− z).

Formally, this expansion is only the leading term of a more precise operator product

expansion description, as introduced in section 5.1.1, in the limit of Q2 → ∞. In this
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limit, the PDFs also formally reduce to 〈h|Nf(x)|h〉, where Nf is the number operator.

The sub-leading terms of the OPE can be ordered by their so-called twist, i. e. the difference

between the (canonical) mass dimension and the spin of the operator. Sub-leading twist

contributions have been measured and calculated. Note that, as with all expansions, also

this OPE is only valid under certain conditions, and higher-twist corrections can become

more important than the leading-twist contribution.

The deviations of the f from a dependence entirely on x can be determined as long

as the scales Q2 = µ2 = µ2
F = µ2

R is sufficiently large as to make the development be

dominated by perturbation theory. Then, the renormalization group introduced in section

5.1.6 can be used. This yields the so-called DGLAP evolution equations

µ2∂µ2q =

1
∫

x

αS(µ
2)

2π

(

Pqq(z)q
(x

z
, µ2
)

+ Pqg(z)g
(x

z
, µ2
))

(6.6)

µ2∂µ2 q̄ =

1
∫

x

αS(µ
2)

2π

(

Pqq(z)q̄
(x

z
, µ2
)

+ Pqg(z)g
(x

z
, µ2
))

(6.7)

µ2∂µ2g =

1
∫

x

αS(µ
2)

2π

(

Pgg(z)g
(x

z
, µ2
)

+
∑

f=q,q̄

Pgq(z)f
(x

z
, µ2
)

)

(6.8)

The structure of these equations are rather straight-forward. They require the knowledge

of the PDFs in some input range (x, 1) for a given x. Since large x correspond to small

momentum fractions, these are the unknown non-perturbative contributions. Then each

term describes the probability of a parton described by the input PDF to split into a

parton of the desired type at the probed x for every x. This occurs, of course, with a

coupling strength αS. If assumed that this process is governed by perturbation theory, the

splitting functions P can be determined in perturbation theory. To leading order, they

are given by

Pqq = CF

(

1 + z2

1− z

)

(6.9)

Pqg = TF (z
2 + (1− z)2) (6.10)

Pgg = 2CA

(

z

(1− z)+
+

1− z

z
+ z(1 − z)

)

+
11CA − 4nfTF

6
δ(1− z) (6.11)

Pgq = CF
1 + (1− z)2

z
, (6.12)

where the + subscript is defined as

F (z)+ = F (z)− δ(1− z)

1
∫

0

dyF (y).



190 6.2. Lepton-hadron scattering and DIS

Of course, higher-order corrections can be determined. With the DGLAP evolution equa-

tions it is no longer necessary to determine the PDFs for arbitrary momentum fractions x,

but only in the non-perturbative domain. Up to sub-leading non-perturbative corrections,

they can then be determined for all other x. Of course, in practice the input PDFs are

from experiments, and therefore of limited precision. Thus, the PDFs determined through

evolution will inherit this uncertainty, and it usually tends to blow up for smaller and

smaller x. This is especially true for sea quark or gluon contributions, which are some-

what harder to extract than for the valence quarks. Similar equations can also be derived

for the fragmentation functions. In practice, PDFs are parametrized in some way, and

then the parameters are fitted such as to reproduce experiments best. There are many

strategies for doing so, and this is far beyond the scope of this lecture.

Note that such evolution equations must maintain the Llewellyn-Smith sum-rule

1
∫

0

dxx
∑

f

f(x) = 1, (6.13)

which is just the statement that the partons make up the complete hadron1. Since the

quark PDFs are found to saturate only the sum rule for the proton to about 50%, the

presence of a large amount of gluons becomes explicit. This was one of the first indirect

indications for the existence of gluons.

Of course, since the parton has been removed from the hadron by the interaction with

V , it will afterwards fragment in the same way as for the lepton-lepton collision described

before. The factorization ensures this multi-step process as three independent steps. The

first is the selection of the parton by means of a PDF. The second is the interaction with

the probe. And the third is finally the fragmentation. If the energy of the struck parton

is large enough, the fragmentation will not be into a single hadron, but usually into many

hadrons, which will share the kinetic energy of the original parton, as well as its quantum

numbers2. If the kinetic energy is substantial compared to the total mass of the produced

hadrons, the hadrons will be highly collimated in the original movement direction of the

partons. Such a collimated spray of hadrons is called a jet.

Of course, the hard interaction between the probe and the parton does not need to

be confined into the kicking of a single parton outside of its original hadron. In the

process further partons with high energies can be produced, e. g. by gluon radiation, or

1In principle, all other particles have to be included besides quarks and gluons. In practice, their

contribution is essentially always negligible.
2Soft partons from the struck hadron are needed to maintain color neutrality of the fragmentation

products. This is usually assumed to be a negligible contribution to the final result.
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the fusion of the probe with a gluon into a quark-anti-quark pair via a loop process. In

this case, multiple jets may arise, which carry the relative kinematical information of the

original partons. Note that the hard interaction may also produce particles other than

partons, especially leptons or weak gauge bosons. They will not fragment immediately. If

sufficiently stable, they will escape the collision. Otherwise, they will decay. If the decay

is once more into partons, this may also induce secondary jets.

The remainder of the target hadron is of course still there, and will either also fragment

in some way or be essentially unchanged and propagating almost on its original course, the

latter happening quite often at small x. For this to happen, the struck parton must have

been emitted essentially as a collinear, colorless virtual particle, which is struck instead.

This hypothetical particle is called a pomeron, an object of which the precise nature

is not fully understood, but must contain several colored constituents. This is called a

diffractive process. Since essentially the pomeron’s substructure is probed in this case, the

PDFs from diffractive events are not the same as for non-diffractive events, and therefore

not universally applicable for interactions involving the original hadron.

6.3 Hadron-hadron scattering

In hadron-hadron scattering at low energies, the interactions are mainly due the hadrons

as a whole. They are therefore dominated by non-perturbative contributions, and have to

be treated as such. This is the realm of chiral perturbation theory or of phase shift analysis

in lattice calculations. Since these are thus either very phenomenological or treatable with

the techniques already discussed, they will not be within the focus here. More interesting

are high-energy reactions, which are not accessible with either methods, since both are

either conceptually or computationally restricted to sufficiently small energies.

Of course, hadron-hadron interactions manifest all the behaviors seen in the previous

two cases, and hence in the following only those aspects will be highlighted where differ-

ences occur. Particular interesting is the case of large center-of-mass energy s → ∞ in a

two-to-two process. The total cross-section is found to behave like

σ =
1

M2
i

(

s

M2
i

)αi−1

,

where i identifies some quantum number channel. The mass-scale M is just setting the

scale. The α(0) describes the intercept of the Regge trajectory in the corresponding

quantum number channel. Especially, if the exchange particle would have spin J , then

without interaction αi(0) = J . However, QCD modifies this to a different number, of
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order 1, which is characteristic for every Regge trajectory. If the exchanged particle is the

ominous Pomeron, it is almost exactly one.

This is still the case of rather soft interactions, where the exchanged energy is small,

but should give a flavor of non-perturbative contributions. At smaller energies s, e. g. res-

onance structures due to bound states appear, and a description beyond phenomenological

approaches is so far nigh on impossible.

Thus, so far most useful are hard interactions with large momentum transfer, such that

like in DIS the parton interaction can be factorized. A cross-section for the production of

weakly interacting final state particles X , plus possible remnants of the projectiles, takes

the form

dσ(hH → X) =

1
∫

0

dx1dx2
∑

ab

fa/h(x1, µ
2
F , µ

2
R)fb/h2(x2, µ

2
F , µ

2
R)dσ

ab→X(Q2, µ2
F , µ

2
R),

where the momentum transfer Q2 is assumed to be only between the two partons. If the

initial state is a hadron-anti-hadron pair, and the final state a lepton-anti-lepton pair, this

is called a Drell-Yan process.

The process factorizes in taking a parton from each hadron, and let them interact in

a hard way to produce the final state. It is necessary to take all possible partons, with

all possible energy fractions, into account. Of course, if the final state X includes also

partons, then these need again to be fragmented.

Of course, there are again the remnants (or unchanged projectiles in case of diffrac-

tive interactions) of the original hadrons. However, in the usual head-on collisions, they

essentially keep the original direction of movement, as their interaction is limited to small

momentum transfers. The hard sub-processes has in general isotropically distributed large

transverse momentum, in the center-of-mass system, with respect to the collision axis, and

therefore can be isolated from the remnants. This transverse momentum, that is the mag-

nitude of the transverse part of the momentum of the detected particles, is often a much

better quantity to characterize produced particles than their full momentum. The total

initial transverse momentum of the event is zero, and little is unobserved with the rem-

nants. For the longitudinal part of the momentum, and thus the complete momentum, an

unknown part is carried away with the fragments of the projectile, especially if undetected

particles, like neutrinos, arise. In a similar vain, also transverse energy is defined as the

energy from the rest mass and the transverse momentum.
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6.4 Factorization schemes

PDFs appeared so far as somewhat physical objects, as they seem to describe the hadron’s

structure. However, this is only true at leading order.

Consider the process of photon scattering at sufficiently large Q2, such that all masses

can be neglected. To leading order3, the hard process will be qγ∗ → q′, i. e. a quark will be

hit by the necessarily virtual photon, and thus receive a kick. Gluons do not contribute at

this order, as they do not couple electromagnetically. It is useful to split for the following

the hadronic tensor Hµν , irrespective of whether on parton or hadron level, in two parts

HΣ = −ηµνHµν

HL = pµpνHµν .

This permits to express the structure function as

F2

x
=

∑

f

1
∫

x

dz

z
f
(x

z

)

(

1

1− ǫ
HV f

Σ (z) +
3− 2ǫ

1− ǫ

4z2

Q2
HV f
L (z)

)

F1 −
F2

2x
= −

∑

f

1
∫

x

dz

z
f
(x

z

) 4z2

Q2
HV f
L (z).

The ǫ herein is the same as has been introduced in dimensional regularization in section

4.6.5, i. e. calculations are performed in 4−2ǫ dimensions. Without loop-level calculations,

ǫ can always be set to zero, but its explicit factorization is useful in actual calculations.

The calculation of the leading order hadronic tensors is straight-forward, and yields

HΣ = e2f(1− ǫ)xδ(y − x)

HL = 0.

Hence, the result is

2xF1 = F2 = x
∑

q,q̄

e2ff(x).

This reproduces the Callan-Gross relation. It also shows that the structure function, which

is observable, is directly related to the PDF. This result is the origin of relations like (6.5),

and the idea of interpreting PDFs as physical quantities.

3There are many subtleties, similar as those discussed in the ISR, with collinear particles in the final

state. This problem can be dealt with using perturbative techniques not specific to QCD. They will

therefore not be detailed here explicitly, except where necessary.
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This picture is eradicated at next-to-leading order. If the same flavor should be ob-

served in the final state, only the additional process γ∗q → q′g contributes at the next

order. There are four possibilities, two including gluon radiation and two including photon-

gluon fusion. This is still a tree-level process, but it involves a certain problem, a collinear

singularity. The result for HΣ can be written in terms of the outgoing quark momentum

ŝ = Q2 1− z

z

q′ =

√
ŝ

2
(1,− sin θ, 0,− cos θ),

where thus θ is the angle between the incoming quark and the gluon momentum, as

HΣ = 4e2qαSCF
1

16π

+1
∫

−1

d cos θ

(

2(1− z)

1− cos θ
+

1− cos θ

2(1 − z)
+

2z(1 + cos θ)

(1− z)(1− cos θ)

)

which is singular for cos θ → 1. This corresponds to a gluon being essentially collinearly

emitted, i. e. with transverse momentum k2T = ŝ/4 sin2 θ being almost zero. To regulate

the expression, a lower cutoff κ2, can be imposed on the integral4. Performing the integral

then yields

HΣ = e2q
α

2π

(

Pqq(z) ln
Q2

κ2
+Rff (z)

)

,

where Pqq(z) is given in (6.9), and Rff (z) is finite for κ2/Q2 → 0 and vanishing terms

have been suppressed.

For HL to this order no such divergences arise, the calculation can be performed in a

straightforward way, and it will thus only modify Rff . This yields for F2

F2(x,Q
2, κ)

x
=
∑

f



f(x) +

1
∫

x

dz

z
f
(x

z

) α

2π

(

Pqq(z) ln
Q2

κ2
+ Rff(z)

)



 .

This shows that F2 is beyond leading order no longer a measure of the PDFs. But this

makes F2 also dependent on the arbitrary cutoff κ.

The origin of this is that the soft gluon is strictly speaking not a perturbative object.

It therefore should rather be part of the PDF. However, this leaves open the question of

the scale from which point onwards on a gluon should be considered part of the PDFs.

This scale µF is arbitrary, and is just the same factorization scale as introduced already

4A more formal approach would used dimensional regularization instead, but yields ultimately the

same results.
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in (6.3). It is here introduced by defining a new parton distribution function

fF (x, µ2, RF
f ) = f(x, κ) +

1
∫

x

dz

z
q
(x

z
, κ
) α

2π

(

Pqq(z) ln
Q2

κ2
+RF

f (z)

)

.

Of course, since the splitting is arbitrary, also the original PDF must now be changed to

include this arbitrariness. However, if the whole process is well-defined, as it is experimen-

tally observed, the final result can not depend on κ, and therefore the modified PDF fF

cannot. Thus, the underlying assumption is that the dependencies on κ on the right-hand

side cancel. Since in the end only fF will be fitted to experiment, this is, in a sense, a

self-fulfilling prophecy. This redefinition is also arbitrary in the sense, as nothing prevents

from including finite parts of R into the PDF, and thus add a function RF , which will

become negligible at large Q2. While the dependency on κ is fixed, this arbitrariness in R

implies that there are different schemes to factorize soft gluons, and thus, similar as for a

renormalization scheme, a factorization scheme is created. However, since soft gluons are

assumed to be emitted in the same way for all processes, the procedure is afterwards fixed

for all calculations. Still, the final result
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) α

2π

(

Pqq(z) ln
Q2

κ2
+Rff (z)− RF

f (z)

)



 ,

depends on this scheme. Due to this arbitrariness, PDFs are not physical, as they depend

on the scheme. Of course, the scheme-dependence is only an artifact of our inability

to provide a full non-perturbative calculation. However, as for renormalization schemes,

higher order results do not manifest a full independence on µF , and thus remains always

a scheme dependence. The residual dependency on this is a systematic error, for which

the same considerations apply as for any systematic error.

Schemes are then defined by defining RF
f . Commonly used schemes are minimal sub-

traction schemes without finite terms, RMS
f = 0 and the DIS scheme with RDIS

f = Rf ,

such that only the leading part remains in the perturbative calculation. As noted before,

a common choice is µF = Q2 in single-scale problems, as this eliminates the logarithm. In

the DIS scheme, this yields that also to NLO F2 = x
∑

q,q̄ e
2
ff

DIS(x), though an explicit

calculations shows that this is no longer equal to F1 at this order. However, it should be

noted that the function Rf contain process-dependent contributions, as they are calculated

based on the process at hand. Thus, while being universal for all processes of the same

type, this remains no longer true, if, e. g. hadron-hadron interactions are considered, as in

section 6.3. This does not happen for the MS scheme, as there no trace of the underlying

process remains, at the expense of more complicated formulas for the structure functions.
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In practice, the (unjustified) estimate of the systematic error is obtained by varying µ2
F

in a certain window, usually by factor of 2-3, and take the variation under this change as the

error. This follows the procedure used for the residual dependency on the renormalization

scale.

It should be noted that such logarithms do in general not only arise due to collinear

emissions, but can also occur in the form of ln(1/x) when the momenta of the emitted

particles become small, similar to the Landau pole of QCD. Especially, contributions

can have both singularities simultaneously. These are therefore also non-perturbative in

origin, and have to be treated likewise. Various schemes have been developed for these

cases, similar to the DGLAP evolution equations, e. g. the BFKL evolution equations,

which describe the behavior in x similar to the one in Q2 of (6.6-6.8). In the end, all of

them have to some extent to cut off the growth towards the non-perturbative domain,

either with methods similar to those discussed above, or by introducing models for the

PDFs which counteract the growth explicitly. This remains an active area of research.

It is, however, clear, that the ultimate resolution will be of non-perturbative nature.

E. g., small x means a small momentum fraction, and therefore many partons. Since any

parton has a cloud of virtual particle, it has an effective size. At some point, so many

partons are present that the picture of almost non-interacting particles no longer holds,

as they start to overlap, and interact strongly. Various ideas have been proposed to deal

with such a situation, ranging from effective shadowing to limit the number of effectively

present partons up to an effective condensate (color glass condensate) which describes

the remaining partons as a background effect to give the single soft parton a well-defined

behavior. Though these pictures show some success, none of them can satisfactorily explain

all observed phenomena quantitatively equally well.

6.5 The nucleon spin

So far, the discussion has concentrated on a situation where the particles have not been

polarized, and therefore the results were independent of the initial and final spin alignment.

It is experimentally possible to use polarized particles, and also measure to some extent

the final spin. This adds another reference direction, in addition to those signaled by the

momenta, complicating things. Especially, it introduces on top of the structure functions

polarized structure functions. Similar calculations can then be performed as before.

One of the major results of such experiments was that a sum-rule similar to the

Llewellyn-Smith one (6.13) can be constructed for the nucleon spin. And again, it was

found that the sum-rule is only saturated to about 50% by the valence quark contribution,
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indicating once more the existence of additional structure. However, in contrast to (6.13),

the contribution of the gluons, though quite hard to measure, was found to be small, such

that even when including gluons the sum-rule is not fulfilled. In contrast to the momentum

sum-rule, the spins of the partons do not need to saturate the possible contributions, as

relative angular momentum of the partons can also contribute.

The problem is that, in contrast to ordinary quantum mechanics, it is in a non-Abelian

quantum gauge field theory not possible to give individual physical meaning to orbital

angular momentum and spin, as both parts become gauge-dependent. Therefore, the

contributions cannot be measured separately, at least not in any gauge-invariant way. This

has made the resolution of this problem, once inadequately termed spin crisis, somewhat

involved, and not finally settled.

Though no similar results for other hadrons exist, it can be rather safely assumed that

similar problems would arise as well.

6.6 Hadronization

One other input was the fragmentation functions which ultimately describe how partons

struck out of a hadron are observed. This information is, e. g., relevant for how the energy

deposited in a jet relates to the original energy of the parton, especially when it comes to

particles escaping outside the jet cone, or how properties like flavor are transported. The

latter is especially interesting to distinguish between gluon and (anti-)quark jets. However,

because high-energetic partons fragment into many hadrons, it is practically impossible to

both measure and parametrize the fragmentation functions, while this is still possible as

long as the parton only hadronizes in very few particles.

Thus, the same procedures as for PDFs do not work. Since a first-principles calculation

from QCD is at the time also prohibitively complicated, the current solution is to refer to

simplified models, which can be treated at least stochastically. A wide range of such models

exist, where the approximations and model parameters are adjusted such as to describe

different experiments equally well. The so tuned models are then used in their fixed form

for calculations. Though not a perfect solution, several different models yield compatible

results, and describe the experiments reasonably well. Hence, often the deviations between

different models is used as estimate of the systematic error.

Of course, as with PDFs, the fitting always leaves a residual risk that effects are

included in the fit rather than being distinguished as a new phenomenon. To counteract

this possibility, the fits can be performed on a subset of a set of tuning experiments, and

tested against the remainder, to check for any systematic deviations.
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6.7 Monte-Carlo generators

As is visible, the experimental description of collisions is usually performed in a three step

process, as far as factorization is viable. The first step is to obtain the initial particles for

the interesting process. These are described by the various PDFs of the initial projectiles.

The second step is to calculate the elementary process, usually performed perturbatively,

to a certain order in perturbation theory. For the LHC at this time most such hard

processes are calculated to orders between tree-level and NNLO. The third step is then to

transform the final state of the elementary reaction into the particles finally observed in

experiments. This involves usually first a decay cascade of the particles obtained in the

elementary process into electrons, positrons, muons, photons, and other particles stable

and weakly interacting on the scale of the experiments or into quarks and gluons. In the

latter case also the creation of jets and/or fragmentation must be calculated, to obtain

the final state.

While the initial state is rather simple, already the possibly involved intermediate

particles before the hard collisions can easily number dozens. Moreover, even at moderate

orders of perturbation theory, very many contributions appear. The final state is even

more complex, and can involve many final particles, and several jets - up to eight jets and

about a dozen quasi-stable particles are currently feasible for experiments.

To deal with this complexity requires computers. For many theories, the outer part

of the event, the creation and fragmentation of the particles entering into the elementary

hard process, is the same. Hence, this part can be automatized. Such programs, in which

only the elementary cross-section is used as an input, are called Monte-Carlo generators.

They perform a stochastic simulation of all possible background for a given signature, to

provide stochastic estimates of the expected event signature for a given hard subprocess,

just like real experiments are stochastic samples selected by certain properties of their

final states. Current examples are publicly available codes like Sherpa, Pythia, Herwig, or

Whizard, and can be downloaded, e. g., at www.hepforge.org.

Even the elementary cross-sections can be calculated in many cases automatically,

especially at tree-level. In these cases only the Lagrangian has to be provided, to permit

an automated calculation from the initial to the final state.

6.8 Nuclear physics

The ultimate version of hadronic interactions is, of course, nuclear physics. While it

should in principle be possible to calculate all nuclear processes directly from QCD, this is
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in practice almost impossible, just as solid state physics is something not directly accessible

from QED. The reason is that with the number of valence partons involved, the problem

size usually grows factorial. This even prevented so far a successful calculations of many

n-body hadron problems, such as determining the mass of the deuteron, let alone helium,

even with the most powerful lattice calculations. The same is true for functional methods,

where only now baryons become accessible.

Thus, nuclear physics has so far been mainly the purview of models. There are of course

quantum-mechanical models, like the shell model, to describe the properties of nuclei. The

approximation with quantum mechanics is to some extent justified, as the average binding

energy and kinetic energy of nucleons is of the order of MeV, while the masses of the

nucleons is of order GeV. The necessary potentials are rather involved, as simple two-

body interactions only describe some bulk properties reasonably well, but already fail in

describing several less prominent features. Thus 3-body, and partly 4-body, interactions

are required.

To provide this potential, two possibilities are in widespread use. One is to model this

potential on the most generic principles, and then fit the parameters using experimental

data. The second is a derived approach, where the potential is attempted to be obtained

from QCD. One possibility is again lattice calculations. Though in general having the same

problem of factorial growth, the demand of having three, or possibly four, particles is more

reasonable to be achievable. However, at the current time, the available precision is not

yet sufficient to rival phenomenological estimates. The second option is by going through

the chiral perturbation theory of section 5.2.4. This allows to derive nucleon interaction

from the more basic general hadron interactions. However, this is to some extent limited,

as the mass of nucleons, which need to be included into chiral perturbation theory leading

to baryon chiral perturbation theory, are strictly speaking too large compared to the

expansion parameter of the pion mass. Still, the obtained results are currently competitive

with purely phenomenological fits.

Finally, if only a qualitative picture is required, somewhat simple models for the cal-

culations of the most basic properties can be used. This may be a feasible compromise

when more bulk properties are required for many-body problems. After all, each nucleon

adds already in the quantum-mechanical case to the size of the Hilbert space. Since the

problems are no longer analytical feasible already in quantum mechanics, and, e. g., vari-

ational methods are used, the size of this Hilbert space is a serious constraint in practice

for many-nucleon problems, say substantially above iron.

To construct a sample model, some basic properties of nucleon interactions are required.

Assuming the relevant energies sufficiently small to neglect excited nucleon states, i. e.



200 6.8. Nuclear physics

below the roughly 250 MeV needed to create a ∆, only the nucleons ψ are needed. For

many questions, isospin breaking and electromagnetism are also only second-order effect,

and thus just two flavors of nucleons with the same mass are required. The primary

interaction will be due to the exchange of pions π, the lightest hadrons. They need to be

included. But to obtain both attractive and repulsive channels requires at least one more

hadron, usually a vector meson, the ρ. Since the cutoff will anyhow be small compared

to the ρ mass, this particle can be modeled as an elementary vector boson with a mass,

despite this leads to a superficial violation of gauge invariance. To model chiral symmetry-

breaking effects along the lines of the linear-σ model in section 5.2.1 also the σ has to be

included. This will help to have the correct π dynamics. The final Lagrangian of the

nucleon-meson model then looks like

L = ψ̄

(

i∂µγ
µ − gπNv −

g′ρN
2
ρµγ

µ

)

ψ +
1

2

(

∂µσ∂
µσ − λ(3σ2

0 − v2)σ
)

+
1

2

(

∂µπ∂
µπ − λ(σ2

0 − v2)π2
)

− λσ0(σ
2
0 − v2)σ − λσ0(σ

2 + π2)

−λ
4

(

(σ2 + π2)2 + σ2
0(σ

2
0 − 2v2)

)

− 1

4
(∂µρ

ν − ∂νρ
µ)2 − m2

ρ

2
ρµρµ

+ψ̄ (gσNσ + gπNπ) , (6.14)

where the various appearing constants have to be fixed by experiment, and π = πaτa. A

mass difference between proton and neutron could be introduced by an additional explicit

mass term for the nucleons, which is not proportional to the unit matrix in isospin space.

Already the model (6.14) is quite elaborate, especially when compared to the simplicity

of QCD itself (4.1). However, it is still simpler compared to the many-body problem of

QCD. This should illustrate the problem of emergent phenomena in hadron physics.

Note that by reinterpreting the nucleon fields as quarks fields, supplemented by a global

color symmetry, this model is also known as the quark-meson model.
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The QCD phase diagram

The ultimate question of nuclear physics are the properties of neutron stars. In fact, a

neutron star can be considered as a gigantic, stable nucleus, though this is an oversimpli-

fication. Since the density inside a neutron star increases from the outside to the inside,

the physics will change. While the outer part is indeed essentially a nuclear system, the

situation in the interior is not clear. Because QCD is so strongly interacting, it is very

hard to treat it in such an environment, and even lattice simulations fail.

The reason is actually not the strongness of QCD. It is rather a problem which has to

do with the distinguishability of particles and anti-particles, and how this can be treated

if there are more particles than anti-particles. For some theories, like QCD, but there

are also such systems in nuclear physics and solid-state physics, this entails algorithmic

problems, the so-called sign-problem, which prevents so far the development of efficient

simulation algorithms, as the computation time scales exponentially with the system size.

It is a technical problem, and not a physics problem. The origin of this problem comes

from the determinant in (5.7). For QCD, this determinant develops a complex phase

dependent on the chemical potential at finite density. In a numerical averaging procedure,

such a phase implies oscillations, and the numerical averaging procedure becomes thus

extremely unreliable or expensive. Other methods, especially functional methods, do not

suffer from this problem. However, they are also facing (yet) problems, e. g. in terms of

accurately describing baryons.

It is therefore still an open field what actually occurs near the core of a neutron star,

and whether the state of matter there is still just many nuclei, or whether other hadrons,

including strange ones, play a significant role.

The situation in neutron stars is only a part of a wider topic, the QCD phase diagram,

i. e. what is the state of matter at densities of similar or larger size than in nuclei and

temperatures of size of hadron masses.

201
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Experimentally, these are very hard to address questions. For neutron stars, possibly

gravitational wave astronomy, together with the X-ray spectrum of neutron stars as a

function of time, as well as their sizes and masses, will be the only available experimental

input for a long time to come.

At much smaller densities, the situation becomes essentially the one of nuclear physics.

here, experiments with nuclei, especially collisions, can be used. In this way, it was possible

to find that there is (very likely) a phase transition between a gas of nucleons and (meta-

)stable nuclei at roughly the density of nuclei, which permits to form nuclei. Since the

nuclei show properties that are best described as them being droplets of a liquid made up

of nucleons, this is also known as the nuclear liquid-gas transition. This phase separation

persist for a few MeV in temperature, up to about 15 MeV, where it ends in a critical

end-point. Thus, both phases are not qualitatively distinguished, just like in the case of

gaseous and liquid water.

From the point of view of particle physics, the involved energy scales of nuclei are very

small, and the distinction between the liquid and gaseous phases is essentially irrelevant.

Thus both phases are not regarded as different. This common phase is denoted as the

hadronic or vacuum phase, the latter as for all practical purposes the phase consists of far

separated hadrons with vacuum in between.

There are now several interesting directions to move on. Usually, they are signified by

temperature and the baryon-chemical potential , i. e. the chemical potentialdistinguishing

baryons and anti-baryons. Thus, zero (baryo-)chemical potential1 denotes a situation in

which there is the same number of baryons and anti-baryons, which includes the possibility

of none of either type.

When neutron stars are interesting, the axis with zero temperature and finite baryo-

chemical potential is most interesting. Neutron stars do have some temperature, but it

is of the order of one MeV, and even during their formation in a supernova explosion

or during a merger it does not exceed 10-20 MeV. On hadronic scales, this is essentially

negligible. Thus, to good approximation it is a movement only along the baryo-chemical

potential direction. Starting from the vacuum, i. e. zero baryo-chemical potential, it can

be shown exactly that nothing will happen before reaching a chemical potential of roughly

a third of the nucleon mass. This is due to some analyticity properties of the free energy

1As in most cases only the baryo-chemical potential is present, the word baryo is dropped. The only

other chemical potentials of relevance in most cases are an isospin-chemical potential, which gives the

difference between up and down quarks, and is therefore relevant in neutron stars, though it is even

then only small because of the close similarity of up and down quark, strange-chemical potential, which

determines how many more strange than anti-strange quarks appear, and electro-chemical potential, which

indicates the presence of electrons.
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as a function of the masses of the lightest baryon, and the fact that it is made out of three

quarks. This feature is called the silver-blaze feature. However, any small temperature

will change this, and it is then only approximately true for chemical potentials much larger

than the temperature, but smaller than this silver-blaze point.

After this point soon the nuclear liquid-gas transition is encountered. After this exper-

imentally established point, as noted above, no fully reliable results are available. There

are some reasons to believe that at least one further phase transition will be encountered,

though even this is not sure. It is furthermore unclear whether this will happen at densities

sill relevant for a neutron star, or significantly above it. However, model calculations, i.

e. calculations using simplified versions of QCD, as well as comparisons to other theories

which are similar to QCD, indicate that there could even exist many different phases, some

amorphous, and some crystalline, in which besides the nucleons also other hadrons, like

pions, kaons, and hyperons, may play a role.

The situation is much better regarding zero chemical potential. This situation is rel-

evant in the early universe. At that time all matter in the universe is already present,

and there is thus a sizable amount of baryons, but the temperature is high enough to

thermally produce baryon-anti-baryon pairs. This reduces the chemical potential to very

close to zero.

This situation is good accessible experimentally by high-energy heavy-ion collisions,

e. g. at the LHC with up to 2.4 TeV kinetic energy per nucleon for lead nuclei. In such

an experimental setup, temperatures as high as 600-700 MeV with almost zero chemical

potential, despite the 416 nucleons in the original nuclei, can be achieved. Furthermore,

this situation poses no serious problems to numerical simulations. Hence, the knowledge

of this axis is rather good.

It turns out that the physics depends significantly on the masses of the up and down

quarks. Though this is also suspected for the remainder of the phase diagram, it is evident

in this case. If both quarks are very heavy, there is a first-order phase transition at a

temperature of about 250-300 MeV. As the quark masses become lighter, this temperature

decreases, and the transition becomes a rapid cross-over at a temperature2 of about 150-160

MeV. This is the situation for up and down quark masses observed in nature, the physical

masses. The mass of the strange quark influences the precise values of the temperatures,

but does not provide any qualitative influence, and the heavier quarks have even less

relevance. If the quark masses are decreased further, the temperature still drops a little

bit. More importantly, at some point the cross-over turns again into a phase transition,

2There is no unique definition of a cross-over temperature. This is just the temperature were most

changes occur.
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this time of second order, becoming first order for even lighter quark masses, and remains

until zero quark masses.

The critical temperature can be inferred from a rather simple argument, due to Hage-

dorn. When plotting the number of hadronic states, including resonances, as a function

of mass, the resulting curve is an exponential. Of course, at some point the states become

very unstable, or further flavor thresholds open, such that this curve is not experimentally

confirmed at arbitrarily high masses. Assuming that it continues nonetheless, there is an

exponential density of states. Neglecting interactions, and just inserting this density of

states into a thermodynamic calculation, the resulting free energy will diverge at a char-

acteristic temperature, the Hagedorn temperature, being indeed roughly 150 MeV based

on the known hadronic states. Of course, such a divergence is unphysical, and indicative

of either a phase transition or that the density of states is modified by some new effect.

For QCD, the latter is just that the substructure of the hadrons become relevant.

What happens can be understood already in a simple picture. Temperature is classi-

cally nothing more than the kinetic energy of particles. In a quantum theory, temperature

is just energy, which can also be converted to new particles. This will be exponentially

suppressed with the mass of the created particles. Hence, the lightest particles will be

most copiously produced. In QCD, these are the pions. These particles will have large ki-

netic energies, and will rapidly and repeatedly collide. At very high temperatures, because

of the asymptotic freedom of QCD, these scatterings will mainly be dominated by hard

partonic scatterings, and thus be almost perturbative. Thus, QCD becomes essentially

as it behaves at high-energies. Especially, this implies that the effects of chiral symme-

try breaking become reduced, and the quarks lose their effective mass, though not their

current mass, at the phase transition or cross-over. In fact, in the limit of zero quark

mass, the second order transition becomes a symmetry transition where chiral symmetry

becomes restored. At the same time, since most collisions are hard and partonic, excited

states become very unstable and in most cases it does not matter anymore that quarks are

confined into hadrons. They act effectively as if they would no longer be confined. Thus,

one speaks also of a deconfined phase, and calls the transition a deconfinement transition.

However, since it is a cross-over, it is clear that qualitatively nothing has changed, but

quantitatively it is a completely different situation.

As a consequence of this dominance of the partonic degrees of freedom and asymptotic

freedom actually the high-temperature thermodynamic behavior of the theory is essentially

that of a free gas of quarks and gluons, a so-called Stefan-Boltzmann gas. The reason is

mainly that the hard processes contribute to the free energy like the temperature to the

fourth power, while all other effects contribute at most like the cube of the temperature,
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or even less. Hence, they become for thermodynamic bulk properties, i. e. extensive

properties, irrelevant. Still, there are certain observables which are sensitive to non-trivial

effects. Furthermore, the transition is very slow, and even at a few times the transition

temperature even the bulk quantities are not yet fully dominated by the partonic processes.

The system then behaves not like a gas, but rather like an almost ideal fluid.

This is also the situation encountered in the early universe. While it cools done, it

will go through this cross-over. Before that, it is essentially dominated by the quarks

and gluons, and only afterwards it starts to be dominated by the hadrons. However,

because the transition is a cross-over, it seems that the transition had little quantitative

influence on the evolution of the universe. Still, the point where it became possible to form

stable nucleons is an important point, as this fixed the relative abundances of elements in

the early universe. This process is called nucleosynthesis. The relative amount of nuclei

created at this time, essentially only hydrogen, helium, lithium, and their isotopes, have

been both observed and calculated. Both theory and experiment agree for most isotopes

rather well.

The situation in the remainder of the phase diagram is not yet clear. It is possible

to map out parts of it with heavy-ion collisions at lower energies. Because then less

energy is available, less particles are produced, and therefore the baryon chemical potential

is larger. Still, the accessible region is that of rather high temperatures, above those

characteristic for neutron stars, and likely below the relevant chemical potentials. Also,

numerical simulations start again to fail the larger the chemical potential becomes. Hence,

the situation becomes less and less clear. What seems to be certain at the current time

is that for quite some distance into the chemical potential direction little changes, and

the cross-over remains at a temperature only slowly decreasing with increasing chemical

potential. There are some speculations about a critical end-point, from which a phase

boundary starts, which eventually meets with the chemical potential axis, but this is not

yet settled. Other than that, the field is still wide open.

7.1 Deconfinement

At several points it has been mentioned that hadrons should start to overlap. This can

occur either through thermal particle production, essentially pions, or by increasing the

net baryon density. At some point, so many particles will be present that the inter-particle

distances will become substantially smaller than the size of a typical hadrons. At the same

time, the typical energies, i. e. either the typical thermal energies or the typical energies
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above the Fermi energy of the baryons, will become large compared to3 ΛQCD. Thus, most

interactions will become hard, and the effective interaction starts to become weak due to

asymptotic freedom: Hard scattering processes start to dominate.

This is also manifest in thermodynamic bulk quantities. E. g., the free energy behaves

at very large temperatures like

−Ω = P = Nc
7π2T 4

180
+O

(

T 4

lnT
, T 3

)

,

and thus like a gas of free gluons and quarks. The sub-leading corrections stem from

two contributions. The logarithmic first part originates from perturbative contributions,

while the second part is from non-perturbative ones. The reason for both of them being

sub-leading is that the hard interactions characterized by the scale T dominate due to

asymptotic freedom. Hence, at sufficiently high temperatures the bulk thermodynamics

of QCD appear as the one of a free gas of quarks and gluons, manifesting very much the

idea that due to the overlap of the hadrons the quarks and gluons become liberated, and

are therefore free, or deconfined.

Of course, this is only true because the hard processes dominate due to asymptotic

freedom. Since the transition is just a cross-over, there can be no qualitative change,

though arbitrarily large quantitative ones. Especially, by scattering with thermally excited

particles, even usually stable hadrons are no longer so. Only some kind of collective

excitations will survive, like in any thermal medium.

However, since the (valence) quarks and gluons are no longer necessarily located within

a given hadron, like in the vacuum, and parton-exchange reactions become common-place,

this distinction is almost semantical. Still, gauge-invariance requires that the medium re-

mains strictly and locally color-neutral, but the effective excitations can have substantially

different forms then those at zero temperature4. Another reason is that the Wilson string

tension defined as one kind of confinement vanishes even over intermediate distance, and

actually also vanishes in pure Yang-Mills theory. However, the necessary ingredient for

interpreting the Wilson potential as a (quasi-)potential, that it describes interactions over

a temporal extent, is lo longer valid in a thermodynamic setting, as there is strictly no

time dependence in equilibrium.

Thus, though often heard, the notion of deconfinement at finite temperature remains

somewhat murky.

3Actually, for reasons becoming clearer in a formal field-theoretical language, the relevant energy scales

are πT for fermions and 2πT for bosons.
4It is long speculated whether in a thermal medium it is, e. g. possible to obtain a gauge-invariant

quasi-particle with fractional baryon charge. This was not successful so far.
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Similarly, at asymptotically large densities, the leading-order of the free energy is again

just the Stefan-Boltzmann-type behavior

−Ω = P = Nc

(

7π2T 4
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+
∑
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µ2
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2

6
+

µ4
f

12π2

)

)

,

and similar arguments can be made on the notion of deconfinement. However, it is un-

known whether there is a phase transition separating a high-density phase from the re-

mainder of the phase diagram, and therefore, at least for now, a qualitative change appears

at least not impossible.

7.2 Chiral symmetry restoration

Much less controversial than deconfinement is the fate of chiral symmetry: It becomes

restored. At light quark masses, this actually occurs as a phase transition. This does

not alleviate the problems with an analytical connection between the low-temperature

and high-temperature phase, as the connection is still possible in the full quantum and

thermal phase diagram by making a detour over the mass.

How chiral symmetry restoration acts can be seen best in the linear-σ model, but

for simplicity actually just a simpler model with only two particles and a U(1) global

symmetry suffices, with two fields, the massive σ and the massless π, with the vacuum

expectation value of the original field f . This will also outline other aspects. A useful

starting point is given by formulating the Lagrangian as

L =
1

2
∂µσ∂

µσ − 1

2
(6λf 2 − µ2)σ2 +

1

2
∂µπ∂

µπ − 1

2
(2λf 2 − µ2)π2

−
√
2λfσ(σ2 + π2)− 1

4
λ(σ2 + π2)2 − µ2f 2 + λf 4. (7.1)

In this case the explicit zero-energy contribution is kept for reasons that will become

apparent shortly, but will be essentially the same as when treating non-relativistic Bose-

Einstein condensation. Only terms linear in the fields have been dropped, as they will not

contribute in the following. The situation is similar as before, but now the condensate f

has not been specified by the minimization of the classical potential, but is kept as a free

quantity, which will take its value dynamically.

To investigate the thermodynamic behavior it is useful to analyze the thermodynamic

potential Ω in analogy to the non-relativistic case as

Ω(T, f) = −P (T, f) = −T ln
Z

V
,
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where P is the pressure, T the temperature, and V the volume. Z is the generating

functional. For the following purposes, it is sufficient to use the so-called mean-field ap-

proximation. In this case, the interaction terms are neglected. Without going into details,

the thermodynamic potential can be evaluated directly, since the functional integral be-

comes Gaussian. It reads

Ω(T, f) = −µ2f 2 + λf 4 (7.2)

+

∫

d3p

(2π)3

(

ω2
1 + ω2

2

2
+ T

(

ln
(

1− e−
ω1
T

)

+ ln
(

1− e−
ω2
T

))

)

ω1 =
√

6λf 2 − µ2 + p2 =
√

m2
σ + p2

ω2 =
√

2λf 2 − µ2 + p2 =
√

m2
π + p2.

The frequencies ω consists of the momenta and the masses of the particles after hiding

the symmetry, which are dependent on the value of the condensate f . There are three

contributions. The first outside the integral is the classical contribution. The second

are the first two terms inside the integral. They are the contributions from quantum

fluctuations. The third term represents thermal fluctuations.

To recover the tree-level results, the second term must be neglected and the zero-

temperature limit taken. This yields

Ω(0, f) = −µ2f 2 + λf 4.

Tis potential has a minimum at non-zero f , f 2 = µ2/(2λ). Inserting this into the La-

grangian makes the masses explicit.

Something new happens at finite temperature. At small temperatures it is possible

to excite the σ or the pions, which then form a thermal bath of non-interacting bosons,

and the total pressure is just the sum of their respective pressures. However, the value of

f will become temperature-dependent: At each temperature it will take the value which

minimizes the thermodynamic potential.

When going to higher temperatures, it is useful to make a high-temperature expansion

for the thermodynamic potential. High temperature requires here T to be larger than the

scale of the zero-temperature case, which is given by the condensate, which is of order

µ/
√
λ. In this case, it is possible to obtain an expansion for Ω. The leading terms up to

order O(1) are given by

Ω(T, f) = λf 4 +

(

1

3
λT 2 − µ2

)

f 2 − π2

45
T 4 − µ2T 2

12
. (7.3)

This results exhibits one interesting feature. The term of order f 2 has a temperature-
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dependent coefficient, which changes sign at5 T 2
c = 3µ2/λ. As a consequence, the shape of

the thermodynamic potential as a function of f changes. Below Tc, it has a minimum away

from zero, as at zero temperature. With increasing temperature, this minimum moves to

smaller and smaller temperatures, and arrives at zero at Tc. Hence, at Tc, the value of f

changes from a non-zero to a zero value, and the symmetry becomes manifest once more.

Above Tc, the minimum stays at zero, and for all higher temperatures the symmetry is

manifest.

Replacing f with its temperature dependent value in (7.3) yields the expressions

ΩT<Tc = µ2T 2

12
−
(

π2

45
+ λ

36

)

T 4 T=Tc= −π
2µ2

5λ2

ΩT>Tc = µ4

4λ
− π2

45
T 4 − µ2T 2

12

T=Tc= −π
2µ2

5λ2
,

which coincide at Tc. Also their first derivatives with respect to the temperature equal at

Tc

dΩT<Tc
dT

= −(8π2T 2 + 10λT 2 − 15µ2) T
90

T=Tc= −8π2 + 5λ√
300

√

µ2

λ

dΩT>Tc
dT

= −(8π2T 2 + 15µ2) T
90

T=Tc= −8π2 + 5λ√
300

√

µ2

λ
,

but their second derivatives do not

d2ΩT<Tc
dT 2

= µ2

6
− (4π2 + 5λ)T

2

15

T=Tc= −(25λ+ 24π2)µ2

30λ
d2ΩT>Tc
dT 2

= −8π2T 2+5µ2

30

T=Tc= −(5λ+ 24π2)µ2

30λ
.

Thus, a phase transition of second order occurs at Tc. Note that at very large temperatures

only the term π2T 4/45 is relevant, which is precisely the one of a free non-interacting gas

of two boson species, a Stefan-Boltzmann-like behavior.

As stressed previously repeatedly, it is possible that quantum effects could modify the

pattern considerably or even melt the condensate. It is therefore instructive to investigate

the leading quantum corrections to the previous discussion.

This is also necessary for another reason. If the symmetry becomes manifest once

more at large temperatures, the mass of scalar excitations becomes formally tachyonic,

5Note that strictly speaking using the high-temperature expansion at this temperature is doubtful. For

the purpose here it will be kept since it makes the mechanisms more evident then the rather technical

calculations necessary beyond the high-temperature expansion. The qualitative outcome, however, is not

altered, at least within the first few orders of perturbation theory.



210 7.2. Chiral symmetry restoration

indicating a flaw of the theory. That can be seen directly by reading off the condensate-

dependent masses of the excitations being as usual

m2
σ = 6λf 2 − µ2 = −µ2θ(T − Tc) + (2µ2 − λT 2)θ(Tc − T )

m2
π = 2λf 2 − µ2 = −µ2θ(T − Tc)−

λT 2

3
θ(Tc − T ).

Furthermore, also the Goldstone theorem is violated, as the mass of the Goldstone bo-

son π is no longer zero below the transition temperature6. Both problems are fixed by

quantum corrections, demonstrating the importance of quantum fluctuations even in the

high-temperature phase.

In the expression for the free energy (7.2) the zero-point energy, and thus the quan-

tum fluctuations have been neglected. Using a cutoff-regularization with cutoff Λ their

contribution can be determined as
∫

d3p

(2π)3
ω

2
=

1

64π2

(

2m2Λ2 −m4 ln
Λ2

m2
− m4

2

)

+O
(

1,
1

Λ

)

.

where the constant terms O(1) do not depend on the mass. This contribution is quadrat-

ically divergent and has to be regulated. This can be done by introducing into the La-

grangian (7.1) the necessary counter-terms

δµ2(σ2 + π2)− δλ(σ2 + π2)2.

Repeating the calculation for the free energy yields at zero temperature the expression

Ω(0, f) = −(µ2 + δµ2)f 2 + (λ+ δλ)f 4

+
1

64π2

(

2(m2
σ +m2

π)Λ
2 −m4

σ ln
Λ2

m2
σ

−m4
π

Λ2

m2
π

− m4
σ

2
− m2

π

2

)

.

To determine the renormalization constants two conditions will be implemented. One is

that the free energy is finite when the cutoff is send to infinity. The second is that the

Goldstone boson mass is zero, equivalent to requiring that f = µ2/(2λ), and required by

the Goldstone theorem. Both conditions can be satisfied by the choice

δµ2 =
λΛ2

4π2
+
λµ2

4π2
ln

Λ2

2µ2
+ µ2 δξ

λ

δλ =
5λ2

8π2
ln

Λ2

2µ2
+ δξ.

6In a full quantum treatment, the role of the Goldstone boson could be played at finite temperature

by some composite excitation instead. However, at the mean-field level no such excitations are available,

and thus the Goldstone theorem is violated.
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Herein the contribution δξ is not determined by these conditions, and can be set at will by

other renormalization conditions. This indicates that both conditions are not independent.

This fixes the thermodynamic potential at zero temperature. It can be shown that no new

counter terms are necessary at non-zero temperature. Therefore, the high-temperature

expansion can be performed as previously.

Performing once more a high-temperature expansion is possible. However, in this case

also higher-order terms have to be kept, since the vacuum energy has now contributions

of order O(m4 ln(m2/µ2)). At higher order in the high-temperature expansion terms of

order O(m4 ln(m2/T 2)) appear, which combine to relevant terms. The result is

Ω(T, f) = −π
2

45
T 4 − µ2T 2

12
− (m3

σ +m3
π)T

12
+

µ4

32π2
ln

8π2T 2e−2γ+ 3
2

µ2

−µ2f 2

(

1 +
δξ

λ
+

λ

4π2
ln

8π2T 2e−2γ+1

µ2
− λT 2

3µ2

)

+λf 4

(

1 +
δξ

λ
+

5λ

8π2
ln

8π2T 2e−2γ+1

µ2

)

.

The critical temperature can be determined again as the point where f vanishes, yielding

T 2
c =

3µ2

λ

(

1 +
δξ

λ
+

λ

4π2
ln

24π2e−2γ+1

λ

)

.

To attach a final value it would be necessary to determine the value for δξ by some other

renormalization condition. To order λ, which is the current order, the final result for Tc will

then not depend on this renormalization prescription. One obvious possibility would be to

give Tc its (hypothetically) experimentally measured value, as Tc may not depend on the

renormalization process: As a physical observable, it is renormalization-group invariant.

To obtain the corrections for the masses, it is necessary to calculate the corresponding

self-energies. Without going into the details, the result to the present order in λ is given

at high temperatures and after renormalization by

Πσ = Ππ =
λT 2

3
,

and thus momentum independent. It is therefore a correction to the mass. The complete

mass to this order is therefore

m2
σ = 2µ2

(

1− λT 2

3µ2

)

θ(Tc − T ) +
1

3
λ

(

T 2 − 3µ2

λ

)

θ(T − Tc)

m2
π =

λ

3

(

T 2 − 3µ2

λ

)

θ(T − Tc).
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These results yield a number of interesting observation. First, since Tc is larger7 than

3µ2/λ, the mass of the σ is always positive, stabilizing the system. Secondly, in this case

the mass of the Goldstone boson is always zero below the phase transition temperature, in

agreement with the Goldstone theorem. Above the phase transition, the masses of both

particle degenerate, and the symmetry is manifest once more also in the spectrum. These

properties are generic for symmetries hiding by a condensate which thaws with increasing

temperature. Also that the mean-field approximation is in general insufficient is a lesson

which should be kept duly in mind. Of course, at the present time much more sophisticated

methods are available to treat this problem, though they are in general very complicated.

It should be noted that in gauge theories, like QCD, an important problem arises

when doing finite-temperature perturbative calculations. Due to the infrared effects of

the massless gauge bosons higher orders become amplified. As a consequence, all order in

perturbation theory from order g6 ln g onwards contribute equally, and the perturbative

series becomes meaningless. This is the so-called Linde problem. Thus, non-perturbative

methods are necessary beyond this order. Also, there are non-extensive quantities, which

are never dominated by hard scatterings, like a spatial version of the Wilson potential, and

even at infinite temperature non-perturbative methods are required, as will be discussed

next.

7.3 Very high temperatures

The natural question arising is then whether there are at all any effective difference between

a gas of free quarks and gluons and actual QCD. The answer to this can be gleaned from

a more field-theoretical investigation. In fact, Infinite temperature has two effects. First

of all, due to an effective mass proportional to the temperature all fermions are effectively

infinitely massive. Secondly, due to the absence of any temporal dynamics, the theory

becomes essentially three-dimensional, where the superfluous gauge field degree of freedom

acts like an additional scalar field. However, a gauged scalar in three dimensions is not a

free theory, but rather manifests most of the pertinent features, especially confinement, of

strongly interacting Yang-Mills theories. Thus, strong interactions remain, they just are

completely subleading for thermodynamic bulk quantities.

In analogy to electrodynamics, based on the assignment of Lorentz indices in the field-

strength tensor, such interactions are also often denoted as (chromo)magnetic interactions,

7It is not obvious that δξ cannot be negative and large, thus making the improved estimate for Tc

smaller than before. However, it turns out not to be the case at this order for any renormalization

prescription.
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in contrast to the (chromo)electric interactions. After all, the effective three-dimensional

theory, with parameters which can be determined from the four-dimensional theory, ’lives’

in the three original spatial dimensions. That this implies an Euclidean signature is not

a contradiction, since the four-dimensional theory in equilibrium has anyhow no time-

dependence.

7.4 Small densities and the critical endpoint

When moving away from the zero temperature axis, the situation becomes more compli-

cated. Generically, most model calculations find that when following the cross-over line

it eventually turns into a real phase transition again at some density, which is somewhere

around, but usually smaller than, nuclear density. In the chiral limit, the line just remains

second order, and then turns into a first order transition. This point is known as a crit-

ical (end-)point. Its precise location is unknown, and strongly depends on the model in

question. All calculations based on full QCD, either of lattice type or using functional

methods, are so far restricted to the condition T/µq . 1, µq being the quark chemical

potential. where the effects of the sign problem and/or baryons are not too strong. They

all agree that no critical point is found inside this cone. This is also confirmed in model

studies accessible to genuine non-perturbative methods8.

There is, however, no principle necessity for the existence of an endpoint, and models

exist without one. It is hence an open question, whether one exists.

7.5 Nuclear matter

At low temperature, after crossing the gas-liquid transition, a region of nuclear matter is

entered. While in pure QCD the distinction into proton and neutrons is, up to the mass

difference of up and down quarks, meaningless, in real matter neutrons and protons can

transform into each other by the weak interaction. The so-created nuclear matter is stable,

with a free energy of about -16 MeV/nucleon, and the preferred state is hence infinitely

extended nuclear matter. Below the transition, only lumps of not to many nucleons, the

heaviest stable nuclei, are present. It is worthwhile to note that without electromagnetic

repulsion and weak decays, in principle also much heavier nuclei could be stable.

Of course, other hadrons can now be created by hadronic interactions as well, and

may be more stable. At sufficiently large densities, it is a possibility that pions and kaons

8E. g. strong coupling or gauge theories without sign problem, like 2-color QCD or G2 QCD, i. e. QCD

with the gauge group SU(3) replaced by the group SU(2) or the exceptional group G2, respectively.
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can be produced in appreciable number and condense. Whether this happens or not,

and if it happens whether this induces a phase transition, is unknown. One possibility

widely discussed was that possibly even strange matter, where net strangeness is created

by flavor-violating weak interactions, could become more stable than non-strange matter.

Though by now this appears unlikely, it cannot yet be fully excluded.

7.6 High densities

At very high densities, the hadrons again substantially overlap, this time only due to

sheer number. Similar to the case of high temperatures, hard parton exchange reactions

become very important. Hence, once more a localization of partons within a given hadron

is no longer possible. In addition, rescatterings will make individual hadrons no longer

distinguishable, and only collective excitations can again be stable. In this situation, it

appears possible that the physics is dominated by the quarks. Gluon are playing here

a possibly smaller part, as in contrast to finite temperature they do not couple to the

chemical potential, and thus their is no direct increase of their number.

Since quarks are fermions, they can in principle act as fermions in ordinary matter,

and especially form Fermi surfaces. However, it strongly depends on how the strong

interactions are effectively modified by the dense medium, since any long-rang interaction

immediately destabilizes a Fermi surface. But given the necessity of local gauge invariance

and the number of quarks, the effective interaction between quarks may very well be short

range. In fact, it may well be that in a sufficiently dense medium the quarks will become

essentially localized by the Pauli principle, effectively quenching the theory, especially if

crystal-like structures form. The question whether chiral symmetry becomes restored or

not at finite density then becomes a question of details.

Another possibility is that the quarks form colored versions of Cooper pairs, inducing a

version of a superconductor, a color superconductor. Indeed, most model calculations, as

well as perturbative calculations, support such a phenomena. A physical interpretation of

such exotic phases of matter at high baryon densities is, at best, difficult. The problem is

that the nature and structure of the colored fluid can be changed by gauge transformations.

It can therefore serve at most as a picture, and the true physics has to be determined using

gauge-invariant quantities. This is also an important caveat when comparing to model

studies, in which color becomes a global symmetry, e. g. the NJL model. In such models,

color is observable, and therefore states like color superconductors are physical, which is

not the case for QCD.

Asymptotically high densities behave in a very similar fashion as at high temperatures.
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Again, the bulk quantities are determined by hard scatterings, and non-perturbative effects

contribute only sub-leadingly to them. Hence, they are accessible to perturbative calcula-

tions. As in the case of high temperature, this situation is only reached at asymptotically

high densities, and thus in regions where other interactions, like the weak interactions, may

start to play a role. Nonetheless, the pure-QCD limit of very high density is essentially

that of a weakly interacting degenerate Fermi gas of quarks.

In should be noted that in model studies, depending on the details of the model, the

number of possible different phases quickly proliferates, especially if besides the usually as-

sumed amorphous phases also crystalline phases are taken into account. The true situation

for QCD is at the time of writing unknown. Results from non-perturbatively accessible

gauge theories differ strongly, depending on the theory in question. Hence, in contrast

to the high-temperature case, the phase structure at finite density seems to be highly

non-generic.

7.7 Neutron stars

The physical important application of high densities and low temperatures are neutron

stars. Though the typical densities inside a neutron star can be estimated from their size

and mass, it is not clear, which type of phases could be encountered. At the surface and

the outer crust the densities are certainly such that nuclear matter prevails, possible in

different types of spatial structures, e. g. crystals or long-range ordered (so-called pasta

phases). However, closer to the core, the situation becomes less obvious. The various

model studies present a multitude of possible phases at the relevant densities, from purely

nuclear ones over those including other hadrons, markedly strange ones, until pure quark

phases like color superconductors.

So far, the best constraints come from astronomical observations, especially masses,

spin-down rates, cooling rates, sizes and magnetic fields. They all, especially the presence

of two-solar-mass neutron stars, strongly indicate a very stiff equation of state. Such a

large stiffness is mainly found in nuclear phases, or at best nuclear phases with small

contributions from other hadrons. Only in very few models have phases dominated by

quarks and gluons a large stiffness, and are therefore compatible with such heavy neutron

stars. This strongly indicates that the interior of neutron stars, provided QCD itself is

similar to the majority of models, is likely hadronic.

However, only of a small number of neutron stars are all properties known with very

good accuracy. This leaves open the possibility that several distinct types of neutron stars

exist, which, depending on parameters like size-to-mass ratio or perhaps initial conditions,
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could have differing internal structures. Particularly, it may be that besides the heavy

neutron stars with a nuclear structure lighter neutron stars could exist with a predomi-

nantly strange hadron core (strange stars), or stars with a core and large part of the crust

dominated by quark and gluons (quark stars).

Within the next few years, possibly as early as 2017, a new source of information will

become available on neutron stars. Depending on the relative frequency of neutron star

binaries then first neutron star mergers can be detected with the then available gravita-

tional wave detectors. Already about 40 mergers will be sufficient to determine further

properties, like the bulk modulus, of the interior matter of neutron stars, with ever in-

creasing precision the more detected. This should further constrain the type of matter

encountered.

7.8 Heavy-ion collisions

Besides astronomical observations, an experimental possibility to investigate the QCD

phase diagram are collisions with heavy ions. The higher and more central, i. e. head-on,

the collisions are, the higher the temperature of the so-created medium. At the same time,

the large amount of energy will create a large amount of both baryons and anti-baryons,

washing out the initial chemical potential to almost zero. On the other hand, low energies

and off-central, or peripheral, collisions, will have a larger chemical potential, and lower

temperature.

Such collisions are non-equilibrium situations. Naively they should not be describable

using equilibrium physics, i. e. thermodynamics. Fortunately, the systems seem to equi-

librate very quickly, in about less than a tenth of the collision time, and many features

of low-energy particles are well described both with thermodynamics and also hydrody-

namics. Many features of high-energetic particles are accessible to perturbation theory

in a medium. Still, a full description from QCD is so far not possible, and most models,

as well as semi-classical transport theory, can only describe part of the experimental ob-

servations. In many cases, the interpretation of various experimental observables are still

under debate.

Still, the results strongly support a rapid transition into a very different medium at high

temperatures and low chemical potentials. At larger chemical potentials, the temperatures

still remain rather high, and it is not clear whether it could be possible to reach at least

as low temperatures as encountered in supernovas, lest in neutron stars. Also, there is not

yet any statistically reliable and unambiguous signal which would decide the presence of

a critical point.
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The problems arise mainly because all the observations are rather indirect. Instead

of probing the medium directly, the medium first undergoes chemical freezeout, i. e. the

hadrons cease to interact inelastically, and afterwards kinetic freezeout, i. e. also elastic

interactions end, before the results of the initial collision, also called fireball, reach the

detectors. Hence, many steps have to be traced back. An alternative are probes which

do interact with the medium weakly, i. e. electromagnetic probes like photons or W and

Z bosons. They can be detected, but they carry only limited information on the medium

besides changes in the production mechanism. Hence, a full description of a heavy-ion

collision remains one of the serious challenges in many-particle physics, which would go

far beyond the current lecture.

A last interesting remark is the onset of thermodynamic properties of collisions. Origi-

nally, it was anticipated that very high collision energies and large heavy ions, like lead, are

necessary to have enough particles involved for equilibration. More recent results show,

however, that already proton-heavy ion, and partly even very high energetic proton-proton

collisions with production of many soft particles, show thermodynamic behavior, as soon

as there are about 20 or more particles in the final state. A possible explanation is that

the strong increase of partons at low x effectively makes the protons already a medium,

and when probed at that small x the result is rather a probe of a QCD medium, rather

than of individual partons. The details of this are also open questions.
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Down quark, 8

Up quark, 8

Elitzur’s theorem, 144, 164

Energy transfer, 3

ηb, 16

ηc, 15

η meson, 11

η′ meson, 11

Euler constant, 76

Even, 24

Exclusive process, 183

Exotics, 13

f0(500), 12

f(1500), 13

Factorization, 182, 190

DIS scheme, 195

MS scheme, 195

Scale, 184, 194

Scheme, 195

Violation, 183

Faddeev equation, 97, 123

Faddeev-Popov

Determinant, 30

Operator, 30, 40

Fermi motion, 4

Feynman gauge, 31

Feynman propagator, 58

Feynman rules, 62

QCD, 63

Field-strength tensor

Yang-Mills theory, 36

Fireball, 217

Flavor, 38

Flavor symmetry, 11

Fragmentation function, 183

Free energy, 92

Freezeout

Chemical, 217

Kinetic, 217

FRG, 100

Full correlation function, 64

Functional

Functional δ-function, 28

Derivative, 20
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Integral, 21

Power series, 21

Substitution, 22

Functional renormalization group, 100

Fundamental modular domain, 163

Fundamental representation, 33

γ5, 103

Gap equation, 114

Gauge

Condition, 28, 40

Copy, 28

Orbit, 28

Parameter, 31, 40

Transformation, 28

Gauge field, 35

Large, 158

Quarks, 38

Gaussian integral, 21

Grassmann, 26

Gell-Mann matrices, 33

Gell-Mann-Oaks-Renner relation, 107

Generator, 31

Ghost number, 46

Ghosts, 41

Ginsparg-Wilson fermions, 90

Glueball, 13

Gluon, 1, 10

Condensate, 82

GMO relation, 107

Goldberger-Treiman relation, 173

Goldstone

Boson, 106

Mode, 109

Theorem, 106

Grassmann

Derivative, 25

Integration, 26

Number, 24

Parity, 43

Grassmann-even, 24

Grassmann-odd, 24

Green, 9

Green’s function, 56

Gribov

Copy, 158

Horizon, 160

Region, 160

First, 159

Gribov-Singer ambiguity, 158

Gribov-Stingl propagator, 152

Ground state, 118

Group, 32

Element, 32

Theory, 31

Haag’s theorem, 180

Hadron, 1, 5

Hadronic molecule, 118

Hagedorn

Spectrum, 11

Temperature, 11, 204

Hartree approximation, 112

Heavy-ion collisions, 205, 216

Heavy-quark effective theory, 83

Hidden charm, 14

Hidden symmetry, 106, 108

High-temperature expansion, 208

Higher twist, 189

Hirschfeld gauge, 164

HQET, 83

Hybrid, 13

Hypernuclei, 11

Hyperon, 11
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Inclusive process, 182

Index theorem, 178

Inelastic threshold, 119

Infrared slavery, 156

Initial-state radiation, 184

Instanton, 124, 125

Isospin, 6

Quark, 8

ISR, 184

J/Ψ, 15

Jacobi identity, 31

Jet, 190

Kaon, 10

κ(600), 117

Kugo-Ojima construction, 156

ΛQCD, 78

Landau gauge, 28, 31, 40, 41

Absolute, 162

Minimal, 162

Landau pole, 79

Large Nc limit, 179

Leading twist, 189

Leibnitz rule

Grassmann function, 25

Levi-Civita tensor, 32

Lie algebra, 31

Linde problem, 212

Linear-σ model, 52, 105

Free energy, 208

Thermodynamics, 207

Link, 88

Liquid-gas nuclear transition, 202

Llewellyn-Smith sum-rule, 190

Mandelstam variables, 181

Mass

Quarks, 39

Mass gap, 118

Mass matrix, 109

Maxwell theory, 27

Mean-field approximation, 113, 208

Meson, 5

Mixing, 12, 117

Moduli, 139

Space, 139

Momentum transfer, 3, 185

Monopole, 142

Monte-Carlo generator, 198

Nakanishi-Lautrup field, 41

Nambu-Jona-Lasinio model, 112

Negative-norm states, 45

Neutron, 1

Quark structure, 8

Neutron star, 201, 215

Nielsen-Niomiya theorem, 90

NJL model, 112

Nuclear matter, 213

Nuclear potential, 199

Nuclei, 1

Nucleon, 1

Nucleon-meson model, 200

Nucleosynthesis, 205

Odd, 24

ω meson, 5

One-particle irreducibility, 65

OPE, 81

Open beauty, 16

Open charm, 14

Operator-product expansion, 81

Out state, 48
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OZI suppression, 15

Parity splitting, 104

Partition function, 20

Parton, 7, 182

Parton density function

Parton, 187

Parton distribution function

Electron, 184

Pasta phase, 215

Path integral, 18, 20

Pauli matrices, 32

PCAC, 173

PDF, 187

Pentaquark, 12

Perimeter law, 146

Perturbation theory, 55

Phase shift, 120

φ4 model, 52

Physical state space, 45

π, 5

Quark structure, 8

2γ decay, 173

Plaquette, 88

Pole mass, 153

Pomeron, 191

Positivity violation, 154

Proper correlation function, 65

Proton, 1

Quark structure, 8

Pseudo-rapidity, 185

Pseudo-scalar density, 169

ψ(2S), 15

QCD, 1, 10

Lagrangian, 39

QCD-like theory, 144

QED, 31

Quantumchromodynamics, 1, 10

Quark, 1, 7

Condensate, 82

Flavors, 11

Model, 7

Star, 216

Quark-meson model, 200

Quarkonia, 16

Quartet mechanism, 50

Quenched approximation, 91

R ratio, 183

Radiative corrections, 66

Rainbow truncation, 114

Rainbow-ladder truncation, 123

Rapidity, 185

Reconstruction theorem, 87

Red, 9

Regge trajectory, 149

Regularization, 66

Cutoff, 68

Dimensional, 74

Heat kernel, 176

Regulator, 100

Scale, 100

Renormalization, 66

Composite operators, 77

Coupling, 71

Mass, 69

Multiplicative, 71

Wave-function, 71

Renormalization scale, 73

Renormalization scheme, 66, 69, 73

MS, 76

MS, 76

Pole scheme, 72
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Renormalization-group improvement, 99

Residual gauge orbit, 159

Resonance, 118, 119

Resummation, 68

ρ meson, 5

Rigid identity, 51

Running, 66, 74

Coupling, 78

s, 11

s-channel, 182

S-matrix, 56

Scale, 78

Scaling violation, 7, 187

Scattering state, 118

Schwinger function, 147, 151

Screening mass, 153

Sea quark, 188

Self-duality, 134

Semi-inclusive process, 183

Shadowing, 196

σ meson, 12, 117

Silver-blaze feature, 203

Slavnov-Taylor identity, 51

Source, 23

Spectral function, 155

Spin crisis, 85, 197

Splitting function, 189

Spontaneous symmetry breaking

Restoration, 209

Stability group, 109

Stefan-Boltzmann gas, 204

Free energy, 206

Stochastic quantization, 161

Strange

Matter, 214

Quark, 11

Star, 216

Strangeness, 11

String, 145

Breaking, 150

Tension, 145

Intermediate, 150

Strong CP problem, 141

Strong nuclear force, 1

Strong-coupling expansion, 147

Strong-coupling limit, 145

Structure constant, 31

Structure function, 186

su(2) algebra, 32

SU(2) group, 32

su(3) algebra, 33

Sum rule, 84, 188

Symmetric configuration, 99

Symmetry breaking

Explicit, 107

Spontaneous, 106, 108, 165

t, 16

t-channel, 182

Tachyon, 105

Tadpole diagram, 67

Tetraquark, 12

Operator, 118

Thermodynamic bulk quantities, 205

θ vacuum, 140

Thomson limit, 72

Time evolution operator, 56

Time ordering, 56

Top quark, 16

Topological

Charge, 134

Excitation, 124

Term, 141
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Toponium, 17

Transition matrix element, 55

Transverse momentum, 192

Tree-level, 65

Truncation, 96, 101

Truth, 16

Twist, 189

u, 7

u-channel, 182

Up quark, 7

Vacuum expectation value, 106

Vacuum-to-vacuum transition amplitude,

56

Valence particle, 124

Valence quark, 188

Vector meson, 5

Vector quarkonia, 183

Vertex function, 65

Generating functional, 93

Vertex functional, 110

VEV, 106

Vortex, 142

Ward identity

Anomalous, 174

Axial, 171

Vector, 171

Ward-Takahashi identity, 51

Wick rotation, 125

Wilson coefficient, 82

Wilson confinement criterion, 146

Wilson line, 146

Wilson potential, 146

QCD, 145

QED, 147

Winding number, 133

WKB approximation, 124

X meson, 15

Y meson, 15

Yang-Mills theory, 35

Υ, 16

Yukawa model, 67

Yukawa potential, 4

Z meson, 15

Zero-norm state, 47

Zwanziger Lagrangian, 161

Zweig rule, 15


