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Abstract

While discussing the Gibrov-Zwanziger scenario and fixing to landau gauge, it is indeed
possible to resolve the eigenvalue equation of the Faddev-Popov-operator, by restricting to
the region of first Gibrov horizon. To perform this task, the approach of variation should be
considered and examined if it could provide a valid approximation for the eigenkets, respect
the eigenvalues, for this problem.

Starting with a compact introduction to gauge- and Yang-Mills-theory, this thesis con-
tinues with outlining the Faddev-Popov-equation and the related variables, as well as struc-
tural properties. Following the procedure of variation in theory, a first attempt to solve the
equation approximately will be performed. After obtaining this approximate eigenket and
eigenvalue, the initial trail ansatz will be analysed in a manner of qualitative improvement,
until a promising candidate will be found.

Also, if this thesis, could not prove the qualitative enhancement of the most auspicious
trial ansatz, there are hints for a sufficient improvement compared to the initial one. More-
over, demonstrating the approximate solubility of the Faddev-Popov-equation by variational
approach will conclude this bachelor thesis.
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1 Introduction into gauge theories

Since the Faddev-Popov-problem sensitively relays on selecting a suitable choice of gauge condition,
it is essential to introduce and classify the concept of gauge theories in the first place, so the actual
problem can be formulated.

Talking about gauge theories, it is substantial to discuss different types of gauge invariances:
Occurring as ’global’ or ’local’ theories, it is fundamental to distinguish between these two types
for the following sections. To make this more illustrative a double-slit-system should be considered.
As expected, an interference pattern can be observed on a screen located at the back of the slit, after
an electromagnetic source is switched on in front of the slits. If someone decides to insert an optical
half-wave plate into the aperture, after the double slit and covering both slits sufficiently, there will
not be any change of the interference pattern. The pattern, or more physically spoken the phase
difference δp of the emitted waves (described as ϕ1 and ϕ2) from the slits, stays unchanged if the
plate covers both slits. This is an example of a global invariance related to the considered system.
In general, this describes a change of a property being constant and therefore independent in
space and time, not affecting an observable. So, everything within the system changes everywhere
instantaneously in the same way.

In contrast to this, local gauge invariance is much more restrictive. For instance inserting the
half-wave plate in a way, covering only one slit, the interference pattern would be changed due to a
difference in δp. Hence this system fails to describe local phase invariance, because the observable
property is altered. A local invariance describes a change of a property, depending on space and
time, which does not affect the observable within a certain system.

Both kinds have far-reaching effects on classical and quantum-mechanical theories in physics,
although they are not altering physical fields.[1] [2]

1.1 General Introduction with respect to electrodynamics

To introduce gauge theory, it is convenient to start with the theory of electromagnetism, since it
is well understood and demonstrative. We shall start with the fundamentally important equations
of electromagnetism, known as the Maxwell equations:

∇ · E⃗ = ρem (1)

∇× E⃗ = −∂B⃗

∂t
(2)

∇ · B⃗ = 0 (3)

∇× B⃗ = ⃗jem +
∂E⃗

∂t
(4)
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Where E⃗ and B⃗ are the observable quantities, respectively the electric and the magnetic field
strength. ρem and ⃗jem describe the electric charge- and the current-density. A much more common
way to express E⃗ and B⃗, also referring to special relativity, is to introduce a three-dimensional
vector potential ⃗AEM (this shall not be mistaken with the potential introduced with the Faddev-

Popov-problem) and a scalar potential V . In terms of these potentials E⃗ and B⃗ are defined by the
following expressions:

B⃗ = ∇× ⃗AEM (5)

E⃗ = −∇V − ∂ ⃗AEM

∂t
(6)

One might have noticed that the physical fields remain unchanged after applying certain transfor-
mations to ⃗AEM and V . These transformations are well defined and called gauge transformations.
⃗AEM should transform like

⃗AEM −→ ⃗AEM

′

= ⃗AEM +∇χ (7)

and for V :

V −→ V ′ = V − ∂χ

∂t
(8)

Where χ is a arbitrary function, depending on space and time. Introducing a relativistic four-

dimensional vector potential
˜⃗
Aµ containing AEM and V and a four dimensional partial derivation

operator ∂µ the transformations (7) and (8) could be rewritten in a more compact form:

˜⃗
Aµ = ( ⃗AEM , V ) (9)

∂µ = (
∂

∂t
,∇) (10)

˜⃗
Aµ −→ ˜⃗

A′

µ =
˜⃗
Aµ + ∂µχ (11)

This gauge transformation applies to the non-quantum-mechanic, but relativistic theory of elec-
tromagnetism. Starting form this basis, it is indeed possible to continue in the waters of quantum
mechanics. [1][2]

1.2 Quantum mechanical approach with respect to electrodynamics

Since electromagnetism enters quantum mechanics, it is obviously a well suited guinea pig for
examining the effects of gauge transformations regarding to quantum mechanics. Continuing with
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the expressions of the last chapter the Schrödinger equation with the solution function ϕ(x, t) of a

charged particle (with q representing the charge) in terms of ⃗AEM and V is given by:

(

1

2m
(−i∇− q ⃗AEM)2 + qV

)

ϕ(x, t) = i
∂ϕ(x, t)

∂t
(12)

Applying the transformations from the previous section respect to ⃗AEM and V , also the equation
changes due to the gauge properties. These transformations also effects the solution function
ϕ(x, t), which is now called ϕ(x, t)′ with respect to the transformed potentials.

(

1

2m
(−i∇− q ⃗AEM

′

)2 + qV ′

)

ϕ′(x, t) = i
∂ϕ′(x, t)

∂t
(13)

Solving the gauge transformed equation ϕ′(x, t), the initial solution times a space and time depen-
dent phase factor, solves the altered equation ( e.g. for local-gauge-invariance).

ϕ′(x, t) = eiqχ(x,t)ϕ(x, t) (14)

The function χ(x, t), appearing within the face factor, is the same expression occurring at the
gauge transformations, applied to the initial Schrodinger equation. Therefore, performing a gauge
transformation like (7) and (8) also alters the solution function of the Schrodinger equation, so a
third gauge transformation shall be added:

ϕ(x, t) −→ ϕ′(x, t) = eiqχ(x,t)ϕ(x, t) (15)

Inserting this result into the initial equation, the Schrodinger equation does not change, by per-
forming the mentioned gauge transformations, at all. This phenomena is called gauge-covariance
(comparison between (12) and (13).

Like in the previous section it is common to introduce a four dimensional vector potential
˜⃗
Aµ and a

four dimensional derivation operator ∂µ. For the quantum mechanical chase a further operator Dµ

will be created. This operator is gauge invariant by definition (with respect to the transformations
(7) and (8)).

Dµ = ∂µ + iq
˜⃗
Aµ (16)

This expression is fundamentally important for Abelian gauge theory like quantum electrodynamics
and has a an analogy in non-Abelian gauge theory like the strong and weak interaction theory.
[1][2]
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2 Brief introduction into SU(2) Yang Mills Theory

After examining gauge theories, one related gauge concept of particular importance, not only for
the Faddev-Poppov-problem, but also for the entire field of particle physics, respectively for the
standard model of particle physics itself, will be addressed below.

2.1 Introducing Yang-Mills Theory

First introduced by Chen Ning Yang and Robert Laurence Mills in the mid 1950s, Yang-Mills-
gauge-theory is considered as the keystone of the standard model of particle physics. It is fun-
damentally important to describe strong and electroweak interactions, depending on the chosen
gauge algebra (see also [3] and [2]). The key finding originally postulated by Yang and Mills was
to assume local gauge invariances within non-Abelian gauge theories (e. g. SU(2)- or SU(3)-gauge
algebra). Therefore the concept shall be briefly illustrated on the basis of SU(2)-Yang-Mills-theory.
[2][3]

2.2 Special Conditions of SU(2)

Starting with the global invariance of a single wave function ϕ,

ϕ′ = eiχϕ (17)

where this shall not be mistaken with the local invariance of the phase factor in (15). By considering
multiple states this leads to a non-Abelian theory:

The suspicion of proton and neutron being not entirely independent states, but energy-degenerated
states with the same energy, neglecting electromagnetic interactions, gave the decisive impulse to
assume that each state could be constructed by linearly combining the state of the proton (ϕp)
and the state of the neutron (ϕn) with some complex coefficients (α, β, γ, δ).

ϕp −→ ϕ′

p = αϕp + βϕn (18)

ϕn −→ ϕ′

n = γϕp + δϕn (19)

These new states satisfy both corresponding Schrödinger equations by construction. Therefore it
is indeed possible to consider the neutron and the proton state as components of a state-vector.
(Commonly introduced as ϕ⃗ 1

2

, caused by the fact of being a 1
2
-spin-system)

ϕ⃗ 1

2

=

(

ϕp

ϕn

)

−→
(

ϕ′

p

ϕ′

n

)

=

(

αϕp + βϕn

γϕp + δϕn

)

=

(

α β

γ δ

)

ϕ⃗ 1

2

= Vϕ⃗ 1

2

(20)
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Since the normalisation of ϕ⃗ 1

2

has to be preserved when transforming it to ϕ⃗ 1

2

′

, unitarity is required

for V. In order to rewrite (20) analog to (17) additionally Det[V] = 1 is required:

ϕ⃗ 1

2

′

=

(

eiχϕp

eiχϕn

)

= eiχ1

(

ϕp

ϕn

)

= V

(

ϕp

ϕn

)

(21)

Consecutively V = eiχ1, where 1 is the 2x2 identity matrix. In conclusion V is required to be
unitary (’U’), with the special property Det[V] = 1 (’S’) and finally being a 2x2-matrix (’2’).
Therefore it is quit useful to combine these characteristic within a new class of matrix, namely
’SU(2)’, respectively with adding the simple matrix multiplication as combination law, to a ’SU(2)’-
algebra.

This algebraic structure can be reformulated by deriving the infinitesimal transformation of V to:

V = eiα⃗
τ

2 (22)

where the components of α⃗ are constant and real, by analogy to the phase-factor χ in the one-
dimensional case, while τ represent the so called pauli-matrices:

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i

i 0

)

, τ3 =

(

1 0
0 −1

)

(23)

2.3 Arrival at local non-Abelian gauge theory in SU(2)

Indeed (23) forms a non-Abelian gauge algebra, but still a global one. In order to introduce a local
gauge theory,(22) shall be space (represented by x) and time (represented by t) independent.

V = eiα⃗(x,t)
τ

2 (24)

Therefore conveying the transformation for ϕ⃗ 1

2

like:

ϕ⃗ 1

2

−→ ϕ⃗ 1

2

′

= eiα⃗(x,t)
τ

2 ϕ⃗ 1

2

(25)

Finally, this describes Yang-Mills-Theory in SU(2). [1],[2] Although this breve introduction follows
a more technical path, postulating (25), leads to far-reaching effects in particle physics originally
illustrated (in [4]) by Chen Ning Yang and Robert Laurence Mills with the following example:

The differentiation between a neutron and a proton is then a purely arbitrary process. As usually

conceived, however, this arbitrariness is subject to the following limitation: once one chooses what

to call a proton, what a neutron, at one space-time point, one is then not free to make any choices

at other space-time points.
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3 Description of the Faddev-Popov-operator, appropriate

gauge fixing and calculation related space transforma-

tions

3.1 Transformation to Euclidean 4D-space-time

The Faddev-Popov-operator initially acts within the so called Minkowski space. This concept
describes a four-dimensional space time with real space (x1, x2, x3) and time tc (c is the speed of
light in the vacuum) axis with a certain kind of norm:

|x| =
√

x2
1 + x2

2 + x2
3 − (ct)2 (26)

This leads clearly not to a space with Euclidean metric. To avoid complications at the further
calculations, a so called Wick rotation is performed. While every space component xi stays un-
touched, the rotation t −→ −it is performed to rotate the imaginary axis of the complex plain into
the real axis. As consequence the time axis is now imaginary and the Euclidean metric:

d = |x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (ctx − cty)2 (27)

can be applied, describing the same physics after a back transformation after finishing the de-
manded calculations, which will be performed within a four dimensional Euclidean space. Here
the index of t denotes the dependence to the space-time-point (x1, x2, x3, tx) or (y1, y2, y3, ty) [5]

3.2 Description of the terms and variables of the Faddev-Popov-operator,
regarding to its structure and the concrete problem

To gain further insights to the underling theory, it shall be referred to [3] and [6].

Starting with the so called Gibrov-Zwanziger scenario, a local gauge condition will be introduced,
more precisely the Landau gauge (introduced within the next subchapter). This resolves the
Gibrov-Singer ambiguity by selection of one representative of the gauge orbit, which describes the
history in the four-dimensional space of every component of A⃗µ. As following step, the considered
region should be restricted to the first Gibrov horizon (which also includes perturbation theory).
Within this boundary the eigenvalues of the Faddev-Poppov-operator (displayed below) are strictly
positive semi-definite and approaching zero at the horizon. By crossing it, the eigenvalues become
negative.

Mab = −∂µ(∂µδ
ab + gfabcAc

µ) (28)

This expression can be inserted to its eigenvalue equation, with the eigenvalue ω2 and its eigenstate
of every component Φ (obeying Einstein‘s sum convention a, b and c reaching form one to three):
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MabΦb = −(∂2
µδ

ab + ∂µgf
abcAc

µ)Φ
b = ω2Φa (29)

At first ∂µ is taken into account. Since the entire problem underlies the Euclidean four-dimensional
space time, the derivation operator is introduced after selecting a coordinate system.

Due to avoid unnecessary complexity within the calculation a set of two polar coordinates (instead
of four-dimensional hyperspherical coordinates) is introduced:

rµ =









x

y

z

t









=









r cos θ
r sin θ
ρ cos η
ρ sin η









(30)

Consecutively the partial derivative can be illustrated as four-dimensional nabla-operator. Using
this information, the four-dimensional Laplacian can be derived to:

∂2
µ =

1

r
∂rr∂r +

1

r2
∂2
θ +

1

ρ
∂ρρ∂ρ +

1

ρ2
∂2
η (31)

The remaining constants are g describing the gauge coupling and fabc is the structure constant of
the gauge group of SU(2) in equation (29). The remaining δa,b is a common Kronecker-δ.

The eigenstate of every component represents the wave function of the corresponding color com-
ponent, each a scalar-value function, coincided as:

Φ⃗ =





Φ1

Φ2

Φ3



 (32)

Like the eigenstate, also the potential A⃗ has three components, each for every color. However,
every component of the potential is vector-valued by itself, being a topological field in the four-
dimensional space (denoted with the subscript µ).

A⃗ =





A1
µ

A2
µ

A3
µ



 (33)

3.3 Landau gauge condition

Since the considered problem includes, inter alia, a perturbational approach and relays on gauge
fixing, it is important to select an appropriate gauge condition (the so called gauge fixing process),
though it shall be a local one, considering this case. The most suitable candidate is the Landau
Gauge condition:
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∂µA⃗a
µ = 0 (34)

Even though other covariant gauge constraints could provide a still working condition, Landau
gauge provides some additional advantages, which should be mentioned, but due to their com-
plexity, no discussed in further detail. At first, the so called renormalisation appears in its most
simple form, compared to other gauge theories. Further Landau gauge is also less complicated,
when it comes to problems related to manifest-covariance. Finally, the so called transverse and
longitudinal tensors occur less coupled within this gauge constraint. Additional and more profound
information about the benefits of landau gauge can be found within the source of this chapter [6],
[3].

3.4 Formulating the aim of this thesis

After performing a wick transformation and defining the Faddev-Popov-operator in the corre-
sponding space (the Euclidean space time and the so called color space regarding to the vector
potential) and choosing the appropriate gauge condition, the actual purpose for this project can be
formulated: The aim of this thesis is to find an approximation for eigenkets and eigenvalues of the
Faddev-Popov-operator, passing the first Gibrov-horizon. Furthermore this approximation shall be
further improved and examined, if the variational approach (introduced in the following chapter)
provides a sufficiently valid approximation method for the Faddev-Popov-eigenvalue-equation.

Moreover, most of the more sophisticated analytical tasks of this project and also figure (1) were
performed with the use of the ’Mathematica’-software from wolfram.

4 Introducing the variational method

As sophisticated quantumechanical problems easily approach the horizon of exact analytical solu-
tions, different approximation techniques become more important. Among them, the variational
approach, relaying on educated guessing and the experience of the user, is a common way to han-
dle such difficulties. It exploits the fact that a basis |i⟩ of a part of the actual Hamiltonian H

describes the entire Hilbertspace in the same manner the actual basis |Ei⟩ would provide a valid
description of the same Hilbertspace. (In fact, it is not necessarily demanded to be a part of the
initial Hamilton-operator, if its basis still describes the entire Hilbertspace) Since this property
is fulfilled for every element of the basis |i⟩, it is possible to rewrite every element by using the
projector in terms of |Ei⟩.

|i⟩ =
∑

i

⟨Ei||Ei⟩|i⟩ (35)

Starting with the first ket of the partial basis |0⟩, acting on the full Hamiltonian, a first ap-
proximation for a upper energy threshold e0 for the groundsate energy of the full Hamiltonian is
found.
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e0 =
⟨0|H|0⟩
⟨0||0⟩ ≥ E0 (36)

This provides a first approximation with the ket |0⟩ and the approximate eigenvalue e0. To improve
this approximation further, since |i⟩ only contains parts of the actual |Ei⟩, as long it is not the
exact solution, the basis elements |i⟩ have to depend on further variational parameters. So |i⟩
becomes |i(λ⃗i)⟩. Therefore every ’trial solution’ ket can be further adapted to solve the actual

problem, by minimization respect to every λ⃗i:

∂λ⃗i
= 0 (37)

Depending on the number and structure of these parameters occurring in |i(λ⃗i)⟩ higher derivatives
might be necessary to determine whether the extremum is a minimum or not. After a certain level
of approximation has been reached, the next element of the basis |j(λ⃗j)⟩ can be applied to the

projection in terms of |E− i⟩. Because every used |i(λ⃗i)⟩ is only an approximation for the real |Ei⟩
and there are still parts of |Ei⟩ among the other |E − i⟩, it is indeed possible to find kets |j(λ⃗j)⟩
with j > 0 leading to a lower energy threshold:

ej > e0 (38)

Therefore |j(λ⃗j)⟩ becomes the new |0(λ⃗0)⟩, likewise ej becomes the new e0

To make statements about the quality of a certain trial ket, it is a common procedure to apply
this ket and its eigenvalue to the actual eigenvalue equation. As following step the left side of the
equation will be subtracted from the right side. After squaring this expression and integrating
it (if necessary, over the entire space), a cost function, depending on the variational parameters,
remains.

Arriving at the actual problem of this thesis the variational approach seems to be a suited approx-
imation method for the eigenvalue equation of the Faddev-Poppv-operator, since finding bounded
states of the operator is the main interest. In terms of variation, this breaks down to finding a trial
solution with a negative energy threshold, because the actual groundstate will be even lower than
the approximation (by construction). As mentioned before, a trial ket has to be chosen. Therefore,
a trial ansatz for a ket shall be found, fulfilling the condition of a bounded sate.

However, there are also other variable properties within the equation, like the vector potential A⃗.
It can be constructed arbitrary, while obeying the gauge constraint of landau gauge.[7]

5 Ansatz for trail eigenstate

For complexity reasons, the vector potential only has one non-vanishing color component (more
information at chapter 6). To prevent too technically complex structures, the ansatz for the trial

solution Φ⃗start itself contains only a view none vanishing contributions. However, the combination
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of the ansatz and the vector potential must lead to reasonable output for the eigenvalue problem.
Obeying this guidelines, only the last component of the trial solution equals zero.

Φ⃗start =







(rρ)2 · e−
r2+ρ2

b2 · cos (θ)
−(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0






(39)

In order to normalize the ansatz a four-dimensional integral N has to be performed along every
degree of freedom.

N =

∫

∞

0

∫

∞

0

∫ 2π

0

∫ 2π

0

Φ⃗start · Φ⃗∗

startrρ drdρdηdθ =
π2b8

16
(40)

Finally, the normalisation yields to the following expression:

Φ⃗ =
Φ⃗start√

N
=







4
πb4

(rρ)2e−
r2+ρ2

b2 · cos (θ)
− 4

πb4
(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0






(41)

6 Ansatz for a trial vector-potential

In order to avoid unnecessary complex behaviour within the following calculations, the vector
potential is chosen to have only components along one color component. Every component of
A⃗ has four dimensions itself. Taking the previous statement into account the vector potential is
chosen by:

A⃗ =
B

g
·







0⃗

0⃗

e⃗θ · e−
r2

b2






(42)

7 Prove of none-vanishing action

Although the vector potential has non-vanishing terms, one must examine if this particular con-
figuration has an actual action. This ensures A⃗ is not just a gauge-transformed version of the
vacuum. Therefore, the action integral S non-Abelian version of the field-tensor, linked with the
potential, is performed. Consecutively A will be inserted in the following non-Abelian expression
to construct the field-tensor.

F a
νµ = ∂2

µA
a
ν − ∂2

νA
a
µ + gfabcAb

µA
c
ν (43)
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Due to the structure of the vector potential, only the first two terms contribute to the tensor:

F 3
νµ = ∂2

µA
3
ν − ∂2

νA
3
µ (44)

Plugging in the corresponding components of the potential and performing the derivatives F 3
νµ

results in:

F 3
µν = δµθδνr2

2Br

b2g
e−

r2+ρ2

b2 − δνθδµr
2Br

b2g
e−

r2+ρ2

b2 + δµθδνρ2
2Bρ

b2g
e−

r2+ρ2

b2 − δνθδµρ
2Bρ

b2g
e−

r2+ρ2

b2 (45)

Finally, the field-tensor (containing three components by itself) in the color space appears to be:

F⃗µν =













0
0

δµθδνr2
2Br
b2g

e−
r2+ρ2

b2 − δνθδµr
2Br
b2g

e−
r2+ρ2

b2 +

δµθδνρ2
2Bρ
b2g

e−
r2+ρ2

b2 − δνθδµρ
2Bρ
b2g

e−
r2+ρ2

b2













(46)

Where 0 describes a µ × ν matrix, filled with zeros. Performing the integration along the entire
four-dimensional space yields to:

S =

∫

∞

0

∫

∞

0

∫ 2π

0

∫ 2π

0

F⃗µνF⃗ µνrρdrdρdηdθ =
B2π2(b2 + π)

g2
(47)

Since the amplitude B and the constant term g, as well as the factor b, appearing in the exponential
term of the trial solution, are non-vanishing, S is neither. Therefore, the case of a potential, being
a gauge transformed version of the vacuum, can be excluded from the further calculations.

8 Determination of an upper energy limit

Starting from the actual eigenvalue equation with the eigenket Φ⃗solution;

MabΦb
solution = ω2Φa

solution (48)

the actual solution Φ⃗solution will be replaced by the trial ansatz to:

Φ⃗solution −→ Φ⃗ =







4
πb4

(rρ)2e−
r2+ρ2

b2 · cos (θ)
− 4

πb4
(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0






(49)
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Applying this replacement to the eigenvalue equation and multiplying the equation by ϕa from the
left side yields to:

ΦaMabΦb = ΦaEborderΦ
a (50)

Where ω2 is replaced by the upper energy threshold Eborder, since Φ⃗ represents the first trial ansatz
(in analogy to |0⟩ in chapter 4). Since (41) has been normalized, it is possible to find a expression
for Eborder:

Eborder = ΦaMabΦb (51)

Formulating this in a less compact way, (51) yields to the following integration:

Eborder =
B

N

∫

∞

0

∫

∞

0

∫ 2π

0

∫ 2π

0







(rρ)2 · e−
r2+ρ2

b2 · cos (θ)
− (rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0







T

·







∂2
µ((rρ)

2 · e−
r2+ρ2

b2 · cos (θ))
−∂2

µ((rρ)
2 · e−

r2+ρ2

b2 · sin (θ))
0






+







(rρ)2 · e−
r2+ρ2

b2 · cos (θ)
−(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0







T

·













0⃗

0⃗

(e⃗θ · e−
r2

b2 )






×







∇µ((rρ)
2 · e−

r2+ρ2

b2 · cos (θ))
−∇µ((rρ)

2 · e−
r2+ρ2

b2 · sin (θ))
∇µ(0)












rρdrdρdηdθ

(52)

Referring to the previous expression the gradient only acts on the expressions on its left hand sides,
while the Laplacian effects only the terms in its following brackets.

Eborder =
5

b2
−

8B
√

π
3
|b|5

81b6
(53)

Leading to a variational constraint Eborder < 0 for bounded states:

Eborder =
5

b2
−

8B
√

π
3
|b|5

81b6
< 0 (54)

or expressed in terms of B:

405b4

8|b|5

√

3

π
< B (55)
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9 Minimization of the variational parameters

For simplicity reasons b is set to b = 1. To achieve bounded sates Eborder < 0 must be satisfied,
leading to the following constraint for B:

405

8

√

3

π
< B (56)

In order to determine the quality of the trial ansatz in terms of solving the actual eigenvalue
problem, the quadratic difference of every component on the left and the right side of the equal
sign has to be considered.

Da = MabΦb − ω2Φa (57)

For clarity reasons the component notation is used, wherein Φa and Φb denote the components
of Φ. Consecutively the integration of the sum of the quadratic differences is performed over the
entire 4d-space. This results in a function F (ω,B), only depending on ω and B. F (ω,B) could be
interpreted as cost or deviation function, depicting the suitability of the ansatz for the particular
problem, compared to other trial solutions.

∫

∞

0

∫

∞

0

∫ 2π

0

∫ 2π

0

((D1)2 + (D2)2 + (D3)2)rρdrdρdηdθ = F (ω,B) (58)

Thus following expression can be found for F (ω,B):

F (ω,B) = 46 +
B2

32
+ (−10 + ω)ω +

16

243
B

√

π

3
(−14 + 3ω) (59)

The minimization of the deviation function F (ω,B) respect to ω results in the following expression:

ωmin =
1

243
(1215− 8B

√
3π) (60)

After checking the second derivative at this point in ω space, ωmin can be identified as a min-
imum. Including the results of equation (54) B can always be chosen to reach bounded sates.

Summarising the first approximate solution of the eigenvalue problem, Φ⃗ and its approximation
for the corresponding eigenvalue has been found for the particular potential configuration A⃗.

Φ⃗ =
Φ⃗start√

N
=







4
πb4

(rρ)2 · e−
r2+ρ2

b2 · cos (θ)
− 4

πb4
(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0






(61)

ωmin =
1

243
(1215− 8B

√
3π) (62)
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Figure 1: Displays the deviation DaDa of the initial ansatz Φ⃗, within the interval r ∈ [0, 7] and ρ ∈ [0, 7]

10 Further improvements of the trial eigenstate based on

the previous calculations

Taking the structure of Φ⃗ (61) into account, the non-vanishing components of the ansatz only
differ by the angular part, respectively by sin (θ) or cos (θ). Since these parts only appear linearly
in D1 and D2 the angular dependencies terminate by consideration of ((D1)2+(D2)2+(D3)2) due
to the identical radial parts (for r and ρ) within every component.

Φr,ρ = (rρ)2e−
r2+ρ2

b2 (63)

Therefore an improvement regarding to the radial dependency of (61) seems to be intuitive.

10.1 Investigations respect to the simple-polynomial behaviour of the
first trial-ansatz Φr,ρ

In further consideration Φr,ρ consists of an exponential term e−
r2+ρ2

b2 and a quadratic power term
(rρ)2. Hence Φr,ρ has a polynomial like behaviour at small radii r and ρ. (See also figure 1).
Therefore, a polynomial behaviour like

n
∑

i=2

(rρ)i (64)

might lead to an overall improvement. A decreasing value of the deviation function F (ωmin, Bvar)
for every added element with corresponding index n should be expected. To examine this the
amplitude B is on the one hand set to be constant (Bconst) and on the other hand chosen to be
variable (Bvar), more precisely, set to a 10% higher amplitude then the minimal required value to
achieve bounded states for a particular index (considered up to index n = 5).

Therefore a decrease of F (ωmin, Bvar) at constant B = Bconst (visual in table 2 and 3) can be
observed with rising indices n and correspondingly more elements of the series (64). However, this
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Table 1: Estimation of the total deviation error F (ωmin, Bvar)n, at variable Bvar

n Bvar ωmin F (ωmin, Bvar)
2 50 -0.5 90
3 85.9779 -0.459963 96.3167
4 154.55 -0.42689 117.63
5 340.241 -0.408875 162.461

Table 2: Estimation of the total deviation errorF (ωmin, Bvar)n, at constant Bconst

n Bconst ωmin F (ωmin, Bvar)n
2 350 -30.4 2620
3 350 -16.0 1210
4 350 -6.37 498
5 350 -0.538 170

Table 3: Estimation of the total deviation error F (ωmin, Bvar)n, at constant Bconst

n Bconst ωmin F (ωmin, Bvar)n
2 750 -70.8 11900
3 750 -39.5 5400
4 750 -18.5 2150
5 750 -5.83 676

only appears to be true at large absolute values of B, due to the increase of the lowest affordable
threshold for B to reach bounded states for every element (displayed in table 1). To conclude an
ansatz in the manner of (64) can be an improvement leading to a decrease of the deviation function
F (ωmin, Bvar) at its minimum, although B has to be large enough to obtain bounded states for
the a certain maximal index n.

10.2 Introduction of a lower-order polynomial with variable coeffi-
cients

Since most of the deviating behaviour takes place at small r and ρ, a lower polynomial ansatz
with variable coefficients might be better suited than the previous trial solution. Starting with the
lowest order polynomial higher than the initial ansatz (61) this yields to

Φr,ρ = (c · (rρ)2 + d · (rρ)3)e−
r2+ρ2

b2 (65)

for the radial part of ϕ⃗. c and d are variable and determined by minimisation process respect to the
deviation function F (ω,B, c, d). Therefore, the total number of variational parameters increases
by two. Starting with (65) this leads to the following expression for Eborder.

Eborder = −
1024

√

π
3
B (6c2 + 10cd+ 5d2)

243 (256c2 + 225πcd+ 576d2)
+

768 (c2 + d2)

5 (256c2 + 225πcd+ 576d2)
+

22

5
(66)

18/ 22



KFU Graz, SS 2023 Maximilian Pfandner

Leading to

243
√

3
π
(640c2 + 495πcd+ 1344d2)

512 (6c2 + 10cd+ 5d2)
< B (67)

for B to achieve a negative maximal energy threshold for bounded states. As assumed earlier at
chapter 10.1, a value for B with 1.1-times of this threshold (left expression in (67)) is used for the
following calculations. Furthermore the expression for the deviation function F (ω,B, c, d) appears
as

F (ω,B, c, d) =
384c2

(

729B2 + 512
√
3πB(3ω − 14) + 23328((ω − 10)ω + 46)

)

34992 (256c2 + 225πcd+ 576d2)
(68)

+
48d2

(

2187B2 + 2048
√
3πB(5ω − 17) + 139968(ω(3ω − 28) + 122)

)

34992 (256c2 + 225πcd+ 576d2)

+
cd

(

19683π (5B2 + 80ω(5ω − 44) + 13824) + 16384
√
3πB(60ω − 197)

)

34992 (256c2 + 225πcd+ 576d2)

In order to minimize the function, the derivatives respect to ω, c and d have to equal zero. Hence
a system of equations with three variables has to be solved.

dF

dω
=

2
(

768c2
(

8
√
3πB + 243(ω − 5)

)

+ 64d2
(

80
√
3πB + 2187(3ω − 14)

)

729 (256c2 + 225πcd+ 576d2)
(69)

+
5cd

(

2048
√
3πB + 6561π(5ω − 22)

)

729 (256c2 + 225πcd+ 576d2)
= 0

dF

dc
= d

(

3359232cd (5B2 − 128(ω − 8)) + 1382400π3/2
√
3B (c2(6ω − 28) + d2(17− 5ω))

2187 (256c2 + 225πcd+ 576d2)2

+ d
65536

√
3πB (c2(788− 240ω) + 24cd(17ω − 92) + 9d2(60ω − 197))

2187 (256c2 + 225πcd+ 576d2)2
(70)
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− d
19683π (8c2 (15B2 − 960ω + 9152) + 3d2 (35B2 + 2560ω − 29312))

2187 (256c2 + 225πcd+ 576d2)2
= 0

dF

dd
= d

(

−3359232cd (5B2 − 128(ω − 8))− 1382400
√
3π3/2B (c2(6ω − 28) + d2(17− 5ω))

2187 (256c2 + 225πcd+ 576d2)2
(71)

+ d
65536

√
3πB (4c2(60ω − 197) + 24cd(92− 17ω) + 9d2(197− 60ω))

2187 (256c2 + 225πcd+ 576d2)2

− d
19683π (8c2 (15B2 − 960ω + 9152) + 3d2 (35B2 + 2560ω − 29312))

2187 (256c2 + 225πcd+ 576d2)2
= 0

Starting with the first equation an expression for ωmin can be found depending on c and d. Inserting
ωmin into the two remaining equations solving a system of two equations with two variables is
performed. In this case the system appears to be under-constrained. Nevertheless, there still is a
possibility to find a certain region for c or d in order to locate a minimum for F (ω,B, c, d). If the
solution point appears to be a minimum in the c − d − ω-Space, the determinate of the Hessian
matrix Det[H(F (ωmin, B, cmin, dmin))] has to be positive. The Hessian matrix (at constant B)
should be defined as:

H(F (ω,B, c, d))i,j,k =
∂

∂i

∂

∂j

∂

∂k
F (ω,B, c, d) (72)

where i, j and k can be ω, c and d. At first, one of the equations is solved respect to c for example.
As the following step the solution cmin(d) will be inserted into
Det[H(F (ωmin(cmin(d), d), B, cmin(d), d))]. In order to reach a minimum, positive definiteness at
this point, has to be satisfied:

Det[H(F (ωmin(cmin(d), d), B, cmin(d), d))] > 0 (73)

Therefore, it might be possible to choose a certain interval for d to satisfy (73). This seems to
be theoretically possible. However, to solve ((70) or (71)) for c respectively d the solution of a
higher order polynomial will be performed. Unfortunately, the computational effort for this task
is beyond the available resources for this project.

11 Results, conclusion and outlook

Applying the variational method to the eigenvalue equation of the Faddev-Popov-operator can
provide an approximate solution, while restricting to the region beyond the first Gibrov-horizon
and obeying the landau gauge condition.
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As first solution attempt, the approximate eigenket Φ⃗ appears to be:

Φ⃗ =
Φ⃗start√

N
=







4
πb4

(rρ)2 · e−
r2+ρ2

b2 · cos (θ)
− 4

πb4
(rρ)2 · e−

r2+ρ2

b2 · sin (θ)
0






(74)

with the corresponding approximation for the eigenvalue ωmin:

ωmin =
1

243
(1215− 8B

√
3π) (75)

Here, the vector potential A⃗ was chosen by:

A⃗ =
B

g
·







0⃗

0⃗

e⃗θ · e−
r2

b2






(76)

While taking (74) into account, hints for a promising improvement have been found, leading to a
serial approach, namely with a polynomial series, with variable coefficients, concerning the radial
parts of Φ⃗. Also if the actual second order trial ansatz (65) could not be performed (due to limited
computational resources) in the scope of the full minimization process, it might be possible to
enhance the quality of the trial eigenket regarding to the eigenvalue equation. Concluding this
insights a ansatz for Φ⃗p like:

Φ⃗p =







4
πb4

∑n
i=2 ci(rρ)

i · e−
r2+ρ2

b2 · cos (θ)
− 4

πb4

∑n
i=2 ci(rρ)

i · e−
r2+ρ2

b2 · sin (θ)
0






(77)

Where ci indicates the variable coefficients, that shall be minimized due to a a cost function like
(59) depending on n+ 2 parameters including B and ω. The parameter n determines the highest
considered order of the series. One might notice that, increasing n is not necessarily useful as
leading to an extraordinary growth in computational effort.

Generally spoken, a polynomial structure like (77) with respect to the radii components of Φ⃗p (also
including the initial ansatz), could provide a good candidate for being a sufficient approximation
for the Faddev-Popov-operator eigenvalue equation, since a broad spectrum of functions could be
approximated by a Taylor-approximation, reflecting a similar polynomial behaviour in r and ρ like
(77).
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