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Path integral and local symmetries
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b
(x)ϕc

( y)⟩

=∫
Ωc

D ϕ
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ϕ
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( y)≠0

● Reduction of integration region by gauge fixing
● Arbitrary choice of coordinates
● Weight factor to keep gauge-invariant quantities the same

Reduced integration range

[Review: Maas’17]
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Quantum gravity: Setting the scene

● QFT setting – no strings or other non-QFT settings
● Diffeomorphism is like a non-standard gauge 

symmetry
● Arbitrary local choices of coordinates do not affect 

observables – pure passive formulation
● Physical observables must be manifestly invariant

● Spin seems to be an observable?
● Spin degeneracies and selection rules due to spin 

conservation
● Global or effective structure

● Particle physics gauge symmetries and global 
symmetries should remain the same
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Gravity as a gauge theory [Hehl et al.’76]

Global
symmetry
is event-
independent

Gauge symmetry
is event-dependent

Internal symmetries act in internal spaces
Global: One internal space
Local: One space at every event
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Dynamical formulation

● Integration variable currently arbitrary choice
● Here: Metric – not relevant at leading order
● Other choices (e.g. vierbein) possible

● Otherwise standard
● E.g. Asymptotic safety for ultraviolet stability

Z=∫
Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

Other fields

Standard gravityStandard gravity
coupling
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Dynamical formulation

0≠⟨O ⟩=∫
Ω
Dgμ νD ϕ

aOeiS [ϕ , e ]+iSEH [e ]

Needs to be invariant
● Locally under Diffeomorphism
● Locally under Lorentz transformation
● Locally under gauge transformation
● Globally under custodial,… transformation
to be non-zero

[Maas’19]
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Space-time structure

● Average metric vanishes:
● Characterization by invariants e.g.

● No preferred events
● Space-time on average homogenous and 

isotropic
● Average space-time is flat or (anti-)de Sitter 

for canonical gravity
● Invariants identify the particular type 

⟨gμ ν(x)⟩=0

⟨∫dd x √det g R (x)⟩

⟨∫dd x√det g⟩
=const

[Maas’19]
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Simpelst object: Scalar

● Consider a scalar particle
● E.g. described by a scalar field
● Completely invariant
● Events not a useful argument

⟨O (x)O( y)⟩=D (x , y)

Argument is the event, not the coordinate

Result depends on events

O(x)
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● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ

dzν
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⟩

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the 
average are equal – probably true
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Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

● Generalization of flat-space arguments

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
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dzμ
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dzν
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[Ambjorn et al.’12, Schaden’15, Maas’19]
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What about cosmology?

● Big bang a preferred event - not possible!

● Description of a universe?

● Originate at same event: Big bang

● Distances between x and yi future time-like

● Distances between yi space-like

● Evolution of a matter/curvature concentration
● Properties measureable

● E.g. size as maximum space-like distance of yi

● Preceived life-time in an eigenframe at one yi

● A universe is a scattering process

⟨O(x)P(x)...Q ( y1)...R( yn)⟩

[Maas et al.’22]
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Fröhlich-Morchio-Strocchi mechanism
● Horrible complicated calculation
● FMS mechanism allows simplification

● Requires: Dominance of a configuration
● Usually: Classical solutions
● Depends on parameters

● FMS prescription:
● Chose a gauge compatible with the desired 

classical behavior
● Split after gauge-fixing fields such that they 

become classical fields plus quantum corrections
● Calculate order-by-order in quantum corrections

● Works very well in particle physics

[Fröhlich et al.’80,’81
 Review: Maas’17]
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FMS in a nutshell
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● Consider the standard model
● Physical spectrum: Observable particles

● Peaks in (experimental) cross-sections
● Higgs, W, Z,... fields depend on the gauge

● Cannot be observable
● Gauge-invariant states are composite

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

[Fröhlich et al.’80,’81
 Review: Maas’17]



Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
[Fröhlich et al.’80,’81
 Maas'12,’17]



1) Formulate gauge-invariant operator

     0+ singlet: ⟨(h + h)(x)(h + h)( y)⟩

[Fröhlich et al.’80,’81
 Maas'12,’17]

Higgs field

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet: ⟨(h + h)(x)(h + h)( y)⟩

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism

h h



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

⟨(h + h)(x)(h + h)( y)⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

⟨(h + h)(x)(h + h)( y)⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+⟨η
+
(x)η( y)⟩ ⟨η +

(x)η( y )⟩+O (g ,λ)

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+⟨η
+
(x)η( y)⟩ ⟨η +

(x)η( y )⟩+O (g ,λ)

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+⟨η
+
(x)η( y)⟩ ⟨η +

(x)η( y )⟩+O (g ,λ)

Bound 
state
mass

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+⟨η
+
(x)η( y)⟩ ⟨η +

(x)η( y )⟩+O (g ,λ)

Bound 
state
mass

2 x Higgs mass:
Scattering state

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+⟨η
+
(x)η( y)⟩ ⟨η +

(x)η( y )⟩+O (g ,λ)

Bound 
state
mass

Higgs
mass

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y)⟩

+⟨η
+
(x)η( y )⟩ ⟨η +

(x)η( y)⟩+O(g ,λ)

Bound 
state
mass

Standard
Perturbation
Theory

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17]

Fröhlich-Morchio-Strocchi Mechanism



⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
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+⟨η
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(x)η( y )⟩+O (g ,λ)

⟨(h + h)(x)(h + h)( y)⟩=v2 ⟨η +
(x)η( y )⟩

+v ⟨η
+

η
2
+η

+2
η⟩+⟨η

+2
η
2
⟩

1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

Deviations

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17
 Maas & Sondenheimer’20
 Dudal et al.’20]
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Flavor

● Flavor has two components
● Global SU(3) generation 
● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable
● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet
● Yukawa terms break custodial symmetry

● Different masses for doublet members
● Can this be true? Lattice test

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]
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Flavor on the lattice
● Only mock-up standard model

● Compressed mass scales
● One generation
● Degenerate leptons and 

neutrinos
● Dirac fermions: left/right-

handed non-degenerate
● Quenched

● Same qualitative outcome

● FMS construction
● Mass defect
● Flavor and custodial 

symmetry patterns
● Supports FMS prediction

[Afferrante,Maas,Sondenheimer,Törek’20]
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Protons

● True for all weakly charged particles

● This includes left-handed quarks!
● Proton is a mix of left-handed and right-handed quarks

● qqq cannot be weakly gauge invariant
● Replacement: qqqh

● FMS: At low energies just the proton
● At high energy: Valence Higgs!
● Will avoid Bloch-Nordsieck violations

● Valence Higgs detectable at LHC?

● Strong couplings to Higgs: tops, weak gauge bosons

[Egger, Maas, Sondenheimer'17
 Fernbach,Lechner,Maas,
 Plätzer,Schöfbeck’20,
 Maas, Reiner’22]
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● In SM physics: Quantitative changes
● Anomalous couplings/form factors
● (Small) differences in various kinematic regimes
● More: See 1701.00182, 1811.03395, 2002.01688, 

2008.07813, 2009.06671, 2204.02756, 2212.08470

● In BSM physics: Sometimes qualitative changes
● Even different spectrum
● Affects viability of BSM Scenarios
● More: See 1709.07477, 1804.04453, 1912.086680, 

2002.08221, 2211.05812, 2211.16937
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Applying FMS to gravity

● Our universe is well-approximated by a 
classical  metric

● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result
● FMS split after (convenient) gauge fixing

●

● Classical part gc is a metric, chosen to give 
exact (observed) curvature

● Quantum part is needed (assumed) small

gμ ν=gμ ν
c

+γμ ν
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Details (and challenges)

● Classical metric needs to be useful
● Should not have special events

● Only flat and (anti-)de Sitter possible
● Should satisfy gauge choice

● Split after gauge-fixing!
● No linear condition possible
● Simple choice: Haywood gauge
● Inverse fluctuation satisfies Dyson equation

● Infinite series at tree-level

gμ ν
∂ν gμρ=0

γ
μ ν

=−(gc)μσ
γσρ((g

c
)
ρν

+γ
ρ ν

)

[Maas et al.’22]
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Distance

● Application to distance between two events
● Yields to leading order classical distance

● Yields at leading-order classical space-time
● Quantum corrections depends on events

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ

dzν

d λ
⟩

=⟨minz∫x

y
d λ gμ ν

c dzμ

d λ

dzν

d λ
⟩+⟨minz∫x

y
d λ γμ ν

dzμ

d λ

dzν

d λ
⟩

=rc(x , y)+⟨minz∫x

y
d λ γμ ν

dzμ

d λ

dzν

d λ
⟩=rc+δr

Classical geodesic
distance

Quantum corrections
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● Double expansion
● Quantum fluctuations in the argument and action
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c
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Propagators

● Double expansion
● Quantum fluctuations in the argument and action
● Consistent with EDT results [Dai’22]
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Propagators

● Double expansion
● Quantum fluctuations in the argument and action
● Consistent with EDT results [Dai’22]

● Reduces to QFT at vanishing gravity
● Higgs and W/Z mass in quantum gravity calculated

⟨O(x)O( y)⟩=Dc(r
c
)

Dc=⟨O(x)O( y)⟩gc

[Maas’19]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

[Maas et al.’22]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

⟨R(x)R( y)⟩

[Maas et al.’22]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

⟨R(x)R( y)⟩=Dμ νρσ
⟨ γμ ν(x)γρσ( y)⟩(d (x , y))+O(γ

3
)

[Maas et al.’22]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

⟨R(x)R( y)⟩=Dμ νρσ
⟨ γμ ν(x)γρσ( y)⟩(d (x , y))+O(γ

3
)

Graviton propagator

Differential operator

[Maas et al.’22]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

● In Minkowski space-time: No 
propagating mode at lowest order

⟨R(x)R( y)⟩=Dμ νρσ
⟨ γμ ν(x)γρσ( y)⟩(d (x , y))+O(γ

3
)

Graviton propagator

Differential operator

[Maas et al.’22]



Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

● In Minkowski space-time: No 
propagating mode at lowest order

● Flat space: Better divergence properties 
[Maas & Sondenheimer’20]

⟨R(x)R( y)⟩=Dμ νρσ
⟨ γμ ν(x)γρσ( y)⟩(d (x , y))+O(γ

3
)

Graviton propagator

Differential operator

[Maas et al.’22]
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● CDT vertex structure can be mapped to 
events
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● Set of coupled equations
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Predictions for CDT

● CDT vertex structure can be mapped to 
events

● Allows reconstruction of metric in a fixed 
gauge on every configuration

● Set of coupled partial differential equations

[Maas ’22,Ambjorn et al.’12]

Space-like hypersurface (“now”): a
Timelike: b

e

i

d (e , i)=b=
gμρ(e)

b

dzμ
d τ

dzρ

d τ

0=
gμ ν

(e)
b

(gνρ(e)−gνρ(i))

Haywood condition
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Predictions for CDT

● CDT vertex structure can be mapped to 
events

● Allows reconstruction of metric in a fixed 
gauge on every configuration

● deSitter structure observed in CDT
● Metric fluctuations per configuration should 

be small compared to de Sitter metric
● Geon propagator should behave as 

contracted metric propagator
● As a function of the geodesic distance

[Maas ’22,Ambjorn et al.’12]



Speculative phenomenology

● Macroscopic gravitational objects need to be build 
in the same way

● Just like neutron stars from QCD

[Maas ’19]
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Views of black holes
Classical picture of a black hole

But this is a special worldline,
determining the full metric!

Not possible in a quantum
expectation value.

Averaging over this!

Need to put a 
black hole
creation operator 
at an event -
but it would still 
be a constant

⟨B(x)R( y)⟩=d (r (x , y))

Need to
correlate with
e.g. curvature

[Picture: NASA,  Maas et al’22]
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Views of black holes
Averaging over this!

⟨B(x)R( y)⟩=dc
(r c(x , y))+quantum

[Maas et al’22]

In FMS: Splitted further

Expansion metric, 
without preferred events

(Small) fluctuations
of the metric

Calculate expansion:

Classical field result
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Speculative phenomenology

● Macroscopic gravitational objects need to be build 
in the same way

● Just like neutron stars from QCD
● Black hole: Two options

● Single operator B(x) without decomposition
● Monolithic, essentially elementary particle
● May have overlap with R(x)

● Product of separate diff-invariant operators
● Hawking radiation as tunneling

● Differing operators for pure (e.g. Schwarzschild) or 
stellar collapse black hole

● Pure: Geon star, similar to neutron star

[Maas ’19]
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Summary

● Full invariance necessary for physical 
observables in path integrals

● FMS mechanism allows estimates of 
quantum effects in a systematic 
expansion

● Gives a new perspective on strong and 
quantum gravity

@axelmaas @axelmaas@sciencemastodon.com
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