Physical Observables In Canonical Quantum Gravity

Axel Maas

$9^{\text {th }}$ of February 2023
 Perimeter, Canada

Online

NAWI Graz
Natural Sciences

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Canonical quantum gravity

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Canonical quantum gravity
- Space-time structure
-What's a universe in quantum gravity?

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Canonical quantum gravity
- Space-time structure
-What's a universe in quantum gravity?
- Particles \& black holes

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Canonical quantum gravity
- Space-time structure
-What's a universe in quantum gravity?
- Particles \& black holes
- Fröhlich-Morchio-Strocchi mechanism
- Emergence of flat-space QFT

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Canonical quantum gravity
- Space-time structure
-What's a universe in quantum gravity?
- Particles \& black holes
- Fröhlich-Morchio-Strocchi mechanism
- Emergence of flat-space QFT
- Connecting to other approaches

Path integral and global symmetries

[Review: Maas'17]

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Path integral and global symmetries

[Review: Maas'17]

Field - transforms linearly under a group $\phi^{a} \rightarrow G^{a b} \phi^{b}$

$$
Z=\int_{\Omega} D \stackrel{\stackrel{V}{\phi^{a}}}{ } e^{i S[\phi]}
$$

Path integral and global symmetries

Measure is invariant

- no anomalies

$$
Z=\int_{\Omega} D \phi^{q} e^{i S[\phi]}
$$

Action is invariant

$$
S[\phi]=S[G \phi]
$$

Path integral and global symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Integration range

- contains all orbits $G \phi$

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)
$$

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)
$$

- There is no preferred point on the group orbit
- There is no absolute orientation/frame in the internal space
- Does not change when averaging over position
- There is no absolute charge

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)=0
$$

- There is no preferred point on the group orbit
- There is no absolute orientation/frame in the internal space
- Does not change when averaging over position
- There is no absolute charge

Path integral and global symmetries

$\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x) \phi^{c}(y)$

- Relative charge measurement averaged over all possible starting points

Path integral and global symmetries

$\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x) \phi^{c}(y)=0$

- Relative charge measurement averaged over all possible starting point
- Vanishes because no preferred absolute starting point

Path integral and global symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)
\end{gathered}
$$

- Group-invariant quantity
- Measures relative orientation
- Created from an invariant tensor $\delta_{a b}$

Path integral and global symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y) \neq 0
\end{gathered}
$$

- Group-invariant quantity
- Measures relative orientation
- Created from an invariant tensor $\delta_{a b}$

Path integral and local symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Path integral and local symmetries

Field - transforms locally under a group $\phi^{a}(x) \rightarrow G^{a b}(x) \phi^{b}(x)$

$$
Z=\int_{\Omega} D \stackrel{\stackrel{\prime}{\phi^{q}}}{ } e^{i S[\phi]}
$$

Path integral and local symmetries

Measure is invariant

- no anomalies

$$
Z=\int_{\Omega} D \phi^{q} e^{i S[\phi]}
$$

Action is invariant

$$
S[\phi]=S[G \phi]
$$

Path integral and local symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Integration range

- contains all orbits $G \phi$

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)
\end{gathered}
$$

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)=0
\end{gathered}
$$

- No longer invariant under gauge transformations
- Vanishes just as any other non-invariant quantity

Path integral and local symmetries

Transporter

$$
\begin{gathered}
\left\langle\phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} D U e^{i S[\phi]} \phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)
\end{gathered}
$$

-Transporter compensates gauge transformations

- Implemented by gauge fields

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} D U e^{i S[\phi]} \phi^{b}(x) U^{b c}(x, y) \phi^{c}(y) \neq 0
\end{gathered}
$$

-Transporter compensates gauge transformations

- Implemented by gauge fields

Path integral and local symmetries

Reduced integration range

$$
\begin{gathered}
\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{(\Omega)} D \phi^{a} D U W(U, \phi) e^{i S[\phi]} \phi^{b}(x) \phi^{c}(y) \neq 0
\end{gathered}
$$

- Reduction of integration region by gauge fixing
- Arbitrary choice of coordinates
- Weight factor to keep gauge-invariant quantities the same

Quantum gravity: Setting the scene

- QFT setting - no strings or other non-QFT settings

Quantum gravity: Setting the scene

- QFT setting - no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
- Arbitrary local choices of coordinates do not affect observables - pure passive formulation
- Physical observables must be manifestly invariant

Quantum gravity: Setting the scene

- QFT setting - no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
- Arbitrary local choices of coordinates do not affect observables - pure passive formulation
- Physical observables must be manifestly invariant
- Spin seems to be an observable
- Spin degeneracies and selection rules due to spin conservation
- Global structure

Quantum gravity: Setting the scene

- QFT setting - no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
- Arbitrary local choices of coordinates do not affect observables - pure passive formulation
- Physical observables must be manifestly invariant
- Spin seems to be an observable?
- Spin degeneracies and selection rules due to spin conservation
- Global or effective structure

Quantum gravity: Setting the scene

- QFT setting - no strings or other non-QFT settings
- Diffeomorphism is like a non-standard gauge symmetry
- Arbitrary local choices of coordinates do not affect observables - pure passive formulation
- Physical observables must be manifestly invariant
- Spin seems to be an observable?
- Spin degeneracies and selection rules due to spin conservation
- Global or effective structure
- Particle physics gauge symmetries and global symmetries should remain the same

Set of events with neighbor relations

Set of events with neighbor relations E.g. R^{4} in definition of manifold

Manifold with diff symmetry

Metric g at every event
Manifold with diff symmetry

Gravity as a gauge theory

Tangent space
at every event

Gravity as a gauge theory

Tangent space at every event
Relation
By vierbein e

Global symmetry
is eventindependent

Gauge symmetry is event-dependent

Gravity as a gauge theory

Internal symmetries act in internal spaces Global: One internal space Local: One space at every event

Gauge symmetry is event-dependent

Dynamical formulation

$$
Z=\int_{\Omega} D g_{\mu \nu} D \phi^{a} e^{i\left[[\phi, e]+i i_{E H}[e]\right.}
$$

Dynamical formulation

Standard gravity

$$
Z=\int_{\Omega} D g_{\mu v} D \phi^{a} e^{i S[\phi, e]+i S_{E H}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible

Dynamical formulation

Standard gravity Standard gravity Other fields

$$
Z=\int_{\Omega} D g_{\mu v} \hat{D} \phi^{a} e^{i \dot{S}^{\dot{S}}[\phi, e]+\dot{S_{E H}}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible

Dynamical formulation

Standard gravity Standard gravity Other fields

$$
Z=\int_{\Omega} D g_{\mu v} \hat{D} \phi^{a} e^{i \stackrel{\rightharpoonup}{S}[\phi, e]+i S_{E H}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible
- Otherwise standard
- E.g. Asymptotic safety for ultraviolet stability

Dynamical formulation

$$
\langle O\rangle=\int_{\Omega} D g_{\mu v} D \phi^{a} O e^{i S[\phi, e]+i_{E H}[e]}
$$

Dynamical formulation

$$
0 \neq\langle O\rangle=\int_{\Omega} D g_{\mu \nu} D \phi^{a} O e^{i S[\phi, e]+i S_{E \mu}[e]}
$$

Dynamical formulation

$0 \neq\langle O\rangle=\int_{\Omega} D g_{\mu \nu} D \phi_{V}^{a} O e^{i S[\phi, e]+i S_{E H}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Locally under Lorentz transformation
- Locally under gauge transformation
- Globally under custodial,... transformation to be non-zero

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}
$$

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}=\text { const }
$$

- No preferred events
- Space-time on average homogenous and isotropic
- Average space-time is flat or (anti-)de Sitter for canonical gravity
- Invariants identify the particular type

Simpelst object: Scalar

- Consider a scalar particle
- E.g. described by a scalar field
- Completely invariant

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(x, y)$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

$\left\langle O(x) O_{\checkmark}(y)\right\rangle=D(x, y)$
Completely scalar: Invariant under all symmetries

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

Argument is the event, not the coordinate

Result depends on events

$\langle O(x) O(\hat{y})\rangle=D(x, \hat{y})$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

Argument is the event, not the coordinate

Result depends on events

$\langle O(x) O(\hat{y})\rangle=D(x, \hat{y})$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant
- Events not a useful argument

Some distance function

$$
\langle O(x) O(y)\rangle=D(\dot{r}(x, y))
$$

$\langle O(x) O(y)\rangle=D(r(x, y))$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(r(x, y))$
$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance

Simpelst object: Scalar

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D(r(x, y)) \\
r(x, y)=\left\langle\min _{z^{z}} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
\end{gathered}
$$

Select geodesic

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(r(x, y)) \quad$ Separate calculation
$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance
- Needs to be determined separately

Simpelst object: Scalar

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the average are equal - probably true

$$
\langle O(x) O(y)\rangle=D(r(x, y))
$$

$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance
- Needs to be determined separately

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(r(x, y))$
$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance
- Needs to be determined separately
- Generalization of flat-space arguments

What about cosmology?

What about cosmology?

- Big bang a preferred event - not possible!

What about cosmology?

- Big bang a preferred event - not possible!
- Description of a universe?

What about cosmology?

- Big bang a preferred event - not possible!
- Description of a universe?

$$
\left\langle O(x) P(x) \ldots Q\left(y_{1}\right) \ldots R\left(y_{n}\right)\right\rangle
$$

- Originate at same event: Big bang
- Distances between x and y_{i} future time-like
- Distances between y_{i} space-like
- Evolution of a matter/curvature concentration

What about cosmology?

- Big bang a preferred event - not possible!
- Description of a universe?

$$
\left\langle O(x) P(x) \ldots Q\left(y_{1}\right) \ldots R\left(y_{n}\right)\right\rangle
$$

- Originate at same event: Big bang
- Distances between x and y_{i} future time-like
- Distances between y_{i} space-like
- Evolution of a matter/curvature concentration
- Properties measureable
- E.g. size as maximum space-like distance of y_{i}
- Preceived life-time in an eigenframe at one y_{i}

What about cosmology?

- Big bang a preferred event - not possible!
- Description of a universe?

$$
\left\langle O(x) P(x) \ldots Q\left(y_{1}\right) \ldots R\left(y_{n}\right)\right\rangle
$$

- Originate at same event: Big bang
- Distances between x and y_{i} future time-like
- Distances between y_{i} space-like
- Evolution of a matter/curvature concentration
- Properties measureable
- E.g. size as maximum space-like distance of y_{i}
- Preceived life-time in an eigenframe at one y_{i}
- A universe is a scattering process

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
-Usually: Classical solutions

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
- Usually: Classical solutions
- Depends on parameters

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
- Usually: Classical solutions
- Depends on parameters
- FMS prescription:
- Chose a gauge compatible with the desired classical behavior
- Split after gauge-fixing fields such that they become classical fields plus quantum corrections
- Calculate order-by-order in quantum corrections

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
- Usually: Classical solutions
- Depends on parameters
- FMS prescription:
- Chose a gauge compatible with the desired classical behavior
- Split after gauge-fixing fields such that they become classical fields plus quantum corrections
- Calculate order-by-order in quantum corrections
- Works very well in particle physics

FMS in a nutshell

- Consider the standard model

FMS in a nutshell

- Consider the standard model
- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections

FMS in a nutshell

- Consider the standard model
- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Higgs, W, Z,... fields depend on the gauge
- Cannot be observable

FMS in a nutshell

- Consider the standard model
- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Higgs, W, Z,... fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

Higgs field

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass
4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\begin{aligned}
& \begin{array}{l}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle q^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle \pm
\end{array} \\
& 2 \times \text { Higgs mass: } \\
& \text { Scattering state }
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}+v^{2}\left\langle\eta^{+}(x) \eta(y)\right.
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$ Deviations $\stackrel{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle}{+\nu\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle}$
3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array} \|_{i}(x)\right.$

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left.\left(\left.\begin{array}{cc}n_{2}-h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array}\right)_{i}\right)_{i}$
- Gauge-invariant state
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\right)\left(\begin{array}{l}0 \\ 0\end{array}\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \left\lvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{i}(x)^{+}\right\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array}\left|\begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{j} \mid\right\|_{j}(y)\right.\right.\right.\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left(\left|\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\right| \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|_{i}(x)+\left\{\left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}| | \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|\left._{j}\right|_{j}(y) \underset{v^{2}}{\approx}\left(\left.\begin{array}{l}
h=v+\eta \\
l_{L} \\
l_{L}
\end{array}\right|_{i}(x)+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\|\left(\begin{array} { c c }
{ h _ { 2 } } & { - h _ { 1 } } \\
{ h _ { 1 } ^ { * } } & { h _ { 2 } ^ { * } }
\end{array} | | \begin{array} { l }
{ v _ { L } } \\
{ l _ { L } }
\end{array} \| _ { i } (x) + \| \left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\left|\begin{array}{c}
v_{L} \\
l_{L}
\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}
h=v+\eta \\
\approx \\
v^{2}
\end{array}\left|\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable
$\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \left\lvert\,\left(\begin{array}{c}v_{L} \\ l_{L}\end{array} \|_{i}(x)^{+}+\left\{\left\lvert\,\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array}\left|\begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}h=v+\eta \\ \approx \\ v^{2}\end{array} \right\rvert\,\left(\left.\begin{array}{l}v_{L} \\ l_{L}\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{c}v_{L} \\ l_{L}\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.\right.\right.\right.\right.\right.$
- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Can this be true? Lattice test

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

- Supports FMS prediction
- True for all weakly charged particles
- True for all weakly charged particles
- This includes left-handed quarks!

Protons

- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks

Protons

- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks
- qqq cannot be weakly gauge invariant
- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks
- qqq cannot be weakly gauge invariant
- Replacement: qqqh
- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks
- qqq cannot be weakly gauge invariant
- Replacement: qqqh
- FMS: At low energies just the proton
- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks
- qqq cannot be weakly gauge invariant
- Replacement: qqqh
- FMS: At low energies just the proton
- At high energy: Valence Higgs!

Protons

- True for all weakly charged particles
- This includes left-handed quarks!
- Proton is a mix of left-handed and right-handed quarks
- qqq cannot be weakly gauge invariant
- Replacement: qqqh
- FMS: At low energies just the proton
- At high energy: Valence Higgs!
- Will avoid Bloch-Nordsieck violations
- Valence Higgs detectable at LHC?
- Strong couplings to Higgs: tops, weak gauge bosons

Further consequences

- In SM physics: Quantitative changes
- Anomalous couplings/form factors
- (Small) differences in various kinematic regimes
- More: See 1701.00182, 1811.03395, 2002.01688, 2008.07813, 2009.06671, 2204.02756, 2212.08470

Further consequences

- In SM physics: Quantitative changes
- Anomalous couplings/form factors
- (Small) differences in various kinematic regimes
- More: See 1701.00182, 1811.03395, 2002.01688, 2008.07813, 2009.06671, 2204.02756, 2212.08470
- In BSM physics: Sometimes qualitative changes
- Even different spectrum
- Affects viability of BSM Scenarios
- More: See 1709.07477, 1804.04453, 1912.086680, 2002.08221, 2211.05812, 2211.16937

Applying FMS to gravity

- Our universe is well-approximated by a classical metric
- Due to the parameter values - special!
- Small quantum fluctuations at large scales
- Empirical result

Applying FMS to gravity

- Our universe is well-approximated by a classical metric
- Due to the parameter values - special!
- Small quantum fluctuations at large scales
- Empirical result
- FMS split after (convenient) gauge fixing
- $g_{\mu \nu}=g_{\mu \nu}^{c}+\gamma_{\mu \nu}$
- Classical part g^{c} is a metric, chosen to give exact (observed) curvature
- Quantum part is needed (assumed) small

Details (and challenges)

- Classical metric needs to be useful
- Should not have special events
- Only flat and (anti-)de Sitter possible
- Should satisfy gauge choice

Details (and challenges)

- Classical metric needs to be useful
- Should not have special events
- Only flat and (anti-)de Sitter possible
- Should satisfy gauge choice
- Split after gauge-fixing!
- No linear condition possible
- Simple choice: Haywood gauge $g^{\mu v} \partial_{\nu} g_{\mu \rho}=0$

Details (and challenges)

- Classical metric needs to be useful
- Should not have special events
- Only flat and (anti-)de Sitter possible
- Should satisfy gauge choice
- Split after gauge-fixing!
- No linear condition possible
- Simple choice: Haywood gauge $g^{\mu v} \partial_{\nu} g_{\mu \rho}=0$
- Inverse fluctuation satisfies Dyson equation

$$
\gamma^{u v}=-\left(g^{c}\right)^{\mu \sigma} \gamma_{\sigma \rho}\left(\left(g^{c}\right)^{\rho v}+\gamma^{\rho v}\right)
$$

- Infinite series at tree-level

Distance

$$
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
$$

- Application to distance between two events

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu \nu} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu \nu}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu \nu} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
\end{gathered}
$$

- Application to distance between two events

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance
- Yields at leading-order classical space-time

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance
- Yields at leading-order classical space-time
- Quantum corrections depends on events

Propagators

$\langle O(x) O(y)\rangle$

Propagators

- Double expansion

Propagators

Leading term is

$$
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
$$ flat space propagator

- Double expansion

Propagators

Corrections from quantum distance effects

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\hat{\delta r})^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma} \\
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
\end{gathered}
$$

- Double expansion
- Quantum fluctuations in the argument

Propagators

Corrections from metric fluctuations

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\delta r)^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma} \\
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
\end{gathered}
$$

- Double expansion
- Quantum fluctuations in the argument and action

Propagators

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\delta r)^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma} \\
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
\end{gathered}
$$

- Double expansion
- Quantum fluctuations in the argument and action
- Consistent with EDT results ${ }_{[D i r i 2]}$

Propagators

$\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)$
$D_{c}=\langle O(x) O(y)\rangle_{g}{ }^{c}$

- Double expansion
- Quantum fluctuations in the argument and action
- Consistent with EDT results $\left[\begin{array}{l}\text { apiz2] } \\ \end{array}\right.$
- Reduces to QFT at vanishing gravity
- Higgs and W/Z mass in quantum gravity calculated
- Pure gravity excitation: Curvaturecurvature correlator
- Pure gravity excitation: Curvaturecurvature correlator
$\langle R(x) R(y)\rangle$

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

$$
\langle R(x) R(y)\rangle=D^{\mu \nu \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)
$$

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \stackrel{\rightharpoonup}{\rho}}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$

Graviton propagator

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$
Graviton propagator

- In Minkowski space-time: No propagating mode at lowest order

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$
Graviton propagator

- In Minkowski space-time: No propagating mode at lowest order
- Flat space: Better divergence properties
- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration

Space-like hypersurface ("now")

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration

Timelike
Space-like hypersurface ("now")

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration

Timelike: b
Space-like hypersurface ("now"): a

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- Set of coupled equations

$$
d(e, i)=b=\frac{g_{\mu \rho}(e)}{b} \frac{d z_{u}}{d \tau} \frac{d z_{\rho}}{d \tau}
$$

Timelike: b
Space-like hypersurface ("now"): a

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- Set of coupled partial differential equations

$$
\begin{aligned}
& d(e, i)=b=\frac{g_{\mu \rho}(e)}{b} \frac{d z_{\mu}}{d \tau} \frac{d z_{\rho}}{d \tau} \\
& 0=\frac{g^{\mu v}(e)}{b}\left(g_{v \rho}(e)-g_{v \rho}(i)\right)
\end{aligned}
$$

Timelike: b
Space-like hypersurface ("now"): a
Haywood condition

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
- Metric fluctuations per configuration should be small compared to de Sitter metric

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
- Metric fluctuations per configuration should be small compared to de Sitter metric
- Geon propagator should behave as contracted metric propagator
- As a function of the geodesic distance

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD

Views of black holes

Classical picture of a black hole

Views of black holes

Classical picture of a black hole

But this is a special worldline, determining the full metric!

Not possible in a quantum expectation value.

Views of black holes
Classical picture of a black hole

But this is a special worldline, determining the full metric!

Not possible in a quantum expectation value.

Views of black holes

Averaging over this!

Classical picture of a black hole

But this is a special worldline, determining the full metric!

Not possible in a quantum expectation value.

Averaging over this!

Classical picture of a black hole

But this is a special worldline, determining the full metric!

Not possible in a quantum expectation value.

Need to put a black hole creation operator at an event but it would still be a constant

$$
\langle B(x)\rangle=d
$$

Views of black holes

Averaging over this!

Classical picture of a black hole

But this is a special worldline, determining the full metric!

Not possible in a quantum expectation value.

Need to put a black hole creation operator

Need to
correlate with e.g. curvature at an event but it would still be a constant

$$
\langle B(x) R(y)\rangle=d(r(x, y))
$$

Averaging over this!
In FMS: Splitted further

Averaging over this!
In FMS: Splitted further
(Small) fluctuations of the metric

Expansion metric, without preferred events

$$
\langle B(x) R(y)\rangle
$$

In FMS: Splitted further
(Small) fluctuations of the metric

Expansion metric, without preferred events

Calculate expansion:

$$
\langle B(x) R(y)\rangle=d^{c}\left(r^{c}(x, y)\right)+q u a n t u m
$$

Classical field result

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD
- Black hole: Two options

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD
- Black hole: Two options
- Single operator $B(x)$ without decomposition
- Monolithic, essentially elementary particle
- May have overlap with $R(x)$

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD
- Black hole: Two options
- Single operator $B(x)$ without decomposition
- Monolithic, essentially elementary particle
- May have overlap with $R(x)$
- Product of separate diff-invariant operators
- Hawking radiation as tunneling

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD
- Black hole: Two options
- Single operator $B(x)$ without decomposition
- Monolithic, essentially elementary particle
- May have overlap with $R(x)$
- Product of separate diff-invariant operators
- Hawking radiation as tunneling
- Differing operators for pure (e.g. Schwarzschild) or stellar collapse black hole

Speculative phenomenology

- Macroscopic gravitational objects need to be build in the same way
- Just like neutron stars from QCD
- Black hole: Two options
- Single operator $B(x)$ without decomposition
- Monolithic, essentially elementary particle
- May have overlap with $R(x)$
- Product of separate diff-invariant operators
- Hawking radiation as tunneling
- Differing operators for pure (e.g. Schwarzschild) or stellar collapse black hole
- Pure: Geon star, similar to neutron star

Summary

- Full invariance necessary for physical observables in path integrals

Summary

- Full invariance necessary for physical observables in path integrals
- FMS mechanism allows estimates of quantum effects in a systematic expansion

Summary

- Full invariance necessary for physical observables in path integrals
- FMS mechanism allows estimates of quantum effects in a systematic expansion
- Gives a new perspective on strong and quantum gravity
@axelmaas
@ @axelmaas@sciencemastodon.com

People involved

Christina Perner (Bachelor)

Markus Markl (Master)

Michael Müller (Master)

Bernd Riederer (PhD)

Simon Plätzer (Staff)

