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Basic Idea

I Elementary gauge fields are not gauge invariant → vanishing
expectation values

I Different Approach: Consider the W-boson as a gauge
invariant composite operator. 1

1All background on the topic can be found in: A. Maas,
Brout-Englert-Higgs physics: From foundations to phenomenology (1712.04721
[hep-ph]; December 2017)
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Why are we doing this?

I Gauge dependent observables are not physical observables.

I For the mass spectrum of the standard model perturbation
theory and the approach of gauge invariant composite
operators yield the same results. 1

I We want to get some more dynamical results where
perturbation theory and the approach of gauge invariant
composite operators differ, i.e. the radius, scattering
processes...
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Theory of the weak interaction

I Lagrangian density:

L = −1

4
W a

µνW
µν
a + (Dµφ)† (Dµφ) − V

(
φ†φ
)

(1)

W a
µν = ∂µW

a
ν −∂νW a

µ−gεabcW b
µW

a
ν Dµ = ∂µ− igW a

µτ
a

(2)

I W a
µ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.
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Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generators
τ a.

I There is a global SU(2) custodial symmetry with the
generators τ ā.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(
φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)
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Gauge invariance and composite operators

Elementary fields W a
µ are not gauge invariant and therefore their

expectation value vanishes.
Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a triplet
vector gauge invariant composite operator

I The considered composite operator is

O ā
1−3 µ

(x) = tr

[
τ ā

X (x)†√
det (X (x))

Dµ(x)
X (x)√

det (X (x))

]
.

(3)
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Basic idea
Quantum field theory

The Radius
Lattice results

Summary

the theory
Gauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W a
µ are not gauge invariant and therefore their

expectation value vanishes.

Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a triplet
vector gauge invariant composite operator

I The considered composite operator is

O ā
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X (x)†√
det (X (x))

Dµ(x)
X (x)√

det (X (x))

]
.

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Törek Size of the W-boson
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X (x)†√
det (X (x))

Dµ(x)
X (x)√

det (X (x))

]
.

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Törek Size of the W-boson
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The form factor

The Radius

In nuclear phyiscs one can calculate the radius of hardrons by
doing a taylor expansion of the formfactor of a scattering process.2

−6~
dR(q2)

dq2

∣∣∣∣
q2=0

=
〈
r2
〉

(4)

2This is shown in: W.S.C. Williams. Nuclear and Particle Physics.
Clarendon Press, 1991.
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The form factor

I For the employed scattering process we choose the three point
interaction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of
14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose the
tree-level tensor object.

I This yields for the form factor:

R(p, q, k) =
Γāb̄c̄
µνρ(p, q, k)

〈
O ā

µ 1−3
(p)O b̄

ν 1−3
(q)O c̄

ρ 1−3
(k)
〉

Γāb̄c̄
µνρ(p, q, k)D ād̄

µγ(p)D b̄ē
νη (q)D c̄ f̄

ρζ (k) Γd̄ ē f̄
γηζ(p, q, k)

.

(5)
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γηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Törek Size of the W-boson
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Lattice technology
Lattice results
Determination of the size of the W-boson

Lattice technology

The lattice setup is a 4 dimensional isotropic hypercubic lattice
with lattice constant a and a lattice volume of V = L4.
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with lattice constant a and a lattice volume of V = L4.
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Lattice parameters

The calculations were done for lattices L = {8, 12, 16, 20}, and 4
sets of parameters denoted with letters A,B,C and D.
The sets of parameters are:

A: Inverse lattice spacing: 435 GeV; Mass of the Higgs:
m0+ = 124 GeV; coulping constant: α = 0.605

B: Inverse lattice spacing: 335 GeV; Mass of the Higgs:
m0+ = 122 GeV; coulping constant: α = 0.506

C: Inverse lattice spacing: 255 GeV; Mass of the Higgs:
m0+ = 118 GeV; coulping constant: α = 0.211

D: Inverse lattice spacing: 151 GeV; Mass of the Higgs:
m0+ = 131 GeV; coulping constant: α = 0.558

The Higgs mass from the experiment is approximately 125 GeV.
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Lattice results for the ratio

The following plots are the plots for the elementary and the
composite vertex on a lattice with size L = 20

ALL SHOWN PLOTS ARE PRELIMINARY, THESE ARE
NOT THE FINAL RESULTS!
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Determination of the Size

For the determination of the size the numerical derivative at small
momenta was taken. This is a plot for the composite operator.
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Basic idea
Quantum field theory

The Radius
Lattice results

Summary

Lattice technology
Lattice results
Determination of the size of the W-boson

Determination of the Size

For the determination of the size the numerical derivative at small
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Values of the Radius of the composite operator in the
continuum limit 1
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Values of the radius of the composite operator in the
continuum limit 2

Parameter set Radius in [1/GeV] Upper error in [1/GeV] Lower error in [1/GeV]

A, 353 GeV 0.113 +0.008 -0.007
B, 253 GeV 0.222 +0.006 -0.006
C, 230 GeV 0.8 +0.2 -0.2
D, 151 GeV 1.22 +0.04 -0.11

Table : Values of the radius of the composite operator in [1/GeV]
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Values of the radius of the composite operator in the
continuum limit 3

Parameter set Radius in [fm] Upper error in [fm] Lower error in [fm]

A, 353 GeV 2.2 ∗ 10−2 +1 ∗ 10−3 −1 ∗ 10−3

B, 253 GeV 4.3 ∗ 10−2 +1 ∗ 10−3 −1 ∗ 10−3

C, 230 GeV 1.6 ∗ 10−1 +4 ∗ 10−2 −4 ∗ 10−2

D, 151 GeV 2.41 ∗ 10−1 +8 ∗ 10−3 −2.2 ∗ 10−2

Table : Values of the radius of the composite operator in [fm]
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Values of the radius of the elementary fields in the
continuum limit 1
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Values of the radius of the elementary fields in the
continuum limit 2

Parameter set Radius in [1/GeV] Upper error in [1/GeV] Lower error in [1/GeV]

A, 353 GeV 0.036 +0.001 -0.001
B, 253 GeV 0.031 +0.001 -0.019
C, 230 GeV 0 +0.2 -0.008
D, 151 GeV 0.06 +0.01 -0.01

Table : Values of the radius of the elementary fields in [1/GeV]
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Values of the Radius of the elementary fields in the
continuum limit 3

Parameter set Radius in [fm] Upper error in [fm] Lower error in [fm]

A, 353 GeV 7.1 ∗ 10−3 +2 ∗ 10−4 −2 ∗ 10−4

B, 253 GeV 6.1 ∗ 10−3 +2 ∗ 10−4 −3 ∗ 10−3

C, 230 GeV 0 +4 ∗ 10−2 −2 ∗ 10−2

D, 151 GeV 1.3 ∗ 10−2 +3 ∗ 10−3 −3 ∗ 10−3

Table : Values of the radius of the elementary fields in [fm]
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Summary

I We have calculated the radius of an elementary field and a
composite operator.

I The radius of the W-boson is much bigger than the radius of
the electron(≈ 10−5fm).

I The radius of the elementary field is ≈ 10−1 smaller than the
radius of the composite operator.
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Outlook

I The lattice parameters have to be optimized to get better
results, the weak coupling is still too strong.

I One could calculate radii for different tensor structures, this
approach is not restricted to tree-level.

I One could calculate the anomalous gauge coupling from these
results.

I There is no experimental data on the radius of the gauge
bosons of the weak interaction.
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The End
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