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● What is the Higgs, the W/Z and the electron, 
anyway?

● Implications for BSM physics

● Qualitative – possibly even a game changer

● Investigations on the lattice

● Group theory 

● Symmetry “breaking” on the lattice
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Overview

● The Higgs sector of the standard model

● Observables, phase structure,...

● Flavor in the standard model

● ...and other additional effects

● Implications beyond the standard model

● 2HDM, GUTs, technicolor

● Review article upcoming

● O'Raifeartaigh: Group structure of gauge theories
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What is non-perturbative?

● Strong interactions are non-perturbative

● Like QCD

● But not always: Asymptotic freedom

● Weak interactions can be non-perturbative

● QED is weakly interacting, but has non-
perturbative features like atoms, molecules, 
matter with phase structure,...

● Bound states, phase transitions,...

● Are there (relevant) non-perturbative effects 
in the weak interactions and the Higgs?

● How could there be not?



A precursor:
Global symmetry breaking revisited
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A path integral perspective

● Consider some scalar theory with Lagrangian 
invariant under some group

● No anomalies

● Path integral formulation

● Integrates over all (!) field configurations

● Non-symmetric expectation values need to vanish

● Does not depend on the parameters: Always

● Symmetry is always manifest

⟨O⟩=∫D ϕO (ϕ)eiS(ϕ)

⟨ϕ⟩=∑ϕ
(ϕ+gϕ+g ' ϕ+...)eiS=∑ϕ

eiS∑g
ϕ=⟨G ϕ⟩=0
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So, what is SSB?

● Introduce a source

● Preferred direction – result biased

● Take limit of vanishing source. If

   the theory experiences SSB

● Goldstone’s theorem only at j→0, not at 0

⟨O ⟩=∫D ϕO(ϕ)eiS(ϕ)+ jϕ

⟨ϕ⟩( j)=∑ϕ
(ϕ eij ϕ+gϕe ijgϕ+...)eiS=∑ϕ

eiS∑g
ϕeij ϕ≠0

lim j→0 ⟨ϕ⟩( j)=v≠⟨ϕ⟩(0)
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The catch

● Source is external to the theory

● What is external in particle physics?

● Theory is a low-energy effective theory 
● Source encodes effect from the UV theory

● Then the symmetry is not a symmetry of the UV 
theory

● E.g. QCD and chiral symmetry

● Theory is part of a system

● Source encodes influence of the remainder

● E.g. extrauniverse influences

● No other possibilities
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Metastability

● Theory without external influence fully 
symmetric

● No Goldstone bosons, full degeneracy 
pattern

● Still: There is a difference between SSB 
occurs with external influence or not

● Metastability

● Detectable by
● Measures relative orientation, but invariant

● Note:         does not work

⟨(∫ϕ)
2
⟩≠0

⟨ϕ2⟩
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Realization of symmetry

● Intact

● Metastable

● Spontaenously broken

● Explicitly broken – by Lagrangian or 
anomaly

● A split like            does not break a 
symmetry

● Only hides it

● Symmetry is realized in a non-trivial way

ϕ→ψ+v
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The Theory

● Consider the Higgs sector of the standard model

● The Higgs sector is a gauge theory

● Ws

● Higgs

● No QED: Ws and Zs are degenerate

● Couplings g, v, λ and some numbers f abc and t
a

ij

L=−1
4
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Symmetries

● Consider the Higgs sector of the standard model

● The Higgs sector is a gauge theory

● Local SU(2) gauge symmetry

● Global SU(2) Higgs custodial (flavor) symmetry

● Acts as right-transformation on the Higgs field only
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Symmetries

● Consider the Higgs sector of the standard model

● The Higgs sector is a gauge theory

● Local SU(2) gauge symmetry

● Global SU(2) Higgs custodial (flavor) symmetry

W 
a W 

ab
a∂−g f bc

a W 
c b hi hig ta

ij a h j

L=−1
4

W μ ν
a W a

μ ν+(Dμ
ij h j) + Dik
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Classical analysis
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μ hk+ λ(ha ha
+ −v2)2

[Bohm et al. 2001]
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Classical analysis

● Classical analysis of the Higgs sector

● Non-zero condensate shifts Higgs mass to an ordinary mass

● Perform perturbative expansion around the classical vacuum

L=λ(ha ha
+ −v2)2

Shape depends on parameters

Experiments decides
 - Higgs mass is tachyonic

Classical minimum

Global gauge choice

[Bohm et al. 2001]
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Standard approach

● Minimize action classically

● Yields              - Higgs vev

● Assume quantum corrections to this are 
small

● Perform global gauge transformation 
such that

●   mass depends at tree-level on

● Perform perturbation theory 

h x =  1 x i 2 x 
v  xi3 x   ⇒〈h〉= 0v 

hh  =v2

 v

[Bohm et al. 2001]
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Implications of global  transformation

● Not all charge directions equal

● This is not physical, but merely a choice of gauge

● “Spontaneous gauge symmetry breaking”

● Broken by the gauge choice, not by the dynamics

● Dynamics only affect the length of the Higgs field

● Local symmetry intact and cannot be broken    
[Elitzur PR'75]

● Gauge symmetry no longer manifest

● Symmetry expressed in STIs/WTIs

● But only way to get a working perturbation theory! 
[Lee et al.'72]

● Otherwise W/Z massless to all orders
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Lines of constant physics

● Lattice simulations have an 
intrinsic cutoff – the lattice 
spacing a

● Full theory reached at zero 
lattice spacing

● If it exists: Triviality problem

● Masses, couplings, and actions 
are specified at this scale

● Numerical procedure: 
Calculate for several a with all 
independent observables fixed 
- “Lines of constant physics”

● Different starting points yield 
different physics

Mass(es)
C

o
u

p
lin

g
(s

)

Full
theory

a decreases
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Phase diagram

● (Lattice-regularized) 
phase diagram 
continuous

● Free energy can be    
shown to be    
analytic

● On a finite lattice
● Continuum limit
● Validity for unregularized theory?

● Works (likely) only for the standard-model case

● Osterwalder-Seiler/Fradkin-Shenker construction
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● (Lattice-regularized) 
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continuous
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Phase diagram

● (Lattice-regularized) 
phase diagram 
continuous

● Separation only in 
fixed gauges

● Same asymptotic 
states in 
confinement and Higgs 
pseudo-phases

● Same asymptotic states irrespective of 
coupling strengths

● Other states than 'Higgs' and 'W'?
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Phase diagram

QCD likeHiggs like

Critical end-line? [Bonati et al.'10]

LCP direction?

● Quantum effects remove BEH effect

● Opposite does not happen

● Interacting continuum limit? [Gies & Zambelli'15]

● LCP: 0+, 1- mass,                   (miniMOM scheme)α(200GeV )

[Maas & Mufti'15]
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● Selection criterion for candidate new physics

● Usual test: Perturbative running of couplings

● “Better” behavior than the standard model

(1)No Landau poles (small coupling)

(2)No triviality problem

(3)No or little fine-tuning

● Violated by QED (1,2), Yukawa (1,2), Higgs (1-3)

● Sufficient? No.
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● Sufficient to have a (small) finite coupling

● From (non-)perturbative cancellations in b-functions

● Quantum gravity can backcouple [Wetterich et al.'09,Eichhorn et al.'13-'17]

● May solve all of these problems

● Fine-tuned special trajectories [Callaway'88,Litim et al.'14-'17,Gies et al.'15,'16]

● All order cancellations solve problem
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Where to look for it

● Experimentally hard to find

● Energy-dependence of running couplings

● Tiny deviations at accessible energies: Precision tests

● Particle content constrained

● Quantum gravity has implications for cosmology

● Cosmological constant becomes running

● Tests against astrophysical data



The physics of the Higgs sector
b: Observable particles
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Physical states

● Physical spectrum: Observable particles

● Experiments measure peaks in cross-sections

● Elementary fields depend on the gauge

● Cannot be observable

● Gauge-invariant states are composite

● Not asymptotic states in perturbation theory

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Why does perturbation theory work?

● Mass spectrum?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]



Why it does not matter in the 
standard model

Introducing gauge-invariant perturbation theory
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Masses of the Higgs and the W/Z
● Masses are determined by poles of 

propagators

● 2 propagators

● W/Z

● Degenerate without QED

● Scalar

● (Tree-level/perturbative) poles of Higgs and W

● But only in a fixed gauge

● Elementary fields are gauge-dependent

● Without gauge fixing propagators are

● Can be calculated in gauge-fixed lattice 
simulations

Dμν
ab (x− y)= <W μ

a (x)W ν
b ( y)>

∼δ(x− y)

DH
ij (x− y)= <ηi(x)η j+ ( y)>
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Intermission

The W mass and QCD
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Inverting the technicolor argument

● In the same way as technicolor QCD 'breaks' 
the electroweak gauge symmetry

● Origin: Dynamically chiral symmetry 
breaking

● Purely non-perturbative effect
● Quark-Antiquark condensate

● Acts exactly like the Higgs condensate

● Will create (additional) mass for the W/Z

[Quigg & Shrock'09]
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Contribution to the W/Z mass

● Is it like this? No! Cannot create mass.

● Acts like an additional contribution to the condensate

 M
W

2~g2

weak
v2

Higgs
 → g2

weak
(v2

Higgs
 +N

f
<qq>3/2)

● Essentially quark condensate

● Expected size : Typical effect: 30-50 MeV

● Larger as current experimental error of ~20 MeV

● Acts like a static mass when added at tree-level

● Unitarity violation is canceled non-perturbatively

+ +

[Quigg & Shrock'09]
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Implications

● Needs to be accounted for

● Same order as new physics effects

● E.g. in 2HDM models

● Could lead to 'false' new physics claims

● Other non-perturbative QCD corrections exist

● 300 MeV mass for the top (and bottom) quark

● Higgs mixes with (heavy) mesons

● New particle with color affected

● New non-perturbative condensates contribute



Back on track

Physical Mass Spectrum
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Bound-state masses

● Determination of bound-state masses as in 
QCD or other theories

● Write down operator basis for quantum numbers

● Only spin and custodial quantum numbers
● Others are not gauge-invariant!

● Including smeared operators

● Correlators with variational analysis

● Determine exponential behavior

● Caveats

● MUCH more noisy than QCD

● >50k configurations

● Scalar has disconnected contributions
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV

● Scheme exists to shift Higgs mass always to 120 GeV

● Coincidence? No.

● Duality between elementary states and bound states 
[Fröhlich et al.'80]

● Same poles to leading order

● Fröhlich-Morchio-Strocchi (FMS) mechanism

● Deeply-bound relativistic state

● Mass defect~constituent mass

● Cannot describe with quantum mechanics

● Very different from QCD bound states

[Fröhlich et al.'80
 Maas'12, Maas & Mufti'13]
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WW
h

h

Isovector-vector state

● Vector state 1- with operator

● Only in a Higgs phase close to a simple particle

● Custodial triplet, instead of gauge triplet

● Mass about 80 GeV

tr t a h +

√h + h
Dμ

h

√h + h

[Maas et al. '13]
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Mass relation - W

● Vector state: 80 GeV

● W at tree-level: 80 GeV

● W not scale or scheme dependent

● Same mechanism

● Same poles at leading order

● Remains true beyond leading order

● Exchanges a gauge for a custodial triplet

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩
h=v+η

≈
∂ v=0

const .+⟨W μ(x)W μ( y)⟩+O (η3)

[Fröhlich et al.'80
 Maas'12]



The remainder of the standard model

Is there an experimental lever to see all this?
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What about the rest?

● QED

● Also requires gauge-invariant description

● But can be done using phase factors (Dirac 
phases)

● ‘Almost’ local – non-trivial on the lattice
● Right-handed Dirac neutrinos trivial

● Not gauged under anything

● Quarks: Bound by confinement in hadrons?

● Leptons

● Flavor is actually weak gauge interaction

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]
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Flavor

● Flavor has two components

● Global SU(3) generation 

● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable

● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet

● Yukawa terms break custodial symmetry

● Different masses for doublet members

● Hard to test – but maybe even more possibilities

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]

⟨(hia
+ f a)(x) + (hib

+ f b)( y)⟩
h=v+η

≈ ⟨ f a
+ (x) f a( y)⟩+O (η)
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Flavor of hadrons

● Flavor is replaced by custodial symmetry

● Straightforward for leptons

● Implications for hadrons?

● Open flavor must be replaced by custodial symmetry

● Requires Higgs component

● Consider nucleon

● qqq open flavor, cannot be gauge invariant

● Impossible to build a gauge-invariant 3-quark state

● Replacement: qqqh

● FMS mechanism as usual yields QCD

● Detectable at LHC? Large QCD background. Test leptons

[Egger, Maas, Sondenheimer'17]
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--H bound stateμ

+-H bound stateμ

● Collision of bound states - 'constituent' particles

● Higgs partners just spectators

● Similar to pp collisions

● Sub-leading contributions

● Ordinary ones: Large and detected

● New ones: Small, require more sensitivity

[Maas'12]
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● Description of impact? Gauge-invariant perturbation 
theory!

● Ordinary contribution

● Modification of ordinary contribution

● Higgs as initial state

● More contributions...complicated
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? PDF-type language!

● Interacting particles either electrons or Higgs

● Fragmentation 100% efficient – like for quarks

[Maas'12,
 Egger et al.’17]
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e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

●Strong constraints from sumrules
● Only electron carries charge!
● Will change if W etc. included

Higgs at 0 energy
Just like a condensate

Electron carries
everything
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

No effect below 2xHiggs mass
Higgs need to get on-shell

[Maas'12,
 Egger et al.’17]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Drop depends on amount of
Higgs part of the structure - unknown
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Remainder driven by Yukawa coupling

[Maas'12,
 Egger et al.’17]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Top case:
Strong dependence 

on the amount of 
Higgs and energy

[Maas'12,
 Egger et al.’17]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Not all quantities are
equally influenced

[Maas'12,
 Egger et al.’17]
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Highly speculative consequences

● Why three generations?

● Leptons/Quarks are bound states

● Could other generations be internal excitations?

● Consider a one-flavor standard model with 
such excitations

● The low-energy effective theory is exactly the 
ordinary three-generation standard model

● CKM/PMNS matrices are decay matrix elements

● CP violation is dynamically generated

● Far-reaching consequences for BSM searches and 
cosmology

● Almost impossible to check with current methods

[Egger et al.’17]



Why it can matter beyond the 
standard model

And when this can be dealt with using
gauge-invariant perturbation theory
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Status of the standard model

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it
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Limits
FMS prediction

Too low: Finite volume effect

Elastic decay threshold
Higgs as resonance
Expensive, signal very bad

Higgs and W mass agrees
FMS stops working
So does Brout-Englert-Higgs!

[Maas & Mufti'14]
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Limits

QCD-like
Confinement

Higgs-like
Higgs condensate

Does not coincide with weak/strong coupling transitions!
Why?

[Maas & Mufti'14]



Higgs mass
Standard mass-cutoff plot

Elastic decay threshold

No BEH effect below

No strong dependence of mass range on cutoff - expected

[Maas & Mufti'15]
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0+/1- mass ratio

QCD-like
Elastic threshold

Tree-level perturbation theory is right

Physical ratio

[Maas, unpublished]
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Comparability to the standard model

● 2 correct masses only fix two parameters, but 
3 parameters needed

● Comparison to standard model complicated

● States stable, no W/Z splitting

● Couplings run differently – proceed with caution

[Maas, Mufti'13]
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Perturbative predictivity: Coupling

QCD-like

Higgs-like

Large cutoff, BEH: Small couplings

Large cutoff, QCD: Larger couplings

BEH/QCD at
Similar couplings

[Maas, unpublished]



Status of the standard model

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it

● So what could happen?
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Impact on quartic gauge coupling

● (Singlet) quartic gauge coupling and 
resonance formation in the same channel

● Resonance peak in final state invariant mass?

W/Z

W/Z

Resonance

W/Z

W/Z

W/Z

W/Z

W/Z

W/Z

+

[Maas et al. Unpublished]
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Experimental accessibility

Parton 1

Parton 2

Z

Z

W+

W-

Perturbative:
Higgs, Z, γ

Non-perturbative:
0++*,...

Additional 1% effect

● E.g. excited Higgs: Decay channel: 2W

● Does it happen in the standard model?

● If yes, this would fake new physics!

● And would be hard to detect

[Maas et al. Unpublished]

SPECULATIVE

[Low-energy effective Lagrangian, MC by Sherpa 1.4.2]

20 fb-1 1000 fb-1 500 fb-1
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Resonances or scattering
states

Exponential volume dependency
- if stable against decays into
other channels

● Polynominal (inverse) volume 
  dependence
● Width and nature
  from phase shifts below the
  inelastic threshold

[Luescher'85,'86,'90,'91]

Above inelastic threshold still
complicated
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Excited states on the lattice

Ground state

Elastic threshold: H->2W

Inelastic threshold: H->2H

Scattering states

[Luescher'85,'86,'90,'91]



Excited states on the lattice

Ground state

Elastic threshold: H->2W

Inelastic threshold: H->2H

Scattering states

Avoided level crossing
Identification and widths from 
phase shifts

[Luescher'85,'86,'90,'91]



Search: Excited Higgs

Elastic threshold

Ground state

Scattering states

Inelastic threshold

NB: weakly coupled

[Maas et al.'14]
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Elastic threshold

Ground state

Scattering states

Inelastic threshold

NB: weakly coupled

[Maas et al.'14]
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● Generically different low-lying spectra

● 0+ lighter in QCD-like region

● 1- lighter in Higgs-like region
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Typical spectra

● Generically different low-lying spectra

● 0+ lighter in QCD-like region

● 1- lighter in Higgs-like region

● Coincides with gauge-dependent definitions

[Maas, Mufti '13,'14,
 Evertz et al.'86, Langguth et al.'85,'86]

Reversed order
[N=24, κ=0.2939, β=2.4492, λ=1.036][N=24, κ=0.2954, β=2.7984, λ=1.317]



Status of the standard model

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it

● So what could happen? Probably nothing.



Status of the standard model

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it

● So what could happen? Probably nothing.

● What happens for a different structure

● Different gauge group or more Higgs



Example 1: 2HDM

Like the standard model
Gauge-invariant and ordinary perturbation theory 

coincide
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Implications for 2HDM

● FMS states for maximal custodial group:

● Scalar sector Singlet

● Scalar Sector Quadruplet

● Splitted into 1+3 states for broken group

● Vector triplet

● All other states expand to scattering states

● Validity: Requires non-perturbative check

● Discrete factor groups could yield doubling

⟨(h + h)(x)(h + h)( y )⟩ ≈ const .+⟨ηh
+ (x )ηh( y )⟩+O(ηh

3)

⟨(a + Γa)(x )(a + Γ a)( y )⟩ ≈ const .+⟨ηa
+ (x)Γηa( y )⟩+O(ηa

3)

⟨(h + Dμ h)(x )(h + Dμ h)( y)⟩ ≈ const .+⟨W μ(x)Wμ( y)⟩+O(ηh
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[Maas'15,
 Maas & Pedro'16]
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● BEH Effect - FMS mechanism applicable

● In a suitable basis, all condensates 
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● Discrete factor groups may be a problem
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Implications for 2HDM

● Additional Higgs doublet

● Enlarged custodial group

● BEH Effect - FMS mechanism applicable

● In a suitable basis, all condensates 
contained in a single doublet

● Yields again perturbative spectrum
● Discrete factor groups may be a problem

● Key: Global multiplet structure diverse

● Size of fluctuations needs to be checked 
non-perturbatively!

[Maas'15,
 Maas & Pedro'16]



Example 2: GUT-like structure

Gauge-invariant perturbation theory correct
and

different from ordinary perturbation theory
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Test for GUTs

● Separation into Higgs-like and QCD-like

“Higgs”

“QCD”

[Maas & Törek'16]
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)

● Perturbative spectrum

● 1 massive Higgs, 3 massless and   
5 (1 (heavier) + 4 (lighter)) massive vectors

● FMS spectrum

● 1 massive scalar, 1 massive vector
● Same masses as Higgs and heaviest gauge boson

● ...or something else?

[Maas'15
 Törek & Maas '15, '16]
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Toy-GUT: Vectors

● Qualitatively different spectrum
● Scalars similar but no confirmation yet (statistics!)

Perturbation theory FMS expansion
Gauge-dependent U(1) singlets U(1) non-singlets

M
a
ss

0
[Maas & Törek'16
 Maas, Sondenheimer & Törek'17]
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Toy-GUT: Vectors

● Quantitative agreement

Perturbation theory FMS expansion
Gauge-dependent U(1) singlets

M
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0
[Maas & Törek'16+unpublished
 Maas, Sondenheimer & Törek'17]
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Toy-GUT: Vectors
Perturbation theory FMS expansion
Gauge-dependent U(1) non-singlets

M
a
ss

0
[Maas & Törek'16+unpublished
 Maas, Sondenheimer & Törek'17]
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Other scenarios: Group theory

● SU(3) case is generic for SU(N) with a 
single fundamental Higgs

● Elementary spectrum: More particles

● Physical spectrum: Independent of N
● Reason: Same custodial symmetry

● Always a mismatch to perturbation theory

● No lattice tests yet

● Multiple Higgs fields: Larger custodial 
symmetry

● Note: Predicts vector lighter than scalar!

[Maas, Sondenheimer & Törek'17]
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Other scenarios: Group theory

● SU(N) with adjoint Higgs subtle

● N=2

● Perturbatively breaks to U(1): QED?

● Not gauge-invariant – no U(1) of SU(2) 
special!

● But: Massless vector state predicted
● Standard gauge-invariant perturbation theory

● If interactions are right could be an effective 
U(1)

● Not yet tested

● Still mismatch in other channels

[Maas, Sondenheimer & Törek'17]
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Other scenarios: Group theory

● SU(N) with adjoint Higgs subtle

● N>2

● Multiple breaking patterns
● E.g. SU(3): SU(2)xU(1) and U(1)xU(1)

● Gauge-invariant distinction per configuration

● But: Average over all configurations!
● Is there a dominance?
● Different phases or gradual distinction?
● Mixing of features or distinct physics?

● Spectrum still different in every pattern
● Too many massless states, too few massive

[Maas, Sondenheimer & Törek'17]



Example 3: Technicolor

No gauge-invariant perturbation theory
but

interesting implications
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Implications for Technicolor

● Higgs replaced by bound state of new 
fermions (techniquarks) and new gauge 
interaction (technicolor)

● No BEH effect: FMS cannot work

● Observable states must still be gauge-
invariant

● Needs to create Higgs and W/Z(!) signals 
by (new) bound states

● Vectors must be lighter
● Behavior not yet seen for strong interactions

● Usually: Scalars and pseudoscalars

[Maas,'15]



Summary

● Observable (particles) must be gauge-invariant

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

● Applicable to beyond-the standard model

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

● Applicable to beyond-the standard model

● Structural requirement: Multiplets must match

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

● Applicable to beyond-the standard model

● Structural requirement: Multiplets must match

● Dynamical requirement: Small fluctuations

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16



Summary

● Observable (particles) must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

● Applicable to beyond-the standard model

● Structural requirement: Multiplets must match

● Dynamical requirement: Small fluctuations

● Often at odds with standard phenomenology

UPCOMING REVIEW IN MID DECEMBER
Brief introduction: Törek & Maas'16
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