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1 Introduction and Theory
1.1 Objective
The following thesis aims to examine the eigenspectrum of the Faddeev-Popov operator in non-
Abelian SUp2q Yang-Mills theories using analytical methods. Specifically, the Gribov problem will
be explored, the objective being to find negative eigenvalues. As a gauge, the Landau gauge is
chosen and the potential is given in the form of a simple potential well, described via the hyperbolic
tangent function.

1.2 Gauge Theories
Classical electrodynamics

Historically, the first encounter with gauge symmetries was in classical electrodynamics, and serves
as a reasonable introduction. The scalar potential V and the vector potential A⃗ are introduced
and defined via the measurable electric field E and the magnetic flux density B⃗:

B⃗ “ ∇ ˆ A⃗

E⃗ “ ´∇V ´
BA⃗

Bt

It is clear that the potentials are not uniquely defined, meaning that they can be transformed
without changing the corresponding fields. The transformations of the fields under which the fields
are invariant are known as gauge transformations.[1]

A⃗1 “ A⃗` ∇λ

V 1 “ V ´
Bλ

Bt

(1)

In this case, λpr⃗, tq is an arbitrary scalar function.

This results in a large number of additional degrees of freedom. To reduce these, a gauge can
be enforced. In electrodynamics, the Lorentz gauge is convenient as it provides both scalar and
vector potentials with simple expressions.

∇ ¨ A⃗ “ ´µ0ϵ0
BV

Bt
(2)

Formalism using scalar fields

When switching to the field description of particles, the particle position in space xptq is replaced
by a scalar field ϕpxµq, dependent on the four-vector xµ “ px, y, z, tq with the Lagrangian

L “ pBµϕqpBµϕ˚q ´m2ϕ˚ϕ (3)

3 is invariant under the gauge transformation (and the corresponding complex conjugate):

ϕ Ñ e´iΛϕ (4)

For local gauge invariance, Λpxµq will be a function of the four-vector.

The transformation can be written as a rotation in the 2d plane, but is also unitary, showing
that the symmetry group in electromagnetism is SOp2q « Up1q. Due to Noether’s theorem, with
this symmetry, there is a conserved current J0 and a resulting conserved quantity, which is the
electric charge Q in this case.[6]
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Because Λpxµq is dependent on xµ, the derivatives in 3 contain extra terms. To maintain gauge
invariance, a 4-potential Aµ is introduced in form of additions to the Lagrangian. It couples to the
current Jµ and has the following gauge transformation:

Aµ Ñ Aµ `
1
e

BµΛ (5)

Here, e is the electric charge and represents a coupling constant. The curl of Aµ is also added into
the Lagrangian - in electromagnetism, it represents the electromagnetic field tensor:

Fµν “ BµAν ´ BνAµ (6)

As the derivative Bµϕ transforms differently than ϕ, it is replaced with the covariant derivative Dµ

to keep the invariance:
Dµϕ “ pBµ ` ieAµqϕ (7)

This leads to the complete Lagrangian of the electromagnetic field:

LEM “ DµϕD
µϕ˚ ´m2ϕ˚ϕ´

1
4F

µνFµν (8)

Yang-Mills theories

In gauge fields, the local gauge transformations under which the Lagrangian is invariant form a
Lie group. While the electromagnetism example showed a relatively simple gauge group of Up1q,
Yang-Mills fields can have symmetries in form of a variety of Lie groups (as long as they are com-
pact and reductive) - the focus of this thesis is that of the SUp2q group. It is isomorphic to the
SOp3q group and non-Abelian. This has several physical consequences, specifically the fact that it
is self-interacting.[4][6]

The local gauge transformation under SUp2q is the following:

ψpxq Ñ exp piΛipxq
σi

2 q (9)

with Λipxq being arbitrary functions, and σi the Pauli matrices, the generators of the SUp2q group
(when multiplied with i):

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

, (10)

This transformation calls for a relevant covariant derivative:

Dµ “ Bµ ´ igAi
µ

σi

2 (11)

The gauge potential is now a vector with three components Ai
µ - so is the conserved current J⃗µ,

which is called the source. 11 also gives rise to the coupling constant g. The generalization of the
electromagnetic field tensor, the gauge field Fµν , is defined as follows:

Fµν “ BµAν ´ BνAµ ´ igrAµ, Aνs (12)

For Abelian groups, the result is clearly 6 - however, for the SUp2q Yang Mills field, one refers to
the commutation relation of the generators

rσi, σjs “ 2iϵijkσk (13)

in order to get the gauge field:

Fµν “ BµAν ´ BνAµ ´ gϵabcA
b
µA

c
ν (14)

with the antisymmetric Levi-Civita tensor ϵabc acting as the SUp2q structure constant fabc. From
these, the Yang-Mills Lagrangian can be constructed:

LY M “ ´
1
4 pF i

µνq2 (15)

The following fields are all SUp2q Yang-Mills fields.
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1.3 Faddeev-Popov Operator
Gauge fields are quantized via the path integral formulation and expressed with a generating
functional

Z “

ż

DAµe
i

ş

L dx “

ż

DAµe
iS (16)

Because L and the action S are gauge invariant, the integral includes all possible potentials Aµ,
resulting in a divergent integral. This is remedied by fixing a gauge and applying the Faddeev-
Popov method. The gauge in question is the Landau gauge:

BµA
µ “ 0 (17)

The Landau gauge is a special case of the Lorentz gauge condition and is dependent on a parameter
in the Feynman propagator, which will not be discussed in detail here. The gauge fixing is expressed
as an additional term in the Lagrangian:

L “ ´
1
4FµνF

µν ´
1
2 pBµA

µq2 “ L0 ` LGF (18)

L0 is given by 15.

The Faddeev-Popov method consists of inserting a ”ghost term” into 16, further reducing the
degrees of freedom.[4] This ghost term represents a field with no physical effect (in particle terms:
a virtual particle), appearing as a ”one” in the mathematical formalism. The following paragraphs
provide a brief demonstration of the method, as well as a derivation of the corresponding Faddeev-
Popov operator (derivation by [6]).

In the Yang-Mills field, the gauge transformation of AU
µ can be written using the unitary ma-

trices U :
AU

µ “ UAµU
: ´ ipBµUqU :

U “ eiΛa
pxqT a

with the infinitesimal form
A1a

µ “ Aa
µ ` fabcAb

µΛc ` BµΛa

(for which T i represent the generators and Λi the functions of the gauge transformation in the
color index i).

In functional terms, the gauge condition (with the non-abelian color index a) is written as

F arAµs “ 0

meaning that for the Landau gauge, F “ BµAµ.

Now, a ”one” can be inserted into the generating functional. Because the gauge transforma-
tion is described by the unitary matrix U and 1.3, it is possible to perform the path integral over
U . A delta functional δrF arAss is used to cancel the integral and retain the ”one”:

δrF arAss “
ź

xµ,a

δpF arApxµqsq

Now a functional ∆F rAµs is introduced, which, when multiplied with the integral, is equal to one:

∆F rAµs

ż

DUδrF arAU
µ ss “ 1

Inserting this into the generating functional and using Z „
ş

DĀµe
iS

ş

DΛ (the integral of the
gauge term Λ can be separated out because of 1.3):

Z “

ż

DAµ∆F rAµs

ż

DUδrF arAU
µ sseiS
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It can be shown that DAU
µ ” DAµ, and using 1.3 and the gauge invariance of ∆F rAµs, the integral

DU can be pulled out. It can be ignored as it is a multiplicative factor. Now,

Z “

ż

DAµ∆F rAµsδrF arAµsseiS

and the expression for ∆F rAµs is given by:

∆F rAµs “ det|
δF

δΛ |F “0 ” det M

with M being the Faddeev-Popov operator.

Using the equivalence
ş

dᾱdαe´ᾱAα “ det A, and multiplying i to M ,

det iM “

ż

D η̄Dη exp p´i

ż

η̄aMabη
bdxq (19)

This can be substituted into Z and gives rise to the Faddeev-Popov ghost term in the Lagrangian:

Leff “ ´
1
4FµνF

µν ´
1
2 pBµA

µq2 ´ η̄aMabη
b “ L0 ` LGF ` LF P G

with the ghost fields η, η̄.

In Yang-Mills fields, 19 is used to define the definition of the Faddeev-Popov operator which
is used in this thesis: [3]

Mab “ ´BµpBµδ
ab ` gfabcAc

µq (20)

1.4 Fiber bundles and Gribov ambiguity
To visualize the Gribov problem, it is helpful to describe gauge fixing with fiber bundles. A fiber
bundle is a collection of topological spaces constructed of the following:
A space E (called the total space) is related to a base space M through a continuous surjective
map π : E Ñ M , mapping elements of the total space onto the base space. A fiber F over a point
x P M is described by the inverse π´1pxq of the map πpxq. The fibers are subspaces of E and are
homeomorphic. When π´1pxq “ F forms a topological space @x, the collection pE, π,Mq forms
a fiber bundle with the fiber F .[2][5] The following figure shows a simple sketch of a fiber bundle
(E,π,M) with fiber F .

Figure 1: Sketch of the topological spaces that make up the fiber bundle, with total space E, base
space M and fibers F , with the continuous maps πpxq and π´1pxq for a point x P M .
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Fixing a gauge can be described as choosing a section of the fiber bundle, which means choosing
a continuous map σ : M Ñ E such that πpσpxqq “ x for all points x P M). Another description
defines a fixed gauge as the intersection between the orbit of the gauge (here: the orbit of the SUp2q

group) and the fiber bundle at exactly one point. However, this is where the Gribov ambiguity
arises. Gribov discovered that the orbits can globally intersect the fiber bundle more than once,
or not at all. This especially tends to be the case for non-Abelian gauge theories and for gauges
involving differentials (the Landau gauge 17 being one of these).[7]

Globally, this ambiguity cannot be controlled, but there is an attempt at a local remedy, in which
the field configuration space is divided up into Gribov regions with boundaries known as Gribov
horizons, which restrict the path integrals. The first Gribov region is bounded in all directions.
Due to this, the fields in the path integral cannot be arbitrarily large. The Faddeev-Popov oper-
ator is positive in the first Gribov region, and in this thesis, the focus is to examine a potential
for a spectrum in the Faddeev-Popov operator which contains negative eigenvalues, thereby going
beyond the first Gribov region.[3][7]
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2 Setting up the problem
The objective of the thesis is to calculate the eigenspectrum of the Faddeev-Popov operator Mab

(given in 20) for the color indices a, b, c:

Mab “ ´BµpBµδ
ab ` gfabcAc

µq

The eigenspectrum will be calculated with the standard eigenvalue equation, with the eigenvalue
λ and eigenfunctions ϕa, ϕb:

λϕa “ Mabϕb (21)
The Faddeev-Popov operator will be applied to a simple potential well, which should be at least
a C2 function, as it must be continuous and have both continuous first and second derivatives, as
these are required in the operator definition. The chosen vector potential is therefore given by a
hyperbolic tangent function, defined in Cartesian coordinates for the two-dimensional case:

Ac
µ “ tanh ax2

The width of the potential well can be controlled by the parameter a. This is set to 1, so the
length is in units of a.

Ac
µ “ tanh x2 (22)

Plugging this into 21 gives the eigenvalue equation to be solved:

λϕa “ ´

3
ÿ

b“1
pB2δab ` gfabcAc

µBµqϕb (23)

In the SUp2q group, the structure constants fabc are proportional to the Levi-Civita tensor (see
the commutation relation 13):

fabc “ 2iϵabc

Now 23 can be split up depending on the color index, resulting in the cyclical and anticyclical
differential equations for ϕ1 and ϕ2, respectively:

λϕ1 “ ´B2ϕ1 ´ gf123BµA
3
µϕ

2 “ ´B2ϕ1 ´ 2gi tanh2 xBµϕ
2 (24)

λϕ2 “ ´B2ϕ2 ´ gf213BµA
3
µϕ

1 “ ´B2ϕ2 ` 2gi tanh2 xBµϕ
1 (25)

For A3 “ Aaδa3 (color index 3 being the only non-zero entry for Aa
µ):

λϕ3 “ ´B2ϕ3 (26)

3 Analytical calculations
3.1 Vacuum solution
The differential equation in 26 does not involve the potential, and its solutions are therefore the
vacuum solutions - it is to be expected that these are positive. Next, a few simplifications are
used to make calculations easier, which will be used both for the vacuum equation and the coupled
equations. One of these involves using the Euclidean metric instead of the Minkowski metric. This
is made possible by performing a Wick rotation, replacing the time variable with an imaginary one
(t Ñ iτ), essentially working with an analytically continued theory with the Euclidean signature.
It is assumed that the Wick rotation can be used, but it is not explicitly performed here, thus the
time variable will remain t. The other simplification is the switch to polar coordinates, reducing
to two Euclidean dimensions:

pρ, ηq Ñ ρ2 “ x2 ` t2 (27)
The differential operator B2 becomes the Laplace operator ∆, which has the following definition in
polar coordinates:

∆ “
B2

Bρ2 `
1
ρ

B

Bρ
`

1
ρ2

B2

Bη2 (28)

Plugging this into 26 results in a Helmholtz differential equation in polar coordinates, which can
be solved via separation and yields the Bessel functions.[8] In Cartesian coordinates, the solutions
take the form of plane waves.[3]
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3.2 Coupled equations
The differential equations 24 and 25 are coupled. Analogous to 27, a switch to polar coordinates
(ρ, η) is performed. Next, it is checked whether the coupled equations are separable for ϕi “ ϕi

ρϕ
i
η

(here for 24). Due to the coordinate transformation, ρ is multiplied to tanh2
pρq.

λϕ1
ρϕ

1
η “ ´B2ϕ1

ρϕ
1
η ´ 2giρ tanh2

pρqBµϕ
2
ρϕ

2
η (29)

The differentials
Bµ “

1
ρ

Bρρ`
1
ρ

Bη

B2 “
1
ρ

BρρBρ `
1
ρ2 B2

η

are substituted into 29. Because the vector potential A “ Aη êη points in the η direction and
the Landau gauge 17 holds, the η direction is projected outwards and the corresponding partial
differential goes to zero. Thus, the differential Bµ only acts onto the ρ direction.

λϕ1
ρϕ

1
η “ ´

1
ρ

Bρϕ
1
ρϕ

1
η ´

1
ρ2 B2

ηϕ
1
ρϕ

1
η ´ 2giρ tanh2

pρq ¨
1
ρ

Bρρϕ
2
ρϕ

2
η

For the separation, the ρ and η components are brought to their respective sides:

ñ λϕ1
ρϕ

1
η `

ϕ1
η

ρ
BρρBρϕ

1
ρ `

1
ρ2 B2

ηϕ
1
ρϕ

1
η “ ´ϕ2

η ¨ 2gi tanh2
pρqBρρϕ

2
ρ

ñ
1
ϕ2

η

¨ rϕ1
η ¨ pλϕ1

ρ `
1
ρ

BρρBρϕ
1
ρq `

ϕ1
ρ

ρ2 ¨ B2
ηϕ

1
ηs “ ´2gi tanh2

pρqBρρϕ
2
ρ

ñ
ϕ1

η

ϕ2
η

¨ pλρ2 `
ρBρρBρϕ

1
ρ

ϕ1
ρ

q `
1
ϕ2

η

¨ B2
ηϕ

1
η “ ´

1
ϕ1

ρ

¨ 2giρ2 tanh2
pρqBρρϕ

2
ρ

Due to the periodicity of the angular component η, the following approach can be used for corre-
sponding function ϕη:

ϕi
η “ aie

iωiη ` bie
´iω̃iη (30)

with the frequency
ωi “ 2πn

Setting ω1 “ ω2, the first term ϕ1
η

ϕ2
η

“ 1 and the equation can be separated:

1
ϕ2

η

¨ B2
ηϕ

1
η “ ´λρ2 ´

ρ

ϕ1
ρ

BρρBρϕ
1
ρ ´

1
ϕ1

ρ

¨ 2giρ2 tanh2
pρqBρρϕ

2
ρ (31)

Remark: Angular component

Using the solution 30 for the angular component of the equation 31, applying the differential B2
η

results in the following for the remaining term:

B2
ηϕ

η

ϕη
“

´ω2paeiωη ` beiω̃ηq

paeiωη ` beiω̃ηq
“ ´ω2

This results in the left side of the equation becoming a constant (renamed to κ).

´ω2 ” κ (32)
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3.3 Radial component
To solve for the radial ρ component, the equation 31 is rewritten to include the constant κ from
32:

pκ` λρ2 ` ρBρρBρqϕ1
ρ “ ´2giρ2 tanh2

pρqBρρϕ
2
ρ (33)

Behavior in limits

To get an idea of how the radial function component ϕρ behaves at high and low ρ, ρ is sent to
zero and infinite, and the corresponding, now simpler, differential equations are solved:

ρ Ñ 0

Sending ρ to zero, the tanh2
pρq vanishes. Using the product rule for ρBρρBρϕ

1 and removing all
terms with ρ2 (as these vanish in comparison):

κϕ1 “ ´λρ2ϕ1 ´ ρBρϕ
1 ´ ρ2B2

ρϕ
1 ´ 2giρ2 tanh2

pρqBρρϕ
2

Now the first-order differential equation is solved via separation of variables:

ñ κϕ1 “ ´ρBρϕ
1

ñ ´

ż 1
ϕ
dϕ “

ż

κ

ρ
dρ

This results in symmetric ϕ1 and ϕ2 with two possible constants κ:

ϕ1
0 “ ϕ2

0 Ñ ρ´κec “

#

0 κ ‰ 0
1 κ “ 0

(34)

ρ Ñ 8

Sending ρ to 8, tanh2
pρq goes to 1, and, after using the product rule for the resulting 2giρ2Bρρϕ

2

term, this remains the only term.

κϕ1 “ ´λρ2ϕ1 ´ ρBρϕ
1 ´ ρ2B2

ρϕ
1 ´ 2giρ2pϕ2 ` ρBρϕ

2q

Divide by ρ2 and remove all disappearing terms:

λϕ1 ` B2
ρϕ

1 ` 2giρBρϕ
2 “ 0

Only one term containing ρ is left:
2giρBρϕ

2 “ 0
This results in the functions ϕ1

8 and ϕ2
8 being constants, which can be assumed to be symmetrical.

ñ ϕ2
8 “ ϕ1

8 Ñ const.

Solving the symmetrical equations

With the behavior shown in 3.3, the coupled equations are assumed to be symmetrical, so the two
functions ϕ1

ρ and ϕ1
ρ are rewritten as ϕ. The focus in this section lies on solving 33:

ϕκ` λρ2ϕ1 ` ρBρρBρϕ` 2giρ2 tanh2
pρqBρρϕ “ 0 (35)

The first attempt at solving 35 involved trying to find a standard integral solution for the equa-
tions, for which none could be found. The next was to rewrite the hyperbolic tangent portion
as tanh2

pρq “
sinh2

pρq

cosh2pρq
, separate the quotient and try to solve the equation for the trigonometric

functions expressed in terms of exponential functions. This did not work, as the sides of the differ-
ential equations had a difference in the power of ρ for all functions that were tried out, resulting
in different numbers of peaks. While the absolute amplitudes of the additional peaks could be
reduced to a certain extent, a quantitatively satisfactory solution could not be found. Thus, a
series approximation was attempted.
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Series approach

The aim is to use a power series approach to approximate the solution of the differential equation.
This series would then be multiplied to a quickly decaying function such as e´ρ2 to ensure that it
stays small for large ρ.

To avoid multiplying multiple infinite series arising from the term ρ2 tanh ρ2Bρϕ
2
ρ, the power series

of tanh2
pρq up to the 10th order is determined using the Series[] function in Wolfram Mathematica:

tanh2
pρq « ρ2 ´

2ρ4

3 `
17ρ6

45 ´
62ρ8

315 `
1382ρ10

14175 ” ρ2 ` aρ4 ` bρ6 ` cρ8 ` dρ10 (36)

The individual terms are then written into series and brought to the same power ρn. While it is
usually convenient to bring the sums to the same starting index, this is not possible for the terms
from the expansion 36. In the following, the power series expressions for the individual terms of
35 are shown.

κϕ “ κ ¨
ÿ

n“0
anρ

n

λρ2ϕ “ λ ¨
ÿ

n“0
anρ

n`2 “ λ
ÿ

n“2
an´2ρ

n

ρBρρBρϕ “ ρ ¨ pϕ1 ` ρϕ2q “
ÿ

n“1
nanρ

n `
ÿ

n“2
npn´ 1qanρ

n

For the tanh2
pρq term, first the derivatives are rewritten, then the expansion 36 is multiplied to

the sums.

2gi tanh2
pρq ¨ ρ2Bρρϕ “ 2gi tanh2

pρq ¨ ρ2 ¨ pϕ` ρϕ1q “ 2gi tanh2
pρq ¨ p

ÿ

n“0
anρ

n`2 `
ÿ

n“1
nanρ

n`2q

“ 2gi ¨ r
ÿ

n“0
an ¨ pρn`4 ` aρn`6 ` bρn`8 ` cρn`10 ` dρn`12q`

`
ÿ

n“1
nan ¨ pρn`4 ` aρn`6 ` bρn`8 ` cρn`10 ` dρn`12qs

Next, the index shift is performed:

“ 2gi ¨ r
ÿ

n“4
an´4ρ

n `
ÿ

n“6
an´6aρ

n `
ÿ

n“8
an´8bρ

n `
ÿ

n“10
an´10cρ

n `
ÿ

n“12
an´12dρ

n`

`
ÿ

n“5
pn´4qan´4ρ

n`
ÿ

n“7
pn´6qan´6aρ

n`
ÿ

n“9
pn´8qan´8bρ

n`
ÿ

n“11
pn´10qan´10cρ

n`
ÿ

n“13
pn´12qan´12dρ

ns

These can now all be grouped together, and ρn can be factored out. This leads to the following
power series, a part of which is expressed as products of sums for better legibility.

κ ¨
ÿ

n“0
an `

ÿ

n“1
nan `

ÿ

n“2
pλan´2 ` npn´ 1qanq ` 2gi¨

„

ÿ

iPI

ÿ

n“i

bn,i `
ÿ

jPJ

ÿ

n“j

pn´ j ` 1qbn,i

ȷ

“ 0

(37)

The sets for the start indices are I “ t4, 6, 8, 10, 12u and J “ t5, 7, 9, 11, 13u, and the relevant
coefficients bn,i and bn,j are given in the following tables.

Table 1: Expressions for the coefficients bn,i and bn,j .

i j bn,i “ bn,j

4 5 an´4
6 7 an´6a
8 9 an´8b
10 11 an´10c
12 13 an´12d
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One is now left with several power series which should be developed to the order n “ 13 at the
very least and were calculated by hand up to the order n “ 70. The first few will be shown in the
following tables, with a case distinction between the two κ values.

κ “ 0

Because κ “ 0, a0 can be chosen as an arbitrary number. The following table shows the equations
and resulting coefficients for the first terms:

Table 2: Coefficients an for the first few terms n of the series 37 for κ “ 0.

n Equation an

0 κa0 “ 0 a0
1 a1 = 0 0
2 λa0 ` 2a2 ` 2a2 “ 0 ´ λ

4 ¨ a0
3 λa1 ` 3a3 ` 6a3 “ 0 0
4 λa2 ` 4a4 ` 12a4 ` 2gia0 “ 0 ´ 1

16 ¨ pλa2 ` 2gia0q

One can see, whether by calculating the terms or looking at the sums, that the an disappear for
odd n.

κ “ ´1

Now, a1 can be chosen arbitrarily, and one gets the opposite situation of 2 - the an disappear for
even n. The results for the first terms are shown in the following table:

Table 3: Coefficients an for the first few terms n of the series 37 for κ “ ´1.

n Equation an

0 κa0 “ 0 0
1 ´pκ` 1qa1 “ 0 a1
2 λa0 ` pκ` 4qa2 “ 0 0
3 λa1 ` pκ` 9qa3 “ 0 ´λa1

10
4 λa2 ` pκ´ 16qa4 “ 0 0
5 λa3 ` 24a5 ` 4gia1 “ 0 ´ 1

24 pλa3 ` 2gi ¨ 2a1q

(Cont.) Remark: Angular component

From 32, it is apparent from the series coefficients that the values of ω for which the function is
not zero everywhere are the following:

´ω2 “ κ

ñ ω “

#

0 κ “ 0
˘1 κ “ ´1

(38)

4 Results
4.1 Function convergence
For both possible values of κ, the function behavior is observed at increasing orders of the sum
(here: up to the 70th order). While the polynomials diverge, the points at which they diverge
are of importance - if the function stays more stable for higher orders before divergence, this is
evidence of the polynomial being a possible candidate for a solution of the differential equation.
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The following plots show the divergence of the eigenfunction series fpρq at the three highest
calculated orders n. Only even orders are shown because for the others, the function is equal
to zero for κ “ 0 - the analogous goes for the odd orders in the case of κ “ ´1. For purposes of
consistency, the eigenvalue for all series is chosen to be λ “ 1 in this section.

Figure 2: Shown above are the series fpρq at the orders n “ 66, n “ 68 and n “ 70 for κ “ 0. The
left plot shows the full domain from ρ “ 0 up to the point of divergence, and the right plot zooms
in on the exact points of divergence.

Figure 3: Shown above are the series fpρq at the orders n “ 65, n “ 67 and n “ 69 for κ “ ´1.
The left plot shows the full domain from ρ “ 0 up to the point of divergence, and the right plot
zooms in on the exact points of divergence.

It is apparent from 2 and 3 that the series converges into a function at higher and higher orders
with the lower orders diverging first. As powers with different signs for the coefficients dominate
the expression, the divergence alternates between ´8 and `8, however, there is no clear pattern
here.
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For the two values of κ, the series have similar convergence behaviors and the second to last series
orders (n “ 68, n “ 67) branch off between 1.10 a and 1.15 a, i.e. in the same order of magnitude.
For κ “ ´1, the function diverges slightly more quickly.

The following figure shows the comparison between the sides of the differential equation 35 applied
to the series fpρq. For clearer axis labels in the plot, the expression will be rewritten as an operator:

pκ` ρBρρBρ ` 2giρ2 tanh2
pρq ` λρ2qfpρq ” Dρ

Figure 4: The plots pictured above show the differential equation 35 applied to the series fpρq

in the form of Dρfpρq for the two possible κ values (left: κ “ 0, right: κ “ ´1). The top plots
show the full domains until divergence and the bottom ones zoom into the points at which the
expression stops corresponding ”exactly” to zero. Ideally, the expression should stay at zero for as
long as possible.

There is a significant difference in divergence speed between the two κ values, with the ρ value at
which the function for κ “ ´1 diverges being about an order of magnitude smaller than that for
κ “ 0. This difference could be attributed to the higher order (70) or the first polynomial, but due
to the fact that it is only a difference of one order, this can be neglected. It is more likely that the
odd polynomials contain more fluctuations and therefore deviate from 0 at lower values of ρ.
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4.2 Examining a few eigenvalues
The following plots, like 4, show the comparison of the two sides of the equation. Here, the
eigenvalues are varied for a small range λ P t´10,´5,´1, 0, 1, 5, 10u. For easier visualization, the
values for λ ď 0 are plotted in the first figure, and the values for λ ą 0 in the second.

Figure 5: The plots pictured above show the differential equation 35 applied to the series fpρq

in the form of Dρfpρq for various values of λ and the two possible κ values (left: κ “ 0, right:
κ “ ´1). The top plots show the full domains until divergence and the bottom ones zoom into the
relevant divergence points.
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Figure 6: The plots pictured above show the differential equation 35 applied to the series fpρq

in the form of Dρfpρq for various values of λ and the two possible κ values (left: κ “ 0, right:
κ “ ´1). The top plots show the full domains until divergence and the bottom ones zoom into the
relevant divergence points.

From the plots 5 and 6 it is apparent that while there is a degree of convergence for all displayed
eigenvalues, those with a smaller absolute value have better convergence. For λ “ 0, the behavior
is the most stable while the larger eigenvalues diverge more and more quickly. This is likely due to
the quadratic term λρ2 multiplied to the polynomial fpρq, which simply causes a larger polynomial.
Despite this, all λ tested out in this small range show some convergence at low ρ, implying that
the spectrum could contain both positive and negative eigenvalues.

The difference between the divergences of the two κ values seen in 4.1 appears to be consistent
for the other eigenvalues. The polynomial for κ “ ´1 diverges about an order of magnitude more
quickly than that for κ “ 0.

4.3 Limitations
Several simplifications that were made for the calculation process are worth noting. The results
currently apply to two-dimensional polar coordinates, and still need to be extended into the four-
dimensional space. Additionally, the current eigenfunction is shown for real numbers and an
analytical continuation would be necessary to include the imaginary portion of 29.

It is also assumed that the solutions to the coupled equations 24 and 25 are completely symmetric.
Although the limit behaviors examined in 3.3 are the same, the functions do not necessarily need
to behave the same way between these limits.
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5 Summary and Outlook
The eigenvalue equation of the Faddeev-Popov operator for the potential configuration tanh2

pxq,
simplified to the two-dimensional case and then coordinate-transformed to polar coordinates, was
split up by color, leading to three differential equations, two of which were coupled. The coupled
equations were separated into radial and angular components. Assuming symmetry between the
coupled equations, the radial portion of the equation was then approximated by a series approach:

κ ¨
ÿ

n“0
an `

ÿ

n“1
nan `

ÿ

n“2
pλan´2 ` npn´ 1qanq ` 2gi¨

„

ÿ

iPI

ÿ

n“i

bn,i `
ÿ

jPJ

ÿ

n“j

pn´ j ` 1qbn,i

ȷ

“ 0

for the sets I “ t4, 6, 8, 10, 12u and J “ t5, 7, 9, 11, 13u.

Depending on the results of the angular component (either ω “ 0 or ω “ ˘1), two possible
series emerged. These were calculated up to the 70th order and then examined for convergence.
The influence of positive and negative eigenvalues were examined as well for a small range of
λ P t´10,´5,´1, 0, 1, 5, 10u. The functions appear to converge for higher and higher orders of the
series, and fulfill the differential equation for small values of ρ.

To verify the series as solutions to the differential equation, it would be necessary to include
the generalizations mentioned in 4.3, as well as calculating significantly higher orders of the series
to check convergence at larger values of ρ.
Should the solution be verified, it appears promising that negative eigenvalues such as the ones
shown in 4.2 could satisfy the eigenvalue equation, implying that the potential configuration could
be a possible candidate for going beyond the first Gribov region.
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