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Abstract

The correlation functions and effective masses of three operators were calculated for the

Yang-Mills-Higgs theory, i.e. an SU(2) gauge theory with a complex scalar doublet. The

operators we used are custodial singlet vectors only containing gauge fields, i.e. so-called

W-balls. The lattices these objects were studied on are hypercubic and of size 84, 124

and 164. Smearing was implemented to handle statistical noise. The operators we used

do not show significant overlap with low-mass states. The lowest state is far above the

lattice cut-off and the mass of a scattering state of two Higgs bosons.

Kurzfassung

Die Korrelationsfunktionen und effektiven Massen von drei Operatoren wurden in der

Yang-Mills-Higgs-Theorie, d.h. SU(2)-Eichtheorie mit einem komplexem skalaren Dublett,

berechnet. Die verwendeten Operatoren sind Singuletts in der custodialen Gruppe und

Vektoren. Sie sind W-Bälle, das heißt sie bestehen ausschließlich aus Eichfeldern. Die

verwendeten Gitter sind hyperkubisch und haben die Größen 84, 124 und 164. Smearing

wurde implementiert um das statistische Rauschen zu dämpfen. Die Operatoren zeigen

keinen signifikanten Überlapp mit Zuständen niedriger Masse und sogar der niedrigste

Zustand liegt weit über dem Gitter-Cutoff und hat eine weit höhere Masse als der Streuzu-

stand zweier Higgsbosonen.
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1 INTRODUCTION

1 Introduction

The Standard Model of particle physics [1] is a collection of theories that together com-

prise our best attempt at describing the dynamics of elementary particles. It is well

backed by experiments and describes all observed phenomena very well. Nevertheless, it

is not perfect. It does not contain a description of quantum gravity and is not valid for

arbitrarily high energies. One part of the Standard Model is a Yang-Mills-Higgs theory,

the topic of this thesis. It describes weak interactions and today it is easily accessible by

lattice computations.

The weak interaction is, like quantum electrodynamics (QED) and quantum chromody-

namics (QCD), a gauge theory. That is a theory which has as its base a gauge symmetry

and a corresponding gauge group. It is very curious that a simple gauge invariance can

give rise to a quantum field theory that describes reality. A common few is that gauge

invariance is thus an important fundamental aspect of our world. In contrast, some see

gauge invariance just as the veneer of a deeper principle of the universe. In my opinion

this situation bears resemblance to Plato’s cave.

The weak interaction is an experimentally well backed and mature theory. Still, there are

some topics for which there is no consensus in the physics community. One of these is the

question of gauge invariance in regard to observable field operators. That any sensible

observable must be gauge invariant needs not to be said. Still, perturbation theory of

some non-gauge invariant operators yields good results that agree with experiments. To

tackle this problem, a gauge invariant perturbation theory has been proposed [2, 3], and

already some studies to confirm it, have been done [4, 5, 6]. Because non-gauge invariant

perturbation theory works so well in the context of the Standard Model, the theory has

not yet gained wide awareness.

Investigations into the Standard Model on the lattice are always restricted to the subsec-

tors of the full model. The use of simpler gauge groups and the omission of fermions in

favour of bosons are practices to avoid the large effort, needed to implement them, but

still retain the interesting physics.

In this research we aim to add one small piece to the puzzle that is the theory of the

weak interaction by examining a small number of operators of one channel in a simpli-

fied version of the theory. This examination could find problems with the perturbative

approaches currently used, or even find hints of a new particle to be discovered in the

current model of the weak interaction.
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1 INTRODUCTION

This thesis gives a short introduction into SU(2)-Yang-Mills-Higgs theory and inves-

tigates its behaviour by calculating correlation functions and effective masses for a set of

operators on the lattice. Chapter 2 gives an introduction into gauge theories and defines

the Yang-Mills-Higgs theory. Some of its properties are discussed and the gauge invariant

operator we used in the calculations are also addressed. In Chapter 3 some methods nec-

essary for lattice calculations, namely configuration generation, mass spectroscopy, time

slice averaging, transformation into the rest frame and smearing are explained. Chap-

ter 4 shows how some of these methods were implemented, and Chapter 5 contains the

results obtained from the calculations. Lastly, in Chapter 6 the conclusion of this re-

search is drawn, and the Appendix 7 shows an interesting excerpt of the code used for

the computations.
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2 SU(2)-YANG-MILLS-HIGGS THEORY

2 SU(2)-Yang-Mills-Higgs theory

This chapter gives an introduction into the definition and properties of a SU(2) gauge

theory with a scalar field in the fundamental representation of the gauge group. This

theory is easy to implement, but still close enough to the Standard Model to give related

results. We start by introducing the concept of gauge theories in general and Yang-Mills-

Higgs theory specifically. Gauge invariant perturbation theory is discussed and contrasted

with the standard perturbative approach. These approaches are important to understand

the recent research into this subject and objectives of this thesis.

2.1 Gauge Theories

QED was one of the first quantum field theories to be devised, and thus in the progress

of its development physicists learned a lot about the structure of quantum field theories.

Many important properties of the theory were found to be a consequence of gauge invari-

ance. The QED Lagrangian is invariant under an U(1) gauge transformation and very

central properties of the theory, like the conservation of current and thereby the Ward

identity, follow from this local symmetry. Postulating U(1) gauge invariance and some

other restrictions, one can directly derive the QED-Lagrangian, as is done in [7]. This

derivation can be generalized to other more complicated groups, which gives rise to a vast

number of possibilities for different quantum field theories. The choice of a particular

gauge group alone leads to a Lagrangian with only a handful of terms, which may be

suitable to form a quantum field theory. The first theory of this kind was found by Yang

and Mills [8] and is now known as Yang-Mills-theory.

2.2 Yang-Mills-Higgs theory

Yang-Mills-Higgs theory is one of the most studied examples of a non-abelian gauge theory.

It is obtained using SU(2) as gauge group, SU(2) as the custodial group and a complex

scalar doublet in the fundamental representation of the gauge group. This theory is part

of the Standard Model of particle physics in the so-called Higgs-sector. Yang-Mills-Higgs

theory can be compared to experiments to a certain extent, though without the rest of

the Standard Model (QED, fermions etc.) certain differences occur. One consequence for

example is that the W and Z-bosons are mass-degenerate in this theory.

To introduce the nomenclature, which is a mix of the one in [7] and [9], here follows a

short version of the derivation of the theory from the principle of SU(2) gauge invariance.

We start by postulation a complex doublet of scalar fields with some potential V (φ),

L = (∂µφ
†)(∂µφ)− V (φ) (1)
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2.2 Yang-Mills-Higgs theory 2 SU(2)-YANG-MILLS-HIGGS THEORY

and a local transformation of these fields

φ(x)→ exp

(
iαi(x)

σi

2

)
φ(x), (2)

where σi are the Pauli matrices and α(x) are local coefficients, meaning that they are

arbitrary functions of x. This transformation is then different for every point in space,

which makes keeping the Lagrangian gauge-invariant more intricate than in the global

case. To keep the kinetic term of the scalar fields gauge-invariant the covariant derivative

Dµ, containing the gauge fields W a
µ , has to be introduced:

Dµ = ∂µ − igW i
µ

σi

2
(3)

The gauge field’s kinetic term uses the field strength tensor F i
µν

F i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν (4)

with the structure constants of the fundamental representation of SU(2) εijk. With these

definitions the gauge invariant Lagrangian is given by

L = −1

4
(F i

µν)
2 + (Dµφ)†(Dµφ)− V (φ), (5)

which superficially looks like the scalar QED Lagrangian but has a more complicated

structure hidden beneath a familiar notation. The custodial group, we mentioned above

is a global symmetry of the Lagrangian. This can be explained in the following way: The

complex scalar doublet has four degrees of freedom. The free scalar theory thus exhibits

a O(4)-symmetry. This is isomorphic to SU(2) × SU(2) and using one as the gauge

group the second remains. The custodial triplet 1−3 for example is equivalent to the three

observed W- and Z-bosons.

Properties

The 0+
1 and 1−3 channels are the most interesting, because their ground states are usually

identified as the physical Higgs boson and W-bosons respectively. The notation and its

meaning is explained in Section 2.4.

Phase diagram: Yang-Mills-Higgs theory shows widely varying behaviour over its

phase space. In fact, there exist two distinct regions in the phase diagram [10]. In

QCD the non-abelian gauge group is associated with confinement and truely, the first

region is a QCD-like region where QCD-like bound states including confinement [11], but

no Brout-Englert-Higgs (from now on BEH) effect was observed. In the QCD-like region
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2.3 Perturbation theory 2 SU(2)-YANG-MILLS-HIGGS THEORY

the lightest state in the spectrum is in the 0+
1 -channel [12]. The other region is the BEH-

like region where in appropriate gauges a non-vanishing vacuum expectation value for the

scalar field is observed. In the BEH-like region the 1−3 channel contains the ground state

[12]. For our work we are interested in the BEH-like region, because there a non-gauge in-

variant perturbative approach is possible [2, 5, 6]. Fradkin and Shenker found that for the

case of SU(2) as the gauge group and the scalar fields in the fundamental representation

the QCD-like and the BEH-like phase are smoothly connected [13]. That means there is

no phase transition separating them and the two phases thus show only quantitative, not

qualitative differences. Thus states found in our calculations should be present at other

phase space points as well.

Mass spectrum: Early calculations determining the phase diagram were, for example,

done by Lang et al. in the 1980s [14]. In one study Maas and Mufti looked at the

lowest masses in the scalar singlet channel, using lattice calculations for a wide range of

phase space points [10]. In another they looked very thoroughly at the spectrum in large

parts of the phase space, also giving a detailed introduction into the topic of spectroscopy

[15]. Wurtz and Lewis determined the mass spectrum of all lattice spin channels for one

specific parameter set in the BEH-like region [16]. At some points in the phase diagram

there is, like in the Higgs sector, just a Higgs-like and a W-boson-like state. At other

points however, there are additional states, e.g. in the 0−1 channel that if found would

represent new physics [15]. One of the goals of this thesis is to expand the knowledge of

this spectrum.

2.3 Perturbation theory

In most particle physics textbooks the standard perturbative approach is given. In con-

trast to this approach a new gauge invariant way of doing perturbation theory has been

developed. This approach, though being more rigorous, has not yet found wide attention.

The reason for this is the fact that for the Standard model standard perturbation theory

is equivalent to gauge invariant perturbation theory.

To do perturbation theory the following steps are made. The potential V (φ) is usually

chosen to have the form of a Mexican hat V (φ) =
(
φ†φ− f 2

)2
. This potential is minimal

when φ†φ = f 2 and shows a symmetry under the gauge group and custodial group. Using

this minimum the scalar field can be split into two parts.

φ(x) =
v√
2
n+ ϕ(x) (6)

Here v is a constant, n is a unit vector in some direction. Together they point to a

minimum of the potential and ϕ is a fluctuation field around this minimum 〈ϕ〉 = 0. This

split hides the gauge symmetry.
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2.4 Channels, quantum numbers and spin 2 SU(2)-YANG-MILLS-HIGGS THEORY

Standard perturbation theory Perturbation theory requires the scalar field to have a

non-vanishing expectation value. Due to the gauge symmetry of the potential this not the

case. When taking the path integral all minima are integrated over and the expectation

value becomes zero. The solution is to fix the gauge and thereby choose a minimum. One

common method is the Faddeev-Popov method [7]. This gauge fixing explicitly breaks

the gauge symmetry. Continuing this approach yields a Lagrangian containing gauge

fixing terms and ghost terms and it yields three equally massive gauge bosons and a

massive scalar Higgs-field. In the 1−1 -channel standard perturbation shows no particles,

thus finding a state in lattice calculations would stand in conflict with this approach.

Gauge invariant perturbation theory The standard perturbation theory thus agrees

with experiments, but there is a problem. Of course observables need to be gauge invariant

to be physically meaningful. But because standard perturbation theory in the Higgs sector

works very well, the fact that the elementary operators are not gauge invariant is often

ignored. This disconnect between phenomenologically confirmed perturbation theory and

theoretically motivated rigorous quantum field theory even resulted in the different uses

of the name Higgs particle. Whereas in perturbation theory the scalar field φ(x) itself

is often referred to as Higgs, in the lattice-QFT community this term is mostly used for

describing the composite operator φ(x)†φ(x).

The reason that these two very different approaches both lead to similar results is a

peculiarity of SU(2). In [2, 3] a gauge invariant perturbation theory (GIPT) is proposed,

which shows that under certain conditions, fulfilled by the Standard Model, the physical

states can be mapped to the gauge-dependend states in the Lagrangian. Using GIPT one

can show that some of the composite operators yield the same mass as the elementary field

operators to leading order. And thus GIPT is an attempt to bring the phenomenology

together with rigorous quantum field theory. Calculations have been done that confirm

this theory in [4, 5, 6].

The insight that these specific conditions have to be met by the Standard Model excludes

some proposals for extensions to the Standard Model. This fact will be useful in identifying

suitable new theories and in this thesis we also try to contribute a small part to this. The

low-lying particle spectrum of beyond-Standard Model theories could show differences to

the current Standard Model and in our work we aim to find such low-lying states in the

1−1 -channel, introduced in the next section.

2.4 Channels, quantum numbers and spin

In the last section we saw that because of gauge invariance composite operators have to

be used in lattice field theory calculations. This section gives an overview of the charac-

terisation of these operators.
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2.5 Choice of operators 2 SU(2)-YANG-MILLS-HIGGS THEORY

Table 1: The number of copies of each cubic lattice representation Λ of the group of
rotations for continuum spins J

Λ\J 0 1 2 3 4
A1 1 0 0 0 1
A2 0 0 0 1 0
E 0 0 1 0 1
T1 0 1 0 1 1
T2 0 0 1 1 1

Quantum mechanics states that only states with equal quantum numbers mix. Thus

the operators used can be put into categories called channels, described by notation in-

troduced below. The three operators that will be used here are custodial singlet vector

operators. The reasons we chose this channel are discussed in Section 2.5. In the contin-

uum notation the operators are denoted as JPc = 1−1 . J is the total angular momentum,

P is the parity quantum number and c is the custodial quantum number. Because SU(2)

is a pseudo-real group, the charge conjugated states are equivalent and there is no need

for the charge conjugation quantum number C. The total angular momentum is made up

from the angular momenta of the constituents and a possible relative angular momentum

between them. This relative momentum is important in the interpretation of states in

the mass spectrum.

There is one more complication. On a cubic lattice, the spin representations differ from

the ones in the continuum [17]. In the continuum limit the lattice representations trans-

form into the continuum representations according to Table 1. Unfortunately the trans-

formation is not always one-to-one, but from Table 1 we see that only the lattice spin

representation T1 corresponds to the spin J = 1 in the continuum. This representation is

the vector representation. More on this topic in the context of lattice simulations can be

found in [17].

2.5 Choice of operators

The motivation for using operators of the 1−1 channel is twofold. The first reason is to try

to falsify GIPT and standard perturbation theory. Neither predicts elementary particles in

this channel. Thus finding such a state would disprove these theories. The second motive

was to find a sign of a Z ′ boson. There is ongoing research into finding experimental signs

of this hypothetical particle, e.g. [18]. If it exists it is expected to be found using today’s

collider experiments, but to date it has not been found. Were a state in the 1−1 -channel to

be detected on the lattice, it would show that a potential ’new physics-discovery’ of the

Z ′ boson was not new physics but just an effect of the Standard Model. The construction

of the operators we used for the calculations is described in the next section.
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2.6 The operators 2 SU(2)-YANG-MILLS-HIGGS THEORY

Figure 1: The Wilson loop operator Wµνρ. [16]

2.6 The operators

Simple and basic operators for the theory can be found in [15], and a complete set of

operators for all available angular momentum and parity quantum numbers can be found

in [16]. The latter paper is also the source for the operators that were used in the

computations here. Only W-Ball operators from the T1-channel were used. W-Balls, like

glueballs (their QCD-equivalents), are operators which are exclusively built from gauge

field operators. More on the reasons for choosing these operators can be found in the last

section.

All operators here are built from linear combinations of a single operator, namely the

Wilson loop operator

Wµνρ(t) =
1

2
Tr
∑
~x

Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †µ(x+ µ̂+ ν̂)

× Uρ(x+ µ̂+ ν̂)U †µ(x+ ν̂ + ρ̂)U †ρ(x+ ν̂)U †ν(x),

(7)

shown in Fig. 1. The operators are rather complex, thus these linear combinations are

introduced.

B−µνρ = +W+µ+ν+ρ +W+µ+ν−ρ +W+µ−ν+ρ +W+µ−ν−ρ

−W−µ+ν+ρ −W−µ+ν−ρ −W−µ−ν+ρ −W−µ−ν−ρ
(8)

C−µνρ = +W+µ+ν+ρ +W+µ+ν−ρ −W+µ−ν+ρ −W+µ−ν−ρ

+W−µ+ν+ρ +W−µ+ν−ρ −W−µ−ν+ρ −W−µ−ν−ρ
(9)

D−µνρ = +W+µ+ν+ρ −W+µ+ν−ρ +W+µ−ν+ρ −W+µ−ν−ρ

+W−µ+ν+ρ −W−µ+ν−ρ +W−µ−ν+ρ −W−µ−ν−ρ
(10)
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2.6 The operators 2 SU(2)-YANG-MILLS-HIGGS THEORY

They are odd under parity, indicated by the - index, and used to build the following

custodial singlet operators.

O1 =

B
−
123 +B−132

B−231 +B−213

B−312 +B−321

 (11)

O2 =

C
−
123 + C−321

C−231 + C−132

C−312 + C−213

 (12)

O3 =

D
−
123 +D−213

D−231 +D−321

D−312 +D−132

 (13)

These operators transform under the T1 representation and are therefore vectors. This

fact is going to be useful to check the correctness of the implementation, as is discussed

in Chapter 4.
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3 Lattice field theory

In the last chapter we introduced the theory and the composite operators we want to

examine. In this chapter we discuss the methods we used to compute their masses. Lattice

field theory is a non-perturbative approach, well suitable for the calculation of the bound

states masses. We start by introducing the Lagrangian and the configuration generation

we used. The calculation of correlation functions on the lattice is then explained together

with smearing, a method to deal with the statistical noise of the measurements.

3.1 Lagrangian

The lattice action used [15, 19] is

S = β
∑
x

(
1− 1

2

∑
µ<ν

<TrUµν(x)

)
+
∑
~x

(
φ†(x)φ(x) + λ

(
φ(x)†φ(x)− 1

)2

− κ
∑
µ

(
φ(x)†Uµ(x)φ(x+ eµ) + φ(x+ eµ)†Uµ(x)†φ(x)

)) (14)

with

Uµν(x) = Uµ(x)Uν(x+ eµ)Uµ(x+ eν)
†Uν(x)† (15)

Wµ =
1

2agi

(
Uµ(x)− Uµ(x)†

)
+O(a2) (16)

β =
4

g2
(17)

a2m2
0 =

(1− 2λ)

κ
− 8 (18)

λ = κ2γ. (19)

Here a is the lattice spacing, Uµ the gauge-link exp(igaWµ), eµ the unit vector in the

µ-direction and β, κ, λ are the lattice coupling parameters.

3.2 Configurations

The configuration generation follows [6] and was indeed done using the same code. Before

measuring starts, there is a phase for the system to reach equilibrium, which consists

of 4096 sweeps. In a sweep the gauge fields are updated using a heat-bath sweep, and

a Metropolis sweep is used for the Higgs field. 24 such sweeps are done between every

measurement. The error calculation has been done by the statistical bootstrap method.

1000 resamplings were done, and the 67% interval of these errors was taken.

12



3.3 Mass spectroscopy 3 LATTICE FIELD THEORY

3.3 Mass spectroscopy

This section gives an overview of the procedure to obtain the masses of the operators from

Section 2.6. This is the central technical subject of this thesis. The quantities measured

on the lattice are the operator values at each space-time point. These operators are then

combined to form the correlators C(∆t) as follows.

C(∆t) = 〈O(t)O(t+ ∆t)〉 (20)

The product O(t)O(t + ∆t) is a scalar product over the vector components. And the

expectation value is achieved by a sum over the configurations. Because of time invariance

an average of the correlator at different times is taken. This procedure is called time slice

averaging. The operator is added up at all space points, which is equivalent to a Fourier

transformation with zero momentum. Thus this gives the correlation function for zero

relative momentum, i.e. the rest frame.

O(∆t) =
∑
~x

O(~x,∆t) (21)

The result is a function only of ∆t. This correlator is used to determine the mass of the

states. If we take |n〉 to be a set of states in the spectrum with corresponding energy En

(En ≤ En+1) the function can be expressed as a sum over exponentials multiplied by an

overlap.

C(∆t) = 〈O(∆t)O(0)〉 =
∑
n

|〈n|O〉|2 exp(−En∆t)
∆t�E−1

1∼ const. · exp(−E0∆t) (22)

Because of the projection to zero momentum in equation (21), the energy En directly

corresponds to the mass. It is easy to see that the exponential term for the ground state

falls the slowest, thus for large ∆t we can extract the mass by a fit. All of this relies on

the fact that there is a large enough overlap between the chosen operator and the ground

state. To extract higher state masses, one can do a variational analysis on the correlation

matrix that consists of correlators of a set of operators. This will not be done here.

An important quantity is the effective mass meff (∆t),

meff (∆t) = ln
C(∆t)

C(∆t+ 1)
, (23)

which for a dominating ground state approximates the ground state mass. For small ∆t

the error is larger because of contributions from higher states, which results in a higher

effective mass.
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3.4 Smearing

Noise reduction is a significant problem when doing mass spectroscopy. Therefore, a

technique called smearing is introduced. A link connecting two neighbouring points is

replaced by a sum over link combinations that connect the same points. This average over

different paths reduces noise, but also quenches the information of the operator. Smearing

can be done multiple times and operators measured after each of these smearing steps

are independent from each other. Thus a set of operators used for variational analysis

can contain ’the same operator’ but evaluated at different smearing steps. When deciding

how many smearing steps are to be used, one has to strike a balance between keeping

enough signal of the operators and reducing noise. A rule of thumb is that the maximum

number of smearing steps should be ≤ N , because beyond that smearing will wrap-around

and mix any link, going through the periodic boundary conditions, with itself. There are

different smearing schemes, though the one used in this thesis is called APE smearing

[20, 21]:

U (n)
µ (x) =

1√
detR

(n)
µ (x)

R(n)
µ (x) (24)

R(n)
µ (x) = αU (n−1)

µ (x) +
1− α

2(d− 1)

×
∑
ν 6=µ

(
U (n−1)
ν (x+ eµ)U (n−1)†

µ (x+ eν)U
(n−1)†
ν (x)

+U (n−1)†
ν (x+ eµ − eν)U (n−1)†

µ (x− eν)U (n−1)
ν (x− eν)

)
(25)

φ(n)(x) =
1

1 + 2(d− 1)

(
φ(n−1)(x)

+
∑
µ

(
U (n−1)
µ (x)φ(n−1)(x+ eµ) + U (n−1)

µ (x− eµ)φ(n−1)(x− eµ)
)) (26)

with α = 0.55 and d = 4.
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4 Implementation

This short chapter gives some information about how we implemented the methods of

Chapter 3. The program for the configuration generation was was written by Axel Maas

in C++, and for validation some measurements were compared to earlier studies. The

measurement routine for this thesis was implemented in a header file for that program.

4.1 Operator implementation

The operators were introduced in Section 2.6. The linear combinations of equations (8-10)

were implemented using the #define directive. This is just a matter of correctly copying

the signs of the directional indices. To implement the Wilson loop operator in equation

(7) is of more difficult. The indices in Wµνρ designate the orientation of the operator in

space. The challenge is to assign to each link in the Wilson loop operator the correct

spatial dependencies, so as to create a continuous path in space. This is achieved by a

function shown in Appendix 7. This function was tested by manually implementing the

function for every direction separately and comparing the results. Another procedure

that was implemented to test the correctness of the implementation was a set of lattice

reflection functions. Because all implemented operators are vectors, they exhibit a sim-

ple sign changing behavior under these transformations, which acts as a hint that the

implementation is correct.

4.2 Computation time

The computation time used to obtain the results of this thesis was approximately 106000

core hours (4400 core days) on HPC cluster computers of the University of Graz.
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5 Results

In this chapter we present the results of the mass measurements of the gauge invariant

operators from Section 2.6 using the methods introduced in Chapter 3. We used two

different parameter sets, which were chosen for their physical mass ratio m1−3
/m0+1

. The

coupling for both sets is larger than the physical one, but this should not qualitatively

change the results of this thesis. The reason not to choose a parameter set where the

coupling corresponds to the physical one is that the theory is fine-tuned and such a pa-

rameter set has not yet been found.

The lattices used were 4-dimensional hypercubes with sides N = 8, 12, 16. We computed

957000 configurations for each lattice size. Measurements were done after 0, 1, 4, 8 and 16

smearing steps. The errors were calculated using a 67% confidence interval of the statisti-

cal bootstrap method and results which are compatible with zero within the determined

error are omitted in the plots. The three different operators we used, gave qualitatively

the same results, and therefore only the results of one of these operators, namely O2 from

equation (12), are presented here.

5.1 Parameter set 1

The parameters for the first set of calculations are β = 2.7984, κ = 0.2927 and λ = 1.317.

At this phase space point the lattice spacing is a−1 = 453GeV, the coupling is α200GeV =

0.605 and the mass ratio is m1−3
/m0+1

= 80GeV/124(3)GeV. All errors are < 1%, ex-

cept when specified otherwise. This parameter set lies within the BEH-like region, which

makes the approach using GIPT possible. In the following plots all quantities are given

in lattice units.

Technical details

To examine the technical details of the measurements, some plots of correlators will be

presented. First, the effect of smearing, as outlined in Section 3.4, will be looked at.

Therefore in Figure 2 the correlators with error bands for N = 8 are shown. Smearing

dampens the statistical noise and we can see that for the amount of measurements taken,

only the 16 times smeared operator shows proper behaviour for all 5 time steps. Even

though 16 smearing steps will dampen the signal of potentially interesting states strongly,

this correlator is studied in more detail. We are interested in low mass states, therfore

the suppression of higher states should not be a problem. On the N = 16 lattice, a wrap-

around effect due to smearing does not occur. To study finite volume effects, in Figure 3

the correlators for N = 8, 12, 16 are compared at smearing step 16. The statistical noise

was so substantial, that for lattice sizes N = 12, 16 only the first 5 measurements were
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Figure 2: The correlators for parameter set 1 and N = 8 at different smearing levels.

Figure 3: The correlators for parameter set 1 and N = 8, 12, 16 at smearing level 16.

17



5.1 Parameter set 1 5 RESULTS

Figure 4: The effective masses for parameter set 1 and N = 8 at different smearing levels.

statistically significant. From the data that was usable one can see that the correlators’

dependence on volume is very small.

Effective mass

The physically relevant quantity is the effective mass, as defined in equation (23), and

it will be examined now. In Figure 4-6 the effective masses for N = 8, 12, 16 are shown.

This shows that the effective mass of the lowest measured state lies approximately at

am ≈ 2, which corresponds to 906GeV. This high mass lies above the lattice cut-off

and the mass of a combination of two 0+
1 ground states, which is, because of the relative

momentum, expected at am ≈ 2 · 0.27 + π
L

. Of course this is a crude estimate and higher

state contamination is present because of the few usable time steps. The operators used

therefore have too little overlap with this state or any other lower lying state. The volume

dependency of the effective mass is shown in Figure 7. It is, as expected, quite small.
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Figure 5: The effective masses for parameter set 1 and N = 12 at different smearing
levels.

Figure 6: The effective masses for parameter set 1 and N = 16 at different smearing
levels.
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Figure 7: The effective masses for parameter set 1 and N = 8, 12, 16 after 16 smearing
steps.

5.2 Parameter set 2

The parameters for the second set of calculations are β = 5.082, κ = 0.249 and λ = 0.7. At

this phase space point the lattice spacing is a−1 = 636GeV, the coupling is α200GeV = 0.170

and the mass ratio is m1−3
/m0+1

= 80GeV/123(19)GeV. All errors are < 1%, except when

specified otherwise. The masses in the plots are again given in lattice units.

Figure 8 and 9 show the correlator and the effective mass for lattice size N = 8 for different

smearing levels, respectively. The operators don’t show qualitatively different behaviour

at this phase space point, compared to the one of parameter set 1.
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Figure 8: The correlators for parameter set 2 for lattice size N = 8 for different smearing
levels

Figure 9: The effective mass for parameter set 2 for lattice size N = 8 and different
smearing levels.
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6 Conclusion

In this thesis we discussed a SU(2)-Yang-Mills-Higgs theory and determined the effective

masses of three 1−1 -operators. These operators, introduced in Section 2.6, were determined

at three lattice sizes, N = 8, 12, 16, at different smearing steps, i.e. 0, 1, 4, 8, 16, and using

957000 configurations. These results for the two parameter sets are displayed in Chapter

5. These plots show that the operators have too little overlap with hypothetical low

mass states. Such a low mass state could have been associated with a Z ′-like particle.

A scattering state with the mass of two Higgs bosons and relative momentum was not

detected either. Furthermore it was shown that the operators are very noisy, and large

statistics and many smearing steps are needed to get significant results. The intent of this

thesis, finding a Z ′-like state, i.e. a scalar singlet vector state with a low mass, was thus

not achieved. Since no such state was found, the results do not disagree with standard

perturbation theory and/or GIPT. Further progress in this regard could be made by

devising new operators with the same quantum numbers or creating an operator basis

and performing a variational analysis with a large set of measurements.
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7 Appendix - Wilson loop implementation

The following source code is the implementation of equation (7). Most of the code is

dedicated to finding the proper spatial argument for the links. The Wilson loop operator

needs to constitute a continuous path through space, see Figure 1. Because for different

values of the indices µ, ν and ρ in Wµνρ the operator points in different directions in space,

the spatial arguments of the links have to change.

• x is the time coordinate.

• muIn is the value of the index µ in Wµνρ.

• su2 is a custom class for su2 matrices.

long double W(int muIn, int nuIn, int rhoIn, int x/*time*/){

int inputIndex[4]={0,muIn,nuIn,rhoIn};

su2 U[8];

// Contains the 8 links

// 0 1 2 3 4 5 6 7

// U_mu U_mu U_nu U_mu^\dag U_rho U_mu^\dag U_rho^\dag U_nu^\dag

int index[8]={1,1,2,-1,3,-1,-3,-2};

// Contains the direction of the 8 links.

// mu -> 1, -mu -> -1

// nu -> 2, -nu -> -2

// rho-> 3, -rho-> -3

bool step[8];

// Tells you whether you have taken the i-th step through space

vec vx;

vx.x=x;

su2 sum=kZeroSU2;

• vx is the vector that specifies the lattice point.

• kZeroSU2 is the the 2× 2 0-matrix.

• vx.t contains the physical x coordinate.

• vx.z contains the physical y coordinate.
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7 APPENDIX - WILSON LOOP IMPLEMENTATION

• vx.y contains the physical z coordinate.

• Now follows a loop over the three space dimensions.

for(vx.t=0;vx.t<kNt;++vx.t) {

for(vx.z=0;vx.z<kNz;++vx.z) {

for(vx.y=0;vx.y<kNy;++vx.y) {

vec arg=vx;

for(int i=0; i<8; ++i)

step[i]=false;

for(int i=0; i<8; ++i) {

int currentDirection = abs(inputIndex[abs(index[i ])]);

int lastDirection;

if(i>0)

lastDirection = abs(inputIndex[abs(index[i-1])]);

bool negativeDirection=( index[i]*inputIndex[abs(index[i])] < 0 );

// If last step has not been taken yet and i>0: Take step

if( (step[i-1]==false) && (i>0) ){

arg=vaddP(arg,e[lastDirection],currentDirection);

step[i-1]=true;

}

// If U is "daggered": Take current step

if( negativeDirection ){

arg=vaddP(arg,ne[currentDirection],currentDirection);

step[i]=true;

}

arg.mu=currentDirection;

// Give U[i] the link values

if( negativeDirection )

U[i]=minv(vmap(arg,fGFLattice));

else

U[i]=vmap(arg,fGFLattice);

}

sum=sum+(U[0]*U[1]*U[2]*U[3]*U[4]*U[5]*U[6]*U[7]);

}

}
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7 APPENDIX - WILSON LOOP IMPLEMENTATION

}

return mtrace(sum).real()/2.L;

}

• vaddP is a function, that adds vectors respecting the periodic boundary conditions

of the lattice.

• e[i] is a vector that points in the positive i-direction.

• ne[i] is a vector that points in the negative i-direction.

• vmap(vector, field) is a function that returns the field value(here a su2-matrix) at

the lattice point specified by the vector.
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