Experimental signatures

 of subtelties in the
Brout-Englert-Higgs mechanism

Axel Maas
$23^{\text {rd }}$ of March 2023
Moriond 23
Italy

NAWI Graz
Natural Sciences

Der Wissenschaftsfonds

The puzzle

[^0].
(
(
(
(
(
\qquad

S

都

The puzzle

- 1970 ${ }^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same

Review: 1712.04721

The puzzle

- $1970^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same
- Physical states need to be gauge-invariant bound-states

Review: 1712.04721

The puzzle

- $1970^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same
- Physical states need to be gauge-invariant bound-states

Higgs

Review: 1712.04721

The puzzle

- $1970^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same
- Physical states need to be gauge-invariant bound-states

The puzzle

- $1970^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same
- Physical states need to be gauge-invariant bound-states

Review: 1712.04721

The puzzle

- $1970^{\text {ies }} / 1980^{\text {ies }}$: Field theory of BEH effect
- Electroweak symmetry breaking is not a physical effect
- Special form of gauge-fixing
- Confinement and BEH effect are qualitatively the same
- Physical states need to be gauge-invariant bound-states

Review: 1712.04721

The puzzle

- Usual pheno looks very different!
- And works very, very well: PDG

The puzzle

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!

The puzzle

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true?

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes!

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes! How?

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes! How?
- Perturbative results are quantitative dominant even if qualitatively incomplete

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes! How?
- Perturbative results are quantitative dominant even if qualitatively incomplete
- Can such a thing happen?

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes! How?
- Perturbative results are quantitative dominant even if qualitatively incomplete
- Can such a thing happen?
- Yes! Fröhlich-Morchio-Strocchi mechanism

The resolution

- Usual pheno looks very different!
- And works very, very well: PDG
- Field theory ensures consistency of SM!
- Can both be true? Yes! How?
- Perturbative results are quantitative dominant even if qualitatively incomplete
- Can such a thing happen?
- Yes! Fröhlich-Morchio-Strocchi mechanism
- Augments perturbation theory
- Composite asymptotic states
- Additional expansion in the Higgs vev

Augmented perturbation theory

1) Formulate gauge-invariant operator

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Higgs field

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
& +\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound state

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle}{\left.\frac{\gamma \eta}{}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

Trivial two-particle state
4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

Higgs mass
4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& \quad+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

4) Compare poles on both sides

Test on the lattice

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same pattern
- FMS mechanism
- Mass defect
- Flavor and custodial symmetry structure

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same pattern
- FMS mechanism
- Mass defect
- Flavor and custodial symmetry structure

Spectrum: Lattice and predictions

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same pattern
- FMS mechanism
- Mass defect
- Flavor and custodial symmetry structure

Spectrum: Lattice and predictions

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same pattern
- FMS mechanism
- Mass defect
- Flavor and custodial symmetry structure

Spectrum: Lattice and predictions

Test on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same pattern
- FMS mechanism
- Mass defect
- Flavor and custodial symmetry structure

Spectrum: Lattice and predictions

- Supports augmented perturbation theory

Augmented perturbation theory

Mrohlich et al.'80,'81
Maas \& Sond

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

What about this?
3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Matrix element

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element $\quad d \Omega=\frac{1}{64 \pi^{2} s}$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}, \begin{aligned}
& \text { Partial wave } \\
& \text { amplitude }
\end{aligned}
$$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Legendre polynom

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
\text { - } f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
-f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
a_{0} \stackrel{4 m_{W}^{2}}{=} \tan \left(\delta_{J}\right) / \sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta \delta(s)} \sin \left(\delta_{J}(s)\right) \\
s \rightarrow 4 m_{w}^{2} \\
-a_{0} \stackrel{\operatorname{lan}}{ }=\tan \left(\delta_{J}\right)!\sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Scattering length~"size"
Phase shift

Impact of the radius of the Higgs

Consider the Higgs: $J=0$

Impact of the radius of the Higgs

- Consider the Higgs: J=0

Impact of the radius of the Higgs

$\tan \delta_{0}$

Born level without bound state

Contribution from finite size

- Consider the Higgs: $J=0$
- Mock-up effect
- Scattering length $1 /(40 \mathrm{GeV})$

Impact of the radius of the Higgs

- Consider the Higgs: J=0
- Mock-up effect
- Scattering length $1 /(40 \mathrm{GeV})$

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

[Jenny, Maas, Riederer'22]

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively

Impact of the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Higgs too heavy and too strong weak coupling
- Qualitatively but not quantitatively
- Trend seen in ATLAS/CMS off-shell ZZ $\left.\rightarrow 4\right|_{\text {[Taks e } \text { ehiggs } 2022]}$
- $1.11(7) 180-220 \mathrm{GeV}($ ATLAS $) / \sim 0.8(2) 220-275 \mathrm{GeV}(\mathrm{CMS})$

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

How events looks like (LEP/ILC)

- Collision of bound states

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Collision of bound states - 'constituent' particles

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Collision of bound states - 'constituent' particles
- Standard perturbation theory
- Higgs partners just spectators
- Similar to pp collisions

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle$

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle$
NLO: 1525 diagrams

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
NLO: 1525 diagrams+3431 diagrams

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
NLO: 1525 diagrams+3431 diagrams

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
NLO: 1525 diagrams+3431 diagrams

Enhanced Feynman rules: New bound state splitting vertex

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
NLO: 1525 diagrams+3431 diagrams

Enhanced Feynman rules: New bound state splitting vertex Can be calculated with standard tools: Managable

Generic behavior: DIS-like

Generic behavior: DIS-like

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Collision of bound states - 'constituent' particles
- Gauge-invariant: Just like hadrons

How events looks like (LEP/ILC)

OM-H bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state
$\theta^{\mu^{+}-\mathrm{H} \text { bound state }}$

- Collision of bound states - 'constituent' particles
- Gauge-invariant: Just like hadrons
- Full weak doublets included [Mas, Reiner2z]

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
0

$\mathrm{e}^{+}-\mathrm{H}$ bound state

Ou-H bound state Z-H-H bound state Z-H-H bound state E

- Collision of bound states - 'constituent' particles
- Gauge-invariant: Just like hadrons
- Full weak doublets included
- Restores Bloch-Nordsieck theorem
- At TeV colliders of order strong corrections

- Collision of bound states - 'constituent' particles
- Gauge-invariant: Just like hadrons
- Full weak doublets included
- Restores Bloch-Nordsieck theorem
- At TeV colliders of order strong corrections
- Generalizes to the LHC
- PDFs at high energies affected

Summary

- Field theory requires composite states

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS mechanism
- Can have measurable impact

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS mechanism
- Can have measurable impact
- Unaccounted-for SM background

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS mechanism
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS mechanism
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem
- FMS mechanism applicable to many theories

Review: 1712.04721

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem
- FMS mechanism applicable to many theories
- 2HDM, GUTs, MSSM, quantum gravity
- Qualitative impact in many new physics scenarios

[^0]: \qquad

