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Chapter 1

Introduction

The aim of this course is to describe how theoretical physics describes the world we are

living in using mathematics. Both as an example and as a subject of paramount impor-

tance this will be done with constructing all of classical physics. This includes mechanics,

electrodynamics, and special relativity. Ultimately, in the last section, the full description

of a classical system in a single mathematical framework will be achieved. All classical

physics, e. g. thermodynamics, can be derived from this one principle. This will illuminate

how (theoretical) physics builds a model of our world. Of course, in research, this is a

process which is a continous interplay between experiment and theory. Theory makes a

proposal, based on the observations in experiments, how a basic theory could look like.

Then predictions are derived from this proposal, which are subjected to experimental tests.

Either these confirm it or disagree with it (within experimental uncertainties). If it dis-

agrees, it is necessary to improve the theory, taking the new-found results into account.

Or it does agree, then further predictions need to be made. Eventually, we would like to

arrive at a theory which describes all we see.

The current best such theory is the combination of the standard model of particle

physics joined by quantum gravity, the quantized version of general relativity. As a unified

theory building this is still in development, and it is certainly not the last step. That we

can already deduce from experiment, specifically from observational astronomy. But is is

for sure an important stepping stone. However, integrating quantum physics into the mix

raises the complexity substantially, and thus here the focus will remain on classical physics.

This is also necessary as classical physics is and remains central to concept formation for

all quantum theories.

Classical physics contains, as noted, three ingredients. Classical mechanics, classical

electrodynamics, and special relativity. Indeed, electrodynamics cannot exist without

special relativity, and thus it is mandatory to include it into the description.

1
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Classical mechanics is, in a sense, a somewhat ancient topic. Essentially completely

formulated in its modern form in the 19th century, it has matured into a mathematically

consistent and closed theory. Even the advent of special relativity only required a minor

modification of the underlying structures and mathematics, and could therefore be techni-

cally straightforwardly accommodated. Of course, the interpretational impact has been of

much more significance. The basic formulation tools of theoretical mechanics, especially

the Lagrangian formulation of chapter 3 and the Hamiltonian formulation of chapter 4,

are still mathematical cornerstones of all modern theories of physics. It is not the concept

which changed, merely the entities on which it is applied, at least from a mathematical

point of view. Of course, again the shifts in physical interpretation had a much larger

impact when quantum physics was added.

Thus, theoretical mechanics remains both mathematical and in terms of conception

still a cornerstone of even the most modern areas of physics. Understanding theoretical

mechanics in these formulations is therefore forming the foundation on which these are

build. Of course, not to mention its ubiquitous engineering, and other, applications.

Though this is not the focus here.

However, these formulation as Lagrangian and Hamiltonian mechanics in chapters 3

and 4, as powerful as they are, are very dissimilar from the usual concept of Newton’s law,

even if they embody the same physics. In fact, at first sight it is far from obvious that

reformulating mechanics mathematically in this way could be anything but obscuring. It

is only when making the transition to quantum physics and general relativity that their

conceptual importance becomes readily evident, though the structural simplification can

be utilized in itself in applications.

To provide a smooth transition from the experimental view on mechanics to the theoret-

ical formulation, the first step will be to give a more theoretical perspective on Newtonian

mechanics in chapter 2, sometimes also called analytical mechanics. In this way, the theo-

retical approach to physics problems is best outlined, as here the subject of study, ordinary

Newtonian mechanics, is already well acquainted from experimental physics, so that one

can concentrate on the more abstract theoretical formulation.

Another step is then to introduce the ideas of special relativity in chapter 6. This is

somewhat orthogonal, and will therefore be relegated to a suitable spot.

The first version of reformulation of mechanics is then Lagrangian mechanics in chapter

3. There are two versions of this, both having their own advantages. Lagrange’s equations

of the fist kind are extremely useful when it comes to problems in applications of classical

mechanics. They will therefore be skipped here, where conceptual developments are of

more interest. Lagrange’s equation of the second kind in section 3.4 are the natural way
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to formulate problems embodying special relativity and quantum physics simultaneously,

which is the arena of particle physics. Afterwards, another reformulation is given in terms

of Hamilton’s mechanics in chapter 4. This reformulation is especially useful for non-

relativistic quantum physics. It may appear odd at first sight that this more special case,

as it does not lend itself so easily to special relativity, is treated after the more general case.

But this formulation is actually easier to understand from the Lagrangian formulation as

then from starting outright towards it. Finally, these methods will then be used to treat

some special topics in classical mechanics in chapter 5.

Especially, here a transition to a field theory will be performed in section 5.3, by

considering an infinite number of particles. This mechanical example will be very helpful

in grasping the concept of fields, which are essential in electrodynamics, which is a field

theory. Electrodynamics is of fundamental importance, as it is also at the root of many

day-to-day phenomena. Not only in terms of electric applications, but it is central to

anything which has to do with light, as well as with chemistry, and thus the material

structure of the world around us.

However, when first exploring electrodynamics, one is usually encountering electric

and magnetic phenomena separately. This will be followed by first treating electrostatic

phenomena in chapter 7 and then magnetostatic ones in chapter 8. Their unification

into a single theory, electrodynamics, has been one of the major achievements of classical

theoretical physics, and will be described in chapter 9.

Such a unification of phenomena remains one of the central goals, or perhaps the

central goal, of fundamental theoretical physics. However, as will be seen in chapter 10,

the unification of special relativity, mechanics, and electrodynamics is far less compelling

as in electrodynamics, but at least everything can be discussed in a single set of equations.

Further unification is still awaiting discovery.



Chapter 2

Newtonian mechanics

The aim of this first chapter is not necessarily to introduce new physics or new physics

concepts. After all, Newtonian physics is familiar from experimental physics. The main

aim here is to provide a new perspective on it. So far, the exposure to physics was mainly

by means of understanding experiments. The theoretical approach is somewhat different.

The basic idea is to start from a set of fixed rules, e. g. Newton’s laws. The next step

is then to derive consequences of these laws, e. g. the movement of the earth around the

sun. Comparison between these derived results and experiments then decides whether the

basis of the derivation is actually useful to describe experiments or not.

Of course, the aim of this exercise is to end up with the minimal basis to describe all

experimental results. These would then be considered as the basic laws of nature. Whether

they are indeed ingrained in reality in some way is a highly non-trivial questions, and not

(yet?) resolved. However, to even pose this question requires to be able to connect some

limited set of basic principles with experiments. This is the task of theoretical physics.

This also includes, of course, to identify this basic set. The resulting basis is called a

(standard) model or a theory, while the constructions still awaiting experimental tests are

usual considered as hypothesis. There are fine distinctions between these names which,

however, play no role in this lecture, nor actually in the day-to-day research.

Note, however, that any experiment can at most falsify a theory. It can never prove it to

be correct. Thus, any theory or model can only be considered to be an adequate description

for the time being. Though often theories are refuted entirely based on contradiction to

experiment, there are some cases where they do contradict experiments, but are not really

refuted. In this case, the theory turns out to be the limit of a more general theory in a

particular case. E. g., Newtonian mechanics will be the limit of special relativity for small

speeds. Only when experiments become sensitive enough they can detect this situation.

A special limit theory is by no means useless. When building a bridge, nobody will do

4
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the statics using special relativity, but ordinary Newtonian mechanics. Thus such a limit

theory, more often called an effective theory, is by no means useless. Quite often the more

general theory is of less practical use.

2.1 Kinematics

Before starting with physics, sometimes also called dynamics, it is useful to first consider

the description of (point) particles, the central entities of mechanics. This is a pure

description, and there are no answers to why a particle behaves in a certain way. To

separate this from the actual reasons of their movement this is often called kinematics.

The starting point for the description of a particle is the path it follows during an

interval of time. In general, this path is described by a vector-valued function ~r(t) in a

vector space. This vector space describes the position of the particle in space, while time

acts as a parameter to identify the position of the particle along its path, which is also

called a trajectory.

The speed ~v of a particle is defined to be

~v(t) =
d~r(t)

dt
,

i. e. the rate of change of the position of the particle along its path. Usually, the path

of particles will be infinitely often differentiable, so this is a well-defined quantity. In

mechanics, however, usually only the second differential,

~a(t) =
d~v(t)

dt
=
d2~r(t)

dt2

plays also an important role. The others may appear, but are not central quantities.

With these definitions, the behavior of a particle can be described (though not ex-

plained).

Given the acceleration, it is possible to obtain the path by twofold integration,

~r(t) = ~r(t0) + ~v(t0)(t− t0) +

t∫
t0

dt′
t′∫

t0

dt′′a(t′′),

where the quantities ~r(t0) and ~v(t0) are the position and speed at time t0, the initial

conditions. Similarly, if the speed or higher derivatives are given, the path can be obtained

by a single or even more integrations.
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2.2 Newton’s laws

2.2.1 Preliminaries

While the previous section provided the tools to describe the movement of a particle, it

did not give any reason how, e. g., the acceleration comes about. This is the question of

dynamics.

As alluded to earlier, the first step in theoretical physics is to define a basis, i. e. a

set of laws which describe the dynamics. In analogy to mathematics, these are sometimes

also called axioms, but more often nowadays just as the model, given the insight that all

models have their limits.

Classical mechanics is the theory which is based upon Newton’s laws. They were found

in a long sequence of interplay between theory and experiment. This history of physics

will not be traced out here, but it should be noted that the formulation of the model is by

no means a trivial exercise, and all laws of physics have been created based on a multitude

of experimental insights, no matter how many spectacular things later were predicted by

them.

2.2.2 The first law

To formulate Newton’s laws, it is necessary to introduce a few more concepts. The first

is to define a force as the origin of dynamics. I. e., without forces, the particle will not

change its kinematics. To give this statement a more precise meaning requires the notion

of an inertial system.

The first law of Newton is that if no forces act on a particle then there exists a co-

ordinate system in which its acceleration and all higher derivatives of its path vanish

identically, and thus the particle either remains at rest or moves at constant speed. If the

constant speed is zero, this frame is called the rest frame of the particle.

The importance of the concept of an inertial system follows from the following idea (also

called gedankenexperiment). A particle can be observed. If now the observer moves with

respect to the particle, it will appear to be moving, even if it is the observer, which moves.

Thus, the kinematics depend on the relative motion of observer and particle. However, if

there are forces, i. e. something changing the kinematics, then there is a source of change

not identical to just a change of coordinates, and therefore, no matter how, there is no

coordinate system in which the particle behaves as expected.

There is one loophole to be fixed. If the observer would be accelerated, it may look like

the kinematics change. Therefore, inertial systems are restricted to such systems which
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may at most move relatively with a constant speed with respect to the coordinate system

of the particle. If this is not the case, so-called pseudo forces, like the Coriolis force,

emerge. This case will be discussed in section 2.11.

The abbreviated, sloppy, version of this law is: If there are no forces, the particle moves

at constant speed (which includes zero speed).

2.2.3 The second law

Newton’s first law identifies what happens in the absence of forces. Newton’s second law

describes what happens in the presence of forces. However, this requires first to define

forces a little bit more. Note that this is indeed a definition of forces, not an explanation.

This is one of the essences of theoretical physics, at least currently: It cannot explain

everything in the sense of requiring nothing external. It can at best explain a multitude

of experimental observations with a very limited number of external inputs. In this sense,

also forces are something motivated and defined by experiment, but without derivation.

The definition is that a force is a vector, which is possibly time-dependent, ~F (t). It

may also depend on any other information, e. g. the position and speed of a particle. This

also implies that forces add like vectors, and the total force is the sum of all the individual

forces. This is sometimes also called the fourth law, since this is also not something

derivable.

In addition, every particle is assigned an inertial mass m, which is a property of said

particle. There is no explanation of the origin of this mass in mechanics, and for any

given problem the value of this mass has to be determined by experiment. This mass is

an additive property, that is the mass of two particles M is just the sum of the individual

particles’ masses

M = m1 +m2,

and so on for more particles. This mass can have any arbitrary, positive value, and it is

not quantized (comes in portions). It is an intrinsic property of a particle. In classical

mechanics, furthermore, this property is immutable in time, m(t) = m.

Having these two concepts, the next step is, for the sake of convenience, to define a

new quantity, the momentum of a particle,

~p = m~v = m
d~r(t)

dt
.

This will make the analysis especially of mass distributions, i. e. large numbers of particle

with small masses, simpler, as well as the generalization beyond classical mechanics.
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With this, it is possible to formulate the second law as

~F =
d~p

dt
= m~a(t) (2.1)

i. e. the force changes the momentum and equals the acceleration up to a factor of the

mass. As said, this is a definition, so there is no reason for it, except that it fits well with

experiment.

Though mass is an immutable concept of a particle, it may still be useful to think of a

time-dependent mass, e. g. if thinking of an ensemble of particles. When pouring particles

on a scale, e. g., the mass on the scale changes. If this is the case, the second law takes

the form
~F =

d~p

dt
= m(t)~a(t) + ~v(t)

dm(t)

dt
, (2.2)

i. e. the definition in terms of the momentum is the basic one, not the one in terms of the

acceleration or the speed. This also elevates the momentum to be the central kinematic

quantity in classical mechanics, and actually far beyond. This equation is also called the

(Newtonian) equation of motion.

The equation is often also referred to as Newton’s law or as the dynamical equation.

While the first law and the third law describe only general features of systems with forces,

it is this equation which actually describes the impact of forces on particles.

Though not explicitly noted, the force is in general not a constant, but it may (and in

general will) depend on the position of the particles, as well as derivatives of the position,

like the speed, the acceleration, or, in principle, even higher derivatives. In practice,

the majority of cases involve only forces which are position-dependent, and sometimes

dependent on the speed. Forces involving the speed are also often called frictional forces,

as they usually appear in the context of friction phenomena.

The force may, in addition, depend also explicitly on the time, not only implicitly

through the position of the particle as a function of time. This happens especially often if

there is an external source of the force.

Because the force can then be seen as a function of other vectors, and has usually

a well-defined value for every point in space and time, the force is often also considered

a force-field, though the name force is still used for brevity. Only if the force does not

depend on the position, but at most explicitly on time, it is strictly speaking not a force

field.

2.2.4 The third law

The third law is of a substantially different nature than the two first laws. The two first

laws describe how particles are affected by the presence or absence of forces, but do not
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make any statement about the origin of the forces. This is changed by the third law. Its

statement is that if the force on a particle emanates from another particle, then the target

particle acts always with the same but opposite force on the source particle,

~Fs = −~Ft,

i. e. any action induces a, equal in magnitude but opposite in sign, reaction. If there are

more than two particles involved, this statement applies pairwise to each possible pairing

of particles. Note that still no statement is made about how any of the involved particles

creates the forces, but it requires for any possibility that this balance of action and reaction

is satisfied. Again, there is no reason for this at the present time, since it is an axiom.

An important approximation is very often that it is assumed that a force is external.

I. e., though the back reaction occurs, it is so weak that, for all practical purposes, the

origin of the force is not changed, and therefore the force on the particle does not change.

An example for this is the movement of the earth around the sun. There, the impact of

the third law can be taken exactly into account, but it can also be shown how it becomes

irrelevant for the sun being much heavier than the earth.

2.3 Point particle

The simplest possibility is a constant force, ~F . The equation of motion (2.2) then becomes

for a constant-mass particle1

1

m
~F = d2

t~r(t).

This is an ordinary differential equation of second order. It can be solved by integrating

twice on both sides,

~r(t) =

∫
dt′
∫
dt′′

1

m
~F =

∫
dt′
(
t′

m
~F + ~v0

)
=

t2

2m
~F + ~v0t+ ~r0, (2.3)

where the integration constants ~v0 and ~r0 describe the position and speed of the particle

at time t = 0, and are the so-called initial conditions of the motion. Since the equation of

motion is an ordinary second-order differential equation there are always two such initial

conditions required to fully specify the solution of the equation.

If the force vanishes, ~F = ~0, the particle moves at constant velocity. In this sense,

Newton’s first law is actually just a special case of Newton’s second law, though the

definition of an inertial system will play a quite central role later.

1For brevity, differential operators d/da will be abbreviated from now on by da, and ∂/∂a by ∂a.
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An interesting observation is the following. Because the equation is linear, adding two

forces ~Fi will yield that the movement of the particle will be just the sum of the effects of

the two forces,

~r(t) =
t2

2m
(~F1 + ~F2) + ~v0t+ ~r0.

This is called a superposition of the two movements, where the consequences of the initial

conditions can be taken to be also the sum of two initial conditions, for each movement

separately.

The reason is of mathematical nature. If a differential equation is linear and homoge-

neous, i. e. is of the type
N∑
i=1

aid
i
t~r = ~0,

then any linear combination of two solutions (of which there are N for an ordinary differ-

ential equation of order N) again solves this equation. If there is any inhomogeneity on the

right-hand side, then an arbitrary solution for this equation is given by any solution of the

inhomogeneous equation to which any linear combination of the homogeneous solutions

can be added.

Note that this is a particularity of linear differential equations. If, e. g., the prefactors

ai would depend on ~r, this is no longer true. However, situations where (2.2) is a linear

differential equation, with or without inhomogeneous term, are very common in classical

mechanics, and therefore this superposition principle will play an important role.

An interesting example is the situation with friction. Then ~F = αdt~r, where α is a

friction coefficient. The equation of motion (2.2) is then

d2
t~r −

α

m
dt~r = 0.

This requires that the derivative of the first derivative must again be proportional to the

first derivative. This is the typical behavior of the exponential function, and the solution

is thus

~r(t) =
m

α
~v0e
−αt
m + ~r0,

where the two initial conditions give again the speed and position of the particle at t = 0.

The two solutions are now both terms. Either being at rest from the beginning, or its

movement being exponentially damped.

2.4 Gravity

As noted before, Newton’s laws do not explain the origin of the forces, just how they

act on particles. They are therefore sometimes called a dynamical principle, but require
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still the force ~F to actually describe motion. It is the realm of fundamental physics to

deduce these forces from experiment, and investigate, which of these forces can be deduced

from other forces. The most basic ingredients known today are general relativity and the

standard model of elementary particles. Though not completely covering all experimental

observations, all known forces can, in principle, be deduced from them. However, the

actual derivation of, say, the forces involved in standing on a floor from these elementary

theories is practically far too involved and too complicated. Therefore, rather than using

them, it is much better to use effective forces, which neglect all those aspects which play

no role, i. e. are too weak to make any practically measurable difference, rather than the

full forces of these theories. This is then considered as an effective theory, rather than a,

more or less, fundamental one. Especially, in the realm of classical mechanics only such

effective forces play a practical role.

The probably best known of these effective forces is the gravitational force. Given the

distance between two bodies, |~r1 − ~r2|, the gravitational force between them is

~F =
Gmg

1m
g
2(~r1 − ~r2)

|~r1 − ~r2|3
, (2.4)

where G ≈ 6.67430(15) × 10−11 m3/(kgs) is Newton’s constant, a number obtained from

measurement. The quantities mg
i are the so-called heavy or gravitational mass. Just like

the inertial mass, they are a property of particles, and must be deduced by measurement.

They act as a so-called charge, i. e. they are features of particles which determine the

influence of a force on this particle. It is found experimentally that the gravitational

masses are always positive.

It is a remarkable, and highly non-trivial, experimental finding that for a particle of

inertial mass m and gravitational mass mg

m = mg

holds, i. e. gravitational and inertial mass are the same. This feature, also known as the

equivalence principle, is the basis for general relativity, and thus one of the most basic

foundations of modern physics. There is no explanation of it, though, it is again an

axiom. However, since experimentally extremely well supported, in the following no more

distinction between the gravitational and the inertial mass will be made.

There is an interesting special version of the gravitational force (2.4). Set one of the

particles fixed at the coordinate origin, ~r2 = ~0. Then

~F = m1Gm2
~er
r2

= m1~g
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where the so defined vector ~g is called the gravitational acceleration due to the body 2.

E. g., on the surface of the earth, ~g always points to the center of the earth and has a

value, depending on latitude2, of about 9.8 m/s. Since the radius of the earth is large,

~g changes only very slowly when moving just a little bit vertically, and therefore can be

taken to be roughly constant for the couple of kilometers, from the deepest ocean trench

to the traveling altitudes of planes, where human activities usually take place.

2.5 The potential

An interesting concept can be found when considering the movement of a particle under

an arbitrary, but only position-dependent, force. It is best to start with a one-dimensional

example first. The equation of motion then reads

md2
tx = F (x).

Multiplying this equation by dtx, this yields

m(dtx)(d2
tx) = F (x)dtx. (2.5)

It can now be recognized that both sides can be rewritten as derivatives

dt

(m
2

(dtx)2
)

= dt

x(t)∫
F (x′)dx′ = −dtV (x(t)), (2.6)

where the quantity V (x), being the primitive of F (x), has been introduced. Note that

any integration constant in V (x) does not play a role, as the time derivative removes

it immediately. This primitive is called the potential, which generates the force. The

appearing minus sign is a matter of convention.

It will happen very often that not the force, but the potential is known. The force can

then be obtained by

F (x) = −dxV (x), (2.7)

i. e. the derivative of the potential is the force.

This again shows that any constant terms in V (x) do not play a role, and can be chosen

at will. Such a kind of arbitrariness seems to be at first quite astonishing, since nature

should be somehow uniquely determined. There is, however, a deeper reason behind this

arbitrariness, which will become evident later. However, it is best to postpone a deeper

discussion of it until more conceptual progress has been made.

2Because the earth is not exactly spherical.
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Since on both sides of (2.6) total derivatives appear, the equation can be integrated to

yield
m

2
(dtx)2 = E − V (x), (2.8)

where E is an integration constant. Note that this integration constant, which emerges

from a time and not a spatial integration, cannot be dismissed. Its relevance will be

discussed in more detail below. Before doing this, it is possible to solve this equation by

separation of variables, yielding an implicit result

t− t0 =

x(t)∫
x(0)

dx′√
2
m

(E − V (x′))
, (2.9)

which after evaluation of the integral can then be solved for x(t) to get the final solution.

This solution is parametrized by the constant E and the initial condition x(0). Thus,

these are taking the role of the two initial conditions of position and speed at time zero

used before.

While so far only the indefinite integral has been used, it is also possible to use the

definite integral

W12 =

x2∫
x1

dxF (x) = V (x1)− V (x2). (2.10)

This quantity is the necessary integrated force to move something between the two points

x1 and x2. It is therefore called the work which has (to) be(en) done. It corresponds to the

difference in potential. The potential therefore describes the amount of work which can be

done, and actually doing some work is reducing the potential. Conversely, investing work

raises the potential. Thus, the name potential. The amount of stored work for a particle

at a position x with respect to zero potential is called the potential energy.

If in equation (2.8) the potential is set to zero, the constant E is entirely giving by a

quantity obtained from the motion of the particle. On the other hand, solving for E of

(2.8) yields

E =
m

2
(dtx)2 + V (x). (2.11)

For a particle at rest, E is then the potential energy. Thus, in general, E is called the

total energy, combining the potential energy V (x) and a contribution from the motion of

the particle m(dtx)2/2 = p2/(2m) which is called the kinetic energy, often abbreviated as

T , and where p is again the momentum.

Because of the general solution (2.9), the sum E − V of a particle must be positive

at every point in space, since otherwise there is no solution. Thus, a particle needs to

have a positive or zero kinetic energy. Furthermore, when E = V (x) for some point x,
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the kinetic energy has to vanish, as it is a positive quantity. The second derivative may

not vanish, and therefore the particle does not necessarily stops there. If the potential

further increases to one side, it will actually be deflected there, a so-called inflection point

of the movement. Note that the prediction of this behavior did not need the solution of

the equation of motion. In fact, the energy will become a very convenient tool to simplify

calculations later.

One of the probably most fundamental statements in mechanics is that the energy is

x-independent, which follows from (2.8), but also time-independent for conservative, i. e.

t-independent, potentials. This follows from (2.5)

dtE = dt

(m
2

(dtx)2 + V (x)
)

= m(dtx)(d2
tx)− F (x)dtx = 0. (2.12)

If the potential depends on time or speed, i. e., it can be written as

F (x) = dxV (x) + f(x, dtx, t),

the energy changes with a rate of f(x, dtx, t)dtx.

Before continuing, as a brief remark the situation in more than one dimension is a little

more involved. In general, any potential V (~x) will create a force field(
~F (~x)

)
i

= −∂xiV (~x),

as can be seen by performing the steps above for every component. In the example of the

point particle in section 2.3, the potential for the constant force is ~F~x.

Again, in one dimension any force, which is time and speed independent, has a poten-

tial. This is not so simple in more than one dimension. To test, when this is possible,

note that if a potential exists (2.10) and its generalization to three dimensions necessarily

imply that for any trip starting and ending at the same position W11 = 0, no matter the

path. It can be shown that this is mathematically equivalent to∫
C

d~x~F (x) = 0,

for any closed curve C. There is a powerful theorem in functional analysis, which guarantees

that this is equivalent to the requirement3

εijk∂xjFk = 0

3Note that here and hereafter the Einstein convention is used that over any pairs of indices in a given

term a sum is performed over their full range, if not stated otherwise.
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for all i, which is much simpler to check than the integral condition. However, this equiv-

alence is only true, if the force is continuously differentiable, or at least if the curve can

be contracted to a point without crossing any singularities. This condition also implies

∂xi∂xjV (~x) = ∂xj∂xiV (~x),

for any combination of i and j, and thus requires that the potential is (at least) twice

continuously differentiable. Note that a potential can always be used to find a force, but

this force may not everywhere be well-defined, if the potential is not always continuously

differentiable.

2.6 Harmonic oscillator

Probably the most important problem in mechanics is the harmonic oscillator. In its

simplest form in one dimension, this is the situation if the force is negatively proportional

to the distance of the particle from the origin, i. e.

d2
t r(t) = − α

m
r.

E. g., a spring, obeying Hooke’s law, will create such a force. The associated potential is

αr2/2.

The solution of this equation requires two functions which, up to a negative constant,

will turn into itself when differentiating twice, to yield the two solutions. Such functions

are given by sine and cosine. Therefore, a solution is

r(t) = r0 cos(ωt) +
v0

ω
sin(ωt) (2.13)

ω =

√
α

m
,

where the two initial conditions r0 and v0 are used to fix the position and speed at time

t = 0, respectively. Thus, after a time t = ω/(2π) the particle is again at the same place

and moving at the same speed as at t = 0. Such a motion is called periodic, with period

ω/(2π).

Another interesting feature is obtained when considering the more general case of a

driven accelerator with friction, described by the equation of motion

d2
t r(t) +

β

m
dtr(t) +

α

m
r = b sin(σt+ φ). (2.14)

To solve this equation, it is best to start with the homogeneous case first, i. e. with b = 0.

Motivated by the result for friction in section 2.3, it is suggestive to make the ansatz
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exp(ct), and insert it into the equation of motion. This yields a quadratic equation for c

with the solutions

c± =
1

2m

(
−β ±

√
β2 − 4αm

)
.

In general, c± can be a complex number, but of course r is real. Thus, the real part needs

to be taken. The solution for the homogeneous case will then be

r0(t) = <
((

c−r0 − v0

c− − c+

)
ec+t +

(
c+r0 − v0

c+ − c−

)
ec−t
)
.

The resulting path then depends on the relative sizes of the involved constants. There are

three distinct cases, depending on the value of c±.

If β2 < 4αm, the argument of the squareroot becomes negative, and the c± are complex.

If β is positive, this corresponds to a superposition of an exponential damping, and an

oscillation, due to Euler’s formula. Thus, after an initial stage, the motion becomes that

of an ordinary harmonic oscillator, though with a frequency depending on the interplay

of damping and the force yielding a exponentially decreasing amplitude. If β is negative,

however, the movement becomes exponentially increasing. This happens, if the friction

term enhances motion. Thus, such a term destabilizes the motion.

If the argument exactly vanishes, the movement will be exponentially damped, and

degenerate. In this case, the time-dependence can be factored out, and the denominator

vanishes.

If the argument is positive, the solution c+ will again yield an exponentially increasing

motion, while c− an exponentially decreasing one. It depends on the initial conditions,

which one will eventually win. However, there is no oscillatory behavior.

Note that the friction force can exponentially increase the motion. But this is no longer

really friction, as it provides energy to the system.

If the equation of motion (2.14) b no longer vanishes, the result is

r(t) = r0(t)− d(t) + d(0)

d(t) = b
m

(mσ2 − α)2 + β2σ2

(
βσ cos(tσ + φ) + (mσ2 − α) sin(tσ + φ)

)
,

which exhibits again the structure of being the solution to the homogeneous equation plus

an explicit solution of the inhomogeneous equation. The important addition is the driving

term d, since for r0 just the previously stated behavior emerges again. This can be seen

to be the necessary inhomogeneous part for the solution by entering it into the solution.

It is a reasonable ansatz, as it has the same form as the driving term, but in the end, this

is here an educated guess.

If β = 0, the amplitude diverges if mσ2 = α. Thus, close to this value, the amplitude

grows beyond any bounds, and therefore totally dominates the result. This is called a
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resonant behavior, or just a resonance. Physically, what happens is that the external

force applies just exactly such that it always accelerates the movement a little bit further,

instead of damping it occasionally. Thus, the motion grows beyond any bound.

If β 6= 0, there is no divergence, but still a strong enhancement at mσ2 = α. This

is called a damped resonance. Considering the prefactor as a function of α, the width is

defined as the amount of deviation of α from the critical value α = mσ2 where the function

drops to a half4. This width is 2(β2σ2 + 2m2σ4)1/2.

Similar (damped) resonances are a feature exhibited by many physical system. Under-

standing it well for the harmonic oscillator is therefore understanding a prototype for a

multitude of physical phenomena, from celestial mechanics to particle physics.

Note that φ only acts as a phase, i. e. it modifies only to some extent the relative

behavior of the two oscillations, if also r0 shows an oscillatory behavior.

More interesting is that the maximal amplitude is reached no longer when r0 reaches it

maximum, but delayed by a so-called phase shift γ. The value of this phase shift depends

on the value of α when all other quantities are fixed. It is trivially zero for α = 0, as then

all oscillation is just given by the driving force. It can be shown to be negative for all

values of α, becoming −π/2 at the resonant frequency, and tends to −π for α to infinity.

If β is zero, it actually jumps from zero to −π at the resonant frequency, and this jump

becomes smoothed out the larger β becomes.

2.7 Central potential

Generically, forces on particles of the type

~F = f(~r, dt~r, ..., t)~r, (2.15)

i. e. having the same direction as the vector ~r, are called central forces. These forces assume

that the source of the force is at the center of the coordinate system, and that the direction

of the force is towards (or radially away from) this center The further crucial assumption

is that there are no lateral forces, so that the prefactor only involves the absolute values,

f = f(|~r|, |dt~r|, ..., t). These forces are probably the most important type, especially in

astrophysics, since gravity, (2.4), is of this type. Their structure also entail many further

consequences, which are prototypical. They shall therefore be treated in some detail.

As a first step, it is useful to find the condition under which there is a potential for

these forces. The first condition is that the function f is at most depending on ~r, to avoid

4Sometimes also the value is determined when it drops to 1/e or to ln 2, depending on the context.

These are then different numbers than for the factor 2.
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any dissipation. A conservative central force must then be of the form f(r)~r, where r = |~r|
for brevity. There is also a second, more technical criterion, which will be skipped here.

2.7.1 Angular momentum

For the following, it is useful to first introduce a further concept, angular momentum.

Take the equation of motion (2.2), and form a vector product with ~r, yielding5

( ~M)i = εijkrjFk = mεijkrjd
2
t rk = dt(mεijkrjdtrk) = dt(εijkrjpk) = dtli. (2.16)

The so defined quantity ~l is called the angular momentum, whose time evolution is deter-

mined by the torque ~M . This is called the angular momentum law. If there is no torque,

because either the force itself vanishes or has a vanishing vector product with the position,

the angular momentum is conserved, as its time derivative vanishes.

However, the actual value of the angular momentum is not intrinsic to the system,

but depends on the coordinate system. This can be seen from the free particle. Since

the force vanishes, so does the torque. But the position vector and the speed need not be

parallel, but can be, depending on the coordinate system, though it is always constant.

Thus, a statement about the value of the angular momentum requires to also provide the

coordinate system. The rate of change, however, is physical, as it is uniquely given by the

torque.

For a central force, (2.15), the torque always vanishes, and the angular momentum is

conserved. This is the reason why it will be so relevant in this section.

A useful first consequence is the geometrical interpretation of the angular momentum,

which can be derived from its magnitude

1

2m
|~l| = |εijkridtrjek|. (2.17)

The right hand side has dimension area per time. Geometrically, it is the area which the

vector pointing from the origin to the particle covers per unit time. If angular momentum

is conserved, this area is constant. As will be seen, e. g. the planets fulfill this so-called

area theorem, or better known as Kepler’s second law.

2.7.2 Effective potential

For a conservative central potential both the energy (2.11) and the angular momentum

(2.16), and especially its length l = |~l|, are conserved. This can be used to simplify the

solution of the equations of motion.

5Here and in the following, for brevity, the Einstein convention will be used, which imply that twice,

and only twice, repeated indices in a term are summed over their index range, even if not explicitly noted.
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First, because the angular momentum is conserved the speed and the position are

coplanar in a temporally constant plane, since

~r~l = dt~r~l = ~0, (2.18)

since the cross product is perpendicular to its components. Thus, it is possible to restrict

the description to a plane. Due to the radial symmetry it is convenient to chose angular

coordinates for the description, i. e. a distance from the origin r (on which the potential

depends) and an angle φ, thus x = r cosφ and y = r sinφ.

This implies

E =
m

2
(dt~r)

2 + V (r) =
m

2
((dtr)

2 + r2(dtφ)2) + V (r)

=
m

2
(dtr)

2 +
l2

2mr2
+ V (r) =

m

2
(dtr)

2 + Ve(r). (2.19)

This result has a number of interesting implications. First, the energy is entirely deter-

mined by the radius r as a function of time, i. e. the distance from the origin. Its angular

position is not relevant. Secondly, the situation is analogous for the one-dimensional par-

ticle of section 2.5, but with the modified, the so-called effective, potential Ve, rather than

the original potential V .

2.7.3 Planetary motion

This previous result is fully general. It is, however, quite interesting to study the case of

V (r) ∼ 1/r in more detail. This particular case is of special importance as there are two

situations in which it arises.

One is the electrostatic force, where it takes the form

V (r) = −εq1q2

r
, (2.20)

where ε is a constant depending on the system of units chosen, and this is the potential

between two electric charges having electric charges q1 and q2 respectively.

The other one is Newton’s law of gravity,

V (r) = −γmM
r

, (2.21)

and describes the potential between two bodies of masses m and M , and γ is again a

system-of-units-dependent constant, called Newton’s constant.

In both cases it is tacitly assumed that one of the bodies resides at the center of the

coordinate system. Otherwise, r has to be replaced by |~r1 − ~r2|, the distance between
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both bodies, and both affect each other as given by Newton’s third law. In the following

it will be furthermore assumed that the body at the origin will not move. This is an

excellent approximation if one of the bodies is much heavier than the other. This is e. g.

true if the two bodies are the sun and the earth, a satellite and the earth, or an atomic

nucleus and an electron. If this is not true, this becomes a two-body problem which,

in this particular case, can actually be solved only with slightly more effort. However,

since this only obscures a few things right now, this will be postponed until later, and the

approximation will be made.

It should be noted that, though this is called Newton’s law of gravity, there is a-priori

no casual connection between this law and Newton’ three laws (except that they have been

discovered by the same person, Newton). The first three laws are about inertial masses.

This law is about the gravitational masses. It is, as noted above, only an experimental

result that these two masses are identical.

Though this problem can be solved with the methods of the previous section 2.7.2, it

is useful to take the opportunity to demonstrate also a different, but equally useful, way

of solving the problem: Another replacement of variables.

To start out, define s = 1/r. Though s is a function of the time t, it is also possible

to consider it rather as a function of the angle φ in the same two-dimensional coordinate

systems as in section 2.7.2. Then the chain rule yields

ds

dφ
=
d1
r

dt

dt

dφ
= −dtr

r2

mr2

l

where the angular velocity

dtφ(t) =
lr2

m
, (2.22)

has been used, which follows from (2.18). Inserting this into (2.19) yields

E =
l

2m

(
(dφs)

2 + s2
)

+ V (s).

Though it may appear tempting to directly solve this equation, it is in this case better to

take a detour, born from hindsight and experience.

Differentiating this equation a second time with respect to φ yields

0 =
l2

2m

(
2(dφs)(d

2
φs) + 2sdφs

)
+ (dsV (s))(dφs) = dφs

(
l2

2m

(
2(d2

φs) + 2s
)

+ dsV (s))

)
.

This equation has one solution with ds/dφ = 0, i. e. r is constant as a function of φ. This

is a perfect circular orbit. The term in parentheses is also a linear differential equation of

the second kind

0 =
l2

2m

(
2(d2

φs) + 2s
)

+ dsV (s).
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Furthermore, the derivative of V with respect to s is just a constant, and therefore the

equation is

d2
φs+ s =

γm2M

l2
. (2.23)

This shows the motivation for this approach. Out of a non-linear differential equation the

task has been reduced to the task of solving two linear differential equations, which is far

simpler in general.

But equation (2.23) is already known. It is one particular version of the harmonic

oscillator equation of section 2.6. Thus, the solution can be read off directly by replacing

t in section 2.6 by φ, and yields

s(φ) = α sinφ+ β cosφ+
γm2M

l2
,

where the constants α and β have to be fixed by initial conditions. A convenient choice

is to select α = 0, which implies that the minimal value of r is at φ = 0, if β > 0. The

solution is then given by

s =
1

r
= β cosφ+

γm2M

l2
=

1

k
(1 + ε cosφ)

k =
l2

γMm2

ε = βk

where the last rewriting is convenient to characterize the geometric properties of the so-

lution. These are just cone cuts, and for ε smaller, equal, or greater than 1 this describes

an ellipsoid, a paraboloid, and a hyperboloid. Note that the case β = 0 returns exactly

the circle case. Thus, ε is also called the eccentricity of the orbit. Thus, the quality of the

solution is entirely characterized by ε.

The case of ε < 1 (with ε = 0 being the circle) is just the ordinary case of a planetary

orbit around the sun. This can be seen from the fact that (1 + ε cosφ) remains bounded,

and hence so does r. At the same time, the motion is periodic.

If ε = 1, then the motion is no longer periodic, since now s can vanish for φ = π. Still,

φ can still reach all values, especially zero, and therefore the movement is a parabola. It

is an ellipsoid of which one of the main axes goes to infinity.

If ε > 1, then there is no longer a positive solution for r for all values of φ. It can

therefore no longer be an ellipsoid. This implies that not all φ values are allowed, and

the path of the particle becomes a hyperbola: The particle tries to approach the central

one, but is deflected before it can reach it. The point of closest approach is given by

r = k/(1 + ε).
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It is quite instructive to return to the energy of the particle. Since the kinetic energy

is always positive, it follows from (2.19)

E ≥ l2

2mr2
− γmM

r
.

If the energy is greater than zero, this equation has a solution for all r greater than some

limiting r0, which vanishes for l = 0. This implies that a particle with positive energy

corresponds to the hyperbola. A non-vanishing angular momentum increases the point of

closest approach r0. Therefore it is said that the angular momentum creates an angular

momentum barrier. If E is exactly zero this is the smallest possible value for which it is

still possible to have an infinite distance. It is therefore corresponding to the parabola.

If the energy becomes negative, the equation has no solution also for r larger than some

value r1, the movement is therefore bounded. This corresponds again to the closed orbits.

Since in general r0 6= r1, the orbit is an ellipsoid. For the smallest possible value of the

energy, r0 = r1, and the motion becomes the circular orbit.

Thus, even without solving the system, it would have been possible to determine many

qualitative features of the particle’s motion just by studying (2.19). Such studies therefore

are an extremely important tool. If, e. g., the potential would have taken the value

V (r) = r, a similar study would immediately yield that the particle can never move to

r =∞.

In the whole discussion, the time-dependence was not an issue. If the time-dependence

is actually of relevance, it can be obtained from (2.22). However, the actual solution is

rather involved.

Still, from the results the famous laws of Kepler can be deduced for planetary, i. e.

bounded, motion. Since the heavier mass is at the origin the planets move along ellipsoids

with the sun at one of the focus points. The relation (2.17) is actually already Kepler’s

second law if angular momentum is conserved, as it is here.

Kepler’s third law states that the ratio between the time needed for a complete orbit

T squared and the third power of the larger axis is constant. It appears that this would

require to have the time dependence, but this is not the case. The area of the ellipse is,

using (2.17),

πab =
T l

2m

But the value of b is just given by the minimal value of s at π/2. Thus follows

T 2

a3
=

4π2

γM
,

which completes the proof.
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There is one more feature, which may appear odd. While angular momentum conser-

vation requires the movement to be within the plane, it by no means requires that the

generalized ellipsoids, on which the particle moves, are constant in space. In fact, if using

a potential like 1/
√
r, this would not happen. The reason is that there is a third conserved

quantity, besides the angular momentum and the energy, the so-called Runge-Lenz vector,

~p× ~L−mγ~r
r
.

While its explicit expression is not particularly helpful, nor the proof for conservation,

it can be shown that such a conserved quantity only exists for very few potentials, so-

called maximally superintegrable potentials, to which (2.20-2.21) belong. The other in

three space dimensions is the harmonic oscillator. Such potentials have the featured that

there exists 2(d − 1) conserved quantities. Note that certain scalar products and vector

products between the Runge-Lenz vector and the angular momentum vanish or yield

the energy, leaving only five conserved quantities. As a consequence, the six degrees of

freedom of position and momentum can be reduced to a single one using the five conserved

quantities. The disturbance due to other planets will reduce the number of conserved

quantities, yielding (slow) changes of the ellipsoids over time.

2.8 Mass distributions and center of mass

2.8.1 General properties

The previously discussed situation with two particles is a special case of having N particles.

It is useful to discuss this situation in some detail, as it appears quite often, e. g. when

looking at the total solar system.

Let each of the particles have its own mass mi. Because of Newton’s third law the force
~Fij with which particle i acts on particle j, e. g. by gravitation, must obey ~Fij = −~Fji.
Of course, a particle does not act on itself, and thus for simplicity ~Fii = ~0. There can be

also external forces on the individual particles ~Fi. For the solar system, this may be the

gravitational pull of the galaxy as a whole.

There are thus dN equations of motion, where d is the number of dimensions6,

mid
2
t~ri = ~Fi +

∑
j

~Fij.

6There may also exist genuine n-body forces, which involve non-separable functions of more than two

coordinates. This only complicates the remainder unnecessarily, but can appear in practice.
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Consider now the sum of all N equations of motion,∑
i

mid
2
t~ri =

∑
~Fi, (2.24)

and thus the internal forces do not appear. Define furthermore

M =
∑
i

mi

~R =
1

M

∑
i

mi~ri

~f =
∑
i

~Fi.

The equation (2.24) then reads

Md2
t
~R = ~f,

which looks just like a single-particle equation of motion. Therefore, the center of mass
~R moves like a single particle having the total mass M only under the influence of the

external forces. It does not matter how involved the internal forces are for this, they do

not appear.

It may also be useful to define analogously a total momentum and angular momentum,

~P =
∑

midt~ri =
∑

~pi

~l =
∑

miεijkridtrj~ek = εijkRiPj~ek +
∑
i

εijk(ri −Ri)(pj − Pj)~ek = ~L+
∑

~li

where ~L is the angular momentum of the center of mass while the ~li are the relative angular

momentum with respect to the center of mass. Furthermore, if all forces are conservative

then in analogy to the single particle a potential energy can be defined, where it useful to

define separately the potential between two particles and of the external forces separately.

Especially, for a two-particle potential it holds that

~Fjk = ~eid∆~riVjk(∆~r)

∆~r = ~rj − ~rk

and thus the forces are obtained by deriving with respect to the connecting vector. This

implies that the potentials are superimposed like the forces, i. e. the total potential acting

on a particle is the sum of all potentials acting on it.
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2.8.2 Two-particle systems

Of particular practical importance is the situation when N = 2, i. e. there are two particles

only. The center-of-mass is then

~R =
m1~r1 +m2~r2

m1 +m2

.

The vector ~r = ~r1 − ~r2 gives the relative distance between both particles. It is now

possible to rewrite the position of the particles in terms of relative coordinates and the

center-of-mass coordinates only,

~r1 = ~R +
m2

M
~r (2.25)

~r2 = ~R− m1

M
~r. (2.26)

The center-of-mass movement is as before determined by the external forces only. The

equation of motion for the relative coordinate is

d2
t~r =

~F1

m1

−
~F2

m2

+
~F12

m1

−
~F21

m2

.

The dependence on the masses suggests to define the so-called reduced mass

µ =
m1m2

m1 +m2

.

In terms of this mass the equation of motion becomes

d2
t~r =

~F1

m1

−
~F2

m2

+
~F12

µ
.

If the external forces vanish, what is called a closed system, the equation of motion for

the relative coordinate no longer references the external system. Furthermore, it can be

shown that also the relative angular momentum takes the form ~l = µ~r × dt~r. Thus, the

equation of motion for the relative coordinate is the same as for a single particle with the

reduced mass.

If one particle is much heavier than the other the reduced mass is essentially identical

to the mass of the lighter particle. Thus, in this formulation the approximation made in

section 2.7.3 becomes more transparent. Since the planet (or satellite) is so much lighter

than the sun (the planet), the reduced mass is essentially that of the planet (the satellite).

Thus, the equation of motion for the relative coordinate is essentially the one in the case

of the fixed heavier particle. However, with the formulation developed here, it is possible,

using equations (2.25-2.26), to determine the actual movement of both bodies, but this
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requires to solve only the one-particle problem. By direct comparison, this is much simpler:

It now only necessary to substitute in all results of section 2.7.3 the mass of the planet

by the reduced mass, and the result is automatically the correct one for the two-body

problem.

Of course, the substitution can be done for either of the bodies. Thus, both bodies

will perform exactly the same type of movement. In particular, for a bounded planetary

motion both celestial bodies will have an orbit around the same point, which is the center

of mass. Superimposed to the orbital motion of both bodies can then be a movement of

the center of mass.

This is also the way how Newton’s third law seems to have no impact on the source

of the force, as announced in section 2.2.4: The reduced mass is so close to the earth’s

mass that setting it equal to the earth’s mass does not create an appreciable error. On the

other hand, the force on the sun is so tiny that its movement is all but negligible. Thus,

while in the closed system Newton’s third law holds, its violation by setting the external

force constant and immutable is a very good approximation. This also justifies to make

this approximation in more involved cases, where the backreaction is known to be small,

but its details too involved to be included, a situation arising quite often in practice.

It is a unfortunate insight that a similar reduction of complexity is not possible if there

is more than two objects involved. The three(and more)-body problem cannot be reduced

to a one-body problem, but a full solution is required. E. g. the movement in the solar

system or of the solar system around the center of the galaxy is such a three, or more,

body problem. However, in these cases it is possible to simplify the problem, see section

2.9.

2.8.3 Scattering

A situation which is of high relevance in many physical application is a closed system such

that the two-body potential (or a force) is short-range. This can happen in either of two

cases. One possibility is that the potential has a sharp cut-off, V (∆~r) θ(|∆~r− ~r0|), where

the value ~r0 belongs to the definition of the potential. The other is that it decays fast

enough. What fast enough means is rather context-dependent, but very often requires at

least an exponential decay at large distances, exp(−|∆~r|/r0), where the scale r0 is once

more characteristic for the potential, but even maybe some kind of power-law dependence

1/|∆~r| is sometimes sufficient.

In such a situation it is possible to define a scattering process in the following way. Start

out with two particles, which are initially so far separated that they are not interacting.
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They are then send towards each other in such a way as their center of mass is at rest7.

They afterwards escape again to infinity, and stop interacting.

No matter how the details of this kind of interaction is, there are a number of conser-

vation laws, which are necessarily fulfilled, if the interactions are conservative, which is

called elastic scattering. Especially, the linear momentum has to be conserved,

~p1 + ~p2 = ~p′1 + ~p′2,

where the primes denote the situation after the scattering. By construction, the initial

relative momentum is zero, ~p1 + ~p2 = ~0. Therefore, the final total momentum must also

be zero. Furthermore, this implies that the direction is arbitrary, and can therefore be

selected at will.

Furthermore the energy is conserved. Since in the beginning there is no potential

energy, it follows that

T =
~p2

1

2m1

+
~p2

2

2m2

=
~p
′2
1

2m1

+
~p
′2
2

2m2

= T ′.

Since ~p1 = −~p2, ~p2
1 = ~p2

2 = ~p
′2
1 = ~p

′2
2 .

These conditions enforce that the incoming and outgoing momenta both lie along

respective lines. Hence, all movement is contained in a plane, and the coordinate system

can be chosen such that all components in the third direction can be chosen to be zero.

Thus, there remain only two components for the final momenta free. One is constrained

by the energy conservation, leaving only one component. This can be traded in for the

relative angle between the incoming and outgoing momentum, θ. Thus, the only freedom

left by the kinematics is the relative angle between one of the incoming and one of the

outgoing momenta. This also implies that, no matter how complicated the potential in the

interaction area, all its consequences are encoded in this one angle, the so-called scattering

angle. This scattering angle may, however, also be influenced by the initial momenta and

the masses.

Dropping this condition of elasticity allows to transmute energy and momentum in the

potential to an energy loss or gain, a so-called inelastic reaction. Though such a situation

can be realized, the system is no longer really closed, as energy and momentum are no

longer conserved quantities. In this case, the energy balance is

T = T ′ +Q,

where the energy transfer to or from the potential Q can be either negative or positive. Still

~p′1 = −~p′2 and the momentum conservation holds trivially in the center-of-mass system.

7This is not necessary but makes the following calculations much simpler.
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The final state of the system is then no longer entirely determined by the scattering angle

θ, but also by Q. Again, both quantities may depend on the properties of the initial state.

While the above describes accurately the situation for the scattering of two particles, it

is often useful to make more statistical statements. Especially, it is very often interesting,

how many particles are scattered into which direction per unit of incoming particles. This

quantity is called the (differential) cross section and is defined as

σ(Ω)dΩ =
Particles going into dΩ

Total incident particles
, (2.27)

where dΩ is the solid angle, in three dimensions e. g. sin θdθdφ in the, for this problem

particularly suited, spherical coordinates. Integrating the differential cross-section on dΩ

yield the total cross section.

As an example, consider the situation of the gravitational potential of section 2.7.3.

Of course, only the non-closed trajectories are interesting, as for the bounded cases no

particles are incident or going away8. It is useful to define the impact parameter b as the

point of closest approach to the center of the potential. It is connected to the angular

momentum by

l = b
√

2mE = mv0b,

where v0 is the speed of the incident particle at infinity. Because of the symmetry of the

problem, the scattering, as it is just one of the non-closed trajectories, is in a plane. Thus,

by suitably choosing the coordinate frame, there will be no dependence on the angle φ,

and the cross section will only depend on the azimuth angle θ.

The number of particles N which are then scattered into an azimuth angle of θ are

uniquely9 determined by the trajectories of section 2.7.3, and thus by their respective

impact parameter. In terms of the impact parameters and the number of incident particles

equation (2.27) now reads

2πNbdb = −2πσN sin θdθ,

where N is the total number of incident particles. This can be rewritten in terms of the

cross section, yielding

σ = − b

sin θ

db

dθ
.

8Gravitational capture requires thus another, dissipative, effect to reduce the energy of a particle

coming from infinity such that it becomes bounded.
9This determinism is lacking in quantum physics, where the actual direction of a single particle is

given by a probability. Detecting such probabilities belong to the fundamental experiments with which

quantum effects have been detected.



Chapter 2. Newtonian mechanics 29

So far, it was not necessary to specify the detailed form of the central potential. Using

the form −α/r for the potential yields

b(θ) =
α

2E
cot

θ

2
,

and thus

σ(θ) =
1

16

(α
E

)2 1

sin4 θ
2

.

This is Rutherford’s scattering cross section. Incidentally, the complete quantum calcula-

tion for this potential leads to the same result, but this is due to the special structure of

the potential, and not true in general.

At first sight, there is one worrisome feature of this result: At small angles, and thus in

forward direction, it diverges. This is an artifact of the approximation that the sun (or the

gravitational center) only produces the gravitational field, but is otherwise not present.

In reality, the particle would collide with the sun, and therefore resolve the structure of

it beyond the existence of the gravitational field, and the approximation of a point-like

gravity origin breaks down. Of course, deviations will appear already at slightly large than

zero angle, because the sun also has a finite extension. Therefore, Rutherford’s formula

should not be used at small scattering angles. However, it provides a good description at

larger angles.

2.8.4 Continuous distribution

So far the situation has been treated that the system is made up of a finite number of

individual particles. However, this can actually be generalized to the case where the

number of particles becomes infinite, and the system becomes a mass distribution, i. e. a

continuous body.

Such a continuous body is characterized by a density ρ(r), a function which determines

the amount of mass per unit volume at every point in space. Of course, outside the body

this density will be zero. The mass concentrated in some fixed volume V is then given by

MV =

∫
V

d3~rρ(r).

Replacing the finite volume by the whole of space provides the total properties of the body.
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The quantities from section 2.8.1 can then be readily generalized to yield

M =

∫
d3~rρ(r)

~R =

∫
d3~r~rρ(r)

~P =

∫
d3~r(dt~r)ρ(r),

yielding the total mass, the center of mass and the total momentum of the body, re-

spectively10. Other quantities are obtained similarly. Most features of continuous mass

distributions are therefore just a straightforward generalization of a system of point par-

ticles.

2.8.5 Moment of inertia

There is one aspect where the generalization to a mass distribution leads to an interesting

new concept.

Consider a body which rotates, but for the sake of simplicity does not translate, around

a fixed axis. Furthermore, the axis should be going through the center of mass of the body.

In this case the angular velocity is constant and given by ~ω = ω~ez, where the coordinate

system has been chosen to be such that the rotation axis coincides with the z-axis.

The speed of rotation at some point ~r inside the body is then given geometrically by

dt~r = εijkωi~rj~ek,

and thus lies entirely in the x-y plane. The total kinetic energy is then given by

T =
1

2

∫
d3~rρ(r)|dt~r|2 =

1

2
Jω2

J =

∫
d3~rρ(~r)

∣∣∣∣εijk ~ωiω ~rj~ek
∣∣∣∣2 , (2.28)

where the quantity J is called the moment of inertia. Note that its definition is also valid

if the z axis is not the rotation axis.

This moment of inertia is a quantity which characterizes the reaction of a body to a

rotation around a given axis. E. g., for a homogeneous cylinder of radius R, height h, and

density ρ0 rotating around its symmetry axis it is

J =

∫
d3~rρ(r)(x2 + y2) = ρ0

R∫
0

dρ

2π∫
0

dφ

h∫
0

dzρ3 = ρ0
2πhR4

4
=

1

2
MR2,

10If the mass distribution would be time-dependent, the last formula needs to be generalized and can

be obtained from dt ~R.
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where in the last step the mass of the cylinder has been used. For comparison, if the

cylinder would rotate around an axis orthogonal through its symmetry axis but going

through its center of mass, the moment of inertia would be

J =
1

4
MR2 +

1

12
Mh2.

Thus, the amount of kinetic energy in the rotation of an extended body is influenced not

only be the mass distribution, but also by the relative alignment of the rotation axis with

respect to the body.

So far, it was assumed that the rotation axis was going through the center of mass. This

will not be the case in general. The consequences of this is described the theorem of Steiner.

In this case, the positions appearing in (2.28) are with respect to the actual rotation axis.

Rewriting this position as ~r = ~R + ~s, where ~R is the (orthogonal) displacement of the

center of mass with respect to the axis of rotation and ~s is the distance to the center of

mass. This yields ∫
d3~sρ(~s)

∣∣∣∣εijk ~ωiω (~R− ~s)j~ek
∣∣∣∣2 = J +

M

ω2
(~ω × ~R)2,

where it has been used that

|(~R− ~s)× ~ω|2 = (~R× ~ω)2 + (~s× ~ω)2 − 2
(

(~R~s)ω2 − (~ω~s)(~R~ω)
)
.

The fourth term vanishes since ~R~ω = 0 by construction. The third term vanishes upon

integration, since by construction this is the position of the center of mass for the center

of mass being at the displacement position - the vector ~s is measured with respect to the

center of mass. I. e. the actual moment of inertia has two components. One describes

the rotation of the body as a whole, and the other component the rotation of the body in

itself. Thus, again, the two movements separate.

2.9 Perturbation theory

Consider again the one-dimensional case. An interesting situation occurs if a potential

V (x) has an extremum at some point x0. According to (2.7), the force then vanishes.

Expand now the potential around this minimum in a Taylor series, yielding11

V (x) ≈ V (x0) + dxV (x)|x=x0(x− x0) + d2
xV (x)|x=x0(x− x0)2 +O

(
(x− x0)3

)
.

11If the potential is non-analytic in x0, things become highly non-trivial. This will not be considered

for now.
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The first term is just a constant and does not influence the force and hence the motion

of the particle. The second term vanishes, since by construction the potential has an

extremum. Thus remains the higher-order terms.

In the next step, the situation is considered if the particle is somehow not at x0, but

rather at some place close to x0. If this is the case, x − x0 is small, and all terms in the

Taylor series becoming increasingly smaller. It is thus possible to consider the particle to

only be slightly perturbed, and the movement can be analyzed in perturbation theory, i.

e. by discussing the effects of the terms in the Taylor series order by order.

To zeroth order, the potential is constant, and therefore the particle remains at the

position x, or moves freely if it has a non-zero initial speed. The next order does not

change it, as the second term in the Taylor series vanishes as discussed before.

In the next order, only the quadratic term contributes. But such a potential is just

the one of the harmonic oscillator in section 2.6. The resulting movement is known and

depends on the sign of d2
xV (x)|x=x0 . If the sign is positive, the motion of the particle to this

order in perturbation theory will be an oscillation around the minimum. Higher orders

in the perturbative series will not alter this behavior qualitatively, if just the initial x is

close enough to x0. Thus in a potential which has a positive second derivative, and thus

a minimum, a particle close to the minimum will perform harmonic oscillations around

the minimum. Placing it at x0 without initial velocity will actually leave it at rest, and

any small movement outside the minimum will only yield a small oscillation. Thus the

equilibrium position x0 is called stable. Especially, if there should appear any damping of

the movement it will be returning to and staying at the equilibrium position eventually.

If the second derivative is actually negative, however, the particle with move exponen-

tially away from the position x0. Such an equilibrium position is therefore called unstable.

The ultimate fate of the particle is then determined by higher orders in perturbation

theory.

There remains the situation if the extremum is actually a saddle point, i. e. the second

derivative vanishes. Then again the higher orders will determine the fate of the particle.

However, any movement will not be exponential, and therefore the development is much

slower. Thus, this situation is called a metastable equilibrium.

Similarly, this implies that a particle which is positioned at the equilibrium position

of a potential will react to any infinitesimal external force in one of three ways. If the

equilibrium is stable, it will oscillate around it or, if damping is present, return to the

equilibrium position. If it is metastable, it will move somewhere, but will eventually be

influenced by higher orders of the perturbative series. If it is unstable, it will move away

from the equilibrium position.
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In this consideration the initial speed has not been an issue. If the speed is so large that

the kinetic energy is of a similar size, or larger, than any given order in the perturbative

series, the movement is no longer fully described by this order, and higher orders have

to be taken into account. If the kinetic energy is small, this will only modify the initial

conditions of the movement of the particle to this order. The reason is that the full

potential has possibly not the infinite rising barrier of the harmonic oscillator, but may

flatten out. Then the kinetic energy is sufficient to escape this potential well (or feel

the distortion away from harmonic), and thus a description to this order of perturbation

theory makes no sense.

These concepts can be equally well applied to the situation with multiple extrema.

When generalizing to more dimensions, a subtlety arises. In this case, an equilibrium

position may have different characteristics in different directions. Then the above said

has to be weighted with the direction of the external displacement or perturbation. If the

potential is stable/metastable/unstable in this direction, the particle will act accordingly,

but may show a different behavior in a different direction.

Besides the possibility to apply perturbation theory for equilibrium positions, pertur-

bation theory can also be used if the potential can be Taylor expanded in a different way.

E. g. for the case of two planets around the sun, the gravitational interaction between the

two planets is small compared to the sun. Thus with the positions ~r1, ~r2 of the two planets

and ~rs of the sun, as well as their respective masses m1, m2, and ms, it is possible to write

the potential for one of the planets as

V1(r) = γ
m1Ms

|~r1 − ~rs|
+O

(
m1

ms

,
m2

ms

)
,

that is, the corrections are small since they are suppressed by powers in mi/ms. Thus, the

dominating part is a two-body problem, and the remainder can be treated in a perturbative

fashion rather accurately. the same is true for the movement of the solar system around

the milky way.

2.10 Galileo group

The concept of an inertial system was of central importance in formulating Newton’s laws

in section 2.2. It is worthwhile to reinvestigating this concept a little more.

The basic starting point is to require that there are coordinate systems in which New-

ton’s first law is valid. Especially, assume that there is one coordinate system in which

there are no forces acting on a particle, and it therefore moves with constant speed. If

this is the case, then it is possible to define coordinate systems, which are not inertial
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systems, by having them being accelerated with comparison to the first. There are also

other inertial systems, e. g. some which move at constant speed with respect to the first

one. In those, also the particle moves at fixed speed.

To systematize this, it is useful to work in the language of linear algebra. Two coor-

dinate systems shall have coordinates ~r and ~R. What will be assumed is that the time in

both frames, t and T , transforms into each other trivially

t = T. (2.29)

Thus also the time differentials are the same, dt = dT . It is this part, which will be lifted

when introducing special relativity in chapter 6.

Start with two inertial systems. Then if for a particle of mass m md2
t~r = 0 is valid,

then so must be mdt ~R = 0. From this follows that, up to a rotation, the most general

possibility of transformations between two inertial systems is

~r(t) = ~v0t+ ~r0 + ~R(t),

parametrized by the two vectors ~v0 and ~r0. This is called a Galileo transformation. Note

that the forces on a particle are due to (2.2) then identical in all inertial systems, and all

coordinate system reachable by Galileo transformations. However, the explicit form may

differ, especially if friction is involved.

If two consecutive Galileo transformation are performed, they are equivalent to a single

Galileo transformation with

~v0 = ~v1
0 + ~v2

0 (2.30)

~r0 = ~r1
0 + ~r2

0. (2.31)

and (2.29). Galileo transformations therefore form an (Abelian) group, the so-called

Galileo group.

This group can also be extended by including time-independent rotations and reflec-

tions. In this case no longer an equality of the forces is true, but the force are still equal

up to rotations and reflections.

2.11 Pseudo forces

And interesting situation arises when the condition of inertial systems is relaxed. Allowing

for a time-dependent rotation Λ(t) and an acceleration r0(t) yields that the force observed

in the other coordinate system is given by

~F (t) = m
(

Λ(t)d2
t
~R(t) + d2

t~r0(t) + 2(dtΛ(t))dt ~R + (d2
tΛ(t))~R

)
. (2.32)
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The first term is the force in the original coordinate system, up to a (time-dependent)

rotation, and therefore the same as with transformations between inertial frames. The

three other terms are different.

The second term corresponds to an acceleration of the whole coordinate frame without

rotations. It is therefore a relative acceleration. As a consequence, the particle experiences

an additional force due to this acceleration. Since this force has no physical origin but

emerges just from a an accelerated coordinate system it is not a true force. It is therefore

called a pseudo force. Nonetheless, it must be included when describing the movement

of the particle inside an accelerated coordinate system. Sometimes these are also called

inertial forces.

The other two terms come from a time-dependent rotation of the coordinate systems

with respect to each other. They also create pseudo forces. The first term is called the

Coriolis force and the second one the centrifugal force. These appear, e. g., when a particle

is moving on the surface of a rotating body like the Earth. Though small in this case,

they can be measured.

The origin of these forces can also be understood differently. When considering a force-

free particle, it will move along a straight line in its inertial system. In an accelerated frame,

this path is no longer of constant speed, and may be bend. To describe the effect, this can

either be done by the coordinate transformation, or by the forces necessary to modify the

path of the particle, which is essentially given by (2.32).



Chapter 3

Lagrangian mechanics

In the previous chapter the basic concepts of mechanics have been formulated. All of the

basic physical mechanisms have been collected. The only thing in which other problems

of mechanics would differ is by other versions of the forces or, if existing, potentials. All

the conceptual ideas are there.

The following chapters do not aim at any more elaborate problems with more compli-

cated potentials and/or systems. Rather, this and the next chapter 4 aim at a reformu-

lation of mechanics. While this provides at first sight no new physical systems, this will

emphasize concepts which act on a more fundamental level. Furthermore, these two chap-

ters provide the basis for the generalization of mechanics to quantum mechanics. Finally,

in more complicated situations the methods to be discussed in the following turn out to

be superior to the ones introduced so far.

The downside of this is that the motivation for many of the ideas in the following is not

at all obvious at first. In fact, without dealing either with much more complex problems or

with quantum physics most of the following will be rather experienced as a complication

rather than a simplification. However, would one introduce the following with suitable

complicated problems, the sheer complexity of the problems would overlay everything,

and therefore the formalism would become obscure. It is therefore a precarious problem

to exhibit the reason behind this formalism.

3.1 Constraints

The first basic insight is the realization that most particle movements are not as simply

described as before.

Consider, e. g., a particle moving through a winding tube under the influence of gravity.

The particle cannot move in all directions equally, but is confined to a one-dimensional

36
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path through the tube. To have such a path requires that the walls of the tube acts with

a force on the particle, on top of the gravitational force. Otherwise the particle would

fall through the tube walls, following the pull of gravity. To describe this using Newton’s

equation (2.2) would require to know the particularities of these forces, which are so-

called constraining forces. In general these constraining forces are essentially impossible

to determine, which appears to make the solution of the problem using the techniques of

chapter 2 essentially impossible.

The necessary insight to deal with this problem is that it is actually not necessary to

really know these forces in detail, since the consequences of them are known: The particle

remains in the tube. The consequence of that is that the three coordinates, x, y, and

z, are no longer independent. Since the particle moves along the tube, there is only one

way to go (either forward or backward). So, effectively its movement is reduced to one

dimension. Hence two of the coordinates are actually functions of the third, e. g. x(z) and

y(z).

Of course, the choice of z was arbitrary. Therefore, it is better to formulate the

conditions more generally as a so-called set of N constraints

fi(~r) = 0

where the index i runs over the number of restrictions, in the above example it would be

from one to two. That the right-hand side is zero can always be achieved by a subtraction,

if need be.

A simpler example would be the movement of a particle which is required to move on

a circle with radius R. In this case, there would be two constraints,

f1(~r) = z = 0

f2(~r) = ~r2 −R2 = 0.

The first constraint requires the particle to move in the plane of the circle. The second

constraint then further enforces it to move along the circle. This also shows that the

constraints are not unique. E. g., f2 = |~r|−R would equally well be possible. The number

of independent constraints is, however, unique.

Such constraints actually eliminate redundant information. In the previous example,

the two additional coordinates did not carry any information relevant to the movement of

the particle: These information could be completely reconstructed using the one remaining

coordinates as well as the constraints. In fact, the final aim will be to find a transforma-

tion, constructed in section 4.8, such that the problem becomes trivial. All non-trivial

information will then be contained in the transformation.
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Before embarking on this process, there are a few more words to be said about the

type of constraints. One is that this is not restricted to single particles, and thus many

constraints, involving the properties of many particles, can appear. Also, constraints can

include explicitly the time. E. g., a particle which moves in an elevator, which itself moves

along the z-direction with constant speed v would have the constraint

z − z0 − v(t− t0) = 0. (3.1)

Also, constraints can involve other quantities, especially speeds or acceleration, or inequal-

ities. In such a case the constraints do not reduce the number of degrees of freedom. All of

these cases are relevant in practice, but make the treatment substantially more involved.

3.2 Generalized coordinates

Once the set of constraints are known, it is appears reasonable to indeed make the trans-

formation from the ordinary position space to a new space. This space is known as the

configuration space. It is a, as noted above, dn−N -dimensional space. The dn−N coordi-

nates of this space are called generalized coordinates. Note that the number of generalized

coordinates does not correlate with the number of involved particles, which would be the

case for ordinary coordinates.

To qualify as a generalized coordinate two conditions must be met. The first condition

is the, somewhat redundant, statement that all coordinates are independent in the sense

that no constraints involving them exists. Especially all coordinates can range over the

full domain of definition. However, they do not need to be a usual coordinate in the

sense that they vary from −∞ to +∞. In the above example of a particle moving on

a circle a choice for the generalized coordinate is the angle along the circle, and would

thus only vary between 0 and 2π. The second condition is that there is a unique relation

between the generalized coordinates and the original coordinates: It must be possible to

reconstruct the position of the particles in position space from the configuration space at

every instance of time unambiguously.

This said, the generalized coordinates are not necessarily unique, just their number.

E. g. in the case of the circle it would be equally valid to choose the double angle or half

the angle. Furthermore, as this case already indicates, the generalized coordinates are not

necessarily coordinates in the usual sense. In case of the angle, a quantity measured in

meters has been transformed into an angle. Much more different coordinates will be found

later. E. g. a generalized coordinate may equally well be a speed or acceleration, or even

the time. As long as it is an unconstrained and unambiguous description of the system, it

is useful.
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Of course, once such generalized coordinates have been defined, it is possible to derive

them with respect to the time, yielding generalized speeds. After a second derivative the

generalized accelerations are created.

Since the generalized coordinates uniquely determine all ordinary coordinates, the sys-

tem is completely described by them. Thus, when rewriting the equations of motions in

terms of the generalized coordinates, thereby eliminating a number of them as they are

trivially satisfied by the constraints and having only dn − N in the end, the behavior of

this system is then fully described by these new equations of motions. These will be in

general again second-order differential equations, requiring therefore 2(dn−N) initial con-

ditions, e. g. the values of the generalized coordinates and speeds at some time t0. Then,

the behavior of the system is uniquely characterized by the so-obtained trajectory in the

configuration space.

As an example for generalized coordinates take the movement of a particle on the

surface of the earth, approximated by a sphere. Then there is one constraint

~r2 −R2 = 0

and thus there are two generalized coordinates. A useful choice are the angles θ an φ

which are defined as

θ = cos−1 z

R

φ = tan−1 y

x

and from which the original coordinates can be reconstructed as

x = R sin θ cosφ

y = R sin θ cosφ

z = R cos θ

This result also emphasizes an important statement. While for every set of values of the

generalized coordinates θ and φ there is a unique set of ordinary coordinates x, y, and z,

the reverse is not true. At the poles the map to the configuration space is not unique.

However, the trajectory both in position and configuration space remains unambiguous.

It is an interesting observation that a non-trivial trajectory in configuration space in

this case, (φ, θ) = (t, 0) translates to a trivial one in position space (0, 0, R), though the

translation is unique. This emphasizes that the usual intuition of position space may not

be easily translated to configuration space, and vice versa.

Though not at first obvious, the process of introducing generalized coordinates can

also be useful even if there are no constraints. This is, e. g., the case if the generalized
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coordinates are better suited for a particular problem if they are adapted to the symmetry

of a problem.

3.3 The principle of d’Alembert

The aim is now to find the equations of motions for the generalized coordinates without

knowing the constraining forces explicitly. To do so, it is useful to introduce the concept

of virtual movement. This is best done by first refining the definition of a real movement.

A real movement is what happens to a particle when it moves along its trajectory. If

time proceeds by an infinitesimal amount dt, the coordinates r, generalized or otherwise,

change by an amount dr = (dr/dt)dt. The precise value of dr is determined by the

equations of motion.

In contrast, a virtual displacement δr is defined to be an instantaneous change of

the coordinates, i. e. δt = 0. The virtual displacement have to be compatible with the

constraints. The symbol δ is used instead of d to distinguish both cases. Such a virtual

displacement is also called a variation. Such variations are also taken to be infinitesimal for

now. Especially, these variations are not associated with a speed, and are not constrained

by the equations of motion.

Now, any force ~F has two components, ~F = ~K+ ~Z. The force ~Z is here the constraining

force, i. e. the force which acts such that the constraints are fulfilled. The force ~K are

all other forces. In the example of the particle in a tube under the influence of gravity in

section 3.1, ~K is the gravitational force and ~Z are the forces exerted by the walls of the

tube on the particle. If both forces are known, the standard procedure could be performed.

Now comes the basic step. This will be turned around, and a new basic postulate will

be made. This, and further steps, will replace in the end Newton’s laws, and they will

ultimately be derived from them backwards. This will take some time.

The first new postulate is that the constraining forces do no net work. Of course, they

can do work on a part of the system, i. e. a subset of the particles. But the total work done

by them is zero. Though this postulate cannot be derived, it makes sense in an intuitive

ways: If one displaces a particle in a way where it does not violate the constraints, no

force has to act, and thus no work to be done, to maintain the constraints.

As an example, consider a particle which moves along some arbitrary curve and which

is forced on the curve by constraining forces. Any displacement along the curve will then

not require any work by the constraining forces. This appears again obvious, as the forces

to keep the particle on the curve need to act transversely to the curve only, since any move

along the curves coincides with the constraints.
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An equivalent formulation of is the so-called principle of d’Alembert. It states that the

effect of the non-constraining forces will create true acceleration of a particle, if they act

in a direction which is compatible with the constraints. The formulation of d’Alembert

embodies already one of the central goals of the current chapter: It no longer references

the constraining forces, while it still a principle, which can be solved. In fact, it is already

useful for sufficiently simple problems, but it is hard to generalize to more complex one.

Therefore, it is only an intermediate stage.

3.4 Euler-Lagrange formulation of the second kind

3.4.1 Reformulating d’Alembert’s principle

To make progress to a more convenient formulation, it is helpful to recognize the limitations

of d’Alembert’s principle: The virtual displacements are not independent, but restricted by

the constraints. To make it more useful, the next step is to eliminate also the constraints by

switching to generalized coordinates. In the following, this will be done concentrating on

situations with the simplest kind of constraints, and without dissipation. The other cases

can be captured by the Euler-Lagrange formulation of the first kind, which is, however,

much more involved, though often relevant in practical problems. Conceptually, it turns

out that all fundamental forces known so far are captured in the following formulation,

and any deviation from it are effective consequences surfacing at the level of multi-particle

systems.

After an involved set of transformations, this ultimately leads to a dynamical equation

for the generalized coordinates qi and speeds dtqi, the virtual displacements δqi, and the

kinetic and potential energy of a system, reading

∑
j

(
dt

∂

∂dtqj
(T − V )− ∂

∂qj
(T − V )

)
δqj = 0,

The quantity

L = T − V

is called the Lagrange function. The Lagrange function is the central quantity for bringing

together special relativity (and possible general relativity) and quantum physics. For

classical, non-relativistic (quantum) mechanics it will only play a role as an intermediate

step to Hamiltonian mechanics in chapter 4. Nonetheless, its central importance for any

modern formulation of the fundamental laws of nature cannot be overrated.
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Using the Lagrange function, d’Alembert’s principle for conservative systems takes the

form ∑
j

(
dt

∂

∂dtqj
L− ∂

∂qj
L

)
δqj = 0, (3.2)

and therefore only involves the Lagrange function and the generalized coordinates. It is

worthwhile to emphasize that, since the kinetic energy can depend explicitly on the time,

so can the Lagrange function, even though the potential energy does not.

If the system is conservative, each virtual displacement δqi in (3.2) can be shown to be

independent. Thus, all terms in the sum have to vanish independently, yielding dn − N
equations of motion

dt
∂L

∂dtqj
− ∂L

∂qj
= 0, (3.3)

the so-called Lagrange equations of the second kind, or sometimes also Euler-Lagrange

equations (of motion). Again, these equations require 2(dn − N) initial conditions to

solve.

Lagrange’s equation of the second kind is what had been sought for, as they do no

longer contain the constraints nor the constraining forces. However, they are not yet

the simplest form to solve problems in mechanics and, as noted, not the best choice to

generalize to non-relativistic quantum mechanics. Since relativistic quantum physics is for

many actual problems, e. g. in solid state physics, serious overkill and far too complicated,

it is very useful to find also a better formulation to generalize to non-relativistic quantum

mechanics. This is the aim of the remainder of this and of the next chapter, though this

may at intermediate steps again only be obvious with hindsight.

3.4.2 Equivalence to Newton’s law

To see that the formulation is equivalent to Newton’s law (2.2), consider a conservative

system of a single particle without constraints. The general case can also be done, but

is somewhat more involved. In this case, there is a potential V (~r). The Euler-Lagrange

equations are then

L =
m

2
(dt~r)

2 − V (~r)

dt
∂L

dtri
− ∂L

∂ri
= mdt(dtri) +

∂V

∂ri
= md2

t ri − Fi = 0.

The three Euler-Lagrange equations are therefore exactly Newton’s second law (2.2) in

component form. Since Newton’s first and third law are special cases of the second law

- the action-reaction relations appear in the n-body version - they are satisfied as well.
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Only the mathematical framework postulated around Newton’s laws in section 2.2 has to

be furthermore carried over as well. But since they are related to the arena of mechanics

rather than to the dynamics, this was to be expected.

3.5 Invariances of Lagrange’s equation of the second

kind

Newton’s law (2.2) was written in terms of vectors. It therefore had the same form in any

coordinate system, and specifying the actual coordinate system is only necessary if it is

needed to evaluate it component-wise. Lagrange’s equation of the second kind (3.3) are

not given as vectorial equations. Since furthermore the choice of generalized coordinates is

not unique, it is an important question whether when changing from one set of generalized

coordinates to another the equations change form, which would seriously impede their

usefulness. While quite technical to demonstrate, this holds true.

There is another invariance of the Euler-Lagrange equations, which is very useful.

Choose some Lagrange function and an arbitrary (twice differentiable) function f(qi, t)

depending only on the generalized coordinates and the time. Then it can be shown that

the Lagrange function

Lf = L+ dtf, (3.4)

has the same Euler-Lagrange equations. These significance of this will be seen later in

section 4.1. Such an addition of a total time derivative is sometimes called a (mechanical)

gauge transformation, but this terminology will not be used here, as the more general idea

of gauge theories will supersede it in classical field theory and quantum field theory.

3.6 Generalized momenta and cyclic coordinates

To continue, it is helpful to introduce a new concept, the so-called generalized momenta.

They are defined as

pi =
∂L

∂dtqi
. (3.5)

Even for a particle, the generalized momenta will in general not coincide with mdtqi,

though they may. The importance of these generalized momenta is that if the Lagrange

function does not depend on a given generalized coordinate then the corresponding pi must

be constant. Thus the quantity pi is conserved. Such conserved quantities, sometimes also

called integrals of motion, are technically very useful. They are also deeply connected to
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symmetries, as will be explored later. Is this the case the corresponding coordinate qi is

called cyclic.

3.7 Conservation laws

In section 3.6 conserved quantities, so-called integrals of motions, have been obtained

from cyclic coordinates. While cyclic coordinates always yield a conserved quantity, the

converse is not true, and there may be (many) more conserved quantities than there

are cyclic coordinates in the Lagrange function. This already follows from the fact that

generalized coordinates are not unique, and a coordinate may be cyclic for one choice, but

not for another. Thus, a good choice of generalized coordinates can simplify the problem

tremendously. However, finding them is not always simple. Here, some general rules will

be described which allow to construct many conserved quantities, while a much more

sophisticated approach will be discussed in section 4.8.

3.7.1 Energy conservation

Assume that the Lagrange function does not depend explicitly on the time. Then it can

be shown that the so-called Hamilton function, defined as

H = pidtqi − L, (3.6)

is a conserved quantity. This function will reappear also in chapter 4.

At first sight, this is a rather abstract conserved quantity. However, for a conservative

system and if the generalized kinetic energy has the property

T (adtqi) = a2T (dtqi)

it is possible to give H a very particular meaning. In this case

H = T + V,

the Hamilton function is just the total energy.

Thus, for such systems, which are by far the most numerous ones and the only ones

relevant in fundamental physics, the total energy is conserved if the Lagrange function

does not depend explicitly on time. The absence of explicit time-dependence can also be

interpreted in a different way. Any transformation t→ t+ ∆t will leave in this case both

the Lagrange function and the Euler-Lagrange equations unchanged. Thus, the system is

homogeneous (or isotropic) in time, as defining any time as t = 0 for the initial conditions

is equally good, and there is no distinct time. This also explains that fundamental physics

is usually of this type: To the best of our knowledge time has no absolute frame.
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3.7.2 Momentum conservation

As may be expected, a very similar argument as in the previous section also holds if the

space is homogeneous. Homogeneity in space means that everything depends only on

relative distances. An example is the central force problem of section 2.7.3: The potential

depended only on the relative distance of two particles, ~r1 − ~r2, rather on their absolute

positions. Therefore any shift of the coordinate system ~ri → ~ri + ∆~r would not have

changed anything.

Corresponding generalized coordinates would therefore be relative coordinates. They

are not affected by such changes. The center-of-mass coordinate, which is affected, would

therefore be cyclic, just as with the time discussed in case of the homogeneity of time.

Thus the corresponding generalized momenta, which is just the center-of-mass momentum,

will be conserved.

This is therefore a particular case of section 3.6. The same statement could therefore

be read that if a system is translationally invariant, i. e. the absolute position does not

matter, in a generalized coordinate, its associated generalized momentum is conserved.

3.7.3 Angular momentum conservation

A system is called isotropic in space if it does not change under a rotation. Therefore,

the corresponding angular variable will again be cyclic, as the system does not depend on

it. If the system is isotropic for all possible rotation axises, the total angular momentum

is conserved. As before, the vanishing of the corresponding generalized force implies that

the component of the total torque along the rotation axis vanishes.

3.7.4 Noether’s theorem

The previous observations can be generalized in the form of Noether’s theorem. It is

one of the central reasons why symmetries are so important in physics. It shows that

for a conservative system any continuous symmetry, i. e. a symmetry where a generalized

coordinate is changed by a continuous quantity, entails the existence of a conservation law.

The previous cases were special examples of this, as they amounted to a continuous shift

in time, space, and rotation.

Such conserved quantities are of central importance for both theoretical and practical

reasons. Practical, because exploiting conservation laws is very helpful in solving problems.

Theoretical, conserved quantities define the properties of a system.

Essentially, Noether’s theorem boils down to the fact that if the Lagrange function is

invariant under a variation of a generalized coordinate, the variation can be used to derive a
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conserved quantity. In this way, conserved quantities are linked to invariances of a system.

Such an invariance is also called a symmetry, as the system looks the same, whether

using the coordinates or transformed coordinates. This is a very fundamental insight that

symmetries are connected to conservation laws, and will be encountered throughout all of

physics.
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Hamiltonian mechanics

So far, the formulation of mechanics has been by use of differential equations, especially

Lagrange’s equation. Though this approach is extremely useful in mechanics, and also

of great practical importance, it is not yet the best formulation to extend it to (non-

relativistic) quantum physics. The main reason for this is that quantum physics, especially

in combination with special relativity, introduces correlations which are not local, i. e. not

describable by differential equations, but also requires non-local aspects, i. e. integrals.

Though for classical mechanics both a differential and an integral formulation yield the

same result, it is helpful to perform the corresponding conceptual formation already in the

otherwise much simpler classical mechanics. It will also help eventually to demonstrate

that for many cases it is always possible to find generalized coordinates such that the

system becomes that of almost trivial mechanical systems in section 4.8.

Unless otherwise noticed, most of the following will apply to the most relevant case of

conservative systems.

4.1 Hamilton’s principle

4.1.1 Integral formulation

The basic entities to formulate the following are constructed from the configuration space,

i. e. the dn−N -dimensional space of the independent, generalized coordinates. Any curve

inside this space parametrized by a parameter t, no matter whether it is a solution to the

equation of motion, is a trajectory describing the movement of the particles of the system.

Consider the solutions of the equations of motion, which are solutions to differential

equations which are of second order in time1, and therefore require 2(dn − N) initial

1Note that this may appear different when, e. g., a speed becomes a generalized coordinates, but this is
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conditions. Though in practice it may be awkward, it is always possible to select two times

t1 and t2 and specify the initial conditions by the values of all generalized coordinates at

these two times, qi(t1) and qi(t2).

Then it is possible to select among all possible trajectories in the configuration space

those which are (twice) differentiable in time and satisfy the initial conditions of the

problem at hand. In addition, it will be required that these trajectories must be reachable

from a trajectory fulfilling the equations of motions, the so-called physical trajectories,

by successive virtual displacements, i. e. the trajectories are dense around the physical

trajectories inside the configuration space. However, once this definition is made, any

other trajectories inside the set can equally well be used to define it2.

This subset of configurations will be calledM. All such trajectories share a number of

characteristics, by construction. First of all, they spend trivially the same time between

start and end points at t1 and t2. Secondly, all virtual displacements at the initial and

final time have to vanish, i. e. δqi(t1) = δqi(t2) = 0, as otherwise the constraints (in form

of the initial conditions) would be violated.

It is now possible to evaluate the Lagrange function on any element of q(t) ∈ M,

yielding a function only of time

L(qi(t), dtqi(t), t) = L(t),

and it is formally possible to integrate this function over time to yield a number

S[q] =

t2∫
t1

dtL(t), (4.1)

which is called the action. This number depends on the choice q(t), i. e. which trajectory

is chosen. It therefore maps a function, or more precisely functions, to the real numbers.

This is different from functions, which map values of variables to the real numbers. Such

an object has therefore a different name, and is called a functional.

After these preparations, it is possible to postulate the principle of Hamilton. There

are actually two different ways to postulate it. Again, it can be shown that both yield the

same results as the Euler-Lagrange equations in classical mechanics.

deceiving. At any rate, there can be no more independent initial conditions than those for all independent

coordinates and speeds in the formulation using Newton’s law (2.2).
2The reason for talking about physical trajectories instead of a single trajectory is to include also cases

in which there are two equivalent trajectories, e. g. for moving in both possible directions from one point

of the circle to the opposite point. These trajectories are not deformable into each other. Such a situation

occurs if there are, like with the circle, holes in a generalized sense. This unusual, but by no means

irrelevant, situation will be noted if occurring. Otherwise in the following only a single physical trajectory

will be relevant.
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The first version is that the physical trajectory is the one trajectory in M, which

extremalizes the action. It seems to be odd to define the solution using a manifold which

was defined using the solution. However, it will turn out that it is in general much simpler

to specifyM even without knowing the actual physical trajectory than to solve the system.

This postulate already emphasizes the non-local nature of Hamilton’s principle. To know

the solution requires not only to know the possible trajectories at all times, but the whole

set M. This is very different from the Euler-Lagrange equations or Newton’s law, which

only needed to know about the function and its derivatives at one point to build the

solution. That this is still the more powerful formulation is hence far from obvious.

One advantage is, however, visible: The action does not depend on the coordinate

system in configuration space, since it is entirely formulated on paths. It is therefore a

coordinate-independent classical mechanics, therefore eliminating the human-made coor-

dinate systems.

4.1.2 Variational formulation

The alternative formulation uses again the concept of virtual displacements. It requires

that the physical path is the one where the change of S under virtual displacements of the

path in configuration space, q → q + δq, vanishes, expressed as

δS = 0.

While this seems to be a very compact notation, it is mathematically far from obvious

what it means: How is the variation of a functional calculated? Understanding this is the

first part of functional calculus, which is a wide field, which plays an important role in

classical as well as quantum field theory. Here, these details will be skipped.

Of course, it is not yet obvious that this formulation is equivalent to the integral

version, but also this can be shown. This will amount to the statement that an extremal

trajectory has zero variation of the action, which is, not accidentally, reminiscent of the

way how extrema of functions are found.

In fact, though technical, in can be shown that if a trajectory satisfies Lagrange’s

equation then it extremalizes the action. Thus, in a sense, Lagrange’s equations are to the

action what the derivative is to an ordinary function.

However, this makes no statement yet about whether the extremum is a maximum,

minimum, or saddle point. As with ordinary functions, this can be calculated. Also, there

may be more than one extrema or turning point in general. However, for physics any case

will do. In practice, most mechanical problems lead to minima of the action, some to a

maximum. Saddlepoints play almost never a role.
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4.2 Phase space and state space

Though the concept of trajectories was extremely useful in reformulating mechanics in a

more compact way, it has one essential drawback: It requires to know not only the initial

state of a system, but also the final state of a system. Though from a mathematical point

of view there is no difference between this requirement and the requirement of knowing

position and speed at the initial time, in practice this is often quite different. There, it is

usually only known how the system starts, and the question is how it will develop with

time. This is especially true when it comes to problems which can no longer be solved in

a closed, analytic form. And this is true for almost all systems of interest.

It is therefore useful to reformulate Hamilton’s principle as an initial value problem.

At first sight, it may seem natural to use the generalized coordinates and speeds for

this. But, in fact, it is much more useful to rather use the generalized coordinates and

momenta, the latter as defined in (3.5). The reason is that cyclic coordinates imply

conserved generalized momenta. Formulating the problem thus in these two quantities

will make the whole problem trivial for these directions. Thus, they are advantageous, as

no such simple relation exists for the generalized speeds.

Thus, the aim in the following is to reformulate the system in terms of the generalized

coordinates and speeds. There are again 2(dn − N) of these, thus forming again a space

of the same dimensionality. To separate this space from the configuration space before, it

is called the phase space.

It is quite useful to reiterate the various concepts of spaces encountered so far.

The basic space is the coordinate space, which has dn coordinates, where d is the

number of coordinates and n is the number of involved particles. This can be upgraded to

space-time with dn+ 1 dimensions by adding time. This is true for the effective low-speed

system of classical mechanics but for the special relativity version, which both differ by

the metric, being either Euclidean or Minkowski, requires an individual time for every

particle. However, the time plays a different role than the other coordinates in classical

mechanics: Here it parametrizes the trajectories of particle in configuration space. In the

relativistic case, this role is played rather by the eigentime.

By introducing generalized coordinates using N constraints, the number of coordinates

is reduced to S = dn−N . This is the configuration space. The paths of all particles are

uniquely described by trajectories in this space. If time is included to characterize the

progression along the trajectories, this becomes the S + 1-dimensional event space: Every

event is localized at one point in this space.

However, both in ordinary space-time as well as in event space it is not sufficient to

specify a point to specify a system completely. Even in event space, trajectories may
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cross. Only by adding generalized speeds the trajectory of a given particle is uniquely

determined3.

This problem is resolved by the introduction of phase space. By doubling the degrees

of freedom by adding the generalized momenta, a 2S-dimensional space is obtained. Tra-

jectories do no longer cross. The position along the trajectories can be parametrized by

the time. Thus, the position and future movements of any particle of a system is uniquely

defined when a position in this space is given. It thus fully describes the state of a sys-

tem. Conversely, a state is called the minimal collection of information necessary to fully

describe a system. Thus, this 2S+ 1-dimensional space is called the state space4. Though

the state space has been used to define what a state is in the sense of classical mechanics,

any other minimal way is equally good. Also, this concept can be extended to any physical

system. E. g., in thermodynamics quantities like temperature and pressure may be part

of the minimal information defining a state.

Returning to classical mechanics, this conversely implies that measuring all the minimal

information, i. e. determining the point in state space at which a system is located, gives

all information about a classical mechanics system5. Since a single point is sufficient to

fully describe a state this implies that a first-order set of 2S differential equations in time

should exist which describes the evolution of a state. This will be done in the following,

leading ultimately to Hamilton’s equations in section 4.3. Lagrange’s equation are not yet

of this type, as they are second order in time.

4.3 Hamilton’s equations

This is not entirely straightforward. Since the generalized momenta are known as function

of the generalized coordinates and speeds, it is possible to invert the various relations to

3That this is sufficient is because Newton’s law (2.2), which ultimately underlies any classical mechanics

problem, is a differential equation of second order in time. There exists a general mathematical theorem

which guarantees that no more initial conditions are needed to uniquely identify a trajectory. If Newton’s

law would be a third-order differential equation, this would no longer be true, and three initial conditions

would be required, and so on. The fact that Newton’s law is of second order is nothing which can be

derived, but, as noted in section 2.2, is a postulate, derived from observations. Note, however, that there

are rare multi-particle systems which are described by higher-order differential equations. However, in

these cases this is also only an effective rewriting of initial conditions of multiple particles in the form of

a single effective particle.
4Consequently, if Newton’s law would be rather of mth-order in time, a state space which gives uniquely

defined trajectories would be of mS + 1 dimensions.
5This is the reason why classical mechanics is a deterministic theory. This will no longer be possible

in quantum physics.
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obtain, say, the Lagrange function as a function of the new quantities. But, this problem

can be put into a larger context and a general recipe for this type of transformations can be

given. In addition to making the procedure more simple for mechanics, the same approach

can be used for a wide range of problems, and will play, e. g. again an important role in

thermodynamics. This procedure is called Legendre transformation. A proof of how it

works will be skipped here.

As Lagrange’s function is still the basic dynamical quantity, the first step is to apply

the Legendre transformation to it. Using the generalized momenta

pi =
∂L

∂dtqi

yields

H(qi, pi, t) = pidtqi(qj, pj)− L(qi, dtqi(qj, pj), t).

However, this function is already known. It is Hamilton’s function (3.6), which coincides

under certain conditions, homogeneous kinetic energy of order 2 and a conservative system,

with the total energy H = T + V . Though, at that time the generalized momenta was

considered as a function of the generalized coordinates and speeds. It will be the Hamilton

function which will take over the role of the central quantity from the Lagrange function

for most of the rest of these notes6.

After transforming the Lagrange function, the next interesting question is how this

affects the equations of motion, especially, what the equivalent reformulation of the Euler-

Lagrange equations in phase space are. After suitable mathematical transformations these

are found to be Hamilton’s equations

dtqi =
∂H

∂pi
(4.2)

dtpi = −∂H
∂qi

(4.3)

−∂L
∂t

=
∂H

∂t
, (4.4)

which are the new equations of motion determining the dynamics as the Euler-Lagrange

equations did before. They are also called canonical equations. The last equation is

actually not a real equation of motion, but rather a consistency condition, as it is not an

equation involving a separate variable. The equations (4.2-4.3) are first order in time, and

are therefore describing the evolution of a state in state space with knowledge of a single

point, as was aimed at in section 4.2.

6As discussed previously, this is different in relativistic systems.
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The most remarkable result is that Hamilton’s equations are now first-order differential

equations, rather than the second-order differential equations of Lagrange. In practice,

first-order equations are usually easier to solve, and therefore Hamilton’s equations are

technically a step forward. The disadvantage is that the number of equations of motion to

be solved has doubled, but in practice this is still better7. The result when solving these

equations is then no longer a trajectory in configuration space, but rather a trajectory in

phase space.

Though in general the Hamilton function is the Legendre transform of the Lagrange

function, under certain conditions discussed in section 3.7.1, it is just the total energy of

the system, H = T + V . This rather simple relation to the Lagrange function L = T − V
comes about as this is true if the kinetic energy is at most quadratic in the speeds. Then

the first term in the Legendre transformation taking care of the differential properties is

2T , and therefore H = 2T − T + V = T + V is the total energy. Though this is the most

relevant case, this is by far not always the case.

Similar as there, it can be shown that

dtH = ∂tH.

This implies that if the Hamilton function is not explicitly depending on time, ∂tH = 0,

it is a conserved quantity, and actually constant as a function of time. Thus, the time-

dependencies of the qi and pi have to cancel each other inside the Hamilton function in

this case. If the Hamilton function coincides with the energy, the energy is in this case

conserved.

Furthermore, because of (4.3) any cyclic coordinate in the Lagrange function is neces-

sarily also cyclic in the Hamilton function. In case of a cyclic coordinate this also implies

that one of Hamilton’s equations of motion is solved trivially. The actual value of the

corresponding generalized coordinate is then determined by the initial conditions. This is

quite different from the Lagrange case, as the Lagrange function depends on the general-

ized speeds rather than the generalized momenta, and therefore the existence of a cyclic

coordinate does not immediately solve any of the equations of motion. This is again a

practical advantage of the Hamilton formalism over the Lagrange formalism.

The disadvantage, stated without proof here, of the Hamilton formalism is that it is

more complicated in the relativistic case.

Note that (4.2) implies that if a generalized momentum is cyclic, then the corresponding

7Note that ordinary differential equations of second order can always be rewritten as a set of twice as

much first-order differential equations. This is not necessarily so for partial differential equations as the

equations of motion are. The result is therefore not trivial on mathematical grounds.
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coordinate is constant as well. This case is, however, much rarer then that of a cyclic

coordinate.

It is quite useful to study the procedure from the original system up to Hamilton’s

equations and the solution of Hamilton’s equations for an example. To facilitate the

comparison to previous results, this will be the harmonic oscillator, though Hamilton’s

formalism is overkill for it.

In this case, there is a single generalized coordinate q = x describing the position of

the oscillator. The kinetic and potential energy of this conservative system is

T =
m

2
(dtq)

2

V =
k

2
q2.

This yields the Lagrange function

L = T − V =
m

2
(dtq)

2 − k

2
q2,

in which no coordinate is cyclic. However, it does not depend explicitly on the time, and

therefore the energy will be conserved. The generalized momentum is

p =
∂L

∂dtq
= mdtq.

The Legendre transformation yields the Hamilton function

H = pdtq − L(q, dtq(q, p)) =
p2

m
− 1

2m
p2 +

k

2
q2 =

1

2m
p2 +

k

2
q2 = T + V,

which coincides with the conserved energy. This could be used to eliminate either q or p.

But it is more instructive to use Hamilton’s equations (4.2-4.3), being

dtq = ∂H
∂p

=
p

m
dtp = −∂H

∂q
= −kq

This set of equations can be solved in multiple ways. Either, it is possible to replace p or

q by using the conserved total energy, or by inserting one equation into the other, yielding

again a second-order differential equation. At any rate, the solutions are

q(t) = q0 sin

(
k

m
t+ φ0

)
p(t) =

mq0

k
cos

(
k

m
t+ φ0

)
,



Chapter 4. Hamiltonian mechanics 55

with the two integration constants. The total energy is

H = E =
kq2

0

2
cos2

(
k

m
t+ φ0

)
+
kq2

0

2
sin2

(
k

m
t+ φ0

)
= kq2

0.

Thus, the energy is completely determined by the initial conditions. The trajectory in

phase space is a closed ellipsoid, where the relative size of the major axes depends on the

initial conditions as well.

Such a closed path in phase space is typical for periodic systems. If the path is not

closed, but both the coordinates as well as the generalized momenta are bounded, this is

called an aperiodic system.

All of this can be transferred to the relativistic case, but becomes technically quite

involved, even for the free particle. But it allows, e. g., for a consistent description of

massless particles. Nonetheless, because of the amount of technicalities involved, this will

be skipped here.

4.4 Canonical transformations

One of the important insights in chapter 3 was in section 3.5 that the formulation using

Lagrange’s equations is invariant of the particular chosen coordinates. The formulation of

mechanics in terms of Hamilton’s principle gives this a conceptual more important inter-

pretation. Since the objects are now trajectories, rather than the generalized coordinates

and speeds, the coordinate-system-invariance is the statement that it does not matter

how the trajectories are described. The actual dynamical objects of mechanics are the

trajectories, not the coordinates.

The introduction of Hamilton’s equations requires to reinvestigate these statements.

The question is, whether the trajectories in coordinate space can be replaced by states,

and thus whether Hamilton’s equations are form-invariant under changes of the so-called

canonical coordinates of generalized coordinates and momenta. However, this does not

require any deep calculations. When changing the generalized coordinates and speeds

to new ones Q and dtQ, which are arbitrary invertible and continuously differentiable

functions of time, and reexpressing the Lagrange function in these new coordinates, it was

already shown in (3.5) that the equations of motion remain form-invariant. Defining thus

new generalized momenta as

Pi =
∂L

∂dtQi

, (4.5)

the same derivation of Hamilton’s equation can be performed as before, exploiting the

form-invariance of the Euler-Lagrange equations, and thus arriving at the same form of

Hamilton’s equations (4.2-4.4), but now for the new coordinates.
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Furthermore, in section 3.5 it was said that it is possible to add to the Lagrange

function a total time derivative of a function depending only on the generalized coordinates

and time, (3.4), and this left the Euler-Lagrange equations also untouched. This has a

somewhat different impact in Hamilton’s formulation. Deriving from (3.4) the generalized

momenta yields

pfi = pi +
∂f

∂qi
. (4.6)

That is, adding such a function changes the generalized momenta, while the generalized

coordinates remain unchanged, qfi = qi. This changes the Hamilton function as

Hf = H − ∂tf.

Thus, while the Lagrange function is shifted by a total derivative, the Hamilton function

is shifted by a partial derivative. The canonical equation take the form

∂Hf

∂pfi
= dtq

f
i

∂Hf

∂qfi
= −dtpfi .

Thus, the equations are indeed also form-invariant.

While this result is in itself not totally surprising, as the Lagrange and the Hamilton

formalism are for any sets of coordinates equivalent as discussed above, this result has some

far-reaching consequences. It implies that it is possible to locally redefine the generalized

momenta, i. e. change the generalized momenta at every point in space and time almost

arbitrarily, and still get the same physics. At the same time, the trajectories remain

fixed, as the generalized coordinates do not change: The particle still move in the same

way. And also with the same speed, as also the generalized speeds are not changed. This

implies that the generalized momenta are not unique, but can be changed locally. This

is a much stronger statement as a change of coordinate system, as this is done for all

coordinates in the same way, it is global. This arbitrariness implies that some of the

information contained in the generalized momenta is arbitrary. This is not a surprise. As

noted above, the basic object is the trajectory. Any solution with the same trajectory will

provide the same physics. In the Lagrange formulation, this arbitrariness is not there, as

the generalized speeds are uniquely determined once the trajectories are known. This is,

as seen here, not true for the generalized momenta.

Such a local arbitrariness is also known as a gauge freedom. Its generalization plays a

very important role in physics. Why this is the case can already be seen for the present

case in classical mechanics.
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This freedom implies that the possible redefinitions of variables in the Hamilton case is

much larger than in the Lagrange case. There it was only possible to change the generalized

coordinates and speeds in a way which maintained the fact that the generalized speeds

were derivatives of the generalized coordinates. Here, there is more freedom. And this

freedom can be used to simplify problems. That is the idea behind the following concept.

While it was straightforward than any transformation changing generalized coordinates

and speeds left Hamilton’s equations invariant, this is actually not possible for an invertible

and differentiable point transformation of generalized coordinates and momenta8

Qi = Qi(qj, pj, t) (4.7)

Pi = Pi(qj, pj, t). (4.8)

Point transformations, which satisfy some Hamilton function’s h(Qi, Pi, t) Hamilton’s

equations

dtQi =
∂h(Qi, Pi, t)

∂Pi
(4.9)

dtPi = −∂h(Qi, Pi, t)

∂Qi

(4.10)

are therefore special, and are called canonical. If also

h(Qi, Pi, t) = H(qi(Qi, Pi, t), pi(Qi, Pi, t), t),

where the Hamilton function satisfies the Hamilton equations in the coordinates qi and pi,

it is called a proper canonical transformation, but this is not required for a transformation

to be canonical. This is a very important distinction. Proper canonical transformations

provide a constructive way to create the Hamilton function. Improper canonical trans-

formations only require the existence of some Hamilton function such that (4.9-4.10) is

fulfilled. No tool is yet provided to proof the existence of such a canonical transformation,

lest alone construct it. Finding (im)proper canonical transformations could therefore be

much more complicated.

To get a better idea of how far canonical transformation can go, it is best to consider

first an example, before trying to construct general tests for canonicity of transformations.

As a first example, consider a transformation which exchanges generalized coordinates

and momenta,

Qi = −pi (4.11)

Pi = qi. (4.12)

8Note that the Pi do not necessarily fulfill the relation (4.5). It will be necessary to specify the

conditions on the point transformation when this is the case.
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This transformation is a proper canonical transformation, since for the Hamilton function

h(Qi,−Pi, t) = H(−pi, qi, t)

∂h

∂Pi
= dtQi

∂h

∂Qi

= −dtPi.

This is a quite remarkable result. It implies that generalized coordinates and momenta

can be exchanged at will, or even partially. Hamilton’s formulation does not distinguish

between both, emphasizing again that the trajectory is the basic object, and the general-

ized coordinates and momenta are just description without inherent importance of their

own.

So, how far can this be driven? Is it possible to find a canonical transformation

which makes coordinates cyclic? Which makes all coordinates cyclic? Then, the problem

would become trivial. The answer to this is affirmative, and will be given in section 4.8.

Unfortunately, while possible in principle, in practice this is often as hard as solving the

original problem. But before this can be achieved, further developments are necessary.

The first is finding a criterion for the canonicity of a transformation.

4.5 Poisson brackets

Without proof, a transformation can be most directly be identified to be canonical using

a new concept, the so-called Poisson brackets, which will be developed in the following.

Though it is in the end a very compact way of expressing the conditions of canonicality,

the Poisson brackets are again a concept with an importance which will only become fully

unveiled in quantum physics. The Poisson brackets will also be very useful to formulate

many results in a very compact way, though it can be argued whether this can be considered

to be an advantage.

While it is possible to just define the Poisson brackets and then show its usefulness, it is

arguably better to show that it emerges automatically from a very general question. This

question is: Given a classical mechanical system, there may be many quantities of interest.

So far, the main focus were on the trajectories of the individual particles. However, other

questions may be much more interesting. E. g., how often particles collide, how many

particles appear in which area of the system, how often does a particle orbit another

particle before escaping to infinity. This list can be extended arbitrarily and infinitely.

Since any mechanical system is uniquely characterized by a state, any such observable

f can only depend on the state, i. e. the generalized coordinates, momenta, and the time,
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f(pi, qi, t). An interesting question is, how this quantity changes with time. Of course,

solving the system and inserting the results for the generalized coordinates and momenta

would answer this question. But it is very often the case that it is already sufficient to

know the answer as a function of the generalized quantities. Especially, this provides a

result independent of any particular initial conditions, which are needed for any concrete

realizations of the trajectories.

The answer to this question is

dtf =
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
+ ∂tf, (4.13)

which can be shown using Hamilton’s equations of motion (4.2-4.3).

This result motivates to define the Poisson brackets as the following prescription. Given

two functions f and g depending on two set of variables pi and qi, the Poisson bracket

with respect to the two sets of variables is defined as

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
.

The name brackets originates from the curly braces on the left-hand-side. The Poisson

brackets are therefore a mathematical operation, akin to, say, multiplication.

The result (4.13) can therefore be expressed using the Poisson bracket as

dtf = {f,H}+ ∂tf. (4.14)

Thus, up to any explicit time dependence, the time evolution of a mechanical quantity is

determined by its Poisson bracket with the Hamilton function. This gives the Hamilton

function an extremely elevated conceptual importance, as it can therefore be considered

as the source of evolution in time.

This is also emphasized by

dtqi = {qi, H} =
∂H

∂pi

dtpi = {pi, H} = −∂H
∂qi

,

giving a reformulation of Hamilton’s equations (4.2-4.3) using the Poisson brackets. There-

fore, Hamilton’s equations can be considered as special cases of the more general time

evolution equation (4.14).

A special case are also the so-called fundamental Poisson brackets

{qj, qk} = 0 (4.15)

{pj, pk} = 0 (4.16)

{qj, pk} = δjk. (4.17)
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These are the Poisson brackets of the sets of variables itself, therefore the name funda-

mental, as these are the most elementary Poisson brackets since no further function is

involved. Thus, only mixed fundamental Poisson brackets do not vanish. Though these

seem to be comparatively simple statements, modifications of the relations (4.15-4.17) can

serve as the fundamental postulates of quantum physics.

The time evolution equation (4.14) has a particular interesting implication for constants

of motions, i. e. for quantities with dtf = 0. In this case

0 = dtf = {f,H}+ ∂tf.

This criterion is often much easier to check than any other criteria, besides cyclic coordi-

nates, found so far, as it does not require the explicit solution of the equations of motion.

Especially, for any not explicitly time-dependent quantity it follows that

{f(qi, pi), H} = 0⇒ dtf = 0, (4.18)

and is a very compact test for conserved quantities. For the Hamilton function itself this

implies

dtH = {H,H}+ ∂tH = ∂tH,

i. e. the statement of section 3.7.1 is recovered that the Hamilton function is conserved if

it does not depend explicitly on time. This will be put in a different perspective in section

4.7.

4.6 Poisson brackets and (canonical) transformations

One of the most important features of the equations of motions, as discussed already for

the Lagrange equations of the second kind in section 3.5, is that they do not depend on a

particular coordinate system, and that they keep the same form in any coordinate system.

Studying this feature in detail for the Poisson brackets, and thus especially of the dynam-

ical time evolution formulated in (4.14), will lead back to the canonical transformations

of section 4.4.

Consider two sets of generalized variables qi and pi, as well as Qi and Pi, such that the

relations

Qi = Qi(pj, qj)

Pi = Pi(pj, qj)
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are invertible relations, i. e. there are uniquely defined functions

qi = qi(Qj, Pj)

pi = pi(Qj, Pj),

just as in section 3.5. In particular,

H(pi, qi) = H(qi(Qj, Pj), pi(Qk, Pk)) = H(Ql, Pl),

i. e. the change of variables is canonical.

It can now be shown that

{Qi, Qj} = {Pi, Pj} = 0 (4.19)

{Qi, Pj} = δij. (4.20)

This implies that the fundamental Poisson brackets have the same form, no matter the

choice of coordinates. In fact, it can be shown that the transformation is canonical if and

only if the fundamental Poisson brackets remain unchanged. The proof of this will be

skipped.

4.7 Poisson brackets and symmetries

Poisson brackets give another conceptual view on invariances and symmetries, and thus

the conservation laws of section 3.7.

Consider an infinitesimal canonical transformation of the coordinates and momenta

Qi = qi + δqi

Pi = pi + δpi,

where δx should for now only indicate that the quantity δx is small, and is not connected

to displacements. It can be shown that there exists some function G(qi, pi) such that

Pi − pi = δpi = −ε∂G
∂qi

Qi − qi = δqi = ε
∂G

∂pi

where ε is now a sufficiently small number.

So far, this is general. It is interesting to consider the case that G = H and ε = dt a

small interval in time. This leads to

δqi = dt∂H
∂pi

= dqi
dt
dt = dqi

δpi = −dt∂H
∂qi

= dpi
dt
dt = dpi.
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Thus, this canonical transformation actually pushes the generalized coordinates and mo-

menta forward in time. This implies time evolution is equivalent to an (infinitesimal)

canonical transformation. By consecutive such infinitesimal transformations ultimately

the whole time evolution can be build. It is therefore valid to say that the Hamilton

function creates the evolution in time, which is quite similar to the statement (4.14).

Consider now some arbitrary function of u, which can be shown to change as

δu = ε {u,G} . (4.21)

Thus, the change of a quantity u under some (infinitesimal) coordinate transformation G

is determined by the Poisson bracket of this quantity with the coordinate transformation.

Especially,

δH = ε {H,G} , (4.22)

and thus also the Hamilton function itself changes in general.

If the functionG is a constant of motion then, because of (4.18), its Poisson bracket with

the Hamilton functions vanishes. In the present context, this implies that any coordinate

transformation generated by an integral of motion leaves the Hamilton function unchanged.

This statement is actually a very deep one. As has been discussed in section 3.7 an

integral of motion is usually associated with some symmetry of the Hamilton function.

Thus, (4.21) together with (4.22) states that the integral of motion associated with a

symmetry generate changes of quantities, but leave the Hamilton functions invariant. In

fact, the function G will be seen to generate the transformation of any quantity under

the corresponding symmetry transformation. In quantum physics, this will be the key to

identify symmetries of the systems and all the dynamical features of the theories. It is one

of the key properties in the connection of symmetries and physics.

However, a full general proof of the connection is beyond the present scope.

An interesting consequence can be obtained from these insights. As has been shown, the

time-evolution along any trajectory in phase space is generated by the Hamilton function.

Since trajectories are continuous functions, this is equivalent to an infinitesimal rotation

and translation in phase space. Note that similar considerations do not apply to either

position space or configuration space. Thus, phase space is the fundamental space of

(classical) mechanics.

4.8 Hamilton-Jacobi theory

It can be shown that it is possible to find for any mechanical problem, which is formulated

by a Hamilton function, a canonical transformation such that the problem becomes trivial.
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Trivial in this case means that it is either transformed to a known problem, or to a

situation in which all coordinates becomes cyclic and the Hamilton function is explicitly

time-independent or finally such that all generalized coordinates become constant, and

thus yielding trivial Hamilton’s equations.

The drawback is that, while this is possible in principle, it is often as complicated or

more complicated than the original problem. The advantage is that, even if practically

tedious, the knowledge that it is possible in principle helps often substantially in gaining

conceptual insights. Thus, it is an important development.

While this provides further important insights, especially it shows that all trajectories

can be transformed either into the closed trajectories of the harmonic oscillator or the

straight trajectories of a free particles, the details become exceedingly technical. Overall,

it can be considered to be a local deformation of phase space such that all trajectories are

deformed to become of either of two types.

Thus, proofing it shows that classical mechanics (in absence of dissipation or similar

emergent phenomena) can sustain only trajectories which are continuously deformable to

either of these two kinds of trajectories. Thus, mechanics knows only two movements, free

and periodic, and the rest are non-trivial, but smooth, deformations of them.



Chapter 5

Selected special topics in mechanics

5.1 Chaos

A particular subclass of physical systems are those which exhibit a so-called chaotic be-

havior. Chaotic behavior is best defined in phase space. Given two trajectories at some

point in phase space at some time t, it is possible to define an Euclidean distance between

two trajectories as

d(t) = (q1
i − q2

i )
2 + (p1

i − p2
i )

2.

A system is said to show chaotic behavior if the distance increases exponential (or faster)

as a function of time1,

d(t) ∼ eat, (5.1)

where a is some constant characteristic of the system.

This is still classical mechanics, and therefore completely deterministic. The reason

why such a behavior is said to be chaotic is that any error in the determination of the

trajectory will therefore be exponentially amplified over time. Thus a prediction becomes

essentially impossible in practice, as in any practical (experimental) situation there are

always errors. Chaos is therefore a feature of the unavoidable measurement errors rather

than a problem coming from theory.

This is quite different for quantum chaos, where quantum effects can introduce addi-

tional chaotic behavior, which leads too far beyond the scope of this lecture.

It is actually not necessary that a system shows the behavior (5.1) for all pairs of

possible trajectories, i. e. initial conditions, nor for all times. It can well be that the

system is chaotic for some cases of initial conditions, but not all. It is also possible that

1There exists actually a mathematically more precise definition of what a chaotic system is, but for

the present purpose this is sufficient.

64
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after some time of exponentially diverging trajectories come again close to each other.

The simplest such system is actually a double pendulum. For small oscillations it shows

no chaotic behavior, but as soon as the kinetic energy exceeds a critical value it becomes

chaotic.

Classifying such features of a system is the purview of chaos theory. Interesting features

of chaotic systems are, e. g., attractors. These are localized regions in phase space at which

multiple trajectories, even from completely different initial conditions, coalesce, and stay

there. If they do so without forming any kind of periodicity, the attractor is called strange.

If the system is dissipative, and therefore the phase space density can change, the attractor

can become a point in phase space, which is called a fixed point.

As many practically relevant systems, especially those of many degrees of freedom, can

show chaotic behavior, this subject is of great importance. Due to its large number of

phenomena and features, its detailed study warrants an own lecture, and it will not be

continued here.

5.2 The geometry of phase space

Classical mechanics has actually an interesting geometric interpretation, which warrants

some thoughts. This is especially the case as geometric structures are prevalent in physics,

and reappear in one way or another in all fundamental theories known.

This will become most evident when using phase space, and thus Hamiltonian mechan-

ics. Note that phase space is always even-dimensional, with dimension 2n in the following.

In such spaces there exist a particular group of matrices, the so-called symplectic matrices,

Sp(2n). These are the matrices A with the property

ATJA = J (5.2)

J =

(
0 1

−1 0

)
,

where the elements of J are either zero matrices or (negative) unit matrices, each of

dimension n. Note for further use that J−1 = JT = −J and J2 = −1. It can be shown

that for the submatrices of the matrix A

A =

(
a b

c d

)
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holds that

(aT c)T = aT c

(bTd)T = bTd

aTd− cT b = 1.

Consider now a not explicitly time-dependent Hamilton functionH, and the two vectors

~v =

(
qi

pi

)

~∂ =

(
∂qi
∂pi

)
,

where the subvectors are n-dimensional, in phase space. Construct the vector

J~∂H =

(
∂piH

−∂qiH

)
, (5.3)

which contains Hamilton’s equations. Especially, Hamilton’s equation (4.2-4.3) take the

compact form of a vector equation

∂t~v = J~∂H.

Thus, the expression (5.3) describes the trajectory in phase space.

As a first example how this formulation could be advantageous, consider the total time

derivative of H,

dtH = (~∂H)TJ~∂H = 0.

Thus, the time-independence of the Hamilton function becomes now a geometric feature

of phase space, as this hinged only on the features of the matrix J , rather than any other

derivatives. It is a statement about the trajectories generated by the function H. This is

quite similar in spirit to what the potential does - there it is a gradient in ordinary space

which creates by Newton’s equations the movement of the system. Here, the gradient of

the Hamilton function in phase space, supplemented by the matrix J , creates by Hamil-

ton’s equation the movement, and the conservation of the Hamilton function along the

trajectories is a geometric consequence of this.

Now, combine these insights with those of section 4.7. There it was shown that move-

ment along a trajectory is created by the Hamilton function,

dqi = ∂H
∂pi
dt

dpi = −∂H
∂qi
dt,
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which was actually a canonical transformation. This implies that a trajectory develops in

phase space as

dv = J~∂Hdt.

In addition, any canonical transformation is given similarly by

dv = J~∂G,

where the function G was defined in 4.7. As has been noted there, time evolution was

anyhow only a special case of such a transformation. Thus, symplectic velocity fields J~∂G

create all (infinitesimal) canonical transformations in phase space.

It is even possible to state more. Consider the matrix of derivatives of the canonical

transformations

M =

(
∂qi
∂Qj

∂qi
∂Pj

∂pi
∂Qj

∂pi
∂Pj

)
.

Because the canonical transformations are invertible, it follows that

M−1 =

(
∂Qi
∂qj

∂Pi
∂pj

∂Qi
∂qj

∂Pi
∂pj

)
.

It then follows by explicit evaluation that

−JM = (JM−1)T

holds. But this just defines a symplectic transformation, as this is equivalent to (5.2),

J = MTJM.

Thus, a finite canonical transformation can be characterized by a symplectic matrix. As

a consequence, the scalar product

vw = vTJw,

with v and w two vectors in phase space is invariant under any canonical transformations.

A space endowed with such a metric is called a symplectic space or symplectic manifold.

Also the Poisson brackets can be integrated into this formulation,

{F,G} = −(∂F )TJ(∂G). (5.4)

Thus, it is a scalar product in this symplectic space. Because such a scalar product

is invariant under canonical transformations, as noted above, the invariance of Poisson
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brackets under canonical transformations, obtained in section 4.6, follows here trivially

from the geometry of phase space. Especially,

{vi, wj} = −Jij.

Therefore, the fundamental Poisson brackets (4.15-4.17) in fact define the metric of phase

space. Since in (5.4) the expression J∂G defines a flow along a canonical transformation,

the Poisson bracket acts as directional derivative with respect to the flow ∂F .

5.3 Continuum mechanics

Many systems in mechanics contain a very large number of point particles. In many of

these cases it becomes suitable to deal with these particles rather in terms of density

than of the individual particles, as already hinted at in section 2.8. In this case, matter

is considered as a continuum, described by a mass density ρ(~r). This is the purview of

continuum mechanics.

5.3.1 Systems of many oscillators

Before actually treating matter as a continuum system, it is very helpful to first consider

a very special system with many degrees of freedom, that of many (coupled) oscillators.

Such systems in themselves are relevant, as many physical systems can be described by

them, especially in solid state physics. Furthermore, taking the limit of an infinite number

of these oscillators already provides a good description of many continuum systems, and

it is therefore technically useful to first study a finite, but large, such system. Moreover,

according to section 2.9, any system close to a stable equilibrium is also described by a

system of many oscillators.

Taking for N oscillators with coordinates qi the values q0
i to be the equilibrium position,

it is then useful to introduce the fluctuation coordinates

ηi = qi − q0
i .

Moreover, if the system should remain close to equilibrium also the kinetic energy needs to

be close to zero. Considering only conservative systems with the kinetic energy a quadratic

function in the generalized speeds, the total Lagrange function reads

L = mij
dηi
dt

dηj
dt
− Vijηiηj

Vij =
∂2V

∂qi∂qj

∣∣∣∣
qi=q0i ,qj=q

0
j

,
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where the constant term in the potential has been dropped and it was permitted that

the kinetic term has also off-diagonal elements in the generalized coordinates. The Euler-

Lagrange equations are

mij
d2ηj
dt2

+ Vijηj = 0, (5.5)

and therefore form a set of N coupled differential equations. Fortunately, this type of

coupled differential equations can be solved in closed form.

Because each individual equation has the same form as an harmonic oscillator, an

ansatz of type

ηi = <
(
aie
−iωt)

appears as a reasonable starting point. Intentionally here only the same frequency is

used for the whole set of oscillators. This is based on the insight from section 2.6 that an

harmonic oscillator under an external influence starts to behave like the external influence.

Thus, it appears possible that there are common oscillation of all oscillators, as all the

other oscillator act on each one like an external influence. The different possible solutions

will eventually be found to be different values for ω, which then can be superposed to find

arbitrary solutions.

This turns the system of differential equations (5.5) into a set of linear equations for

the amplitude factors ai,

Vijaj −mijω
2aj = 0. (5.6)

Such a system of equations has only a solution if the determinant of the matrix

Bij = Vij −mijω
2 (5.7)

vanishes, which follows from the general theory of linear systems of equations. This gives

an Nth order polynomial for the frequency ω, which thus yields 2N solutions, every time

±ω, producing all the solutions. Especially, also the complex solutions are admissible, as

these will be exponentially damped or enhanced (unstable) oscillations2. The amplitudes

are the solutions to this homogeneous system, which implies that one of the (non-vanishing)

amplitudes will be arbitrarily selectable, and the remaining follow from the solutions of

the linear system.

An interesting reinterpretation is possible if the mass matrix is diagonal, mij = miδij,

with no summation implied. Rescaling the ηi by mi, the masses drop out, and the problem

takes the form of an eigenvalue problem,

V~a = λ~a,

2The latter will not appear, if the initial assumption of a system in equilibrium is not violated.
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where λ = ω2 are the eigenvalues. Furthermore, Newton’s third law requires that the V are

symmetric. This implies that all eigenvalues are real, and thus the so-called eigenfrequen-

cies ω2 are either purely real or purely imaginary. The vectors of amplitudes are then the

eigenvectors of the matrix V , and form a complete basis and are orthogonal with respect

to each other. These amplitudes are also called eigenoscillations of the system. Note that

this also implies that there exists an orthogonal transformation, which is necessarily also

a canonical transformation, which decouples all oscillators, as any symmetric matrix can

be diagonalized.

If the matrixm is not diagonal, it is possible to construct a very similar line of reasoning,

ultimately leading to equivalent results. In this case, it is possible to reinterpret the

problem as a problem in a space which is not Euclidean, but rather has a metric m. In the

end, the result are again 2N eigenvalues ±ωk and N eigenvectors ~a with arbitrary norm

in this metric.

It is useful to consider an explicit example. Take e. g. three particles, connected by

two springs with the same strength k, all confined to a linear motion in one dimension.

The particles at the ends should have a mass m and the one in the center a mass M . If

the length of the springs is a, the potential energy is

V =
k

2
(x2 − x1 − a)2 +

k

2
(x3 − x2 − a)2.

As the equilibrium position3 will be that the springs are at the normal length a, the

difference between the equilibrium positions is also a, and in terms of the fluctuations ηi

the potential energy takes the form

V =
k

2
(η2 − η1)2 +

k

2
(η3 − η2).

The corresponding kinetic energy is

T =
m

2

(
(dtη1)2 + (dtη3)2

)
+
M

2
(dtη2)2.

The matrix B from (5.7) is then

B =

k − ω2m −k 0

−k 2k − ω2M −k
0 −k k − ω2m

 .

3In the present case, strictly speaking, there would be no need to consider equilibrium positions, as the

potential is already of harmonic oscillator form. For the sake of sticking with the developed procedures

this will be done nonetheless.
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This form, elements on the diagonal and otherwise only elements on directly adjacent

subdiagonal, is characteristic for a one-dimensional system of springs, where only nearest

neighbors are connected. Thus, the behavior obtained in the following is qualitatively

already rather characteristic of such systems. Such systems play a certain role in many

physical contexts, especially in solid state physics and optical lattices.

The next step is to solve the equation

0 = detB = ω2(k − ω2m)(k(M + 2m)− ω2Mm)

for ω2. There are three solutions,

ω1 = 0

ω2 =

√
k

m

ω3 =

√
k

m

(
1 +

2m

M

)
.

The first frequency appears somewhat odd, as this would be no oscillation at all. However,

there is a comparatively simple explanation for it. This is a uniform motion of the whole

system in either direction. Since the constraints do not forbid it, this is a consistent

solution. This could have been excluded by adding a constraint that, say, the center-of-

mass coordinate needs to be fixed. This would have reduced the degrees of freedom from

three to two, leaving only non-vanishing frequencies.

The next step is to solve (5.6) to find the relative sizes, i. e. solve B~ak = 0. This is an

ordinary system of linear equations, which yields the (normalized) solutions

~a1 =
1√

2m+M

1

1

1

 ~a2 =
1√
2m

 1

0

−1

 , ~a3 =


1√

2m(1+ 2m
M )

−2√
2M(2+M

m )
1√

2m(1+ 2m
M )

 .

where the normalization is chosen for later convenience. The first case is indeed a collective

motion in one direction. The second is an oscillation of the endpoints with respect to a

fixed center. The third is a relative oscillation of the center mass with respect to the two

other masses, which leaves also the center of mass fixed.

Generalizing to masses connected by effective springs in three dimensions, one lesson is

that always the motion of the center of mass will appear, if not constrained. Thus, there

will always be 3N − 3 non-trivial eigenfrequencies. Further degeneracies will occur if the

system shows a symmetry, as then the symmetry transformation needs to leave the motion
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unchanged. The non-trivial, non-degenerate eigenfrequencies then fully characterize the

system. However, in general it will become more involved to determine them, as it requires

to solve an 3N − 3 order polynomial, which is in general not possible in closed form.

It is possible to extent the present treatment to generalize the full case with dissipation

and external driving forces. This leads to no new conceptual insights, and will therefore

not be done here.

5.3.2 Continuous systems of oscillators

After this preliminary investigation, it is now possible to go to continuous systems.

As a next step consider again the linear chain, but now admit an (arbitrarily large)

number N of particles, but which should all have the same mass. The Lagrange function

is then given by

L =
∑
i

(
m

2
(dtηi)

2 +
k

2
(ηi+1 − ηi)2

)
.

In principle, there need to be some additional terms to take care of boundary terms.

However, they will not play a role, especially as later the limit N → ∞ will be taken. If

now the equilibrium distance between any two particles is equal and of size a, this can be

rewritten as

L =
∑
i

a

(
m

2a
(dtηi)

2 +
ka

2

(
ηi+1 − ηi

a

)2
)

=
∑
i

aLi

The quantity m/a = µ is the mass density of the system. The quantity ka has no direct

interpretation. If the connection is indeed in the form of springs, it turns out that for

usual springs this product is constant, as a short spring has a larger spring constant, the

so-called module of Young Y . Here, it will be required by definition that ka = Y , just like

m/a, is held constant for any value of a.

Now label the particles not by a discrete index, but rather by their position, i. e.

η(x) is the displacement of the particle with equilibrium position x against its equilibrium

position. Then
ηi+1 − ηi

a
=
η(x+ a)− η(x)

a
a→0
= =

dη

dx
,

i. e. the difference in fluctuations becomes in the limit of smaller and smaller distance a

of the particles the derivative, or rate of change, in the displacement η. At the same time

the sum becomes a Riemann sum, leading to

L =

∫
dx
(
µ(dtη)2 − Y (dxη)2

)
=

∫
dxL(x),
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where L is called the Lagrangian density. Likewise, the equation of motion turns from

md2
tηi − k(ηi+1 − 2ηi + ηi−1) = 0

to

µd2
tη(x)− Y d2

xη = 0 (5.8)

which is now an equation for the function η(x, t) of two variables, rather than for the finite

number of quantities ηi(t).

5.3.3 Continuous systems

The previous section outlined everything necessary to define the Lagrange formulation

for continuous system. Given a field η(~r, t), the Lagrange function is given by a volume

integral over the Lagrange density L, sometimes called just Lagrangian,

L =

∫
d3~rL(η, ∂iη, ∂tη, ~r, t)

which can now depend explicitly on both time and the space coordinate. For the Lagrange

function to be scalar, the Lagrange density needs to be a density. At the current time, η is

itself also a scalar under rotations. However, it would also be possible to define vector fields

or fields of even higher tensors, and indeed this will already in classical electromagnetism

be necessary. However, for simplicity here only scalar fields will be considered.

The action is still a time-integral over the Lagrange function,

S =

∫
dtL =

∫
dtd3~rL,

and thus a space-time integral over the Lagrange density. This already suggests that an

extension to special relativity is rather straight-forward, and assigns in such a context the

Lagrange density a more fundamental role than the Lagrange function.

It can then be shown that the continuum Euler-Lagrange equations take the form

d

dt

∂L
∂∂tη

+
d

dri

∂L
∂∂iη

− ∂L
∂η

= 0, (5.9)

which are the dynamical equations governing continuum mechanics. Note that this form

is already Lorentz covariant, provided both η and L are Lorentz scalars, and can then be

written as
d

dxµ

∂L
∂∂µη

− ∂L
∂η

= 0.

This is one of the reasons the Lagrangian formulation is particularly useful for relativistic

problems.



74 5.3. Continuum mechanics

5.3.4 Applications of the Lagrange formulation

Consider again the problem of section 5.3.2. Its Lagrangian density was

L =
1

2

(
µ(∂tη)2 − Y (∂xη)2

)
.

The corresponding derivatives are

∂L
∂∂tη

= µ∂tη

∂L
∂∂xη

= −Y ∂xη

∂L
∂η

= 0.

Its Euler-Lagrange equation is therefore

µ∂2
t η − Y ∂2

xη = 0, (5.10)

which coincides with (5.8). This is a one-dimensional wave equation with the solutions

η = <
(
c1e

i vt−x
x0 + c2e

−i vt−x
x0

)
v =

√
Y

µ
,

which describe forward and backward propagating waves.

To study a more complex problem consider a fluid or gas. Consider now it to be slightly

disturbed, on which it reacts with some movement in the three spatial directions. This

movement field, what is perceived as sound, is given by a vector field ~η, which gives at

every point in space (and time) the displacement of the medium. The kinetic energy is

therefore

T =
µ

2
(∂t~η)2,

where µ is again the density. In Principle, this density would need to be also a field. Here,

however, the case of only small distortions will be considered, such that the mass density

can be taken to be approximately constant. Without proof, the potential energy, which

is essentially sustained by the presence of the medium, and thus how the other particles

oppose the movement of a particle, is given by

V = γP (~∂~η)2 − 2P ~∂~η

where P is the equilibrium pressure and γ characterizes how the medium’s pressure reacts

to changes of volume. Here, this only motivates why this particular case could be of
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practical interest. But the focus is how to treat this system, not where it comes from.

This is the purview of a thermodynamic lecture.

The Lagrangian density is therefore

L = T − V =
µ

2
(∂t~η)2 − γP (~∂~η)2 + 2P ~∂~η.

To obtain the equations of motions requires the following quantities

∂(∂t~η)2

∂∂tηi
= 2∂tηi

∂~∂~η

∂∂iηj
= δij

∂(~∂~η)2

∂∂iηj
= 2δij~∂~η

∂L
∂ηi

= 0.

Interestingly, this result implies that the term linear in ~∂~η does not contribute to the

movement. This is a generic statement: Terms linear in derivatives of the fields do not alter

the movement. However, e. g., if the energy stored in the system should be determined, it

cannot be ignored.

The equations of motion are thus

µ∂2
t ~η − γP ~∂

(
~∂~η
)

= 0. (5.11)

This is not yet a simply solvable system. To make progress, define the scalar quantity

σ = −~∂~η,

which is the directed rate of change. As the system is essentially isotropic, it make sense

that there will be only one relevant direction, and therefore a single scalar field should

actually be sufficient to solve the problem. To rewrite the problem in this form, act with
~∂ on the equation of motion (5.11), yielding

∂2σ − µ

γP
∂2
t σ = 0.

Just as before, (5.10), this is a wave equation, with a speed depending on the properties

of the gas and its pressure. The rate of change of the movement of the gas therefore forms

waves. This is as expected: Sound is an oscillatory wave.
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Special relativity

So far, classical mechanics was essentially described by Newton’s laws of section 2.2, sup-

plemented with forces. Both together form as postulates the framework of classical me-

chanics. However, it turns out that classical mechanics based on these postulates is not

able to describe all situations, no matter how complicated the forces are assumed to be. Of

course, also electromagnetic, including optical, phenomena are not described by classical

mechanics. However, supplementing Newton’s laws with Maxwell’s laws this is possible,

but does not lead to anything conceptually new on the sides of mechanics, as those cases

to be discussed here do. Note that thermodynamics and hydrodynamics are actually only

the application of classical mechanics to large ensembles of particles, and therefore do not

require fundamentally new laws, as can be shown using statistical (classical) mechanics.

The situations where failures arise are, together with their resolutions or combinations

of resolutions,

1. At very short distances. This is the purview of quantum mechanics

2. High speeds. This is the purview of special relativity

3. Strong gravitational fields. This is the purview of general relativity, which necessarily

induces large speeds and thus includes special relativity

4. At short distances and high speeds. This requires the combination of quantum

mechanics and special relativity, which becomes quantum field theory. Note that

a full inclusion of electrodynamics in quantum mechanics requires quantum field

theory

5. At all of the above. This requires the combination of quantum physics and general

relativity in the, not yet fully formulated, quantum gravity

76
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Besides electrodynamics and gravity, there are also two more known sources of forces, the

weak and strong nuclear forces. All known forces can actually be derived from these four,

though a unifying theory of all of them is not yet available.

Relaxing all of these conditions, and covering everything listed, essentially sums up the

complete master study of (theoretical) physics. As a first step, here one of those will be

included, those which is the least complicated one: Special relativity, i. e. the modifications

necessary to classical mechanics when including large speeds.

6.1 The speed of light and Minkowski space

6.1.1 The equivalence principle

The starting point of special relativity is a reevaluation of Galileo’s transformations of

section 2.10. Consider a system which moves with a constant speed with respect to another

one. This implies that the coordinates in one system are related to the other by

~r′ = ~r + ~vt,

where ~v is the relative speed of the two systems. These are inertial systems, and thus

Newton’s laws hold equally in both of them. But speeds measured in one system differ by

speeds in the other system, since

dt~r
′ = dt~r + ~v. (6.1)

This should be a true statement for any moving object when described in either coordinate

system.

This is where a contradiction to experiments arises. While the relation (6.1) holds to

very good accuracy experimentally at low speeds, it does not do so at large speeds. In

fact, the deviation is there also at low speeds, but it becomes quickly so tiny, as will be

quantified later, that it is below any reasonable experimental uncertainties if the speed is

just low enough. Thus, something does not fit.

As it turns out, Newton’s postulates are the problem. More precisely, their statements

about inertial systems and that Newton’s second law (2.2) holds equally in all inertial

systems connected by Galileo transformations. The reason is that Newton’s laws make

a very deep assumption about space-time: That space-time has an Euclidean structure.

However, as it turns out, nature is not of this form, but has a more complex structure,

which only at low speeds looks Euclidean.

In principle, the only necessary thing is to replace the space-time structure accordingly,

and then derive the results from this. It is, however, more instructive, to pursue a slightly
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different path, where the space-time structure stands at the end. As always, there are

several equivalent ways of formulating the basic postulates, and each form implies the

other.

This different approach will start rather from a physics motivation.

Consider again Newton’s laws. It may look like that the second law, equation (2.2), is

the most important part. Just because so far this was the one made most reference to.

But this is not quite the case. The probably most important statement is that physics is

the same in all inertial systems. As the choice of inertial system is done by an observer,

this implies that physics is independent of any observer. While this appears obvious at

first, this is actually a very deep statement. And a postulate. Changing (2.2) somewhat

would just change the resulting trajectories. Changing this statement would give up any

notion (or even hope) of something like an objective reality1.

So, this will be the first part of the new set of postulates: Physics is observer indepen-

dent. This implies that the further postulates should have the same form in every inertial

frame. In particular, this implies it is impossible to make statements about the frame from

within the frame: There is no absolute frame. Only relative differences between frames

can be identified. This is known as the equivalence principle.

So far, this seems not be something different than Newton’s requirement that physics

should be the same in all inertial frames.

The big difference comes from an experimental observation: All massless particles

move at a fixed speed. It is called the speed of light c, as light in the form of photons

has been the first observed particles to be massless. Since this speed must therefore

be the same in all frames, this implies that (6.1) cannot be correct. Or more aptly

put: Galileo transformations are not appropriate to transform between frames. Since

this transformation comes from the assumption of an Euclidean space-time, it is this

assumption, which must be wrong. It now remains to work out the consequences. This is

entirely based on the equivalence principle and the experimental observation of a unique

speed of massless particles in every frame2. That massless particles may create a problem

can also be seen from Newton’s law (2.2), as it implies that massless particles cannot be

described by it. Though this can be alleviated by the formulation using (2.1), it still leaves

a certain feeling of uneasiness. Also this will be fixed in special relativity.

1Whether such a thing can exist at all is an unsolved question of science philosophy. In physics, it is

the description of observations, which is the core duty. And so far all observations available very uniquely

point to an observer-independent description.
2Historically, it was not the speed of massless particles, but of the speed of light. However, this would

require electrodynamics, which will be avoided here, as considering massless particles lead to the same

result
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6.1.2 Minkowski space

So, it is now clear that something is not right with the way inertial frames, and transfor-

mations between, are defined. This leads to the question how this can be fixed. Consider

the distance traveled by a massless particle with its fixed speed3 c. In a given reference

frame, the distance traversed in time t will be

~r2 = c2t2.

Something which would be nice to keep is that space is isotropic - the x, y, and z directions

are all the same. The question is, how does this change to a new coordinate system. There

are several possibilities. E. g., the left-hand side could change by changing the metric,

additional terms could arise, and many more. Experiment would have to decide, which is

correct. Though instructive, considering all possibilities would lead far beyond the scope

of this text. Therefore, with hindsight, the only change will be to give t a non-trivial

transformation property, i. e. the time could also differ in both coordinate systems. This

deviates from the starting point of the Galileo transformation (2.29).

In another coordinate system then the relation

~r
′2 = c2t

′2

holds, where the important piece is that c is the same in both equations. Since zero is

zero, both equations can be combined to yield the equality

~r2 − c2t2 = ~r
′2 − c2t

′2. (6.2)

In the case of a Galileo transformation, a similar equality holds, but there c would be

transformed and t would be fixed.

Nonetheless, such a relation as (6.2) looks quite familiar from linear algebra. It reminds

of an invariant length, but of a vector space with a non-Euclidean metric. This is actually

correctly inferred.

Define now space-time as a vector space, the so-called Minkowski space, M4 as a vector

space having a non-trivial metric4

gµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

3Which is, of course, the speed of light.
4It is equivalently possible to switch the signs of all entries, g → −g, without changing the physics.

This will be discussed more in detail below, and is thus a convention.
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Then this defines a four-vector5

x =

(
ct

~x

)
=


ct

x

y

z

 .

Conventionally, the components of this vector are enumerated with Greek literals starting

from zero, x0 = ct, xi = (~x)i, while the Latin indices still enumerate the spatial components

starting at 1.

The scalar product is then

x2 = xTx = xµg
µνxν = −(ct)(ct) + (~r)(~r) = ~r2 − c2t2,

and thus in such a space indeed (6.2) is a preserved length. The question is now, whether

the standard linear algebra for such a space correctly reproduces physics. Most interest-

ing is, of course, whether rotations in such a space are compatible with the equivalence

principle and the speed of light.

As it will turn out that this is indeed correct, it is useful to repeat a few results about

vector spaces with non-Euclidean metric. Since it has been the question of coordinate

transformations which led to this point, the first important step is that of how they work

in Minkowski space.

First of all, a translation works as usual, i. e. a replacement xµ → xµ + aµ shifts the

origin. The only difference is that, in contrast to the Galileo transformations of section

2.10 a0 also automatically shifts the origin of time.

Leaves rotations. Rotations are operations which leave the scalar product invariant,

and thus the generalized length, invariant.

It turns out that there are six basic rotations, grouped into two sets, which leaves

the scalar product invariant. The first three can be recognized as ordinary rotations in

three-dimensional space, when ignoring the time. This is not surprising, as the spatial

components of the metric g are just an ordinary Euclidean metric, and any invariance

there will simply require ordinary rotations. The other three are odd.

First, it is found that they leave the sign, and thus sign of the length, of the scalar

product of a vector with itself invariant. Thus, vectors can be classified by the fact whether

5In older texts this is often done by having an ordinary Euclidean metric but making the time com-

ponent (or all space-components) purely imaginary. While for special relativity this does not make any

difference, this is not well suited for generalizations, which are quite interesting nowadays. It will therefore

not be used here.
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they have positive, negative, or zero length. Examples for all possibilities in two dimensions

are

v1 =


1

0

0

0



v2 =


1

1

0

0



v3 =


0

1

0

0

 ,

where these vectors have negative, zero, and positive norm, respectively. Vectors with

negative norm are called timelike, vectors with zero norm are called lightlike, and vectors

with positive norm are called spacelike, for reason to be come clearer later. In fact, these

three additional transformations are the Lorentz transformations in the three directions,

e. g. in x-direction

x′ =


γ(ct− βx)

γ(x− βct)
y

z

 . (6.3)

β =
v

c

γ =
1√

1− β2
.

If the speed is small, β ≈ 0 but cβ = v, this reduces to

x′
β≈0
=


ct

x− vt
y

z

 ,

and therefore reduces to the Galileo transformation, in accordance with the requirement

that at low speeds conventional Newtonian physics should reemerge. It should be noted
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that a shift by a constant (four) vector is satisfying all the above criteria, and is still an

admissible transformation. Combining the above Lorentz transformation, the so-called

proper Lorentz transformations, with these translation leads to the so-called Poincare

transformations. They can be supplemented by operations like space and/or time inver-

sions.

However, all of this is essentially only replacing the arena of mechanics. It is not yet

defined how the dynamics, and even the kinematics, should be formulated. This will be

done in the following.

6.2 Measurements of time and distance

To define the kinematics requires to give meaning to distances and time differences, to

ultimately define speeds and accelerations. This requires to understand how distances are

perceived in different coordinate systems.

To understand why this is not obvious, note that in (6.3) not only space changes, but

also time. Especially, in relatively boosted systems two events will not take place at the

same time - concurrence as known in the Galileo group is lost.

Consider now some rigid object with an extension l = x2 − x1 in its rest frame. An

observer moving along the x-axis will define in her frame of reference the length of the

stick by the difference in endpoints at the same time in her coordinate system. As noted,

this does not correspond to the same time in the original coordinate system. It is thus

best to use the inverse of (6.3), since

xi = γ(x′i + βct′)

Calculating the difference yields

l′ = x′2 − x′1 = γ−1x2 − βct′ − γ−1x1 + βct′ = γ−1l.

Thus, the stick is shorter in the moving frame, as γ−1 is always smaller than 1. This has

nothing to do with the finiteness of a maximal speed: Using a Galileo transformation and

a finite speed to transfer the information from the different points of the beginning and

ending of the stick will yield a different result. The reason is that spatial distances, dues

to (6.2), are shorter - a Lorentz transformation only preserves the length element (6.2),

but not a spatial length element. That this leads to actual shorter distances is because of

the minus sign in the metric. This phenomena is called length contraction.

In the same way time differences measured at the same point change, and become

∆t′ = t′2 − t′1 = γ(t2 − t1) = γ∆t,
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but they appear longer. The reason for this is the opposite sign of spatial and temporal

parts of the metric. This phenomena is called time dilatation.

It is important to note that this is a reflexive phenomenon: Not only will the observer

in the moving frame think sticks are shorter and times longer in the other frame, an

observer in the other frame will see the same for the primed frame. This is the equivalence

principle at work. In both frames, physics looks the same, as it is not possible to have an

absolute speed, merely a relative speed6.

In the end, both time dilatation and length contraction should not come as a surprise.

Lorentz transformations only keep the norm of a 4 vector invariant. Both spatial length

and time are only components of a 4 vector. Therefore, they are not separately invariant.

This is as for ordinary rotations in Euclidean space: Performing a rotation, the components

of a vector are not individually invariant, but only the total length. And just like as with

rotation, any reduction in one component’s absolute value has to be compensated by an

increase in another component’s, and thus also some opposite effect has to be expected for

both time and space here. Although the indefinite norm has some influence on this naive

picture.

Another interesting feature is what happens when performing two boosts after each

other. This makes statements about how speeds add to each other. Doing the technical

details implies for the total β value

β =
β1 + β2

1 + β1β2

βi�1
= β1 + β2

This so-called Einstein’s addition theorem of velocities has a number of remarkable prop-

erties. First, at small speeds it reduces to its Galileo form (2.31), and once more shows

how Galileo transformations emerge as a limiting case of Lorentz transformations. The

second is that this implies that the total speed can never exceed the speed of light, as for

any values of βi ≤ 1 the total speed also satisfies β ≤ 1. In fact, if both speeds are at the

speed of light, the total speed is also the speed of light. This implements the experimental

observation that there is no speed possible faster than the speed of light. In fact, the only

solutions for β > 1 require the βi to be complex, a physically not sensible result.

This observation has far-reaching implications. The probably most profound is that

there are events, i. e. points localized in space and time, which cannot influence each other.

This is because their distance is so large that no object can reach them quickly enough.

They are said to be causally disconnected. In a fixed coordinate system, this happens as

6Note that these are statements only in frames moving with fixed speed to each other. Accelerated

frames, e. g. when starting at the same point, but one accelerated and then coming back at some point in

the future, need more to accurately describe.
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two points cannot communicate earlier than a signal traveling at the speed of light can

travel from one to the other7.

This happens, if

(ct)2 < (~r)2 .

But this is nothing than the statement that the connecting vector of both events has a

positive norm. Thus, this justifies the name spacelike for these vectors, as there is always

an intervening space. On the other hand, two events can interfere if the opposite holds, and

thus the connecting vector is timelike. Finally, the borderline is the case of zero length,

and thus lightlike vectors. As the length of the vectors are invariant under a Lorentz

transformation, by construction, causal connections remain invariant under the change of

coordinate systems, as it must be, since causal influence is a physical feature, and thus

must be the same in all frames.

This fact can be visualized by the so-called light-cone, which is the part of Minkowski

space, for any fixed point, which has a timelike distance to the reference point. All points

in the past to the event can therefore causally influence it, will the event itself can causally

influence any event in its future light-cone, where past is defined by t < t0 and future by

t > t0, where t0 is the time coordinate of the event. Also these light-cones are invariant

under Lorentz transformations, and the same in all frames.

6.3 Relativistic kinematics

With this all necessary ingredients are available to describe the motion of a particle in

special relativity, and thus relativistic kinematics and, ultimately, dynamics.

To achieve this aim, it is best to be inspired by the classical case and how it reacted

to rotations. The basic ingredient in the formulation of Newton’s laws was to require the

involved quantities to be vectors. To achieve that physics is invariant under rotations

was to formulate all equations such that always both sides transform in the same way

under rotations. In the same way, the generalization will be completely in agreement

with Lorentz invariance - often called covariant - if particular care is taken to involve only

objects transforming in the same way on both sides of every equation.

The first task is to describe the trajectory of a particle. It is given by a sequence of

four-vectors x. So far, the position along the trajectory has been identified by the time.

This was possible, as time was an immutable concept. Now, however, time is itself part of

7In a more refined version, it is actually that no information, carried by energy, can be transported

faster than the speed of light. While in principle more exact, this will make only a difference when

introducing fields.
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the trajectory. It is therefore no longer a suitable concept, and a new trajectory parameter

seems more appropriate, which uniquely identifies a position along the trajectory.

To find one, consider an infinitesimal move along the trajectory. The length of this

move is given by
1

c2
(dxµ)2 = −(dτ)2

where the prefactor is chosen by convention. The right-hand side now defines a quantity

τ , which is called the eigenzeit, and which by construction exactly describes the change

in trajectory, as the advance is uniform in it. It should be noted that the trajectory xµ(τ)

is also called a world-line, as it describes the propagation of a particle along a line in the

space-time world.

When changing to the rest frame, this reduces to

(dτ)2 = − 1

c2
(dxµ)2 =

1

c2
(dct)2 = (dt)2.

Thus, in the rest frame, sometimes also called eigenframe, the eigentime is the ordinary

time, justifying its name and its normalization. Note that by convention the eigenzeit is

taken to be the positive value. Note further that for any arbitrary frame

dτ =

√
1

c2
((dct)2 − (d~r)2) = dt

√
1− 1

c2

(
d~r

dt

)2

= γ−1dt

Thus, the time interval dt is the one measured in a system moving with respect to the

particle’s restframe. This again makes the eigen part of the name eigenzeit clearer: τ is

the time in the restframe of the particle, which is used to describe its trajectory.

The eigenzeit can now be used to generalize the concept of speed to the four velocity

uµ =
dxµ
dτ

= γ
dxµ
dt

=

(
γc

γ~v

)
βi�1
=

(
c

~v

)
. (6.4)

The last equality shows why this is a useful generalization of the concept of speed, as it

reduces at low speed to the conventional one.

It is an interesting feature that the length of the four speed is actually constant,

uµu
µ = γ2(~v2 − c2) = −c2 1− β2

1− β2
= −c2.

Note that this is also true at low speeds, as then ~v2 can be neglected compared to c2 on

the right-hand side. This also implies that the four-speed is a timelike vector.
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6.4 Relativistic version of Newton’s laws

To formulate a relativistic generalization of (2.2), the first postulate is that the mass of a

particle, m, is still a well-defined quantity, and especially does not change under Lorentz

transformations.

To generalize Newton’s law, it is best to start from the more general formulation using

the momentum, (2.1). The relativistic momentum is given by pµ = muµ, as a direct

generalization of the non-relativistic one, and which, due to (6.4), reduces to the non-

relativistic one at low speeds.

It then remains to postulate the relativistic version of Newton’s law such that it is an

equation in terms of four-vectors. This is

dpµ
dτ

= Kµ =

(
γ~β ~F

γ ~F

)
βi�1
=

(
~β ~F
~F

)
. (6.5)

By construction, this has the correct low-speed limit.

However, the fourth component of (6.5) looks strange, and requires further scrutiny.

Going back to conservative forces in (2.12),

dtT = ~F~v.

Thus, the fourth component of (6.5) is associated to the change of kinetic energy in the

non-relativistic limit. Conversely, this implies that

T = γmc2 βi�1
= mc2 +

m~v2

2
(6.6)

is the relativistic generalization of the kinetic energy. In particular, this kinetic energy is

conserved in the absence of forces. Thus, the fourth component of the four momentum is

the kinetic energy.

There is however still the question of the constant in (6.6). It seems to make no sense

that a particle at rest has kinetic energy. The reason is that it should rather be interpreted

as the total energy of the particle, and this is a contribution to this total energy every

particle has, even at rest. As this kinetic energy is proportional to the mass, this is also

called the rest energy of the particle. It is therefore useful to reinterpret T as the total

energy of a particle E.

From this follows

pµp
µ = −m2c2 = ~p2 − E2

c2

or that the energy of a relativistic particle is given by

E =
√
~p2c2 +m2c4 ~v=~0

= mc2, (6.7)
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giving a connection between energy and mass. This is a very important statement, as it

implies the equivalence of energy and mass, and therefore the possibility to convert one

into the other: Mass is no longer a conserved quantity, even if it is a scalar quantity. It can

be transformed to energy, which then again can be converted to mass, thereby changing

the identity of particles.

What remains in place is Newton’s third law of action and reaction. An important

consequence of this is

dtp
1 + dtp

2 = K1 +K2 = K1 −K1 = 0.

Thus, the total four momentum is conserved in a closed system. This also implies that

energy is conserved, as this statement holds component-by-component. Four-momentum

conservation supersedes energy and momentum conservation of non-relativistic mechanics.

This is especially different, as here only the energy is conserved, but this does not need to

be in form of mass. Rest mass is no longer individually conserved, but only accidentally, if

four momentum conservation implies it. That is of particular importance for the relativistic

generalization of scattering processes.

It should also be noted that (6.5) no longer implies that the acceleration ~a needs to be

proportional to the force, as it also contributes to the fourth component. As a consequence,

a particle can experience lateral accelerations with respect to the force. Such effects can

be measured, and represent a genuine effect entirely due to special relativity. Note finally

that a free particle will again have a constant four-velocity, and thus move along a straight

line in the three-dimensional subspace.

So far, still the mass appeared throughout, and it is not yet clear, how massless particles

should act. However, (6.7) implies for massless particles

E = c|~p|,

and thus for a massless particle the momentum is proportional to the energy. Moreover,

(6.7) shows that in the massless case the four-momentum becomes light-like rather than

space-like. This implies that it describes a movement of a particle at the speed of light,

rather than that of a massive particle with a finite speed.

While the formulation (6.5) is certainly a possible formulation of relativistic dynamics,

it is actually not a very convenient one. It is therefore useful to first introduce a particular

formulation of classical mechanics, in which special relativity can be more easily embedded.

In addition, there is a conceptual problem in applying (6.5). Considering forces like

the one of a harmonic oscillator or the gravitational force, they entail the problem that

these forces act everywhere simultaneously. It is certainly possible to use the one-particle
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version in (6.5), as this corresponds to an eternal and immutable force field, which does

not change over time. But the situation becomes more complicated when considering

the two-body problem with the original gravitational force (2.4). It uses the positions of

every particle at a given instance of time. Thus, it assumes that the information about

the propagation of a particle is instantaneously transmitted to the other particle, and

vice versa. This is inconsistent, as the maximum speed in special relativity is the speed

of light. Thus, though its is formally possible to use this force in (6.5), the results will

not be compatible with physics. Rather, the force itself needs to have the speed of light

as maximum propagation speed build in. Thus, treating dynamical problems is far less

trivial, as it requires also new postulates for the forces. To attack this problem also a

different formulation is better suited, which starts from scratch from covariant quantities.



Chapter 7

Electrostatics

Electrodynamics, and its time-independent version electrostatics, seems always to be quite

different from mechanics. The primary reason for this is that its basic concept is a field,

rather than a particle. In addition, the mathematics surrounding electrodynamics is quite

a bit more involved than for ordinary mechanics. While the latter cannot be helped,

the former is, on a conceptual level, quite less different than seeming at first sight. In

fact, as will be seen, there are a lot of parallels between electromagnetism and continous

mechanical systems, as introduced in section 5.3.

7.1 Coulomb’s law

But, as always, the formulation of a new physical theory starts from an observation.

This observation was that particles exist, which can attract each other, and do so much

stronger than gravitationally, and there are even particles, which can repel each other.

This is gravitationally impossible. Thus, this effect needs to happen because of a different

interaction, which is electrodynamics1. It was found that the force obeys Coulomb’s law

~FC = γq1q2
~r1 − ~r2

|~r1 − ~r2|3
. (7.1)

In this formula, γ is a constant, whose value depends on the system of units. In SI, this is

Coulomb’s unit with value γ ≈ 8.99×109 Nm2C−2, where C is the unit Coulomb, which is

essentially defined by this law. The quantities q1 and q2 are the electric charges, measured

in Coulomb, of these particles. Finally, ~r1 and ~r2 are the positions of the particles. Thus,

1In fact, almost everything encountered in everyday life is electrodynamics, from the fact that a chair

is carrying you, to the fact that you are able to read this. Or breath. All of this boils down eventually to

electromagnetic interactions.

89
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the force acts along the connection of both particles, and is repulsive if the sign of the

charges of both particles is different, while it is attractive, if the the charges have the same

sign.

It is a remarkable fact that the functional form of (7.1) is the same as the gravitational

force (2.4). This can be understood from the underlying theories, though at the classical

level, this is an empirical finding. The second issue are the charges. They are found to be

immutable features of particles, very much like masses. Thus, every particle has now two,

instead of previously one, immutable feature, mass and charge. However, in contrast to

mass, charge can have both signs. At the classical level, charge is a continous quantity, and

can have any value, including zero: There are particles, which do not interact electrically.

Again, in the underlying theories, this changes.

Given this force, the behavior of the two charged particles can then be calculated using

Newton’s laws, i. e. the Coulomb law gives new origins of the forces, but does not change

the dynamical equations for the motion of particles. However, there is a very interesting

new feature. Consider three particles in a row. If the middle one has the opposite charge

than the ones at the two ends, it will reduce the total force acting on the particles at

the end. It is thus possible to screen electric charges, by careful arrangements even to

completely cancel them. This is very different from gravity, where this is not possible.

7.2 The electric potential

Because Newton’s laws remain active, it immediately follows that the Coulomb force is,

just as the gravitational force, a conservative one. Thus, it originates from an electric

potential,

~FC = −~∂Φ = −~∂ γq1q2

|~r|

where ~r is now the connecting vector between both charges. The electrostatic potential

works in the same way as the potential of any other conservative force. Especially, it de-

termines the electrostatic work which is done by moving a charged particle in the presence

of another one.

Likewise, this seems to imply that electric charges of opposite signs, and thus attracting

each other, will orbit each other, very much like planets. This idea led to the early models

of atoms, as it became clear that atoms are made up of electrically charged particles.

However, as it will be seen in section 10.3, this is not that simple. That led ultimately to

the need of quantum physics.
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7.3 The electric field

Given the structure of forces like (7.1) and (2.4), it is a possibility to define a field by

setting one of the charges, with charge Q, at the origin as

~E = γQ
~r

|~r|3
, (7.2)

the so-called electric field. Another charge q experiences then the Coulomb force ~FC = q ~E.

Likewise, it is possible to introduce a gravitational field.

While it would require general relativity to make full sense of the gravitational field, it

will turn out that this electric field is a concept which is extremely helpful already at the

classical level, as will be seen in the following.

Before continuing with it, it is useful to collect a few features. One is that the electric

charge has been set fixed at the origin. It is therefore a static situation, and the field is an

electrostatic field. In addition, it is defined everywhere. Thus the name field: It is not a

particle, which is localizable, but a field which gives an effect at every point (and at every

time, because everything is static). Moreover, the field is defined entirely in terms of a

single particle. Hence, the electric field is a property of any electrically charged particle.

Every electrically charged particle has such a field. In the truest sense of the meaning,

every electric charge creates an electric field, which surrounds and permeates anything else

in the universe.

Because of the static nature, every other charged particle will notice the electric field

of the charge instantaneously. This is a feature which will need to change later in chapter

10.

It is possible to say that the electric field is created by the electric charge. At the

moment, in fact, bot concepts appear to be interchangeable. It is thus not clear, what

is gained by introducing the concept, except for convenient writing. But it will be found

later, in section 9.3, that electric fields can actually exist without the existence of charges.

They have therefore an independent reality. This is a new quality, and one of the features

which makes electrodynamics quite distinct from the usual classical mechanics.

Before continuing, it is worthwhile to notice a few more consequences.

One is that the electric field can be associated with an electric potential as

~E = −γQ~∂ 1

|~r|
= −~∂φ. (7.3)

Hence, the electric field is, for now, associated with such a potential. It will be seen

that this becomes more involved when going to dynamical situations, and eventually the

electric field is really the fundamentally important quantity, and the potential merely a
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convenient auxiliary quantity for certain situations. It is also important to note that the

potential is only defined up to an arbitrary function g with the property that ~∂g = 0. Also

this has a certain significance which will be addressed in section 9.6.

A further empirical fact is that the electric fields of multiple charges add, i. e., the

total electric field is given by the sum of the individual fields. Of course, in this case the

positions of the charges have to be taken into account, modifying the expressions. At the

same time, there exists a mathematical statement

~∂ ~E = γQδ(~r)

where δ(~r), the so-called Dirac-δ function, is a function which is only non-zero (and actually

infinite) at the position of the charge, and zero elsewhere. It has the feature that∫
d3~rf(~r)δ(~r) = f(~0). (7.4)

Thus, this allows to write the charge density ρ(~r) of a single particle as ρ(~r) = Qδ(~r).

Because of the additivity of the electric fields, the total electric field therefore obeys

~∂ ~E = γρ(~r), (7.5)

where the charge density is now the sum of the charge densities of all the individual

charges.

There is an mathematical theorem, which allows to revert this expression, giving the

electric field as a function of the charge density as

~E(~r) = γ

∫
d3~r′ρ(~r′)

~r − ~r′

|~r − ~r′|3
. (7.6)

This gives an intuitive picture as the electric field being obtained as the effect of all

elements of charge everywhere in linear superposition. This can be explicitly seen by

combining (7.3) and (7.4), which demonstrates this for a single point charge, as it yields

(7.2).

From this insight, and a few mathematical theorems, follows Gauss’ law,

QV = γ

∫
V

d3~rρ(r) =

∫
SV

d2~r · ~E, (7.7)

which requires a bit elaboration. The middle part is a volume integral. It integrates the

charge density over the volume, and thus yields the total charge insight the volume, QV .

The right-hand side is a so-called surface integral. Given that the volume is finite, it has a

surface, which is denoted by SV . The integral on the right-hand side takes the component
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of the electric field normal to the surface (this is indicated by the d2~r · ~E notation), and

integrates this component over the whole surface. Such a quantity is called the flux, in

this case the flux of the electric field: The amount of field going out of the volume. Thus,

the physical content of Gauss’ law is that the total flux of the electric field going out

of a volume is equal to the total charge inside the volume. This emphasizes again the

characterization of the charge density as the origin of the electric field.

Note that if there are electric charges of opposite sign they can cancel each other. As

a consequence, the total charge in a volume can be zero, even though the electric field

insight is not zero. In fact, even the electric field can be non-zero on the boundary. But

it will be direct into the volume and out of it in such a manner that the net effect is zero.

A further consequence is that the electric field has no closed field-lines. They always

emerge and end on a charge or at infinity. This is mathematically stated by the fact that

~∂ × ~E =

∂2E3 − ∂3E2

∂3E1 − ∂1E3

∂1E2 − ∂2E1

 = ~0. (7.8)

This so-called rotation gives the vorticity of a field. Mathematically, it can be shown that

from the existence of the electric potential (7.3) this follows. In fact, inserting (7.3) into

(7.8) this follows immediately, as then every line is of the type ∂i∂jφ− ∂j∂iφ = 0.

7.4 Matter and electric fields

The previous sections discussed the situation of isolated charges, which are otherwise

in vacuum. At a microscopical level this is quite adequate, as matter is made up of

atoms which themselves separate into electrically charged nuclei and electrons. But at

a mesoscopic or macroscopic level this is not very useful. Here, it makes more sense of

thinking of matter as an electrically active continuum.

In its simplest form it can be assumed that homogeneous and isotropic matter changes

an electric field by a constant factor, the electric permittivity ε, yielding the electric

displacement field ~D,
~D = ε ~E (7.9)

Because the field is different inside and outside the matter this implies that there is an

effective electric surface charge density, which yields this alteration. It is a, historically

motivated, convention that the prefactor has in the vacuum ε0 = ε units and size ε0 ≈
8.854 × 10−12 C2/(Nm2), and actually is a fixed number (4π × 10−7 × c)−1 A2/N, with

A Ampere and c the speed of light. It is called the electric permittivity of the vacuum.
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In other unit systems, this quantity can have no units, or be even unity, which is usually

convenient.

The actual value of the permittivity ε is in classical physics an empirical number for

each type of matter. It can be calculated, at least in principle, once the atomic structure

of the matter is taken into account. Sometimes the relative permittivity ε = ε0εr is

introduced, a quantity which is larger than one for most media, and equal one for the

vacuum.

In general, the situation is less trivial. In principle, the matter can have its own source

of electric field, a so-called polarization field ~P . This can either arise from the reaction

of the matter to the external field, or could even be a genuine field carried by the matter

itself2. This can be taken into account as

~D(~r) = ε0 ~E(~r) + ~P (~r) = ε0χ(r) ~E(~r) = ε(~r) ~E(~r),

The introduction of the polarization tensor χ allows the capture of the effect as a reaction

of the medium to the external magnetic field. This allows even for spatial inhomogeneities

of the matter. The situation (7.9) is recovered if ε(~r) = ε1, i. e. if the reaction is homoge-

neous and (anti-)parallel to the field. Treatment of general matter becomes quite quickly

unwieldy, and thus in the following only the simpler situation (7.9) will be considered.

The physical interpretation of the displacement field is that on a charge inside the

matter only the displacement field acts, and only it generates a Coulomb force on it.

Therefore, depending on whether ε is larger or smaller than 1, the electric force is attenu-

ated by the medium. Consequently, when switching between two media, this requires the

accumulation of charge on the corresponding interface to create this effect. This electric

surface density σ on the boundary between two media is given by

( ~D1 − ~D2)~n = σ (7.10)

where n is a unit vector orthogonal to the boundary. The vacuum as one medium is

covered implicitly by setting for the vacuum ε = ε0.

These consideration play important roles in many practical areas of electric matter

interactions, starting from capacitors or the optical properties of matter. E. g., the way

how light is reflected from a surface follows from (7.10). But this requires first other

developments to fully appreciate. Nonetheless, these formulas are of central importance

in electrical engineering and optics, and many other branches of applied sciences.

2The latter is rarely encountered, as then usually strains appear which will tend to neutralize this

effect.
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These observations had also another important interpretation. Even if a piece of matter

is in itself not electrically charged, i. e. acted on by the Coulomb force of another charge,

it can still be electrically active.



Chapter 8

Magnetostatics

While electrostatics is something not that much accessible to daily experience, Magneto-

statics is: Whenever handling magnets, one experiences magnetic fields. It is therefore

also a much better way to illustrate the concept of fields, as the experience when trying

to bring two magnets together is directly demonstrating the concept of a field. Without

physically touching, both already exert forces on each other, with no visible trace. Of

course, this is due to the fact that our senses are not created to sense magnetic fields.

Some animals can do so, and would perceive the situation quite differently from us. On

the other hand, fields which we do perceive, like electromagnetic fields in form of light,

show a very different experience than those of magnetostatic fields. Still, both are con-

ceptually, as will be seen, the same thing, irrespective of our very different experience of

them. This should always be kept in mind when considering what fields are.

8.1 The Lorentz force

However, the first step will actually not directly address ordinary magnets. The reason is

that the microscopic dynamics play an essential role in how the effect comes about, and

thus it somewhat involved to understand. Rather the first step in defining the magnetic

field, and thereby also to define a measurement process for it, is the so-called Lorentz

force.

The Lorentz force is the observation that a magnetic field ~B exerts a force on an

electrically charged particle of charge q, which moves with a speed ~v as

~F = q~v × ~B, (8.1)

which is given here in SI units. Thus, a particle at rest will not be affected by a magnetic

field. This provides a way to separate the effect of magnetic fields and electric fields, and

96
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demonstrates that they are two different concepts. However, they are linked by the fact

that the electric charge appears in (8.1). Just like inertial and gravitational mass that was

not clear in the beginning when the Coulomb force (7.1) and the Lorentz force (8.1) were

discovered. However, postulating that the electric charge appears in both force equations

is something which is necessary to formulate the theory of classical electrodynamics, the

Maxwell equations, very much like the postulate of the equality of inertial mass and

gravitational mass is necessary for the formulation of general relativity. Again, this fact

is something experimentally established.

The Lorentz force is quite different from both the gravitational force (2.4) and the

Coulomb force (7.1). The structure of (8.1) makes explicit that it is not a central force,

like those two. Note that Newton’s third law still applies. It is also dependent on speed,

and thus appears to be not a conservative force. In the context of classical mechanics,

this is indeed not true, because an infinitesimal change of mechanical energy is related to

work, (2.10), by

dE =
dE

dt
dt =

dW

dt
dt =

~F · d~r
dt

dt = ~v · ~Fdt (8.2)

and thus vanishes for the Lorentz force (8.1). However, once electrodynamics is fully

developed, it will also become clear that energy can be stored in electric and magnetic

fields, leading to energy conservation in a more comprehensive way, as long as both particles

and fields are taken into account. In a similar manner, also angular momentum will remain

an important concept.

The structure of (8.1) makes also manifest that the Lorentz force cannot explain the

behavior of two magnets, since they act on each other even when both are at rest. This

requires to take the internal structure into account. In fact, there is no reference at all

to magnets, just to electric charges, though the existence of magnets seems to suggest

there exist genuine magnetic objects. This quagmire will be resolved once the internal

structure of magnets becomes clarified. This will show that electric charges moving inside

the magnet will be the source of the acting forces. However, the explanation of how exactly

this works requires quantum physics, and can thus only be modeled, but not explained,

in classical physics. This is also the reason why the Lorentz force is not yet explained in

terms of its origin, as the Coulomb force was explained as the electric field of an electric

charge in section 7.3.
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8.2 Ampere’s law

Given the Lorentz force (8.1) and the possibility to define a charge density in section 7.3,

it is natural as a next step to ask what happens in the presence of an electric current,

~j(~r) = ρ(~r)~v(~r),

where ρ is the local charge density and ~v is the speed (and thus direction) into which the

charges move at that point1.

While such a current will certainly experience a Lorentz force when subjected to a

magnetic field, there is a more important observation: Such a current actually also creates

a magnetic field in such a way that the created field satisfies the equation

~∂ × ~B =

∂2B3 − ∂3B2

∂3B1 − ∂1B3

∂1B2 − ∂2B1

 = µ0
~j, (8.3)

where µ0 = 4π × 10−7 N/A2 is the magnetic permittivity of the vacuum. This is known

as Ampere’s law. In a way not dissimilar to the electric field in section 7.3 this explains

the existence of a magnetic field as a consequence of moving charges. Thus, a magnetic

field appears if there are moving charges2, but then it becomes a property of the charges

in the same way as the electric field is.

Very much in the sense of (7.7) it follows from a mathematical theorem that∫
CS

d~r · ~B = µ0

∫
S

d2~r ·~j = µI. (8.4)

This means that the total current I going through an area S, which is bounded by the

curve CS, is also given by the integral of the component of the magnetic field parallel to S.

The total flux of magnetic field is determined by the total piercing current. Hence, electric

and magnetic fields on boundaries are measures for what happens inside the bounded

region.

Because of the different structure of the equation (8.3) in contrast to (7.5), there are

also some differences. Probably the most important one is that

~∂ ·~j =
∑
i

∂iji = 0, (8.5)

1This chapter is still on a static situation, and thus such a current is maintained indefinitely, and does

not change in time.
2What this means in term of the equivalence principle will be explored in chapter 10.
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because
~∂ · ~∂ × ~B =

∑
i

εijk∂i∂jBk = 0.

While this result will change once time-dependence is introduced, this is already an im-

portant insight. Physically this implies that there are no sources of the electric current

due to the magnetic field.

Based on this insight the next natural question is, whether there are magnetic charges,

which would yield an equation like (7.5)? At the level of classical physics, it becomes an

empirical fact that this is not the case, and thus the equation

~∂ · ~B = 0 (8.6)

holds3. Magnetic fields are only generated by moving charges.

This has also another important consequence: There is no place a magnetic field line

can end. Thus, magnetic field lines exist only as closed lines around currents, which is

essentially also the statement of (8.4). Thus, in the static case they are inextricably linked

to the existence of currents. This will also change in dynamic situations, giving them an

existence of their own. What will not change, however, is that they cannot end somewhere.

8.3 Matter and magnetic fields

In a very similar way as in section 7.4 it is possible to investigate the interplay between

magnetic active matter and the magnetic field. By introducing a magnetic permittivity

tensor µ(r) in the same way as the electric permittivity tensor ε(~r) any reaction of a

medium on a magnetic field can be described. Moreover, this also gives how this electric

field will now act on a current inside matter, by replacing the field ~B by ~H(~r) = µ(~r) ~B(~r),

which is sometimes called the magnetic field strength, while ~B is called in contrast the

magnetic flux strength, due to the relation (8.4). Linear magnetic matter has then µ(~r) =

µ1 with a fixed and constant permittivity µ, or relative permittivity µr defined by µ = µ0µr.

The model which describes how this appears is that the electron of the atoms move

around in orbits around the nuclei. As these are moving charges, they create a magnetic

field, which is perpendicular to the orbit. If the orbits of the electrons for different atoms

are randomly arranged, the total current will vanish when averaged over many atoms, and

3This empirical fact is an important ingredient in the construction of the Maxwell equations in chapter

9. It can be shown that you cannot have a theory like the Maxwell equations and at the same time both

electric and magnetic charges at the quantum level, though this is beyond the scope of this lecture. A dis-

covery of magnetic charges would therefore fundamentally change the way we understand electrodynamics,

not just merely an addition of those charges.
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thus the total magnetic field will be zero. When an external magnetic field acts on matter

its Lorentz force will tend to align these orbits, and thus create an effective current inside

the matter which will yield the alteration of the magnetic field field from ~B to ~H.

In such a picture magnets can now be understood. In magnets the electron orbits

are aligned without an external field4. The magnet can then act on other matter by the

Lorentz force of its magnetic field. Because magnetic fields appear as closed lines, because

the electrons move in a particular direction around their orbit, magnets exhibit a north

pole and a south pole - you cannot just reverse the direction of electron movement. As

a consequence, two magnets can attract or repel each other, depending on the relative

orientation of the electronic currents and thus magnetic fields and Lorentz forces.

While this picture is appealing, it is unfortunately not correct. In fact, it is not even

consistent in classical physics, as will be seen in section 10.3. It requires quantum physics

to fully understand how magnetic fields in matter originate, and become stable. This will

also explain why some materials can become magnets, some not, and some not even react

to magnetic fields at all. However, at the macroscopic, and even mesoscopic, level the idea

that some materials just have a magnetic field given by a permittivity tensor is usually

sufficient for most cases, especially in applications.

4In fact, this usually means that they remain aligned after the magnetic field is removed. This happens

usually if the magnetic material was liquid while in the magnetic field of, e. g., the earth during cool down,

imprinting the magnetic orientation in the solid. Not all materials can do this, explaining why magnets

can only be made from some.



Chapter 9

Electrodynamics

The fact that electric charges played a role in both electrostatics and Magnetostatics is an

ominous hint towards a common origin of both. This hinges critically on the appearance

of the same charges in Coulomb’s law and both Lorentz’ law and Ampere’s law. This

ominous connection will be further strengthened by Faraday’s law, which will establish a

connection between time-dependent electric fields and magnetic fields.

These various pieces will finally come together in the form of Maxwell’s equation, which

give a unified picture of electric and magnetic phenomena, which connect to matter via

the single property of electric charges. This unification of effects in a single origin is still

today a role model in theoretical physics of finding a theory. It has become the driving

force, even obsession, of modern theoretical physics to find a similar unification for all of

physics.

However, the guiding input in the formulation of Maxwell’s equation were indeed the

experimentally established universality of the electric charge as well as the independent

laws, but especially the connection due to be made using Faraday’s law.

9.1 Faraday’s law and time-dependence

Because electric charges react to electric and magnetic forces, they will usually change

their behavior. Thus, in general the charge density will become time-dependent, ρ(~r, t),

and as a consequence so will the current, ~j(~r, t). Assuming that electric charges cannot

be created or destroyed in the same sense as mass cannot be created and destroyed1, this

has far-reaching consequences.

Given some finite volume V the change of the total charge in it is linked to the current

1Both are empirical facts.

101
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through its boundary SV . This is the only way in which charge could appear or disappear

from the volume. Thus

∂tQ =

∫
V

d3~r∂tρ =

∫
SV

d2~r ·~j (9.1)

Taking the volume to be infinitesimally small, it can be shown that this is equivalent to

∂tρ = ~∂ ·~j, (9.2)

which is known as the continuity equation. This shows that Ampere’s law (8.3) can no

longer hold in a dynamic situation, as this result contradicts its consequence (8.5).

To understand how it needs to change can be derived from combining (9.1) with (7.7),

∂tQ = ∂t

∫
SV

d2~r · ~E =

∫
SV

d2~r · ∂t ~E.

Thus, a change in total charge is accompanied by a change in the electric field. This is

not surprising, as the electric field is generated by the electric charge. As a consequence,

Ampere’s law in a dynamical situation needs to read

~∂ × ~B = µ0
~j + µ0ε0∂t ~E = µ0

~j +
1

c2
∂t ~E (9.3)

It is not trivial that this is the only change, and no new terms appear besides this minimal

addition. The appearance of the speed of light, which emerges from the numerical values

of the product µ0ε0, is also non-trivial, and will play an important role later one. This

was originally an empirical observation. Its significance was only fully appreciated once

special relativity had emerged.

This implies that a temporal change of an electric field implies a change of the magnetic

field. If the current is localized, this holds still true away from the changing current.

Because the electric and magnetic fields are defined everywhere, their changes will influence

each other.

This leads immediately to the expectation that a time-dependent magnetic field should

somehow yield also to a change of the electric field. Because of the absence of magnetic

charges, there can be no similar effect from the current as in (9.3), and hence it can be

expected that the effect is entirely given by the time-dependence of the magnetic field.

This is indeed experimentally established to be the case, and given by Faraday’s law,

~∂ × ~E = −∂t ~B. (9.4)

That it takes this form is not trivial, but empirical.
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9.2 Maxwell’s equations

It is empirical as well that the changes (9.3) and (9.4) together with a trivial addition of

time-dependence to (7.5) and (8.6) is sufficient to capture the full time-dependence of all

electromagnetic phenomena.

These form together Maxwell’s equations,

~∂ · ~B = 0 (9.5)

~∂ × ~E + ∂t ~B = 0 (9.6)

~∂ · ~E =
1

ε0
ρ (9.7)

~∂ × ~B − 1

c2
∂t ~E = µ0

~j. (9.8)

The somewhat arbitrary placement of the constants ε0, µ0, and c is an artifact of the SI

system.

This version of the Maxwell equation is usually called ’in the vacuum’, though this

term is misleading. What it is actually is that all charges are given in terms of ρ and ~j,

rather than made into effective quantities. Proper vacuum is the situation where ρ = 0

and ~j = 0, i. e. in absence of charges. The meaning of this situation will be discussed in

more detail in section 9.3.

It is also possible to give Maxwell’s equation in matter, by introducing ~D and ~H, as

given in sections 7.4 and 8.3. As long as the matter is linear, this is achieved by direct

replacements of the fields with suitable factors of ε and µ. The charge density and current

then correspond to additional charged matter beyond the active matter. Such charges are

sometimes called free charges to separated them from those bound in the active matter.

However, if the active matter is not linear, i. e. there are tensorial or even space(-time)

dependent permittivites, it is important that they are added inside the derivatives, and

product rules may apply. However, these effective Maxwell’s equation will not be used

hereafter.

There is interesting feature that equations (9.5-9.6) do not involve charges, and only

(9.7-9.8) do. There are deep reasons for this, which will be seen once special relativity is

made explicit in chapter 10. Then the equations (9.5-9.6) will turn out to have a structural

(geometric) reason, and thus encode no physical, but merely mathematical, information,

while the physics (dynamics) is contained in the other two equations.

Of course, the system of equations is not yet closed. It describes fully what happens in

the presence of an external electric charge and current to the electric and magnetic fields.

Thus, they need to be maintained by external influences. To also include the back reaction

of the electric and magnetic fields on the charges themselves it is necessary to solve the
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corresponding equations of motions for them. In principle, it appears that, as discussed

previously, using Newton’s equation of motion (2.1) together with the Coulomb force and

the Lorentz force should do the trick. That is, however, not entirely true. These forces

arose in the static situations. To include time dependence will actually require to treat

also the matter relativistically. Thus, this is postponed to chapter 10 as well. Only if the

particles move at small speeds, and the electric and magnetic field vary slowly enough that

the situation is almost static compared to the speed of the particle, the approach using

Newton’s equation is sufficiently accurate. Fortunately, many situations are of this type,

such that this approach is suitable for many common cases.

9.3 Electromagnetic waves in the vacuum

There is an interesting feature of Maxwell’s equation (9.5-9.8): Even if there is no matter,

ρ = 0 and ~j = ~0, the Maxwell’s (proper) vacuum equations

~∂ · ~B = 0 (9.9)

~∂ × ~E + ∂t ~B = ~0 (9.10)

~∂ · ~E = 0 (9.11)

~∂ × ~B − 1

c2
∂t ~E = ~0 (9.12)

are differential equations. Just like a particle without a force acting on it still exists and

moves, this suggests that electric and magnetic fields could still exist and vary without

charges, provided there a solutions to (9.9-9.12) with non-vanishing fields.

This is indeed the case. To see how this works, derive (9.12) once more with respect

to time, and combine it with (9.10), yielding

1

c2
∂2
t
~E = ~∂ × ∂t ~B = −~∂ × ~∂ × ~E. (9.13)

This is a non-trivial equation for the electric field alone. A similar equation for the

magnetic field is obtained by deriving (9.10) first and then using (9.12). However, in both

cases there remains a connection between the electric and magnetic field, giving rise to

the notion of the electromagnetic field. In addition, the equations (9.9) and (9.11) remain.

They act as constraint equations, i. e. they select out of the possible solutions a subset.

Now, the electric field has three components. This implies that (9.13) are actually

three (coupled) differential equations. There are actually equations for coupled harmonic

oscillators, as writing them down and comparing with section 5.3.1 shows. Thus, the

solutions need to be oscillating.
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A suitable ansatz is
~E = <~a± exp(±i(~k~x± ck0t))

Inserting this into (9.13) yields

k2
0
~E = −~k × ~k × ~E.

Using that the system is rotational invariant, it is useful to select ~k = k3~ez. Then, this

yields that k2
0 = k2

3 and that ~a needs to be perpendicular to ~k, but is otherwise free.

Because of rotational invariance, this has to hold always, and thus the solution needs to

satisfy

k2
0 = ~k2

~a± = ~n× ~k, (9.14)

where ~n is an arbitrary vector. The structure of (9.14) also yields that (9.11) is auto-

matically fulfilled, as the derivative will create a structure (~n × ~k) · ~k, which identically

vanishes.

Thus, the full solution for the electric field to the vacuum Maxwell equations is

~E = <(~n× ~k) exp(±i(~k~x± c|~k|t)).

There are quite some interesting observations to be made here. The first is that these

are plane waves, which propagate parallel or antiparallel to ~k. They do so at the speed

of light, and the wave vector ~k determines the frequency of oscillations ω by ω = c|~k|.
Hence, electric waves travel in vacuum at the speed of light. In addition, the electric field

is polarized orthogonal to the direction of propagation, it is a purely transverse wave.

This is quite distinct from the acoustic waves of section 5.3.4. Choosing the vector ~n to

be complex, this adds a phase shift, and therefore also allows the direction of the electric

wave to change during propagation, allowing for circular and elliptic polarization. Finally,

because the Maxwell equations are linear, any sum of such waves is also a solution. Thus,

by superposition of waves also different wave shapes than plane waves can be constructed,

very much like in any other wave equation. Thus, the initial conditions determine the

wave shape entirely.

The magnetic field can now be determined using either of equations (9.10) and (9.12).

This yields that ~B = ~k × ~E/(ck0), and the magnetic field is thus uniquely determined

by the electric field (or vice versa), and it is always orthogonal to the electric field and

the direction of propagation. There is also a relative factor of c, making the magnetic

field in these units much smaller than the electric field. This is, however, specific to this
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system of units. Also, this implies that electric waves and magnetic waves are inseparable,

and accompany each other. Thus, the object should be considered as a single entity, an

electromagnetic waves. The origin of this will be found in chapter 10.

The existence of electromagnetic waves independent of the existence of charges im-

plies the independent reality of electromagnetic fields, freeing them from being a property

originating with (charged) matter. They thus form a new category of physical entities

apart from matter, and actually the prototype of a new class of physical objects, fields.

In contrast to a point particle, from which all matter is build up in classical mechanics,

which is located to a single point in space at any given time, the electromagnetic field is

an entity which fills out the whole of space at any given instance of time. There is also

only one electromagnetic field. Even though technically it can be written as a sum of,

e. g., the fields of multiple origins, the final physical object, which makes itself felt by

the Coulomb force and the Lorentz force, is the one electromagnetic field which emerges

as the sum. hence, this is also a new category in physics compared to point particles:

All phenomena of electromagnetism are tied to a single entity, the electromagnetic field,

rather than to many independent entities, like all of point particles in mechanics. Again,

this is a prototype for essentially all of physics at the fundamental level.

Testing the implications of the electric and magnetic forces exerted by these fields it is

possible to identify visible light, as well as X-rays, infrared radiation, radio waves etc., as

electromagnetic waves of different frequencies or wave-vector values. Thus, (generalized)

light is indeed identified with this new physical entity. And then it also becomes much

more directly accessible to experience.

9.4 Electromagnetic phenomena and matter

Electromagnetic phenomena in electromagnetically linearly active media can, as noted in

section 9.2, be well described by using ~H and ~D, and appropriate factors of µ and ε, while

non-linearly active media are more involved.

More interesting, however, are situations which involve boundaries. The first inter-

esting case is, when electromagnetic wave enter a not transparent medium. This can be

modeled by introducing complex values of ε and/or µ. Solving wave-equations inside the

medium then implies that ~k becomes complex. As a consequence, the electromagnetic

wave inside the medium, which is the real part of the complex solution, acquires an ex-

ponential damping term. Thus, light entering such a medium will very quickly diminish,

essentially on a length inverse proportional to the imaginary part of the permittivites.

The distance for one e-fold of attenuation is usually called penetration depth. This also
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explains why a very thin slab still allows light to go through.

This also allows to understanding the breaking of light at surfaces, if the light does not

go into the medium perpendicular. Because the electric field inside the medium is differ-

ent, the electric (and likewise the magnetic) field cannot be continous across the surface.

However, using the Maxwell equations, especially (9.6), it follows that the component of

the electric field parallel to the surface needs to be continous. Using the same line of rea-

soning the perpendicular component of the magnetic field is continous, while the parallel

is not. The situation for the fields ~D and ~H are reversed.

Given the special case of two linear media, and an electromagnetic field with wave

vector hitting the flat separation surface at an angle α, this is sufficient to deduce that

some part of the wave must be reflected, and the reflected plane wave has a wave vector

enclosing with the separation surface the angle β, satisfying√
µ1ε1
µ2ε2

=
sin β

sinα
,

the refraction law of Snellius. Often the combination n =
√
µε is called the refraction

index.

Such kinds of considerations concerning boundaries are useful in many problems. They

originate from the fact that the Maxwell equations are linear in the fields and the integral

version (7.7), as this implies that any distribution of charges determines alone already

the electric field on the boundary. A very common application is the so-called method of

image charges to determine the electric field. It applies to cases where there is a grounded

object, i. e. one on which no surface charges can form, and hence the potential on the

surface needs to vanish. Given the charge density outside ρo it determines an electric

potential by an integral version of (7.3), essentially by deriving (7.6), as

φo(~r) =
1

4πε0

∫
d3~r′

ρo
|~r − ~r′|

.

On the surface of a grounded object the potential vanishes by definition. This effects can

be modeled by finding an imaginary charge distribution ρi, such that its potential satisfies

(φo(~r) + φi(~r)) |on the grounded surface = 0.

The corresponding electric field can then be derived by (7.3) from φo + φi alone, as the

surface of the grounded sphere can be considered to be the boundary of the outside. This

invests that the electric field of a charge distribution, which exists only in a finite space

volume, falls off to zero at infinity. Hence, the electric field outside needs to be given

uniquely by the combination of both potentials.

This demonstrates again a unique feature of the electromagnetic field, highlighting the

importance of surfaces and boundaries in dealing with them.
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9.5 Dipole radiation and antennae

Once it becomes clear that electromagnetic radiation is equal to light, radio waves etc.

it becomes very interesting to understand what it means that there are sources radiating

an electromagnetic wave. Or, vice versa, sources receiving an electromagnetic wave as an

antennae.

A source for electromagnetic radiation needs to satisfy two conditions. The first is that

it is time-dependent. Otherwise, the situation is static, and it becomes no longer sensible

to talk about emission and reception. The second is that it is localized. The simplest such

construction, which describes, however, many practically important features, is a so-called

dipole. This is a charge, which oscillates between two points along a line. This yields

also a current, and thus there is no electric radiation without having simultaneously also

magnetic radiation.

Of course, movement along a line is not necessary. There are many other possibilities.

They are describe by so-called multipoles. They can be ordered by how the source changes

under rotation. The simplest is a monopole, a point charge, which is invariant under

rotations. In a sense, it pulsates2. The dipole is the next symmetric one, having cylindrical

symmetry. After that, the next one is a quadrupole, which has even less symmetry, and

so on. This can be systematically treated in terms of a multipole description. This is,

however, technically too involved to do here.

Assume for the moment an antennae, which is very small, and oriented along the z-

direction, which has an oscillatory current with frequency ω, and a maximum current of

p0, defining ~p = p0~ez, located at the origin. The electromagnetic fields, which are obtained

from solving Maxwell’s equation in a manner not dissimilar from the vacuum case, are

then given by

~E =
1

4πε0
<
((

ω2(~r × ~p)~r
c2r3

+

(
1

r5
− iω

cr4

)(
3~r(~r · ~p)− r2~p

))
e
iωr
c
−iωt
)

~B =
ω2~r × ~p
4πε0c3r

<

((
1 +

ic

ωr

)
e
iωr
c
−iωt

r

)
.

These are highly involved quantities. The main reason for this is the detailed effects of the

changes of directions of the source. This can be somewhat disentangled by looking at the

far-field, i. e. at distances ωr/c� 1 where many such changes already accumulate. Doing

2This would violate charge conservation, and can thus be only thought of as something where an

external reservoir provides and removes charge in such a way as to not generate quantitatively relevant

currents.



Chapter 9. Electrodynamics 109

a Taylor expansion of the exact near-field expressions yields the far-field results

~B =
ω2

4πε0c3

~r × ~p
r2
<eiω( rc−t)

~E = c
~B × ~r
r

.

Thus, far away from the source, the emitted electromagnetic waves are orthogonal to each

other, just as in the vacuum. Both are also orthogonal to the direction of the source,

and propagate radially outwards. Thus, at these distances the antennae looks like a point

source, though with a direction attached. Finally, the electromagnetic field diminishes

linearly with the distance travelled.

However, the latter gives a slightly distorting view of what happens. For this it is useful

to discuss the energy stored in electromagnetic fields. Because electromagnetic fields are

fields, it makes often no sense to talk about the whole energy stored in them. After all,

this means how much energy is stored in the whole of space. More useful is the energy

density e, i. e. the energy per unit volume. It is given by

e =
1

2

(
ε0 ~E

2 +
1

µ2
0

~B2

)
(9.15)

This can be determined based on the potential to do work, just as potential energy is

determined, which in turn can be derived from the corresponding force laws. It can be

obtained directly from the Maxwell equation, but this leads too far here.

Just like for charge and current in equation (9.2), it is possible to show that there

exists a kind of continuity equation for the energy density in an electromagnetic situation.

This will have two components. One is the energy carried away by the moving charges,

and one from the electromagnetic fields. This yields the energy continuity equation

∂te = −~∂ · ~S −~j · ~E (9.16)

~S =
1

µ0

~E × ~B, (9.17)

where ~S is called the Poynting vector. It is the energy current carried by the electromag-

netic field. The existence of such an energy current, and energy density, carried by the

electromagnetic field appears necessary, as light is able to incite a reaction, which requires

energy. This again emphasizes the independent physical reality of the electromagnetic

field. Finally, note that for plane waves the energy current is in the direction of the wave

vector ~k, and thus energy is carried in the direction of the wave. Note that the term ~j · ~E
is the work done by the electric field on electric charges, as derived from (2.10) and the
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Coulomb force in terms of the electric field. There is no magnetic term, as the magnetic

field does not provide work, as was discussed in section 8.1.

Coming back to the case of a source, the Poynting vector averaged over one period in

the far-field is given by

~S =
µ0p

2
0ω

4

32π2c

sin2 θ

r3
~r. (9.18)

It points radially outward from the source, but is modulated with respect to the orientation

of the dipole. Especially no energy is radiated in the direction of the dipole. The fact that

it decays like 1/r2 is a necessity from energy conservation. As a energy density current,

it provides the amount of energy radiated per unit area and time. The total energy of a

surface surrounding the source grows like r2. With the Poynting vector decaying like 1/r2

this yields that the total energy radiated is independent of distance, but becomes spread

out more and more the farther away from the source the recipient is. This explains, e. g.,

why a light source becomes dimmer the further away an observer is from it: Because the

area of the eye remains constant, the total energy received diminishes, and so does the

perceived brightness of the source. A detector surrounding the whole surface would not

see the effect.

This is also true generically for a receiver. The electromagnetic field will act on charges

at the receiver with a force, leading to a motion of them. Because this is an oscillatory

phenomena, this is very similar to the situation of a driven harmonic oscillator from

section 2.6. Just as in this case there is an optimal receiver, which is in resonance with

the incoming wave’s frequency, yielding the strongest effect. Because the electric charges

actually have to be able to move a certain distance, this implies that for any given frequency

there is a (minimum) length of the antennae to obtain a signal at a given minimum level.

Thus, the physical forms of antennae is an important technical issue. Also, because of

the additional angular dependence in (9.18) this implies that the orientation relative to

the source matters. All of these aspects have to be taken duly into account in technical

situations. They also play an important role in observation, especially in astronomy.

As noted above, different forms will yield different behavior. E. g., monopoles are

found to not radiate any energy. Thus, they will not emit detectable radiation. More

complicated shapes will yield more involved forms of the electromagnetic waves and of the

radiated energy. This can be both hindrance and advantage in technical applications as

well as many interesting astronomical problems. Unfortunately, this becomes quickly very

technical, and will thus be skipped here.
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9.6 Electrodynamics as a gauge theory

There is one more feature, which still appears somewhat mysterious. Why are the electric

field and magnetic field so tightly linked? Is there a common origin? The answer to this

is affirmative, and it will be again a prototype for more fundamental theories of physics.

Maxwell’s equations (9.5-9.8) have the very interesting property that they only connect

derivatives of the fields3. This allows actually to write the six components of the electric

and magnetic field in terms of only four functions, a vector ~A and a single function A0.

As will be seen the latter is intimately connected to the electric potential from section

7.2. However, in the next chapter 10 a much more interesting connection will arise, and

thus this connection will not be too strongly emphasized. The vector ~A is often called the

vector potential. In the relativistic case, the same name will denote the four-vector build

from A0 and ~A.

The connection is the following. Maxwell’s equation can be fulfilled, if the electric field

and the magnetic field are given by

~B = ~∂ × ~A (9.19)

~E = −~∂A0 − ∂t ~A. (9.20)

The second equation shows that in the static case A0 is, up to a factor of c, the electric

potential, by comparison to (7.3).

That this is indeed a solution to Maxwell’s equation can be seen from the fact that

(9.5) is trivially fulfilled by (9.19), as any curl of a vector is automatically divergence-free.

Likewise with the same argument

~∂ × ~E = −~∂ × ∂t ~A = −∂t ~B,

and thus (9.6), follows. Thus the homogeneous Maxwell equations are satisfied by con-

struction.

The inhomogeneous ones reduce to

~∂2A0 + ∂t~∂ · ~A = − ρ
ε0

(9.21)(
~∂2 ~A− 1

c2
∂2
t
~A

)
− ~∂ ·

(
~∂ · ~A+

1

c2
∂tA0

)
= −µ0

~j. (9.22)

These are now four equations for four unknowns. Thus, the surplus constraint equations of

the original Maxwell equations, after all 8 equations for 6 functions, have been resolved in

3The linearity is also an interesting property, but it is found that (specific) non-linearities do not

impede the following, though make it more complicated. Such non-linearities actually appear commonly

in particle physics.
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this way. The questions remains, of course, if for all possible charge densities and currents

the solutions of (9.21-9.22) yield the correct electric and magnetic fields.

It turns out that they do. This follows from the fact that the construction explicitly,

and identically, resolves the constraint equations of Maxwell’s equations, but retain the

other degrees of freedom. However, it turns out that for any value of the electric field and

magnetic field there is an infinite number of possibilities for both ~A and A0. This can be

seen in the following way. Changing

~A→ ~A′ = ~A+ ~∂ · Λ (9.23)

A0 → A′0 = A0 + ∂tΛ, (9.24)

where Λ is an arbitrary function, will not change either the electric field nor the magnetic

one. This follows for the magnetic field because the divergence of a curl is zero, and for the

electric field because in (9.20) after exchange of both derivatives the contributions from

both terms cancel. As (9.21-9.22) are just Maxwell’s equations (9.7-9.8) with (9.19-9.20)

inserted, neither will they. Thus, for any set of electric field and magnetic field there is an

infinite number of possibilities for ~A and A0.

Having not a unique solution is nothing fundamentally new. It started with the arbi-

trary constant which could be added to the mechanical potential in section 2.5. The new

aspect is that it is not a constant, but a function, which can be added, without chang-

ing anything observable. After all, the observation of electromagnetic fields is from the

Coulomb force and the Lorentz force, and they do not change, as they only involve the

electric field and the magnetic field.

This has two consequences. One is that this freedom can be used to introduce additional

constraints on ~A and A0, usually such as to simplify calculations. Such constraints are

called gauge conditions. These may fix this freedom completely, or only partly. One choice

is, e. g., Coulomb gauge, which imposes

~∂ · ~A = 0,

which reduces (9.21) to an equation which makes explicit the connection of A0 and the

electric potential. Another one is the Lorentz condition, which imposes

~∂ · ~A+
1

c2
∂tA0 = 0,

and which thus simplifies (9.22) to an inhomogeneous wave equation with the electric

current as a source. Thus, both simplify the solution of Maxwell’s equation considerable.

In practice, it will depend on the specific form of ρ and ~j which is more advantegous.
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Once the solution is obtained, (9.19-9.20) can be used to obtain the electric field and the

magnetic field.

It is not obvious that these are valid gauge conditions. To show that, it is necessary

that, e. g. for Coulomb gauge,

~∂ · ( ~A+ ~∂Λ) = 0→ ~∂2Λ = −~∂ · ~A

has a solution to Λ for any ~A. That this is the case follows from the theory of partial

differential equations. The same is true for the Lorenz gauge condition. Both gauges are

not removing all freedom for the vector potential. A transformation depending only on

time, Λ(t), is still allowed for the Coulomb gauge. For the Lorentz gauge a transformation

where Λ satisfies a sourceless wave equation is still possible. That is not a problem, and

admissible. The remaining freedom can either be fixed, or initial conditions can be used

to select a unique solution.

The other consequence is that this implies that the four degrees of freedom are still

too much, and electric and magnetic fields actually have even less. In fact, fully fixing

all remaining freedom shows that only two out of the four components are independent.

Thus, all six components of the electromagnetic field would be given by only two functions.

How this works out can be obtained in the following way. One is that the electric current

and the charge density are not independent, but linked by the continuity equation (9.2).

This removes one degree of freedom. The other requires special relativity, and is more

involved. However, there is a hand-waving explanation for the vacuum case of section 9.3.

As was observed there, the electric field and magnetic field were perpendicular to each

other and to the direction of propagation. Thus, the electromagnetic field had only the

possibility to arrange itself transverse to the direction of propagation, which are exactly

two degrees of freedom. The same effect is seen in the radiation of an antennae in section

9.5, underlining that this is not only a feature of the vacuum electromagnetic wave.



Chapter 10

Unification of electrodynamics,

special relativity, and mechanics

With Maxwell’s equations in place, it is now finally possible to unify classical mechanics,

electrodynamics, and, as a necessary glue, special relativity. This gives a unified framework

of all of classical physics. Other aspects, e. g. optics, hydrodynamics, and thermodynamics,

can then be derived completely out of this underlying description. However, in practice this

may be too formidable - just imagine to solve the ∼ 3×1023 equations of motion to describe

a mol of gas. Thus, it is often useful to derive effective theories from this underlying single

theory. E. g., optics is derived from electrodynamics in the limit of distances much larger

than the wave-length of the electromagnetic wave. Thermodynamics is obtained from

Newton’s equation in the limit of infinitely many particles. And so on. However, it is

important to know that all of these myriad of effective theories derive from a single one,

the one to be determined now.

But, just as all known theories today, even such a powerful theory as this one carries

already the seed of its own failure, both from its mathematical formulation as well as the

comparison to experiment. This will be discussed in section 10.3 to motivate the necessity

for quantum physics. This will yield another, more fundamental theory, of which the

present one can be derived in the limit of sufficiently long distances. Still, the following

remains a prototype of a unified description of physics. Just finding one without internal

failure or discrepancy to experiment has not been found (yet?).

10.1 Electrodynamics as a relativistic theory

The first step is to understand the vacuum case without electric charges. It is at first sight

not obvious how to proceed. After all, special relativity dictates the use of 4-component

114
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objects. Electric and magnetic fields, however, have three components each. There is no

obvious fourth component to be added to either, as was the case with time, energy, or

power for position, momentum, and force in mechanics.

The reason is involved. To find a solution, first note that there is a fundamental

difference between electric and magnetic fields in the vacuum. When performing a parity

transformation, i. e. mirroring all vectors, the electric and magnetic fields cannot behave in

the same way. This follows from equations (9.10) and (9.12). Because the spatial derivative

changes sign under this operation, but not the time derivative, either the electric or the

magnetic field have to change sign. Which of them can be deduced from (8.3). This

yields that the electric field behaves like a vector, but the magnetic field does not. It is

a so-called pseudo-vector. This also implies that something strange is going on, and it is

not just finding a fourth component.

The answer to this is that actually neither is extended to a four-vector. What eventually

happens is that they form a tensor rather than a vector, the so-called field-strength tensor

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 ,

which is antisymmetric Fµν = −Fνµ. The factor of c is an artifact of the different units

of the electric and magnetic fields in SI units. Such tensors also transform in a prescribed

way under Lorentz transformations, which will not be detailed here.

Maxwell’s equation can now be written using the field-strength tensor in a relativistic

form,

∂µFµν = 0 (10.1)

∂µεµνρσF
ρσ = 0, (10.2)

where εµνρσ is the generalization of the usual Levi-Civita tensor to four dimensions. The

second equation corresponds to the homogeneous Maxwell equation (9.9-9.10) and the first

one to the inhomogeneous ones (9.11-9.12), which can be seen by explicitly writing them

out. Note that these are in total eight equations, just as Maxwell’s equation.

As a consequence, the change of the electric and magnetic field under a Lorentz transfor-

mation is now given entirely in terms of the transformation properties of the field-strength
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tensor. Given a speed in x direction, the change is

~E ′ =

 Ex

γ(Ey − cβBz)

γ(Ez + cβBy)

 (10.3)

~B′ =

 Bx

γ
(
By + β

c
Ez
)

γ
(
Bz − β

c
Ey
)
 . (10.4)

This is very different from the usual transformation of position and momentum. Especially,

the component parallel to the speed is unchanged. Also, the boost mixes electric and

magnetic field. In fact, even if one system there has been only either an electric field or a

magnetic field, in a boosted system there are both. This underlines that electric field and

magnetic field are really just two aspects of the same entity.

This also clarifies the question of what happens when a current is viewed from a frame

in which its charges are not moving. Indeed, in this frame there is no magnetic field. But

it did not vanish. It was only shifted into the electric one. Which, of course remains, as

the charges are still there. How this precisely works is now given explicitly by (10.3-10.4).

The structure becomes even more transparent when rewriting the electric field and

magnetic field in terms of the vector potential of section 9.6. The quantities there form

now a four vector (A0, ~A), with the zero-component behaving as a time component, and

the whole vector potential transforming under a Lorentz transformation like a momentum

vector. In terms of these the field-strength tensor is given by

Fµν = ∂µAν − ∂µAν , (10.5)

as can be verified by explicitly inserting (9.19-9.20). Then the transformations (10.3-10.4)

are no longer so surprising, as the vector potential component in direction of the speed

does not appear in the expression for the electric and magnetic fields. The transformation

properties then also yield the explicit form, given that both the derivative and the vector

potential needs to transform.

Note that the field-strength tensor is gauge-invariant by structure, as the relativistic

form of (9.23-9.24) is

Aµ → A′µ = Aµ + ∂µΛ,

and then the antisymmetry of the two terms in (10.5) remove the Λ-term.

Moreover, the homogeneous Maxwell equation (10.2) reads now

∂µεµνρσ(∂ρAσ − ∂σAρ) = εµνρσ(∂µ∂ρAσ − ∂µ∂σAρ) = 0.
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Because ∂α∂β is symmetric in the indices, but is contracted with an antisymmetric quantity

in αβ, this is identical zero, no matter the value of Aµ. Thus, the homogeneous Maxwell

equations are trivial fulfilled, and are so because of the gauge nature and the fact that the

electromagnetic field is really from an antisymmetric Lorentz tensor. It is thus a purely

geometric feature of the theory.

Of course, this leaves open why the electromagnetic fields are described by such an

object. This is unknown so far. But also the appearance of c for the speed of the elec-

tromagnetic waves becomes now no longer surprising, as it is exactly this value which

is needed to make the inhomogeneous Maxwell equation (10.1) relativistically covariant.

The need to be consistent with special relativity thus implies that electromagnetic waves

travel at the speed of light, and thus the maximum speed of light, through vacuum.

Interestingly, historically this had been known before the advent of special relativity,

as had been the Lorentz transformation. At that time, it was considered to be an oddity

of Maxwell’s equation and electromagnetism. Special relativity then elevated this oddity

to be a feature of space-time itself.

10.2 A unified, relativistic theory of mechanics and

electrodynamics

It is now necessary to add matter. Given the form of the inhomogeneous Maxwell equation

(10.1), it is necessary that the right hand side is a four-vector. Thus, the charge density

and the current need to be combined into one. This is indeed straightforwardly possible

as j = (cρ,~j), which transforms as an ordinary four-vector, like the coordinate. The

inhomogeneous Maxwell equation then becomes

∂µF
µν = µ0j

ν ,

which can be seen by explicit comparison to (9.7-9.8), and the constants are again an

artifact of the SI system. However, this still leaves open how the electric charges are

affected by the electromagnetic forces.

It is best to consider for this the relativistic version of Newton’s law (6.5). In a fixed

reference frame, the force will be the usual Coulomb force and Lorentz force. They can

be expressed in terms of the electric and magnetic field. In a frame where this only an

electric field this becomes most straightforward

dpµ
dτ

βi�1
=

(
q~β ~E

q ~E

)
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while for a magnetic field

dpµ
dτ

βi�1
=

(
0

q
mc
~p× ~B

)
,

because the Lorentz force has no projection into the direction of the movement of the

particle. Comparison to the transformation laws for the electric and magnetic fields and

the structure of the field-strength tensor yields then

dpµ

dτ
=

q

mc
F µνpν .

The corresponding current is then obtained by integrating this equation to get the position

of the particle as a function of eigentime, X(τ). This yields j = (cqδ(x −X(τ)), c~pδ(x −
X(τ))/m). Thus, this closes the theory completely, and hence describes fully the inter-

action of a particle and the electromagnetic fields. Matter can then be build from many

such particles. Note, however, that this is a highly non-trivially coupled set of differential

equations. But it is, in principle solvable.

This finally unifies electromagnetism and mechanics. In fact, it is possible to write this

down also in terms of a single Lagrange function, when utilizing again the vector potential,

L = −mc2

√
1− m2p2

c2
− q

c
pµA

µ − 1

4

∫
d3xFµνF

µν .

That the second term is a density follows from the fact the electromagnetic fields are

defined everywhere in space. Using the techniques from section 5.3.3, it can be shown that

this yields the correct equations of motions for all particles, though this requires in detail

quite some work. This is even more true when intending to access the Hamilton function,

because of its not being relativistically invariant. Thus, this will need to suffice for the

purpose of hand, demonstrating that such a unification is indeed possible.

10.3 Radiation of an accelerated charge and the limit

of validity of classical physics

As was already indicated in section 9.5, in the presence of a current an electromagnetic

field is emitted, and energy carried away.

Consider now a point charge, with a given trajectory r(τ), and corresponding four-

speed u(τ) = (c, ~β). Define implicitly an eigentime τ0 by |~x − ~r(τ0)| = R, where ~x will

be the point where the electromagnetic field is evaluated. This is the eigentime necessary

for something at the speed of light to propagate to a point ~x a distance R away from

the position of the particle. This involved construction is necessary, as changes in the
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electromagnetic field can only propagate at the speed of light, but the field is defined

everywhere. Thus, to understand the field of the point charge, it is necessary to know

where the point charge was at a previous time1. Solving the corresponding Maxwell

equation for such a particle, ignoring the back-reaction of any electromagnetic forces on

the particle, yields

~E(t, ~x) = q

 ~n− ~β(τ0)

γ2(1− ~β(τ0) · ~n)3R2
+
~n×

((
~n− ~β(τ0)

)
× ∂τ ~β|τ=τ0

)
c(1− ~β(τ0) · ~n)3R


~B(t, ~x) = ~n× ~E

~n =
~x− ~r(τ0)

R
.

This is a very involved expression. There are, however, a few points of importance. The

first is that again electric field and magnetic field are orthogonal to each other. The second

is that both fields decay as 1/R, similar to the case of the antenna. At large distances the

first term of the electric field becomes irrelevant as it decays like R2. Then both the electric

field and the magnetic field are directed transverse to the direction ~n, which points radially

away from the point where the particle was. The corresponding Poynting vector (9.17) is

thus also directed radially outwards, and there is thus a flux of energy into this direction.

This energy flux decays again as 1/R2, and thus the total energy radiated integrated over a

surface at a given instant in time remains constant2. However, the radiated energy is only

non-zero, if ∂τβ, i. e. the acceleration of the particle is non-zero3. Thus, an accelerated

charge radiates off energy.

So far this seems not to be a problem. After all, somehow energy is pumped into the

system by accelerating the charge, and some of it is lost in form of radiated electromagnetic

waves. In fact, such radiation is very useful, as the example of the antennae shows. There,

it is actually this feature which makes transmission of electromagnetic waves possible, and

thus a lot of technologies.

But now comes the point where this leads to a conflict with observation. As noted in

section 8.3 the existence of magnets indicate the presence of currents inside matter. These

currents need now to either push all electric charges outside of any finite piece of matter,

which is not observed, or needs to be directed back into the matter eventually. Which

1This very involved approach is an artifact of using point charges. More fundamental theories, in which

all of matter also become fields, are much less cumbersome.
2Here it is glimpsed over a few subtleties, but the message remains the same when doing all details

carefully.
3At zero acceleration the first term seems to remain, but it has a different direction, and does not yield

a net energy flow through a surface surrounding a particle.
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would require an acceleration of the charges inside the matter. The same is true for the

idea of electrons orbiting a nucleus, as keeping them on the orbit requires acceleration. In

all such cases electromagnetic radiation would need to appear. This is not observed. Also,

even if it would appear, there would be no source for the required energy. Hence, these

observation imply that there needs to be something more than the present unified special

relativistic theory of electrodynamics and mechanics of section 10.2. This is indeed the

case, and the problem is resolved by quantum mechanics.

Besides this purely experimental evidence for the need to go beyond the classical unified

theory there are also other, purely theoretical reasons for this to be necessary. Most

notably is the problem of point charges. A point charge has an electric field. Within the

electric field energy is stored, as dictated by (9.15). This density behaves like ~E2, but

this means it diverges like 1/~r4, due to the electric field of a point charge (7.2). Trying

to integrate this to obtain the total energy stored in this static field yields a divergence -

an infinity of energy would be stored in the field of a point charge at rest already. Hence,

the theory becomes unstable when assuming the existence of point charges. This problem

is resolved by a better description of matter in terms of quantum fields. However, this

kind of divergency is a general signal for a theory not to be able to describe some regime,

in this case very short distances. Thus, electrodynamics is again a prototype for a more

general trait. The appearance of such divergencies are one of the key features of modern

theories which guarantee that there is yet more to be discovered.


