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Abstract

In non-Abelian gauge theories of the Yang-Mills type, fixing a gauge
is inevitable in order to perform calculations. However, according to the
Gribov-Singer ambiguity, gauge fixing beyond perturbation theory is impos-
sible by only imposing local conditions. In the Gribov-Zwanziger scenario,
this is solved by restricting to field configurations that lie within the first
Gribov region, where the Faddeev-Popov operator is positive definite. Al-
ternatively, it should also be possible to average over all Gribov copies in a
certain way in order to deal with the Gribov-Singer ambiguity. The aim of
this thesis is to find Gribov copies outside the first Gribov region - and con-
sequently normalizable eigenstates corresponding to negative eigenvalues of
the Faddeev-Popov operator - in SU(2) Yang-Mills theory.

To this end, the instanton field configuration is modified in certain differ-
ent ways: first, a constant modification is investigated and the eigenstates
determined algebraically. Next, a number of different modifications are ana-
lyzed by using power series expansions, the termination conditions of which
are looked for as well. Finally, some general considerations are made on
modifications of the instanton configuration. Despite the results not meet-
ing all of the restrictions imposed on them, some light is shed on how Gribov
copies outside the first Gribov region might look like.

1



Contents

1 Introduction 3
1.1 Gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Gribov regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modification of the instanton configuration 6
2.1 The instanton field configuration . . . . . . . . . . . . . . . . . . . 6
2.2 Modifying the instanton ansatz . . . . . . . . . . . . . . . . . . . . 6
2.3 Restriction on u(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Lagrangian and action . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Constant u(r) 9
3.1 Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Lagrangian and action . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Power series expansions 12
4.1 Exponential u(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 A more simple u(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Half-integer exponents . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Second-order polynomial as denominator of u(r) . . . . . . . . . . . 18
4.5 A general approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 A general rational approach . . . . . . . . . . . . . . . . . . . . . . 20

5 Summary and outlook 22

2



1 Introduction

1.1 Gauge theories

To date, the standard model of particle physics is the most successful theory in
theoretically describing particle physics, containing three of the four fundamental
interactions: the strong and weak interactions and electromagnetism. Addition-
ally, it covers the Higgs-mechanism, but does not describe gravitational interac-
tions. Since all of the former are so-called gauge theories, it has become one of
the most important tasks of modern physics to study gauge theories and under-
standing them has become an inevitability in the field of particle physics.

The most prominent feature of gauge theories is that the physically observable
quantities are invariant under certain types of transformations of the fields, called
gauge transformations. The best known example of a gauge transformation is to
be found in electromagnetism, where the transformations of the vector potential
A and the scalar potential V

A→ A′ = A+ ∇χ

V → V ′ = V − ∂χ

∂t
,

(with t denoting time and χ being an arbitrary differentiable function depending
on space and time) leave the physically observable electric and magnetic fields E
and B

E = −∇V − ∂A

∂t

B = ∇×A

unchanged.

1.2 Yang-Mills theory

The most important gauge theories are those of the Yang-Mills type, as they
are used for describing both the strong and the electroweak interaction, the latter
being a unification of the weak interaction and electromagnetism. Thus, this thesis
will restrict to Yang-Mills-type gauge theories exclusively. Electromagnetism -
arguably the most famous gauge theory - is an example of an Abelian Yang-Mills
theory. However, the main focus of this thesis shall be on non-Abelian Yang-Mills
theories, the mathematical formalism of which is much more complex.

In general, every gauge theory has an underlying symmetry group of gauge
transformations. In the case of Yang-Mills theories, possible underlying groups
are for instance the special unitary groups SU(n), the Lie groups of unitary
n× n-matrices with determinant 1. From here onwards, SU(2) will be considered
exclusively.
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The central elements of interest in the following will be gauge fields, also called
field configurations, which will be denoted by Aaµ

1. The Lagrangian of Yang- Mills
theory is [1]2

L = −1

4
F a
µνF

a
µν (1)

with
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2)

Herein, g denotes the coupling constant and fabc are constants that vanish in
Abelian Yang-Mills theories. In the case of SU(2) as the underlying symmetry
group, the numbers fabc are given by the totally antisymmetric Levi-Civita tensor
εabc [1]. The Lagrangian (1) is invariant under finite gauge transformations of the
form [2]

Aµ → A(h)
µ = hAµh

−1 + h∂µh
−1

Aµ = τaAaµ

h = τaφa,

with arbitrary functions φa and with τa denoting for SU(2) the Pauli matrices

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
.

1.3 Gauge fixing

As seen in the previous subsection, there is a set of field configurations A
(h)
µ con-

nected by gauge transformations h, for which the Lagrangian (1) is the same. This
set is called the gauge orbit G(Aµ) of the field configuration [2]:

G(Aµ) = {A(h)
µ ∀h}.

Even though the Lagrangian is gauge-invariant, there are still important quan-
tities that do depend on the choice of gauge, making it necessary to fix a gauge
for all calculations. One could - for example - require the field configurations to
obey the Landau gauge condition

∂µA
a
µ = 0, (3)

which would actually fix the gauge in perturbation theory. Beyond perturbation
theory, however, (3) does not lead to a unique solution anymore [3]. This phe-
nomenon is called the Gribov-Singer ambiguity and the different possible solutions
are called Gribov copies. The remaining part of the gauge orbit fulfilling the gauge
condition is called the residual gauge orbit [2]. A necessary requirement in order
to fully fix the gauge is to be able to somehow pick one single Gribov copy out of
the residual gauge orbit, which was, however, shown to be impossible to achieve
by local gauge conditions (like (3)) alone [4].

1In this thesis, everything is given in four-dimensional Euclidean space. As for the indices,
Greek letters denote space-time coordinates, while Roman letters denote coordinates in color
space.

2Note that the Einstein summation convention and natural units ~ = c = 1 are used here
and in the following.
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1.4 Gribov regions

In the Gribov-Zwanziger scenario, it is assumed that the Gribov-Singer ambiguity
could be solved by restricting to field configurations for which the Faddeev-Popov
operator

Mab = −∂µ
(
∂µδ

ab + gfabcAcµ
)

(4)

is positive definite [3,5]. The region in configuration space for which this restriction
holds is called the first Gribov region, a convex region with a boundary termed
the first Gribov horizon. At the first Gribov horizon, a zero eigenvalue appears,
becoming negative beyond the horizon. There are more Gribov regions outside
of the first one, being separated by additional Gribov horizons and supporting
more and more negative eigenvalues [3]. As to date most research has been done
on the first Gribov region, the aim of this thesis shall be to focus on regions
outside the first Gribov region in search of normalizable eigenstates that host
negative eigenvalues. This is important, as it is possible theoretically to average
over all Gribov copies in every Gribov region in order to solve the Gribov-Singer
ambiguity [2].
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2 Modification of the instanton configuration

2.1 The instanton field configuration

The eigenequation of the Faddeev-Popov operator (4)

Mabφb = ω2φa (5)

leads to zero modes for an instanton field configuration characterized by the gauge
fields

Aaµ =
1

g

2

r2 + λ2
rνζ

a
νµ (6)

rµ = (x, y, z, t)T ,

wherein ζaµν denote the t’Hooft symbols

ζ1µν =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , ζ2µν =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , ζ3µν =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

Because the Landau gauge condition (3) holds for (6), the instanton field config-
uration is admissible in Landau-gauge [6].

2.2 Modifying the instanton ansatz

In order to find normalizable eigenstates sustaining negative eigenvalues w2, we
modify (6) by replacing the term 2

r2+λ2
with any function −u(r) depending only

on the radial distance3:

Aaµ = −u(r)

g
rνζ

a
νµ (7)

r =
√
x2 + y2 + z2 + t2.

This modification is the only significant difference to the calculations done in the
original work [6]; the remainder of subsection 2.2 follows [6] in close analogy.

Inserting (7) into the Faddeev-Popov operator (4), the eigenequation (5) reads

−∂2φa + u(r)fabcrνζ
c
νµ∂µφ

b = ω2φa

and by exploiting the antisymmetry of fabc

∂2φa + u(r)fabcrνζ
b
νµ∂µφ

c = −ω2φa. (8)

We identify the terms rνζ
b
νµ∂µ as angular momentum operators

Lαβ = i(xα∂β − xβ∂α)

3In this thesis, at some points hyperspherical coordinates
rµ = (x, y, z, t)T = (r cosφ sin θ sin η, r sinφ sin θ sin η, r cos θ sin η, r cos η)T are used.
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and rewrite eq.(8) as the three equations(
∂2 + ω2

)
φ1+

u(r)

i

(
(L34 + L12)φ

2 + (−L24 + L13)φ
3
)

= 0 (9a)(
∂2 + ω2

)
φ2+

u(r)

i

(
− (L34 + L12)φ

1 + (L14 + L23)φ
3
)

= 0 (9b)(
∂2 + ω2

)
φ3+

u(r)

i

(
(L24 − L13)φ

1 − (L14 + L23)φ
2
)

= 0. (9c)

Further simplification is possible by introducing the set of operators

L1 =
1

2
(L14 + L23) , L

2 =
1

2
(L13 − L24) , L

3 =
1

2
(L34 + L12)

with
L2 =

(
L1
)2

+
(
L2
)2

+
(
L3
)2

and by using that [6]

∂2 =
1

r3
∂rr

3∂r −
4L2

r2
.

As shown in [6], L2 can be replaced by its eigenvalues l(l + 1). Eqs.(9) now read(
1

r3
∂rr

3∂r −
4l(l + 1)

r2
+ ω2

)
φ1+

2u(r)

i

(
L3φ2 + L2φ3

)
= 0 (10a)(

1

r3
∂rr

3∂r −
4l(l + 1)

r2
+ ω2

)
φ2+

2u(r)

i

(
−L3φ1 + L1φ3

)
= 0 (10b)(

1

r3
∂rr

3∂r −
4l(l + 1)

r2
+ ω2

)
φ3+

2u(r)

i

(
−L2φ1 − L1φ2

)
= 0. (10c)

We divide both sides by u(r)
2

, separating eqs.(10) each into a radial and an angular
part. For the former, we introduce the operator

Dr =
2

u(r)

(
1

r3
∂rr

3∂r −
4l(l + 1)

r2
+ ω2

)
and for the latter the unitary matrix

LI =
4

i

 0 L3 L2

−L3 0 L1

−L2 −L1 0

 .

Eqs.(10) now take the form of the matrix equation

(11Dr + LI)φ = 0. (11)

If {li} is the eigenbasis of LI , we can expand the solutions of eq.(11) in this basis:
φ =

∑
φlili. The fully decoupled radial equation now reads

(Dr + ci)φli = 0

with the eigenvalues ci to the corresponding eigenvectors li of LI . There are only
three different eigenvalues possible: ci = 4, −4l and 4(l + 1) with multiplicities
2l + 1, 2l + 3 and 2l − 1 respectively [6]. Since φli does not depend on i, we can
replace it by φlc for the following. The radial equation now takes the form

∂2rφlc +
3

r
∂rφlc +

(
ω2 − 4l(l + 1)

r2
+
cu(r)

2

)
φlc = 0. (12)
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2.3 Restriction on u(r)

In order for the modified field configuration to still be in Landau gauge, i.e. for
the Landau gauge condition (3) to hold for (7), there is a restriction we need to
impose on the modification u(r).

∂µA
a
µ = −1

g

(
rνζ

a
νµ

∂u(r)

∂rµ
+ u(r)

∂rν
∂rµ

ζaνµ

)
= −1

g

(
rνζ

a
νµ

∂u(r)

∂rµ
+ u(r)δνµζ

a
νµ

)
with δνµ denoting the Kronecker-delta. The second term is a sum over the diagonal
terms of the antisymmetric t’Hooft-symbols ζaνµ, which equals to zero. Further-
more,

∂u(r)

∂rµ
=
∂u(r)

∂r

∂r

∂rµ
=
∂u(r)

∂r

rµ
r

and hence

∂µA
a
µ = −1

g

∂u(r)

r∂r
rνζ

a
νµrµ. (13)

Due to the structure of the t’Hooft symbols, the sum rνζ
a
νµrµ vanishes necessarily.

Thus, in order for (13) to equal zero and consequently for (7) to be in Landau

gauge, a sufficient restriction is to require for ∂u(r)
r∂r

to be finite for each r. How-

ever, configurations with ∂u(r)
r∂r

diverging slower than r−2 as r → 0 should also be
admissible.

2.4 Lagrangian and action

We now look for a general expression of the Lagrangian (1) of the modified in-
stanton field configuration (7). Straightforward calculation yields with

u′(r) = ∂u(r)
∂r

:

L = − 3

2g2
(
8u(r)2 − 4r2u(r)3 + r4u(r)4 + 4ru(r)u′(r) + r2u′(r)2

)
. (14)

The action of a field configuration is an integral of (14) over space-time and should
classically be finite.
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3 Constant u(r)

We make a first simple ansatz, assuming u(r) = u = const. Eq.(12) now reads

∂2rφlc +
3

r
∂rφlc + kφlc −

4l(l + 1)

r2
φlc = 0 (15)

k = ω2 +
cu

2
.

3.1 Eigenfunctions

After multiplying both sides of eq.(15) by r2, we have

r2∂2rφlc + 3r∂rφlc + r2kφlc − 4l(l + 1)φlc = 0. (16)

We now set φlc = 1
r
φ, so that eq.(16) becomes

r2∂r

(
− 1

r2
φ+

1

r
∂rφ

)
+ 3r

(
− 1

r2
φ+

1

r
∂rφ

)
+ rkφ− 4l(l + 1)

r
φ

= r2
(

2

r3
φ− 1

r2
∂rφ−

1

r2
∂rφ+

1

r
∂2rφ

)
+ 3r

(
− 1

r2
φ+

1

r
∂rφ

)
+ rkφ− 4l(l + 1)

r
φ

= r∂2rφ+ ∂rφ−
1

r
φ+ rkφ− 4l(l + 1)

r
φ = 0

r2∂2rφ+ r∂rφ+
(
r2k − (4l2 + 4l + 1)

)
φ = 0(

r
√
k
)2 ∂2φ

∂
(
r
√
k
)2 +

(
r
√
k
) ∂φ

∂
(
r
√
k
) +

((
r
√
k
)2
− (2l + 1)2

)
φ = 0.

This is an equation of the form

x2
d2f

dx2
+ x

df

dx
+
(
x2 − ν2

)
f = 0,

a Bessel differential equation which is solved by Bessel functions of the first and
second kind Jν(x) and Yν(x). The Yν(x) are omitted here, being singular at the
origin [7]. Thus,

φ = J2l+1

(
r
√
k
)

= J2l+1

(
r

√
ω2 +

cu

2

)
.

The solutions of eq.(12) for constant u(r) now read

φlc =
1

r
J2l+1

(
r

√
ω2 +

cu

2

)
. (17)

As we require the argument of J2l+1 to be greater than zero and because ω2 < 0,
the range of possible u is restricted.
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3.2 Normalization

We check whether or not the solutions (17) to eq.(16) are normalizable, i.e.
whether or not the norm

N =

∫ ∞
0

r3 |φlc| dr =

∫ ∞
0

r2
∣∣∣∣J2l+1

(
r

√
ω2 +

cu

2

)∣∣∣∣ dr (18)

is finite. As we assume (18) to diverge, we instead investigate the more simple
integral

N ′ =

∫ ∞
0

rJ2l+1

(
r

√
ω2 +

cu

2

)
dr, (19)

which - should it diverge - ensures a divergent norm as well. Substituting
r
√
ω2 + cu

2
→ v, (19) becomes

N ′ =
1

ω2 + cu
2

∫ ∞
0

vJ2l+1(v)dv.

The integration of Bessel functions of the first kind takes the form [7]∫ z

0

tµJν(t)dt =
zµΓ

(
ν+µ+1

2

)
Γ
(
ν−µ+1

2

) × ∞∑
k=0

(ν + 2k + 1)Γ
(
ν−µ+1

2
+ k
)

Γ
(
ν+µ+3

2
+ k
) Jν+2k+1(z)

if Re(µ+ ν + 1) > 0, which holds, since in (19) µ = 1 and ν = 2l + 1. This leads
to ∫ z

0

vJ2l+1(v)dv =
zΓ
(
2l+3
2

)
Γ
(
2l+1
2

) × ∞∑
k=0

2(l + k + 1)Γ
(
2l+1
2

+ k
)

Γ
(
2l+5
2

+ k
) J2(l+k+1)(z).

To obtain N ′, we need to let z go towards infinity. The long-distance behaviour
of Bessel functions of the first kind is [7]

lim
z→∞

Jν(z) =

√
2

πz
cos

(
z − 1

2
νz − 1

4
π

)
.

Thus, the integral (19) finally reads

N ′ = lim
z→∞

√
2z

√
π
(
ω2 + cu

2

) Γ
(
2l+3
2

)
Γ
(
2l+1
2

)
×
∞∑
k=0

2(l + k + 1)Γ
(
2l+1
2

+ k
)

Γ
(
2l+5
2

+ k
) cos

(
z − (l + k + 1)zπ − 1

4
π

)
,

a function of z, the convergence behaviour of which is non-trivial to predict, as
it contains oscillating terms. However, since there are necessarily points at which
the cosine does not vanish and the first term is proportional to

√
z, it is assumed

that (19) and consequently (18) do not converge. The solutions (17) are thus
non-normalizable.
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3.3 Lagrangian and action

Lastly, we seek to calculate the Lagrangian and subsequently the action of the
modified instanton configuration (7) with a constant u(r). Inserting u into (14)
yields

L = − 3

2g2
(
8u2 − 4r2u3 + r4u4

)
as the terms containing derivatives of u vanish. The action is essentially an integral
of the Lagrangian over space-time. However, as the upper integral limit for the
integration over r is infinity, the action does not converge, giving further evidence
that the configuration (7) with a constant u is not a classically admissible field
configuration.
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4 Power series expansions

We now try to solve eq.(12) for selected u(r) by power series expansions of the
solutions φlc. Ideally, the u(r) are chosen so that the field configurations (7) remain
in Landau-gauge and thus (13) equals zero. Additionally, their action should be
finite and therefore the integral of the Lagrangian (14) over space-time should
not diverge. However, these two requirements do not hold for each of the u(r)
analyzed below.

4.1 Exponential u(r)

The first configuration to be investigated has a modification

u(r) = e−r(1 + r), (20)

fulfilling both restrictions stated above. Eq.(12) now takes the form

∂2rφlc +
3

r
∂rφlc +

(
ω2 − 4l(l + 1)

r2
+
c

2
e−r(r + 1)

)
φlc = 0. (21)

We start off by investigating its asymptotic behaviour. For small r, eq.(21) be-
comes

∂2rφlc +
3

r
∂rφlc −

4l(l + 1)

r2
φlc = 0

with the solutions φlc, r→0 = C1r
2l + C2r

−2(l+1) [6], the second of which being
singular at the origin, while for large r it looks like

∂2rφlc +
3

r
∂rφlc + ω2φlc = 0

and is solved by Bessel-functions φlc, r→∞ = D1

r
Jn(ωr) + D2

r
Yn(ωr) [6]. C1, C2, D1

and D2 are integration constants.

We now make the ansatz

φlc = r2l
∞∑
i=0

ai(−1)iri (22)

and evaluate the derivatives in eq.(21):

3

r
∂rφlc = 3r2l−2

∞∑
i=0

ai(−1)iri(2l + i)

∂2rφlc = r2l−2
∞∑
i=0

ai(−1)iri(2l + i)(2l + i− 1).
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For the rest of the calculation we need to expand the exponential function in (20)
into a power series as well. Using ex =

∑∞
n=0

xn

n!
, we have

c

2
e−r(1 + r)φlc =

c

2
r2l

∞∑
n=0

(−1)nrn

n!
(1 + r)

∞∑
i=0

ai(−1)iri

=
c

2
r2l

∞∑
n=0

(−1)n

n!

(
rn + rn+1

) ∞∑
i=0

ai(−1)iri

=
c

2
r2l

∞∑
i=0

ai(−1)iri +
c

2
r2l

∞∑
n=0

rn+1

(
(−1)n

n!
− (−1)n

(n+ 1)!

) ∞∑
i=0

ai(−1)iri

and finally

c

2
e−r(1 + r)φlc =

c

2
r2l

∞∑
i=0

ai(−1)iri +
c

2
r2l

∞∑
n=0

(−1)nrn+1 n

(n+ 1)!

∞∑
i=0

ai(−1)iri.

Hence, eq.(21) now takes the form

∞∑
i=0

ai(−1)ir2l
[
3ri−2(2l + i) + ri−2(2l + i)(2l + i− 1) + ω2ri

−4l(l + 1)ri−2 +
c

2
ri +

c

2

∞∑
n=0

(−1)nrn+i+1 n

(n+ 1)!

]
= 0

∞∑
i=0

ai(−1)ir2l
[
ri−2i(4l + 2 + i) + ri

(
ω2 +

c

2

)
+
c

2

∞∑
n=0

(−1)nrn+i+1 n

(n+ 1)!

]
= 0.

In order for this equation to hold, the coefficients of rm have to vanish for each m
individually. The coefficient of r2l+i−2 takes the form

ai(−1)ii(4l + i+ 2) + ai−2(−1)i
(
ω2 +

c

2

)
+
c

2

∑
j+n=i−3

aj(−1)j+n
n

(n+ 1)!
= 0.

We can rewrite this to obtain the recurrence formula

ai =
−1

i(4l + i+ 2)

(
ai−2

(
ω2 +

c

2

)
+
c

2

∑
j+n=i−3

aj(−1)i+j+n
n

(n+ 1)!

)

ai =
−1

i(4l + i+ 2)

(
ai−2

(
ω2 +

c

2

)
− c

2

∑
j+n=i−3

aj
n

(n+ 1)!

)
, (23)

which holds for i ≥ 14, as ai = 0 for i < 0. This leaves only a0 to be determined.
The coefficient of r2l−2 only contains a0 and a vanishing factor, leading to

a0 = D,

4Note that in the sum in (23) n ≥ 0.
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with D a normalization constant. Since every coefficient ai in the recurrence
formula contains a sum of previous coefficients, each iteration step becomes more
and more complex and the convergence behaviour of (22) is extremely hard to
determine. In principle, one could look for a termination condition. However,
this is superfluous, since (22) becoming a finite series would necessarily diverge
for r →∞, if one were to be found. In order for a finite series not to diverge, we
need to modify the ansatz (22) by a factor compensating the rn-terms for each n
as r →∞. One possible solution is an exponential function e−dr with d a positive
constant. The modified ansatz now reads

φlc = e−drr2l
∞∑
i=0

ai(−1)iri. (24)

We again evaluate the derivatives of eq.(21):

3

r
∂rφlc = 3e−drr2l

∞∑
i=0

ai(−1)i
(
ri−2(2l + i)− ri−1d

)

∂2rφlc = e−drr2l
∞∑
i=0

ai(−1)i
[
ri−2(2l + i)(2l + i− 1)− 2ri−1(2l + i)d+ rid2

]
.

Eq.(21) now reads

∞∑
i=0

ai(−1)ir2l
[
ri−2i(4l + i+ 2)− ri−1(4l + 2i+ 3)d

+ri
(
ω2 + d2 +

c

2

)
+
c

2

∞∑
n=0

(−1)nrn+i+1 n

(n+ 1)!

]
= 0.

In this equation the coefficients of e−drrm have to vanish for every m. The coeffi-
cient of e−drr2l+i−2 is

ai(−1)ii(4l + i+ 2)+ai−1(−1)i(4l + 2i+ 1)d+ ai−2(−1)i
(
ω2 + d2 +

c

2

)
+
c

2

∑
j+n=i−3

aj(−1)j+n
n

(n+ 1)!
= 0

and thus

ai =
−1

i(4l + i+ 2)

[
ai−1(4l + 2i+ 1)d+ ai−2

(
ω2 + d2 +

c

2

)
− c

2

∑
n+j=i−3

aj
n

(n+ 1)!

]
.

Just as above, the sum of previous coefficients makes it difficult to predict the
convergence behaviour of the power series (24). Even though a truncation of this
infinite series to a finite one by finding a termination condition would not lead to
a divergence for large r in this case, there is no simple way of actually finding any
such condition.
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It is apparent that an exponential term in u(r) is extremely hard to deal with
when it comes to investigating the convergence behaviour of the resulting power
series. Hence, it seems necessary to restrain from exponential terms (or any terms
that must first be expanded into an infinite power series themselves before the
evaluation) in the following.

4.2 A more simple u(r)

We again use the ansatz (24) for φlc, but for u(r) we now choose

u(r) = α + βr−1 + γr−2 (25)

with constant α 6= 0, β 6= 0 and γ 6= 0. This modification leads to a field
configuration that is neither in Landau gauge nor has a finite action and serves
the sole purpose of giving some insight as to how solutions of eq.(12) with φlc of
the form (24) might look like. Eq.(12) takes the form

∞∑
i=0

ai(−1)ie−drr2l
[
ri−2

(
i(4l + 1 + 2) +

cγ

2

)
−ri−1

(
(4l + 2i+ 3)d− cβ

2

)
+ ri

(
ω2 + d2 +

cα

2

)]
= 0.

Again, the coefficients of every power of r are required to equal zero. The coeffi-
cient of e−drr2l+i−2 is

ai(−1)i
(
i(4l + i+ 2) +

cγ

2

)
+ai−1(−1)i

(
(4l + 2i+ 1)d− cβ

2

)
+ai−2(−1)i

(
ω2 + d2 +

cα

2

)
= 0.

If we require

d2 = −ω2 − cα

2
,

the term with ai−2 vanishes for every i, simplifying the recurrence formula, as now
every coefficient ai only depends on the previous one:

ai =
−1

i(4l + i+ 2) + cγ
2

(
(4l + 2i+ 1)d− cβ

2

)
ai−1.

We can now pick an arbitrary i at which the series (24) should get truncated if

γ = −2i

c
(4l + i+ 2) = 0

β =
2d

c
(4l + 2i+ 3) = 0.

If we truncate the series at i > 0, a0 vanishes as γ 6= 0 and so does every subsequent
coefficient except ai, becoming a normalization constant ai = D.
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Therefore, only one single summand of (24) contributes to φlc. Truncating at
i = 0 leads to a0 = 0 as well, in which case (24) does not have any contributing
summands at all.
As an example we choose i = 2 so that a2 = D and

u(r) = α +
2d

c
(4l + 7)r−1 − 16

c
(l + 1)r−2 (26)

φlc = De−drr2(l+1)

d2 +
cα

2
= −ω2.

The solutions φlc are normalizable if d > 0, setting a restriction on α as ω2 < 0.
It is important to note that u(r) must not depend on l. Thus, the modification
(26) only works for one certain l that needs to be chosen beforehand. The exact
same holds for c. Again, this ansatz was only intended to give some insight into
the possible solutions of eq.(12).

4.3 Half-integer exponents

We analyze a modification with half-integer exponents of r in it:

u(r) =
α + βr5/2

γ + ηr7/2
(27)

Herein, α, β, γ and η are constants with the only restriction that γ and η must
not vanish at the same time. This time, we use yet another modification of (22)
for φlc:

φlc = e−drr2l
∞∑
i=0

ai(−1)iri+j. (28)

Eq.(12) now reads

∞∑
i=0

e−drai(−1)ir2l+j
[
ri−2(i+ j)(4l + i+ j + 2)γ − ri−1(4l + 2i+ 2j + 3)dγ

+ri
(

(ω2 + d2)γ +
cα

2

)
+ ri+

3
2 (i+ j)(4l + j + i+ 2)η

−ri+
5
2

(
(4l + 2i+ 2j + 3)dη − cβ

2

)
+ ri+

7
2 (ω2 + d2)η

]
= 0.

Because of the half-integer exponents, there are now two conditions that have to
hold, as both the coefficients of e−drr2l+i+j−2 and e−drr2l+i+j+

3
2 have to vanish

simultaneously for every i and thus

ai(i+ j)(4l + i+ j + 2)γ + ai−1(4l + 2i+ 2j + 1)dγ + ai−2

(
(ω2 + d2)γ +

cα

2

)
= 0

ai(i+ j)(4l+ i+ j + 2)η+ ai−1

(
(4l + 2i+ 2j + 1)dη − cβ

2

)
+ ai−2(ω

2 + d2)η = 0.
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The first step of the iteration is

a0j(4l + j + 2)γ = 0

a0j(4l + j + 2)η = 0.

As it is not allowed for γ and η to vanish simultaneously, we conclude that a0 = 0.
The following iteration steps are quite similar to the first one, as every subsequent
coefficient ak = 0 for k < i up to the point i where

(i+ j)(4l + i+ j + 2) = 0

and thus j = −i or j = −4l− i−2. Consequently, we can make the corresponding
coefficient a constant ai = D. We again look for termination conditions, the most
simple of which is to set ak = 0 for k > i as well5. To achieve this, we take a look
at the next iteration step, already with ai+1 = 0:

D(4l + 2i+ 2j + 3)dγ = 0

D

(
(4l + 2i+ 2j + 3)dη − cβ

2

)
= 0.

We are left with no choice other than setting

γ = 0

and

β =
2dη

c
(4l + 2i+ 2j + 3).

The next iteration step then reads

D
αc

2
= 0

D(ω2 + d2)η = 0.

The only way to make this work is

α = 0

ω2 + d2 = 0

as γ already vanishes and thus η 6= 0. This also guarantees that d > 0 because
ω2 < 0. What remains of (27) is

u(r) =
2d

rc
(4l + 2i+ 2j + 3)

5This whole procedure also works for i = 0, leading to a0 = D and ak = 0 for k > 0.
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and with the two possibilities of j:

u(r) =
2d

rc
(4l + 3)

u(r) = −2d

rc
(4l + 1).

The corresponding eigenstates read

φlc = De−drr2l

φlc = De−drr−2(l+1)

d2 = −ω2.

Unfortunately, the modifications (27) lead to field configurations that neither obey
the Landau gauge condition (3) nor have a finite action. Additionally, they also
contain l and c, just like the one treated in the preceding section and thus only
work for one particular l and c as well. As for the solutions φlc, the first one is
normalizable for every allowed l as d > 0, while the second one is normalizable
only for l < 3.

4.4 Second-order polynomial as denominator of u(r)

The next modification to be investigated is

u(r) =
α

β + γr + ηr2
(29)

with constant α, β, γ and η and the restriction that β, γ and η must not vanish
at the same time. Again using the ansatz (28), eq.(12) now takes the form

∞∑
i=0

ai(−1)ie−drr2l+j
[
ri−2(i+ j)(4l + i+ j + 2)β

+ri−1((i+ j)(4l + i+ j + 2)γ − (4l + 2i+ 2j + 3))dβ

+ri
(

(i+ j)(4l + i+ j + 2)η − (4l + 2i+ 2j + 3)dγ + (ω2 + d2)β +
cα

2

)
+ri+1(−(4l + 2i+ 2j + 3)dη + (ω2 + d2)γ) + ri+2(ω2 + d2)η

]
= 0.

The coefficient of e−drr2l+i+j−2 having to vanish for every i leads to the equation

ai(i+ j)(4l + i+ j + 2)β

−ai−1((i+ j − 1)(4l + i+ j + 1)γ − (4l + 2i+ 2j + 1)dβ)

+ai−2

(
(i+ j − 2)(4l + i+ j)η − (4l + 2i+ 2j − 1)dγ + (ω2 + d2)β +

cα

2

)
−ai−3

(
−(4l + 2i+ 2j − 3)dη + (ω2 + d2)γ

)
+ ai−4(ω

2 + d2)η = 0.

For simplification, we again set

ω2 + d2 = 0.
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As in the scenarios treated above, we look for a termination condition. In order for
the series (28) to terminate at a point i, at the same time making the coefficient ai
a normalization constant ai = D, each of the following requirements has to hold:

(i+ j)(4l + i+ j + 2)β = 0

γ(i+ j)(4l + i+ j + 2)− (4l + 2i+ 2j + 3)dβ = 0

(i+ j)(4l + i+ j + 2)η − (4l + 2i+ 2j + 3)dγ +
cα

2
= 0

(4l + 2i+ 2j + 3)dη = 0.

One way to achieve this is to set j = −i or j = −4l − i − 2, while β = 0, η = 0
and

α

γ
=

2d

c
(4l + 2i+ 2j + 3),

which leads to the exact same solutions as the ones treated in section 4.3. Another
possibility is β = 0, γ = 0 and j = −2l − i− 3

2
. In this case,

α

η
=

2

c

(
2l +

3

2

)(
2l +

1

2

)
.

Now, the modification u(r) and the solution φlc read

u(r) =
(4l + 3)(4l + 1)

2cr2

φlc = De−drr−
3
2

d2 = −ω2.

Again, u(r) leads to a field configuration that neither is in Landau gauge nor has
a finite action. Additionally, it once again depends on l and c and the solution φlc
is non-normalizable.

4.5 A general approach

For the sake of completeness, we analyze a general modification u(r) that can be
expanded into a power series, despite knowing that its convergence behaviour is
likely difficult to determine:

u(r) =
∞∑
k=0

bkr
k. (30)

We now go back to using (24) for φlc and eq.(12) takes the form

∞∑
i=0

ai(−1)ie−drr2l
[
ri−2(i(4l + i+ 2)− ri−1(4l + 2i+ 3)d

+ri(ω2 + d2) +
c

2

∞∑
k=0

bkr
k+i

]
= 0.
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As in the previous sections, the coefficient of rm has to vanish for every m in order
for this equation to hold. The coefficient of e−drr2l+i−2 reads

ai(−1)ii(4l + i+ 2)+ai−1(−1)i(4l + 2i+ 1)d+ ai−2(−1)i(ω2 + d2)

+
c

2

∑
k+j=i−2

ajbk(−1)j = 0.

As there is no simple way to find out whether or not this leads to a convergent
series or to find any termination condition, the only thing left to do is to check
under which conditions the Landau gauge-condition (3) holds for this modification:

∂u(r)

r∂r
=
∞∑
k=0

bkkr
k−2 =

∞∑
k=1

bkkr
k−2

The limit r → 0 looks like

lim
r→0

∞∑
k=1

bkkr
k−2 = lim

r→0
b1r
−1 + 2b2.

If we require ∂u(r)
r∂r

to be finite at every point, then

b1 = 0.

4.6 A general rational approach

This is another modification we discuss just for the sake of completeness:

u(r) =

∑J
j=0 gjr

j∑K
k=0 hkr

k
. (31)

with K > J to facilitate convergence as r → ∞. Once again using the ansatz
(24), eq.(12) reads6

∞∑
i=0

ai(−1)ie−drr2l
[ K∑
k=0

hkr
i+k−2i(4l + i+ 2)−

k∑
k=0

hkr
i+k−1(4l + 2i+ 3)d

+
K∑
k=0

hkr
i+k(ω2 + d2) +

c

2

J∑
j=0

gjr
j+i

]
= 0.

The coefficient of e−drr2l+i−2 now takes the form∑
m+k=i

amhk(−1)mrm+k−2m(4l +m+ 2)

−
∑

m+k=i−1

amhk(−1)mrm+k−1(4l + 2m+ 1)d

+
∑

m+k=i−2

amhk(−1)mrm+k(ω2 + d2)

+
c

2

∑
j+m=i−2

amgj(−1)mrj+m = 0.

6Note that in the summations k ≤ K and j ≤ J .
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Again, we check whether or not this modification leads to a field configuration
that is in Landau gauge:

∂u(r)

r∂r
=

1

r
(∑K

k=0 hkr
k
)2
[

J∑
j=0

gjjr
j−1

K∑
k=0

hkr
k −

J∑
j=0

gjr
j

K∑
k=0

hkkr
k−1

]

and in the limit r → 0

lim
r→0

∂u(r)

r∂r
=

1

h20
(g1h0 − g0h1)r−1.

If ∂u(r)
r∂r

is required to be finite for every r, then

g1h0 − g0h1 = 0.
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5 Summary and outlook

The instanton field configuration (6) has been modified to look like (7). Various
different u(r) have been investigated in order to find normalizable eigenstates of the
Faddeev-Popov operator (4) that host negative eigenvalues. For a constant u(r),
the calculation has been done algebraically, while for the remaining modifications
power series expansions have been used.

While some solutions have been found, none of them fulfill all the require-
ments imposed on them: The constant u(r) leads to a field configuration that
is in Landau gauge, but does not have a finite action, while the eigenstates are
non-normalizable. As for the power series expansions, there are in fact some nor-
malizable eigenstates, the corresponding field configurations of which are not in
Landau-gauge, though, and neither have a finite action. Some general considera-
tions have been made, which could hypothetically lead to the desired results but
are too complex to investigate without any further restrictions.

A lot of the work comes down to trial and error and since we only treated a few
selected u(r) in this thesis, we have left an abundance of possibilities unconsidered.
However, this also opens up this topic for further research in the future.
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